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The dihadron fragmentation funtion and its evolutionA. Majumder and Xin-Nian WangNulear Siene Division,Lawrene Berkeley National Laboratory1 Cylotron road, Berkeley, CA 94720(Dated: April 27, 2006)Dihadron fragmentation funtions and their evolution are studied in the proess of e+e� annihi-lation. Under the ollinear fatorization approximation and failitated by the ut-vertex tehnique,the two hadron inlusive ross setion at leading order (LO) is shown to fatorize into a short dis-tane parton ross setion and a long distane dihadron fragmentation funtion. We provide thede�nition of suh a dihadron fragmentation funtion in terms of parton matrix elements and deriveits DGLAP evolution equation at leading log. The evolution equation for the non-singlet quark frag-mentation funtion is solved numerially with a simple ansatz for the initial ondition and resultsare presented for ases of physial interest.PACS numbers: 13.66.B, 25.75.Gz, 11.15.BtI. INTRODUCTIONLattie QCD alulations [1℄ predit a phase transitionfrom a hadroni gas to a quark gluon plasma (QGP) atvery high energy densities in whih quarks and gluons areno longer on�ned to the size of individual hadrons. Toreate suh a dense and hot matter, heavy ions are a-elerated to extremely high energies to ollide with eahother. If formed in suh heavy-ion ollisions, the QGP israther short lived and hadronizes quikly into a plethoraof mesons and baryons. Hene, the existene of suha state in the history of a given ollision must be sur-mised through a variety of indiret probes. One of themost promising signatures has been that of jet quenhing[2℄, whih leads to the suppression of high pT partilesemanating from suh ollisions. Suh jet quenhing phe-nomena have been among the most striking experimen-tal disoveries from the Relativisti Heavy Ion Collider(RHIC) at Brookhaven National Laboratory. Not onlyhas the suppression of single inlusive high pT hadronspetra been observed [3℄, but also the disappearane ofbak-to-bak orrelations of high pT hadrons has beennoted [4℄. Both phenomena and the observed azimuthalanisotropy of high pT hadron spetra are qualitativelyonsistent with the piture of parton energy loss thatleads to jet quenhing. This is indiative of the forma-tion of a hot mediumwhih is opaque to energeti partonsand has a parton density about 30 times higher than ina old heavy nuleus.In the investigation of jet suppression, orrelations be-tween two high pT hadrons in azimuthal angle are used tostudy the hange of jet struture [4℄. While the bak-to-bak orrelations are suppressed in entral Au+Au ol-lisions, indiating parton energy loss, the same-side or-relations remain approximately the same as in p+ p andd+Au ollisions. Given the experimental kinematis, thisis onsidered as an indiation of parton hadronizationoutside the medium. However, sine the same-side or-relation orresponds to two-hadron distribution within asingle jet, the observed phenomenon is highly nontriv-

ial. To answer the question as to why a parton with aredued energy would give the same two-hadron distri-bution, one has to take a loser look at the single anddouble hadron fragmentation funtions and their modi-�ation in medium. In this paper we take the �rst stepby studying the dihadron fragmentation funtions in theproess of e+e� annihilations.Inlusive hadron prodution ross setions in e+e� ol-lisions have turned out to be one of the many suess-ful preditions of perturbative QCD [5, 6, 7℄. For re-ations at an energy sale muh above �QCD one anfatorize the ross setion into a short-distane par-ton ross setion whih is omputable order by orderas a series in �s(Q2); and a long-distane phenomeno-logial objet (the single hadron inlusive fragmenta-tion funtion) whih ontains the non-perturbative in-formation of parton hadronization [8℄. These fragmen-tation funtions an be de�ned in an operator formal-ism [9℄ and hene are valid beyond the perturbativetheory. They, however, annot be alulated pertur-batively and have to be, instead, inferred from experi-ments. The de�nition of these funtions a�ords them themantle of being universal or proess-independent. Onemeasured in one proess, e.g. e+e� annihilation, theyan be applied to another, e.g. deep inelasti satter-ing or p + p ollisions, and therein lies the preditivepower. Another ontribution of pQCD rests in the fatthat one these funtions are measured at a given en-ergy sale, they an be predited for all other energysales via the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi(DGLAP) evolution equations [10, 11, 12℄.The single inlusive fragmentation funtion Dhq (z;Q2)an be interpreted as a multipliity distribution forhadrons of type h with a longitudinalmomentumfrationz that materialize from a fragmenting parton of avourq. One an have, in priniple, an n-hadron fragmen-tation funtion Dh1 ;h2;:::hnq (z1; z2; :::zn; Q2) whih ountsthe number of hadrons of type h1; h2; :::hn with mo-mentum frations z1; z2; :::zn materializing from a frag-menting parton q. In this artile, we will be on-



2erned with the double inlusive fragmentation funtionDh1 ;h2q (z1; z2; Q2) or the dihadron fragmentation fun-tion. The operator de�nition of this funtion is notmerely a trivial extension of the single hadron ase; thereare no straightforward sum rules onneting it to sin-gle inlusive fragmentation funtions. Similar funtionshave been onsidered previously [13, 14, 15℄. However,suh formulations onsidered the double fragmentationfuntion with a �xed angle Æ (or a �xed tranverse mo-mentum di�erene qT ) between the two hadrons. For alarge enough hoie of Æ (or qT ) the dominant ontribu-tion to Dh1 ;h2q (z1; z2; Æ; Q2) was postulated to emanatefrom a proess where the fragmenting parton had un-dergone a split into two partons whih then fragmentedindependently. This formulation, however, requires Æ (orqT ) to be large enough that the splitting proess may bealulated in perturbation theory. In our formulation,the internal angle Æ (or relative momentum qT ) will beexpliitly integrated over. In this regard, our alula-tions are similar in spirit to those of Ref. [16℄. In thate�ort, general evolution equations for n-hadron fragmen-tation funtions were motivated, and an algebrai solu-tion of the moments of the fragmentation funtions wasobtained. In none of the previous studies, however, hasan attempt been made to generalize the operator de�ni-tion of the fragmentation funtion from one hadron tomany hadrons. Evaluation of the n-hadron produtionross setion at leading order (LO) and leading twist al-lows one to analytially de�ne suh a funtion. Evalua-tion of orretions to the same ross setion at leading log(LL) and leading twist allows one to derive the evolutionequations for suh funtions. This is the objetive of theurrent study. To the knowledge of the authors, no suhalulation has hitherto been attempted.Our eventual goal is to derive the mediummodi�ationto the dihadron fragmentation funtion as the fragment-ing parton propagates through the medium. As shownin the ase of single hadron fragmentation funtions [17℄,the medium modi�ation of the fragmentation funtiondue to multiple sattering and indued gluon radiationresembles very muh that of radiative orretions due togluon bremsstrahlung in vauum. Therefore, the study ofDGLAP evolution of dihadron fragmentation funtions inthis paper an already provide us hints of what one mayexpet for medium modi�ations.The remaining setions are organized as follows: inSe. II we present a general disussion of the doublefragmentation funtion. We outline how suh a funtionmay be isolated in the expression for a double di�erentialinlusive ross setion and disuss the possible nature ofits evolution equations. In Se. III we begin with theS-matrix expression for the double di�erential ross se-tion for the prodution of two hadrons in e+e� ollisionsat leading order (LO); we then fatorize the expressionat leading twist into the onventional hard part and thedouble fragmentation funtion. We also derive the rulesfor suh an objet in the ut-vertex tehnique of Mueller.In Se. IV we write down the double di�erential ross

setion at next-to-leading order (NLO) and one againfatorize it at leading twist into the onventional hardpart and NLO orretion to the fragmentation funtion.Using these we derive the DGLAP [10, 11, 12℄ evolutionequations for the double fragmentation funtions. In Se.V we fous on the evolution equation for the non-singlet(NS) quark fragmentation funtion and solve its evolu-tion equation numerially. Finally in Se. VI we disussthe results of our alulation and present our onlusions.II. THE PARTON MODELIn this setion, we present a general disussion of theproperties of a dihadron fragmentation funtion withina parton-model-like piture with ollinear fatorization.However, all our assumptions will be demonstrated tohold expliitly in an operator formalism at leading logand leading twist in the subsequent setions.We onsider the following semi-inlusive proesse+ + e� ! � ! h1 + h2 +Xof e+e� annihilation. We onsider two-jet events whereboth the identi�ed hadrons h1 and h2 emanate from thesame jet. At leading order in the strong oupling thisours from the onversion of the virtual photon into abak-to-bak quark and antiquark pair whih fragmentinto two jets of hadrons.In this senario, at a large Q2 of the reation, onemay fatorize the ross setion of single inlusive hadronprodution as [18℄d�dz = Xq �q�q0 �Dhq (z) +Dh�q (z)� : (1)with Dhq (z) and Dh�q (z) as the single inlusive quark frag-mentation funtions. The total ross setion for the an-nihilation of an eletron positron pair to a quark and ananti-quark, �q�q0 at leading order is�q�q0 = e2qN 4��23s : (2)Here, eq is the frational harge of the quark in units of aneletron harge, s is the square of enter of mass energyof the e+e� pair, and N = 3 is the number of olors inthe fundamental representation of QCD. The frationalmomentum z represents the the light-one momentumfration of the hadrons to the parent partons, i.e.,z = ph � np � n ;where we use the notation of bold fae letters rep-resenting four-vetors. The lightlike four-vetor n �[n+; n�; n?℄ = [0; 1; 0℄ is taken onjugate to a given mo-mentum, as yet unspei�ed.



3Similarly, one an expet to obtain the two-hadron in-lusive ross setion from Eq. (1) by replaing the singleinlusive fragmentation funtions Dhq (z1) with the doubleinlusive funtions Dh1h2q (z1; z2),d2�dz1dz2 =Xq �q�q0 hDh1h2q (z1; z2) +Dh1h2�q (z1; z2)i : (3)We will not disuss ases in whih eah of the two hadronsemerges independently from eah of the bak-to-bakquark and antiquark jets.In the parton model [18℄, at NLO with a single gluonradiative orretion, the two hadron inlusive ross se-tion in e+e� annihilation an be expressed as a onvolu-tion of the fragmentation funtions with the di�erentialpartoni ross setions (see Se. 3.3 of Ref. [18℄),d2�(z1; z2; Q2) = �d�qdy � dyDh1 ;h2q (x1; x2)dx1dx2+ �d��qdy � dyDh1 ;h2�q (x1; x2)dx1dx2+ �d�gdy � dyDh1;h2g (x1; x2)dx1dx2+ �d�gqdy �dy �Dh1g (x1)Dh2q (x2)+(h1; z1)! (h2; z2)℄ dx1dx2+ �d�g�qdy �dy hDh1g (x1)Dh2�q (x2)+(h1; z1)! (h2; z2)℄ dx1dx2: (4)There are two distint types of ontributions in theabove equation. The �rst one is determined by thetwo-hadron fragmentation funtions of single partonsthat have the pQCD di�erential ross setions, d�q=dy,d��q=dy, d�g=dy, and momentum fration y. The seondontribution orresponds to two, almost ollinear, par-tons (a gluon and a quark or antiquark with pQCD rosssetions d�gq=dy and d�g�q=dy) splitting from the sameparent parton and then fragmenting independently intohadrons. In this ase, the quark (antiquark) arries mo-mentum fration y and the gluon arries 1 � y. One ofthe identi�ed hadrons omes from eah of these partons.The two hadrons h1 and h2 have momentum frationsx1 and x2 of their immediate parent parton whih itself isendowed with a momemtum fration y or 1�y. Relatingthe inside parton variables x1; x2; y to the outside hadronvariables we obtainx1 = z1=y; x2 = z2=yfor the �rst three terms andx1 = z1=y; x2 = z2=(1� y)for the last two terms. Using the pQCD partoni rosssetions in the massive gluon sheme [18℄, one an obtain

the double di�erential ross setion for the prodution oftwo hadrons with momentum frations z1; z2 as,d2�dz1dz2 = Xq �q�q0 "Z 1z1+z2 dyy2(�1 + �s� �Æ(1� y)+ �s2�Pq!qg(y) log(Q2=m2g) + �sfe+e�q (y))� nDh1 ;h2q (z1=y; z2=y) +Dh1 ;h2�q (z1=y; z2=y)o+ 2(�s2�Pq!gq(y) log(Q2=m2g) + �sfe+e�g (y))� Dh1;h2g (z1=y; z2=y) + Z 1�z2z1 dyy(1 � y)� �s2� P̂q!qg(y) log(Q2=m2g)� nDh1q (z1=y)Dh2g (z2=(1� y))+ Dh1�q (z1=y)Dh2g (z2=(1� y))o#+ 1! 2: (5)Here the swith between the indies 1! 2 is only meantfor the last y integration. The P (y) funtions are theregular splitting funtions whih ontain both the realand virtual ontributions and thus have no infrared di-vergenes. The P̂ (y) funtions ontain no ontributionsfrom virtual diagrams. The f(y)'s are the sheme de-pendent funtions obtained in the massive gluon sheme,where mg is the �titious gluon mass introdued to regu-late the ollinear divergenes. In the subsequent disus-sion we will fous on the leading log (LL) piee of theabove expression. Thus one an drop the sheme depen-dent f funtions.Note that up to this point we have simply retraed thesequene of steps in the evaluation of the radiative or-retions to the single inlusive fragmentation funtionsin the parton model. What is new in the ase of twohadron inlusive ross setion is the ontribution fromthe splitting into a quark and gluon followed by indepen-dent fragmentation. The log(Q2=m2g) in this ontributionoriginates from an integration over the transverse mo-mentum q? of the quark and gluon emanating from thesplit. For very small values of q?, other higher order andnonperturbative proesses beome important that will in-validate the piture of independent fragmentation of thetwo partons. For q? >> �QCD, however, the higherorder orretions will be suppressed and the quark andgluon will fragment inoherently in LL approximation(this was �rst pointed out in Ref. [15℄). A simple proofof this statement has been inluded in the Appendix. Inthis paper, we introdue a ut-o� sale �? that separatestwo regimes of two-parton fragmentation aording to thevalue of q?: independent fragmentation for q? > �? andoherent fragmentation for q? < �?. Unlike the fator-ization sales that we will disuss shortly, �? is not intro-dued to renormalize the fragmentation funtions but to



4de�ne the perturbative (or non-perturbative) part of thedihadron fragmentation funtions. It is quite analogousto the one-size of jet de�nitions [19℄.To simplify the disussion in this paper, we will on-entrate on the non-singlet fragmentation funtions:Dh1;h2NS (z1; z2) = Dh1 ;h2q (z1; z2)�Dh1 ;h2�q (z1; z2): (6)We also use the following onvolution notations,A �B��ba = Z ba dyy2A(z1=y; z2=y)B(y)A��B��ba = Z ba dyy(1 � y)A(z1=y; z2=(1� y))B(y):The bare fragmentation funtions Dq;�q;g(z1; z2) inEqs. (4) and (5) are not as yet physial, measurable quan-tities and are sheme dependent, sine the ross setionsexpressed in terms of them ontain ollinear divergenes.One an however introdue renormalized fragmentationfuntions suh that the double inlusive ross setion anbe fatorized in the form of Eq. (3) and is free of ollineardivergenes.Fatoring out the e+e� annihilation ross setion inEq. (5), we are left with the sale dependent physialfragmentation funtions whih should be free of ollineardivergenes. The \non-singlet" physial fragmentationfuntions are,Dh1;h2NS (z1; z2; Q2) = Dh1 ;h2NS (7)+Dh1 ;h2NS � �s2�Pq!qg����1z1+z2 log(Q2=m2g)+�Dh1NSDh2g ����s2� P̂q!qg����1�z2z1 log(Q2=�2?)+�Dh1NSDh2g ����s2� P̂q!qg����1�z2z1 log(�2?=m2g)+1! 2Here the swith 1! 2 is meant solely for the seond andthird term. Suh exhange will be made impliit in therest of this paper. We will also drop the limits of theonvolutions in the notation for brevity. In the ase ofindependent fragmentation, we have also split the expres-sions into a term that solely inludes ontributions withq? above the sale �?. The seond piee ontains on-tributions below �? and thus reeives large orretionsfrom higher order and non-perturbative proesses. Thispiee will have to be absorbed into a rede�nition of thebare dihadron fragmentation funtion.We now have to introdue the fatorization sale �and rede�ne the bare dihadron fragmentation funtion interms of a renormalized one and the single fragmentation

funtions, Dh1 ;h2NS = (8)�Dh1 ;h2NS (�; �?) � 1 + �s2�Pq!qg log(m2g=�2) + :::!+Dh1NSDh2g �� �s2�Pq!qg log(m2g=�2?) + :::!:Note that the log in the seond term an be separatedinto two pieeslog(m2g=�2?) = log(m2g=�2) + log(�2=�2?); (9)with the �rst one ontaining the ollinear divergene andthe seond piee de�ning the independent fragmentationof two ollinear partons. In the ase where � < �?, weessentially have a funtion that depends on two sales:the ollinear divergenes that are extrated from the se-ond term in Eq. (8) annot be fatorized out at a salebelow �?. However, we may hose to have � > �?, inwhih ase the seond piee in Eq. (9) is a �nite onstantthat may be simply reabsorbed into the de�nition of therenormalized fragmentation funtion. With the fator-ization sale � hosen above the physial sale �?, wemay now express Eq. (8) asDh1 ;h2NS = (10)�Dh1 ;h2NS (�) � 1 + �s2�Pq!qg log(m2g=�2) + :::!+Dh1NSDh2g �� �s2�Pq!qg log(m2g=�2) + :::!:In what follows we will always ompute in the regionwhere � > �?.We may now substitute Eq. (10) into Eq. (7) and on-entrate on the leading order and leading log (LL) setorof the fragmentation funtions (i.e. we only keep termsto order �s(Q2) log(Q2)) to getDh1 ;h2NS (z1; z2; Q2) = (11)�Dh1 ;h2NS (�) � 1 + �s2�Pq!qg log(Q2=�2) + :::!+Dh1NSDh2g �� �s2�Pq!qg log(Q2=�2) + :::!:The above dihadron fragmentation funtion in the NLOstill ontains the bare single fragmentation funtions inthe ontribution from two independent parton fragmen-tation.



5

FIG. 1: Diagrams to be resummed iteratively to obtain the evolution of the fragmentation funtions.If we onsider higher order proesses in whih an ad-ditional gluon radiation takes plae after the split butbefore independent fragmentation, as shown in Fig. 1,another ollinear divergene will arise. This is exatlythe same as in the NLO orretion to the single inlusivefragmentation funtions. One has to introdue renormal-ized single hadron fragmentation funtions at a fatoriza-tion sale �1Dh1NS = �Dh1NS(�1)
�1+�s2�Pq!qg log(m2g=�21) + :::�;(12)where, the 
 indiates the regular onvolution notation,i.e. A 
 B = R dyy A(z=y)B(y). In addition, the renor-malized gluon fragmentation funtion is de�ned as,
Dh1g = �Dh1g (�21)
 �1 + �s2�Pg!gg log(m2g=�21) + :::�+ Pq �Dh1q=�q(�21)
 �s2��Pq!qg log(m2g=�21) + :::�;(13)where �Dh1q=�q represents the quark or antiquark fragmen-tation funtion and the sum inludes all avours. Thefatorization sale �1 for the single fragmentation fun-tions needs not be the same as the fatorization sale fordouble fragmentation funtions.With both the renormalized single and double hadronfragmentation funtions, we obtain the leading log andNLO expressions of the double hadron fragmentation



6funtionsDh1 ;h2NS (z1; z2; Q2) = (14)�Dh1 ;h2NS (�) � 1 + �s2�Pq!qg log(Q2=�2) + :::!+ �Dh1NS(�1) �Dh2g (�1)�� �s2�Pq!qg log(Q2=�2) + :::!:In the above disussion we have set Q2 to be large suhthat there exists a hierarhy of sales �2QCD << �2? <<Q2. The above fatorization is valid in the regime inwhih the fragmentation funtions are measured at asale � suh that �? < � << Q. In this limit we mayalso set �1 = � to de�ne both single and double frag-mentation funtions at the same sale. Note that thesingle fragmentation funtions at the new sale � di�erfrom those at �1 at higher order in �s and thus the or-retion due to these may be ignored in the leading logexpressions for large enough Q2.The remaining task in our parton model evaluation ofthe double hadron fragmentation funtion is to iteratethe radiative proess as shown in Fig. 1. Eah of theirular blobs represents a fragmentation funtion at thesale �. Di�erentiating the series with respet to log(Q2)followed by a reorganization of the various terms leads tothe evolution equation:�Dh1h2NS (Q2)� logQ2 = �s2�"Pq!qg �Dh1h2NS (Q2)+ P̂q!qg��Dh1NS (Q2)Dh2g (Q2) + 1! 2#(15)Within the framework of the parton model we an pi-ture the proess as the free propagation of a parton fol-lowed by its fragmentation into hadrons of whih twoare identi�ed. Fragmentation may be preeded by theradiation of multiple soft gluons (this is the top line inFig. 1). Oasionally the parent parton undergoes a semi-hard split into two o�spring partons whih then propa-gate freely of eah other and then fragment independentlyinto hadrons and one hadron from eah of these o�springis identi�ed. Prior to their fragmentation, the o�springmay radiate multiple soft gluons as well.The exerise in this setion is based on the validity ofour assumptions about the nature of the fragmentationproess, espeially on the validity of Eqs. (3,5). It wasassumed that in progressing from single inlusive to dou-ble inlusive ross setions the parton model dynamiswould remain the single leading behaviour and more im-portantly would lead to Eq. (5). Suh a proof exists forthe single inlusive fragmentation funtions that requiresan exat operator de�nition of the single fragmentationfuntions. One an demonstrate both the fatorized formof Eq. (1) and the evolution equations of the single inlu-sive fragmentation funtions, exatly, as the leading log

behaviour at large Q2 in an operator formalism(see Refs.[8, 9, 20℄ and Ref. [23℄). Mounting suh a proof for thedihadron fragmentation funtions will require us to pro-vide a de�nition of the dihadron fragmentation funtionin the operator formalism. This will be the subjet of thenext setion. We will extend the ut-vertex formalism ofMueller [9, 20℄ to dihadron fragmentation in this paper.The fatorization of the NLO expressions at leading twistand leading log will be demonstrated in Se. IV.III. THE SINGLE AND DOUBLEFRAGMENTION FUNCTIONSIn the previous setion, we made use of the partonmodel [7℄ to motivate a double inlusive fragmentationfuntion and assumed a fatorized form as the leadingbehaviour of the two hadron inlusive ross setions. Toprove the fatorized behaviour we need to �rst obtain aonsistent de�nition of the dihadron fragmentation fun-tion.We begin with the matrix element for the eletronpositron annihilation into a given state of hadrons in thesingle photon approximation,Me+e�!Shad = e2 Z d4yhShad jJ�(y)j0i� �ig��(k1 + k2)2 e�i(k1+k2)�y �v(k2)�u(k1): (16)In the above equation, J�(y) =Pq eq � q(y)� q(y) is thehadroni eletromagneti urrent and k1;k2 are the mo-mentum four-vetors of the eletron and positron. Herethe sum over the number of olors in the fundamentalrepresentation of QCD is implied. Squaring the matrixelement, summing over all �nal states of hadrons and av-eraging over all initial spins of hadrons, one obtains thetotal ross setion for e+e�annihilation into hadrons,� = 12s XShad Z d3pf2Ef (2�)3 (2�)4Æ(k1 + k2 � PShad )� e44(q2)2L��h0jJ�(0)jShadihShad jJ�(0)j0i= e42sq4 L��W ��4 ; (17)where L�� is the leptoni tensor andW �� is the hadronitensor. The four-momentum of the virtual photon is q =k1 + k2 � (Q; 0; 0; 0) and the Mandelstam variable s =q2 = Q2. The sum over Shad inludes both the sum ofthe omplete set of states and the phase spae integrationQf2Shad d3pf=2Ef(2�)3.One an evaluate the single inlusive ross setion bysumming over all possible hadroni �nal states that on-tain the identi�ed hadron h. In the leading order andleading twist in a ollinear approximation, one an obtain



7Eq. (1). In a light-one gauge (n �A = 0), the operatorexpression for the single inlusive fragmentation funtionat leading twist is obtained as [9, 20, 21℄,Dhq(�q)(zh) = z3h2 Tq(�q)(zh)= z3h4 Z d4p(2�)4 Æ�zh � ph � np � n �� Tr�  � nph �n T̂q(�q)(p;ph)�; (18)where the the Dira operators T̂q(�q)(p;ph) are given by(T̂q)�;�(p;ph) = Z d4x XShad�1h0j �(0)jph; Shad � 1i� hph; S � 1j � �(x)j0ieip�x (19)(T̂�q)�;�(p;ph) = Z d4x XShad�1h0j � �(0)jph; Shad � 1i� hph; Shad � 1j �(x)j0ieip�x: (20)Here, the sums are taken over all physial �nal statesof hadrons, whih always ontain, at least, the singlehadroni state with momentum ph. In this ase n ishosen suh that its spatial omponents are antiparallelto the spatial omponents of the observed hadron. Thisimplies n � ph = p+h = (p0h + j~phj)=2. In our hoie oflight-one momenta p� = p0 � pz. The gauge links re-quired to make this expression gauge invariant have beensuppressed as they do not ontribute to the leading twistfragmentation funtions in light-one gauge.The fragmentation funtions an also be reexpressedin the ut-vertex tehnique of Mueller. These representa powerful omputational tool that may be used to alu-late inlusive ross setions and the sale dependene ofthese funtions in perturbation theory in a diagramatilanguange. The Feynman diagrams illustrating the lead-ing order expressions for the single inlusive fragmen-tation funtions are shown in Fig. 2. In this Feynmandiagram the rule for the bare quark ut-vertex is � n2ph �nÆ�zh � ph � np �n �: (21)The derivation of operator de�nitions for dihadron frag-metation funtions and the extension of the ut-vertextehnique to inorporate these funtions is the fous ofthis setion.We will onentrate on the two-jet events ine+e�annihilation and are interested only in two hadronprodution o� one single jet. The fate of the \bak-side"jet will not be dwelled over here. We assume that thesum over all hadroni states in W �� an be simpli�edinto two omplete sets of states and that eah overlapsindependently with the quark and antiquark jet. This as-sumption neglets the interferene between the two jetsand is valid in leading log and leading twist. We also as-sume the duality between the omplete hadroni states
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FIG. 2: ut-vertex for quark fragmention funtion at LO.and partoni states. Thus the sum over hadroni statesin the \bak-side" jet will be replaed by partoni states.Under this assumption, we evaluate the hadroni urrentoperator, order by order in �s, by expanding the QCDinteration Hamiltonian in the interation piture. In theleading order (LO), one obtains,W�� = XShad�2Xq e2q Z d3p1d3p24E1E2(2�)6Z d3k2Ek(2�)3 (2�)4Æ4(q� p1 � p2 � k�Xf2Shad�2pf )� h0j � q(0)� q(0)jk; p1; p2; Shad � 2i� hk; p1; p2; Shad � 2j � q(0)� q(0)j0i: (22)In the above equation, Shad is a omplete set of hadronistates. In the remaining disussion we will drop the sub-sript (had). We have extrated two partiular hadronistate sums, labeled as p1; p2, from the full sum over statesS. The hadroni tensor may be represented by the Feyn-man diagram in Fig. 3.On Fourier deomposition of one of the quark or an-tiquark operators, followed by a sum over all spins ofthe outgoing antiquark (quark) state k, we obtain the
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q

k

p

p1

p2

FIG. 3: The leading order Feynman diagram ontributing tothe double inlusive fragmentation funtion.hadroni tensor as,W�� = Xq;S�2 e2q Z d3p1d3p24E1E2(2�)6 (23)Z d4k(2�)42�Æ+(k2)(2�)4Æ4(q � p1 � p2 � k � pS�2)"nh0j � q(0)jp1; p2; S � 2i� 6k�hp1; p2; S � 2j q(0)j0io+n�h0j (0)jp1; p2; S � 2ihp1; p2; S � 2j � (0)j0i� 6ko#:One may rewrite the Æ�funtion as a four-spae inte-gration of an exponent exp(�ip � x) that in turn anbe used to transform the quark wavefuntion operator (0) !  (x). A shift in the d4k integration an be per-formed i.e. k � q � p. Summing over the spins (andolors) of all the �nal (parton) states we obtain the gen-eral form of the hadroni tensor asW�� = NXq e2q Z d3p1d3p24E1E2(2�)6 Z d4p(2�)4 (24)2�Æ+((q � p)2)"TrnT̂�q(p; p1; p2)�(6q� 6p)�o+ TrnT̂q(p; p1; p2)�(6q� 6p)�o#;

where the parton-double-hadron overlap matries aregiven similarly as for single fragmentation funtions ashT̂�q(p; p1; p2)i�� = Z d4xeip�xXS�2h0j � �q (x)jp1p2S � 2ihp1p2S � 2j �q (0)j0i (25)and hT̂q(p; p1; p2)i�� = Z d4xeip�xXS�2h0j �q (x)jp1p2S � 2ihp1p2S � 2j � �q (0)j0i; (26)where the two quark �eld operators have the same olorindex and average over olors is expliitly implied.Up to this point the derivation of the fatorized dou-ble inlusive fragmentation funtion has followed a pathnot entirely dissimilar to that of a single fragmentationfuntion. At this point one may introdue the light-onevariables and their ratios,z1 = p+1 =p+ , z2 = p+2 =p+ ,and z = z1 + z2 = (p+1 + p+2 )=p+ � p+h =p+. Where phis the total momentum of the pair of hadrons that areidenti�ed. We now take the ollinear approximation thatthe hadron momenta p1; p2; ph are almost ollinear withrespet to the quark (antiquark) momentum at high en-ergies and are thus dominated by their + omponentsfor light-one vetor n hosen in the diretion of the out-going quark or antiquark. Essentially, p+1 >> p�1 ; p1?and the same is true for p2 and ph. The overlap ma-tries T̂�q; T̂q have a Dira matrix struture and henean be deomposed in a basis of produts of  matri-es (1; �; ���; 5�; 5). The only term of this basis tosurvive is �: even ombinations are set to zero in thetrae and ombinations ontaining 5 vanish under a spinsum. As T̂�q ; T̂q are salers and only depend on the threealmost ollinear momenta, we obtain at leading twist thefollowing deomposition of the overlap matries:T̂q(p; p1; p2) = 6ph2 Tq(p; p1; p2) orTq(p; p1; p2) = Tr[6nT̂q(p; p1; p2)℄2n � ph ; (27)where Tq(p; p1; p2) is a salar funtion. The entire Dirastruture has been extrated into the  matrix.With the aid of Æ�funtions, we an introdue thede�nition of the frational momenta z1 and z2 into the



9hadroni tensor:W�� = N Z 10 dz1dz2�(1 � z1 � z2) Z d3p1d3p24E1E2(2�)6(28)2�Æ+(q2 � 2q � phz )Xq e2q"Trn 6ph2 �� 6q � 6phz ��o� Z d4p(2�)4T�q(p; ; p1; p2)Æ(z1 � p+1p+ )Æ(z2 � p+2p+ )+ Trn 6ph2 �� 6q � 6phz ��oZ d4p(2�)4Tq(p; ; p1; p2)� Æ(z1 � p+1p+ )Æ(z2 � p+2p+ )#:In ollinear approximation, we expand the hard partH0�� = Trh 6ph2 �� 6q� 6p��iÆ+((q � p)2): (29)in the transverse momentumof the hadrons ph? and takeonly the leading term H0��(p+) ' H0��(p+ = p+h =z)+ :::.This approximation allows us to fator out the hardpart from the d4p integral. This is the �rst step in thefatorization of the double hadron inlusive ross se-tion. Based on the ollinear approximation we have alsodropped the term p2 or p2h=z2 from the argument of theÆ+ funtion (i.e. q2 � 2q � p >> p2). Given the light-one struture of the four-vetor p a further simpliationof the argument of the Æ�funtion may be obtained:q2 � 2q � p = q+q� � (q+p� + q�p+ � q? � p?)= Q2 � �Q2 p� + Qp+� ; as q? = 0= Q2 �Qp+ = Q2 � Qp+hz ; as p� << p+ = p+h =z' q2 � 2q � phz (30)With the above simpli�ations and reorganization ofarguments in the two internal Æ funtions, the hadronitensor an be written asW��q = N Z 10 dz1dz2�(1 � z1 � z2) Z d~p1d~p2 (31)2�Æ+(Q2 � 2Qp+hz )H��� Xq e2q Z d4p(2�)4 �Tq(p; ; p1; p2) + T�q(p; ; p1; p2)�� p+2z1z2 Æ(p+ � p+1z1 )Æ(p+ � p+2z2 );where we have introdued the shorthand notation d~p =d3p=(2�)32Ep. The variable p+ is overdetermined andthus one of the Æ funtions ats really on the integrationsexternal to d4p. These may be extrated and further

reorganized as follows,::: 1z1z2 Z d4p(2�)4 p+2Æ(p+ � p+1z1 )Æ(p+ � p+2z2 ):::= ::: 1z1z2 Æ(p+1z1 � p+2z2 ) Z d4p(2�)4p+2Æ(p+ � p+1z1 ):::= ::: 1z1z2 Æ(p+1z1 � p+h � p+1z2 ) Z d4p(2�)4 p+2Æ(p+ � p+1z1 ):::= ::: 1z1 + z2 Æ(p+1 � p+h z1z1 + z2 ) Z d4p(2�)4p+2Æ(p+ � p+1z1 ):::= :::1z Æ(p+1 � (p+1 + p+2 )z1z ) Z d4p(2�)4 p+2Æ(p+ � p+hz ):::= :::p+h Æ(z2p+1 � z1p+2 ) Z d4p(2�)4 Æ(z � p+hp+ ):::; (32)where z = z1+ z2. Substitution of these expressions intothe hadroni tensor W �� followed by a substitution ofW�� bak into Eq. (17) leads to the following expressionfor the total ross setion for e+e�annihilation,� = e4NXq e2q Z dz1dz2�(1 � z1 � z2)L��H��(Q)8Q6 z2�Z d~p1d~p22� z2QÆ+(ph � zQ=2)p+h Æ(z2p+1 � z1p+2 )�Z d4p(2�)4 Æ(z � p+hp+ )�Tq(p; p1; p2) + T�q(p; p1; p2)�; (33)where the external Æ�funtion has been used to setH0��(ph; Q) � z2QÆ+(ph � zQ=2)H��(Q):The dependene of the hard part on hadroni variablesis replaed with the appropriate partoni variables. Dif-ferentiating the above equation with respet to z1; z2leads to the double di�erential ross setion outlined inEq. (3)). Before the extration of the double inlusivefragmentation funtion, some simpli�ation of the aboveequation is in order. In ontrast to the de�nition of thesingle fragmentation funtion, there are double hadroniintegrals d3p1; d3p2 and two sets of Æ�funtions as op-posed to one. The autious reader will note that the over-lap matries T̂q(p; p1; p2); T̂�q(p; ; p1; p2) [see Eqs. (25,26)℄are dimensionally di�erent from the overlap matriesin the de�nition of the single inlusive funtions (seeRef. [21℄).To simplify, we begin with a variable trans-formation. One essentially hanges fromthe set [p1x; p1y; p1z; p2x; p2y; p2z℄ to the set[p1; p2; q?; �m; �m; �?℄ as illustrated in Fig. 4. Thishoie is not entirely arbitrary. The disussion of theNLO in the previous setion required us to inorporatetransverse momenta q? up to a semihard sale �? intothe bare fragmentation funtion. This partiular variabletransformation allows us to isolate the q? integration.The new vetor ~ph = ~p1+~p2 has the three omponentsof mostly massless four-vetors. The requirement that
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eFIG. 4: The variable transform from[p1x; p1y; p1z; p2x; p2y; p2z℄ to [p1; p2; q?; �m; �m; �?℄.p+h = p+1 + p+2 is trivially ful�lled. The new \body-�xed"variable q? quanti�es the omponent of ~p1 � ~p2 that lieson the plane perpendiular to ~ph and �? is the azimuthalangle of ~q? on this plane. The angles �m and �m quan-tify the diretion of ~ph with respet to the e+e�beamdiretion as the z axis. The Jaobian for this tranforma-tion is simply J = q?4 (p1 + p2)2;at leading twist. With these new variables one may eas-ily relate the partoni variable in the hard part withthe hadroni variable ~ph as ~p=z, i.e. the sum of the 3-momenta of the deteted hadrons is ollinear with the3-momenta of the fragmenting quark or antiquark. Itmay be demonstrated that the orretions to this state-ment ontribute at higher twist. It should be pointedout, in passing, that this is a more aurate statementthan the assumption of ollinearity between the leadinghadron and the fragmenting quark (antiquark) in the aseof single fragmentation, as in most ases a dominant partof the jet's momenta is ontained in the momenta of theleading hadrons.With these new variables we an evaluate the innerprodut of the leptoni tensor and the hard part of thehadroni tensor,L��H�� = 4Q4(1 + os2 �m) (34)

and obtain the double di�erential ross setion asd�dz1dz2 = �(1� z1 � z2)Xq e4e2qN2s Z dp1dp2(2�)54p1p2d os �md�mdq?d�? q?4 (p1 + p2)2� z2QÆ+ �ph � zQ2 � p+hz1z2 Æ�p+1z1 � p+2z2 � z2� (1 + os2 �m) Z d4p(2�)4 Æ�z � p+hp+�� �T�q(p; p1; p2) + Tq(p; p1; p2)�: (35)Assuming that the overlap matries, T�q(p; p1; p2) andTq(p; p1; p2), are independent of the angles, �m, �m and�?, one an arry out the integrations over these vari-ables. It may one again be stipulated that the followingfatorization is being performed and expeted to sueedonly at high energies and momenta (large Q2 limit). Inthis limit we notep+ ' p �1�O�q2?p2 �� :Hene, in the ollinear limit p; p+ >> q?, one may sub-stitute p! p+ in the entire integrand. Regardless of thepresene of Æ funtions it may be demonstrated that theorretion to this approximation is suppressed by at leasta power of Q2. The two remaining Æ�funtions externalto the d4p integration, i.e.Æ+�p1 + p2 � zQ2 � Æ�p+1z1 � p+2z2 � ;may be used to evaluate the p1 and p2 integrals. Fator-ing out the LO total e+e�annihilation ross setion �q�q0 ,we obtain the fatorized double di�erential ross setionin a form similar to the struture of Eq. (3) as,d�dz1dz2 = Xq �q�q0 Z q?dq?4(2�)2 z44z1z2 Z d4p(2�)4 (36)� �T�q(p; p1; p2) + Tq(p; p1; p2)�Æ�z � p+hp+� :We thus arrive at the de�nition of the leading orderdouble inlusive fragmentation funtion asDh1;h2q (z1; z2) = Z dq2?8(2�)2 z44z1z2 Z d4p(2�)4 (37)� Tq(p; z1p; z2p)Æ�z � p+hp+� :In ut-vertex notation, the dihadron fragmentation fun-tion may also be expressed by the following equationDh1h2q (z1; z2) = z44z1z2 ~Tq(z1; z2);



11where ~T (z1; z2) is given by the diagram in Fig. 5. Notethat the bare ut-vertex has undergone no hange as om-pared to the single hadron fragmentation funtion, ex-ept it takes as input the sum of the frational momentaz = z1 + z2. The soft hadroni setor is slightly modi�edby the exlusion of two hadroni momenta (instead ofone) and the integration of the transverse momenta q?.
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∫ dq2
⊥

4(2π)2
T̂q(p; p1, p2)FIG. 5: The ut-vertex representation of the dihadron frag-mentation funtion.Note that the de�nition of the dihadron fragmentationfuntions in their fatorized form as in Eq. (3) seemsto depend on our hoie of variable transformation (see.Fig. 4). It may indeed be possible to use a di�erent vari-able transformation and obtain a similar fatorization.The sole onstraint on the hoie of transformation to beused is based on the fatorization of the NLO expressionsinto a form similar to that of Eq. (5), with the same def-inition of the double fragmentation funtions. We willdemonstrate this in the next setion. A seond motiva-tion for this hoie of variables is the ability to isolatethe transverse momentum q?, whih is integrated over.In the operator de�nition of the dihadron fragmentationfuntions, q? is generated non-perturbatively. So we willall it intrinsi. The upper limit of integration of thisintrinsi q? has not been spei�ed in Eq. (37). From ourdisussion in the previous setion of the parton modeland of the NLO proesses in the next setion, the up-per limit may be set as �?. We will assume that hadronpairs with the relative transverse momentum q? > �?are generated only perturbatively.

IV. CROSS SECTION AT NLO AND DGLAPEVOLUTIONWith the de�nition of the dihadron fragmentationfuntions in the operator formalism, whih is shown tofatorize from the hard parton ross setion in the LO, weare ready to study the DGLAP evolution of the dihadronfragmentation funtions by omputing the double inlu-sive ross setion at next to leading order (NLO). Thealulation will also justify the fatorized form of Eq.(5) and our LO de�nition of the dihadron fragmentationfuntions.The NLO matrix element of e+e�annihilation proessan be obtained from the perturbative expansion of theS-matrix with an interation Hamiltonian whih inludesan interation potential orresponding to a quark of olorj interating with an antiquark of olor i (or visa versa)and a gluon of olor a:Hs = igtai;j � i� jAa� : (38)The tai;j's represent the Gell-Mann matries.The DGLAP evolution arises from ollinear gluonbremstrahlung in the �nal state of two jet events. Asin the ase at LO in the previous setion, we an againneglet the interferene between the two jets in eitherthe partoni or the hadroni level in the leading log andleading twist approximation. Therefore, the sum overall hadroni states is deomposed into the sum over twoomplete sets of hadroni states, eah overlapping withone of the opposite-moving jets. Invoking the parton-hadron duality, the sum over the hadroni states in the\bak-side" jet an be replaed by a sum over partonistates. Therefore, partoni proesses within the \bak-side" jet will not ontribute to the evolution of the frag-mentation funtion in the opposite side whih has beende�ned within a rather strit ollinear approximation. Asin the ase of single fragmentation funtion, we will alsoassume, in addition, that there is no interferene betweenthe fragmentation of the leading parton and the radiatedgluon that has a minimum transverse momentum set bythe fatorization sale �.Hene, in NLO, the sum over all states may be ex-pressed as jSi = jkq(�q)i � jS � 2;p1p2i: (39)Depending on how di�erent operators are ontratedwith the outgoing hadroni state jS�2i, we may identifythree di�erent ases:jS � 2;p1p2i = jS � 2;p1p2i � j(p� l)gi+ jS � 2;p1p2i � j(p� l)�q(q)i+ jS � 1;p1i � jS � 1;p2i: (40)These ases di�er in the partoni operator that ontratswith the hadroni state. In the above, the parton withmomentum k whih proeeds in a diretion opposite tothat of the identi�ed hadrons alternates between a quark



12and an antiquark. In the rest of this paper, we will al-ways take it as an antiquark in order to fous on the quarkfragmentation funtion. The ase for the antiquark frag-mentation funtion will be formally idential to that ofthe quark.In the following subsetions, we will evaluate ontri-butions from these di�erent ases in detail. Roughlyspeaking, the �rst line of Eq. (40) represents ontribu-tions where the fragmenting quark undergoes a split intoa quark and a gluon and the two identi�ed hadrons em-anate from the quark o�spring. The seond ontributionrepresents the ase where both identi�ed hadrons em-anate from the gluon. The last ontribution representsthe ase where one hadron emanates from eah of thequark and gluon o�spring.A. NLO ontribution from quark fragmentationProeeding with the evaluation of the double di�er-ential ross setion at next-to-leading order, the fousin this subsetion will be on isolating ontributions tothe ross setion that ontain an expliit expression fora dihadron fragmentation funtion of a quark. The out-state in this subsetion will solely be restrited to the�rst line of Eq. (40). The instate is simply that of aninoming e+e�pair. Insertion of the interation operatordensity T [He+e�Hq�qHq�qg℄, followed by a ontrationof the outgoing antiquark operator with the states jk�qiand gluon operator with j(p� l)gi, leads to the followingmatrix element:Mi = iXq eqe2gta�vk2�uk1 g��q2 + i�� hp1p2S � 2j � q(0)j0i(�(� 6q+ 6 l)�(q � l)2 + i�+ �(6q� 6k)�(q � k)2 + i�)vs(k)"�a��(p � l)� (2�)4Æ4(q� k� p� l): (41)In the above equation there are two terms with di�er-ernt momentum dependenes within the urly brakets.The reader will readily note that the seond term is theFeynman rule for the proess indiated in the upper panelof Fig. 6, while the other term onsists of the Feynmandiagram where the gluon is radiated from the antiquarkline, as shown in the lower panel of Fig. 6.In omputing the NLO ross setion, one may oneagain fatorize the ross setion into a leptoni and ahadroni piee [see Eq. (17)℄. Summing over all �nalstates of the outgoing antiquark, gluon and hadrons fromthe fragmenting quark (besides h1 and h2) followed byan inorporation of minor simpli�ations, the hadroni
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FIG. 6: The leading log ontribution to the NLO modi�ationof the quark fragmentation funtion.tensor may be expressed asW�� = Z d3p1d3p2(2�)64E1E2 Z d4l(2�)4 Z d4p(2�)4 (42)� 2�Æ+((p� l)2)2�Æ+((q � p)2)g2NCFd��(p� l)� Tr"(6q� 6p)(� 6p�p2 � i� + �(6 l� 6q)�(l� q)2 � i�)� T̂q(l;p1;p2)(� 6p�p2 + i� + �(6 l� 6q)�(l� q)2 + i�)#:In the above equation the olor fator NCF omes fromthe fator Tr[tatb℄Æab. For brevity, we have omitted in theabove the sum over quark avors weighted with frationalharge, Pq e2q . The sum over polarizations of the gluonleads to the fator d��. In light-one gauge d�� is givenas d��(p� l) = g�� � (p � l)�n� + (p� l)�n�(p� l) � n (43)The overlap matrix element T̂q(l;p1;p2) is the same asde�ned in the previous setion, with the �nal fragmenting



13quark momentum redued to l. The remaining portion ofEq. (42) is also easy to trae. The two Æ funtions essen-tially stipulate that the gluon and antiquark be releasedonshell. The �rst set of terms in the urly brakets repre-sents the proess indiated by upper panel of Fig. 6. Theseond set of terms indiates the ase where the gluon isemitted from the outgoing antiquark, with all other fea-tures remaining unhanged, e.g., the fragmenting quarkhas momentum l, the gluon still has a momentumof p�l.Within the ollinear approximation, we again assumethat l+; p+h >> l�; p�h ; l?; q?. As a result, the overlapmatrix element may be fatorized via the following ap-proximation:T̂q(l;p1;p2) = Z d4xeil�xXS�2� h0j q(x)jp1;p2; S � 2ihp1;p2; S � 2j q(0)j0i' 6ph2 Tq(l;p1;p2): (44)Within the ollinear approximation, we assume that themomentum of the �nal fragmenting quark is ollinearwith that of the hadrons emerging from the parton frag-mentation. We thus de�ne a new frational momentum,z0 = p+h =l+. This allows the partoni four-momentumvetor l to be replaed with the hadroni four-vetor:i.e. l = ph=z0.As a result the fator (l� q)2 is approximated as:(l� q)2 ' Q2 � 2Ql+ ' Q2 � 2Qp+h =z0: (45)Unlike the ase of the LO proess, the transverse mo-mentum of the quark whih emanates from the eletro-magneti vertex is non-vanishing, p? 6= 0 (this is also thetransverse momentumarried by the gluon). As a result,the negative longitudinal momentum p� is onstrainedby one of the Æ+ funtions as,(p� ph=z0)2 ' 2p+p� � p2? � 2p�p+h =z0 = 0) p� = p2?2(p+ � p+h =z0) : (46)The hadron frational forward light-one momentumisstill de�ned as z = p+h =p+ as in the LO ase. At leadingtwist one may replae all ourenes of ph with z0l. Theorretions to this approximation are down by powersof Q2. Inorporating the above approximations into the

expression for the hadroni tensor, we obtain:W�� = Z dz1dz2dz0 Z d3p1d3p2(2�)64E1E2 Z d4p(2�)4 (47)� g2NCF Æ(z1 � p+1 =p+)Æ(z2 � p+2 =p+)d��(p � l)� 2�Æ+(2p�(p+ � l+)� p2?)2�Æ+(Q2 � 2Qp+)�Tr"(6q� 6p)( � 6p�p2?l+=(p+ � l+) + �(6 l� 6q)�Q2 � 2Ql+ )� 6 lz02 ( � 6p�p2?l+=(p+ � l+) + �(6 l� 6q)�Q2 � 2Ql+ )#l=ph=z0� Z d4l(2�)4 Æ�z0 � p+hl+ �Tq(l;p1;p2):A areful study of Eq. (47) reveals that the leading logontributions are dominated by the region where p? ! 0.As a result, the part of W�� whih represents the squareof the proess in the lower panel of Fig. 6 has no lead-ing log ontribution. The leading log ontribution omesfrom the square of the �rst term orresponding to thesquare of the proess in the upper panel of Fig. 6. In thelight-one gauge, the interferene terms have no ontri-bution at leading log as in the ase of single fragmenta-tion funtions (see hapter 3 of Ref. [18℄). This an bedemonstrated to hold at leading twist merely by om-pleting the trae as indiated in Eq. (47) and extratingthe p2? dependene from the numerators.The remaining fatorization into the hard and softpiee proeeds as in the LO ase, leading to the hadronitensor at NLO at leading log and leading twist,W�� = Z dz1dz2dz0 Z d3p1d3p2(2�)64E1E2 Z d4p(2�)4 (48)� g2NCF Æ(z1 � p+1 =p+)Æ(z2 � p+2 =p+)� 2�Æ+ �p� � p2?2(p+�l+)�2(p+ � l+) 2�Æ+�Q2 � 2Qp+hz �� Tr"d��(p � l)(6q� 6p)� 6p� 6 l(z0=2)� 6p�[p2?l+=(p+ � l+)℄2 #l=ph=z0� Z d4l(2�)4 Æ�z0 � p+hl+ �Tq(l;p1;p2):The trae of the Dira matries an be arried out bybrute fore. The leading-twist part an be obtained ina more straightforward way by rewriting the matrieswithin the trae symbolially as(6q� 6p)�Ĉ� :The leading twist portion of the matrix Ĉ, may be writ-ten as Ĉ = 6ph2 C;



14with the fator C expressed as a trae:C = Tr"d�� +2p+h 6pp2� 6 lz02 � 6pp2#l=ph=z0 ; (49)where p2 = p2?l+=(p+ � l+). This proedure is very sim-ilar to the one used to onstrut the ollinear approx-imation to the overlap matries T̂q(p; p1; p2). One anomplete the above trae and obtain the regular splittingfuntion (1 + y2)=(1 � y), where y = z0=z. It representsthe probability for the radiation of a gluon from a quarkprior to its fragmentation.Using the above approximation one may extrat thesame hard part as in Eq. (29),H0�� = Tr"(6q� 6p)� p�h2 �#Æ((q � ph=z)2)= H��Æ((q � ph=z)2): (50)Extrating this hard part and omparing withEqs. (28,31) and the resulting ut-vertex diagramin Fig. 5 we note that the soft part of Eq. (48) begins todisplay a struture as illustrated in Fig. 7.To omplete the alulation and obtain a fatorizedform of the NLO ontribution to the double inlusiveross setion, the integration over the tranverse momen-tum of the identi�ed hadrons will have to be fatoredinto the fragmentation funtion. Similarly as in the aseof LO alulation, one has to transform the basis of themomentum integrations of the two identi�ed hadrons tothe basis indiated in Fig. 4.In the steps leading to Eq. (48), the approximationthat the momenta of the hadrons and the fragmentingparton are ollinear has been made. Partiular amongthese are the approximations that l+ >> l?,l�. Theseessentially indiate that the invariant mass of the �nalfragmenting quark is negligible ompared to its forwardlight-one momentum. This is idential to the approxi-mation made on the momentum p in the LO alulation(see Fig. 3). Sine the NLO proess has a ollinear di-vergene when p2? ! 0, we will only onsider the leadinglog ontribution.We thus obtain the following fatorized form for thehadroni tensor:W�� = Z dz1dz2 Z dp1dp2(2�)44p1p2 d os �md�md�?� g2NCF Z 1z dyy2 z Z dp+dp�dp2?(2�)4 2�H��Æ((p� l2)� Cp+2Æ(p+1 � z1p+)Æ(p+2 � z2p+) z2y� Z dq2?4(2�)2 Z d4l(2�)4 Æ(z0 � p+hl+ )Tq(l;p1;p2): (51)Further fatorization of H�� from the d4p integrationleads to the fatorized form for the NLO orretion to thedihadron fragmentation funtion as illustrated in Fig. 7 in
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⊥
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δ
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δ
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+p+
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)

p l

lFIG. 7: Next-to-Leading order ut-vertex for quark fragmen-tation and its fatorization.terms of ut verties. Inserting the hadroni tensor intothe expression for the double di�erential ross setionwith minor simpli�ations, we obtain the fatorized NLOontribution to the double inlusive ross setion,d2�dz1dz2 = Xq 4�3 �2e2qNQ2 (52)� �s2� Z Q2�2 dp2?p2? Z 1z dyy2 CF 1 + y21� y(z=y)44(z1=y)(z2=y) Z dq2?8(2�)2 Z d4l(2�)4 Æ�zy � p+hl+ �Tq(l; p1; p2):The last line of the above equation may be easily iden-ti�ed as D(z1=y; z2=y; �2), the dihadron fragmentationfuntions saled up by the momentum fration y, arriedby the quark emanating from the split. Physially thisrepresents the ontribution to the fragmentation fun-tions at a higher order brought about by gluon radiationarrying away with it a momentum fration 1 � y. Byitself this proess displays both an infrared divergene asy ! 1 and a ollinear divergene as p? ! 0. The in-frared divergene will be aneled by the virtual diagramontribution as shown in the next setion. The ollineardivergent part will be ombined with the ollinear diver-



15gent part of gluon fragmentation and absorbed into therenormalized fragmentation funtion.B. NLO ontribution from gluon fragmentationWe now proeed with the ontribution from gluon frag-mentation in the NLO proesses. Essentially the out-going hadroni state is replaed with the seond line ofEq. (40). Insertion of the interation operator densityfollowed by the ontration of the quark and antiquarkoperator with the out-going states jk�qi and j(p � l)qi ,leads to the following matrix element:Mii = iXq eqe2gta�vk2�uk1 g��q2 + i� (53)� hp1p2S � 2jAa�(0)j0i�ur(p� l)(� 6p�p2 + i�+ �(� 6k� 6 l)(k+ l)2 + i�)vs(k)(2�)4Æ(q� k� p� l):As in the previous subsetion, the approximation ofvery high energies is made, allowing the isolation of theleading twist and leading log ontribution of the orre-sponding hadroni tensor. This is obtained asW�� = Z dp1dp2d os �md�md�?(2�)44p1p2 Z d4p(2�)4 d4l(2�)42�Æ((q � p)2)2�Æ((p� l)2)g2NCF T̂g(l; p1; p2)� d��Tr"(6p� 6 l)� 6 l�l2 + i� (6q� 6p)� 6 l�l2 � i� #; (54)where the gluon overlap matrix element Tg(l; p1; p2) isde�ned asT̂g(l; p1; p2) = Z d4xeil�xXS�2Z dq2?8(2�)2 � h0jAa�(x)jp1; p2; S � 2i� hp1; p2; S � 2jAb�(0)j0iÆabd��16 : (55)A diagrammatial representation of this gluon frag-mentation proess an be illustrated as Fig. 8. The pro-edure leading to the extration of the leading log andleading twist is rather similar to the ase for the singlefragmentation funtion and to the ase of NLO proessof quark fragmentation in the last subsetion. Contrat-ing the hadroni tensor with its leptoni ounterpart weobtain the gluon ontribution to the NLO double di�er-

p1

p2

k

p
l

qFIG. 8: The leading log gluon fragmentation ontribution tothe NLO modi�ation of the quark fragmentation funtion.ential ross setion:d2�dz1dz2 = Xq 4�3 �2e2qNQ2 (56)�s2� Z Q2�2 dp2?p2? Z 1z dyy2CF 1 + (1� y)2y(z=y)32(z1=y)(z2=y) Z dq2?8(2�)2 Z d4l(2�)4�Æ�zy � p+hl+ � T̂g(l; p1; p2):It may ome as no surprise that the above equationmay also be derived from a set of Feynman rules involvingut-verties. The ut-vertex diagrams are illustrated inFig. 9. The rules are indiated in the �gure. As a resultof this omputation we may now present the ut-vertexexpression for the gluon dihadron fragmentation funtion(indiated in the lower right hand orner of Fig. 9):Dg(z1; z2) = z32z1z2 Z dq2?8(2�)2 Z d4l(2�)4� Æ�z � p+hl+ � T̂g(l; p1; p2); (57)where the fator T̂g(l; p1; p2) is given in Eq. (55).
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lFIG. 9: Next-to-Leading order ut-vertex representation ofthe gluon fragmentation ontribution.C. NLO ontribution from quark and gluon singlefragmentationIn the previous subsetions, we have evaluated twoseparate ontributions to the NLO double fragmentationfuntions. In both of these we have assumed that the rel-ative transverse momentum of the two deteted hadronsis intrinsi and is limited by a sale �?. In the de�ni-tion of the dihadron fragmentation funtions, the hadronsare deteted with given frations of forward longitudinalmomentum but the transverse momenta are integratedover. Thus, all allowed transverse momenta between thedeteted hadrons must be inluded. In this paper, wewill assume that all hadron pairs with relative transversemomentum larger than � & �? are generated perturba-tively. In the next-to-leading order, suh hadron pairsan be produed from the independent fragmentation ofthe quark and gluon after their split, as illustrated inFig. 10. Suh a senario has been onsidered in Refs.[13, 14, 15℄ where the double inlusive ross setion withtwo deteted hadrons in e+e�ollisions with a �xed trans-verse momemtum between them was omputed. The au-thors argued that in the ase that the transverse momen-tum lies in a semihard region �QCD << q? << Q, thedominant ontribution to the ross setion omes from

the proess where the fragmenting parton undergoes asemihard split into two independent partons whih thenfragment independently.Under the ondition that q? << Q these hadrons anstill be onsidered to belong to the same jet. Moreover,when �QCD << q?, the higher order ontributions frommultiple gluon vertex orretions to the semihard vertexare non-leading and thus the fragmentation of the twopartons emanating from the split may be onsidered asindependent. In Ref. [15℄, the authors demonstrated thatthe Sudakov double logarithms from the higher order ver-tex orretions are absent in the region �QCD << q?. Inthe interest of ompleteness we will repeat this derivationin a slightly di�erent language in the Appendix.We will evaluate the leading log and leading twist on-tribution in whih the hadron pair omes from the in-dependent fragmentation of the quark and gluon after asemi-hard split. We start again with the matrix elementfor this proess,Miii = iXq e2eqgta g��q2 + i��vk1�uk2� hp1; S1 � 1j � q(0)j0ihp2; S2 � 1jAa�(0)j0i� " �(6q� 6k)�(q � k)2 + i� + � (6pS1� 6q)�(pS1 � q)2 + i��v(k)� (2�)4Æ4(q� pS1 � pS2 � k): (58)The seond term inside the square braket orrespondsto gluon emission from the antiquark in the quark dire-tion and will not ontribute in the leading log approxi-mation. The out-state in this ase is hosen to be thelast line of Eq. (40). In this ase, the sum over all �nalstates of hadrons from the initial quark has been bro-ken into two idential omplete sets. In eah of the sets,S1 and S2, a single hadron will be identi�ed. Unlikein the previous two subsetions, where one of the quarkor gluon operators is ontrated with a partoni state;both the quark and the gluon operators will be ontratedwith hadroni states in this ase. The ross setion on-struted from this matrix element ontains two separatesums over hadroni states; one of whih has an overlapwith a quark state, the other with a gluon state. Thehadroni basis of states moving in the \away-side" jetwill be replaed as before with the sum over all momen-tum states of a single antiquark:XS = d3p1(2�)32E1 d3p2(2�)32E2 d3k(2�)32k XS1�1 XS2�1 : (59)In the last two subsetions, the quark attahed tothe eletromagneti vertex is assigned the momentum p,while the quark or gluon whih materializes from the splitis assigned the momentum l. In this subsetion, the mo-mentum of the fragmenting gluon and quark will be setto be l and p. The quark attahed to the eletromag-neti vertex will thus have a momentum of p + l. This



17osmeti reshu�ing is solely to ease the extration of thesingle fragmentation funtions.
p1

p2

k
p

l

qFIG. 10: The leading log mixed ontribution to the NLOmodi�ation of the quark dihadron fragmentation funtion.Again, we fous on the leading log portion of the ma-trix elements. This essentially restrits our attention tothe square of the matrix element for the proess depitedin Fig. 10. The integrated ross setion for this proessmay be expressed as:�iii = 12sXq Z d4yeiy�le4e2qg2 L��4(q2)2NCF (60)Z d3p1d3p2(2�)64p1p2 d4kd4l(2�)8 Æ+(k2) Z d4xex�(q�l�k�p)eix�pXS1�1 XS2�1Tr" 6k �(6q� 6k)�(q � k)2 � i��h0j q(x)jp1; S1 � 1ihS1 � 1; p1j � q(0)j0i �(6q� 6k)�(q � k)2 + i�#�Æab2 h0jAb�(x)jp2; S2 � 1ihS2 � 1; p2jAa�j0i;where two identities of unity1 = Z d4l Z d4x(2�)4 eil�x;are inserted. As in the preeding subsetions the stan-dard shift of partoni variables is introdued i.e. k !q�p� l and R d4k ! R d4p. The squares of the overlap

matrix elements between the partoni operators  ;Aa�and the hadroni states will result in the single fragmen-tation funtions. Absorbing the integrals over undetetedhadron states and the Fourier integrals, the T̂ matrix el-ements may be written as (see Se. II or Ref. [21℄):[T̂g℄ba�� = Z d4yey�l XS2�1h0jAb�(y)jS2 � 1; p2ihp2; S2 � 1jAa�(0)j0i; (61)whih leads to the de�nition of the gluon fragmentationfuntion at leading twist. The same extration may alsobe performed for the quark overlap matrix operator:[T̂q℄� = Z d4xex�p XS1�1h0j �q (x)jS1 � 1; p1ihp1; S2 � 1j q (0)j0i; (62)whih leads to the de�nition of the quark fragmentationfuntion at leading order. Within the ollinear approx-imation applied to the above two matrix elements, theymay be approximated at leading twist as[T̂g℄ba��(l; p2) ' Æabd��(l)Tg(l; p2); (63)T̂q(p; p1) ' 6p12 Tq(p; p1): (64)With the de�nition of the single fragmentation funtionsand the ollinear approximation, the ross setion for in-dependent fragmentation may be expressed in a simpli-�ed form as�iii = 12sXq e4e2qN4Q4 L��g2CF Z d3p1d3p2(2�)64E1E2Z d4ld4p(2�)8 2�Æ+((q � l� p)2)Tg(l; p2)Tq(p; p1)d��(l)� Tr"(6q� 6 l� 6p)�( 6 l+ 6p(l+ p)2� 6p12 � 6 l+ 6p(l+ p)2)�#: (65)This is the leading log ontribution to the inlusive rosssetion for the prodution of two identi�ed hadrons atnext-to-leading-order where eah hadron emanates fromthe independent fragmentation of a parton. The over-lap matrix elements whih lead to the de�nition of thefragmentation funtions, Tg and Tq have already beenfatored out. This represents a NLO ontribution to thedouble fragmentation of the quark emanating from theeletromagneti vertex.Again, we use a ollinear approximation to isolate theleading twist part of the terms inside the urly brakets:6 l+ 6p(l+ p)2� 6p12 � 6 l+ 6p(l+ p)2d��(l)' 6ph2 Tr" +2p+h 6 l+ 6p(l+ p)2� 6p12 � 6 l+ 6p(l+ p)2 d��(l)#: (66)



18After introduing two momentum frations z01 and z02through a multipliative fator of unity,1 = Z 10 dz01dz02Æ z01 � p+1p+!Æ z02 � p+2l+ !; (67)and a rearrangement of the integrals we have the follow-ing fatorized from of the ross setion at leading twist,�iii = 12sXq e4e2qN4Q4 L��g2CF Z dz01dz02d3p1d3p2(2�)64E1E2�Tr"(6q� 6 l� 6p)� 6ph2 �#2�Æ+((q � l� p)2)�����l=p2=z02p=p1=z01� "d��(l)Tr( +2p+h 6 l+ 6p(l+ p)2� 6p12 � 6 l+ 6p(l+ p)2)#l=p2=z02p=p1=z01� Z d4l(2�)4 Æ z02 � p+2l+ !Tg(l; p2)� Z d4p(2�)4 Æ z01 � p+1p+!Tq(p; p1): (68)It is apparent that the seond line of the above equationorresponds to the hard ross setion of an e+e�pair an-nihilating via a single virtual photon to a q�q pair. Thethird line orresponds to the splitting of the quark intoa quark and gluon. Note the absene of any Æ�funtionmaintaining an on-shell ondition. This indiates thatneither the quark nor gluon is being ut. The fourthand �fth line indiate the independent fragmentation ofthe quark and gluon into hadrons with the identi�ationof a single hadron from eah of these soures. The ut-vertex struture of this proess resembles that of Fig. 11.The trae over the Dira matrix struture of the thirdline may be performed, followed by a ontration of theLorentz indies to obtain:z018(p+1 =z01 + p+2 =z02)4p+h (p1=z01 + p2=z02)2 1 + y21� y ;where the variable y is introdued one again as the in-tegral over a Æ�funtionZ 10 dyÆ y � p+1 =z01p+1 =z01 + p+2 =z02!: (69)One notes that the variable y is essentially the ratio ofthe forward light-one momentum of the o�spring quarkto that of the parent. This leads to the same splittingfuntion as that of a quark splitting to a quark and agluon. We may have hosen y to represent the ratio ofthe energy of the gluon to that of the parent quark. Thiswould have resulted in a splitting funtion similar to that

of the preeding subsetion. Changing the order of inte-gration between the various ratios y; z01; z02, we de�ne thequantities z1 = z01=y and z2 = z02=(1� y). Note that thedouble di�erential ross setion d2�=dz1dz2 involves theratios z1; z2 of the hadroni forward light-one momen-tum to that of the parent quark emanating from the ele-tromagneti vertex. Following this we may again swiththe order of integration,Z 10 dz01 Z 10 dz02 Z 10 dy= Z 10 dy Z 10 dz01 Z 10 dz02= Z 10 dy Z 1=y0 dz1y Z 1=(1�y)0 dz2(1� y)= Z 10 dz1 Z 10 dz2 Z 1�z2z1 dyy(1 � y) : (70)The integration over the hadroni momenta may nowbe subjeted to the same variable transformation asdemonstrated in Fig. 4. Within the ollinear approxi-mation it may be easily demonstrated that(l+ p)2 = q2?p+h 2y(1 � y)4p+1 p+2 z1z2 : (71)The Æ�funtion introdued in Eq. (69) may also be sim-ilarly simpli�ed to obtain,Æ y � p+1 =z01p+1 =z01 + p+2 =z02! = Æ"y(1 � y)p+ + l+  p+2z2 � p+1z1 !#= p+ + l+y(1 � y) Æ p+2z2 � p+1z1 !;(72)where the quantities p+ and l+ are subjeted to theondition of onstraint introdued in Eq. (68). TheÆ�funtion is now similar to the seond Æ�funtion inEq. (35), and may be used to extrat the hard ross se-tion �q�q0 [see Eq. (2)℄.In the last two subsetions, there is an integration overthe transverse momentum of the parent quark emanat-ing from the EM vertex. This integration has a ollineardivergene that must be absorbed into the renormalizedfragmentation funtions. The light-like null vetor n wasalligned in a diretion suh that its three-omponentsremained opposite to those of ph, the sum of the mo-menta of the deteted hadrons. By de�nition n has notransverse omponent. As both hadrons originated fromthe same parton, the preeding ondition along with theassumption of ollinearity of the �nal hadrons with thefragmenting parton, onstrained the transverse ompo-nent of the fragmenting parton to be near vanishing. Inthis ase we have again hosen the three omponents of n
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)
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p l

p1

p2FIG. 11: Next-to-Leading order ut-vertex representation ofthe mixed ontribution.to be opposite to those of ph. However, the two detetedhadrons in this subsetion emerge from two di�erent par-tons whih ome from a split of the parent quark. As aresult, whereas both fragmenting partons have a trans-verse omponent (l?; p?) proportional to the transverseomponent of the deteted hadrons q?, the parent quarkis restrited to near vanishing values of a transverse om-ponent. In onformity with the previous subsetions andwith the DGLAP evolution of the single fragmentationfuntion, the integration over a transverse omponentwill remain that of a partoni momentum. The hadronitransverse omponent q? may be trivially related to itspartoni ounterpart thus:q? = 2l? z1z2y(1 � y)(z1 + z2) : (73)With these approximations, it may be easily demon-strated that the double di�erential ross setion of inde-pendent fragmentation assumes the form as skethed in

the onluding lines of Eq. (5), i.e.,d2�iiidz1dz2 = Xq �q�q0 �s2� Z dl2?l2? Z 1�z2z1 dyy(1 � y)CF 1 + y21� y Dq �z1y �Dg � z21� y� : (74)Where Dq and Dg are the single fragmentation funtionsof a quark and a gluon [8℄ (see also Set. II).The areful reader will have noted that the order ofintegration between y and l? has been swithed; whereasfromEq. (73) we see that if q? is independent of y then l?is a funtion of y. There are two ways to resolve this. Wemay asribe a multipliative y dependene to the max-imum value of q?. Indeed this would be an arti�ialdependene, and would physially mean the inlusion ofan extra piee of phase spae in the l? integration. Anysuh multipliative fator would have no inuene on theDGLAP evolution equations as these would involve a dif-ferentiation with respet to Q2 i.e.��Q2 Z Æ2Q2 dl2?l2? = ��Q2 Z Q2 dl2?l2? : (75)Yet another approah may be to view the order of inte-grals in Eq. (74) as merely symboli, the di�erentiationwith respet to Q2 leads to the same evolution equations.There remains one last ontribution to the inlusiveross setion for the prodution of two hadrons from aparent quark: this is obtained trivially by swithing z1and z2 in Eq. (74), i.e. the hadron with momentum fra-tion z1 originates from the fragmentation of the gluonrather than the quark. With the addition of the abovementioned ontribution, we omplete the disussion ofthe real radiative orretions to the inlusive ross setionof same-side dihadron prodution. The ontributions dis-ussed in this subsetion possess no infrared divergeneas the y integration is terminated at 1�z2 or 1�z1, on-trary to dihadron fragmentation from the single quarkwhose infrared divergene is anelled by the virtual or-retion.V. RENORMALIZED FRAGMENTATIONFUNCTIONS AND DGLAP EVOLUTIONSo far we have alulated the real radiative orretionsto the dihadron fragmentation funtions. One notiesthat the ontribution from quark fragmentation after agluon radiation in Eq. (52) ontains an infrared diver-gene. Suh an infrared divergene will be aneled byvirtual ontributions from interferene diagrams suh asthose of Fig. 12. It is well known that in gauge theo-ries, in light-one gauge, the leading log ontribution isontained solely within the self-energy diagram and notshared between the self-energy and the vertex orretion,



20as is the ase in the Feynman gauge[8℄. The hadronitensor for suh a virtual orretion isW�� = XS�2 Z d3p1d3p2(2�)64E1E2 d4p(2�)4 2�Æ((q � p)2)�Tr"bTq(p; p1; p2)f�i�(p)g i6p�(6q� 6p)�#; (76)where, �i�(p) respresents the one-loop quark self-energyof a quark with four-momentum p.
p1

p2

l

q

kFIG. 12: The leading log self-energy ontribution to the NLOmodi�ation of the quark fragmentation funtion.The hadroni tensor may again be fatorized at lead-ing twist following muh the same proedure as those ofthe last setion. There remains the integration over theinternal gluon momentum l. The leading behaviour ofthis integral, as in the ase of single fragmentation, inthe part of phase spae that inludes a pinh singularityon the l� ontour, and endpoint singularities on the l?and l+ ontours. The pinh singlularity may our onlyin the region where0 < l+ < p+ and 0 < l2? < p2 � Q2:The derivation of the leading behaviour, whih mostlymirrors the alulation for single fragmentation fun-tions, will not be presented in full detail here. We referthe reader to Ref. [24℄, for details. The �nal result of theself-energy orretion to the partial double di�erential

ross setion isd2�dz1dz2 = �Xq �q�q0 �s2� Z Q2 dl2?l2?� Z 10 1 + y21� y Dh1h2q (z1; z2): (77)Note that the transverse integration is over l? and notthe parent quark momenta. The variable y is de�ned asy = l+=p+. The overall negative sign should not be aause for alarm, as this is only a part of the total rosssetion. Combining the above equation with Eq. (52)leads to the anellation of the infrared singularity asy ! 1. One an e�etively ombine the virtual and realorretions with a \+"-funtion,Pq!qg(y) = Cf� 1 + y2(1� y)�+= Cf� 1 + y2(1� y)+ + 32Æ(1� y)�; (78)where the \+"-funtion is de�ned asZ 10 dy F (y)(1� y)+ � Z 10 dyF (y) � F (1)1� y (79)with F (y) being any funtion that is suÆiently smoothat y = 1.In the remaining, we will fous on the non-singlet (NS)fragmentation funtions for simpliity. In this ase, theontribution from dihadron gluon fragmentation dropsout. Summing all three types of ontributions from thelast setion, we obtain the NLO ontribution to the NSdihadron fragmentation funtion,Dh1 ;h2NS (z1; z2; Q2) = Dh1;h2NS (z1; z2)+ �s2� Z Q2 dp2?p2? Z 1z dyy2 CF 1 + y21� y !+Dh1 ;h2NS (z1y ; z2y )+ �s2� Z Q2 dl2?l2? Z 1�z2z1 dyy(1 � y)� CF 1 + y21� y Dh1NS �z1y �Dh2g � z21� y� ; (80)where the leading order fragmentation funtions are de-�ned as matrix elements of �eld operators in Eq. (37)and (18). This has exatly the same struture as we haveoutlined in the parton model in Eq. (7). Therefore, thede�nition of renormalized fragmentation funtions andthe derivation of the DGLAP evolution an be similarlyapplied here.The renormalized dihadron fragmentation funtion isde�ned as



21Dh1 ;h2NS (z1; z2; �2) � Dh1 ;h2NS (z1; z2)+ �s2� Z �2 dp2?p2? Pq!qg �Dh1h2NS+ �s2� Z �2 dl2?l2? P̂q!qg���Dh1NSDh2g �; (81)We point out, one again, that the sale � at whih therenormalized funtions are de�ned is hosen above thesemihard sale �?. At this sale, orretions to the renor-malized quantities may be evaluated perturbatively. Interms of the renormalized dihadron fragmentation fun-tion, the dihadron fragmentation funtion at NLO anbe expressed asDh1 ;h2NS (z1; z2; Q2) � Dh1 ;h2NS (z1; z2; �2)+ �s2� log(Q2�2 )Pq!qg �Dh1h2NS (�2)+�s2� log(Q2�2 )P̂q!qg���Dh1NS (�2)Dh2g (�2)�; (82)where we have also used the renormalized form of thesingle fragmentation funtions.Note that we have introdued a minimum limit to thesale � & �? in the de�nition of the renormalized di-hadron fragmentation funtion. If one insisted in hoos-ing � < �?, then the ontribution from independentquark and gluon fragmentation after a semi-hard splitwould have to be fatorized o� at the sale �?. In otherwords the minimum of the seond logarithm in Eq. (82)would be set at �2? and would only ontribute in theevent that Q2 is hosen greater than �2?. In this way,we have assumed that only hadron pairs with relativetransverse momentum q? > �? are generated pertur-batively from independent fragmentation of two sepa-rate partons in the proess of a perturbative asade.For two partons whose relative transverse momentum issmaller than �?, nonperturbative proesses beome im-portant and their fragmentation annot be independentanymore. We inlude this part, whih also ontains aollinear divergene, in the renormalized dihadron frag-mentation funtion. This non-perturbative sale an alsobe onsidered as the intrinsi relative transverse momen-tum of the dihadron fragmentation funtion and it shouldset the limit of the integration over q? in the matrix el-ement de�nition of the dihadron fragmentation funtionin Eq. (37). If one wants to onsider the unintegrated(over q?) dihadron fragmentation funtion, �? ould setthe initial ondition for the q? distribution and an beused to study the evolution equation of the angular dis-tribution inside a jet. For now, this sale will only set alimit of the physial sale Q2 >> �2 > �2? >> �2QCD forthe DGLAP evolution and will not enter the equation. Inthe ensuing alulation of the evolution of the fragmenta-tion funtions we will not enter into suh subtleties andalways hose the starting sale � & �?.

To inlude the entire leading log modi�ation, ontri-butions from all the diagrams outlined in Fig. 1 haveto be resummed into the sale dependent fragmentationfuntions. These are then di�erentiated to obtain theevolution equation whih is given exatly as in Eq. (15)for NS dihadron fragmentation funtion.VI. NUMERICAL RESULTS OF NON-SINGLETEVOLUTION

FIG. 13: Results of the evolution of the non-singlet quarkdihadron fragmention funtion Dh1h2q (z1; z2), where z1 = 2z2,from Q2 = 2GeV2 to 109GeV2. See text for details.In this setion we will study numerially the DGLAPevolution of the non-singlet dihadron fragmentation. Asin many other ases of DGLAP evolution, the solutionsrequire an initial ondition of the fragmentation funtionsat an initial sale. Suh initial onditions, as in the aseof single fragmentation funtions, are non-perturbativeand are usually onstruted from the experimental mea-surement of the single inlusive di�erential ross setiond�=dz, aording to Eq. (1) at LO. The evolution of thefragmentation funtions with the energy sale of the rea-tion an then be alulated from the DGLAP equations.The absene of any experimental data for two partileorrelation in e+e�annihilation fores us to formulate anansatz of the initial ondition. We simply use it as a toymodel to illustrate the DGLAP evolution of the dihadronfragmentation funtions. We take the LO produt of two
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FIG. 14: Same as Fig. 13 exept z1 = 3z2.single fragmentation funtions as the initial ondition forthe evolution of the fragmentation funtion, i.e.,Dh1h2q (z1; z2; �2) = Dh1q (z1; �2)Dh2q (z2; �2)� �(1 � z1 � z2): (83)We set the initial ondition at Q2 = 2GeV2. This or-responds to logQ2 = 0:693. While it may be argued thatthe initial energy is somewhat low for the appliabilityof pQCD in e+e�annihilation, we onsider it as just thesale of the momentum transfer while the atual jet en-ergy ould be suÆiently high. The di�erential equationorresponding to Eq. (15) is then solved by the simplemethods of a seond order Runge-Kutta numerial esti-mation. Results are presented in Figs. 13-20 at intervalsof � logQ2 = 1:0 The initial ondition is represented bythe solid blak line in all plots. We stop the evolution atlogQ2 = 4:693, whih orresponds to Q2 ' 109GeV2.We present results where the leading partile possessesa multiple of the momentum fration of the next-to-leading partile. We begin with plots of just the evo-lution of the non-singlet dihadron fragmentation fun-tion at z1 = 2z2 in Fig. 13 and z1 = 3z2 in Fig. 14. Inthese and all other plots the results are always presentedas a funtion of z2. The results of the evolution are notqualitatively di�erent from those of the single fragmenta-tion funtion. Sine the sum of the momentum frationsare onstrained to unity i.e. z1 + z2 � 1, we �nd that

FIG. 15: Results of the ratio of the non-singlet quark dihadronfragmention funtion Dh1h2q (z1; z2;Q2) to the single leadingfragmentation funtion Dh1q (z1;Q2). In this ase z1 = 2z2and Q2 = 2GeV2 to 109GeV2. See text for details.the fragmentation funtions terminate at z2 = 1=(1 + r)as appropriate. The intial ondition, whih is merelythe produt of two single fragmentation funtions and isnot subjeted to this onstraint, does not show this be-haviour. It is imposed by hand, in the initial ondition,that they vanish at and above this value.In experiments, one an �rst identify a hadron as theleading hadron inside a jet and use it as a trigger withgiven momentum z1. Then, the assoiated or the \next-leading" hadron distribution inside the same jet orre-sponds to the ratio of dihadron and single hadron frag-mentation funtions, Dh1;h2 (z1; z2)=Dh1 (z1). We presentresults for this ratio at z1 = 2z2 in Fig. 15, at z1 = 3z2in Fig. 16 and in the extreme ases of z1 = z2 in Fig. 17and z1 = 4z2 in Fig. 18. It should be pointed out thatthe y-axis in all these plots is linear and not logarithmi.Thus, one onludes that the ratio demonstrates littlequalitative hange for a variation of Q2 by almost twoorders of magnitude. In making suh an observation, onemust ignore the di�erene between the solid line (initialondition) and the remaining lines (evolved funtions) es-peially at large z2. This is due to the fat that the initialondition is not subjeted to the kinemati onstraint asz2 ! 1=(1 + r). However, the four plots are visuallyquite di�erent from eah other: the ratios of the evolvedfuntions display a steady drop as ompared to the ini-
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FIG. 16: Same as Fig. 15 exept z1 = 3z2.tial ondition as we progress from z1 = z2 to z1 = 4z2.The reader will also note that the maximumof the y-axisdrops with inreasing r.As the energy of the e+e�annihilation is raised themultipliity must also inrease. The ause for this isnothing other than the exess energy available for par-tile prodution. Following the physial piture of frag-mentation proposed in Ref. [22℄, one notes that at higherenergies it beomes more probable that the two hadronsemanate from two ausally disonneted setors of thefragmenting jet. If this were the ase, then at veryhigh energies, the ratio of the double fragmentation fun-tion to the produt of the single fragmentation funtions(Dh1h2q (z1; z2; Q2)=Dh1q (z1; Q2)Dh1q (z2; Q2)) should reahunity, espeially for small values of z1, z2. This has notturned out to be the ase as evidened by the plots of thisratio in Fig. 19 for z1 = 2z2 and in Fig. 20 for z1 = 3z2.In these plots the ratio deviates from unity at small mo-mentum frations. Whether this is a faet of the hoieof our initial onditions is as yet unlear.VII. DISCUSSIONS AND CONCLUSIONSIn this paper, we have studied dihadron fragmentationfuntions within the framework of ollinear fatorizationin the high-energy e+e� annihilation proesses, startingwith the operator de�nition. Using the ut-vertex teh-

FIG. 17: Same as Fig. 15 exept z1 = z2.nique, we also derived the DGLAP evolution equation forthe non-singlet dihadron quark fragmentation funtion.We solved the DGLAP evolution equation numerially,with a simple ansatz for the initial ondition.Both the de�nition in operator formalism and the re-sultant DGLAP evolution equations for the dihadronfragmentation funtions have remarkable similarities tothe single fragmentation funtions. The �rst type of on-tribution to the evolution equations, that from gluon ra-diation before the fragmentation of the o�spring quark(or gluon) into a pair of hadrons, is very similar to theorresponding proess in single fragmentation funtions.The seond type, unique to the dihadron fragmentationfuntions, omes from independent fragmentation of thetwo o�spring partons into two single hadrons of the ob-served pair. Sine this piee represents the inoherentfragmentation of the quark and the gluon, it is well de-�ned only when the transverse momentum between thedeteted hadrons is large.The relative transverse momentum between the twohadrons is integrated over in the de�nition of the di-hadron fragmentation funtion. Hene, we have assumedthat its non-perturbative ontribution, whih resides inthe operator de�nition, is restrited to an intrinsi trans-verse momentum sale, q? < �?. Hadron pairs withq? > �? are assumed to be generated only perturba-tively. For this assumption to be justi�ed, the semihardsale �? is hosen to be muh larger than �QCD. One has
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FIG. 18: Same as Fig. 15 exept z1 = 4z2.then to assume that the energy sales of the proesses inquestion i.e. Q2 be muh larger than the semihard sale�?, suh that a hierarhy of sales, �2QCD << �2? <<Q2, is satis�ed.This study is motivated by the observation [4℄ that thesame side orrelations of two high pT hadrons in entralAu + Au ollisions remain approximately unhanged asompared with that in p+p and d+Au ollisions. Spei�-ally in this experiment, one measures the distribution, inazimuthal angle, of the seondary (or assoiated) hadron1Ntrig dNd� with respet to the triggered high pT hadron.Negleting the di�erenes in prodution ross setion andfragmentation funtions for di�erent parton speies, theintegrated yield of the orrelation around the peak at� = 0 should be the ratio of dihadron and single hadronfragmentation funtions, Dh1h2a (z1; z2; Q2)=Dh1a (z1; Q2),with z1 and z2 being the momentum frations of thetriggered hadron and assoiated hadrons, respetively.To understand the observation in the framework of jetquenhing, one has to study the medium modi�ationto a dihadron fragmentation funtion due to parton en-ergy loss. Sine it has been shown in the ase of singlefragmentation funtions that medium modi�ation dueto multiple sattering and indued gluon radiation loselyresemble that of radiative orretions due to evolution invauum [17℄, the DGLAP evolution is expeted to yieldlues regarding the mediummodi�ation of the dihadronfragmentation funtions.

FIG. 19: Results of the ratio of the non-singlet quark di-hadron fragmention funtion Dh1h2q (z1; z2;Q2) to the produtof the single fragmentation funtions Dh1q (z1;Q2)Dh1q (z2;Q2).In this ase z1 = 2z2 and Q2 = 2GeV2 to 109GeV2. See textfor details.Our numerial results indeed show little hange of theratio Dh1h2q (z1; z2; Q2)=Dh1q (z1; Q2) as Q2 is varied ina wide range of values. The evolution is shown to bestrongly dependent, however, on the ratio of the momen-tum frations of the two hadrons (r = z1=z2). In theresults of Ref. [4℄ the ratio r = z1=z2 is essentially inte-grated over all values � 1. In order to relate to the resultsin this paper one essentially must average the e�ets ofevolution shown in Figs. (15-18). One will immediatelynote that summing over di�erent values of the ratio z1=z2will lead to the observation of minimal hange in the ra-tio of the fragmentation funtions as a funtion of the Q2of the reation.No doubt, this study is but the �rst step in this ef-fort. In the interest of simpliity, results for the om-putationally simpler non-singlet fragmentation funtionswere presented. The results for the evolution of the morephysially relavant singlet fragmentation funtions willbe presented in a future e�ort. The DGLAP evolutionequations for suh funtions will involve, in addition, thesplitting of one gluon to two gluons and the oupled dif-ferential equations.In the above, we have demonstrated the fatorizationof the double di�erential ross setion into a LO hard partand a soft piee whih enoded the nonperturbative infor-
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FIG. 20: Same as Fig. 19 exept z1 = 3z2mation of onverting partons into hadrons. A ompleteproof of fatorization requires the extension of the alu-lation to all orders. There also remains the evaluation ofthe mediummodi�ations to the dihadron fragmentationfuntions. We will address eah of these issues, in turn,in future publiations.AknowledgmentsThe authors wish to thank V. Koh, J. Qiu and G.Sterman for helpful disussions. This work was sup-ported in part by the Natural Sienes and EngineeringResearh Counil of Canada, and in part by the Dire-tor, OÆe of Siene, OÆe of High Energy and NulearPhysis, Division of Nulear Physis, and by the OÆeof Basi Energy Sienes, Division of Nulear Sienes,of the U.S. Department of Energy under Contrat No.DE-AC03-76SF00098.APPENDIX A: SUDAKOV DOUBLELOGARITHMS IN LIGHT-CONE GAUGEIn Subset.  of Set. IV we argued that one of theNLO ontributions to the dihadron fragmentation fun-tions would result from the onvolution of two single frag-mentation funtions. The justi�ation for the inlusion

of this proess rests on the assumption that the higherorder diagrams that have gluon lines onneting the out-going quark and gluon an be ignored in a leading loganalysis. The simplest higher order orretion of thistype emanates from the presene of a single gluon lineonneting the outgoing quark and gluon as illustratedin Fig. 21.The presene of a Sudakov double logarithm in this di-agram signals a leading log ontribution to the infraredand ollinear divergenes of diagrams of the same order.Suh a ontribution will all into question our derivationof the seond piee of the evolution equation [Eq. (74)℄.Derivation of this piee of the evolution equations re-quired the identi�ation of the leading log ontributionsfrom infrared and ollinear divergenes followed by fa-torization and a resummation of these into the singlefragmention funtions. Suh a proedure may only bearried out if the leading log portions in higher order di-agrams are ontained solely in the selfenergy orretionsof the outgoing gluon and quark lines and in real gluon orquark emmissions o� these lines. A leading log ontribu-tion from the infrared or ollinear setor of the diagramof Fig. 21 will all this proedure into question. In thisappendix, we demonstrate that in the ollinear setor ofthis diagram, evaluated in light-one gauge, the Sudakovdouble log is absent.
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qFIG. 21: A next-to-next-to-leading order orretion.In this endevour we follow the tehniques outlined inRef. [8℄ for the evaluation of the photon vertex. Theleading ontributions from the diagram of Fig. 21 may beevaluated as in [8℄ by the solution of the Landau equa-tions. This leads to the presene of two regions of phasespae where a double logarithm may arise:



26p� + k� = �1k� ; k2 = p � kl� � k� = �2k� ; k2 = p � k (A1)In the above, �1; �2 are mere real numbers. These on-ditions essentially outline the ases where the gluon k�ahieves ollinearity with the outgoing quark with mo-mentum p� or with the outgoing gluon with momentuml�. Either ase produes a double log ontribution in theFeynman gauge.The expression for a quark with momentump+l split-ting into an outgoing onshell quark with momentum pand gluon with momentum l with the splitting vertexorreted by a single gluon with momentum k may beexpressed as�ui(p)�a�i;juj(p+ l)"�a(l) = �ui(p) Z d4k(2�)4 itdg�� i(6p+ 6k)(p+ k)2 + i� itg� id��(l� k)(l+ k)2 + i�gfad� �g��(k � 2l)� + g��(l � 2k)� + g��(k + l)��� id��(k)k2 + i� "a��(l): (A2)It may be argued (see Ref. [8℄), that the double log-arithm behaviour in vertex diagrams originates on theollinear pinh surfaes outlined above in Eq. (A1). Thebehaviour of this above vertex orretion in the regionwhere the internal gluon momentum k beomes ollinearto the the outgoing gluon momentum l will now beanalysed. This orresponds to the seond ondition inEq. (A1). The d4k integration is deomposed into thelight-one variables dk+dk�d2k?. The fous is on thepinh sigularity whih results from the two denominators1k2 + i� ; 1(l� k)2 + i� :The pinh between the two denominators arises in thek� integration solely in the region 0 < k+ < l+. Evalu-ating the pole at k� = k2?=2k+. We obtain a pinh fromthe 1(l� k)2 + i�propagator in the region where ~k? � ~l? = k?l?, i.e. kbeomes ollinear with l. To regulate the ollinear diver-gene we introdue the variables x; Æ~k?:k+ = xl+~k? = x~l? + Æ~k?: (A3)

Evaluating the integrand of Eq. (A2) at the residueof the pole k� = k2?=2k+ followed by the substitutionsoutlined in Eq. (A3) we obtain the split vertex orretionas �ui(p)�a�i;juj(p + l)"�a(l) = Sa Z dxx Z d2Æk?Æk2?� �u(p)� (6p+ x 6 l)p+l+l2?(p+ + l+)2 �u(p+ l)� �� g�� + (1� x)(l�n� + l�n�)(1� x)l �n �� �g��(x� 2)l� + g��(1� 2x)l� + g��(x + 1)l��� d��(l)"a��(l): (A4)In the above equation all fators of olor together withmultipliative onstants have been absorbed into the fa-tor S�. The sum over polarizations of the gluon withmomentum l � k [i.e. the fator d��(l � k)℄ and theexpression for the glue vertex have been simpli�ed. Inthese and in the rest of the numerator, fators of Æ~k?have been negleted, as the fous is on the region whereÆk? ! 0. If the numerator, under this approximation,turned out to be vanishing, then this would indiate theleading ontribution to be proportional to Æk? ! 0 andas a result no double logarithm and no leading ontri-bution from this loop would result. Under the relationsa�orded by the polarizations of the light-one gauge:l� � d�� = 0; l� � "a��(l) = 0;it may be easily demonstrated that a ontration of theLorentz indies �; �; � lead to the numerator of the r.h.s.of Eq. (A4) to beome vanishing. This result is a propertyof the light-one gauge.It may also be demonstrated, following similar meth-ods, that the double logarithm emanating from the re-gion of phase spae where the gluon k� beomes ollinearwith the outgoing quark line is also suppressed due thevanishing of its oeÆient as above. We leave the proofof this property to the reader. The above argumentsdemonstrate the vanishing of the leading ontributionsform higher order orretions to the split vertex. Thisproperty validates our piture of independent fragmen-tation.
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