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ARTICLE OPEN

Classifying handedness in chiral nanomaterials using label
error robust deep learning
C. K. Groschner1, Alexander J. Pattison 2, Assaf Ben-Moshe3,4, A. Paul Alivisatos 3,4, Wolfgang Theis 2 and M. C. Scott 1,5✉

High-throughput scanning electron microscopy (SEM) coupled with classification using neural networks is an ideal method to
determine the morphological handedness of large populations of chiral nanoparticles. Automated labeling removes the time-
consuming manual labeling of training data, but introduces label error, and subsequently classification error in the trained neural
network. Here, we evaluate methods to minimize classification error when training from automated labels of SEM datasets of chiral
Tellurium nanoparticles. Using the mirror relationship between images of opposite handed particles, we artificially create
populations of varying label error. We analyze the impact of label error rate and training method on the classification error of neural
networks on an ideal dataset and on a practical dataset. Of the three training methods considered, we find that a pretraining
approach yields the most accurate results across label error rates on ideal datasets, where size and other morphological variables
are held constant, but that a co-teaching approach performs the best in practical application.

npj Computational Materials           (2022) 8:149 ; https://doi.org/10.1038/s41524-022-00822-7

INTRODUCTION
There is growing interest in inorganic chiral nanomaterials for
application in optoelectronics and biomimetics1–3. Specific para-
meters during wet chemical synthesis of chiral nanomaterials4–8

can induce a large degree of structural variety. Of particular
importance, synthesis parameters can favor one handedness over
another. For example, despite their underlying chiral crystal
structure, Tellurium (Te) nanoparticles can have different ratios of
certain chiralities depending on synthesis conditions4,5. In another
example from recent work by van der Boom et al., tuning of
synthesis parameters gave rise to metallo-organic single crystals
with a wide variety of complex non-trivial morphologies, many of
which are chiral9,10. These variations are induced by many factors
including thermodynamic versus kinetic growth pathways, and
differences in interactions of chiral organic molecules with small
clusters of atoms during synthesis. Therefore, precise tuning of
chirality alongside size via wet chemical synthesis is yet to be
obtained in many systems. To be able to tune chirality, one must
first determine the influence of the many synthetic parameters,
such as temperature, precursor concentration, or concentration
and type of structure-directing chiral ligands, on the outcome
population. This need for high-throughput analysis motivates the
development of methods to classify handedness in chiral
nanoparticle populations with the goal of determining the
influence of these synthetic parameters.
While circular dichroism (CD) measurements are sensitive to

chirality in Te nanoparticles, it is very challenging to extract
quantitative information about the abundance of each handed-
ness, as the molar CD of these materials is unknown and can only
be estimated4,5. Scanning electron microscopy (SEM), in contrast,
can be used to unambiguously determine the handedness of
morphologically chiral nanomaterials11–13. SEM is sensitive to
surface topology and can directly determine morphological
chirality and handedness, unlike (scanning) transmission electron
microscopy ((S)TEM) methods that sum information along the

beam direction such that faceting information can be lost and
therefore requires that multiple images be used to determine
handedness14. High-throughput SEM imaging is therefore a
particularly promising way to measure the size and handedness
of large populations of chiral nanoparticles to better understand
the role of synthetic variables on outcome populations. However,
determining particle statistics by hand from high-throughput data
is extremely laborious and time consuming. Due to the increasing
ease of implementing neural networks for image analysis15–17,
deep learning is a promising replacement for manual analysis. Yet,
deep learning is known for requiring large training datasets, which
still need manual labeling, meaning that the application of deep
learning to chirality studies could also be prohibitively time
consuming due to expert labeling requirements.
Given that synthesis routes yielding chiral materials often favor

one handedness over the other, we have found that it is possible
to label the handedness of all the particles in the dataset by first
labeling them with the dominant handedness, and then mirroring
these images to create a dataset labeled with the opposite
handedness. This labeling process is demonstrated in Fig. 1.
Labeling all images with the majority handedness of course leads
to a dataset with a specific fraction of erroneous labels that is
equal to the fraction of particles that did not have the dominant
handedness. For synthesis conditions that yield almost exclusively
one handedness, this automated mirror labeling strategy is very
successful, but for other conditions, it can yield a significant
number of mislabeled images. The question then becomes how to
extend this automated labeling method across synthesis condi-
tions, such that the accuracy of networks is not hampered by
mislabeled data.
Generating accurate models from erroneously labeled datasets,

also known as noisy datasets in the machine learning community,
has been an expanding area of research. Deep learning is known
to be able to memorize random inputs during training18, and thus
has the potential to memorize random label errors. What makes
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true learning, and thus generalizability, possible is that before
memorizing real data, repeated motifs within the data are learned
by the network19. Networks can therefore recognize predictive
features without directly memorizing inputs. Deep neural net-
works are thus able to learn the true signal from datasets with
100:1 erroneous to true labels20. To further extend the label error
tolerance of deep neural networks several strategies have been
implemented. These methods can be broadly separated into four
types of approaches: (1) label error robust techniques20–22, (2)
label error reduction methods23,24, (3) label error estimation25,26,
and (4) preprocessing pipelines27. This paper will focus on label
error robust and label error reduction strategies. Previous research
into these methods focuses on how these methods perform on
very large datasets of real images with a large number of classes.
Microscopy data, in contrast, contains fewer classes but also much
smaller datasets than standard computer vision datasets.
To test the influence of label error in a controlled manner, we

create an idealized dataset where only the handedness of the
particle is correlated with label error. To create the idealized
dataset we take a manually, accurately labeled dataset of all right-
handed particles and mirror a certain fraction of particles to create
the specified label error fraction as is described in Fig. 1, so that
we can model different possible synthesis outcomes. We use these
idealized datasets to test the performance of several neural
networks when trained with the various label error rates. To test
whether the networks will perform in the same way with real label
error, we then also test the neural networks on as-synthesized
micrographs of left and right-handed particles. We then examine
the three neural networks’ performance on the idealized and real
label error datasets.
In this work, we focus on label error robust and label error-

reducing methods that do not require the creation of a large
labeled dataset or other supervision. First, we examine the
performance of a standard convolutional neural network (CNN).
The architecture for the network is shown in Fig. 1a. It consists of
two convolutional and max-pooling blocks with a final dropout
and dense unit. We compare this standard CNN to the co-teaching
training procedure developed by Han et al.24. The co-teaching
method uses the difference in loss between two networks trained
in tandem on the error-containing dataset to remove incorrectly
labeled data. The cleaned dataset is then used to train its partner
model. This process of cleaning and trading datasets is then
repeated. For consistency, the two tandem networks used in our
study of co-teaching consist of the same architecture as the
standard CNN we tested, as shown in Fig. 1a. A schematic of the
co-teaching training procedure is provided in Fig. 1c. Finally, we
propose a new method inspired by label error estimation and

curriculum learning28–31. In this two-step training method, we use
a very small label error-free dataset to start network learning
before training on the dataset with label error. The neural network
architecture is the same as the standard CNN shown in Fig. 2a and
the training procedure is illustrated in Fig. 2b. This new two-step
method leverages the memorization effect, in order to push
networks toward learning relevant features even at high error
rates32 while avoiding data loss by removing incorrect labels.
From these experiments, we show that, for the idealized

datasets, the label error-reducing and co-teaching strategies
achieve similar accuracy rates, but that co-teaching method leads
to the most consistent results across label error rates. We find that
if label error is correlated with variations in particle appearance

Fig. 1 The mirror labeling scheme used for data labeling with sample images. a Schematic demonstrating the mirror labeling procedure by
which training datasets are automatically labeled and the error rate in the dataset is controlled on the MNIST seven dataset. b Examples of
images for both classes from the chiral nanoparticle datasets. Scale bars, 100 nm.

Fig. 2 Schematics for the three methods studied. All networks use
the architecture shown in part a. a Schematic of convolutional
neural network architecture implemented with features by height
and width labeled. b Schematic of the two-step training procedure.
Randomly instantiated network is trained for one training round, i.e.,
epoch, using error-free data before network weights are transferred
and trained using the dataset with label error. c Schematic of co-
teaching training procedure. Two networks are trained in parallel
and after each training round the labels judged as erroneous are
removed by only passing data with low enough loss to the twin
network.
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besides chirality, as is found in the as-synthesized dataset, only the
co-teaching method maintains high accuracy. We hope the
exploration of these methods will enable the wider application
of weak labeling and therefore deep learning for the chiral
materials community and the materials community more broadly.

RESULTS
Analysis methods
For each technique, we assessed the network’s performance on an
error-free ground truth test set with 50% left and right-handed
images after being trained on datasets with different label error
fractions. We also analyzed the distribution of error between the
two classes by plotting the histogram of incorrectly labeled left-
handed particles and a number of incorrectly labeled right-
handed particles in the test dataset. Dramatically misclassifying
one but not the other label could lead to a significant skew in the
calculated ratio between classes, a metric that is very important in
studying chirality. We finally evaluate the ability of the networks to
recover the fraction of particles belonging to the minority
population, to simulate the use of these methods for data from
real synthesis procedures. To analyze the ability to accurately
recover the minority population, we use a test set that has the
same mislabel fraction as the training set. Using this second test
set, we plot f ðxÞ ¼ nleftðxÞ

ntotal
, where x is the mislabeled fraction of the

training set, nleft(x) is the total number of particles labeled left
handed by the network for that test set, and ntotal is the total
number of particles in the test set. All networks were trained on
datasets containing label error. The label error generation process
is outlined in the Methods section and illustrated in Fig. 1a. For
each method, we trained three separate networks using that

method and plot the average performance metric and the
standard error.

MNIST sevens
Standard convolutional neural network. Before testing our three
label error robust neural network approaches, we first tested a
standard convolutional neural net’s ability to learn to classify chiral
images in the presence of varying amounts of label error using
images of the number seven from the MNIST dataset. The training
set for the model contained 10,024 images and the test set 1258
images. The architecture used is shown in Fig. 2a. Figure 3a shows
that a standard CNN can learn the classes accurately up to 42%
label error. Figure 3b shows the percent of misclassified particles
that were left handed vs right handed demonstrating that there is
minimal bias, in terms of handedness, in the classification error as
well. Figure 3c shows that, given an enantiomerically skewed
population, the neural network trained with the corresponding
amount of label error is able to correctly predict the fraction of
sevens that have that minority handedness. All these metrics
suggest that the mirror labeling procedure works and even a
standard CNN can handle the label error presented.

Application to idealized datasets of Te chiral nanoparticles
Standard convolutional neural network. We then applied the
same mirror labeling and training protocol from the MNIST dataset
to the SEM images of chiral Te nanoparticles. Sample images of
the chiral particles are shown in Fig. 1b and in Supplementary Figs.
1–3. The training set for the chiral nanoparticle models contained
3062 images, before augmentation, and the test set 382 images.
Further information on augmentation is presented in the Methods
section. Although it is possible there are structural differences
between the left and right-handed populations, the data were

Fig. 3 Figures quantifying the performance of the standard CNN on the MNIST training sets. a Accuracy of standard CNN on the MNIST
seven error-free ground truth test set given increasing error in the training set. b The percent of sevens erroneously labeled as left or right
handed in the test set. c Percent of left-handed sevens in a population predicted by a network that was trained with data containing that
percent of lefts. Error bars are obtained by training each architecture multiple times and then calculating the standard error on the accuracy of
the test set by the multiple versions of the network.

Fig. 4 Figures quantifying the performance of the three methods on the Te training sets. a Average accuracy of networks from each
technique on the error-free ground truth test set of Te SEM data given increasing label error in the Te training set. b The percent of right and
left-handed particles that are misclassified by each network. c Predicted fraction of left-handed Te particles for a population with a specified
percent of left-handed particles using the network that corresponds to training with that percent of left-handed particles. Error bars are
obtained by training each architecture multiple times and then calculating the standard error on the accuracy of the test set by the multiple
versions of the network.
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augmented to ensure that handedness was not correlated with
arbitrary image features such as illumination. For the standard
CNN on SEM images, the error-free test set accuracy begins to
degrade after 10% label error, as can be seen in Fig. 4a.
Reasonable accuracy is still recovered up to 30% label error. In
order to examine the maximum amount of label error that can be
handled, we increased our sampling close to 50% flip error—close
to random labeling. Figure 4b gives the percent of misclassified
particles that were left handed vs right handed. This shows that
the network on average is rather inconsistent in whether it
misclassifies one handedness more than the other at high label
error. Figure 4c shows the ability of the network, for an
enantiomerically skewed population, to recover the correct
fraction of the mislabeled portion of the population. The standard
CNN is able to accurately predict the fraction of the minority
population (and therefore mislabeled in the training set) up to
40% label error.
Accuracy results for different label error rates using the co-

teaching training method are shown in Fig. 4a. We see that at very
low label error the standard CNN achieves higher accuracy than
co-teaching. However, the co-teaching method is able to achieve
much better accuracy than the standard CNN when the label error
increases past 10%. One benefit of the co-teaching network is that
from 0% to approximately 40% label error the recovered accuracy
is very consistent. One promise of the co-teaching network is that
datasets with large amounts of label error can still be used for
accurate training. However, in Fig. 4a we see that there are still
limits on the amount of label error that can be tolerated. We still
observe a dramatic reduction in accuracy beyond 40% label error.
As shown in Fig. 4b, the co-teaching network does not misclassify
one handedness more than the other at low label error rates, but
at label error rates above 42% the network appears to be
significantly over-predicting left-handed particles. This skew in
misclassification is also reflected in the fraction of left-handed
particles detected. Figure 4c shows that the co-teaching networks
on average, badly underestimate the number of minority handed
particles past 42% label error.
Similar to co-teaching two-step training creates a network that

performs well up to about 40% label error. Co-teaching and the
standard CNN sometimes slightly outperform the two-step
method in terms of accuracy but the two-step training creates
perhaps the most consistent results. This is reflected in the fact
that the two-step training procedure leads to the most consistent
detection of minority particles. Unlike the other methods, it does
not drastically over- or underestimate the population of left-
handed particles at any point, as seen in Fig. 4c. This is a
consequence of the fact that the training procedure does not lead
to a high bias against one class or the other at any training label
error, as can be seen in Fig. 4b.

Application to as-synthesized particles
To assess performance on real data, we applied these methods to
a dataset of as-synthesized Te particles. The difference between
the as-synthesized and ideal case is that in the ideal case we start

with all right-handed particles so all “left-handed” particles are
mirror images of right-handed particles. The as-synthesized
dataset is made up of particle images from a sample that
contained 22% left-handed and 78% right-handed particles. The
preparation of these particles can be found elsewhere5. We
created a training set of 2461 particle images. The mirror labeling
procedure was then used without the error creation step, since
left-handed particles are now part of the sample. The results are
shown in Table 1. The performance of the standard CNN and two-
step training procedure does not match that obtained with the
ideal dataset. We see that the standard CNN and two-step training
procedure fall short of acceptable accuracy. Only the co-teaching
method maintains high accuracy.

DISCUSSION
Performance comparison between MNIST and nanoparticle-
trained neural nets
A comparison of the accuracy on the error-free test set indicates
that the application of a CNN to the MNIST data results in higher
accuracy across most error levels than the results from training
with the chiral nanoparticle dataset. The accuracy of the network
compared to the chiral nanoparticle dataset suggests that the
network is fitting a simpler feature space than the chiral
nanoparticle case. It should be noted that the MNIST input image
is much smaller than the Te, meaning that by keeping the network
size the same we have more convolutional kernels relative to the
number of pixels in the MNIST network. In addition, to the human
observer, it is easy to see that there are only a few prototypical
examples for a number seven in the MNIST dataset and few
deviations from these prototypes. By inspecting data in Fig. 1a, b,
it is clear that while most parts of the seven images contribute to
the chiral shape, the chiral particles have many features which are
unrelated to the chirality of the particle. In fact, only the center
facets of the chiral particles determine a particle’s handedness.
Therefore, since we have held all hyperparameters constant while
training on each dataset, it is reasonable to interpret at least part
of the difference in accuracy is due to the difference in richness of
the feature space. Furthermore, learning a more complex feature
space with fewer features actually contributing to the classification
task is likely the reason for the lower accuracy of CNN trained on
the chiral nanoparticle dataset.
The limited feature space of the MNIST dataset vs the chiral

nanoparticles was by design, for the purpose of comparing label
error robustness of the network when applied to datasets with
and without “hard examples”, those samples which are harder for
the network to learn. This was important to consider since
previous work has found evidence that CNNs treat hard examples
and label error in a similar fashion18,33. By proving the label error
robust nature of our proposed standard CNN on the MNIST
dataset, we could isolate any challenges when applying the same
mirror labeling scheme to actual chiral materials which have many
more possible representations. We hypothesize that this increased
feature space is responsible for the lower performance of the
networks on chiral nanoparticle data, particularly the standard
CNN, in the presence of high label error compared to the network
trained on MNIST. This comparison highlights that label label error
robust properties of standard neural networks are heavily
dependent on the richness of the feature space.

Comparison of label error robust architectures and training
procedures on ideal SEM data
Our results on the ideal SEM dataset suggest that the best method
to employ depends on label error and the type of error tolerated.
In general two-step training and co-teaching show enhanced
robustness to label error, as they achieve a high classification
accuracy, until approximately 40% label label error and above.

Table 1. The average accuracy and standard error on the error-free,
as-synthesized balanced test set for each of the three techniques.

Average accuracy as-synthesized

Standard CNN 0.65 ± 0.02

Two-step training 0.67 ± 0.03

Co-teaching 0.915 ± 0.003

The as-synthesized test set contains an equal number of left- and right-
handed particle images.
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The standard CNN does not demonstrate the same label error
robustness as the other two methods. This deviates from the
results of the standard CNN on the MNIST sevens and suggests
that for the more complex feature space presented by the Te
dataset, the label error robustness of a standard CNN is not as
consistent.
Co-teaching provides a way to explore label error-reducing

methods. For very low label error the co-teaching achieves the
lowest accuracy, which is likely connected to throwing away hard
examples during training18,33. However, as training error increases
co-teaching becomes the most accurate training method. How-
ever, once training label error is too high the accuracy of the co-
teaching method rapidly deteriorates and shows strong skew in
which handedness is misclassified, unlike the two-step method
that declines in accuracy but does not show an increase in
misclassification skew. It is likely that since the co-teaching
method includes no prior knowledge about left and right-handed
representations, past a certain label error rate it is no longer able
to distinguish the label error from variations in handedness,
therefore causing its performance to plummet.
The two-step method achieves almost the same level of

accuracy as the standard CNN at low training label error but is
also able to sustain high levels of accuracy with more than 40%
label error like the co-teaching method. This improved perfor-
mance at high label error is interesting because we do not use this
data to infer any extra information or weighting schemes when
training on data with label error unlike some other pretraining
methods28,31. To our knowledge, other work in this field has used
small supervised training sets to train label error estimation layers
and other corrective measures but not as a transfer learning
procedure to initialize the network. The results we present,
therefore, suggest that benefits can also be reaped by utilizing
curated, tiny, manually labeled datasets to help the network learn
the correct relationships between key features. We hypothesize
that the two-step method is exploiting the fact that networks are
prone, in early training rounds, to learn simple features as
opposed to memorizing data19,32. While we rely on the early
training rounds learning easy representations from the tiny
dataset to direct learning class features correctly, it is likely that
by initializing the network with a very small dataset, we are
limiting representations the network is sensitive to. This points to
an inherent tradeoff in the two-step method between labeling
requirements and generalization, which should be explored in
future work. Limiting the initial representations learned may also
explain why we achieve slightly lower accuracy when training
label error is low.
The difference in the misclassification bias between the co-

teaching and two-step method is what truly distinguishes these
two techniques under the presented conditions. Previous work
has shown that pretraining a network with an unsupervised
dataset leads to better generalization due to the pretraining
acting as regularizer34. Though we use a supervised training set for
pretraining, the difference in misclassification bias between the
two networks supports that particularly at high levels of training
label error, the first training round is constraining the network to
more balanced learning. This observation is a key finding for the
application proposed since being able to consistently recover
handedness ratios is vital for understanding the influence of
synthesis parameters on the development material handedness.

Comparison of ideal to as-synthesized dataset
The difference in the performance of the three methods on the
ideal dataset versus the as-synthesized dataset highlights the
importance of the alternate features present between the as-
synthesized left and right-handed particles. Analyzing the as-
synthesized images (shown in the Supplementary Fig. 3), it is
evident that the growth that led to minority left-handed particles

in the sample also caused those left-handed particles to have a
smaller chiral facet. The particles are also smaller overall.
Therefore, in the as-synthesized case, we not only have a
complex feature space to learn, but also image features that are
directly correlated with the label error. This feature-correlated
label error clearly has implications for the methods explored. The
fact that augmentation did not enable learning in the standard
CNN and two-step training method suggests that there are other
aspects of particle shape and contrast that are correlated. Overall,
these results indicate that when label noise is correlated with
other feature variations, the co-teaching approach is the best
method out of those considered here. The features that
distinguish the minority class (and therefore mislabeled data)
may in fact contribute to the success of the co-teaching method
since these features could be learned and therefore excluded
improving the performance. Future work will need to be
cognizant of these differences between ideal datasets and their
actual application.

Implications for experimental applications
The as-synthesized analysis shows that for most experimental
applications the co-teaching method is the best approach. The as-
synthesized dataset had 22% minority handedness present
corresponding to 22% label error. This is a relatively high label
error and suggests that the co-teaching method would be able to
handle experimental conditions5, even if there are structural
differences between the left and right-handed populations. If the
samples are true enantiomers and therefore only vary by a mirror
operation, as in the ideal dataset, then there are two clear use
cases that require choosing between these networks for practical
applications of the mirror labeling approach in the chiral
nanomaterial community. For synthesis routes where one
handedness is much more favored than the other, training a
standard CNN is most likely to yield the most accurate population
statistics because under this condition our mirror labeling
technique will yield low label error. For chirality studies where
synthesis conditions lead to a more balanced set of left and right-
handed particles, and therefore higher label error, the two-step
neural network is the best option since this network provides
accurate results and little bias in class prediction across
populations.
There are several use cases for the three methods developed

here. The automated mirror labeling system described can be
used not only in the realm of SEM chiral image analysis, but for
any imaging method where the chiral structure leads to
geometrically related images. Outside of chirality classification,
the label-error robust methods developed have a wide range of
possible use cases across the microscopy community.
In summary, these results give insight for leveraging automatic

labeling systems such as ours on other microscopy datasets. We
see automated labeling as a potential avenue for analysis in the
chirality community but also among other materials where
datasets are too large to realistically be manually labeled. We
have shown the tradeoffs between the richness of the feature
space and label error robustness of CNNs, which should be taken
into account when using these techniques for other studies. We
have shown that both label error robust and label error-reducing
methods perform well for small datasets. However, we find that
both two-step training and co-teaching far outperform the
inherent label error robustness of a standard CNN. For practical
applications, the co-teaching method far outperforms other
methods. These results point to the conditions under which these
methods should be applied.
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METHODS
Dataset generation
Datasets of known label error (known percentages of mislabeled images)
were generated by starting with an error-free dataset of right-handed
images. Particles were segmented by hand using MATLAB data labeler
software prior to dataset generation. A set percentage (varying from 0 to
50%) of the images was randomly selected and mirrored, as shown in Fig.
1. All images in the dataset were then labeled as having right handedness.
Then, all the images were mirrored, creating a dataset in which all images
are labeled as left handed. This procedure ensures that the specific fraction
would always be facing the opposite direction from its label. All image
augmentation for training was performed after this operation. We applied
this method to two datasets. The first was the number 7 samples from the
Keras implementation of the MNIST dataset. We chose to use the number
7 since it is a chiral shape. The second dataset consisted of right-handed Te
chiral nanoparticles that were manually segmented and labeled by an
expert. The complete dataset consists of 1914 right-handed particles that
are mirrored to create a set of 3828 total left and right-handed
nanoparticle images. In all, 80% of the data is used in the training set,
10% in the validation set, and 10% in the test set. During training, the
images are augmented using a combination of 180° rotations, 5° rotations,
up to 30% zoom of the image, and 10% shearing. The augmentations are
used to create a dataset of 91,840 images per epoch (training round) for
training Keras networks, and 97,984 images for PyTorch networks. The
difference in the number of images is due to differences in augmentation
implementation between Keras and PyTorch.

Standard convolutional neural network classifier
The neural networks were developed with Keras. A simple CNN was
implemented for both the MNIST and Te nanoparticle datasets; which
contained two convolutional residual units, a schematic is shown in Fig. 2a.
Each residual unit contained the convolutional layer, a ReLu layer, and a
max-pooling layer. After the residual units, the features are flattened, and
passed to a dense layer, dropout, and final dense layer. The logits from the
dense layer are then passed to a softmax activation function. Training was
done with a categorical crossentropy loss function, and adadelta optimizer.
The learning rate was 0.001, the batch size was 32, and ran for 100 epochs.
Model checkpointing was used so that model weights were only saved if
the validation loss had decreased.

Two-step training classifier
The network implemented for two-step training was also developed with
Keras and employed the same neural network architecture as the standard
CNN. A schematic is shown in Fig. 2b. The training of the network consists
of two distinct steps. First, the network is trained on an extremely small set
of images with error-free labels. For this first step, we used ten left-handed
particle images and ten right-handed particle images, which are
augmented to represent 288 samples per epoch. The network is trained
on the tiny, error-free training set for ten epochs. The network is then
trained in the same way as the standard CNN for 100 epochs.

Co-teaching classifier
Networks were developed using PyTorch. The code and procedure were
adapted from work done by Han et al.24. The co-teaching method creates
two identical CNNs. Two separate batches of data are given on each
network for training. The data whose loss is below a certain threshold then
get passed to the other network for training and the data above are
removed24. A schematic of the procedure is shown in Fig. 2c. In this way,
incorrect labels are removed, under the assumption that data with
incorrect labels will lead to higher loss. The architecture of the two CNNs
was changed to match the CNN architecture used in the Keras-based
handedness classifier. The only difference was the addition of an average
pooling layer to compensate for differences in layer implementations. The
models were trained on the same dataset. The learning rate was 0.001, the
batch size was 128, and the maximum number of epochs was 40.

Image acquisition
Tellurium nanoparticles suspended in an aqueous solution were
dropcast onto a silicon wafer. Micrographs were acquired on FEI Helios
G4 UX at 2 kV using a through-lens detectors with a working distance of
2 mm. Images were collected using Maps 2.5 Software, which collected a

grid of approximately 1200 images of collections of nanoparticles
(approximately 1400-by-900 pixels each). This large-scale acquisition was
stitched together using the same Maps 2.5 software. Nanoparticles were
manually segmented from the larger images to make the small input
images for the neural networks. Sample images are provided in
Supplementary Fig. 2.

Synthesis of Te nanoparticles
The synthesis follows a methodology developed by Ben-Moshe et al.4, with
some modifications. 5.5 ml water, 15mg TeO2, and 20 μl NaOH (1M in
H2O) were stirred vigorously in a 20ml glass vial (at room temperature),
before 2.5 ml of hydrazine hydrate (80% solution) were added in one go.
Then, 25 s after the addition of hydrazine, 1 ml of a 100mM solution of
D-penicillamine (adjusted to pH 11 using NaOH solution) was added in one
go. The reaction was stopped after 3 h, by diluting twice with a 100mM
SDS solution, followed by repeated cycles of cleaning using centrifugation
(6000 RPM, 10min) and dispersion in water.
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