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Abstract
Over the last several years, a growing body of literature has linked the gut microbiome to

human health and diseases such as obesity, metabolic syndrome, and nonalcoholic fatty

liver disease (NAFLD). This paper will review the current literature investigating the influence

of diets associated with metabolic disorders on the microbiome and how those changes

promote susceptibility to metabolic disorders. It will then focus in-depth on the role of the

gut microbiome in NAFLD. The review will highlight associations of microbial composition

and function with progression of NAFLD in patients and discuss potential mechanisms that

link the gut microbiome to NAFLD. Finally, it will address limitations of existing studies along

with future directions for microbiome research in NAFLD, including potential microbe-

related treatments.
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Introduction

The human microbiome represents all microorganisms

residing on or within the human body, including bacteria,

archaea, fungi, protozoans, and viruses. The human micro-

biome has the same number of cells and about 100 times

more genes than the human body.1–3 These genes encode a

wide array of pathways that produce bioactive molecules

derived from dietary or metabolic precursors.4 While the

gut microbiome has many beneficial functions such as the

extraction of energy from otherwise indigestible dietary

fiber, there is increasing evidence connecting the micro-
biome and its metabolites to the development of certain
diseases including obesity, metabolic syndrome, and non-
alcoholic fatty liver disease (NAFLD).5

The incidence of NAFLD is rapidly growing in conjunc-
tion with the epidemic of obesity and metabolic disorders.6

The risk factors associated with NAFLD include central
obesity, insulin resistance, hyperlipidemia, and metabolic
syndrome. Epidemiological studies have suggested that
NAFLD is more prevalent in men as compared to women
and more prevalent in those with Asian or Hispanic
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heritage relative to other racial/ethnic groups.7,8 NAFLD is
now the one of the most common causes of chronic liver
disease in the Western world and the top two reasons for
cirrhosis and liver transplantation.9,10 NAFLD is a term that
encompasses two distinct diseases: nonalcoholic fatty liver
(NAFL) and nonalcoholic steatohepatitis (NASH). While
patients with NAFL have only bland steatosis on liver
biopsy, patients with NASH will also have lobular inflam-
mation and/or hepatocyte ballooning, a sign of hepatocyte
damage. Patients with NAFL will often remain stable for
many years and will rarely ever progress further.11,12

Patients with NASH, however, are more likely to progress
to fibrosis, cirrhosis, and hepatocellular carcinoma.11,13

The progression from NAFL to NASH is associated with
metabolic syndrome and insulin resistance.14 Because of
the interplay between the microbiome and energy
metabolism, there have been many recent studies that
have investigated the relationship between the human
microbiome and NAFLD development and progression.

This review will explore how diets associated with obe-
sity and NAFLD affect the microbiome and how the micro-
biome in turn can influence the pathogenesis of these
diseases. We will also review potential mechanisms and
pathways that link the microbiome to the development
and progression of NAFLD. Finally, we will discuss limi-
tations of current research and explore potential future
directions including therapeutic applications.

Methods

A comprehensive literature review was performed of stud-
ies published from 1995 to the present using the following
key terms in PubMed: nonalcoholic fatty liver disease,
nonalcoholic steatohepatitis, cirrhosis, fibrosis, obesity,
metabolic syndrome, diabetes, fat, adipose, bacteria, and
microbiome. Particular emphasis was given to articles
published within the last five years.

Diet and the microbiome

Diet plays a critical role in the development of obesity, met-
abolic syndrome, and NAFLD. Epidemiological
studies have consistently shown associations of diets high
in fat and refined sugar with incidence of obesity and
NAFLD.15 In experimental models, such diets have
been shown to increase adiposity, hepatic steatosis, and
inflammation.16 Here, we will discuss how the diets most
commonly associated with NAFLD and obesity affect the
gut microbiome.

Western diet

A Western diet is often defined as a diet that is high in
sugar, fat, processed meats, and simple grains while
being low in fiber.17 It has been linked to many negative
health outcomes including obesity, insulin resistance, met-
abolic syndrome, and NAFLD.17,18 There is now growing
evidence that the negative effects of a Western diet may be
mediated by shifts in themicrobiome.17 Patients on this diet
have been reported to have significantly lower microbial
diversity and species richness than those on a more

agrarian diet, features that are associated with gut dysbio-
sis.19 The Western diet microbiome is often described as
having a higher abundance of Firmicutes with a relatively
lower abundance of Bacteroidetes.20 The high Firmicutes to
Bacteroides ratio decreases in subjects who lose weight on
either a carbohydrate-restricted or fat-restricted diet.21,22

At a genus level, a Western diet is associated with
depletion of Bidobacterium and Lactobacillus and enrichment
of Enterobacter.23 These perturbations of the microbiome
may cause metabolic changes in the host by altering
short-chain fatty acid (SCFA) production, release of gut
hormones such as peptide YY and glucagon-like peptide,
and Toll-like receptor (TLR) signaling induced by lipopoly-
saccharides (LPSs) and other bacterial products.22 The role
of the microbiome in mediating the link between a Western
diet and obesity has been examined extensively in several
mouse models. Colonization of germ-free mice with the
microbiota of obese mice (induced by leptin-deficiency or
a Western diet) results in increased body fat accumulation
compared to colonization with microbiota from lean con-
trols.24,25 Similarly, germ-free mice colonized with feces
from obese humans had increased adiposity on a high-fat
diet compared to germ-free mice colonized with feces
from lean humans in weight discordant twin pairs.26 Mice
deficient in TLR 5 and inflammasome components develop
susceptibility to Western diet-induced obesity that can
be transmitted to other mice by fecal transplantation,
demonstrating that genetic factors can modulate the
diet-microbiome interaction.26

High saturated fat

Similar to the Western diet, diets high in saturated fats can
also have deleterious effects on health that may be attrib-
utable to the microbiome. Epidemiological studies have
shown that diets high in saturated and trans-fat are associ-
ated with obesity, cardiovascular disease, and NAFLD.27,28

Mice that are fed a high saturated fat diet develop similar
hepatic steatosis and inflammation as seen in patients with
NAFLD.28 However, not all fats have similar consequences.
Diets high in polyunsaturated fats, such as those seen in a
Mediterranean diet, have been associated with reduced car-
diovascular events and a lower prevalence of obesity.26–29,31

To examine the role of different fats on the microbiome, one
study randomized subjects with risk factors for metabolic
syndrome to receive either saturated or monosaturated
fats.32 The authors found that a diet high in saturated fats
led to an overabundance of Faecalibacterium prausnitzii,
which was not seen in patients on the diet high in mono-
unsaturated fats.32 However, this association with F. praus-
nitzii should not be construed as negative since the
introduction of F. prausnitzii was protective against hepatic
steatosis and adipose tissue inflammation in mice fed a
high-fat diet.33 In one of the largest studies comparing the
effects of saturated and polyunsaturated fats on the micro-
biome, Menni et al. demonstrated in 876 women that higher
polyunsaturated fat intake was associated with higher
microbial diversity and expansion of members of the
Lachnospiraceae family.34 These findings suggest that
the specific composition of fat may be more critical than
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the total amount of fat. This idea is supported by a recent
study demonstrating that mice fed on a lard fat diet had a
greater abundance of Bacteroides and Bilophila, and a lower
abundance of Lactobacillus and Akkermansia, than mice fed a
diet with an equal amount of fat derived from fish oil.35

Mice on a lard fat diet also had higher TLR signaling,
white adipocyte inflammation, and insulin resistance as
compared to mice on a fish oil diet.35 Fecal transplantation
of the lard fat-associated microbiome into germ-free ani-
mals induced the donor’s metabolic phenotype in recipi-
ents, suggesting that these pathways are in part mediated
by the microbiome.35

Role of the microbiome in obesity and
insulin resistance

One of the early pivotal studies that linked the microbiome
to the development of obesity came from Turnbaugh et al. in
2006.24 They used 16s rRNA sequencing to demonstrate an
increased ratio of Firmicutes to Bacteroidetes in obese
humans and experimental mice on a high-fat diet and
found that colonization of germ-free mice with this
obesity-associated microbial profile could induce an obese
phenotype in the recipients. Since then, several other stud-
ies have shown that the microbiome can influence weight
gain by affecting host gene expression, metabolism, and
ingestive behavior.36–39 Pathways implicated in these met-
abolic changes included short-SCFA signaling and LPS acti-
vation of TLRs, which can induce altered gene expression,
hormone secretion, and energy consumption in adipo-
cytes.40 Additionally, several papers have shown that the
efficacy of surgical weight loss interventions may be in part
mediated by shifts in the gut microbiome.41 For example, a
study in mice found that gastric bypass led to a persistent
increase in Escherichia and Akkermansia, and that microbial
transplantation from these mice into nonoperated germ-
free mice successfully transferred the donor phenotype.42

Insulin resistance is another risk factor for NAFLD that
is associated with obesity and may also be affected by the
microbiome. In support of this concept, two small random-
ized controlled trials of probiotics for NAFLD—alone or in
combination with metformin, an insulin sensitizer—have
reported improvement in insulin resistance, hepatic inflam-
mation, and hepatic steatosis.43,44 This association between
the microbiome and insulin resistance ledWu et al. to exam-
ine the effects of metformin on the microbiome of diabetic
patients.45 They found that metformin greatly alters the
microbiome and that some of its metabolic effects on the
host could be recapitulated by transferring this altered
microbiome into germ-free animals. Wu’s and prior studies
support the concept that the microbiome influences insulin
sensitivity and demonstrates how the microbiome can
potentially alter the course of NAFLD through insulin-
related pathways.

Microbiome associations across the
spectrum of NALFD

The growing evidence linking the microbiome to obesity
spurred interest in the potential role of the microbiome

in other metabolic diseases including NAFLD. Here, we
will review evidence from human studies for microbiome
associations with NAFL-, NASH-, and NAFLD-related
advanced fibrosis.

NAFL

Studies that have examined the microbiome profile of
patients with NAFL as compared to either healthy controls
or weight-matched controls have yielded variable results.
Pediatric NAFL patients have been reported to have more
Prevotella and lessOscillospira thanmatched controls.46–48 In
studies of adult NAFL patients, Lactobacillus and Escherichia
have been enriched while Coprococcus and Prevotella have
been depleted (Table 1).49–52 These studies utilized 16s
rRNA sequencing, which can only provide insight into
composition (what bacteria are there) but not function
(what products are made by bacteria that may affect dis-
ease). Three studies took a multi’omics approach combin-
ing microbiome sequencing with metabolomics analysis to
evaluate potential microbial metabolic pathways promot-
ing the development of NAFL.51–53 Raman et al. found 18
differentially abundant stool metabolites associated with
NAFL in adults, including elevated levels of derivatives
of butanoic, propanoic, and acetic acid.53 Similarly, Da
Silva et al. found enrichment of propionate and isobutyric
acid in the feces of NAFL patients.51 These differences were
associated with an increase in serum 2-hydroxybutyrate
and L-lactic acid. The most convincing data to date that
links the microbiome to the development of NAFL comes
from Hoyles et al.52 This study assessed the hepatic tran-
scriptome, gut metagenome, and serum/urine metabolome
of a cohort of nondiabetic obese women. NAFL was asso-
ciated with increased serum levels of several branched-
chain and aromatic compounds. Administration of one of
these, phenylacetic acid, to mice colonized with human
fecal microbiota triggered hepatic steatosis.

NASH

Studies characterizing the microbiome profile of NASH
compared to NAFL or obese controls have found more
consistent differences than has been seen for NAFL.54

In children, patients with NASH generally had more
Ruminococcus, Dorea, Streptococcus, and Escherichia as
compared to their obese counterparts.46–48,55 In adults,
patients with NASH had lower levels of Faecalibacterium,
Ruminococcus, and Bidobacterium51,56 and a higher level of
Lactobacillus.57 Few studies have examined fecal or serum
metabolites distinguishing NASH from simple NAFL,
most likely due to the fact that a diagnosis of NASH
often requires a liver biopsy in order to distinguish it
from NAFL. Del Chierico et al. showed higher levels of
4-methyl-2-pentanone and 2-butanone in the serum of chil-
dren with NASH.47 Higher levels of 2-butanone were seen
in the serum of adults with NAFL,52 but the functional sig-
nificance of this metabolite is still unknown. In a cohort of
16 adults with biopsy-proven NASH, patients with NASH
had an increased ratio of primary to secondary bile
acids, which the author correlated to an increased risk of
hepatic injury.58
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NAFLD-related advanced fibrosis

In contrast to NAFL andNASH, which have data from both
children and adults, NAFLD-related fibrosis has only been
studied in adults due to the slow progression of fibrosis.
Advanced fibrosis, defined as a fibrosis stage > 2, is asso-
ciated with a higher incidence of mortality and liver
cancer.59 Microbiome association studies of NAFLD-
related advanced fibrosis have generally reported a
decrease in microbial diversity, often due to expansion of
Gram-negative bacteria.60–62 Multiple studies have found
an association between advanced fibrosis and an overabun-
dance of Bacteroides and Escherichia,60–63 while associations
with other genera such as Prevotella have been less consis-
tent.61,64 Utilizing metagenomic sequencing, which allows
for species level resolution, Loomba et al. showed that
Escherichia coli and Bacteroides vulgatus were higher in
patients with NAFLD-related advanced fibrosis.62 They
also examined serum metabolites and showed that 3-

phenylproanoate was the metabolite with the highest fold
increase in advanced fibrosis, though it did not reach sig-
nificance. Recently, Caussy et al. found an association
between 3–(4-hydroxyphenyl)lactate, a microbial metabo-
lite involved in amino acid metabolism, and NAFLD-
related advanced fibrosis.63 This metabolite was also
strongly correlated with several bacterial species that
were associated with hepatic fibrosis, including
Escherichia coli, Bacteroides caccae, and Clostridium sp.62

Potential mechanisms that link the
microbiome to fatty liver disease

While recent human studies have provided meaningful
insights into the composition and possible function of the
microbiome in each stage during the development and pro-
gression of NAFLD, the findings are largely correlative and
do not provide conclusive evidence of whether the micro-
biome is a critical driver of NALFD or simply responds to

Table 1. Bacteria genera and fecal/serum metabolites associated with different stages of nonalcoholic fatty liver disease in human studies.

NAFLD subtypes Community composition (genera) Fecal metabolites Serum metabolites

NAFL "#Bifidobacterium41,47,a

"#Lactobacillus41,45,46,48,a
"#Oscillobacter42,45,47,48,a

"#Prevotella43,44,a
"Roseburia48
"#Ruminococcus42,44,46,a

"Blautia42,44
"Clostridium45

"Dorea42,48,a
"Escherichia44,47
"Streptococcus45
#Alistipes45
#Coprococcus46,47
#Faecalibacterium46

#Odoribacter45

#Oscillospira42,a

"Acetic acid48

"Butanoic acid48

"Cholic acid53

"Ethanol43,a
"Isobutyric acid46

"Propanoic acid48

"Propionate46
#2-butanone48

"2-butanone42,a
"2-hydroxy-butyrate46
"Isoleucine47
"Leucine47
"L-lactic acid46

"Phenylacetic acid47

"Valine47

NASH "#Ruminococcus41,46,52,a

"Allisonella51
"Blautia42,44
"Clostridium53

"Dorea41
"Escherichia43
"Lactobacillus41,52
"Parabacteroides51
#Bifidobacterium41,52

#Coprococcus46
#Faecalibacterium46,51,52

#Oscillospira41

"Chenodeoxycholic acid53

"Cholic acid53

"Lithocholic acid53

"2-butanone42,a
"4-methyl-2-pentanone42,a

"Ethanol43

NAFLD-related

advanced fibrosis

"#Prevotella55,56
"#Ruminococcus55–57

"Bacteroides55–58
"Blautia56
"Enterococcus56
"Escherichia57,58
"Klebsiella55
"Lactobacillus56
"Parabacteroides56
"Roseburia56
"Streptococcus56
#Akkermansia56

"3-(4-hydroxyphenyl)lactate58
"3-phenylpropanoate57

aDenotes an association that has been reported only in pediatric cases of NAFLD.

NAFLD: nonalcoholic fatty liver disease; NAFL: nonalcoholic fatty liver; NASH: nonalcoholic steatohepatitis.
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the altered diet and host environment associated with
NAFLD. Mechanistic investigation supporting a causative
role for the microbiome in NAFLD pathogenesis has largely
depended upon animal models. The results of studies eval-
uating microbial composition and metabolites in animal
models of NAFLD are summarized in Table 2.24,65–72

Overall, inflammatory pathways such as TLR signaling,
choline deficiency, and bile acid metabolism have been
linked to NASH, while SCFAs and amino acid metabolism
have been linked more to NAFL. Here we will review the
potential mechanisms by which the microbiome influences
NAFLD development.

Epithelial barrier function, TLR signaling, and
endotoxemia

Adult patients with NAFLD as well as healthy patients on a
Western diet have both been shown to have a “leaky gut”
characterized by higher intestinal permeability and altered
tight junctions.73,74 This disruption in the epithelial gut bar-
rier leads to an increased translocation of bacterial products
such as LPS into the portal circulation, potentially inducing
hepatic inflammation. One of the first studies to causally
link the microbiome to NAFLD demonstrated that mice
lacking inflammasome components—which are important
to intestinal barrier defense—developed dysbiosis and
NASH. Transfer of this dysbiosis to wild-type recipients

could induce NASH via an influx of TLR agonist, specifi-
cally TLR4 and TLR9, into the portal circulation.68 Rahman
et al. showed that fibrotic steatohepatitis induced by a high-
fat, high-cholesterol, and high-fructose diet was exacerbat-
ed in mice lacking a gene involved in junctional adhesion
molecules, an important component of the intestinal barri-
er. Administration of antibiotics improved liver histology
in these knockout mice, suggesting that products of micro-
bial metabolism crossing an impaired intestinal barrier
mediated the phenotype.75,76 There is also a significant
role of the host immune system in modulating gut perme-
ability. Beta7 integrin-deficient mice, which are deficient in
intestinal immune populations requiring this integrin for
chemotaxis, show decreased insulin resistance on a high-fat
diet.77 Treatment of wild-type mice on a high-fat diet with a
local gut anti-inflammatory medication, 5-aminosalicyclic
acid, reversed diet-induced bowel inflammation and
improved metabolic parameters.77 The downstream effects
of LPS translocation are mediated through induction of
TLR signaling in the liver. In several studies, LPS has
been shown to induce TLR4, leading to increased NF-jB
activation and cytokine production important to the pro-
gression from NAFL to NASH.78,79 Unfortunately, a recent
phase 2 trial did not show any significant benefit of TLR4
antagonism in NASH patients. Therefore, the clinical rele-
vance of this pathway remains unclear.80

Table 2. Bacterial genera and fecal/serum metabolites associated with NAFL and NASH development in animal models.

NAFLD animal models Community composition (genera) Fecal metabolites Serum metabolites

NAFL (high-fat diet

or leptin-deficient mice)

"Bacteroides65
"Barnesiella67
"Bilophila64,66
"Dorea66
"Helicobacter65
"Oscillospira65

"Roseburia67
"Sutterella66
#"Allobaculum67

#"Lactobacillus62,67
#Akkermansia64–66

#Bifidobacterium66

#Flavobacterium65

#Marinitoga65

#Parabacteroides65,66
#Ruminococcus66

"Butyrate21
#Deoxycholic acid (relative abundance)66

#Hyodeoxycholic acid (relative abundance)66

Taurine-conjugated

bile acid66

NASH (NASH inducing

diet, i.e., methionine-choline

deficient diet)

"(f) Bacteroidaceae63
"(f) Erysipelotrichaceae63
"(f) Porphyromonadaceae63

"(f) Clostridiaceae63
"Alistipes60
"Bacteroide60,61,63
"Bilophila61
"Blautia61
"Parabacteroides63
"Turicibacter63
#Akkermansia61

#Bifidobacteriu60,61
#Desulfovibrio61
#Enterorhabdus61
#Lactobacillus63

"Hexadecane60
"Tetracosane60
#Arachidic acid60

#Cholic acid60

#Stearic acid60

Wild-type mice on a control diet serve as the reference group. NAFLD: nonalcoholic fatty liver disease; NAFL: nonalcoholic fatty liver; NASH: nonalcoholic

steatohepatitis
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Choline deficiency

The relationship between choline deficiency and NAFLD
development has been well established.81 Deficiency in
choline leads to abnormal phospholipid synthesis and
alterations in very-low-density lipoprotein secretion, even-
tually leading to hepatic steatohepatitis.81 Recently, dietary
choline bioavailability was shown to be reduced by the gut
microbiome through the production of metabolites such as
trimethylamine (TMA).30,82 Several gut microbes are high
utilizers of choline and only low abundance of these
microbes is required to greatly reduce host choline
levels.83 Mice fed a high-fat diet have been shown to have
increased levels of gut microbes that metabolize choline
and produce TMA.84 The liver converts gut-derived TMA
to trimethylamine-N-oxide (TMAO) via flavin containing
monooxygenase 3.85 Elevated levels of TMAO are associat-
ed with cardiovascular disease, which potentially links the
extrahepatic manifestations of NAFLD to microbial-
derived metabolites.86 However, the role of circulating
TMAO in NAFLD has not been well studied.

Short-chain fatty acids

One of the major functions of the human microbiome is the
fermentation of indigestible carbohydrates (e.g., fiber) to
produce SCFAs. These SCFAs include acetate, propionate,
and butyrate, and they act as a major energy source for
intestinal epithelial cells. SCFAs also facilitate a wide
array of biological activities including hormone production
and gene regulation.87 Obese individuals as well as indi-
viduals with NAFL have higher total levels of gut SCFAs as
compared to lean controls.51,53,88 The administration of
inulin-type fructan prebiotics was associated with a reduc-
tion in SCFAs in obese women along with a reduction of
other metabolic markers.89 Conversely, certain SCFAs may
be beneficial against obesity and NAFLD. One mechanism
by which SCFAs can affect the host is by binding to highly
specific G-protein coupled receptors (GPR), which mediate
distinct effects of each SCFA. For example, in a mouse
model of diet-induced obesity, a mixture of SCFA predom-
inantly made up of butyrate reduced hepatic expression of
GPR41 and GPR43, two receptors that have been shown to
promote hepatic lipid accumulation.90,91 The positive effect
of butyrate was further highlighted by Mattace Raso et al.
when they demonstrated that butyrate supplementation
was able to improve hepatic steatosis induced in mice by
a high-fat diet.92 Furthermore, fecal microbial transplanta-
tion from lean human donors to obese patients resulted in
improved insulin sensitivity, which was associated with
increased abundance of butyrate-producing bacteria.93

The inconsistent findings on SCFAs are most likely due to
the distinct biological effects of individual SCFAs on
host metabolism.

Bile acid metabolism

The recent development and marketing of obeticholic acid,
a farnesoid X receptor (FXR) agonist, underscores the
importance of bile acids for host metabolism and health.
Gut microbes play a critical role in the regulation of the

bile acid pool through conversion of primary bile acids to
secondary bile acids, which have distinct functional prop-
erties mediated by differential binding to bile acid receptors
including FXR and G-protein coupled bile acid receptor 1
(GPBAR1).94 In a murine model of NAFLD, animals with
intestine-specific FXR disruption developed changes in
their gut microbiome that were associated with reduced
triglyceride accumulation in response to a high-fat diet as
compared to controls.95 In mice treated with antibiotics,
there was an increase in conjugated bile acid metabolites
that inhibited intestinal FXR signaling.95 GPBAR1 signaling
was also found to be necessary for sustained weight loss
and improved fatty liver in mice undergoing sleeve gastrec-
tomy.96 In humans, a phase 2 clinical trial with obeticholic
acid in patients with NASH showed improvement by his-
tology after 72 weeks of treatment.97 The administration of
obeticholic acid also led to a reversible induction of Gram-
positive bacteria in the human small intestine and
increased proportion of Firmicutes in mice.98 While initial
results are promising, ongoing studies and phase 3 trials
are underway in order to better understand the complex
relationship between the gut microbiome, bile acid synthe-
sis, and FXR signaling.

Amino acid metabolism

The gut microbiome can also affect the synthesis and
metabolism of aromatic and branched-chain amino acids
(BCAAs). In patients with insulin resistance, Prevotella
copri and Bacteroides vulgatus were identified as the main
species associated with increased BCAAs and insulin resis-
tance.99 The authors also showed that mice gavaged with
P. copri developed increased insulin resistance when fed a
high-fat diet as compared to controls.99 In a recent study,
Hoyles et al. demonstrated that phenylacetic acid, an aro-
matic amino acid derived from microbial metabolism, was
strongly associated with hepatic steatosis in humans.52

They also showed that the addition of phenylacetic acid
in both primary human hepatocyte cultures and in mice
models could trigger hepatic steatosis, implying a causal
effect in NAFL.52

Therapeutic implications, limitations, and
future directions

The growing evidence that links the human microbiome to
NAFLD progression has motivated interest in the develop-
ment of novel microbiome-related therapies for NAFLD.
Microbiome-related interventions include gut-specific anti-
biotics, probiotics, prebiotics, and fecal microbial transplant
(FMT).54 However, large well-designed clinical studies
examining microbiome-related interventions in NAFLD are
lacking. Several randomized controlled trials involving pro-
biotics in NAFLD have yielded conflicting results due to the
lack of standardization across studies.100 As of yet, no ran-
domized controlled trial involving probiotics has shown any
significant changes in body mass index (BMI).100 Several
small trials have shown a potential benefit of probiotics on
important markers including insulin resistance, alanine ami-
notransferase (ALT), aspartate aminotransferase (AST), and
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histology grade (Table 3).43,44,101–103 For example, a small
randomized trial with 66 patients showed that supplemen-
tationwith Bidobacterium longum and fructo-oligosaccharides
improved insulin resistance, hepatic steatosis, and NASH
activity index after 24 weeks of treatment.44 These findings
have not yet been reproduced in larger published studies.
There is also no data available about the role of FMT in
NAFLD, though there are now two actively recruiting clin-
ical trials designed to address this question.104,105 However,
until there is a better understanding of the key mechanistic
pathways by which the microbiome promotes NAFLD, the
development of microbiome-related therapies will be limit-
ed. Nonetheless, a recent multi’omics study has provided
initial support for the potential application of microbes
and their metabolites as noninvasive biomarkers for
diagnosis and prognostication of NAFLD.62

Despite major recent advances in microbiome research,
the field is still in its infancy with many areas that can be
improved upon. One of the main challenges to interpreting
the existing literature on the microbiome and NAFLD is
heterogeneity in study design. In particular, there has
been wide variation in selection of healthy controls (includ-
ing inconsistent BMI-matching), age range of study popu-
lations, incorporation of diet into the analyses, and sample
collection/processing. In addition, early studies examining
the gut microbiome and NAFLD have been predominantly
association studies. These studies are unable to differenti-
ate whether the microbial profile described was a potential
cause of NAFLD or rather a byproduct of the environment.
Moreover, relevant microbial metabolites that reach the
liver may be produced primarily in the small intestine
and/or proximal colon, which may not be well represented
by the microbiome and metabolome of feces. At this time,
studies are shifting away from these types of analysis and

are moving towards studies focusing on mechanistic path-
ways.106 This can be achieved in human studies by using a
multi’omics approach combiningmicrobiome analysis with
other modalities including metabolomics, proteomics, and
host transcriptomics to develop a systems level under-
standing of NAFLD development and progression.
Such studies are complemented by experiments involving
transplantation of human microbiota into germ-free or
antibiotic-treated animals to establish causal relationships
between dysbiosis observed in human cohorts and meta-
bolic outcomes.41,52

Currently, 16s rRNA sequencing is the most common
method for microbiome analysis.106 It is effective for defin-
ing microbial composition and taxonomy to the genus and
to some extent species level but does not provide functional
data (i.e., presence of bacterial genes and their expression
level). In order to achieve this level of specificity, shotgun
metagenomic sequencing and/or metatranscriptomics are
required.107 Unfortunately, due to high cost, the sequencing
of bacterial metagenomes and metatranscriptomes is still
out of reach for many investigators. With ongoing advances
in sequencing technology, it is likely that the price of these
services will decrease sufficiently to allow for more wide-
spread use in the future, similar to the widespread adop-
tion of 16s rRNA sequencing after the dramatic decrease in
sequencing costs early this decade.108

Conclusions

In summary, both animal models and human studies have
supported the relationship between the gut microbiome
and development and progression of NAFLD. By affecting
gut barrier function, TLR signaling, choline metabolism,
bile acid synthesis, SCFA, and amino acid production, the

Table 3. Summary of randomized control trials involving NAFLD and probiotics.

Study

Number

of patients Intervention Major findings

Aller et al.101 30 Lactobacillus delbrueckii subsp. bulgaricusþStreptococcus

thermophilus vs. placebo for 3 months

Decrease in ALT, AST, GGT

Alisi et al.102 44a VSL#3 (Bifidobacterium longum, Bifidobacterium infantis,

Bifidobacterium breve, Lactobacillus acidophilus, Lactobacillus casei,

Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus plantarum,

Streptococcus thermophilus) vs. placebo for 4 months

Ultrasound improvement in

fatty liver

Eslamparast

et al.103
19 Protexin (Bifidobacterium breve, Bifidobacterium longum, Lactobacillus

casei, Lactobacillus rhamnosus, Lactobacillus acidophilus,

Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus

thermophilus) vs. placebo for 28 weeks

Decrease in ALT, AST, GGT, CRP,

TNFa, fibrosis score by transient

elastography

Malaguarnera

et al.44
66 Bifidobacterium longumþ fructo-oligosaccharidesþ life-style

modification vs. life-style modification alone

Decrease in AST, LDL, CRP, TNFa,
HOMA-IR, steatosis, and NASH

activity index

Shavakhi

et al.43
64 ProtexinþMetformin vs. Metformin alone Decrease in ALT, AST, ultrasound

grading of steatosis

Wong et al.109 20 Lepicol (Bifidobacterium bifidum, Lactobacillus plantarum, Lactobacillus

delbrueckii subsp. bulgaricus, Lactobacillus acidophilus,

Lactobacillus rhamnosus) vs. nothing

Decrease in intrahepatic triglyceride

content as measured by

proton-magnetic resonance

spectroscopy

aDenotes a pediatric trial.

NASH: nonalcoholic steatohepatitis; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; GGT: Gamma-glutamyl transferase; CRP: C-reactive protein;

TNF: Tumor necrosis factor; LDL: low-density lipoprotein; HOMA: Homeostatic model assessment.
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gut microbiome appears to play a critical and multifactorial
role in NAFLD development. But despite advances in
technology and bioinformatics analysis, specific mechanis-
tic pathways are not yet clearly defined. Future large, lon-
gitudinal, prospective studies incorporating multi-omics
analysis and humanized animal models are needed to
better define the multifactorial host-microbiome relation-
ship involved in fatty liver pathogenesis.
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