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MCM3 is a novel proliferation marker associated with longer 
survival for patients with tubo-ovarian high-grade serous 
carcinoma

A full list of authors and affiliations appears at the end of the article.

Abstract

Tubo-ovarian high-grade serous carcinomas (HGSC) are highly proliferative neoplasms that 

generally respond well to platinum/taxane chemotherapy. We recently identified minichromosome 

maintenance complex component 3 (MCM3), which is involved in the initiation of DNA 

replication and proliferation, as a favorable prognostic marker in HGSC. Our objective was 

to further validate whether MCM3 mRNA expression and possibly MCM3 protein levels are 

associated with survival in patients with HGSC. MCM3 mRNA expression was measured 

using NanoString expression profiling on formalin-fixed and paraffin-embedded tissue (N=2355 

HGSC) and MCM3 protein expression was assessed by immunohistochemistry (N=522 HGSC) 

and compared with Ki-67. Kaplan-Meier curves and the Cox proportional hazards model were 

used to estimate associations with survival. Among chemotherapy-naïve HGSC, higher MCM3 

mRNA expression (one standard deviation increase in the score) was associated with longer 

overall survival (HR=0.87, 95% CI 0.81–0.92, p<0.0001, N=1840) in multivariable analysis. 

MCM3 mRNA expression was highest in the HGSC C5.PRO molecular subtype, although no 

interaction was observed between MCM3, survival and molecular subtypes. MCM3 and Ki-67 

protein levels were significantly lower after exposure to neoadjuvant chemotherapy compared to 

chemotherapy-naïve tumors: 37.0% versus 46.4% and 22.9% versus 34.2%, respectively. Among 

chemotherapy-naïve HGSC, high MCM3 protein levels were also associated with significantly 

longer disease-specific survival (HR=0.52, 95% CI 0.36–0.74, p=0.0003, N=392) compared to 

cases with low MCM3 protein levels in multivariable analysis. MCM3 immunohistochemistry is a 

promising surrogate marker of proliferation in HGSC.
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Introduction

Tubo-ovarian high-grade serous carcinomas (HGSC) are aggressive neoplasms with 

unfavorable prognosis despite a generally good initial response to platinum/taxane 

chemotherapy [1]. Recent molecular characterization using NanoString mRNA expression 

profiling has defined four previously described consensus molecular subtypes of HGSC 

with prognostic associations: C1.MES, C2.IMM, C4.DIF, and C5.PRO [2]. Other validated 

prognostic factors in HGSC include BRCA1/2 mutations, diffuse progesterone receptor 

expression, degree of CD8+ tumor-infiltrating lymphocytes, and CCNE1 high-level 

amplifications [3–5]. In a large multi-institutional study of the Ovarian Tumor Tissue 

Analysis (OTTA) consortium, we recently showed that a 101 gene expression signature 

could stratify women diagnosed with HGSC according to survival with median survival 

differences of more than 7 years, supporting significant heterogeneity with respect to 

intrinsic tumor biology and response to therapy [6].

Among the top 25 prognostic genes from the study by Millstein et al. [6], we focused on 

one gene: minichromosome maintenance complex component 3 (MCM3) for the current 

study. Although MCM3 showed a hazard ratio (HR) of 0.89 (95% CI 0.85–0.93) compared 

to 0.84 for the top candidate TAP1 (95% CI 0.80–0.87) [6], we selected MCM3 for 2 

reasons: first, this was one of the few top 25 gene where a high-quality antibody with 

nuclear staining signal was available, and second, this protein is involved in proliferation, 

an under-recognized aspect of cell biology in tubo-ovarian high-grade serous carcinoma. 

MCM3 is a component of the pre-replication complex and involved in the initiation of DNA 

replication and cell cycle progression [7]. Gene microarray analyses have confirmed the 

association of MCM3 with cell proliferation [8], and functional studies have shown that 

downregulation of MCM3 suppresses G1/S cell cycle progression [9]. MCM3 has been 

utilized as a novel proliferation marker in other cancer types with better prognostication 

than Ki-67 [8, 10]. Although increased MCM3 expression has previously been demonstrated 

to be a poor prognostic marker in ovarian carcinomas, the analyses were performed on a 

combination of tumor histotypes [11, 12], and no studies to date have evaluated its use 

specifically in HGSC.

HGSC are characterized by high proliferation rates. Mitotic count is the secondary 

morphologic diagnostic criterion after nuclear pleomorphism in distinguishing HGSC from 

ovarian low-grade serous carcinomas [13]. However, within HGSC, associations of the 

proliferation marker Ki-67 with survival have not been consistent. A significant association 

of Ki-67 with survival in ovarian carcinomas of all histotypes has been shown but this 

association was lost when restricted to HGSC without residual disease [14]. More recently, 

two studies of HGSC reported that high Ki-67 levels were associated with longer survival 

[15, 16]. Consistent with these findings, a high proportion of long-term survivors diagnosed 
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with HGSC also showed higher Ki-67 expression [17]. Therefore, assessing proliferation 

might improve prognostication and/or prediction of chemotherapy response in HGSC.

The aim of this study was to further validate whether MCM3 mRNA expression correlates 

with survival in an independent series of samples from patients with HGSC. A secondary 

aim was to evaluate whether MCM3 protein levels assessed by immunohistochemistry (IHC) 

are also associated with survival.

Methods

Study cohorts

Formalin-fixed and paraffin-embedded (FFPE) tissue samples of HGSC were contributed 

through the OTTA consortium and were independent samples from the previous OTTA study 

by Millstein et al. [6]. Each participating study had local ethics approval (Supplementary 

Table S1). A flow chart of study cases is shown in Supplementary Figure S1. MCM3 
mRNA expression was successfully measured for a total of 2355 samples. Of these, 

1836 samples were obtained at the time of primary debulking surgery (referred to 

as “chemotherapy-naïve” cases), while 519 specimens were obtained at the time of 

interval debulking surgery following exposure to neoadjuvant chemotherapy (referred to 

as “post neoadjuvant chemotherapy” cases). 79.8% of chemotherapy-naïve and 70.3% post 

neoadjuvant chemotherapy samples were obtained from adnexal tumor sites. Representative 

hematoxylin & eosin slides were reviewed by expert pathologists to confirm HGSC 

histotype, and tumor areas for mRNA extraction were circled on a glass slide. Tumor 

cellularity was estimated in 20% intervals (0–20, 21–40, 41–60, 61–80, 81–100) and 

samples with 0–20% were excluded.

For IHC, one of the OTTA study sites with partial overlap with the mRNA expression 

analysis cohort was used (224 HGSC underwent both mRNA expression and IHC assays), 

which consisted of 950 ovarian carcinomas diagnosed in the two Canadian provinces British 

Columbia and Alberta (OVAL BC), Canada between 2001 and 2012 [18]. Contemporary 

histotype classification was previously established by integrating morphological review with 

an 8-marker IHC prediction model [18]. Rare mixed carcinomas of the ovary were excluded 

[19]. Tumor samples represented on tissue microarrays (TMAs) in 0.6 mm triplicate or 

duplicate cores were utilized for MCM3 and Ki-67 immunohistochemistry. The TMAs 

contained a variety of normal tissue as controls. Immunohistochemical data for MCM3 

were obtained from 848 cases with ovarian carcinoma including 522 HGSC and 326 

non-HGSC (154 endometrioid carcinomas (EC), 105 clear cell carcinomas (CCC), 24 low-

grade serous carcinomas (LGSC), 40 mucinous carcinomas (MC), and 3 mesonephric-like 

adenocarcinomas). From the 522 HGSC, 393 specimens were chemotherapy-naïve and 108 

post neoadjuvant chemotherapy, while 6 patients did not receive chemotherapy and the 

chemotherapy status was unknown for 15 patients. Ethics approval was received from the 

Health Research Ethics Board of Alberta (HREBA.CC-16–0161, HREBA.CC-16–0159).
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mRNA analysis

MCM3 mRNA expression in FFPE tumor samples and cell lines was assessed using the 

NanoString nCounter technology with previously described RNA extraction methods, assay 

run parameters, data processing, and control/reference samples [20]. The MCM3 target 

sequence was 

GGCTTCTGAACAATGCCTTTGAGGAGCTGGTTGCCTTCCAGCGGGCCTTAAAGGA

TTTTGTGGCCTCCATTGATGCTACCTATGCCAAGCAGTATGAGGA and MCM3 
mRNA data were normalized against housekeeping genes [20]. Quality assurance of the 

assay was previously assessed with high duplicate sample correlation [2, 6]. In addition to 

MCM3 expression, we applied the PrOTYPE NanoString based assay and assigned adnexal 

samples to gene expression based molecular subtypes of HGSC: C1.MES, C2.IMM, C4.DIF, 

and C5.PRO [2].

MCM3 and Ki-67 immunohistochemistry

IHC was performed on tissue microarray sections of 4 μm thickness using a DAKO 

Omnis platform (Agilent Technologies, Santa Clara, CA). Heat-induced epitope retrieval 

was performed on board, followed by antibody incubation in Dako EnVision FLEX 

(Agilent Technologies, Santa Clara, CA). For MCM3, the DAKO Omnis protocol H30-X-30 

was utilized with recombinant rabbit monoclonal anti-MCM3 antibody (dilution 1/1000, 

clone EPR7080, catalogue # ab128923; Abcam, Cambridge, UK). For Ki-67, the DAKO 

Omnis protocol L20-X-20 was used with mouse monoclonal anti-Ki-67 antibody (ready-to-

use, clone Mib-1, catalogue # GA626; Agilent Technologies, Santa Clara, CA). Nuclear 

expression in tumor cells was scored in 5% increments. Based on the distribution, no 

naturally occurring cut-off was apparent. Therefore, scores were categorized into 3 relatively 

equally sized groups after several iterations to optimize for prognostic stratification (For 

MCM3: <40%, 40% to 75%, >75%; for Ki-67 <20%, 20% to 30%, >30%). TMA cores 

with less than 10% tumor content were excluded from study. A subset of cases was 

scored again by a second observer blinded to the initial scores. Previously generated 

immunohistochemical and chromogenic in situ hybridization (CISH) data for p53, p16, 

RB1, and CCNE1 were used for correlative analysis [5, 18, 21].

Statistical analyses

For the mRNA expression analysis (OTTA cohort), survival analysis was carried out for 

overall survival (OS) with right censoring at 10 years and left truncation of prevalent 

cases. Kaplan-Meier plots displayed survival for tertiles or quintiles of patients categorized 

according to gene expression. The p-value corresponded to a log-rank test of differences 

between groups. Cox proportional hazards regression models were stratified by study site, 

included a b-spline on age with a knot at median age to account for non-linear effects, 

and included stage as an adjustment covariate. Further Cox proportional hazards regression 

models were stratified by molecular subtype. Genes were scaled to have a standard deviation 

of one, so hazard ratios (HRs) correspond to a change of one standard deviation. For these 

analyses, R software v4.0.3 was used.

For the IHC analysis (OVAL BC cohort), paired interobserver reproducibility was analyzed 

using Cohen’s kappa scores. Categorical data were compared using Pearson’s chi-squared 
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test and continuous data using analysis of variance (ANOVA) or Spearman’s correlation 

coefficient. Disease-specific survival was used as the endpoint with right censoring at 10 

years. Kaplan-Meier plots displayed survival for three categories according to protein level. 

Covariates in multivariable Cox proportional hazards regression and parametric survival fit 

models included province, age (continuous), International Federation of Gynaecology and 

Obstetrics (FIGO) stage (I, II, III, IV), and residual disease (absent, ≤ 1 cm, and > 1 cm). For 

these analyses, JMP14.0 software was used.

Results

MCM3 mRNA expression and prognosis across molecular subtypes in high-grade serous 
carcinoma

As mentioned in the introduction, MCM3 mRNA expression was significantly associated 

with a lower risk of death in our previous NanoString study [6]. In a multivariable model, 

one standard deviation increase in MCM3 expression score was associated with an HR of 

0.89 (N=3561) [6]. Re-analyzing the data with updated survival information obtained since 

publication did not change the estimate (HR=0.89, Supplementary Table S2).

Clinical characteristics for the new 2355 HGSC from the OTTA consortium used in 

the current NanoString study are shown in Table 1. MCM3 mRNA expression levels 

relative to housekeeping genes varied from −3.2 (down-regulated) to 4.25 (up-regulated). 

In chemotherapy-naïve HGSC categorized into tertiles, there was a significant difference 

in overall survival (log-rank p<0.001; Figure 1). In multivariable models, one standard 

deviation increase in MCM3 expression score corresponded to an HR of 0.87 (95% CI 0.81–

0.92, p<0.0001, N=1820; Supplementary Table S2). This estimate did not meaningfully 

change when restricted to chemotherapy-naïve adnexal specimens (HR=0.89, 95% CI 

0.83–0.95, p=0.0010, N=1436). No significant survival association was observed for 

post neoadjuvant chemotherapy cases (HR=1.06, 95% CI 0.95–1.19, p=0.30, N=515; 

Supplementary Table S2, Supplementary Figure S2), suggesting a modifying effect of 

chemotherapy exposure.

Analysis stratified by the HGSC molecular subtypes restricted to chemotherapy-naïve and 

adnexal specimens (N=1436) revealed significant differential expression across molecular 

subtypes with C5.PRO showing the highest, and C1.MES the lowest, MCM3 expression 

(p<0.001; Figure 2). MCM3 mRNA expression was significantly associated with tumor 

cellularity (Supplementary Table S3). C1.MES had the lowest tumor cellularity (63.9% 

of cases with ≥ 61% tumor cellularity compared to 86.8% with ≥ 61% tumor cellularity 

for the other 3 HGSC molecular subtypes combined, Supplementary Table S3). In 

univariable Kaplan-Meier survival analysis, significant associations were seen for C4.DIF 

(log-rank p=0.021) and C5.PRO subtypes (log-rank p=0.018, Supplementary Figure S3). 

In multivariable models stratified by molecular subtype, a significant association was 

observed within C4.DIF (HR=0.86, 95% CI 0.75–0.98, p=0.021, N=503) and suggestive 

for C1.MES (HR=0.90, 95% CI 0.75–1.07, p=0.23, N=291) with both showing consistent 

hazard ratios compared to the first NanoString analysis (Supplementary Table S4). Results 

for C2.IMM were inconsistent between the studies (Supplementary Table S4). No significant 

association between MCM3 expression and survival was seen within C5.PRO. The p-value 
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for interaction between the molecular subtype and MCM3/survival associations was not 

significant.

MCM3 expression in normal tissue

Normal tissue controls on TMAs were assessed for MCM3 protein levels by IHC. MCM3 

was highly expressed in highly proliferative compartments such as germinal centers of 

the tonsil and intestinal crypts. Focal expression was observed in normal fallopian tube 

epithelium and cytotrophoblasts in the placenta, while no expression was seen in normal 

liver or kidney (Supplementary Figure S4).

MCM3 protein expression and prognosis

We performed MCM3 IHC to compare the prognostic significance of MCM3 expression 

to the standard proliferation marker Ki-67. MCM3 IHC data were available for 393 

chemotherapy-naïve and 108 post neoadjuvant chemotherapy HGSC cases. The correlation 

between IHC scores and mRNA expression computed with data collected from 224 

specimens yielded a moderate correlation (Spearman’s rs=0.44; Supplementary Figure S5). 

Interobserver agreement for MCM3 and Ki-67 scoring was assessed in 111 and 114 cases, 

respectively, and achieved substantial Cohen’s kappa coefficients of 0.79 and 0.72 for 

categorized scores and Spearman’s correlation coefficients of 0.96 and 0.93 for the 5% 

increment scores, respectively. When considering the timing of chemotherapy, specimens 

from patients who received neoadjuvant chemotherapy had a significantly lower percentage 

of MCM3-positive tumor nuclei compared to chemotherapy-naïve tumors (mean 37.0% 

versus 46.4%, p=0.0057; Figure 3A). A similar difference was seen for Ki-67 (22.9% versus 

34.2%, p<0.001; Figure 3B). To avoid the modifying effects of neoadjuvant chemotherapy, 

we restricted the subsequent analyses to chemotherapy-naïve samples.

MCM3 and Ki-67 protein expression was significantly higher in HGSC compared to 

other ovarian tumor histotypes (Figure 4) and this was more pronounced for MCM3. In 

HGSC, the mean MCM3 labelling index of 46.4% (median 45%) was higher compared 

to Ki-67 with 34.5% (median 27.5%) and showed a wider distribution (MCM3 SD=31.0 

versus Ki-67 SD=21.2). There was moderate correlation between MCM3 and Ki-67 levels 

(rs=0.50). With categorization of MCM3 protein levels, we observed a significant difference 

in disease-specific survival (log-rank p=0.012; Figure 5A). Cases with high MCM3 levels 

(>75%) showed a lower risk of death compared to low MCM3 levels (<40%, HR=0.52, 

95% CI 0.37–0.74, p=0.0003) as well as compared to intermediate MCM3 levels (40–

75%, HR=0.61, 95% CI 0.42–0.87, p=0.0074) in a multivariable analysis adjusted for 

age, stage, and residual disease. There was no significant difference between intermediate 

and low MCM3 levels (HR=0.86, 95% CI 0.64–1.15, p=0.30). When combining low and 

intermediate MCM3 expressing HGSC as a reference, high expressing cases showed an 

HR of 0.56 (95% CI 0.40–0.77, p=0.0005). For Ki-67, we did not observe a significant 

association of high Ki-67 expression with survival in univariable analysis (p=0.72; Figure 

5B) or multivariable analysis using low and intermediate expressing cases as a reference 

(HR=0.83, 95% CI 0.65–1.07, p=0.16). We also performed a parametric survival fit model 

using the more continuous 5% increments of MCM3 and Ki-67 scores including age, stage, 

residual disease, and study site. Significant parameters in this model were residual disease 
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(p<0.0001), MCM3 (p=0.0003), and stage (p=0.0052) but not Ki-67 (p=0.78), age (p=0.52), 

or study site (p=0.90).

Patients with HGSC and low MCM3 protein levels tended to be diagnosed at higher stage 

(p=0.048; Table 2). MCM3 protein levels were not significantly associated with residual 

disease status after surgery, nor with TP53 mutation classification as previously assessed 

by surrogate IHC [18, 21]. However, as expected, MCM3 protein levels were significantly 

and directly associated with diffuse strong p16 block expression (p=0.005) and loss of RB1 

(p<0.0001; Table 2). Surprisingly, MCM3 protein levels were not associated with the binary 

status of previously assessed CCNE1 high-level amplification or protein overexpression. 

Therefore, we compared in more detail the correlation between MCM3 and CCNE1 protein 

expression on the continuous scale. However, there was only a weak correlation between 

MCM3 and CCNE1 (rs=0.132, p=0.0089). Likewise, the Ki-67 labelling index also weakly 

correlated with CCNE1 (rs=0.199, p<0.001).

Discussion

The results of this study of 1820 cases independently validate the previous finding based 

on 3561 cases [6] that high MCM3 mRNA expression is associated with longer survival for 

women diagnosed with HGSC. We observed differences in MCM3 expression across HGSC 

molecular subtypes: the highest expression was seen in C5.PRO, which has been named 

after its association with high expression of proliferation-related genes. Since MCM3 is 

highly expressed in tumor epithelium and lymphocytes but lowly expressed in the associated 

stroma, the lower MCM3 expression in C1.MES could be explained by their higher stromal 

content without dense lymphocytic infiltrate. Bulk tumor analysis can be influenced by the 

epithelial purity of the specimen [22], however, we mitigated against this by macrodissecting 

areas with high tumor cellularity. Our data show no interaction between HGSC molecular 

subtype and the association of MCM3 expression with survival.

The association of MCM3 with survival was also found when measuring MCM3 protein 

levels by IHC despite only a modest correlation of MCM3 mRNA expression with MCM3 

protein levels by IHC. There could be a number of reasons for the limited correlation. 

MCM3 protein levels could be controlled more at the translational or post-translational level 

than at the transcriptional level. The half-life of the translated protein could be independent 

of mRNA levels depending on the rate of degradation [23]. A further contribution 

might be error or noise in the experiments. For the NanoString assay, we standardized 

specimen handling, pre-processing, and normalization [20]. An intrinsic limitation of the 

conventional IHC we used is that most cells expressing the protein reached a saturated signal 

due to highly sensitive polymer-based detection systems and estimating the percentage 

of stained tumor cells did not allow for accurate quantification of protein expression. 

Immunofluorescence or quantitative IHC with a linear dynamic range would allow for 

better quantification of the protein and direct comparison preferentially on the same samples 

[24]. Ultimately, the action of the protein is what matters and perhaps in future studies, a 

combination of mRNA expression and spatial protein levels may predict clinical outcomes 

more accurately than either alone [25].
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Chemotherapy is known to have a modifying effect on the proliferation status, illustrated 

here by the significantly lower MCM3 and Ki-67 expression in post neoadjuvant 

chemotherapy specimens. This finding parallels the previously reported association of 

chemotherapy with lower mitotic rates and Ki-67 labelling indices [26, 27] and suggests 

that proliferation indices are best assessed on chemotherapy-naïve tumor samples. This idea 

is further supported by the lack of prognostic association of MCM3 mRNA expression in 

post neoadjuvant chemotherapy specimens. In contrast, changes in expression following 

chemotherapy have not been observed with other biomarkers such as WT1 and p53, which is 

reassuring given their importance as diagnostic markers of HGSC [28].

Despite the diagnostic utility of assessing proliferation using Ki-67 in serous tubal 

intraepithelial carcinoma, the precursor lesion of HGSC, there is currently no biomarker in 

use to assess this important aspect of the tumor biology of HGSC. The use of Ki-67 has been 

implemented for prognostication of gastrointestinal neuroendocrine tumors and carcinomas 

of the breast, but this study shows that in HGSC, MCM3 allows for prognostication while 

Ki-67 does not. This result contrasts a previous study of 318 chemotherapy-naïve HGSC 

patients, which found that high Ki-67 levels were correlated with longer survival [16]. While 

we observed a similar trend, the association was not statistically significant. Both studies 

were of similar size and analyzed chemotherapy-naïve samples but differed with respect to 

the median Ki-67 labelling index, which was higher in the other study: 40% [16] compared 

to 27.5% in our study. One potential explanation is the use of full sections in the other study 

[16], which allows for an assessment of hot spots, versus use of TMAs in our study, which 

randomly samples 2 or 3 small tumor areas. Another explanation could be the challenges 

around interlaboratory standardization of Ki-67 IHC assays that were encountered with 

assessment of breast cancers [29].

MCM3 has also been shown to be a good surrogate marker of proliferation in tumors from 

other sites [8–10, 30–34]. We observed the expected differences of MCM3 and Ki67 levels 

across high and low proliferating histotypes. Interestingly, even though both MCM3 and 

Ki-67 have been used as proliferation markers, expression levels only showed moderate 

correlation in this study (rs=0.50), which is similar to a previous study in squamous cell 

carcinomas (rs=0.52) but lower compared to a study of cutaneous T-cell lymphoma (r=0.91) 

[35, 36]. To date, the function of Ki-67 remains unclear, although some studies suggest 

a role in ribosome biosynthesis during cell proliferation rather than a direct association 

with the cell cycle [37]. Ki-67 expression also appears to be more profoundly influenced 

by proinflammatory factors compared to MCM3 [10, 38]. Conversely, MCM proteins are 

expressed throughout the cell cycle and maintained for longer than Ki-67, continuing until 

the transition between G0 and G1, which could explain why we observed higher protein 

expression of MCM3 compared to Ki-67 [39, 40]. Additionally, loss of MCM3 expression 

is seen in quiescent or differentiated cells [39]. Therefore, it is possible that MCM3 more 

accurately reflects the proliferative status of tumor cells without being influenced by other 

factors and thus is a more reliable proliferation marker for HGSC than Ki-67. In one 

study evaluating mitotic counts and PHH3 and Ki-67 expression by IHC in invasive breast 

cancer, mitotic count strongly correlated with PHH3 (r=0.94), but Ki-67 showed weaker 

associations with PHH3 (r=0.79) and mitotic count (r=0.83) [41]. It would be interesting to 

evaluate whether MCM3 expression more strongly correlates with mitotic counts and PHH3 
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expression in future studies. Additionally, future studies could test a potential diagnostic use 

of MCM3 for serous tubal intraepithelial carcinoma and explore the prognostic utility in 

other histotypes of ovarian carcinoma.

Previously reported studies evaluating MCM3 in cohorts with multiple combined ovarian 

carcinoma histotypes showed that higher expression of MCM3 is associated with shorter 

survival [11, 12]. In contrast, we show that in HGSC, high MCM3 expression is 

associated with longer survival. This difference can be explained by the fact that in studies 

including all histotypes, due to its higher expression in HGSC, MCM3 mainly serves as a 

surrogate marker for HGSC (the most aggressive histotype). As we have previously shown, 

histotype is an effect modifier for biomarker studies and analyses should be stratified by 

histotype [14]. When we restricted the analysis to HGSC, the direction of the association 

reversed. Given that almost all patients with HGSC are uniformly treated with a standard 

chemotherapy regimen and that rapidly proliferating tumors have been shown previously 

to respond better to chemotherapy than slowly growing tumors [42], we can indirectly 

infer that longer overall survival seen in cases of HGSC with high MCM3 expression is 

likely a reflection of good response to platinum/taxane chemotherapy. MCM3 may thus 

be a useful predictive marker of chemotherapy response in HGSC. Future studies may 

evaluate the predictive value of MCM3 in a “window of opportunity” approach by studying 

MCM3 expression in paired pre- and post-neoadjuvant chemotherapy samples of HGSC and 

correlating changes in expression levels with the chemotherapy response score to determine 

whether MCM3 would be an early predictive marker for platinum/taxane chemotherapy 

resistance in the context of BRCA1/2, homologous repair deficiency, and molecular subtype 

status. A prerequisite would be to study the intertumoral heterogeneity of MCM3 expression 

to assure comparability between adnexal and omental specimens.

In this study, we also explored the associations of other cell cycle related proteins such as 

p16, RB1, and CCNE1 with MCM3 protein levels. As expected, RB1 loss and diffuse strong 

block positivity for p16 were strongly associated with MCM3 expression. This corresponds 

with the normal role of RB1 as a negative regulator of proliferation and the futility of 

p16 block staining as a proliferation suppressor in this context [43]. Surprisingly, there 

was only a weak association between proliferation and CCNE1 expression, suggesting that 

low levels of CCNE1 are sufficient to enter the G1/S phase but the relationship is not 

dose-dependent, and high levels of CCNE1 protein expression are not strongly associated 

with proliferation. Given the opposite prognostic association between MCM3 expression/

tumor proliferation and CCNE1 high-level amplification, a mechanism for chemoresistance 

of CCNE1 amplification that is unrelated to proliferation seems likely [5][9]. For example, 

upregulation of CCNE1 has also been shown to induce centrosome amplification, resulting 

in polyploid cells with multiple centers of partially completed mitosis [44].

A limitation of our study is that, we evaluated a lower number of cases with IHC, precluding 

a definitive conclusion as to whether mRNA or protein is the better prognosticator. Of note, 

we also used different analytical approaches for mRNA expression (HR reflects one change 

in standard deviation) and protein (HR compares 3 categories), which should be kept in 

mind when comparing the HRs. Despite different endpoints for mRNA (overall survival) 

versus protein expression (disease-specific survival), we arrived at the same conclusion and 
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believe that both results serve as cross validation of the biomarker itself. Since most patients 

with HGSC die of the disease, and we mitigated against death from other causes by right 

censoring at 10 years. Disease-specific survival data are more important for other cancer 

types with better outcome. We acknowledge possible selection bias in the IHC analysis 

when excluding TMA cores with less than 10% tumor. However, restricting the analysis 

to chemotherapy-naïve cases excludes the possibility that low tumor content is an effect of 

neoadjuvant chemotherapy.

In conclusion, we demonstrated that high MCM3 tumor expression, assessed either on 

mRNA or protein level, is associated with longer survival in patients with HGSC, suggesting 

that high MCM3 expressing HGSC respond better to standard chemotherapy. MCM3 IHC is 

a promising surrogate assay to evaluate proliferation in HGSC.
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Figure 1. 
Kaplan-Meier curves showing the 10-year overall survival of chemotherapy-naïve high-

grade serous carcinoma patients from the Ovarian Tumor Tissue Analysis consortium 

grouped into tertiles of MCM3 mRNA expression. Shaded areas indicate 95% confidence 

intervals.
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Figure 2. 
A. Violin plots of MCM3 mRNA expression stratified by molecular subtype of tubo-ovarian 

high-grade serous carcinoma (HGSC). The boxplots within the violin plots correspond to 

quartiles. The upper and lower whiskers extend no further than 1.5 interquartile range from 

the hinge to the furthest value. The displayed p-value corresponds to the Kruskal-Wallis 

non-parametric test of differences between the molecular subtype-specific gene expression 

distributions.
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Figure 3. 
A. Differences in MCM3 protein expression by immunohistochemistry (IHC) for 

chemotherapy-naïve versus post neoadjuvant chemotherapy samples of ovarian carcinomas. 

Representative images of low, intermediate, and high MCM3 expression by IHC are also 

shown (200x). B. Differences in Ki-67 protein expression by IHC for chemotherapy-naïve 

versus post neoadjuvant chemotherapy samples of ovarian carcinomas. Representative 

images of low, intermediate, and high Ki-67 expression by IHC are also shown (200x). 
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Green diamonds show mean with confidence interval. Horizontal grey line is grant mean 

across all samples.
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Figure 4. 
A. Distribution of MCM3 protein expression by immunohistochemistry (IHC) across 

ovarian carcinoma histotypes. B. Distribution of Ki-67 protein expression by IHC across 

ovarian carcinoma histotypes. C. Distribution of MCM3 and Ki-67 expression by IHC 

within high-grade serous carcinomas (HGSC). D. Nonparametric density plot displaying 

nonparametric densities of MCM3 with Ki-67 on a scatter plot matrix. Red encompasses 

50% of the data points, grey 90%. Red regression line with confidence interval. A.-D. 

restricted to chemotherapy-naïve cases.
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Figure 5. 
A. Kaplan-Meier curves illustrating the 10-year disease-specific survival for patients 

with chemotherapy-naïve high-grade serous carcinomas (HGSC) for 3 groups regarding 

the MCM3 protein level by immunohistochemistry. B. Kaplan-Meier curves illustrating 

the 10-year disease-specific survival for patients with chemotherapy-naïve high-grade 

serous carcinomas (HGSC) for 3 groups regarding Ki-67 protein expression by 

immunohistochemistry.
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Table 1.

Clinicopathological characteristics of patients with chemotherapy-naïve and post neoadjuvant chemotherapy 

tubo-ovarian high-grade serous carcinomas with MCM3 mRNA expression data by NanoString assay from the 

Ovarian Tumor Tissue Analysis consortium.

Chemotherapy-naïve cases
N (%, column)

Post neoadjuvant chemotherapy cases
N (%, column)

N 1836 519

Age, years (mean, range) 63 (29–93) 65 (31–90)

FIGO Stage (N, %)

I,II 297 (16.4) 11 (2.1)

III,IV 1515 (83.6) 501 (97.9)

Unknown 24 7

Tumor sample site

Adnexal 1447 (81.4) 363 (72.3)

Omentum 199 (11.2) 88 (17.5)

Peritoneum 34 (1.9) 39 (7.8)

Other 98 (5.5) 12 (2.4)

Unknown 58 17
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Table 2.

Clinicopathological characteristics of patients in the OVCAL BC cohort with chemotherapy-naïve tubo-

ovarian high-grade serous carcinomas with MCM3 immunohistochemistry data.

MCM3 low
N (%, column)

MCM3 intermediate
N (%, column)

MCM3 high
N (%, column) Total p-value

N 168 138 87 393

Age, years (mean, 95% CI) 60.3 (59.1–61.6) 61.4 (59.9–62.9) 61.6 (59.6–63.5) 60.9 (59.9–
61.8) 0.76

FIGO Stage (N, %)

I 9 (5.5) 21 (15.9) 6 (7.1) 36 (9.5)

0.05

II 21 (12.9) 18 (13.6) 13 (15.3) 52 (13.7)

III 115 (70.6) 86 (65.2) 60 (70.6) 261 (68.7)

IV 18 (11.0) 7 (5.3) 6 (7.1) 31 (8.2)

Unknown 5 6 2 13

Residual disease

Absent 55 (34.2) 56 (42.4) 29 (34.5) 140 (37.1)

0.48

≤ 1 cm 38 (23.6) 31 (23.5) 24 (28.6) 93 (24.7)

> 1 cm 68 (42.2) 45 (34.1) 31 (36.9) 144 (38.2)

Unknown 7 6 3 16

TP53

Normal 3 (1.9) 4 (2.9) 2 (2.3) 9 (2.4)

0.48

Abnormal OE 100 (63.3) 91 (66.9) 54 (62.8) 245 (64.5)

Abnormal CA 48 (30.4) 37 (27.2) 22 (25.6) 107 (28.2)

Abnormal CY 7 (4.4) 4 (2.9) 8 (9.3) 19 (5.0)

p16

Normal 58 (34.5) 41 (29.7) 11 (12.8) 24 (6.1)

0.005

Abnormal block 
positive 98 (58.3) 90 (65.2) 70 (81.4) 258 (65.8)

Abnormal CA 12 (7.1) 7 (5.1) 5 (5.8) 110 (28.1)

RB1
Normal (retained) 152 (92.1) 117 (86.0) 48 (58.5) 317 (82.8)

<0.0001Abnormal (loss) 13 (7.9) 19 (14.0) 34 (41.5) 66 (17.2)

Cyclin E1

CISH

Normal 126 (89.4) 110 (87.3) 69 (92.0) 305 (89.2)

0.58
High-level 

amplification 15 (10.6) 16 (12.7) 6 (8.0) 37 (10.8)

IHC
Normal 129 (76.8) 96 (70.6) 69 (80.2) 294 (75.4)

0.23Overexpression 39 (23.2) 40 (29.4) 17 (19.8) 96 (24.6)

OE=overexpression, CA=complete absence, CY=cytoplasmic, CISH=chromogenic in situ hybridization, IHC=immunohistochemistry. Variable 
numbers of missing data for associations with biomarkers not shown.
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