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Introduction

We introduce a new method for 3D structure generation and 
conformational elaboration that does not rely on distance 
geometry, precalculated molecular templates, or stochastic 
sampling. Rather, it is driven by coupling intuitive physi-
cal molecular movement with the internal conformational 
energy computed from a molecular mechanics force field. 
The method is called “ForceGen” (short for Force Field 
Based Conformational Generation) and is implemented 
using an extension of MMFF94s along with a partial charge 
estimator based on electronegativity-equalization. Here, 
we report the details of the method and results on four 
data sets that span a large variety of drug-like molecules, 
including comprehensive results on nearly 200 macrocyclic 
compounds whose bound structures have been determined 
crystallographically.

Both initial 3D structure generation and conforma-
tional elaboration are centrally important calculations in 
computer-aided drug design. For the former task, programs 
such as CONCORD [1], CORINA [2], and OMEGA [3] are 
widely used. These approaches make use of known optimal 
geometries of molecular fragments (often separately con-
sidered as ring systems, non-ring substituents, and linkers) 
that are used as templates for constructing reasonable, low-
energy 3D models of small molecules. The methods also 
implement fallback strategies for structure generation in 
the case that a molecule contains a novel structure. Such 
approaches can be both very fast (e.g. more than 100 struc-
tures per second) and robust. However, because producing 
a single 3D structure of a flexible molecule is almost invar-
iably followed by conformational elaboration, it is the latter 
process that is both the time and quality bottleneck.

For conformational elaboration, our approach for many 
years had been to do so dynamically, tightly coupled with 
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optimization of the objective function of a docking [4, 5] or 
molecular similarity calculation [6, 7]. Recently, we have 
explored hybrid approaches that blend agnostic conforma-
tional elaboration prior to docking or similarity optimiza-
tion with some degree of local refinement during the pose 
optimization process [8, 9]. Agnostic conformer genera-
tion (independent of any target) can offer advantages both 
in terms of speed and predictive accuracy, but this places a 
premium on the quality of the conformational ensembles.

Quality is typically measured by the fraction of cases 
where a conformational ensemble produces a close match 
by RMSD to a conformation either from small-mole-
cule crystal structures or from protein-ligand complexes. 
Clearly, algorithm speed is a serious practical considera-
tion. For small drug-like molecules, algorithms such as 
OMEGA can produce conformational ensembles with 
times of a few seconds per molecules [3]. Recently, there 
has been increased interest in macrocyclic ligands in terms 
of their tractability by computational approaches [10–13]. 
However, to achieve high quality ensembles for macrocy-
cles, the computational cost can be burdensome. Typical 
per-ligand times of 103–105 seconds of wall-clock time (real 
human-perceived time as opposed to nominal CPU time) 
for the most effective protocols [13] limits their practical 
applicability.

The new methods for 3D structure generation and ring 
elaboration will be presented here at a high level. Specifics 
regarding thresholds, counts, weights, and so forth will be 
presented in the section on Algorithmic Details. The Force-
Gen method for initial 3D structure generation is depicted 
in Fig. 1. ForceGen builds a 3D model structure of a small 
molecule in the following six steps:

1.	 Initial atomic positions Given an input molecule (e.g. 
from a SMILES string), atom chirality and carbon-car-
bon double-bond configurations are noted. Then initial 
atomic positions are assigned recursively, with each 
atom being modeled as a tetrahedron irrespective of 
its hybridization state. Approximate bond lengths are 
used, and connections between different atomic tetra-
hedra are made to be anti rather than gauche. Mole-
cules with rings will have a small number of poor bond 
lengths and geometries. Repeated iterations of initial 
position assignment vary the torsional angle choices 
and the atomic assignment within the individual tetra-
hedra.

2.	 Rough refinement With atomic partial charges assigned 
uniformly to −0.1, a Cartesian minimization is per-
formed using the bond angle, bond length, and electro-
static terms of the force field.

3.	 Tetrahedral chirality Improper torsion terms are added 
to enforce the desired chirality at tetrahedral centers, 
and the structure is refined through minimization.

4.	 Double-bond configuration All torsional terms are 
turned on, and strongly weighted torsional terms are 
added to enforce the desired geometry across double 
bonds, followed by minimization.

5.	 Final refinement The special configurational enforce-
ment terms are discarded, sensible partial charges are 
assigned, and all force field terms are enabled, fol-
lowed by minimization.

6.	 Termination and Iteration The final refined structure is 
checked against the recorded chirality/bond-configura-
tions and against an energy per atom threshold. If both 
tests are successful, the structure is called “correct” 
and the structure counts towards a minimum num-
ber of successes. If the chirality of the structure is not 
correct, the structure is discarded. If the structure has 
lower energy than the current best, the current struc-
ture replaces it. After the minimum number of suc-
cesses are achieved or a maximal number of attempts 
are made, the procedure terminates, returning the best 
structure.

The example shown in Fig.  1 shows a di-substituted 
cyclohexane with two chiral carbons and a trans double-
bond. The initial atomic position assignment is reasonable, 
except for the atoms that close the ring and those that are 
not supposed to be tetrahedral. Initial refinement improves 
the structure, but the chirality of one of the methyl substitu-
ents is incorrect, and the double-bond remains out-of-plane 

Fig. 1   Structure generation from molecular connectivity and chiral-
ity: initial atomic coordinates are produced (top left); minimization 
with bond length, angle, and electrostatic terms (top right); tetrahe-
dral chirality enforcement (bottom left) cis/trans double-bond enforce-
ment (not shown); final refinement with all standard force field terms 
(bottom right)
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(torsional terms and out-of-plane terms have not been 
applied at this stage). The addition of terms to enforce cor-
rect tetrahedral chirality addresses that issue (lower left), 
as does the imposition of torsional constraints to obtain the 
correct configuration of the double bond (not shown). Final 
refinement with sensible partial charges and all normal 
force field terms yields a successful structure (lower right).

Conformer generation is similarly driven by the force 
field. The torsional sampling method within ForceGen is 
not substantially different from other approaches and will 
be described in Computational Methods. However, the 
approach to ring search is novel, both for systems com-
posed of small flexible rings (sizes ranging from five to 
eight) and for macrocycles (here we have explored sizes 
from 9 to 32, with the bulk being from 12 to 23). Figure 2 
illustrates the search method for ring systems composed of 
multiple small flexible rings as seen in tetracycline. The 
central concept is the “bend.” Such bending replicates the 
intuitive physical manipulation of a plastic organic chemis-
try model of cyclohexane to produce chair, twist-boat, and 
boat conformations. The procedure has five steps:

1.	 Identify ring systems   Given a single reasonable 3D 
conformer for a molecule, ring systems are identified 
where all bonds between atoms of the ring system are 
part of rings of size three to eight.

2.	 Identify ring bends For any pair of atoms within a ring 
system, it will be used as a ring bend if the following 
three conditions hold:

(a)	 Not-connected Each ring bend pair must not be 
directly bonded.

(b)	 Non-planarity At least one atom of a ring bend 
pair must be part of a non-planar ring.

(c)	 Bridged or fused rings The pair must not cross a 
bridged ring atom or a ring fusion.

3.	 Identify LHS and RHS sides for bends For each ring 
bend, we identify the “sides” of the bend and arbitrar-
ily call the smaller of the two the right-hand-side. The 
atoms of the ring system form the RHS and LHS sides, 
and their pendant substituents are noted.

4.	 Iterate over bends For each ring bend, we will do the 
following:

(a)	 Make a bend Centroid locations are computed for 
the LHS and RHS ring system atoms. The tor-
sion angle is computed using the RHS centroid, 
the ring bend atom pair as the axis, and the LHS 
centroid as the last position. A rotation around the 
axis is made for the RHS atoms and their pendant 
groups such that the ring is bent opposite to its 
existing configuration (see Fig.  2). Neither the 
LHS atoms/substituents or the axis atoms/substit-
uents are moved.

(b)	 Relax the bend The atoms of the ring system are 
“pinned” using a quadratic positional penalty and 
the conformer is minimized.

(c)	 Finalize the bend The pinned atoms are released, 
and the conformer is minimized again.

(d)	 Check quality and add to ring conformers If the 
resulting conformer has not inverted any specified 
configurations, falls within an energy window of 
the current minimum, and is non-redundant based 
on RMSD of ring system atoms, it is added to a 
growing list of ring conformers.

5.	 Termination and Iteration This process iterates through 
all ring bends repeatedly until either no new ring con-
formers are found or a maximal number of rounds are 
completed.

For tetracycline, ring system identification yields the 
complete fusion of four six-membered rings (each with dif-
ferent saturation patterns). The repeated process of bend-
ing the ring system yields fifteen distinct ring conformers 
within 10.0 kcal/mol of that with the lowest energy. The 
procedure is general, not requiring any precomputation of 
large numbers of specific ring templates, and its pure physi-
cal manipulation is effective on diverse ring systems.

The focus of the current work is on generality and accu-
racy, not on speed optimization. In the current implementa-
tion, for small systems such as cyclohexane, ring elabora-
tion takes on the order of a tenth of a second. For complex 
systems, timing varies depending on the rigidity of the sys-
tem. Steroids such as testosterone take a few seconds, while 
flexible systems such as seen with tetracycline take a few 

Fig. 2   Ring bending for elaboration of ring system flexibility: initial 
3D structure generation produced a reasonable conformer for tetracy-
cline (middle left); ring bends are identified among atoms of a ring 
system according to rules, with an example for cyclohexane shown 
(bottom left); iterative application of the bends identifies new ring 
conformations effectively (middle right)
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tens of seconds. The time required depends entirely on the 
degree of flexibility that each ring system contains.

For macrocyclic systems, the components that are 
composed of small rings are elaborated using the bend-
ing approach just described. For ring systems of size nine 
or larger, ForceGen makes use of an additional physical 
manipulation: a “twist” that is applied to force rotation 
around the bonds within macrocycles. Figure  3 illustrates 
this using cyclodecane as an example. The approach is 
very similar to that described for application of ring bends, 
and the application of macrocycle twists occurs after Step 
4 in the above procedure. Any single bond within a ring 
whose smallest enclosing ring size is nine or greater will be 
twisted. Each such twist consists of the two central bonded 
atoms (e.g. atoms 2 and 3 in Fig.  2 along with the con-
nected ring atoms (atoms 1 and 4). Such bonds are to be 
twisted, as follows:

1.	 Pin the non-moving atoms Atoms 1, 2, and 3 of the tor-
sion are pinned with quadratic positional constraints.

2.	 Rotate the other atom A series of positions for atom 4 
are identified that represent rotations around the 2–3 
axis. For each of these positions, a quadratic position 
constraint is set, and a copy of the parent conformer is 
minimized subject to the pinned positions.

3.	 Finalize the twists The pins are released, and the 
twisted conformers are minimized.

4.	 Repeat with other end The preceding steps are redone, 
but with atom 1 moving instead of atom 4.

5.	 Check quality and add to ring conformers For the 
resulting conformers that have not inverted any speci-
fied configurations, fall within an energy window of 
the current minimum, and are non-redundant based on 
RMSD of ring system atoms, they are added to a grow-
ing list of ring conformers.

Pinning the trio of atoms during each twist holds just a 
part of the macrocycle in place, but it allows the remaining 
atoms to move so as to adapt to the forced rotation of the 
fourth atom. In Fig. 3, only the two closest unpinned carbon 
atoms to Atom 4 move significantly, with the remaining 
atoms reacting very little to the perturbation. This simple 
procedure produces 28 distinct conformations for cyclo-
decane in about ten seconds using default values for con-
former redundancy elimination. For a much more complex 
macrocycle, such as vaniprevir (discussed in detail later), 
a potent inhibitor of the HCV NS3/4A protease (macrocy-
cle ring size of 22 atoms with seven rotatable bonds outside 
the ring system), the entire conformational generation pro-
cess takes a few minutes.

We present results on a standard benchmark of 480 drug-
like small molecules from the Cambridge Crystallographic 
Database (the CSD Set) used for validation of the OMEGA 
method [3, 14], 667 molecules from the MacroModel Con-
fGen validation study [15], 1062 ligands from the PINC 
cross-docking benchmark with deep representation of ten 
pharmaceutically relevant targets (the PINC Set) [9], 182 
macrocyclic ligands from protein-ligand complexes curated 
from the PDB (the Macrocycle Set), and 30 macrocyclic 
ligands that form a commonly used benchmark originally 
reported by Chen and Foloppe (the Foloppe Set) [11].

The focus of this work has been on conformational 
ensemble quality for pharmaceutically relevant small mol-
ecules, and there are a number of opportunities for speed 
optimization without altering the quality of the results 
obtained by the method. Structure generation and con-
former elaboration for the ForceGen method each require 
seconds per molecule for non-macrocyclic drug-like 
ligands. However, for macrocyclic ligands, owing to the 
novel and direct method for ring twisting, conformation 
generation requires on the order of 101–103 seconds for typi-
cal examples.

Direct comparisons with other methods were possible 
for the CSD, ConfGen, and Foloppe Sets. For the CSD Set, 
ForceGen performance was statistically significantly better 
than that reported for the OMEGA method [3], though the 
ForceGen approach may be somewhat slower (by a factor 
of 2–3). For the ConfGen Set, ForceGen was statistically 
significantly better than ConfGen, and it was also substan-
tially faster at equivalent levels of performance (by several 
fold). For the Foloppe Set, ForceGen’s performance was 
statistically indistinguishable from the performance of the 

Fig. 3   Bonds within macrocyclic rings are subjected to twists by 
forcing rotation around each twistable bond using positional con-
straints and minimization. Cyclodecane is shown as an example 
and yielded 28 conformations (top-right), the best one being within 
0.01Å RMSD of the relevant small molecule crystal structure (CSD 
Refcode BATVOH)
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best-reported results, but it is roughly 100-fold faster. On 
a single CPU core, with a single-threaded implementation, 
the average conformational elaboration time for ForceGen 
was 300 wall-clock seconds, with competing methods such 
as Low Mode MD requiring thousands or tens of thousands 
of seconds on single processors.

ForceGen is a general method whose performance rep-
resents a significant advance over existing 3D structure and 
conformer generation approaches, particularly on macrocy-
clic molecules. ForceGen is implemented within the Tools 
module of the Surflex Platform, Version 4.0.

Data, methods, and computational protocols

Where possible, data have been collected that allow for 
fair and direct comparisons between the methods reported 
here and widely used alternatives. This is challenging for 
three reasons: (1) some high-quality data sources prohibit 
redistribution of molecular structural data, necessitating 
re-acquisition; (2) many methodological developers and 
evaluators choose to provide only PDB and ligand HET 
codes, or only PDB codes with no indication of ligand 
identity, necessitating inferences as to ligand bond orders, 
tautomer states, formal charges, and even which ligand 
might be meant; and (3) molecular file format and conver-
sion utilities may introduce noise into the data, most com-
monly by producing incorrect annotations of chiral atoms 
and configurations of double bonds. Every effort has been 
made here to ensure that the curated data fairly represents 
the structural data underpinning other published reports, 
and great care has been taken to remove all memory of 3D 
coordinates prior to generating initial 3D structural models 
and proceeding with conformational elaboration.

Molecular data sets

The results in this work were derived from the data sum-
marized in Table 1. The CSD Set was provided as CCDC 
Reference Codes in the primary validation study of 
OMEGA from Hawkins et al. [3]. These compounds were 
downloaded directly from the Cambridge Structural Data-
base [14] as SYBYL mol2 files; the largest connected 

molecular graph was detected (the first one if multiple of 
maximal size existed) and taken to be the structure of inter-
est; and protons were added automatically as needed (few 
compounds had full explicit hydrogen atoms). Because the 
CSD Set contained explicit bond order information, fidelity 
of results to other reports is expected to be high.

The remaining four data sets were curated directly from 
the RCSB PDB, using an automated process. Given a PDB 
code and a specific HET code, the procedure is as follows:

1.	 The PDB biological assembly is downloaded using 
wget.

2.	 The Surflex-tools grindpdb command is used to heuris-
tically infer components (protein, water, cofactors, and 
ligands), bond orders, and protonation/tautomer states. 
SYBYL mol2 files are produced for all components.

3.	 Quality measurements are calculated:

(a)	 Ligand strain by movement A ligand is mini-
mized under a quadratic positional constraint on 
its heavy atoms. It is retained if RMSD from the 
original coordinates does not exceed 0.55Å. The 
ligand is then freed from positional restraint.

(b)	 Ligand strain by energy The ligand’s pose is opti-
mized in Cartesian space with both the internal 
force field and the Surflex-Dock scoring func-
tion. Its internal energy is calculated and it is then 
minimized outside of the protein. If the difference 
between the (per heavy atom) optimal pose and 
the local minimum does not exceed 0.50 kcal/
mol/atom, it is retained.

(c)	 Structure quality by movement If the RMSD 
between the experimental coordinates and the 
optimal scoring pose from local optimization is 
less than 1.25Å, the ligand is retained.

(d)	 Structure quality by ligand efficiency The optimal 
docking score (nominally in units of pKd) divided 
by the number heavy atoms is at least 0.10 pKd/
atom, the ligand is retained.

(e)	 Structure match to alternate curation Graph 
matching is done between the final ligand and the 
corresponding SMILES-based molecular struc-
ture (and tautomeric variants) from the RCSB 

Table 1   Summary of molecular datasets and their relative complexity

Set name Description N N heavy atoms Rot. bonds N macrocycles Macro. size

CSD set [3] Lead-like 480 23.0 ± 3.9 4.7 ± 1.5 0 0
ConfGen set [15] Drug-like (diverse targets) 667 25.7 ± 8.2 6.1 ± 3.4 0 0
PINC set [9] Drug-like (large) 1062 29.3 ± 10.8 7.6 ± 5.2 22 15.9 ± 2.2

Macrocycle set Diverse macrocycles 182 40.0 ± 11.1 6.7 ± 4.5 182 16.7 ± 4.3

Foloppe set [11] Diverse macrocycles 30 39.6 ± 15.6 6.2 ± 5.1 30 18.2 ± 8.3
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Ligand Expo. If there is a match, the ligand is 
retained.

4.	 In a few cases where a ligand from a reported bench-
mark failed this process, manual adjustment of bond 
orders was done (this was needed for several ligands 
from the Foloppe Set).

For the PINC dataset, the original report made use of 1261 
ligands. Here, with a fully automated workflow, 1062 
ligands emerged passing all quality criteria (84%). In cases 
where ligands automatically parsed from PDB coordinates 
fail to match the curated SMILES structures, one cannot 
assume that either structure is correct. In such cases, we 
have observed: that the grindpdb procedure yields a ligand 
structure that matches the published report; that the PDB 
curated SMILES (or SDF) structure matches the report; 
or that neither the grindpdb ligand nor the PDB curated 
structure matches the report. Further, in all cases where 
the independent structural inference from the Surflex-Tools 
grindpdb command agrees with the PDB curated SMILES 
structure, such ligand structures appear correct.

For the ConfGen set, the original publication listed 667 
PDB codes (with no indication of ligand HET names) in 
supplementary material [15]. Using the automated proce-
dure just described, the PDB structures were processed. 
After eliminating ligands that failed quality criteria, dupli-
cate ligands from individual structures were removed. 
Cases where multiple ligands were still present were 
manually checked against the PDB monographs to iden-
tify the ligand of interest (typically this involved select-
ing an inhibitor rather than some type of cofactor). Cases 
where a single ligand was present were manually checked 
to ensure that the ligand was the compound under study, 
and cases where this was not true were discarded. This pro-
cess resulted in 520 ligands from the original full set of 667 
(79%). The remaining 147 ligands were manually curated 
in order to ensure that the correct structures were used. In 
all but a single case, the small molecule SDF files were 
used unmodified. The single case requiring adjustment was 
PDB Code 1QBV, where the coordinates for a single car-
bon of a phenyl ring were clearly wrong (they were on top 
of the carbon para to the correct position and the problem 
was fixed manually).

For the Macrocycle Set, the entire set of roughly 
25,000 SMILES strings associated with different ligands 
in the PDB were analyzed. Those that were possible to 
parse, for which force field parameters were assignable, 
and where bonds existed for which the smallest enclosing 
ring size was nine or greater were identified. The PDB 
codes for that set were extracted, and these were sub-
jected to the procedure described above. Those ligands 
with 60 or fewer heavy atoms which passed all quality 

tests formed a large set with substantial redundancy. For 
each protein structure, the surviving macrocyclic exem-
plar with the highest ligand efficiency was retained. In 
cases where a single HET code was represented in more 
than one protein structure, at most five examples were 
retained (again based on ligand efficiency). There were 3 
ligands with 5 exemplars each, 1 with 4, 8 with 3, 13 with 
2, and 113 represented as singletons.

Overall, there were 138 unique macrocyclic ligands. 
Multiple examples of ligands were included for two rea-
sons. First, ligands from different protein structures often 
exhibit different conformations. Second, the algorithms we 
report here may be dependent on atom order: the sequence 
of bends and twists that are made can vary depending on 
atom ordering. Therefore, it seemed wise to consider the 
effect of differences in input even in cases where the bioac-
tive conformations might be quite similar. We believe this 
to be the largest set of macrocyclic ligands curated for the 
purpose of assessing 3D structure and conformer genera-
tion. While there are sure to be additional macrocycles of 
60 or fewer heavy atoms of high quality in the PDB, we 
believe that this set is both diverse and large enough to 
begin to tease apart statistically significant differences 
between the performance of different methods.

The Macrocycle Set contained 14 of the 30 molecules 
from the Foloppe Set, the remainder of which were curated 
as just described, but several ligands required careful man-
ual correction of bond orders.

In all cases, the coordinates of non-hydrogen atoms were 
not changed in building the reference ligand poses. In order 
to assess either 3D structure generation or conformer gen-
eration, we believe that it is important to fully erase any 
memory of the target coordinates. Here, we have taken two 
approaches. For all five data sets, we used a procedure to 
mark tetrahedral chirality and carbon-carbon double-bond 
configurations and then zeroed all coordinates. This com-
putational molecular construct consists only of atomic 
elements, bond connectivity, formal charges, and the two 
types of configurational notations. It contains the same 
information as an isomeric SMILES representation. For the 
CSD Set, in addition, we repeated our experiments using 
isomeric SMILES as input.

Algorithmic details

There were four major additions to the Surflex Platform for 
the work reported here: a more sophisticated force field, a 
partial charge assignment method, a method for 3D struc-
ture generation, and a novel ring search method. They are 
detailed as follows, along with a brief description of the 
torsional sampling approach, which has not been substan-
tially altered.
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Force field: MMFF94sf

Our variant of MMFF94 and MMFF94s [16–21] is called 
“MMFF94sf.” The implementation began directly with 
MMFF94 (including analytical gradients), followed by 
the parameter changes introduced in MMFF94s [21] that 
increased the planarity of unstrained delocalized trigo-
nal nitrogen centers. Extensive validation was conducted 
against the two available suites of small molecules with 
assigned atom types, energetic term values, and total 
energies.

The validation tests were done using a dielectric value 
of 1.0 and the partial charges given. We can technically call 
our implementation of MMFF94s a “partial” one, because 
on fewer that 3% of the molecules in the validation suite, 
our atom type assignments differ slightly. These differ-
ences typically occur in the treatment of nitrogen atoms 
where there are multiple logical assignments for the atom 
types, generally in aromatic or conjugated systems that also 
include a formally charged nitrogen. The differences were 
very small in terms of the locations of the minima between 
our implementation and a fully compliant one (hundredths 
of Angstroms).

Of more significance, we have further modified the 
force field to increase the planarity of unstrained delocal-
ized trigonal nitrogen centers. For each out-of-plane term 
within MMFF94s that differed from one in MMFF94, we 
multiplicatively alter the force constant by a fixed value, 
whose default is 6.67. Changing this value to 1.0 brings 
the parameters back to those in MMFF94s. No adjustments 
were made to the torsional terms of MMFF94s.

We call our variant force field MMFF94sf to distinguish 
it from other variants. In all of the work reported here, we 
used a dielectric constant of 80.0 to match aqueous condi-
tions. This has the beneficial effect of preventing intramo-
lecular electrostatic interactions from dominating the ener-
getic minima and allowing molecules to explore a wider 
range of conformational configurations. Partial charges 
were assigned as follows.

Partial charges: electronegativity equalization

Rather than using the bond-charge-increment scheme of 
MMFF94 [17], we have implemented an electronegativ-
ity equalization approach, similar to that reported by Gil-
son et  al. [22]. Electronegativity equalization is a general 
method for partial charge assignment that avoids complex 
atom typing schemes [23–28].

The Gilson method was parameterized with 39 atom 
types, each associated with an electronegativity and a 
hardness (which quantifies an atom’s resistance to change 
in preferred charge). The atomic electronegativity values 
are modified based on local environment. Then, atomic 

charges are assigned by minimizing a simple function E 
that depends on the electronegativity and hardness of the 
atoms in the molecule. The function E is defined as follows, 
where for each atom i, ei is the modified electronegativity, 
so
i
 is the hardness, and qi is the partial charge:

Minimization of E is subject to two constraints. First, for-
mal charge within local groups of atoms is preventing from 
bleeding outside of each group by a fixed amount. Second, 
the total formal charge of the molecule must be the sum of 
the individual partial charges. One last aspect aspect of the 
method was a novel approach to ensure that atomic equiva-
lence over different resonance forms resulted in equivalent 
charges for equivalent atoms. The parameters of the method 
were chosen to reproduce ab initio molecular electrostatic 
potentials for a set of 284 molecules.

Our method differs in two key respects. First, to address 
the issue of symmetry across different forms of a molecule, 
instead of enumerating resonance forms, we make use of 
a general graph matching algorithm that identifies atom-
atom equivalencies. This is done through straightforward 
topological comparison of a molecule to itself (the same 
approach is used to identify chiral atoms). The partial 
charges of any atom sets that are identical to one another 
have their initial charges replaced by the mean across the 
symmetry group. For example, in propane, the methyl 
groups on the ends form groups of six identical hydrogen 
atoms and two identical carbon atoms, with the middle car-
bon being unique but having two identical hydrogen atoms.

Second, our method differs in the manner in which the 
constraints on the total formal charge and on local for-
mal charge containment are enforced. The Gilson method 
makes use of Lagrangian multipliers over 3N different con-
ditions, where N is the total number of charge groups, and 
the charge distribution with the lowest value of E is taken. 
Instead, we perform a series of minimizations of E using 
Powell’s method [29], with a quadratic penalty on the 
magnitude of violation of the total charge and local charge 
constraints.

The quadratic penalty is weighted by a factor of 2 in the 
first iteration (e.g. if the formal charge of a molecule is 0.0 
and the total partial charge is 2.5, then the penalty applied 
to E is 12.5). Beginning with the optimized partial charges 
of each successive minimization, the penalty on deviations 
is doubled, and the process is iterated until the penalty 
exceeds 108. Using this method, deviations for either total 
charge or local charge are smaller than 10−6.

For the current work, parameterization followed that 
of Gilson et al. [22], but additional refinement will be the 
subject of future work. In particular, we plan to make use 

(1)E =

n
∑

i=1

(

eiqi +
1

2
so
i
q2
i

)
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of MMFF94sf atom types, which form a more diverse and 
complete description of chemical behavior, on a much 
larger set of molecules for parameterization. Also, rather 
than using a hard boundary on local charge bleed, it is 
appealing to contemplate a softer penalty and see whether 
the fit to high-quality ab initio charges can be improved. 
Note that because we have made use of a high dielectric 
constant here, the effects of small differences in computed 
partial charges are expected to make little impact on the 
character and quality of the conformational ensembles pro-
duced by ForceGen.

3D structure generation

The Introduction described the overall algorithm for 3D 
structure generation. Important details in the implementa-
tion are as follows:

1.	 Bond lengths For initial atomic position assignment, 
bonds between hydrogen and any other atom are given 
the standard alkane C–H bond length from MMFF94. 
All other bonds are assigned the standard alkane C–C 
bond length.

2.	 Minimization The process of structure refinement 
requires repeated minimization calculations, each 
potentially turning off or on various classes of terms 
in the forcefield. All of the minimizations are done in 
Cartesian space, using the quasi-Newton Broyden–
Fletcher–Goldfarb–Shanno algorithm (BFGS). In the 
initial refinement of the structure (Steps 1–5), the ter-
mination conditions are gradient ≤ 0.1, atom position 
change ≤ 0.001, and energy change ≤ 0.1. For final 
refinement, these threshold values become, respec-
tively, 10−3, 10−5, and 10−5.

3.	 Iteration Refined molecular structures whose final 
energy is ≤ 7.0 kcal/mol/atom and whose specified 
chirality and double-bond configurations are correct is 
called a success. The process of initial atomic position 
assignment and refinement is repeated until either six 
successes occur or until a maximum number of tries is 
exceeded, defined by default to be five times the num-
ber of atoms in the molecule.

In the event that the procedure fails to find any successful 
structures (as defined above), if a structure has been pro-
duced that matches the specified configurations of chiral 
centers and double bonds, that structure is returned, despite 
having relatively high energy. Note that for certain highly-
strained molecules (e.g. cubane), the global minimum 
conformer has high per atom energy. In the event that no 
structure is found that matched the given specification, no 
solution is returned.

Note that it is possible, for example, to construct a 
SMILES string where the specified chirality is physically 
impossible to obtain, and this sometimes happens in error. 
In extensive testing, the procedure very rarely fails to find a 
reasonable 3D structure for a well-formed input molecule 
that has defined atom types within the force field. Approx-
imately 95% of final structures have energies of 2.0 kcal/
mol/atom or less, with 99.5% having enrgies of 2.5 kcal/
mol/atom or less. Typical times for structure generation on 
the molecules under study here ranged from 1–3 s, includ-
ing the atomic partial charge calculation.

With respect to protonation, the default approach is to 
make use of the specified formal charges from the input 
representation and to fill out the standard valences of the 
heavy atoms with hydrogen atoms. Optionally, a heuris-
tic method may be employed to infer charges such that 
addition of hydrogen atoms will yield structures likely to 
be physiologically relevant (e.g. with carboxylic acids 
deprotonated).

Ring search

The Introduction described the overall algorithm for ring 
search, involving manipulation of ring systems through a 
series of bends and twists. Important details in the imple-
mentation are as follows (for the standard search protocol):

1.	 Ring redundancy For non-macrocyclic ring systems, 
ring redundancy depends on ring system size. For sys-
tems of fewer than ten atoms, the RMSD threshold is 
0.1Å. For larger systems but with fewer than 35 atoms, 
the threshold is 0.2Å. For still larger systems, the 
threshold is 0.3Å. For macrocyclic systems, the entire 
molecule is considered to be part of the nominal ring 
system because pendant groups often have a strong 
influence on ring geometry. For these, the RMSD 
threshold is 0.5Å. As new conformations for ring sys-
tems are produced, they are compared to existing ones 
in a pool that is initialized with the original ring sys-
tem configuration. In cases where a new variant is non-
redundant and falls within a energy window of the cur-
rent minimum, it is added to the pool. In cases, where 
one is redundant of an existing variant, the one with 
lower energy is retained as part of the pool.

2.	 Atom pinning In the process of ring bends and twists, 
certain atoms are held in place during minimiza-
tion calculations by means of a quadratic penalty. For 
bends, after the physical bend is made, atoms of the 
ring system are pinned to their positions with a force 
of 100.0 kcal/mol per Å2. So, a deviation of 0.1Å from 
the pinned position produces a penalty of 1.0 kcal/mol. 
The pinning process allows the remainder of the mol-
ecule to adapt to the new ring conformation. Without 
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this step, ring bends will often revert to their original 
position due to the influence of pendant atoms. For the 
twists in macrocyclic systems, the penalty is the same 
for all four atoms involved in the twist. However, the 
three atoms that are fixed are allowed the freedom 
to wiggle by 0.1Å  without incurring a penalty (this 
results in a square-bottomed quadratic penalty). Allow-
ing some motion for these atoms helps in accommo-
dating the extensive physical ring-closure constraints 
while rotating the fourth atom around the bond axis 
of the twist. As in the process of structure generation, 
minimization is done in Cartesian space.

3.	 Bends As described in the Introduction, bends are 
made in flexible ring systems by identifying appropri-
ate pairs of ring atoms whose axis will be used to per-
form a bend. The bend amount is determined by con-
sidering the torsion angle between the centroids of the 
LHS and RHS sides. The bend that is made is symmet-
ric, so if the angle of deflection from a plane through 
the LHS for the RHS side is 20 degrees, then the bend 
will result in 20 degrees in the other direction. After 
each bend, a minimization is carried out with the ring 
system atoms pinned using the more lenient of the ter-
mination cutoffs above. Then the pins are released and 
a minimization is carried out with the more stringent 
cutoffs. This process reliably produces sensible vari-
ations of ring systems composed of small rings while 
preventing reversion to the original ring conformation 
unless the new one is inappropriate.

4.	 Twists The process of twisting is similar to that of 
bending, but for each twist, multiple rotations are 
employed in increments of 60, 120, 180, and 240 
degrees. For each rotation of the fourth atom, the other 
three atoms are pinned in their parent conformer’s 
position. The fourth is pinned in the desired new posi-
tions sequentially. Minimization with a lenient cutoff 
is carried out initially for each such position, pins are 
released, and minimization with more stringent cutoffs 
is done. This process produces low-energy variations 
of macrocyclic systems that overcome high-energy 
barriers in a direct manner. Stochastic approaches are 
often stymied by these barriers, instead relying, funda-
mentally, on the luck of the draw to identify new ring 
system variations across high-energy barriers.

5.	 Bounds on ring pool variants Limits are respected both 
regarding the number and maximal energy of ring vari-
ants in the pool. The number depends on the search 
mode. For standard search. the limit for non-macrocy-
clic systems is 20 and for macrocyclic systems is 36. 
The energetic limit on ring variants in the pool, meas-
ured from the current minimum-energy ring variant, is 
double the overall energy window for the whole mol-
ecule. By default, the overall window is 10.0 kcal/mol, 

so ring variations may include conformations up to 
20.0 kcal/mol higher than the particular minimum in a 
pool that is to be augmented. At the end of each round 
of twists and bends, the ring variant pool is pruned 
to ensure that the number and energy constraints are 
maintained.

6.	 Iteration When any particular ring variant is elaborated 
through bends and twists, it is marked as done. If it is 
replaced by a lower-energy alternative within the ring 
redundancy threshold, the new ring variation must be 
re-elaborated. The overall process of ring elaboration 
ends when no ring variants have been elaborated or 
when five rounds of ring elaboration have occurred.

This procedure has not been optimized heavily, except for 
small systems such as cyclohexane. Numerous opportuni-
ties exist for speed improvements and for different types of 
physical manipulations of ring systems.

Torsional elaboration

The procedure for torsional elaboration has not changed 
appreciably since the introduction of the Surflex Docking 
method [4].

Briefly, the non-ring bonds within a molecule that 
require sampling are identified and assigned types that, for 
example, differentiate sp3–sp3 linkages from sp3–sp2. Dif-
ferent types of bonds are assigned different sampling levels 
(e.g. sp3–sp3 are assigned three total rotations including 
the existing one and sp2–sp3 bonds are assigned 6). The 
limits on energy and numbers of conformers in the fol-
lowing refer to the standard search mode. The following 
describes the search for a single ring variant, which is used 
to initialize the conformer pool. Multiple ring variants can 
be searched serially or as a pool. When done as a pool, the 
pool sizes are increased accordingly.

Groups of such bonds are made such that they form 
molecular fragments where each such fragment contains 
bonds of a single group. The groups are limited such that 
exhaustive sampling will not exceed 200 variants. The 
combination of bond rotations required to exhaustively 
sample the bonds within the group is applied to each con-
former in the current pool, and these variants are collected 
and then added to the pool. From these, the most diverse 
subset is chosen up to 400 (the maximal pool size is larger 
than the maximal variant sampling because of iteration). 
The process is repeated through the different bond groups, 
with iterative steps of pool expansion and then selection 
based on diversity.

At this point, the conformers in the pool are rapidly 
relaxed using internal coordinates to minimize energy. 
Redundant conformers and those with excessively high 
energy are discarded. These are then minimized in 
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Cartesian space using lenient cutoffs. Those that meet an 
energy threshold of 20.0 kcal/mol above the current mini-
mum are then minimized using stringent cutoffs. All con-
formers with energy greater than 10.0 kcal/mol above the 
discovered minimum are discarded. If more conformers 
exist than desired (200 in standard mode), the most diverse 
of the set are chosen and returned.

In cases where the nominal calculation of the total num-
ber of conformers exceeds 106 a different approach is taken. 
Exhaustive sampling across the identified rotatable bonds 
can be done in a specific order that is analogous to count-
ing, where each digit in the count is the index of the rota-
tion of the rotatable bond in question. For highly flexible 
molecules, a modulus M is selected such that sampling 
every Mth of the sequence of conformers will produce five 
times the number of desired final conformations. These are 
then put through the same process as just described to yield 
a diverse pool of low energy conformational variants.

Computational procedures and statistical analysis

The results reported here were generated using Surflex-
Tools version 4.057. The bulk of the results were generated 
through zeroed-coordinate conformer randomization in 
standard search mode, as follows (shown for the PINC Set): 

 RMS deviations were done for each resulting conformer 
pool by identifying all molecular symmetries, then apply-
ing the rigid body alignment transform to each conformer 
so as to minimize the RMSD against the crystallographic 
one under all identified symmetric self matches. The mini-
mum such RMSD value (for non-hydrogen atoms) is the 
value reported for each ligand. RMSD of heavy atoms cor-
rected for molecular automorphism is standard in evalua-
tions of docking calculations and for conformer generation.
 An alternative control used for the CSD Set involved 
beginning the process from SMILES representations of the 
molecules, as follows: 

 Here, SMILES strings were generated from the original 
SYBYL mol2 archive file using the BIOVIA Discovery 
Studio Viewer Version 4.0. Note that this procedure yielded 
structures with very different atom orderings than in the 
original ligand structures, providing data to assess whether 

the nominal order dependencies within the ForceGen algo-
rithms produce significant variations in conformer quality.

Standard search depth is specified by the -pgeom argu-
ment. This selects ring search (maximum ring variants 20 
or macrocyclic variants 36) and produces a maximum of 
200 conformers per ligand, with a limit of 10.0 kcal/mol for 
the highest energy conformer above that with the minimum 
energy. The thorough protocol is specified by -pquant, 
which increases the allowable ring variations for macrocy-
cles to 72 and the maximum number of conformations to 
1000 (ring redundancy for macrocycles is also decreased to 
0.3Å).

The screening protocol is specified by -pscreen, which 
disables macrocycle searching, decreases ring variations to 
4, decreases the energy window to 5.0 kcal/mol, and limits 
the number of conformations to 20 for molecules with 5 or 
fewer rotatable bonds, 60 for 6–11 rotatable bonds, and 200 
for 12 or greater. The fast search protocol (-pfast) is similar 
to the screening one except that it disables ring search alto-
gether, using the ring configurations in the given conformer 
and limits all molecules to 20 conformers regardless of the 
number of rotatable bonds that each contain.

Under all search protocols, conformers are eliminated 
whose RMSD is 0.25Å  or less, though the pressure to 
identify maximally diverse conformer pools generally pre-
vents this level of redundancy from occurring. Numerous 
user-settable parameters allow control over the procedures 
beyond the four basic protocol choices. However, in our 
experience, these four protocols cover nearly all needs.

Where possible, we have made direct comparisons 
between the methods introduced here and other widely used 
methods. This involves comparing success rates across 
different thresholds of RMSD for generated conformers 
against the experimental structures of the ligands. We favor 
providing full cumulative histograms of such data, which 
allows for detailed inspections of performance across all 
thresholds of interest, and it also allows for comparison of 
distributions using the Kolmogorov Smirnov (KS) statisti-
cal test. The KS test finds the maximal gap between two 
cumulative histograms, and, given the numbers of data 
points for each cumulative histogram, it is possible to relate 
the magnitude of that gap to the probability that a gap of 
such magnitude would be observed by chance. Note that 
this test is non-parametric, requiring no assumptions about 
the characteristics of the underlying distributions.

Technically the test tells only whether the two distribu-
tions are different, not whether one is better than the other. 
However, with non-perverse distributions, it is easy to see 
by inspection which of two cumulative histograms is better 
than the other given that the two are different. Here, com-
parisons between methods or method variations are made 
with data set sizes of 30, 182, 480, 667, and 1062. Respec-
tively, the critical values for maximal percentage point 
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differences at p = 0.05 are: 35.1, 14.3, 8.8, 7.4, and 5.9. So, 
on 480 data points, if the largest difference between Method 
X and Method Y is 8.8 percentage points, then Method X 
is likely to be statistically significantly better than Method 
Y at the p = 0.05 level. In the results that follow, an indi-
cation that a difference between methods or method varia-
tions being statistically significant refers to an approximate 
KS test, as just described, unless otherwise noted. Care has 
been taken to ensure that misleading conclusions are not 
suggested by clever selection of statistics or thresholds.

Additional details about the data set and computational 
procedures are available at www.jainlab.org. Details about 
obtaining the Surflex software are available at www.biop-
harmics.com.

Results and discussion

Five data sets were studied in the course of this work, each 
addressing a different aspect of 3D structure generation and 
conformer generation and comparison to other approaches. 
Results will be presented in order of least to greatest 
challenge.

Data set complexity

Figure 4 depicts the gross molecular complexity of the pri-
mary data sets. The CSD Set [3], used for OMEGA vali-
dation, contains, by far, the most simple ligand structures, 
both in terms of molecular size and typical flexibility. The 
ConfGen Set [15], used for validation of the Schrödinger 
conformer generation engine, is more representative of 
drug-like molecules. It includes a broader range of sizes, 
overall flexibility, presence of aliphatic rings, and it also 
covers a broad variety of protein targets.

The two ligand sets curated for this work are yet more 
complex. The PINC Set has a large number of ligands 
(1062) for a small number of targets (10), and it includes 
a higher fraction of larger and more flexible molecules 
than the CSD or ConfGen Sets. The Macrocycle Set of 182 
ligands contains the most complex examples in all respects. 
In addition to each molecule containing at least one mac-
rocycle, the molecules are larger and contain a similar 
distribution of rotatable bonds outside of ring systems as 
the PINC Set. The set of 30 macrocycles from Chen and 
Foloppe [11] were nearly identical in molecular complexity 
to the much larger Macrocycle Set (data not shown).

CSD set: comparison to OMEGA

Hawkins et  al. published a comprehensive description 
of OMEGA and its application to conformer generation 
[3], focusing on two ligand sets, one from the CSD (480 

compounds) and one from the PDB (197 compounds). 
Here, because the remainder of the work focuses on many 
hundreds of challenging protein-bound PDB ligands, we 
have applied ForceGen to the CSD collection, which facili-
tates direct comparisons.

Figure  5 shows the performance of ForceGen and 
OMEGA, each using a standard protocol with a maxi-
mum of 200 conformers. Among the best results (low 

Fig. 4   Comparison of molecular complexity for the primary data sets
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ordinal positions at left), there is a very slight advan-
tage to ForceGen, but at the more challenging end of the 
spectrum, the difference becomes more pronounced. At 
the 1.0Å  RMSD cutoff, OMEGA yielded a success rate 
of 84.5%, with ForceGen yielding 94.5% success. The 
difference is statistically significant (p < 0.025 by the 
KS test). Median time for conformer search was 2.3 sec-
onds per molecule for ForceGen (wall-clock time, single 
processor, single-threaded, using an Intel Core i7-4770 
CPU at 3.40GHz released in 2013), which is likely to be 
slightly slower than OMEGA.

Ebejer et  al. [30] compared multiple freely available 
methods for conformer generation to OMEGA using the 
CSD set. The best performing method, RDKit, yielded 
90.4% success on the CSD set at the 1.0Å success thresh-
old, better than OMEGA but worse than ForceGen.

Figure  6 shows a comparison of ForceGen perfor-
mance beginning from either SMILES input (upper plot, 
green line) or zeroed-coordinate conformers (upper plot, 
purple line). The differences are neither practically nor 
statistically significant, and the remainder of the results 
will be presented using the zeroed-coordinate approach. 
In the bottom plot of Fig. 6, we see that for the relatively 
small molecules of limited flexibility within the CSD set, 
the difference between standard and thorough search was 
marginal. Shown at right is a typical case (0.5Å RMSD) 
on CCDC refcode LEMXIK (crystallographic pose in 
green and closest generated match in cyan). Note that the 
flexible ring system was searched dynamically as part of 
conformational generation. An example from the most 
challenging end of the spectrum was TAZPUF, where 
deviation from the crystallographic pose was driven by 
relatively small torsional minima preferences.

Comparison to ConfGen on diverse ligands

The ConfGen Set contains a very large variety of pharma-
ceutically interesting ligands, spanning a diversity of pro-
tein targets. Table  2 summarizes performance results and 
search time of the ForceGen compared with the ConfGen 
method [15].

Considering similar computations (ForceGen compared 
with ConfGen with minimization) addresses the issue of 
sampling quality. Here, at each level of search depth (with 
each producing similar numbers of conformers), Force-
Gen showed a performance advantage of 5–10 points, with 
larger advantages at the more stringent success cutoffs. In 
fact, ForceGen standard performance performed even bet-
ter than ConfGen’s comprehensive approach with minimi-
zation. Note, however, that the mean time for the Force-
Gen standard approach was 14.4 s compared to 45.8 s for 
the ConfGen comprehensive approach with minimization. 
So, ForceGen was significantly faster than ConfGen (even 
accounting for likely differences in hardware performance 
on floating-point calculations).

ForceGen in its fastest mode (less than 1 s per molecule) 
produced results that were nearly equivalent to ConfGen’s 

Fig. 5   ForceGen and OMEGA results on conformer generation for 
the CSD Set (ordinal ranks for each molecule come from the sorted 
RMSD results from low to high, with the best result being 1 and the 
worst being 480)

Fig. 6   ForceGen comparison of SMILES versus zero-coordinate pro-
tocols (top) and standard (-pgeom) compared with thorough (-pquant) 
search (bottom) for the CSD Set
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comprehensive mode (no minimization), but ForceGen was 
several-fold faster. Similarly, ForceGen in screening mode 
produced slightly better results than ConfGen’s interme-
diate mode (with minimization), but was approximately 
4-fold faster. ForceGen in standard mode produced better 
results than all variants of ConfGen. In thorough search 
mode, performance gains for ForceGen were roughly 5 per-
centage points at the 1.5Å  threshold. Figure  7 shows the 
cumulative histograms of performance for all four of Force-
Gen’s search modes.

Where the maximal success percentage difference 
between the different methods in Table 2 is seven percent-
age points or greater, the difference is statistically signifi-
cant (p < 0.05 by KS test). So, ForceGen’s performance 
is statistically improved by increasing search thorough-
ness between each of the four modes. ForceGen’s standard 
search mode was significantly better than all of the Conf-
Gen variations based on the performance gap at the success 
threshold of 1.0Å (p < 0.05).

Note that performance difference for ForceGen between 
the CSD set and the ConfGen Set was relatively small 
(roughly 10 percentage points at 1.0Å  RMSD). However, 
Ebejer et al. [30] observed a very substantial performance 
drop (20 percentage points at 1.0Å  RMSD) for the best 
reported method, RDKit, when moving from CSD ligands 
to the PDB ligands from the OMEGA benchmark [3] 
despite having complexity similar to the ConfGen Set.

PINC: ten targets with many diverse ligands

The structural motifs within the PINC Set cover a broad 
range of complex non-planar ring systems and heterocy-
cles. These ten targets represent a diverse set of protein 
types: a tyrosine phosphatase (PTP1b), two aspartyl pro-
teases (BACE1 and HIV-PR), a mitogen-activated protein 
kinase, (MAPK14), a serine-threonine kinase (CDK2), a 
serine protease (thrombin), a ligand-modulated transcrip-
tion factor (PPAR�), a metal-dependent dehydratase (CA-
II), a heat-shock protein (HSP90), and a transcriptase 
(HIV-RT). All are either targets of existing drugs or have 
been actively pursued as drug targets.

Owing to the greater molecular complexity of the PINC 
set, ForceGen standard search results yielded success rates 
of roughly 10 percentage points lower than for the ConfGen 
Set (see Fig. 8). However, thorough search yielded results 

Table 2   Results on the 
ConfGen Set, with data and 
ConfGen results curated from 
Watts et al. [15]

The columns indicate the percent of the 667 molecules for which a conformer was generated within either 
0.5, 1.0, 1.5, or 2.0Å RMSD of the crystallographic pose

Program and Mode % ≤ 0.5 % ≤ 1.0 % ≤ 1.5 % ≤ 2.0 Mean N conf. Mean time

ForceGen fast (-pfast) 30 63 84 95 14.7 0.88
ForceGen screen (-pscreen) 35 74 91 99 39.4 8.8
ForceGen standard (-pgeom) 43 83 96 99.7 101.3 14.4
ForceGen thorough (-pquant) 47 90 99 100 348.6 68.4
ConfGen very fast 16 52 84 96 14.3 0.49
ConfGen fast 20 55 82 94 13.2 1.09
ConfGen intermediate 21 65 85 97 37.9 3.33
ConfGen comprehensive 35 71 90 99 146.4 8.00
ConfGen + min very fast 21 60 87 97 16.3 4.2
ConfGen + min fast 24 70 90 98 43.0 34.3
ConfGen + min intermediate 38 75 90 98 111.9 41.6
ConfGen + min comprehensive 38 76 92 99 128.2 45.8

Fig. 7   Comparison of all search modes for ForceGen on the Conf-
Gen Set
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for the PINC set that nearly equalled standard search for 
the ConfGen Set. The sampling methodology was able to 
effectively uncover bioactive poses, but the required search 
depth was greater.

Even with standard search, and given the presence of 
very large and flexible ligands in the PINC Set (including 
22 macrocycles), over 95% of cases yielded a conformer 
within 2.0Å of the bioactive pose using the standard search 
protocol (and 95% success was achieved at 1.5Å using the 
thorough protocol). Median search time was 6.9 s for stand-
ard search and 24.7 s for the thorough protocol. Recall that 
the ForceGen procedure yields minimized ligand structures 
in all modes of operation, whereas neither OMEGA nor 
ConfGen do so in standard mode.

With respect to the ring conformer generation ability 
of ForceGen, the PINC Set offers a number of complex 
cases, six of which are shown in Fig. 9. The CDK2 inhib-
itor staurosporine (top left) presents multiple challenges. 
It contains a fusion of a large aromatic system with a 

flexible bridged ring whose conformational interchange 
barriers are high in energy. The protein-bound form is 
more than 5 kcal/mol higher in energy than the lowest 
energy of any conformer in the ensemble. Also, the pres-
ence of multiple chiral centers complicates 3D structure 
generation as well as conformer elaboration. The steroid-
based carbonic anhydrase inhibitor of 2GD8 binds in a 
low energy pose, with the close match to the X-ray struc-
ture being less than 1.5 kcal/mol above the discovered 
overall minimum.

The cyclic sulfamide HIV-protease inhibitor (1AJV) is 
an example of the introduction of a rather novel flexible 
ring system that produced a surprising binding mode [31]. 
Recall that the ForceGen method makes use of no pre-com-
puted templates, relying instead on its underlying force field 
to guide the elucidation of different conformers through a 
dynamic bending and twisting procedure. Dynamic ring 
conformer generation and all-atom minimization add some-
what to the computational cost of conformer generation 
relative to some template-based methods. But in the case of 
novel ring systems, this generality is an advantage.

Fig. 8   Performance on the PINC Set: both standard and thorough 
search

Fig. 9   Typical examples of ForceGen performance on complex ring 
systems in the PINC Set
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The three relatively small macrocycles shown in Fig. 9 
were among 22 within the PINC data set. The HSP90 
ligand (3RKZ) took less than two minutes to yield 60 
conformers, which included the 0.2Å  best match shown. 
The 1NT1 thrombin ligand took less than 3 min (89 con-
formers), and the more flexible 3F3F BACE ligand (200 
conformers) took just over 3 min. With the ForceGen 
approach, macrocyclic compounds need not be treated a 
separate class from those containing smaller ring systems. 
The normal non-stochastic search protocol addresses them 
naturally.

Macrocycle set: large and diverse ligands

Results on the 22 macrocycles within the PINC set were 
encouraging: (1) the average RMSD of the best conformer 
generated using standard search was 1.0Å; (2) the average 
search time was three minutes of wall-clock time; and 86% 
of the cases yielded conformers within 1.5Å  RMSD (and 
all 22 were within 2.5Å). Given this suggestive result, we 
curated a much larger set of bound macrocyclic ligands 
(182 total, process described above) limited to 60 non-
hydrogen atoms or less. This cutoff was chosen so that 
performance on the PINC Set could be used as a point of 
reference.

Figure 10 depicts ForceGen performance on the Macro-
cycle Set relative to the PINC Set (top plot). Recall that the 
typical size of macrocyclic compounds was 10–15 heavy 
atoms larger than that seen in the PINC Set (see Fig.  4), 
but the distribution of freely rotatable bonds outside of 
all ring systems was very similar. So the challenge for the 
Macrocycle Set is, essentially, the addition of a macrocycle 
to the already challenging characteristics of the molecules 
within the PINC Set. We considered the “total flexibility” 
of each macrocycle to be the sum of the freely rotatable 
bonds plus the number of single bonds within macrocyclic 
rings that were not primary amides (the C-N bonds of pri-
mary amides are not twisted in the ForceGen procedure by 
default). There was a strong relationship between total flex-
ibility and the RMS deviation of the closest generated con-
former to the bioactive pose (see Fig. 10, bottom).

With standard search settings (200 conformer maxi-
mum), success rates for the Macrocycle Set were within 
roughly ten percentage points of the PINC Set. The distri-
bution of RMS deviations was shifted rightward by approx-
imately 0.25Å. Using the thorough search protocol (1000 
conformer maximum) improved success rates by roughly 5 
percentage points. The average number of conformers pro-
duced under the standard search protocol was 115, with a 
median search time of 183 wall-clock seconds. Under the 
thorough search protocol, the conformer count averaged 
378, and the median search time was 370 seconds.

Figure  11 shows representative examples of Force-
Gen performance for three classes of macrocycles based 
on overall flexibility. For the least flexible set (6–15 
total flexible bonds), the ForceGen approach appears to 
be quite accurate and also fast enough for practical use 
(average search time of 111 s per molecule). This group 
includes multiple examples of structure-enabled macro-
cyclic design from the last four years: an inhibitor of the 
anaplastic lymphoma kinase from Pfizer [32] (top left), 

Fig. 10   Macrocycle Set: ForceGen performance relative to the PINC 
Set and its relationship to molecular flexibility
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an HSP90 inhibitor from Chugai [33] (top middle), and 
an IL-17A antagonist from Pfizer [34] (top right). This 
class of small and relatively rigid examples formed 35% 
of the Macrocycle Set and had mean RMSD of 0.52Å.

The moderately flexible set (16–25, middle row) 
formed 50% of the set, with mean RMSD of 1.07Å and 
mean search time of 297 s. This group included sub-
stantially more complex ligands of great pharmaceutical 
interest: a highly potent BACE inhibitor [35], the Merck 
hepatitis C therapeutic vaniprevir which targets the HCV 
NS3/4a protease [36, 37], and the anti-tuberculosis natu-
ral product pyridomycin which targets the InhA enoyl 
reductase [38].

The two groups of compounds represented by the first 
two rows in Fig.  11 exemplify cutting-edge molecular 
design in structure-enabled lead optimization. They com-
prise 85% of the Macrocycle Set and appear to be tractable 
by the ForceGen approach, with sampling times of a few 
minutes each on average. Because conformer generation 
and docking/scoring of candidate molecules can be per-
formed in parallel, on a 100-node cluster, nearly 30,000 
compounds can be evaluated per day using this approach.

For these 154 macrocycles with total flexibility up to 
25, the RMSD averaged 0.85 ± 0.51, which matched results 
for the entire PINC set (RMSD average of 0.80 ± 0.53). 
ForceGen produced accurate (RMSD ≤ 1.5Å) conform-
ers for 90% of cases in this flexibility range. Note also that 
docking protocols often perform additional optimization of 
ligand poses, both using internal coordinates and Cartesian 
coordinates as part of the docking process [9], offering the 
possibility of further refinement of binding modes over the 
initial conformational sampling provided. We believe that 
ForceGen represents a significant advance and a practical 
means to support macrocyclic design projects with compu-
tational modeling.

The most flexible class (26 flexible bonds and up, 15% 
of the set) begin to challenge the ForceGen method in terms 
of accuracy. Average RMSD was 2.0Å, with average search 
times of 15 min, and just 29% achieved the 1.5Å success 
cutoff (39% with the thorough search protocol). Molecules 
within this group are still of pharmaceutical interest, but do 
not appear to be of as much pressing design focus as the 
previous examples. Whether the normal bias against large 
molecules as being good drug candidates holds true for 

Fig. 11   Typical conformer gen-
eration performance (standard 
search) for macrocycles in dif-
ferent classes of total flexibility
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macrocyclic ligands is not clear, but based on the large set 
of macrocycles we have curated here, it would seem that 
smaller molecules are receiving more focused design elab-
oration and structural elucidation.

Figure 11 shows three examples of the most challenging 
class (bottom row), which include (left to right): oligomy-
cin A targeting the a yeast ATPase (PDB 5BPS), a mac-
rolide chitinase inhibitor [39], and pulvomycin bound to a 
nucleotide-binding elongation factor [40]. Of these, only 
the report of the chitinase inhibitor was from a lead optimi-
zation exercise.

Foloppe set: comparison to MD methods

Previous studies of macrocycle conformer generation have 
primarily made use of stochastic molecular dynamics 
methods [10–12], though the recently reported BRIKARD 
method approaches the problem using an approach from 
inverse kinematics [13]. Chen and Foloppe [11] introduced 
a set of 30 carefully curated macrocycles and reported the 
performance of different MD-based approaches, the best 
two of which were the Low Mode MD approach imple-
mented within MOE [10] and the Mixed torsional/Low-
mode (MT/LMOD) implemented within Schrödinger’s 
MacroModel.

Figure 12 shows a comparison of the default and tuned 
performance of the two MD-based methods compared 
with ForceGen search on 30 macrocyclic compounds. 
Under default settings (left plot), ForceGen performed 

substantially better, though with just 30 data points, larger 
performance differences than seen here are required to 
establish statistical significance. By optimizing over 22 
combinations of methods and parameters, a clear improve-
ment was made, with the best optimized performance 
coming from Low Mode MD and MT/LMOD (right 
plot). ForceGen’s performance matched that of the opti-
mized Low Mode MD method. The MT/LMOD approach 
appeared to show slightly better performance, though at 
roughly 10 percentage points, such a difference would 
require many more than 30 data points to reach statistical 
significance. Note also that to achieve the optimized per-
formance levels, the MD-based methods produced between 
10–20 times as many conformers, which has consequences 
for downstream calculations.

Timing considerations

Computational cost is of great practical importance in 
determining whether an approach can have widespread 
application. Figure 13 shows the distributions of conformer 
search times under the standard ForceGen protocol (left 
plot) and a comparison of accuracy vs. search time for 
both the Foloppe and Macrocycle Sets along with qualita-
tive quality/time comparisons from the report of the BRI-
KARD method from Coutsias et  al. [13] (right plot). The 
timings for all methods reflect wall-clock time on single 
processors, though the time for Low Mode MD reflects a 
multi-threaded implementation. With respect to ForceGen 

Fig. 12   Comparison of conformer elaboration performance on the 
Foloppe benchmark of 30 macrocycles. Note that the plots for Low 
Mode MD and MT/LMOD have valid data only at the 0.5, 1.0, 1.5, 

and 2.0Å  threshold values and that interpolated values between 
0.0Å and 0.5Å are particularly biased
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performance, median (and average) times of small numbers 
of seconds are required for non-macrocyclic compounds.

Typical times for macrocyclic compounds were a few 
hundred seconds, with 80% requiring 10 min or less. There 
was a direct relationship between search time, molecular 
complexity, and result quality, with essentially identical 
patterns seen with the Foloppe and Macrocycle Sets. The 
BRIKARD data set included all 30 of the Foloppe macro-
cycles and was augmented with 37 additional compounds 
to increase both diversity and complexity [13]. The median 
time reported for the optimized Low Mode MD proto-
col (the protocol used in the right-hand plot from Fig. 12) 
was 11,000 s (roughly the middle of the orange outline in 
Fig. 13). The median time reported for an optimized Mac-
roModel MD/LLMOD protocol was 37,000 s (not shown in 
the plot). The ForceGen approach is roughly 50–200 times 
faster than these competing methods.

The BRIKARD approach is quite fast in generating 
alternative conformations of macrocyclic systems, with 
timings on a single processor rivaling those of Force-
Gen. However, in order to achieve accuracy that compares 
well with ForceGen and other methods, minimization is 
required, which brings the BRIKARD timings into a simi-
lar region as the MD approaches using a single processor. 
The BRIKARD approach has a significant advantage over 
the MD methods. Because it is not sampling a time trajec-
tory, it can be parallelized for searching a single molecule 
with a linear speedup in efficiency in relation to the num-
ber of processors. Median times using 40 processors for the 

BRIKARD method (with minimization) were about 400 s, 
which is close to the range we observed for ForceGen on a 
single processor.

ForceGen shares the advantage with the BRIKARD 
approach of not sampling a trajectory, and many stages of 
the algorithm can be easily parallelized across multiple 
computing cores. However, with single-core performance 
of a few minutes per molecule, most situations where com-
putational costs would be a concern would occur when 
many candidate molecules require evaluation. In that case, 
simply spreading out different molecules across differ-
ent processors provides a parallel linear speedup with no 
special-purpose parallel code. Making use of GPU-based 
acceleration might be worth pursuing, as it could enable 
near-real-time conformer generation for complex ligands 
up to and including macrocycles using ForceGen.

Quality of ForceGen initial 3D structures

One implicit and critical aspect of the results presented 
here is the effect of the initial generated 3D structural 
model for each molecule. We do not have access to any 
of the popular alternative methods, so direct comparisons 
were not possible. However, it is important to note that the 
results we obtained for conformer generation depended 
directly on the performance of the ForceGen approach for 
3D structure building. In particular, the fast screening pro-
tocol for ForceGen performs no ring elaboration. However, 
its performance on the ConfGen Set was competitive with 

Fig. 13   Conformer generation wall-clock timing: ForceGen perfor-
mance on all four primary datasets (left); qualitative single-processor 
timing comparison to BRIKARD (both with and without minimiza-

tion) and Low Mode MD methods on the BRIKARD superset of the 
Foloppe Set (right)
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the ConfGen method in its intermediate mode, despite the 
latter making use of template-based ring elaboration.

As we noted earlier, ForceGen 3D structure building 
is not as fast as template-based approaches such as CON-
CORD [1], CORINA [2], and OMEGA [3]. However, 
ForceGen’s conformational elaboration times on non-
macrocycles are only slightly slower than OMEGA and are 
faster than ConfGen, and ForceGen’s initial structure gen-
eration takes just one-sixth of the time of conformational 
search on average in standard mode. Conformer elaboration 
is nearly always carried out in cases where 3D structures of 
ligands are produced, so we expect that the relatively small 
amount of time required for ForceGen 3D structure genera-
tion will not pose an excessive burden.

Note also that partial charge estimation is integrated into 
the structure generation process. Future work will address 
direct comparisons of initial 3D structural quality and par-
tial charge accuracy with other methods.

Conclusions

The results we have reported for ForceGen structure and 
conformer generation are comprehensive. They span small 
lead-like molecules from the CSD to diverse, realistic, and 
challenging drug-like ligands from the ConfGen and PINC 
data sets, which each contain significant proportions of 
large and flexible molecules. The results include perfor-
mance on the largest set of bound macrocycles of which 
we are aware and also for a smaller independently curated 
macrocycle set. Performance analysis showed a statistically 
significant performance advantage over both OMEGA and 
ConfGen on the data sets curated for validation of each 
method [3, 15]. Performance on realistic drug-like ligands 
rivaled that seen on the CSD, with success rates reduced by 
just 5–10 percentage points across the 0.5–1.25 Angstrom 
success thresholds when using the ForceGen thorough 
search protocol.

Moving to the 182-compound Macrocycle Set from 
the challenging PINC Set, using standard search proto-
cols, performance was reduced by roughly 10–15 per-
centage points when considering the full set including 
the most challenging cases. However, within the subset of 
85% of macrocycles containing 25 or fewer total flexible 
bonds, performance was indistinguishable from the PINC 
Set. Direct comparisons with other methods on the 30 
macrocycles of the Foloppe Set showed that ForceGen’s 
performance was superior to the default performance of 
both the MOE Low Mode MD method and the Macro-
Model MT/LMOD method. Using optimized parameters 
for the MD-based methods (at increased computational 
cost), Low Mode MD showed equivalent performance 
to ForceGen, and MT/LMOD showed marginally better 

performance with conformational ensembles 10–20 times 
larger than ForceGen’s. However, none of the perfor-
mance differences in RMSD success rates on the Fol-
loppe set were statistically significant due to the small 
data set size.

By contrast, ForceGen’s approximately 100-fold speed 
advantage is of clear practical significance. On a single 
mid-range CPU, macrocyclic compounds with the com-
plexity level of drugs such as vaniprevir can be elaborated 
into ensembles of 200 conformations or less in a few min-
utes, with the expected RMSD of the closest conformer 
to the bioactive one being 0.85Å. When coupled with 
molecular docking, similarity, or binding affinity prediction 
methods, the ability to rapidly produce such high-quality 
ensembles should enable routine computational support for 
macrocyclic design projects.

The results presented here represent a remarkable dem-
onstration of the breadth, robustness, and accuracy of the 
MMFF94 force field [16–21]. The ForceGen approach 
is geared entirely toward locating diverse minima within 
the energy surface dictated by the force field being used. 
Even with the successful application seen here, there is 
room for improvement of the sampling approaches under 
our MMFF94sf force field variant. It is possible to directly 
examine this question by making use of the “correct” con-
formation as a starting point for conformational elaboration 
rather than randomizing the conformations of molecules. 
In such a procedure, the ensemble generated will contain 
the nearest minimum close to the correct pose unless the 
combination of sampling and energy calculations drive the 
ensemble away. Under such a protocol, we observed that 
even in the simplest case of the CSD data, the ensembles 
were improved, with greater improvements seen on more 
challenging molecules.

Our future work in this area will focus on additional 
improvements in sampling, with relatively less effort 
addressing cases where there are clear issues with force 
field parameters. There is room for practically meaning-
ful and statistically significant improvement, especially 
for complex molecules, both in terms of conformational 
ensemble quality as well as computational speed.
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