Lawrence Berkeley National Laboratory Recent Work

Title
K- -p INTERACTIONS NEAR $760 \mathrm{MeV} / \mathrm{c}$

Permalink

https://escholarship.org/uc/item/2dn2t2b8

Authors

Bastien, Pierre L.
Berge, J. Peter
Publication Date
1962-12-07

University of California

Ernest O. Lawrence Radiation Laboratory

TWO-WEEK LOAN COPY

This is a Library Círculating Copy which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

$\mathrm{K}^{-}-\mathrm{p}$ INTERACTIONS NEAR $760 \mathrm{MeV} / \mathrm{c}$ Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVIESTTY OF GALIEOREMA
 Lawrence Radiation Laboratory Berkeley, California
 Contract No. W-7405-eng-48

K゙-p INXERACTIONS NEAR $760 \mathrm{Mey} / \mathrm{c}$

Pierre L. Bagtien and J. Peter Berge

$\because \quad-10$
$K^{\prime-}$ plnteractiona Near $760 \mathrm{MeV} / \mathrm{c}^{*}$
Fierre L. Bantien and J. Peter Berge
Lawrence Radiation Laboratory
Univeraity of California Berkeley. California
December 7, 1962

We present the resulte of a study of the $K^{-}-\mathrm{p}$ eystern at incident K^{-} laboratory momenta of 620,760 and $850 \mathrm{MeV} / \mathrm{c}$ (cemter-of-mass energies $\mathrm{c} . \mathrm{m}$. of 1616. 1681 , and 1723 MeV . reqpectively). Only the most important features of the interactions have been olitained at each of these momenta. Ax 620 visV/c the syotem in dominated by strong $S_{1 / 2}$ aboorption. At $760 \mathrm{MeV} / \mathrm{c}$ effecta duc to $Y_{1}^{*}(1660)$ are observed. ${ }^{1}$ Lere the presence of large $\cos ^{2} \theta$ termo and the absence of large $\cos ^{3} \theta$ terms in the angulaz diatributions ouggest $3 / 2$ as a plausible apin asoignment for the resonance. Finally, at $850 \mathrm{MeV} / \mathrm{c}$ large $3 / 2$ or $5 / 2$ amplitudea have set in.

The Lawrence Radiation Laboratory's 15 -in. hydfogen bubble chamber was exposed to a separated \mathbb{K}^{-}bean capable of operating either at 760 or $850 \mathrm{MeV} / \mathrm{C}$. A netting at $620 \mathrm{MeV} / \mathrm{c}$ was obtalned by degrading the $760-\mathrm{VeV} / \mathrm{c}$ beam. A total of 8000 interactions, representing all the avallable data, were analysed.

In Table I we summarize the observed total cross sections. having determined the path length at each momentum by counting y decays. ${ }^{3}$ The only oignificant biad occurs when a Σ^{+}decays via the protonic mode; at our energies the laboratory angle between the z^{\dagger} and ite decay proton is usually too small to be detected with good efficiency. For this reason only s^{+}decaying via the pionic mode were uved to eotablish both the rotal and differential cross sectiono. Ja the
other hand ambiguitiet in the interpretation of the evento arise wher one wante to distinguiah between the $A \pi^{0}, \Sigma^{0} \pi^{0}, A \pi^{0} \pi^{0}$ and $\Sigma^{0} \pi^{0} \pi^{0}$ final otatea. The method of separation used in our experiment is the name as that described by Fexro- Luszi et al. ${ }^{4}$

Al differential cross bections were fitted to a serieo of the form

$$
\begin{equation*}
\frac{4}{k^{2}} \frac{d \theta}{d \pi}=A_{0}+A_{1} \cos \theta+A_{2} \cos ^{2} \theta+\cdots \tag{1}
\end{equation*}
$$

where $4 / \lambda^{2}$ is an arbisrary normalization factor. The pesulto of ouch fits were the dimersionless cocfficiente A_{1} and their errors. A fit of order a means a fit up to and including the term $A_{i n} \cos ^{n_{6}}$.

In Figs. 1 and 2 we pressnt the energy dependence of the coefficiente A. for all che two-body reactions except $\Sigma^{3} \pi^{0}$. In thig latter channel otatiotics are omall and, for angular distributions at least, it is difficult fo determine the amount contributed to a given bin by the $A_{1} \pi^{0} \pi^{0}$ and $\Sigma^{0} \pi^{0} r^{0}$ final states. Sidnificant amounts of $\cos ^{3} \theta$ are xequired oniy at $850 \mathrm{MeV} / \mathrm{c}$ as is ghown in Fig. 3.

At $620 \mathrm{MAV} / \mathrm{c}$ the angular distributiong are remarkably aimilar to those obtained at $510 \mathrm{MeV} / \mathrm{c}$ by Ferro-Luszi et al; ${ }^{4}$ no appreciable chañes in the an 4 seem to have taken place between these two momenta, and the syotem is probably well described by a large absorptive $S_{1 / 2}$ amplitude with small amounts of $P_{1 / 2}, P_{3 / 2}$, and $D_{3 / 2}$, nt $850 \mathrm{MeV} / \mathrm{c}$ the lexge amounts of $\cos ^{3} \theta$ noticeable in every distribution indicate that $J=3 / 2$ or $5 / 2$ amplitudes are now preaont.

We now discuos the 760 . MeV/c data more thoroughly and oxamine tho effect of the nevily discovered $y_{1}^{\# 7}(1660)$ on our total croon gectione and anguiar dietributionc. From now on we shall refer to this reoonance ao $E(1660): 1660$ Moy correoponds to a laboratory morxentum of $715 \mathrm{NeV} / \mathrm{c}$, and its half-vidth,
$\Gamma / 2=20 \mathrm{MeV}, ~ c o r r e s p o n d e ~ t o ~ \$ 43 \mathrm{NeV} / \mathrm{C}$. Significant effecto dise to $\mathrm{Z}(1660)$ ohould be obeerved therefore at $760 \mathrm{MeV} / \mathrm{c}$. provided it in coupled reasonably atrongly to the K-nucleon systern. Aseuming that thio resonance is adequately deccribed by pure Breft - 将quer form, wa can obtain the otreagth of tae cotupling by using the formula for the energy dependence of the total crooo section in such a case, namely

$$
\begin{equation*}
\sigma_{a^{2}}=2 \pi x^{2}\left(J+\frac{1}{2}\right) \frac{x^{x} x}{x^{2}+1} \tag{2}
\end{equation*}
$$

Examining in greater detail the behavior of our cross coc etiong in varioue
 $760 \mathrm{NeV} / \mathrm{C}$. This final otate ia a mixture of I-opin 0 and 1 , but the $1-5$ gin of the effect can be established through the following formadae:

$$
\begin{align*}
& \sigma\left(\sum^{2} \pi, I=0\right)=3 \sigma\left(\Sigma^{0} \pi^{0}\right) \tag{3}\\
& \sigma(\Sigma \pi, I=1)=\sigma\left(\Sigma^{-} \pi^{+}\right)+\sigma\left(\Sigma^{+} \pi^{-}\right)-2 \sigma\left(\Sigma^{0} \pi^{0}\right) \tag{4}
\end{align*}
$$

It is clear from the results of shis geparation (Xakle I) that the rioe is indeed due to the $1-6 p i n-1$ part of the amplitude. We therefore attribute the cffect to $x(1660)$. One notices also amall rise at 760 MeV/c in every one of the ATr and Ent crasg cectione. These are also interpreted as manifentations of the threo-body decay mode of the resonance. Adding these crosn acctiono. wre eotimate x_{K} of Eq. (2) to be 0.25 ± 0.10 fox opin $3 / 2$, and appropriate fractiono of that value for other apin ascignments. The 5π and AT normalized channel. widno are estimsted to be $x_{2}=0.35 \pm 0.15$ and $x_{i}=0.15 \pm 0.10$. Finally ance it io not poovible to oeparate the $A \pi \pi$ and sirs final otates into I-bpint
without more information than that given by the k-proton sybtern alone, we cannot calculate partial widhs for these lant two channels. Becauve the clantic cross sections are proportional to $\left(x_{K}\right)^{2}$, the small values of x_{K} that we have obtained lead, for all posaible spin assignmenta, to negiigible rises in the k nucleon total cross sections at $760 \mathrm{MeV} / \mathrm{C}$. Therefore no lower limit on the opin of the resonance can be set by this method. Since at $760 \mathrm{meV} / \mathrm{c}$ Table 1 show that the cross sections due to the resonance are small compared to the background, we conclude that the nonresonant amplituces dominate over the reconant amplitude.

To obtain information on the spin of $\Sigma(1660)$ we examine the two-body Engular dietributione at $760 \mathrm{MeV} / \mathrm{c}$. Ugually the spin of a reoonance ie determined by looking at the energy dependence of the coeficients A_{i} at closely spaced momentum intervale throughout the resonance region. Here wo have only a gingle point one half-widti above tha resonance, and so a quantitative analysis in not poodible. However by conoidering the A_{1}, A_{2} and A_{3} in Sig. 2 we wish to ahow that our data aeem to be more consistent with $\mathrm{J}=3 / 2$ for $\Sigma(1660)$ than with any other epin assignment. $\|_{\text {in }}$ xamining firot A_{2} in Fig. 2 we ohall show that spin $1 / 2$ is undikely. We observe a iarge enhancement at $760 \mathrm{MeV} / \mathrm{c}$ in both $\mathrm{A}_{2}\left(\Sigma^{-n^{+}}\right)$and $A_{2}\left(\Lambda^{n} \pi^{0}\right)$. We attribute these buraps to interferences between the small resonant amplitude and the nonrenonant background; ${ }^{5}$ as we have seen, the nonresonant background is dominant and is composed only of $S_{1 / 2}, F_{1 / 2}$ and $P_{3 / 2}$ amplitudes, Bince large amounto of other amplitudes would lead to $\cos ^{3} \theta$ interferences whatch, as is clearly ahown in ing. 3, are not preoent. To examine the consistency of our data with the epin- $1 / 2$ hypotheois we
look at the form of A_{2} in a partial-wave expansion up to $j=3 / 2$, namely

$$
\begin{equation*}
A_{2}=3\left|P_{3 / 2}\right|^{2}+3\left|D_{3 / 2}\right|^{2}+6 \operatorname{Re}\left(\mathrm{P}_{1 / 2}^{*} P_{3 / 2}+\mathrm{S}_{1 / 2}^{*} D_{3 / 2}\right) \tag{5}
\end{equation*}
$$

For $J=1 / 2$ the lerge interference effects observed in the A_{2} must be due to the $S_{1 / 2} D_{3 / 2}$ or $P_{1 / 2} P_{3 / 2}$ terms. An $S_{1 / 2}$ reoonance seems unlikely, oince $\dot{D}_{3 / 2}$ is also mall. Again if the resonance is $P_{1 / 2}$ then $P_{3 / 2}$ must be darge, and values of the A_{2} considerably bigger than wisat we observe are expected becauco of the term $3\left|P_{3 / 2}\right|^{2}$. Spin $1 / 2$ therefore seems improbable.

By considering the A_{1} and the A_{3} we next show that $I=5 / 2$ io unlikely for $\mathbf{\Sigma (1 6 6 0)}$. The values of the A_{1} in Exg. 2 againg ahow interferenceb in all three diotributiono. If the opin is $5 / 2$ we would have expected variations ins the A_{3} of the order of $15 / 9$ those observed in the A_{1}, if the non-resonant background is assumed to vary lowiy throughout the region. To aee this, note that in a partial-wave analysis up to angular momentum $5 / 2$ the empressions for A_{1} and A_{3} are

$$
\begin{align*}
A_{1} & =\operatorname{Re} 12 S_{1 / 2}^{*} P_{1 / 2}+S_{1 / 2}^{*} P_{3 / 2}+4 P_{1 / 2}^{*} D_{3 / 2} \tag{6}\\
& -9 S_{1 / 2}^{*} F_{5 / 2}-9 P_{1 / 2}^{*} D_{5 / 2}-10 P_{3 / 2}^{*} D_{3 / 2}+45 / 2 D_{5 / 2}^{*} E_{5 / 2} \\
A_{3} & =\operatorname{Re}\left(12 P_{3 / 2}^{*} D_{5 / 2}+12 D_{3 / 2}^{*} F_{5 / 2}\right. \tag{7}\\
& \left.+15 S_{1 / 2}^{*} E_{5 / 2}+15 P_{1 / 2}^{*} D_{5 / 2}+18 F_{3 / 2}^{*} D_{3 / 2}-117 D_{5 / 2}^{*} E_{5 / 2}\right)
\end{align*}
$$

No such variations are seen in the in, which instead are all consistent with zexo. If also seems unlikely that, whem made to interfere with reasonable valueg of the nonresonant background, a $5 / 2$ resonant amplitude with our normaliged channel widths would not have led to simeable $A_{3}{ }^{\prime} s$ in at least one of the angular diotributions.

In oummary the most natural way to interpret the datis is to assume that a small $P_{3 / 2}$ or $D_{3 / 2}$ resonant amolitude is interfering with large $S_{1 / 2}$ and $P_{1 / 2}$ nonresoannt background. However only an analysib of more angular distributions throughout the whole region will provide a final answer to the spin question and information on the parity. In particular the energy dependence of the $\Sigma^{-} \nabla^{+}$differential cross sectione must be established carefully because we cannot rule out the poosibility that the large value of $A_{2}\left(\Sigma^{-} r^{r}\right)$ at $760 \mathrm{MeV} / \mathrm{c}$ is due mainly to nonreoonant terms. If this is the case, the value of X_{K} would be much amaller, and this in turn would decrease our confidence in the spin agbignment.

Finally let us eay a few worde about the three-body final btateo. If $\Delta \pi^{+} \pi^{-}$is formed predominantly through the chain $\mathrm{K}^{-} \mathrm{p} \rightarrow \mathrm{a}(1660) \rightarrow \Sigma(1385) \div \pi$ $\rightarrow A \pi^{+} \pi^{\circ}$, one could hope to say bomething about the spin and parity of $2(1600)$ taking $\mathrm{s}(1385)$ to be $3 / 2^{\dagger^{-}}$. Fowever the observed crose section for $K^{-} \mathrm{P} \rightarrow \mathrm{A} \pi^{+} \pi^{-}$ at $760 \mathrm{MeV} / \mathrm{c}$ is 4.3 mb , ane $\Sigma(1660)$ can contribute only $\sim 0.4 \mathrm{mb}$ to that value since the normalized channel width for $2(1660) \rightarrow \Lambda \pi^{\prime \prime} \pi^{-}$ia approxizately 0.10. Therefore, $X_{1}^{*}(1660)$ cannot affect the $A \pi^{+} \pi^{-}$distributions mignificantly. Similar negative concluoions are drawn about the Ent channels.

We wish to thank Prof. Luis W. Alvareg, Donald fi. Miller. Arthur A. Rosenfeld, Robert D. Tripp, and Drg. Magoimillano Ferro-Lazzi, and Josoph : wiurray for advice and encouragement.

FOOTNOTES AND REEERFNCFS

*Work dono under the augpices of the U. S. Atormie Energy Commission.

1. L. W. Alvarex, M. Alston, J. B. Shafer. M. Ferro-Juzzi, D, O. Huwe, D. i. Miller, J.J. Aurray, A. h. Rosenfeld, and S. G. Wojcicki, this isoue of Piys. Rev. Letters.
2. E. L. Bagtien, O.I. Dahl, J.J. Xiurray, M. B. Yatoon, R. Ammar, and P. Schlein, in Froceedings of the International Conierence in Instrumentation for High Enezgy Physics at Berkeley. 1960 (Interecieace

Publishera Inc., New York, 1961), p. 299.
3. Thewe croas sectiona have mppeared in preliminary form in p. R. Sagtien,
J. F. Berge, O. I. Dahl, M. Ferro-Luzzi, J. Hizz, D. H. Miller. J.J. Murray, A. F. Rosenfeld, R. D. Tripp, and M.B. Watson, in Eroceedings of the 1962 International Conference on tigh Energy Erysics
at CERN, 1962 (CERN Scientific Information Service, Cieneva, Switzerland, 1962), p. 373.
A. M. Iferro-Lazsi, R.D. Tripp, and M. A. Watson, Phys. Rev, Letters 8, 28 (1962).
5. Both the square of the resonant amplitude and intorference termo between the reoonant amplitudio and the nonresonant background appear in the cocfficieats of the even powers of cos 6. With the observed normalized partial widths for $\Sigma(1660)$, the former are of the order of 0.02 for all channels in our dimensionless units, whereas the latter can be one or two orders of magnitude larger (see refermace 4).
6. J. P. Bergo, P. Bastien, O. Dahl, M. Ferro-Luzzi. J. Kirz, D. H. Miller, J.J. Murray, A. H. Rosenfeld, R.D. Tripp, and M. R. Watoon, Fhys. Rev. Letters 6, 557 (1961).
7. R. Dalitz: and D. th. Miller, Phys, Rev. Dettere 6, 562 (1961).
8. Robert F. Fly, Sun-Xiu Fung, Ceorge Gidal, Yu-Li Pan, Wilson A. Powell, and Howard S. White, Phya. Rev. Lettere 7, 461 (1961).

Table I. Totel coos dectiona in millikasiny

reaction		$\begin{aligned} & 620 \times 15 \\ & 16 i 6 \\ & 50 \frac{\text { evertia }}{3 n / 3} \end{aligned}$	$\begin{aligned} & 760 n \\ & 1680 \\ & 124 \frac{\text { eveneg }}{m 6} \end{aligned}$	$\begin{aligned} & 850410 \\ & 1723 \\ & 145 \frac{\text { eventa }}{\operatorname{mb}} \end{aligned}$
$x^{*} p$	2 prowit	10.041.0	16.731 .0	22.452 .0
$\overline{i 2}^{0}{ }_{n}$	0 prongr - V	2.3×0.4	3.8 cis 0.3	4.02u. 3
$\sum 口^{+} \pi^{-}$	2 prong (t deceys) ${ }^{\text {b }}$	4.6 .90 .6	2.8 ± 0.3	2.050 .2
$\pm \pi^{+}$	2 上rong (- docays)	2.0 ± 0.3	3.3 ± 0.2	1.3isfol
$5^{\circ} \pi^{\circ}$	Oprong : V	2.160 .3	1. 4 At 0.2	0.8 ± 0.1
$\therefore \pi^{2}$	Opronge + V	1.9.90.3	2.620 .2	2.7 ± 0.2
A. $\mathrm{T}^{+} \mathrm{T}^{\circ}$	2 prong +V	1.7 ± 0.3	$\because 3 \leqslant 0.3$	3.550.3
$5^{0} 7^{\frac{1}{4}} \pi^{*}$	2 promg $+V$	0.340 .85	0.8×0.15	0.7 ± 0.15
$\Sigma^{-} \pi^{+} \nabla^{0}$	2 proag f-decayos	0.3 ± 0.1	0.840 .1	0.7 ± 0.1
$55^{+} \pi \pi^{0}$	2 prong (t decays)	0.1 ± 0.05	0.8 ± 0.2	0.520 .1
$\left(A \Sigma^{\circ}\right)^{\circ} T^{\circ}$	Oprong 4 V	8.5 ± 0.2	1.9.50.2	1.320 .2
$A T(7)$ neut.)	Oprong + V	\cdots	0.5 ± 0.15	$0.15 \% 0.1$
A $\pi^{i} \pi^{-} \pi^{\circ}$	2 prong ${ }^{\text {a }}$ V	0.040 .03	0.25 ± 0.05	0.15 ± 0.05
$\kappa^{64} \mathrm{ps}$	2 prong : V	0.0 ± 0.03	0.04 ± 0.03	6.10 .0 .06
$\mathbb{K}^{\circ} p \pi^{\circ}$	2 prong	0.0 ± 0.03	$0.15 * 0.1$	0.3 ± 0.2
$k \times \pi^{+} n$	2 prorg	0.96 ± 0.06	0.0 ± 0.05	
$\cdots{ }^{\circ}$	Oprong +V	0.0 ± 0.03	0.0 ± 0.05	0.320 .1
Total		32.4.4. 5	40.1 ± 1.3	40.6) 6.8
$(\pi \pi)_{1}=0$		6.440 .3	4.2 ± 0.5	2.3 ± 0.3
$(5 \pi)^{1}=1$		2.320 .8	3.3 ± 0.4	3.3 ± 0.3
$\pi \underbrace{2}$		9.50	8.36	5.75
A Lopological appearancs of the event in the bubble chamber				

UCRL-10570
gIGURE LECAND
Fig. 1. Coefficients A_{i} for $F^{-} p \rightarrow \mathbb{K}^{-} p$ and $K^{-} p-X^{0} n$ with dara ficted up to thind order. Cosine θ is defined as $\hat{X}_{i n c}^{-}$. Nocattered The $\hat{H}_{z}^{\prime} s$ are large at $850 \mathrm{MeV} / \mathrm{c}$ and consistent with wero at the lower mormenta. For reference we have drawn horizontal bars indicating the position and width of $Y_{1}^{*}(1060)$ for all coefficiente.
Eyg. 2 Coofficients A_{i} for $K^{-} p \rightarrow \Lambda \pi^{0}, \mathbb{K}^{-} p \rightarrow \Sigma^{-\pi^{+}}$, and $K^{-} p \rightarrow \Sigma^{+} \pi^{-}$with data fitted up to third order. Eere $\cos \theta$ is defined as $K_{i n c}^{-} \cdot$. Fithe A_{2} sure notice significant bumps in $\Sigma^{-} \pi^{+}$and $A \pi^{\circ}$, whereas in $\Sigma^{+} \pi^{-}$the nonresonant backgroundinterferesdestructively with the resonant amplitude at $760 \mathrm{NeV} / \mathrm{c}$. The $\mathrm{A}_{3}{ }^{\text {'s }}$ are again consistent with zero at $760 \mathrm{MeV} / \mathrm{c}$. The dashed curver in the $A_{2}\left(\Sigma^{-1} V^{+}\right)$are the valuas of the coefficiente of $\cos ^{2} \theta$ when $\Sigma^{-} n^{+}$. is sitted up to fourth order. The bump in $\cos ^{2} \theta$ is still significant, whereas the coefficients of $\operatorname{con}^{4} \theta$ (not shown) are consistent with zero.
Fig. 3. The X^{2} probability of describing two-body angular distributions with a fit of order n. The probability of a fit is defined as $\int_{x_{0}^{2}}^{\infty} f\left(x^{2}, y^{2} x^{2}\right.$,
where x_{0}^{2} is the least-squares fit chi-square and v the number of degrees of freedom for that distribution. The numbers of events in each dietribution re comparable at both xnomenta. Fowever we had much less statistice in the $\Sigma^{+} \pi^{-0}$ channel (daohed linea) since only the pionic decaye of the $\widetilde{\mathrm{h}}^{\prime}$ were ueed. All channels at $850 \mathrm{MeV} / \mathrm{c}$ clearly require $\cos ^{3} \theta$, whereas no aignificant amounts of that power are required anywhere at $760 \mathrm{MoV} / \mathrm{c}$. A small amount of $\cos ^{4} \theta$ io needed for $\Lambda \pi^{0}$ at 850 ineV/c.

Fig. 1
MUB-1481

Fig. 2 :
MUB-1480

