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Abstract

This paper considers the modeling of torsion in elastic shafts accounting for
the non–uniform warping of their cross sections. In particular, it studies
(1) the original formulation of Timoshenko-Wagner-Kappus-Vlasov, consist-
ing of the underlying Saint–Venant torsion but with a non–constant rate
of twist driving the warping, (2) the alternative formulation first proposed
by Reissner-Benscoter-Vlasov involving an independent field for the warping
amplitude, and (3) a mixed treatment with the axial strain and stress result-
ing of the restrained warping, extending an early idea of Reissner. In fact,
the paper presents a new structural mixed formulation of restrained warping,
with its complete numerical evaluation comparing it with those previous for-
mulations and with full three–dimensional solid finite element solutions. To
this purpose, the model problem of a prismatic linear elastic shaft is con-
sidered, with different cross sections topologies, including solid and thin–
walled, the latter for both open and closed (hollow) sections. The whole
treatment accounts for general distributions of the material, hence including
composite sections, a case also considered in the numerical evaluation. The
appropriateness of the newly proposed mixed formulation is concluded.
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1. Introduction

The torsion of shafts and, in a more general sense, of bars, beams, rods or
columns is a problem of great practical importance whose understanding goes
back to the fundamental work of Saint–Venant in Saint-Venant [1855]. In
these early days of modern elasticity theory, Saint–Venant considered a pris-
matic/cylindrical three–dimensional solid and studied its deformation and
state of stress, the so–called Saint–Venant problem, through what is now
known as Saint–Venant semi–inverse method. In this way, he identified the
warping of the shaft’s cross section out of its plane as a main characteristic
of the torsion part of the problem for a general geometry of the cross section,
extending in this way the early results by Coulomb [1784] on the torsion of
thin circular wires, where warping does not occur. We limit our comments
and considerations in this paper to isotropic elastic solids in the infinitesimal
deformation range.

The resulting problem and its solution is now well–known, covered in all
textbooks on (or even just related to) elasticity theory; see e.g. Timoshenko
& Goodier [1951], Sokolnikoff [1956], Oden & Ripperger [1981] to
cite just a few classical references. The solution consists of the shaft’s plane
cross sections rotating without distortion in their plane, the twist rotation
around the shaft axis, with the section’s warping displacement along this
axial direction proportional to the rate of this twist rotation along the shaft
length. The actual distribution of this warping displacement on the cross
section itself is given by the so–called Saint–Venant warping function, an
harmonic function on the plane domain defined by the cross section. We
refer to this solution simply as Saint–Venant torsion.

This original solution received a great deal of attention leading to a num-
ber of refinements and extensions, among which the classical treatment by
Prandtl in Prandtl [1903] in terms of the alternative stress function and
the well–known membrane analogy must be pointed out. This allowed the
easy treatment of important practical cases like thin–walled sections where
the effects of torsion are significant in general, as studied in Föppl [1917]
for thin–walled sections with open (or simply–connected) topology, and in
the classical work of Bredt [1896] for closed (or multiply–connected) hollow
sections. In both cases, away from any wall ends, junctions or kinks, the
dominant stress component follows the direction of the wall middle line, but
the first case of open sections is known to lead in the limit of thin walls (i.e.
neglecting second order terms as in Popov [1970]) to a linear distribution of
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the shear stress through the thickness (centered so it vanishes along the wall’s
middle line), whereas closed hollow sections result in a constant distribution
instead. We refer to Zbirohowski-Koscia [1967], Gjelsvik [1981] among
others for monographs focused on thin–walled beams.

In Saint–Venant torsion, equilibrium considerations require the rate of
twist giving the amplitude of the section’s warping to remain constant along
the shaft length. This situation implies not only that no normal axial stresses
appear (so only shear stresses on the cross section are involved), but it also
restricts the exactness of this three–dimensional solution to configurations
involving such uniform distribution of the warping along the length of the
shaft. In particular, no supports restraining the warping of the section can be
accounted for. The restrainment of the warping (by the supports, stiffeners
or otherwise) creates a non–uniform distribution of this axial displacement
of the cross sections along the shaft and, hence, it leads to normal axial
strains and stresses, resulting in a different structural response of the shaft.
Given the practical interest of these configurations, this clear limitation of
pure Saint–Venant torsion, although local to those restraining conditions,
motivated the development of extensions of this theory accommodating a
non–uniform warping along the shaft, leading to the so–called torsion with
restrained warping or simply, as it is often called in short, warping torsion,
notwithstanding that the original Saint–Venant torsion does involve warping,
even if just a uniform one; see e.g. Connor [1976], Oden & Ripperger
[1981], Pilkey [2002], Salmon et al. [2009] among many references in the
field, including professional manuals like Seaburg & Carter [1997].

With this background in mind, the main objective here is to develop a
structural model of the shaft (or, more generally, rod or other structural
members in torsion) that incorporates the effects of restrained warping. The
most important aspect in accomplishing this goal is to develop an appropriate
approximation of the warping displacement of the cross sections, crucially
identifying its link with the twist rotation of the cross sections along the
shaft. In the process, the considered arguments must also identify both
the normal and shear strains and stresses involved in the approximation, as
well as the resulting properties of the structural member like its flexibility,
altogether pointing to the adequacy of the formulation based on the assumed
approximation.

Historically, early treatments accommodating restrained warping in tor-
sion were presented by Timoshenko in Timoshenko [1905, 1906, 1910], with
a focus on thin–walled sections and, in particular, on the observed bending
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of the flanges in these sections when warping is restrained; see the case of an
I-beam discussed in Timoshenko & Gere [1961], page 213. These early
analyses were later extended and formalized by Wagner [1936] and Kap-
pus [1938], where the main assumption underlying the final formulation was
identified as simply assuming a non–constant rate of twist in the Saint–Ve-
nant torsion solution, including the use of that same harmonic Saint–Venant
warping function over the cross section. These considerations are usually
referred to as the Wagner assumption; see e.g. Goodier [1942], Gjelsvik
[1981]. Hence, and as we explore in detail in this work, the amplitude of the
warping is constrained to be the rate of twist of the cross sections along the
shaft: a kinematic constraint in our point of view here.

Even if this may not be a correct solution for the three–dimensional elas-
tic problem, it is a valid starting point for an structural model of torsion in
shafts, although it may result in anomalies, especially when comparing the
resulting state of stress with the full three–dimensional one. Indeed, if stre-
sses are proportional to that rate of twist because it defines the amplitude
of the warping displacement, restraining the warping to vanish may lead to
both vanishing stresses and its resultants (like the resultant torque), a situ-
ation sometimes referred to as the torque anomaly, and discussed in Section
2.2 below. As shown in Section 3.2, the structural formulation of warping
torsion considered so far resolves this anomaly, at least partially, by the ap-
pearance of additional (warping or, sometimes also called, secondary) shear
stresses arising from the Wagner assumption when viewed as a kinematic
constraint. With the non–uniform warping, the characteristic normal stre-
sses on the cross sections appear. These warping shear and normal stresses
are self–equilibrated, but lead to new stress resultants, the so–called bishear
(or warping torque) and bimoment.

Additional important contributions for this treatment of restrained war-
ping were made in Goodier [1942], Kármán & Christensen [1944], Vla-
sov [1961]. This last monograph has had, in particular, a great influence in
the field. Interestingly, Vlasov considered a different starting point when
analyzing open thin–walled sections under torsion, namely, the vanishing of
the shear strain between the local tangential direction to the wall’s middle
line (the idealization of the thin–walled section) and the axial direction of
the shaft. This assumption/approximation is often referred to as the Vlasov
assumption. Note that this situation is consistent with the centered linear
distribution of the shear stress through the thickness indicated above for
open thin–walled sections. This assumption can be seen to lead to the same
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kinematics encompassed by the Wagner assumption (see Gjelsvik [1981]),
and it leads to an elegant treatment for thin–walled sections, incorporat-
ing the consideration of the so–called sectorial coordinate along the section’s
middle line. This approach gives convenient explicit expressions for thin–
wall limit estimates of the different section constants involved in the tor-
sion problem, to the point that it has become an standard treatment in the
field. Besides the excellent monograph by Vlasov itself, we refer to Oden &
Ripperger [1981], Zbirohowski-Koscia [1967], Gjelsvik [1981] among
other volumes considering these developments in detail. Because of all these
historic considerations, in this work we refer to this first approximation of
torsion with restrained warping as the TWKV formulation for Timoshenko–
Wagner–Kappus–Vlasov.

Given the above argument linking the vanishing of the shear strain and
stress along the wall middle line with the basic kinematic assumption un-
derlying the TWKV formulation, we can see that this formulation may be
well–suited for open thin–walled sections, at least in the thin limit, but not
so for closed (hollow) thin–walled sections given their aforementioned differ-
ent state of stress in basic Saint–Venant torsion and, similarly, for general
solid/hollow sections. Still, one may also treat closed thin–walled sections
with extensions of the considerations above, involving also the sectorial co-
ordinate along the middle line while accounting for the constant shear flow
through the thickness observed in the thin–wall limit for these sections; see
e.g. Gjelsvik [1981], and references therein.

Nevertheless, a clear alternative is provided by leaving the parameter con-
trolling the amplitude of the restrained warping as an independent field along
the shaft, sometimes in combination with distributions over the cross section
itself different that the harmonic Saint–Venant warping function. This more
general approximation based on an independent warping field was indeed
considered early by Reissner in Reissner [1952] as a general option, by
Benscoter in Benscoter [1954] for multicell sections, and again by Vlasov
in Vlasov [1961] for general solid and closed sections. Hence, we refer to
the resulting formulation as the RBV formulation in this work. The direct
link (or constraint) between the amplitude of the warping displacement and
the rate of twist along the shaft is then relaxed. This more general treatment
of restrained torsional warping makes this formulation also very appealing
for the incorporation of torsion in general models of beams and rods. This is
especially the case in the geometrically nonlinear range, with a marked inter-
est in accommodating it in computational models, as illustrated by Simo &
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Vu-Quoc [1991], Gruttmann et al. [2000] to name just two more recent
works.

We refer to both the TWKV and RBV as direct formulations since they
involve a single field (“displacement–like”) variational functional approximat-
ing the restrained warping displacement directly. Alternative approximations
are possible. For example, Reissner indicated in that cited early work Reiss-
ner [1952] a possible mixed treatment of the problem at hand, considering
a mixed variational principle of the generally non–uniform warping displace-
ment and the resulting normal axial stresses. As he actually indicates in the
introduction to that paper, this idea was presented as an illustration of his
recently developed (at the time) mixed variational principle in elasticity, a
principle known now as the Hellinger–Reissner variational principle; see e.g.
Washizu [1982] for a full account in the context of other problems in elas-
ticity. He did not elaborate on several details of the resulting formulation for
the torsion problem (e.g. specific distributions of the warping, cross section
stresses and stress resultants,...) nor did he evaluate it for different shaft
configurations. We cannot find any reference to this particular proposal in
his later work on the subject (e.g. Reissner [1983] and references therein),
nor in any other author’s work for that matter.

It is precisely the main goal of the work presented here to explore an al-
ternative mixed treatment of restrained warping in the torsion of shafts and
to evaluate it in comparison with the two early approximations described
above, namely, the TWKV and RBV formulations. Specifically, we propose
new Hu–Washizu type mixed formulations, not relying on the complementary
energy of the material model needed in that Hellinger–Reissner treatment;
see again Washizu [1982] for general ideas on this type of variational treat-
ment. We consider such approach first in a three–dimensional setting, with a
general distribution of the axial displacement in the 3D shaft, allowing us to
identify the consequences on the kinematics of the shaft’s deformation that
a particular mixed (assumed) form of the axial strain and stress has. In this
way, we discover an enriched form of the warping displacement itself, allow-
ing a varying form of the section distribution of the warping along the shaft,
in contrast with the kinematics encompassed by both the TWKV and RBV
formulation, both showing a fixed form of the distribution of the warping
displacement over all the sections of the shaft. The insight gained by these
considerations allows us to develop a new fully structural mixed formulation
of restrained warping, a formulation that shows a better resolution of this
phenomenon for all sections topologies, as demonstrated by the numerical
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evaluations considered in this work.
In addition, we want to study the constrained character of the original

TWKV formulation identified above, and fully characterize how both the
RBV and mixed formulations relax the involved constraint. The develop-
ments presented here show that the TWKV formulation leads to an over–
stiff prediction of the shaft’s response, especially for solid and closed (hollow)
sections, precisely because of its constrained character. Similarly, our results
show that the widely–used RBV formulation leads to a less stiff response
of the shaft for general section topologies, relaxing that constraint but, as
shown here, by considering incorrect shear stresses over the cross section
in the sense that they are not in equilibrium. The newly proposed mixed
formulation will be shown to accomplish a much better structural response
when compared with full three–dimensional finite element simulations of the
solid at hand, while providing correct (equilibrated) section stresses. This
improved performance is particularly pronounced for shafts with solid and
closed thin–walled sections where the three formulations lead to significant
differences. Even for open thin–walled sections, the use of the new mixed
formulation is also motivated, as it occurs with the RBV formulation, by the
freedom gained with the introduction of additional warping fields, reducing
the order of the governing boundary–value problem when compared with the
original TWKV formulation and, thus, making this treatment very appealing
in those more recent works involving general geometrically nonlinear exten-
sions with their computational implementation, as noted above. Even though
this extension is not explored in this paper, a main motivation in considering
the new and more general mixed formulation of retrained warping presented
here is the adequacy of this type of formulations in the general nonlinear
range. We plan to explore that extension in future publications.

An outline of the rest of the paper is as follows. Section 2 introduces
the basic problem of a linear elastic prismatic shaft in torsion. More specifi-
cally, Section 2.1 includes a complete definition of the physical problem under
study, with Section 2.3 presenting the Saint–Venant solution of torsion with
uniform warping, after considering the case of general warping and its asso-
ciated anomalies in Section 2.2. The center of twist, ubiquitous in all the
considerations in this work, is discussed in Section 2.4. Section 3 presents the
TWKV formulation of restrained warping, identifying the governing equa-
tions in Section 3.1, and with Section 3.2 analyzing the role played by the
additional stress resultants, the aforementioned bimoment and bishear, over
the basic torque of Saint–Venant torsion in defining the warping and total
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stresses. Section 4 considers the RBV formulation, developing the governing
equations in Section 4.1, with Section 4.2 identifying the limit process leading
to the original constrained TWKV formulation. The aforementioned incor-
rect shear stresses predicted by this formulation are studied in Section 4.3.
The newly proposed mixed formulation of restrained warping in torsion is
developed in Section 5. After presenting the mixed treatment in Section 5.1
for a general three–dimensional distribution of the warping displacement, we
develop in Section 5.2 the newly proposed mixed formulation involving only
structural fields along the shaft as fundamental generalized displacements.
There we fully characterize the distributions of the torque, bishear and bi-
moment predicted by the new theory, as well as present complete details of
the stresses involved at the cross section level. This allows us to identify
in Section 5.3 the limit process by which the original TWKV formulation is
recovered as the constrained limit from the proposed mixed formulation.

The evaluation of all these theoretical considerations is undertaken in the
context of the model problem of a straight linear elastic shaft with a con-
stant cross section, subjected to an imposed torque/twist rotation at its tip
while the section at the opposite end is being kept fixed in both rotation
and warping. This model problem is studied in detail Section 6, obtaining
closed–form exact solutions for the above three different formulations, all
depending of the section constants appropriate for each formulation. We
obtain complete expressions of the resulting shaft’s flexibility as well as the
section stresses, the latter depending on the warping functions associated
to the particular cross section under consideration. This setting allows the
full numerical evaluation of the different formulations, obtaining those war-
ping functions and the resulting needed section constants via finite element
simulations on the cross section. We include specific remarks to this task in
Appendix A. This numerical evaluation is presented in Section 7, considering
solid (rectangular) cross sections in Section 7.1, open thin–walled (channel)
cross sections in Section 7.2, closed thin–walled (box) cross sections in Sec-
tion 7.3, and multi–cell cross sections in Section 7.4. All the developments in
the paper consider linear elastic response for the material but not necessarily
homogeneous, with general spatial distributions of the inhomogeneity. This
aspect is illustrated in Section 7.5 which includes the analysis of a composite
cross section. All these evaluations are carried out comparing the different
formulations under study among themselves and with full three–dimensional
finite element simulations of the elastic solids. This allows to draw a number
of conclusions on the properties and overall adequacy of the three different
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formulations of restrained torsional warping under study in Section 8.
Since the consideration of thin–walled sections is of clear practical impor-

tance, we provide in Appendix B a complete evaluation of thin–wall estimates
for the different torsional constants involved in the considered formulations.
This includes new torsional constants involved in the newly proposed mixed
formulation not available in the literature. These considerations also allow
to identify the orders of magnitude of the different constants as the wall
thickness becomes small depending on the type of section involved and, as
elaborated in that appendix, the so–called primary and secondary warpings,
allowing in turn to understand how the different formulations treat the con-
straint underlying restrained warping in the original TWKV formulation.
The developments presented in this work do not need the final formulas giv-
ing these thin–wall limits. Instead, it relies on their exact evaluation by solv-
ing numerically the boundary–value problems in the different cross sections,
thin or thick, for the warping functions defining those section constants. This
approach provides not only a more general and accurate evaluation of the
different constants, but the availability of the warping functions themselves,
leading to a complete characterization of the stresses, shear and normal, act-
ing on the cross sections of the shaft, as we undertake in detail in what
follows.

2. The Saint–Venant problem in torsion

After defining the physical problem of interest in Section 2.1, Section
2.2 develops its mathematical treatment accounting for a general torsional
warping of the shaft’s cross sections. The Saint–Venant torsion solution with
unrestrained warping is summarized then in Section 2.3. A fundamental part
of this solution, and further developments in this work, is the rotation of the
shaft’s cross sections around its axis, a rotation about the center of twist
whose characterization is discussed in Section 2.4.

2.1. The physical problem

The fundamental problem considered in this work consists of a straight
shaft or, more generally, rod of constant cross section Ω ⊂ R2 and length L
subjected to torsional loading; see Figure 1. As depicted in this figure, we
consider a Cartesian coordinate system (x, y, z), with the coordinate z along
the axis of the shaft and the points (x, y) ∈ Ω on a generic cross section Ω. As
noted below (see Remark 2.1), we shall not assume the origin of this Cartesian
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Figure 1: Prismatic shaft subjected to an end torque/rotation at its tip, fixed at
its root. The shaft develops a non-uniform twist rotation and warping.

system on the section Ω to have a specific property (e.g. the centroid) nor
the axis directions themselves (e.g. principal directions of inertia) given
the generality that this choice represents, especially when setting numerical
solutions of the problem at hand. We shall assume an isotropic linear elastic
response for the material, and the standard infinitesimal assumption of small
displacements and strains in all our developments in this paper.

With that coordinate system in mind, we are interested in modeling the
shear stresses τ = [τxz, τyz]

T and the normal (axial) stress σz on the shaft’s
cross sections created by the assumed torsional loading, the normal stress
caused by the non–uniform warping of the sections. For the elastic rod of
interest, the material response can be formulated in terms of a stored energy
function Ψ(εz,γ), resulting in

τ =
∂Ψ

∂γ
and σz =

∂Ψ

∂εz
, (1)

in terms of the transverse shear strain γ = [γxz, γyz]
T and axial strain εz,

conjugate to τ and σz, respectively. In particular, the standard isotropic
linear elastic relations σz = Eεz and τ = Gγ correspond to the quadratic
energy functions

Ψ(εz,γ) =
1

2
E ε2

z +
1

2
Gγ · γ , (2)

for the shear modulus G > 0 and the Young modulus E > 0 (under the usual
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additional assumption of uniaxial normal stress in the beam/shaft response).
An effective elastic modulus E (like the usual plane strain value E/(1− ν2)
for the Poisson’s ratio ν of the material) can be considered alternatively, if
preferred; see e.g. Benscoter [1954]. We do not assume constant moduli
even on a given cross section, as elaborated below. In equation (2), we have
denoted by “·” the standard Euclidean scalar product of two vectors and we
shall also use below the notation ‖γ‖2 = γ · γ for the associated Euclidean
norm of vectors.

To accommodate general composite sections in our developments, we con-
sider moduli distributions of the form

E(x, y) = Ē n
E

(x, y) and G(x, y) = Ḡ n
G

(x, y) , (3)

for reference values Ē and Ḡ, and (non-dimensional) distributions n
E

(x, y)
and n

G
(x, y) on the cross section Ω. The actual choice of the reference

values Ē and Ḡ, and so the normalized distributions n
E

(x, y) and n
G

(x, y),
is arbitrary, not affecting the developments to follow.

Finally, and as shown in Figure 1, the shaft is loaded at the end z = L with
an applied torque TL or, equivalently, an applied twist rotation φL, while that
end section is free to warp and, hence, with no axial stress σz(x, y, L) = 0.
At the opposite end z = 0, its root, the shaft is fixed in the sense that it
is not allowed to rotate nor warp, with a reacting torque T (0) appearing to
impose the former condition and a normal stress σz for the latter. The shaft
is also, possibly, loaded by a distributed torque tex(z) (torque/length) along
its length z ∈ [0, L].

As noted above, we focus our considerations to the effects of the assumed
torsional loading on the shaft, namely, twisting and warping of the cross
sections. Axial or bending effects must not appear. Hence, the distribution
of the normal stress σz along the axial direction need to satisfy the relations∫

Ω

σz dΩ = 0 , (4)

and ∫
Ω

x
E
σz dΩ =

∫
Ω

y
E
σz dΩ = 0 , (5)

where x
E

:= x − x̄
E

and y
E

:= y − ȳ
E

for the centroid x̄
E

= (x̄
E
, ȳ

E
) of

the Young’s modulus distribution n
E

(x, y); see Remark 2.1 below. Clearly,
the use of this centroid in the relations (5) is not necessary because of the
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condition (4), corresponding to a zero resultant force on the cross sections
Ω, makes the choice of any other point completely equivalent. Similarly,
equations (5) imply the absence of bending moments on the cross sections
as well. The satisfaction of the conditions (4) and (5) is automatic at the
free end with σz = 0, but these conditions need to be taken into account
inside the shaft in the forthcoming developments. A result derived at the
end of Section 2.2 below shows that the two conditions (5) will also lead to
the vanishing of the resultant shear force on the cross sections Ω due to the
torsional shear stresses τ .

Remark 2.1. For the sake of generality, we consider an independent distri-
bution of the Young and shear moduli over the cross section Ω, and avoid the
use of a prescribed centroid as the origin of the coordinate system. Even if
this option would simplify some of the expressions below, its identification and
use complicates the setting of the problem in the numerical simulations, as
presented in Section 7. In general, we have two different centroids, one asso-
ciated with each distribution. In this way, we have the centroid x̄

E
= (x̄

E
, ȳ

E
)

with coordinates

x̄
E

:=
1

An
E

∫
Ω

x n
E

(x, y) dΩ and ȳ
E

:=
1

An
E

∫
Ω

y n
E

(x, y) dΩ , (6)

where

An
E

:=

∫
Ω

n
E

(x, y) dΩ , (7)

for the Young modulus distribution n
E

(x, y), and x̄
G

= (x̄
G
, ȳ

G
) with coordi-

nates

x̄
G

:=
1

An
G

∫
Ω

x n
G

(x, y) dΩ and ȳ
G

:=
1

An
G

∫
Ω

y n
G

(x, y) dΩ , (8)

where

An
G

:=

∫
Ω

n
G

(x, y) dΩ , (9)

for the shear modulus distribution n
G

. We will often use the notation x
E

:= x− x̄
E

y
E

:= y − ȳ
E

 and

 x
G

:= x− x̄
G

y
G

:= y − ȳ
G

 (10)
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for the shifted coordinates (x, y), when convenient. In the next section, we
introduce a third point on the cross section Ω, the center of twist x̄

T
=

(x̄
T
, ȳ

T
) and follow a similar notation (x

T
, y

T
) := (x − x̄

T
, y − ȳ

T
). Finally,

we will make use of the moment of inertia

In
E
x :=

∫
Ω

y2
E
n
E

(x, y) dΩ , In
E
y :=

∫
Ω

x2
E
n
E

(x, y) dΩ ,

In
E
xy := −

∫
Ω

x
E
y
E
n
E

(x, y) dΩ ,

 (11)

since we shall not necessarily consider principal axes of inertia for the coor-
dinate directions, again because of the simplicity that this option implies in
the setting of the numerical simulations of interest. �

2.2. Torsion with general warping

Following Saint–Venant’s semi–inverse method, we look for a solution of
the problem at hand with the assumed three–dimensional displacements

ux(x, y, z) = − (y − ȳ
T
) φ(z) ,

uy(x, y, z) = (x− x̄
T
) φ(z) ,

uz(x, y, z) = w(x, y, z) ,

 (12)

along each of the Cartesian directions, in terms of two generalized displace-
ments: the twist rotation φ(z) along the shaft, and the warping displacement
w(x, y, z), both for the cross section at z ∈ [0, L] along the shaft. Physically,
the formulas (12)1,2 correspond to an infinitesimal rotation of magnitude φ(z)
for the section Ω at z ∈ [0, L] about the shaft’s axis direction at the center
of twist x̄

T
:= (x̄

T
, ȳ

T
) (to be identified below), while the section remains

rigid with no distortion in its plane. The axial displacement component (12)3

models a general out-of-plane warping of that section along that same shaft’s
axial direction marked as z in our notation. Restraining the warping at z = 0
imposes w(x, y, 0) = 0.

The infinitesimal strains associated to the displacement field (12) are

γxz =
∂uz
∂x

+
∂ux
∂z

=
∂w

∂x
− (y − ȳ

T
) φ′(z) ,

γyz =
∂uz
∂y

+
∂uy
∂z

=
∂w

∂y
+ (x− x̄

T
) φ′(z) ,

 (13)
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for the transverse shear strains, and

εz =
∂uz
∂z

= w′(x, y, z) , (14)

for the axial normal strain, all other components vanishing (this fact corre-
sponding to the assumed no distortion of the section in its plane). Here we
have denoted by (·)′ = ∂(·)/∂z (so φ′ := dφ/dz). We further write the shear
strains (13) in compact notation as

γ :=

[
γxz
γyz

]
= ∇w + φ′ J with J :=

[
−y

T

x
T

]
:=

[
−(y − ȳ

T
)

(x− x̄
T
)

]
, (15)

for the assumed Cartesian coordinates (x, y) in the section’s plane, and the
corresponding plane gradient operator ∇(·).

For the elastic shaft of interest here, the formulation of the boundary
value problem is best obtained by considering the potential energy

Π(φ,w) :=

∫
V

Ψ (εz(w),γ(w, φ)) dv + Πext(φ) , (16)

for the shaft’s volume V = Ω× [0, L], and the potential Πext associated to the
external loading, assumed conservative for convenience in the presentation
here, but not required in general treatments of the problem under considera-
tion. As usual, what matters is not so much the actual variational functional
but the resulting governing equations, like equations (18) below. For the case
depicted in Figure 1, we have

Πext(φ) = −
∫ L

0

tex(z)φ(z) dz − TLφ(L) , (17)

for the distribute torque tex(z) along the shaft’s length and the applied torque
TL at the end z = L otherwise free. If the equivalent loading by an imposed
twist rotation φL at z = L is considered, the last term in (17) is not to be
included, imposing φ(L) = φL with the then reacting torque TL obtained as
a postprocessing, as usual. Details for this alternative are omitted in what
follows.

In this way, taking the variations of the potential energy (16) for all
admissible variations (i.e. δφ(0) = 0 and δw(x, y, 0) = 0, corresponding to
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the assumed kinematic boundary condition at the root), we obtain

δφΠ =

∫ L

0

(∫
Ω

τ · J dΩ

)
︸ ︷︷ ︸

:=T (z)

δφ′(z) dz −
∫ L

0

tex(z)δφ(z) dz − TLδφ(L) = 0 ,

δwΠ =

∫
V

(τ · ∇(δw) + σzδw
′) dv = 0 ,


(18)

where we have introduced the internal torque T (z) along the shaft z ∈ [0, L].
The variational equation (18)1 corresponds to the weak form of the balance
of moment around the shaft’s axis, and it results in the strong form equation

dT

dz
(z) + tex(z) = 0 ∀z ∈ [0, L] , with T (L) = TL at z = L , (19)

after a standard use of integration by parts. A similar argument reduces
equation (18)2 to

−
∫
V

[∇ · τ + σ′z] δw dV +

∫ L

0

(∫
∂Ω

τ · ν δw dΓ
)
dz

+

[∫
Ω

σz δw dΩ

]L
0

= 0 , (20)

for the boundary ∂Ω of the plane domain Ω defined by the cross section, with
(outward) unit normal ν. We obtain then the (strong) equations

∇ · τ + σ′z = 0 in Ω , with τ · ν = 0 along ∂Ω , (21)

for all sections in [0, L], together with σz = 0 at the end with free warping
For the linear elastic material model in shear, the shear stresses are give

by
τ = Gγ = G [∇w + φ′ J] , (22)

so the problem (21) reduces to

∇ ·
(
G
(
∇w + φ′J

))
+ σ′z = 0 in Ω ,

∂w

∂ν
= −φ′(z) J · ν along ∂Ω ,

(23)
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defining the characteristic Neumann type boundary condition on the bound-
ary ∂Ω of the cross section Ω for the derivative along its normal direction
∂w/∂ν := ∇w ·ν. Assuming a constant moduli Ḡ and Ē for the whole shaft,
including over the cross section Ω (i.e. assuming n

G
(x, y) = n

E
(x, y) = 1),

the problem (23) reduces to finding the function w(x, y, z)

∆w +
Ē

Ḡ
w′′ = 0 in Ω ,

∂w

∂ν
= −φ′(x) J · ν along ∂Ω ,

 (24)

for the Laplace operator ∆(·) = ∇ ·∇(·) in the (x, y) plane of the section Ω.
Integration of equation (21) over the cross section Ω readily leads to the

relation

d

dz

(∫
Ω

σz dΩ

)
= −

∫
Ω

∇ · τ dΩ = −
∫
∂Ω

τ · ν︸︷︷︸
=0

dΓ = 0 (25)

so ∫
Ω

σz dΩ = 0 ∀z ∈ [0, L] , (26)

after imposing the boundary condition σz = 0 at the free end z = L. Hence,
the condition (4), the absence of an axial force in the shaft, is automatically
satisfied. In the same way, multiplying equation (21) by x

E
and integrating,

we obtain

d

dz

(∫
Ω

x
E
σz dΩ

)
= −

∫
Ω

x
E
∇ · τ dΩ = −

∫
Ω

[∇ · (x
E
τ )− τxz] dΩ

= −
∫
∂Ω

x
E
τ · ν︸︷︷︸

=0

dΓ +

∫
Ω

τxz dΩ =

∫
Ω

τxz dΩ , (27)

and, similarly, multiplying by y
E

,

d

dz

(∫
Ω

y
E
σz dΩ

)
=

∫
Ω

τyz dΩ , (28)

corresponding to the x and y components of the resultant shear force of the
shear stresses τ on the cross sections Ω along the shaft [0, L]. Hence, imposing
the conditions (5) on the distribution of the normal stress σz appearing on
the cross sections due to torsional warping, lead to the vanishing of that
resultant force as required from physical considerations.
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Remark 2.2. Note that the above arguments, based on the assumed displace-
ments (12), can be rephrased as finding the best approximate solution to the
exact elasticity problem with those displacements, best in the sense of mini-
mizing the functional (16). The resulting equations (19) and (21) correspond
physically to the balance of moments and forces, respectively, along the axial
direction z of the shaft. The problem at hand does not impose the other two
partial differential equations of three–dimensional elasticity, which would re-
duce for the assumed non-zero stress components to τ ′xz = τ ′yz = 0. This is
a common situation in beam/rod models of structural mechanics and, in our
case, can be traced back to the assumption of the cross section being rigid in
its plane, an unphysical but a realistic and very useful approximation in typ-
ical applications. Similarly, our focus on the torsional response of the shaft,
including the warping of the sections, allows us to consider only those equilib-
rium relations, global equilibrium in the transversal directions being imposed
by the integral conditions (5) on all cross sections. �

Remark 2.3. The torque anomaly. In fact, the assumed displacements (12)
are not an appropriate option in general. We observe that, for a section at
z for which w(x, y, z) = 0 for all (x, y) ∈ Ω, the shear stresses (22) reduce
to τ = Gφ′(z)J. Therefore, the boundary condition (21)2 of the boundary–
value problem in the cross section plane Ω implies

τ · ν = G φ′(z) J · ν = 0 along ∂Ω =⇒ φ′(z) = 0 , (29)

for a general section geometry (i.e. non-circular, so J · ν 6= 0 at some point
along ∂Ω), hence implying τ = 0 altogether on the whole cross section. In
fact, the boundary condition w(x, y, 0) = 0 for the restrained support at z = 0
is such a case and, as a consequence, no shear stresses would develop there
and hence no torque, something physically unfeasible. This situation was de-
noted in Burgoyne & Brown [1994] as the torque anomaly, although the
authors proceeded with the consideration of the resulting three–dimensional
equation (24) in the analysis of response of different sections to restrained
warping, treating it as one more contradiction in the assumed structural ap-
proximation of the three–dimensional problem as noted in the previous re-
mark. This anomaly can be traced back again to the inadequacy of the as-
sumed rigid rotation of the cross section on its plane when the warping is
restrained. Circular symmetric sections, or unrestrained warping of general
sections (general warping but constant along the shaft’s axis), do not lead to
this anomaly. One of the goals of this paper is to evaluate the avoidance of
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these difficulties by different additional approximations to the three–dimen-
sional displacements (12) in its axial component w(x, y, z). �

2.3. The Saint–Venant solution with unrestrained warping

The free out-of-plane warping of the cross section Ω in the absence of
normal axial stress σz is referred by as unrestrained warping. With the
considerations above, this situation occurs when

εz = w′(x, y, z) = 0 , (30)

in the isotropic case of interest, that is, for a constant warping displacement
along the length of the shaft for all z ∈ [0, L]. In this case, equation (21) is
satisfied with shear stresses constant in z by considering the case

φ′(z) = φ′ = constant ∀z ∈ [0, L] , (31)

that is, a constant rate of twist along the shaft. The resulting problem was
first considered in this form in the classical work by Saint–Venant in Saint-
Venant [1855] as discussed in the introduction presented in Section 1.

For the linear elastic case in shear, the warping displacement w(x, y, z)
can then be written as

w(x, y, z) = φ′ WSV (x, y) , (32)

as a simple calculation shows. The new function WSV (x, y) defines the distri-
bution of the warping displacement over the cross section Ω. This function
will appear in all our developments below, and we refer to it as the Saint–
Venant warping function. Noting the presence of the (non-dimensional) twist
rotation φ(z) and its derivative in the axial displacement (32), we observe
that, in terms of units, WSV ∼ (length)2, that is, area, as it becomes appar-
ent when considering approximations for thin–walled sections in terms of the
sectorial coordinate; see Appendix B.

Inserting relation (32) in the governing equation (23), we see that the
Saint–Venant warping function WSV (x, y) is a solution of the problem

∇ ·
(
n
G

(x, y)
(
∇WSV + J

))
= 0 in Ω ,

∂WSV

∂ν
= −J · ν along ∂Ω ,

(33)
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with the characteristic Neumann boundary condition along the boundary ∂Ω
of the section Ω. The problem (33) reduces to the standard Laplace equation

∆WSV = 0 in Ω ,

∂WSV

∂ν
= −J · ν along ∂Ω ,

 (34)

for the case of constant shear modulus G in Ω so n
G

(x, y) = 1, making the Sa-
int–Venant warping function WSV (x, y) an harmonic function in this case, as
noted in the introduction; see many standard expositions on the subject, like
Timoshenko & Goodier [1951], Sokolnikoff [1956], Connor [1976],
Oden & Ripperger [1981], Pilkey [2002], among many others.

Continuing with the linear elastic response in shear, with stresses then
given by

τ = Gφ′ (∇WSV + J) , (35)

with G = Ḡ n
G

(x, y), the torque T (z) in (18)1 reads

T (z) =

∫
Ω

τ · J dΩ = ḠJ φ′ , (36)

for the Saint–Venant torsional constant J of the section Ω defined by

J :=

∫
Ω

n
G

(x, y) [∇WSV + J] · J dΩ

=

∫
Ω

n
G

(x, y)

[
x2
T

+ y2
T

+ x
T

∂WSV

∂y
− y

T

∂WSV

∂x

]
dΩ , (37)

for, again, x
T

= x− x̄
T

and y
T

= y − ȳ
T
, and a general distribution n

G
(x, y)

of the shear modulus. The constant torque distribution (36) corresponds to
the solution of the differential equation (19) for a zero distributed torque
tex(z) = 0, thus leading to T (z) = TL, the torque applied at the shaft’s
free end, identifying in this semi-inverse approach the Saint–Venant problem
in torsion. Expression (37) identifies the well-known Saint–Venant torsional
constant J of the cross section Ω defining the stiffness of the shaft in torsion
accounting for uniform (unrestrained) warping in terms of the Saint–Venant
warping function WSV (x, y); see e.g. Sokolnikoff [1956], Connor [1976],
Pilkey [2002], among others, for the case of constant elastic modulus.
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Remark 2.4. We note the orthogonality relation∫
Ω

n
G

(∇WSV + J) · ∇WSV dΩ =

∫
∂Ω

n
G

(∇WSV + J) · ν︸ ︷︷ ︸
=0

WSV dΓ

−
∫

Ω

∇ · (n
G

(∇WSV + J))︸ ︷︷ ︸
=0

WSV dΩ = 0 , (38)

after the use of the divergence theorem and the governing equations (23)
defining the Saint–Venant warping function WSV (x, y). Then, a straightfor-
ward calculation shows that

J :=

∫
Ω

n
G

(∇WSV + J) · J dΩ =

∫
Ω

n
G
‖∇WSV + J‖2 dΩ > 0 , (39)

giving an alternative expression for the Saint–Venant torsional constant J ,
an expression that explicitly shows J > 0. �

Remark 2.5. The absence of normal stresses σz altogether for this case
implies that

∫
Ω
τ dΩ = 0 exactly here after using the arguments in (27)-(28).

Alternatively, those same arguments in combination with the equations (33)
defining the Saint–Venant warping function WSV (x, y) shows that∫

Ω

n
G

(x, y) (∇WSV + J) dΩ = 0 , (40)

in purely mathematical terms for the function WSV (x, y) as defined. We con-
clude then that∫

Ω

n
G

(x, y)

(
∂WSV

∂x
− y

T

)
dΩ = 0

=⇒
∫

Ω

n
G

(x, y)
∂WSV

∂x
dΩ = An

G
(ȳ

G
− ȳ

T
) , (41)

∫
Ω

n
G

(x, y)

(
∂WSV

∂y
+ x

T

)
dΩ = 0

=⇒
∫

Ω

n
G

(x, y)
∂WSV

∂y
dΩ = −An

G
(x̄

G
− x̄

T
) , (42)
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for the weighted area An
G

of the section Ω in (9) and the centroid (x̄
G
, ȳ

G
) of

the shear modulus distribution n
G

(x, y) in (8). Equations (41)-(42) also im-
ply, after straightforward calculations, that the Saint–Venant torsional con-
stant J in (37) can be written equivalently as

J =

∫
Ω

n
G

(x, y)

[
x2 + y2 + x

∂WSV

∂y
− y∂WSV

∂x

]
dΩ

− An
G

(x̄
T
x̄
G

+ ȳ
T
ȳ
G

) , (43)

recovering the standard expression (the integral in this expression) when the
shear modulus centroid is chosen as origin of the coordinate system (i.e. when
x̄
G

= ȳ
G

= 0); see Sokolnikoff [1956], page 112. This torsional constant
seems to be dependent on the center of twist xT (explicitly in this equation
and, in principle, implicitly through the function WSV (x, y), solution of the
boundary-value problem (33) involving this point), but this is not the case as
shown next. �

2.4. The center of twist

The above developments do not identify the center of twist x̄
T

= (x̄
T
, ȳ

T
).

In fact, such a point is not determined in the Saint–Venant’s torsion problem
with unrestrained warping; see Sokolnikoff [1956], page 113. In fact, as
noted in this reference, different centers of twist lead to solutions differing by
a rigid body displacement. Hence, the center of twist in actual realizations
of the problem will be determined on how the shaft is supported at its ends;
see also Oden & Ripperger [1981] in this respect.

Indeed, if we consider a different center of twist x̄∗
T

= (x̄∗
T
, ȳ∗

T
), a straight-

forward calculation shows that

WSV (x, y) = W ∗
SV (x, y) + (x̄

T
− x̄∗

T
) y

E
− (ȳ

T
− ȳ∗

T
) x

E
+ C , (44)

for the solutions WSV (x, y) and W ∗
SV (x, y) of the linear boundary-value prob-

lem (33) with respect to x̄
T

and x̄∗
T
, respectively. In equation (44), we have

used the shifted coordinates (x
E
, y

E
) = (x− x̄

E
, y− ȳ

E
) for later convenience,

since the terms involving the centroid (x̄
E
, ȳ

E
) of the Young modulus distri-

bution n
E

(x, y) (or any other point for that matter) could have been lumped
in the constant C in (44). This additional constant is a consequence of the
arbitrariness of an additional constant into these functions given the pres-
ence of only their derivatives in the problem (33). This constant and the two
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additional linear terms in (44) are nothing else but the additional superposed
rigid body displacement noted above.

The stresses arising from both functions coincide

τ = Gφ′ (∇WSV + J) = Gφ′ (∇W ∗
SV + J∗) , (45)

and so is the Saint–Venant torsional constant J = J∗, as a simple calculation
shows using the expression (43) with the relation (44). Note that the constant
C and the centroid (x̄

E
, ȳ

E
) disappear after taking the derivatives of the

function WSV (x, y). Hence, the Saint–Venant torsion solution is independent
of the center of twist, even for sections with general distribution of the shear
modulus (and independent Young modulus distribution), a fact not often
pointed out in the vast literature on the subject.

The arbitrariness of the constant C and the center of twist x̄
T

= (x̄
T
, ȳ

T
)

given by (44) (that is, three arbitrary values total), allows us to impose the
three conditions ∫

Ω

n
E

(x, y) WSV (x, y) dΩ = 0 , (46)

and∫
Ω

x
E
n
E

(x, y) WSV (x, y) dΩ =

∫
Ω

y
E
n
E

(x, y) WSV (x, y) dΩ = 0 , (47)

on the Saint–Venant warping function WSV (x, y). Indeed, these conditions
are satisfied by choosing the constant in (44) as C = −Q∗/An

E
, and the

center of twist by

x̄
T

= x̄∗
T
− 1

∆

[
In

E
y Q

∗
y + In

E
xy Q

∗
x

]
,

ȳ
T

= ȳ∗
T

+
1

∆

[
In

E
x Q

∗
x + In

E
xy Q

∗
y

]
,

 (48)

after having calculated the function W ∗
SV (x, y) solution of problem (33) for

an arbitrary x̄∗
T
. Here, we have introduced the notation

Q∗ :=

∫
Ω

n
E

(x, y) W ∗
SV (x, y) dΩ , (49)

Q∗y :=

∫
Ω

x
E
n
E

(x, y) W ∗
SV (x, y) dΩ , (50)

Q∗x :=

∫
Ω

y
E
n
E

(x, y) W ∗
SV (x, y) dΩ , (51)
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and ∆ := In
E
xIn

E
y − In

E
xy for the moment of inertia of the cross section Ω

introduced in (11).
Expressions like (48) to impose the conditions (46)-(47) can be found in,

e.g., Connor [1976] for the case of an homogeneous section in its principal
directions of inertia. In the general case considered in this paper, the (so-far
arbitrary) use of the distribution n

E
(x, y) for the Young modulus in (46) and

(47) is required in the developments to follow for the case of restrained war-
ping. Again, the Saint–Venant torsional problem with unrestrained warping
(same warping for all sections) is independent of the choice of the center of
twist x̄

T
, but the specific point identified by the relations (48) will have im-

portant consequences in the developments below. To begin with, that point
corresponds to the shear center of the cross section Ω as proposed by Tre-
fftz in Trefftz [1935], a fact originally pointed out by Weinstein [1947];
see e.g. Pilkey [2002], page 254, for a detailed discussion (here we have
presented it in a general, non–centroidal coordinate system).

3. Direct formulation 1: the Timoshenko–Wagner–Kappus–Vlasov
(TWKV) approximation of restrained warping

The general treatment presented in Section 2 leads to the three dimen-
sional partial differential equation (23) for the three-dimensional function
w(x, y, z) (or the simpler problem (24) for the case of constant material mod-
uli). The goal in any structural mechanics treatment of the shaft of interest
is to reduce the problem to an ordinary differential equation along its length
z ∈ [0, L], while still accounting for its torsional/warping response at the
section level (x, y) ∈ Ω. In fact, this has been accomplished in the Saint
–Venant solution presented in Section 2.3 since the warping displacement
naturally reduces to w(x, y, z) = φ′ WSV (x, y), for a constant rate of twist φ′

and, hence, only requiring the section function WSV (x, y).
To accomplish this reduction in the general case of non-uniform rate of

twist, we explore in this and the next sections two different direct approxi-
mations of this warping displacement on a cross section. It is worth studying
how the different approximations address the torque anomaly noted in Re-
mark 2.3 for the original general three-dimensional treatment of the warping
function. We start with the classical treatment of restrained warping, going
back to the initial contributions by Timoshenko in Timoshenko [1905, 1906,
1910].
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3.1. The governing equations of the TWKV formulation
The older and more direct approximation for the non-constant warping

along the shaft is to consider the axial displacement

uz(x, y, z) = φ′(z) WSV (x, y) , (52)

that is, the Saint–Venant solution (32) with a general non-constant rate of
twist φ′(z). The form of the distribution of the axial displacement on a given
section is assumed fixed, and given by the Saint–Venant warping function
WSV (x, y), the solution of the problem (33) (or simply (34) for a constant
shear modulus distribution). We choose the particular function WSV (x, y)
satisfying the conditions (46) and (47), fixing then the center of twist x̄

T

as discussed in Section 2.4. Hence, together with the lateral displacements
(12)1,2 we have a single degree of freedom field, namely, the twist rotation
φ(z). As noted in the introduction, the resulting formulation was originally
considered by Wagner [1936], Kappus [1938] extending early considerations
by Timoshenko in Timoshenko [1905, 1906, 1910], and later considered in
Vlasov [1961] for thin–walled sections, although starting from an alterna-
tive but equivalent assumption for these cross sections; see Section 1 above.
The particular form (52) of the warping displacement corresponds to the
Wagner assumption indicated in that section, as it can be found referred to
in Goodier [1942], Benscoter [1954], Gjelsvik [1981], among others.

The potential energy in this case reads then

Πdir,1(φ) =

∫
V

Ψ (εz(φ),γ(φ)) dv + Πext(φ) , (53)

where now

εz(φ) = φ′′(z) WSV (x, y) and γ = φ′(z) (∇WSV + J) . (54)

The potential of the external loading Πext(φ) is still given by (17). Note
that the formulation considered here, given by the warping displacement
(52), assumes a fixed distribution of that warping displacement on any given
cross section Ω, a distribution given by the Saint–Venant warping function
WSV (x, y) simply modulated in amplitude by the derivative of the twist ro-
tation φ(z), the only generalized displacement in the theory at hand.

Taking the variation of the functional (53) leads to∫ L

0

(TSV (z) δφ′(z) +BW (z) δφ′′) dz =

∫ L

0

tex(z) δφ(z) dz + TL δφ(L) ,

(55)
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for the Saint–Venant torque

TSV (z) :=

∫
Ω

τ SV · (∇WSV + J) dΩ , (56)

and the so-called bimoment

BW (z) :=

∫
Ω

σz(x, y, z)WSV (x, y) dΩ , (57)

following Vlasov [1961]; see Section 3.2 below for an additional discussion of
the terminology used here. In equation (56), different than the developments
in the previous section, we have denoted by τ SV = ∂Ψ/∂γ the stresses arising
from the strain energy of the material, given in terms of the shear strain
(54)2, and the corresponding resultant torque TSV (z), (instead of simply τ
and T (z)), since additional shear stresses and torque are identified below in
this formulation. Note that the balance of moments about the shaft’s axis
(balance of torque) (55) involves both the torque TSV (z) and the bimoment
BW (z), through different derivatives of the variation of the twist rotation
δφ(z).

For the linear elastic material of interest here, we have

τ SV = Gφ′(z) (∇WSV + J) , (58)

and note that

∇ · τ SV = Ḡ ∇ · (n
G

(∇WSV + J)) = 0 in Ω , (59)

τ SV · ν = G (∇WSV + J) · ν = 0 along ∂Ω , (60)

by the equations (33) defining the Saint–Venant warping function WSV (x, y).
The relations (59)-(60) indicate that the shear stresses τ SV are in equilibrium,
without additional stresses σz. We also have

TSV (z) =

∫
Ω

τ SV · (∇WSV + J) dΩ =

∫
Ω

τ SV · J dΩ

= Ḡ φ′(z)

∫
Ω

n
G

(x, y) (∇WSV + J) · J dΩ︸ ︷︷ ︸
=J

= Ḡ J φ′(z) , (61)
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the first equality following from the divergence theorem and the equilibrium
relations (59)-(60). Hence, both the stresses τ SV and their resultant torque
TSV on a cross section Ω follow the same expressions as for the Saint–Venant
solution, even with a general (non-constant) rate of twist φ′(z). In fact,
combining equations (58) and (61) we obtain the alternative formula

τ SV = Gφ′(z) (∇WSV + J) = n
G

(x, y)
TSV (z) (∇WSV + J)

J
, (62)

showing the relation between these shear stresses τ SV and its resultant torque
TSV more explicitly.

Similarly, from equation (57) combined with the stress σz = Eεz for the
axial strain (54)1, we obtain

BW (z) = Ē IWSV φ
′′(z) , (63)

for the bimoment, where we have introduced the parameter

IWSV :=

∫
Ω

n
E

(x, y)
(
WSV (x, y)

)2

dΩ , (64)

a new constant of the section Ω. We note that, by definition, IWSV > 0
and the “inertia nature” of its expression if WSV (x, y) is understood as a
coordinate on the section Ω, the sectorial coordinate for the thin–walled
sections. Vlasov in Vlasov [1961] calls this section constant the “sectorial
moment of inertia” for thin–walled sections, while the technical literature
refers to it as the “warping constant” and it is often denoted by CW ; see e.g.
Salmon et al. [2009], Seaburg & Carter [1997], among others.

For the fixed support at z = 0 with no rotation φ(0) = 0, the restraining
of the warping is easily enforced by imposing in (52) φ′(0) = 0. The corre-
sponding admissible variations in (55) satisfy then δφ(0) = 0 and δφ′(0) = 0.
Integrating by parts twice in (55) results in the strong form of the governing
equation

dT

dz
(z) + tex(z) = 0 ∀z ∈ [0, L] , with T (L) = TL at z = L , (65)

that is, the same equation as (19) (physically, the balance of moments about
the axis of the shaft), but now with the internal (total) torque T (z) given by

T (z) := TSV (z) + TW (z) for TW (z) = − d

dz
BW (z) , (66)
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the so-called bishear, often called the warping torque too; see Section 3.2
below. In addition, we obtain the natural boundary condition BW (L) = 0
at the end z = L with no restraining of the warping and, similarly, with
a reacting bimoment BW (0) at the shaft’s root z = 0 where the warping is
restrained.

Combining equations (66) with (63), we obtain

T (z) = ḠJφ′(z)− d

dz

(
ĒIWSV φ

′′(z)
)

= ḠJφ′(z)− ĒIWSV φ
′′′(z) , (67)

for the linear elastic case of interest, the latter expression assuming ĒIWSV
constant in z. The differential equation (65) reads then

d

dz

[
ḠJφ′(z)− d

dz

(
ĒIWSV φ

′′(z)
)]

+ tex(z) = 0 , (68)

a fourth-order ordinary differential equation for the twist rotation distribu-
tion φ(z), with the boundary conditions

φ(0) = 0 , φ′(0) = 0 , (69)

and
φ′′(L) = 0 , T (L) = TL , (70)

or, alternatively, φ(L) = φL instead of the latter condition if the shaft is
loaded by an imposed twist rotation φL at that end. The condition (70)1

is given by the free warping at the tip of the shaft, corresponding to zero
normal strain/stress by (54)1 and, consequently, to BW (L) = 0 by (57).

Remark 3.1. The introduction of the assumed displacements (12) with the
axial displacement given by (52) for a fixed spatial distribution on Ω (specif-
ically, the Saint–Venant warping function WSV (x, y) for the assumed partic-
ular formulation) reduces the problem from a problem in three-dimensional
elasticity to an structural mechanics theory for the shaft of interest, the latter
in terms of the twist rotation field φ(z) in this case. All the arguments in
the above developments, and the ones below, involving particular stress dis-
tributions and other considerations at the section level Ω must be understood
as arguments to justify the connection of those two treatments, the approxi-
mation in the structural theory. In fact, the structural model can be simply
characterized by the potential energy

Π(TWKV )(φ) =

∫ L

0

[
1

2
ḠJ (φ′)

2
+

1

2
ĒIWSV (φ′′)

2

]
dz + Πext(φ) , (71)
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in terms of the section constants J and IWSV for the linear elastic case consid-
ered here. The equality of this functional with the original (three-dimensional)
functional (53) follows easily. Similarly, the governing weak equation (55),
for the section resultant torques defined by (56) and (57), follows directly from
the (one-dimensional) potential energy (71), and so is equation (68). �

Remark 3.2. The functional (71) also indicates when to expect the effects
of restrained warping to be less dominant, the second term in this expression,
with the response of the shaft reducing to Saint–Venant torsion, the first term,
in the limit. Indeed, factoring GJ in (71), we can easily see that for long
shafts, namely, for

L� L
(TWKV )
T :=

√
ĒIWSV
ḠJ

α(TWKV ) with α(TWKV ) := 1 , (72)

the underlying Saint–Venant torsion will dominate in the overall (global)
structural response of the shaft. This also indicates that, in general, the
effects of restrained warping are local in nature, as measured by the character-
istic length L

(TWKV )
T . However, note that general shafts, even such as (72),

may require special practical considerations locally near restrained sections
(by supports, stiffeners, or other conditions), hence the motivation behind
this work in modeling its effects correctly. In the definition (72), we have in-
troduced the trivial parameter α(TWKV ) = 1 for later comparisons with other
formulations. Similarly, for later use, the governing equation for the case
shown in Figure 1 (i.e. prismatic shaft with non–varying section constants,
with an imposed torque TL at its end, and no distributed loading tex(z) = 0)
can be reduced to the equation

φ̃′ +

(
L

(TWKV )
T

L

)2

φ′̃′′ = f
(SV )
T TL , for f

(SV )
T :=

L

ḠJ
, (73)

and the non–dimensional derivatives (·)̃′ = d(·)/dz̃ with z̃ = z/L. The limit
marked by the condition (72), recovering Saint–Venant torsion, becomes ap-

parent in this expression too, as it is the flexibility of the shaft f
(SV )
T given by

this basic torsion solution. �

3.2. The bimoment, the bishear, and the associated stresses in the TWKV
formulation

As discussed in detail in Zbirohowski-Koscia [1967] or Oden & Rip-
perger [1981], the bimoment can be understood physically as a couple of
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balanced moments acting on the cross section Ω, corresponding to the stati-
cally balanced distribution of the normal stress σz = Eφ′′(z)WSV (x, y), that
is, with zero resultant force (4) and moments (5)∫

Ω

σz, dΩ = Ē φ′′(z)

∫
Ω

n
E

(x, y)WSV (x, y) dΩ = 0 , (74)

and similarly∫
Ω

x
E
σz dΩ = Ē φ′′(z)

∫
Ω

x
E
n
E

(x, y)WSV (x, y) dΩ = 0 ,

∫
Ω

y
E
σz dΩ = Ē φ′′(z)

∫
Ω

y
E
n
E

(x, y)WSV (x, y), dΩ = 0 ,

 (75)

after using the Saint–Venant warping function WSV (x, y) in the assumed war-
ping displacement (52) normalized with the conditions (46) and (47). We
refer also to Epstein & Segev [2019] for a mathematical, more abstract,
interpretation of the bimoment and bishear.

The typical illustration of the bimoment BW (z) is an open thin–walled
section, like a I-beam or channel section, warping with a pair of same but
opposite moments bending the flanges. Hence the appearance of the associ-
ated (same and opposite) shear forces acting transversely on the flanges and
creating a torque on the whole section, the bishear TW (z); see e.g. Oden &
Ripperger [1981], page 226, for details, including an illustrating figure for
a channel section. In fact, this was how the incorporation of the effects of
restrained warping in torsion was accomplished originally; see Timoshenko
[1906, 1910]. This is why some authors have traditionally referred to the bis-
hear TW (z) as the flexural torque, as opposed to the twisting torque TSV (z),
given its origin in thin–walled sections; see Vlasov [1961], Zbirohowski-
Koscia [1967]. Some other authors call TW (z) the warping shear (Oden
& Ripperger [1981]), the warping torque (Gjelsvik [1981]), or even the
Vlasov torque in this last reference too, referring implicitly to restrained war-
ping since the twisting torque TSV (z) also involves (uniform) warping. We
shall refer to TSV (z) and TW (z) as the Saint–Venant torque and the bishear,
respectively. Their sum, the total internal torque T (z), is the one satisfying
the balance (of moments) equation (65). The term bishear has been used
in Simo & Vu-Quoc [1991], motivated by the “transverse shear-type” role
that TW (z) plays for the bimoment BW (z) in equation (66)2.
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The assumed three–dimensional warping displacement (52) does not sat-
isfy equations (23) or (24), so it is indeed an approximation of the problem
described in Section 2.2 or, better, an alternative treatment of the torsional
problem with restrained warping. It may appear that the torque anomaly
described in Remark 2.3 still applies to this approximation since restraining
the warping displacement at the support z = 0 also implies φ′(0) = 0 and,
hence, zero shear strains γ by (54)2, zero stresses τ SV by (58), and zero re-
sulting Saint–Venant torque TSV (0) by (61). In fact, such observation can
be found in Reissner [1952], motivating somehow the alternative approxi-
mation discussed in the Section 4. However, this torque is only part of the
total torque T (0) appearing at that support, balancing by (65) the applied
torsional loading on the shaft. In other words, the appearance of the bishear
TW (z) resolves the anomaly (at least partially since, again, the Saint–Venant
part of the stress and torque still vanishes).

Still, the above developments do not identify a particular shear stress
distribution due to this torque on the cross section Ω, say τW , but the il-
lustrative case presented in the previous remark clearly points out to the
existence of such stresses associated to the bending caused by the bimoment
BW (z) on parts of the section (e.g the flanges of an I-beam). We can proceed
as follows to identify these stresses.

First, we note that the normal stress σz = Eεz on the cross section can
be written as

σz(x, y, z) = E φ′′(z)WSV (x, y) = n
E

(x, y)
BW (z) WSV (x, y)

IWSV
, (76)

after combining equations (54)1 and (63). By equilibrium (i.e by equation
(21)), these stresses identify the transverse shear stresses τW as

∇ · τW + σ′z = 0 in Ω ,

τW · ν = 0 along ∂Ω .

 (77)

By inspection, we can write these stresses as

τW = n
G

(x, y)
TW (z) ∇Wσ(x, y)

IWSV
, (78)
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for the function Wσ(x, y) solution of the boundary-value problem

∇ · (n
G

(x, y) ∇Wσ) = n
E

(x, y) WSV (x, y) in Ω ,

∂Wσ

∂ν
= 0 along ∂Ω ,

(79)

where the Saint–Venant WSV (x, y) enters this problem as data defining the
new function Wσ(x, y). The claim that the shear stresses (78) satisfy the
equilibrium equations (77) for the normal stress σz in (76) follows easily by
simply inserting them in those equations after noting that TW (z) = −B′W (z)
by (66). Note that we need here to assume that indeed the warping constant
IWSV does not depend on z as in, e.g., the prismatic shafts of interest here;
in this respect, see Remark 5.4 in Section 5.2 below.

Up to an irrelevant constant the function Wσ(x, y), the well-posedness of
the Neumann problem (79) is assured after noting the compatibility condition

0 =

∫
Ω

n
E

(x, y) WSV (x, y) dΩ =

∫
Ω

∇ · (n
G

(x, y) ∇Wσ) dΩ

=

∫
∂Ω

n
G

(x, y)
∂Wσ

∂ν
dΓ = 0 , (80)

since the condition (46) is imposed on the Saint–Venant warping function
WSV (x, y). The function Wσ(x, y) plays a crucial role in the developments of
Section 5 below, and further details of it we will discussed there (including
a motivation for the symbol used for it). We also refer to Remark 5.2 at
the end of Section 5.1 for further details on the arbitrary constant in the
definition of the warping function Wσ(x, y).

The stresses τW , often called the warping shear stresses, and their dis-
tribution function, have been studied in Gjelsvik [1981], Zbirohowski-
Koscia [1967], Pilkey [2002], being called sometimes as the complementary
in Vlasov [1961] or secondary in Kármán & Christensen [1944], Vla-
sov [1961], Oden & Ripperger [1981] shear stresses. Their derivation
from purely static (equilibrium) considerations like equation (77) and not
from a material constitutive relation with associated strains clearly points
their origin to the imposition of a kinematic constraint. This setting will be-
come apparent in the alternative formulation considered in the next section
as well as in its generalization to mixed formulations of the problem at hand
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later in the paper, a formulation that incorporates additional terms to the
warping displacements themselves with associated shear strains.

The resultant torque of the stresses τW in (78) is the bishear TW . Indeed,
noting the result∫

Ω

n
G
∇Wσ · J dΩ =

∫
Ω

[∇ · (n
G
WσJ)−Wσ ∇nG · J] dΩ (since ∇ · J = 0)

=

∫
∂Ω

n
G
Wσ J · ν dΓ−

∫
Ω

Wσ ∇nG · J dΩ

=

∫
∂Ω

n
G
Wσ (−∇WSV · ν)︸ ︷︷ ︸

=J·ν by (33)2

dΓ−
∫

Ω

Wσ ∇nG · J dΩ

=

∫
Ω

[−∇ · (n
G
Wσ ∇WSV )] dΩ−

∫
Ω

Wσ ∇nG · J dΩ

= −
∫

Ω

Wσ ∇ · (nG (∇WSV + J))︸ ︷︷ ︸
=0 by (33)1

dΩ

−
∫

Ω

n
G
∇Wσ ∇WSV dΩ

=

∫
Ω

WSV ∇ · (nG ∇Wσ)︸ ︷︷ ︸
=n

E
WSV by (79)1

dΩ−
∫
∂Ω

n
G
WSV∇Wσ · ν︸ ︷︷ ︸

=0 by (79)2

dΓ

=

∫
Ω

n
E

(WSV )2 dΩ = IWSV , (81)

after a repeated use of the divergence theorem, we have∫
Ω

τW · J dΩ =
TW (z)

IWSV

∫
Ω

n
G
∇Wσ · J dΩ︸ ︷︷ ︸
=IWSV

= TW (z) , (82)

as claimed.
We can then identify the total shear stress acting on the cross section Ω
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as

τ = τ SV + τW = n
G

(x, y)

(
TSV (z) (∇WSV + J)

J
+
TW (z) ∇Wσ

IWSV

)
, (83)

in equilibrium with the normal stress σz in (76), that is,

∇ · τ + σ′z = 0 in Ω ,

τ · ν = 0 along ∂Ω ,

 (84)

and with the resultant torque∫
Ω

τ · J dΩ = T (z) = TSV (z) + TW (z) = ḠJφ′(z)− d

dz

(
ĒIWSV φ

′′(z)
)
, (85)

for each cross section Ω z ∈ [0, L].
Furthermore, using the condition (47)1 on the Saint–Venant function

WSV (x, y), we have

0 =

∫
Ω

x
E
n
E

(x, y, )WSV (x, y)dΩ =

∫
Ω

x
E
∇ · (n

G
∇Wσ) dΩ

=

∫
∂Ω

x
E
n
G
∇Wσ · ν︸ ︷︷ ︸

=0

dΓ−
∫

Ω

n
G

∂Wσ

∂x
dΩ = −

∫
Ω

n
G

∂Wσ

∂x
dΩ , (86)

with a similar expression for the y−derivative, thus concluding∫
Ω

n
G

(x, y) ∇Wσ(x, y) dΩ = 0 . (87)

This result, together with the relation (40) for the Saint–Venant part τ SV
of the total stress τ in (83), directly shows the vanishing of the total resul-
tant tangential force

∫
Ω
τdΩ = 0, also implied by the absence of bending

contribution of the normal stresses σz as given by (75).
All these arguments indicate that, as noted above, even if the Saint–Ve-

nant component part of the stresses τ SV vanishes at a particular cross section
because of the restraining of the warping, forcing the vanishing of the rate
of twist too, (e.g. a fully fixed support) the warping stress component τW
appears if needed from equilibrium considerations. The same arguments ap-
ply to their respective resultant torques, the Saint–Venant torque TSV (z) and
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bishear TW (z), with the former vanishing entirely in such a fully fixed cross
section so the bishear is only determined by equilibrium considerations. The
torque anomaly discussed in Remark 2.3 for the full three–dimensional treat-
ment may be avoided then by the presence of the warping stress component
τW and the corresponding bishear TW (z), but this constrained setting may
distort the distribution of this stress resultant and related bimoment BW (z)
along the shaft. It is for this reason that we think of the current TWKV for-
mulation as resolving the original torque anomaly only partially, and refer to
the new (constrained) situation characterized by a necessary vanishing of the
Saint–Venant component of the shear stress and torque still as the torque
anomaly. It has the same origin as in the full three–dimensional setting,
namely, the direct control of the warping by the twisting (or rather, its rate),
a kinematic constraint underlying the TWKV formulation identified below.
As shown in the following sections, the other two formulations considered
in this work will avoid the torque anomaly in its entirety by relaxing this
constraint.

In this respect, it is worth noting that, in contrast to the original Saint–
Venant shear stresses τ SV produced by the twisting of the shaft (if not fully
restrained by the warping) and obtained through the associated shear strains
(54)2 by the constitutive relation of the material, the warping stresses τW
appear by equilibrium from the distribution of the normal stress σz distri-
bution, with no direct use of the constitutive relation of the material. Note
that the expression (78) depends at most on the non-dimensional distribu-
tions n

E
(x, y) and n

G
(x, y) of the material moduli. This situation points

to the origin of these stresses as coming from a kinematic constraint in the
assumed displacements (52), a constraint identified in the following section.

Remark 3.3. For later use, we also note that∫
Ω

τ · ∇WSV dΩ =

∫
Ω

τW · ∇WSV dΩ =
TW (z)

IWSV

∫
Ω

n
G
∇Wσ · ∇WSV dΩ︸ ︷︷ ︸

=−IWSV

, (88)

with τ SV = τ − τW dropping after using the orthogonality relation (38). The
identification of the last integral in (88) with

(
−IWSV

)
is proven as part of

the long developments in (81). Hence, we obtain the relation

TW (z) = −
∫

Ω

τ · ∇WSV dΩ , (89)
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an alternative expression for the bishear TW (z). We note the consistency of
this relation with the general expression

T (z) =

∫
Ω

τ · J dΩ =

∫
Ω

τ · (∇WSV + J) dΩ︸ ︷︷ ︸
TSV (z)

+

(
−
∫

Ω

τ · ∇WSV dΩ

)
︸ ︷︷ ︸

TW (z)

, (90)

employed above for the total torque T (z) as the sum of the Saint–Venant
TSV (z) and warping (bishear) TW (z) torques. �

Remark 3.4. The conditions (74) and (75) were shown in Section 2.4 to de-
termine a particular center of twist x̄

T
for the Saint–Venant torsional prob-

lem with unrestrained warping (σz = 0), undefined otherwise and with an
irrelevant definition in that problem. The need to impose those conditions,
physically balance equations, in the general problem involving restrained war-
ping implies that the center of twist is precisely determined in this problem.
This situation effectively decouples the torsional problem considered in this
paper with the bending/transverse shear problem of the shaft, not considered
here. It is then of no surprise that this particular center of twist, defined
by the formulas (48), coincides with the shear center as defined by Trefftz in
Trefftz [1935], who used this decoupling as the defining condition for the
shear center. �

4. Direct formulation 2: the Reissner-Benscoter-Vlasov (RBV) ap-
proximation of restrained warping

As indicated in the previous section, the derivation of the restrained war-
ping part τW of the total shear stresses τ on a cross section from purely
static considerations of equilibrium (not involving any strains nor the mate-
rial parameters per se) points to the presence of a constraint in the original
TWKV formulation. Actually, this suspicion is corroborated by the govern-
ing differential equation (68) being of high order (fourth order to be precise),
a usual feature of mechanical formulations were a hidden constraint is in-
volved. In fact, the original motivation presented by Timoshenko & Gere
[1961], based on the aforementioned bending of the flanges in an I-beam,
considers (high-order) Euler-Bernoulli beam theory, with no transverse shear
strain along those flanges when bending due to the restrained warping of the
cross sections. Revisiting the original assumption in this formulation, namely
equation (52) where the warping displacement is assumed proportional to the
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rate of twist φ′(z), identifies the constraint connecting the amplitude of this
displacement and the twisting of the shaft.

In a similar way, the equivalent Vlasov assumption considers directly the
vanishing of the longitudinal shear strain along the middle line of open thin–
walled cross sections. As noted above, this leads directly to the Wagner
assumption (52), thus constraining the warping to the rate of twist of the
section, besides the approximation of the Saint–Venant warping function with
the sectorial coordinate along that middle lime for those cross sections; see
the developments in Appendix B.

4.1. The governing equations of the RBV formulation

With this insight, we can see that the motivation behind the alternative
starting assumption

uz(x, y, z) = λ(z) WSV (x, y) , (91)

for a general function λ(z), thus considering a formulation based on two gen-
eralized displacements: the warping parameter λ(z) and the twist rotation
φ(z). As in the previous section, the distribution of the warping displace-
ments on a cross section Ω is given by the Saint–Venant warping function
WSV (x, y), defined by the boundary-value problem (33) on Ω and the addi-
tional normalizing conditions (46) and (47), the latter with the proper choice
of the center of twist.

For later reference, it is interesting to observe that

λ(z) =
1

IWSV

∫
Ω

n
E

(x, y) WSV (x, y) uz(x, y, z) dΩ , (92)

after using the definition (64) of the warping constant IWSV . Equation (92)
identifies the parameter λ(z) with a weighted average over the cross section
of the warping displacement along the shaft.

The consideration of the independently scaled warping displacement (91)
was originally considered by Reissner in Reissner [1952] for a general sec-
tion (in fact, without elaboration), in Benscoter [1954] for hollow multi–
cell sections, and independently by Vlasov in Vlasov [1961] for general
solid sections, the latter after considering the original TWKV formulation for
open thin–walled sections. We refer to the final formulation as the Reissner–
Benscoter–Vlasov, or RBV formulation in short.
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Note that the warping of all the sections in the shaft are assumed to
be proportional to each other, of the same shape or form, only differing
by their amplitude as defined by the unknown function λ(z). The use of
alternative distributions, still constant along the shaft but based on other
functions W (x, y), usually approximations of WSV (x, y), has been considered
in Vlasov [1961], Connor [1976].

Given the discussion above, we expect that the hidden constraint in the
original TWKV formulation presented in the previous section is

λ(z) = φ′(z) in the constrained limit. (93)

This relation is clearly kinematic in nature, involving two kinematic fields:
the warping amplitude λ(z) and the rate of twist φ′(z). Given this, we refer to
(93) as the warping–twist constraint, by which the twisting controls directly
the warping. It is of interest then under what conditions this constraint
is physically appropriate, motivating or not the use of this formulation in
front of the original TWKV treatment. One clear motivation for considering
this alternative treatment of the warping is the avoidance of a higher order
problem for the twist rotation φ(z), as we will see below, at the price of
solving for the additional degree of freedom λ(z).

The formulation based on the assumed axial displacement (91) can be
derived in the same way as presented in the previous sections. We start then
with the identification of the associated strains, namely,

εz(λ) = λ′(z) WSV (x, y) and γ(φ, λ) = λ′(z) ∇WSV + φ′(z) J , (94)

for the axial normal and transverse shear strains, respectively. The potential
energy now reads

Πdir,2(φ, λ) =

∫
V

Ψ (εz(λ),γ(φ, λ)) dv + Πext(φ) , (95)

a two-field formulation in this case. For the representative problem of interest
here, the essential boundary conditions on the generalized displacement fields
read φ(0) = 0 for the fixed rotation and

λ(0) = 0 for the restrained warping, (96)

at the support z = 0. The corresponding kinematically admissible variations
δφ(z) and δλ(z) are to satisfy then the same homogeneous boundary con-
ditions. Crucially, restraining the warping by (96) involves the independent
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field λ(z) rather than the rate of twist φ′(0) as the TWKV formulation does,
with this rate left free in the current RBV formulation.

Taking variations of the functional (95), we obtain

δφΠdir,2 =

∫ L

0

T (z) δφ′(z) dz −
∫ L

0

tex(z)δφ(z) dz − δφ(L) TL = 0 ,

δλΠdir,2 =

∫ L

0

[
BW (z) δλ′(z)− TW (z) δλ(z)

]
dz = 0 ,


(97)

for, again,

T (z) =

∫
Ω

τ · J dΩ , TW (z) = −
∫

Ω

τ · ∇WSV dΩ , (98)

and

BW (z) =

∫
Ω

σz WSV dΩ , (99)

the total internal torque, bishear and bimoment, respectively, with the stre-
sses given now by

τ = G [λ(z) ∇WSV + φ′(z) J] , and σz = E λ′(z) WSV (x, y) , (100)

for the linear elastic case of interest. We then have the stresses in terms of
the two unknown fields φ(z) and λ(z), and now their first derivative only.
We have reverted to our original notation τ = ∂Ψ/∂γ and its resultant
torque T (z), since no additional stress and torque appear explicitly in the
development of this formulation; see Section 4.2 below for a connection with
the developments in the previous section, including the separate shear stresses
and torque identified in that case.

The strong form of the governing equations associated with (97) read
then

dT

dz
(z) + tex(z) = 0 ,

dBW

dz
(z) + TW (z) = 0 ,

 (101)

for all z ∈ [0, L], with the corresponding natural boundary conditions T (L) =
TL and BW (L) = 0 for the problem of interest here. As we would expect, the
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same equilibrium equations as in the previous formulation apply, noting the
role of T (z) in (98) as the total internal torque.

To write the governing equations (101) in terms of the generalized dis-
placements, it proves convenient to introduce the section constant

I∇WSV :=

∫
Ω

n
G

(x, y) ‖∇WSV ‖2dΩ > 0 , (102)

which we can also write as

I∇WSV = −
∫

Ω

n
G

(x, y) ∇WSV · J dΩ , (103)

an equality easily obtained by following the same arguments as the few first
lines of the calculations in (81) (with WSV instead of Wσ).

With this notation at hand, inserting the stresses (100) in the relations
(98), we obtain

BW (z) = Ē IWSV λ
′(z) , (104)

for the bimoment BW (z), and

T (z) = Ḡ J φ′(z) + Ḡ I∇WSV $(z) ,

TW (z) = Ḡ I∇WSV $(z) ,

 (105)

for the total torque T (z) and the bishear TW (z), where we have introduced
the notation

$(z) := φ′(z)− λ(z) , (106)

a quantity that we refer to as the “warping lag”. Clearly, $(z) measures the
extent that the warping–twist constraint (93) is not satisfied. We note the
direct relation of this “generalized strain” with the bishear TW (z) through
the new torsional constant I∇WSV in (105)2.

Inserting the relations (104)-(105) into the equations (101), we obtain the
system of ordinary differential equations

d

dz

[
ḠJ

(
φ′(z) +

I∇WSV
J

(
φ′(z)− λ(z)

))]
+ tex(z) = 0 ,

d

dz

[
ĒIWSV λ

′(z)
]

+ ḠI∇WSV
(
φ′(z)− λ(z)

)
= 0 ,

 (107)
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a second order system in terms of the original functions φ(z) and λ(z). The
weak equations (97) in combination with the constitutive relations (104)-
(105) are to be favored for a general numerical treatment of the problem at
hand, especially for varying section parameters J , IWSV and I∇WSV along the
shaft’s length if such extension is considered.

As opposed to the fourth-order differential equation (68) in terms of the
twist rotation φ(z) alone governing the original TWKV formulation presented
in Section 3, the current formulation results in the second-order problem
(107), but with the added field λ(z). We investigate next the connection of
the two formulations.

4.2. The TWKV formulation as the constrained limit of the RBV formula-
tion.

The structural formulation considered in this section is characterized by
the potential energy (95) reduced to the (one-dimensional) axis to the shaft.
In fact, the orthogonality of the two components of the shear strain (94),
namely,

γ = φ′(z) (∇WSV + J)︸ ︷︷ ︸
γ
SV

−$∇WSV︸ ︷︷ ︸
γ
W

, (108)

given by relation (38), allows to write (95) as

Π(RBV )(λ, φ) =

∫ L

0

[
1

2
ḠJ
(
φ′
)2

+
1

2
ḠI∇WSV

(
φ′ − λ︸ ︷︷ ︸

$

)
2

+
1

2
ĒIWSV

(
λ′
)2

]
dz + Πext(φ) , (109)

as a straightforward calculation shows. The weak equations (97), with the
constitutive relations (98) and (99) for the different resultant torques, are
easily obtained by considering the variations of the functional (109).

Comparing this functional with the potential energy (71) for the origi-
nal TWKV formulation, based on the assumed axial displacement (52), we
clearly see that the current formulation corresponds to a penalty treatment
of the warping–twist constraint $(z) = λ(z) − φ′(z) = 0 characteristic of
that original formulation. In particular, factoring ḠJ in (109), we readily
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identify the (penalty) parameter

κ
(RBV )
t :=

I∇WSV
J

, (110)

recovering the original formulation when κ
(RBV )
t →∞.

The parameter κ
(RBV )
t is clearly a property of the geometry of the cross

section. Note that dimensionally

J ∼ (length)4 and I∇WSV ∼ (length)4 , (111)

for a characteristic length of the cross section (say its height h), as a sim-
ple inspection of the definitions of these constants show. As illustrated
in the numerical evaluations presented in Section 7, the limit κ

(RBV )
t →

∞ is approached for typical open thin–walled sections in the limit t/h =

thickness/section height → 0 (motivating the symbol used for κ
(RBV )
t ).

Thus the TWKV is recovered for these sections in that limit, regardless
of the length of the shaft. Interestingly this will not be the case for closed
(hollow) thin–walled section, where t/h→ 0 will not lead to κ

(RBV )
t →∞.

We also observe that, as occurred for the TWKV formulation, the total
torque (98)1 for this RBV formulation can also be written as

T (z) = TSV (z) + TW (z) , for TSV (z) = Ḡ J φ′(z), (112)

that is, following the same relation with the rate of twist φ′(z) as in that
formulation, but with the bishear TW (z) given now by (98)1. Remember
that the bishear had no constitutive relation in the TWKV formulation,
being defined entirely by equilibrium considerations, as shown in Section 3.2.
On the other hand, the bishear in the current formulation is given by the
constitute relation (105), with

TW = ḠI∇WSV$ → finite value , (113)

as $ → 0 for I∇WSV → ∞ for the limit case κ
(RBV )
t → ∞. Note that the

section constant I∇WSV never appeared in the original TWKV formulation.
The classical role of the bishear TW (z) as the Lagrange multiplier enforcing
the warping–twist constraint $(z) = 0 in that original formulation becomes
clear.
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Remark 4.1. As occurred with the TWKV formulation and given the locality
of the effects of restrained warping observed in Remark 3.2, the current RBV
formulation also predicts that the response of long shafts will be dominated
by Saint–Venant torsion at the global level and, in this way, also recover
the TWKV formulation in that limit. To quantify this limiting process, we
consider again the case of a prismatic shaft with a single applied torque TL
considered in that remark, that is, the shaft depicted in Figure 1. This allows
to reduce the governing system of equations (107) to a single (high order)
equation, exactly like (73) but with the characteristic length LT given now by

L
(RBV )
T :=

√
ĒIWSV
ḠJ

α(RBV ) ,

for α(RBV ) := 1 +
J

IWSV
= 1 +

1

κ
(RBV )
t

(
> 1 = α(TWKV )

)
,

(114)

after eliminating the field λ(z) with some straightforward algebraic manipu-
lations in this particular model problem; further details are omitted. Hence,
long shafts in the sense of being dominated at the global structural level by
Saint–Venant torsion (i.e., with flexibility close to the value f

(SV )
T in (73))

correspond to L � L
(RBV )
T . The result (114) agrees with our previous con-

siderations in this section, namely, that the TWKV formulation is recovered
from the RBV formulation in the limit κ

(RBV )
t → ∞ and, in fact, tells us

that
L

(TWKV )
T < L

(RBV )
T , (115)

for real shafts not in that limit. Interestingly, this inequality is also controlled
by the same parameter κ

(RBV )
t by (114), characterizing the two different limit

processes that recover the TWKV formulation form the RBV formulation.
In the process involving long shafts as marked by these characteristic lengths
(or, more trivially, a negligible warping constant in (114)), both formula-
tions recover effectively Saint–Venant torsion, involving no bishear nor any
bimoment. As illustrated in the numerical evaluations presented in Section
7 below, the approach behind the RBV formulation in recovering the Saint–
Venant torsion for long shafts will prove to be more effective. This is largely
because, as noted in Section 3.2 above, the original TWKV formulation can
only rely on the bishear TW (0) at supports restraining the warping (z = 0
here) since the Saint–Venant torque vanishes entirely there (TSV (0) = 0).
This is not the case for the current RBV formulation. �
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4.3. The stresses in the RBV formulation.

The developments of the previous section show the clear connection of
the TWKV and RBV formulations at the structural level. However, the two
formulations differ significantly at the section level as it refers to the stresses
involved in their development.

The normal stresses σz over the cross sections for the RBV formulation
are obtained by combining equations (94)1 and (104) as

σz(x, y, z) = E λ′(z)WSV (x, y) = n
E

(x, y)
BW (z) WSV (x, y)

IWSV
, (116)

thus recovering the same relation (76) for the TWKV formulation when writ-
ten in terms of the bimoment BW (z). Note, though, that each formulation
will produce, in general, different diagrams of the bimoment BW (z), and the
different parts of the torque (the bishear TW (z), in particular), along the
shaft in a given problem.

Even then, the distribution of the shear stresses over a cross section pre-
dicted by the RBV formulation differs considerably to the one given by the
TWKV formulation, and the mixed formulation developed in the next sec-
tion. The decomposition (112) for the total torque in the RBV formulation
does translate in a similar decomposition for the total stresses (100), that is,

τ = G (λ∇WSV + φ′J) = Gφ′(z) (∇WSV + J)︸ ︷︷ ︸
=:τ SV

− G$(z)∇WSV︸ ︷︷ ︸
=:τW

, (117)

in terms of the warping lag $(z). The calculations behind the relations
(105) identify the resultant torque of these two stresses as TSV (z) and TW (z),
respectively. In this respect, note that

TW (z) = −
∫

Ω

τ · ∇WSV dΩ =

∫
Ω

τW · J dΩ , (118)

as a straightforward calculation shows. An alternative expression of the shear
stresses (117) is then given by

τ SV = Gφ′(z) (∇WSV + J) = n
G

(x, y)
TSV (z) (∇WSV + J) (x, y)

J
, (119)
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for the Saint–Venant component, as equation (62) for the TWKV formula-
tion, and

τW = −G
(
φ′(z)− λ(z)

)
∇WSV (x, y) = −n

G
(x, y)

TW (z)∇WSV (x, y)

I∇WSV
,

(120)
after using the definition of each part of the torque in equation (105).

These stresses do resemble the stresses (83) for the TWKV formulation,
but with a clear difference for the warping stress τW . The distribution of
this stress on a typical section is given now by ∇WSV /I∇WSV while it is given
by ∇Wσ/IWSV for the original TWKV formulation.

The main consequence of this result is that, in general, the stresses in the
RBV formulation will not be in equilibrium, that is, they will not satisfy the
relations (84), as they did in the TWKV formulation. A simple calculation
shows that

∇ · τ + σ′z = −TW (z) ∇ ·
[
n
G

(
∇WSV

I∇WSV
+
∇Wσ

IWSV

)]
in Ω ,

τ · ν = −n
G

(x, y) TW (z)
J · ν
I∇WSV

along ∂Ω ,

 (121)

which will not vanish in the RBV formulation unless TW (z) = 0, that is,
$(z) = 0. Defining the difference appearing in (121) by

τ noeqW := −n
G

(x, y) Tw(z)

(
∇WSV

I∇WSV
+
∇Wσ

IWSV

)
in Ω , (122)

and noting that τ noeqW · ν along ∂Ω is given by (121)2, a straightforward
calculation shows that∫

Ω

τ noeqW · JdΩ = −TW (z)

[
1

I∇WSV

∫
Ω

n
G
∇WSV · JdΩ︸ ︷︷ ︸

=−I∇WSV by (103)

+
1

IWSV

∫
Ω

n
G
∇Wσ · JdΩ︸ ︷︷ ︸

=IWSV by (81)

]
= 0 , (123)
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that is, having a zero resultant torque. However, after using the relations
(40) and (87), we have∫

Ω

τ noeqW dΩ = −TW (z)

I∇WSV

∫
Ω

n
G
∇WSV dΩ =

TW (z)

I∇WSV

∫
Ω

n
G
J dΩ

=
TW (z)

I∇WSV
An

G
(x̄

G
− x̄

T
) 6= 0 , (124)

in general, showing again the lack of equilibrium of the stresses underlying
the RBV formulation. Note that this deficiency of the RBV formulation
occurs even for prismatic shafts, involving a constant cross section and cor-
responding warping function WSV (x, y) in z along the shaft, the focus of this
work. This is in contrast to the original TWKV formulation (and the mixed
formulation to be developed below) where any discrepancy from equilibrium
is linked to a tapering of the shaft, in the geometry of the cross section
or material distribution on it. This would affect, in particular, the section
torsional constants along the shaft, being functions of z.

Imposing no warping in the RBV formulation at, say, the support z = 0
for the problem at hand is accomplished by setting λ(0) = 0, leaving free
φ′(0). This allows a non-zero stress at that fixed end, namely, the Saint–
Venant shear stresses τ SV (0) and the corresponding torque TSV (0), resolving
then the torque anomaly indicated in Remark 2.3 in its entirety, as opposed
to the situation discussed at the end of Section 3.2 for the TWKV formula-
tion. However, this is accomplished by considering stresses that are not in
equilibrium.

In any case, as indicated several times above and, in particular, in Re-
mark 2.2, the goal of any structural model is to capture the response of the
structural member at the global (structural) level, with necessarily a number
of contradictions/anomalies at the local (section) level forced by the nature
of the approximation. Despite these observations, the RBV formulation de-
veloped in this section is widely used in the literature, even in the nonlinear
range as discussed in the introduction presented in Section 1. We shall eval-
uate in Section 7 its performance in comparison with the original TWKV
formulation and the alternative mixed approximations developed next.

Remark 4.2. We note that the use of the orthogonality relation (38) and
definition (102) for the section constant I∇WSV easily makes us conclude that
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the expressions (119)-(120) for the shear stress components in the RBV for-
mulation are consistent with the general relation (90), also applicable to the
original TWKV formulation. This equation gives the Saint–Venant TSV (z)
and warping (bishear) TW (z) parts of the total torque T (z) in terms of the
total shear stress τ on the cross section and the gradient of the Saint–Venant
warping function ∇WSV (x, y), on the cross section as well. �

5. A mixed formulation of restrained warping

The two formulations considered so far are based on a direct approxima-
tion of the warping displacement in the shaft to accommodate the effects of
its restrainment. In both cases, the warping distribution on the cross sec-
tion Ω is common for all sections in the shaft, being all proportional to each
other. The proportionality factor is given by the generally varying rate of
twist φ′(z) in the original TWKV formulation, but that resulted in a fourth
order problem for this twist rotation, with the warping part of the torque
not coming from associated shear strains in the shaft.

This structure of the original TWKV has been shown to be a consequence
of its constrained origin. In this way, the alternative RBV formulation ac-
complishes the reduction to a more convenient (certainly numerically) second
order boundary-value problem by releasing the warping–twist constraint on
that proportionality factor from φ′(z) to a general (unknown) function λ(z)
along the shaft. However, the feasibility of the formulation has been shown
to be at the price of the accuracy of the shear stresses at the section level.

These different shortcomings for both formulations can be linked to the
assumption of a fixed distribution of the warping displacement over the cross
section along the shaft length, both with the Saint–Venant warping function
WSV (x, y). In the case of the TWKV formulation, shear stresses in equilib-
rium involving a different function (the alternate distribution Wσ(x, y)) could
be obtained since, due to the aforementioned constrained character of the
problem, the warping stresses τW appear then from equilibrium (static) con-
siderations rather than from material constitutive relations involving shear
strains arising from the assumed approximation of the warping displace-
ment, as the RBV formulation does. The consideration of mixed treat-
ments, with separate approximations of the warping displacements and the
strains/stresses, seems then of great interest.

This type of framework was precisely proposed in Reissner [1952], in
the context of a Hellinger-Reissner treatment with assumed distributions of
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the warping displacement and the axial stress. To the author’s knowledge,
the proposal has not received much attention in the literature, as opposed
to the previous formulations based on a direct approximation of the warping
displacements. Perhaps, this has been the case because the original presen-
tation in Reissner [1952] does not consider particular distributions for the
different fields, nor elaborates in the consequences of different choices.

Here we shall first reformulate this mixed treatment in a Hu-Washizu
type formulation in terms of assumed both strains and stresses. This type
of formulations has been shown to be more amenable to generalization to
nonlinear problems, avoiding altogether the use of complementary energy
densities, even though we continue focused on linear elastic problems in this
paper. We start by considering in Section 5.1 the formulation in terms of
a general (three–dimensional) warping displacement. The insight gained in
these developments allows to identify the proper form of the assumed fields,
including both the warping displacement and the normal strains and stresses.
We then develop in Section 5.2 a reformulation of these ideas only in terms
of structural fields along the shaft, leading to a new structural treatment of
restrained warping in torsion.

5.1. Preliminary considerations: the mixed treatment in the three–dimensio-
nal setting

The staring point of the mixed formulation is an assumed distribution for
both the axial strain εz and stress σz due to restrained warping, a distribution
that we write as

εz = ε(z) Σε(x, y) , and σz = σ(z) Σσ(x, y) , (125)

for two (fixed) distribution functions Σε(x, y) and Σσ(x, y) over the cross
section, and two unknown structural fields ε(z) and σ(z) along the shaft.
The notation used here should not be understood that these two fields have
units of strain and stress, respectively, as this will depend on the choice of the
assumed distributions Σε(x, y) and Σσ(x, y). In fact, they will not physically
have the corresponding units. They should be simply understood as the
“amplitudes” of the axial strains and stresses, respectively. We leave the two
distribution functions Σε(x, y) and Σσ(x, y) open for now, only imposing the
conditions∫

Ω

Σσ(x, y) dΩ = 0 and

∫
Ω

x
E

Σσ(x, y) dΩ =

∫
Ω

y
E

Σσ(x, y) dΩ = 0 ,

(126)
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on physical grounds, following relations (4) and (5) for the normal stress σz.
Note that underlying the assumed distributions (125) is the same spatial

shape or form of the axial strain and stress on all the cross sections of the
shaft, with varying amplitude along the shaft in general. Hence, we assume
that the distribution functions Σε(x, y) and Σσ(x, y) are independent of the
axis coordinate z in the calculations that follow, as implied by the employed
notation, although one may perfectly consider them for the particular cross
section at z for general non–prismatic shafts; see Remark 5.4 below for fur-
ther comments in this respect. Specific choices for these fixed distribution
functions will be made explicit in the following section; they will depend on
the particular section under consideration, its geometry and material distri-
bution.

As shown below, the uniformity of the section distributions for these
quantities along the shaft will allow a varying form of the distribution of
the warping displacements for different cross sections of the shaft, a cru-
cial feature we saw missing in the previous direct approximations. In fact,
we assume the same displacements as in the 3D displacement (12) with a
completely general (three–dimensional) warping function w(x, y, z) as our
starting point. Hence, the two fundamental assumptions in building the (ap-
proximate) structural model from full three–dimensional elasticity are (1) the
original assumption of the cross sections suffering an infinitesimal rigid ro-
tation of generally varying amplitude φ(z) in their planes around the shaft’s
axis z, as encompassed by the 3D displacements (12)1,2, and (2) the assumed
distributions of the normal strain and stress, of uniform form and varying
amplitude marked by the parameters ε(z) and σ(z), but again a general
warping displacement uz = w(x, y, z).

With this in mind, and for the elastic case of interest here, the formulation
under consideration can be developed from the Hu-Washizu type functional

ΠHW,1(φ,w, ε, σ) =

∫
V

[
Ψ (εz(ε),γ(φ,w)) + σΣσ (w′ − εΣε)

]
dv

+Πext(φ) , (127)

for the standard shear strains γ(φ,w) = ∇w + φ′J. The same external
potential Πext(φ) as in (17). is involved in (127).

The variations of the functional (127) lead to the weak equations

δφΠHW,1 =

∫ L

0

[T (z) δφ′(z)− tex(z)δφ(z)] dz − δφ(L)TL = 0 , (128)
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δwΠHW,1 =

∫
V

[
τ · ∇δw + σ Σσ δw

′
]
dv = 0 , (129)

δεΠHW,1 =

∫
V

[
∂Ψ

∂εz
− σΣσ

]
Σε δε dv = 0 , (130)

δσΠHW,1 =

∫
V

[
w′ − εΣε

]
Σσ δσ dv = 0 , (131)

where we have introduced the (total) internal torque T (z) =
∫

Ω
τ ·J dΩ for the

shear stresses τ = ∂Ψ/∂γ. These equations consider admissible variations
for the different supports, consisting of the same δφ(z) and δw as in Section
2.2, and general variations δε and δσ of the new mixed fields.

The weak equation (128) leads to the same equation (19) capturing the
balance of moments about the axis of the shaft for the internal torque T (z).
Equation (130) leads to

σ(z) =
1

IΣσΣε

∫
Ω

Σε(x, y)
∂Ψ

∂εz
dΩ = Ēεσ ε(z) , (132)

the latter equality for the linear elastic case of interest, with the notation

IΣσΣε :=

∫
Ω

Σε(x, y) Σσ(x, y) dΩ , (133)

and

Ēεσ :=
Ē

IΣσΣε

∫
Ω

n
E

(x, y)
(
Σε(x, y)

)2
dΩ , (134)

for the mixed distribution functions assumed in equations (125).
Similarly, equation (131) results in

ε(z) = λ′ε(z) for λε(z) :=
1

IΣσΣε

∫
Ω

Σσ(x, y) w(x, y, z) dΩ , (135)

a weighted average of the warping displacement on the cross section Ω. This
equation has to be compared with relation (92), thus motivating the employed
notation in the warping amplitude λε(z). Here we have assumed, as pointed
out above, that the starting distribution functions (125) are indeed constant
in z along the length of the shaft or, in other words, that we have a constant
cross section Ω including the material distributions n

G
(x, y) and n

E
(x, y), so
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the constant IΣσΣε is also independent of z. We refer to Section 5.2 below for
an alternative treatment accommodating this more general situation and, in
particular, to the additional arguments in Remark 5.4 of that section.

For equation (129), we proceed by integrating by parts, as in (20), to
obtain

−
∫
V

[
∇ · τ + σ′ Σσ

]
δw dv +

∫ L

0

∫
∂Ω

τ · ν δw dΩdz +
[
σ δλε

]L
0

= 0 , (136)

after using the definition (135)2 for the last boundary term. Hence, we arrive
at the differential equation

∇ · τ + σ′ Σσ = 0 in Ω , with τ · ν = 0 along ∂Ω , (137)

an equation to be compared with (21), and the identification of the proper
boundary conditions at both end of the end for the warping fields. Namely,
we have σ(L) = 0 for the end with free warping, and λε(0) = 0 at the
end z = 0 with restrained warping. Note that the considered formulation
imposes this condition through the weighted amplitude (135)2, avoiding the
anomalies observed above when imposing φ′(0) = 0 to restrain the warping.
The usual boundary conditions need to be imposed on the rotation field and
total internal torque, that is, φ(0) = 0 for the fixed support at z = 0, and
T (L) = TL for the imposed torque TL at the free end at z = L, as obtained
below.

For the linear elastic case, the differential equation (137) reads

∇ ·
(
G
(
∇w + φ′(z) J

))
+ σ′(z) Σσ(x, y) = 0 in Ω ,

∂w

∂ν
= −φ′(z) J · ν along ∂Ω ,

 (138)

for the fixed section Ω at z, a problem to be compared with (23). Considering
again a shear modulus of the form G = Ḡ n

G
(x, y), the solution of equation

(138) can be easily seen to be given as

w(x, y, z) = φ′(z) WSV (x, y)− 1

Ḡ
σ′(z) WΣσ(x, y) , (139)

in terms of the rate of twist φ′(z) and the stress parameter σ(z), the Saint–Ve-
nant warping function WSV (x, y) defined by (33), and the function WΣσ(x, y)
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defined by boundary-value problem

∇ · (n
G

(x, y) ∇WΣσ) = Σσ(x, y) in Ω ,

∂WΣσ

∂ν
= 0 along ∂Ω ,

 (140)

a Poisson problem of the Neumann type to be compared with (79). The
condition (126)1 assures that the Neumann boundary-value problem (140) is
well-posed, following the same argument as in (80); see Remark 5.2 below
for the arbitrary constant defining the warping function WΣσ(x, y).

Given the expression (139) for the warping displacement involved in the
formulation under consideration, the shear stress τ = G(∇w+ φ′J) is given,
for the linear elastic case considered here, by

τ = n
G

(x, y)
[
Ḡφ′(z) (∇WSV + J)− σ′(z)∇WΣσ

]
, (141)

which results in the total torque

T (z) :=

∫
Ω

τ · J dΩ = TSV (z) + TW (z) , (142)

for the Saint–Venant torque TSV (z) = ḠJφ′(z) with the torsional constant J
defined exactly as above, and the bishear TW (z) given now by

TW (z) = −IΣσWSV
σ′(z) = − d

dz
BW (z) , (143)

for the bimoment BW (z) defined by

BW (z) = IΣσWSV
σ(z) = Ēεσ IΣσWSV

ε(z) , (144)

in terms of the mixed normal strain field ε(z). Here we have used the notation

IΣσWSV
:=

∫
Ω

Σσ(x, y) WSV (x, y) dΩ =

∫
Ω

n
G

(x, y)∇WΣσ · J dΩ , (145)

the last equality following from the same arguments as used in (81) for the
functions considered in the current section. Equation (144) defining the
bimoment BW (z) is to be contrasted with the constitutive relation (104) for
the RBV formulation. Note that we still can write (144)

BW (z) = IΣσWSV
σ(z) =

∫
Ω

σ(z) Σσ(x, y)︸ ︷︷ ︸
=σz

WSV (x, y) dΩ , (146)
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recovering the original definition of the bimoment (99) from the assumed
axial stress distribution.

The result (143) allows to write the shear stresses (141) as

τ = n
G

(x, y)

(
TSV (z) (∇WSV + J)

J
+
TW (z)∇WΣσ

IΣσWSV

)
, (147)

recovering the form of equation (83) for the original TWKV formulation.
Each term in this expression also identifies the two parts of the shear stresses
τ SV and τW , the Saint–Venant and warping stresses, respectively, for the
current mixed formulation. Similarly, the normal stresses σz can be written
as

σz =
BW (z) Σσ(x, y)

IΣσΣε

, (148)

directly linked to the bimoment BW (z). In contrast with the stresses involved
in the previous RBV formulation, the stresses (147) and (148) are indeed
in equilibrium, having been derived precisely from the equilibrium relation
(137). Again, this situation is exact for the prismatic shafts with constant
cross section focus of this work; see Remark 5.4 for additional details.

The mixed normal strain field ε(z) with associated stress field σ(z) =
Ēεσε(z) appearing in all these expressions are obtained by expanding the
compatibility relation ε = λ′ε in (135), combined with the relation (139).
We carry out these calculations in the next section. Here instead, we note
again the similarity of the expressions (147) and (148) of the stresses in
terms of the functions WΣσ(x, y) and Σσ(x, y) for the current mixed formu-
lation, with WΣσ(x, y) being the solution of the Poisson problem defined by
the latter function Σσ(x, y), with similar considerations for equations (83)
and (76) for the TWKV formulation in terms of the functions Wσ(x, y) and
n
E

(x, y)WSV (x, y) with, similarly, the latter function being the solution of the
same Poisson problem defined by the former function. In other words, the
natural choices for the assumed mixed functions are

Σε(x, y) = WSV (x, y) , and Σσ(x, y) = n
E

(x, y) WSV (x, y) , (149)

(the first choice motivated by the relation ε = σ/E), resulting also in

WΣσ(x, y) = Wσ(x, y) , (150)

the warping function defined by the Poisson problem (79) in terms of the
original Saint–Venant warping function WSV (x, y). Note that the conditions
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(126) on Σσ(x, y) are indeed satisfied by the choice (149)2, since the Saint
–Venant warping function is, again, assumed to be normalized by the con-
ditions (46) and (47). We explore the choice of functions (149) next, in the
context of a fully structural derivation of the mixed formulation at hand.

Remark 5.1. We note that, with the choices (149), we have

Σε(x, y) ∼ Σσ(x, y) ∼ WSV (x, y) ∼ (length)2 . (151)

in terms of units. Hence, we have

ε(z) ∼ (length)−2 and σ(z) ∼ stress · (length)−2 , (152)

for the two considered amplitude parameters. Similarly, with the choices
(149), the different section constants considered in this section reduce to

IΣσΣε = IΣσWSV
= IWSV , and Ēεσ = Ē , (153)

for the warping function IWSV in (64) and the reference Young modulus Ē,
respectively, both used repeatedly in previous formulations. �

Remark 5.2. The Poisson problems of the Neumann type (79) and (140)
define the functions Wσ(x, y) and WΣσ(x, y), respectively, up to an arbitrary
additive constant. The TWKV formulation only depends on the former func-
tion through its gradient, in expression (83) for the warping stresses, hence
this constant is irrelevant for the TWKV formulation. These functions play
no role in the RBV formulation. For the mixed formulation considered in
this section, the warping stresses in (147) also depend on ∇WΣσ(x, y) (or
Wσ(x, y) if the choices (149) are considered), so that arbitrary constant has
no effect either. However, the function WΣσ(x, y) (or, as before, Wσ(x, y))
does appear explicitly in the warping displacement given by the expression
(139). The first term in that expression, depending on the Saint–Venant
warping function WSV (x, y), is imposed to have a zero (n

E
-weighted) average.

We consider the same condition on the second term of that expression and,
hence, impose ∫

Ω

n
E

(x, y) Wσ(x, y) dΩ = 0 , (154)

and similarly for WΣσ(x, y), defining uniquely either function. Physically,
this condition is motivated by the axial force balance relation

∫
Ω
Eu′zdΩ = 0

along the shaft for the three–dimensional displacement uz(x, y, z). �
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5.2. A new mixed formulation of restrained warping in terms of structural
fields only

To our purpose, the main outcome of the preliminary considerations pre-
sented in the previous section developing a mixed treatment in the three–
dimensional setting is the resulting distribution (139) of the warping displace-
ment. This distribution, involving now a non–uniform section form along the
shaft, is a direct consequence of the assumed distributions (125) for the axial
strain and stress, both of a uniform form along the shaft. Furthermore, the
explicit expression (139) allows us to formulate a purely structural model of
restrained warping.

We develop such formulation using the specific choices (149) for the as-
sumed mixed distributions. Hence, we have

εz = ε(z)WSV (x, y) , and σz = σ(z)n
E

(x, y) WSV (x, y) , (155)

for the unknown fields ε(z) and σ(z), with section distributions given by the
Saint–Venant warping function WSV (x, y) in all the sections along the shaft.
Since we assume that this function satisfies the normalizing conditions (46)
and (47), the resulting normal stress distribution (155)2 satisfies then the
equilibrium relations (4) and (5) by construction. With these choices, the
second warping function in the warping displacement (139) reduces to the
function Wσ(x, y), the unique solution of the Poisson problem (79) depending
on that same Saint–Venant warping function WSV (x, y) after imposing the
condition (154).

Together with (155), the proposed mixed formulation starts by expressing
the 3D warping displacement as

uz(x, y, z) = φ′(z) WSV (x, y) +
IWSV
I∇Wσ

(φ′(z)− λε(z)) Wσ(x, y) , (156)

in terms of the twist rotation field φ(z) and a new and independent structural
field λε(z), besides the combination of section constants IWSV /I∇Wσ specified
below. Hence, we have replaced the general three–dimensional warping func-
tion w(x, y, z) considered in the previous section by an explicit expression
in terms of the unknown independent structural fields φ(z) and λε(z). It is
worth pointing out again that, in contrast to the TWKV and RBV formu-
lations, the assumed expression (156) allows to have a warping displacement
whose form or shape of the distribution over the cross sections varies along
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the shaft. In particular, it assumes two components with fixed forms, one
in the form given by the Saint–Venant warping functions WSV (x, y) and the
other by the second warping function Wσ(x, y). We recognize the classi-
cal Saint–Venant solution depending on the rate of twist φ′(z) in that first
component, with the new added component defined by that second warping
function depending on the difference of the rate of twist φ′(z) with the new
field λε(z),

The assumed warping distribution (156) uses the warping constant IWSV
of the cross section, namely again,

IWSV =

∫
Ω

n
E

(x, y)
(
WSV (x, y)

)2
dΩ > 0 , (157)

and a new section constant I∇Wσ associated with the second warping function
Wσ(x, y) defined as

I∇Wσ :=

∫
Ω

n
G

(x, y) ‖∇Wσ‖2 dΩ > 0 , (158)

strictly positive by construction with the proper choice of that function (ac-
tually, WSV (x, y) driving its definition through the defining problem (79)).
The introduction of this new section constant is motivated by the relation

I∇Wσ =

∫
Ω

n
G

(x, y)∇Wσ · ∇WσdΩ =

∫
∂Ω

n
G
∇Wσ · ν︸ ︷︷ ︸

= 0

Wσ dΓ

−
∫

Ω

∇ · (n
G
∇Wσ)︸ ︷︷ ︸

= n
E
WSV

Wσ dΩ = −
∫

Ω

n
E

(x, y)WSV Wσ dΩ , (159)

using again problem (79) defining the function Wσ(x, y).
With this result at hand, the choice of the combination of these normal-

izing constants in (156) readily leads to the identity

1

IWSV

∫
Ω

n
E

(x, y)WSV (x, y)uz(x, y, z)dΩ = φ′(z)
1

IWSV

∫
Ω

n
E

(WSV )2dΩ︸ ︷︷ ︸
= 1 by (157)

+ (φ′(z)− λε(z))
1

I∇Wσ

∫
Ω

n
E
WSV Wσ dΩ︸ ︷︷ ︸

= −1 by (159)
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= λε(z) , (160)

identifying the field λε(z) with the weighted average of the warping direction
when one looks at its distribution over the cross section Ω, a quantity that
also appeared in (135) during the general considerations of the last section
but not as an independent field. Hence, the notation we have employed in
naming the new independent field here. In (160), we have crucially used the
relation (159). Note that this last result or, directly, the original expression
(156), implies that the units of this field are λε ∼ (length)−1

The shear strain associated to the assumed warping displacement (156),
always in combination with the in–plane displacements (12)1,2 for an infinites-
imal rigid rotation φ(z) of the section in its plane, is given by

γ = φ′(z) (∇WSV + J)︸ ︷︷ ︸
γ
SV

+
IWSV
I∇Wσ

(φ′(z)− λε(z)) ∇Wσ︸ ︷︷ ︸
γ
W

, (161)

thus involving the usual Saint–Venant component γ
SV

and a new warping
component γ

W
. We can see that, crucially, this warping component involves

the gradient ∇Wσ of the second warping function Wσ(x, y). This situation is
to be contrasted with expression (108) of this shear strain for the RBV for-
mulation, involving instead the gradient ∇WSV of the Saint–Venant warping
function. The new warping strain component mimics the same distribution
of the warping shear stresses (78) of the TWKV formulation, but recall that
these stresses appear in that formulation in order to impose the warping–
twist constraint, with the resulting constrained TWKV formulation involv-
ing no warping shear strains whatsoever.

The two components of the shear strain in (161) are n
G
−orthogonal.

Indeed, a simple application of integration by parts leads to∫
Ω

n
G

(∇WSV + J) · ∇Wσ dΩ = −
∫

Ω

∇ · (n
G

(∇WSV + J))︸ ︷︷ ︸
=0

Wσ dΩ

+

∫
∂Ω

n
G

(∇WSV + J) · ν︸ ︷︷ ︸
=0

Wσ dΩ = 0 , (162)

both vanishing because of the problem (33) defining the Saint–Venant func-
tion WSV (x, y). Although not crucial to the developments presented here,
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this property leads to a decoupling of each component again in the material
part of the functional (127) for the isotropic linear elastic case (2) of interest.

Summarizing the above developments so far, once we have the cross sec-
tion of the shaft, its geometry and material distribution over it through the
non–dimensional distributions n

G
(x, y) and n

E
(x, y), we proceed with the

evaluation of the Saint–Venant warping function WSV (x, y) by solving the
Laplace problem (33), followed by the determination of the second warping
function Wσ(x, y) by solving the Poisson problem (79), which in turn allows
the evaluation of the involved section constants, namely, the Saint–Venant
torsional constant J , the warping constant IWSV and the new gradient con-
stant I∇Wσ . For the elastic shafts of interest here, these are all kept fixed in
the analysis of the shaft, involving a purely structural problem for the four
(one-dimensional or structural) fields φ(z), λε(z) and the two mixed fields
ε(z) and σ(z). These last two fields will be eventually eliminated locally in
terms of the first two.

To derive the governing equations relating these different fields, we intro-
duce the fully structural functional

Π
(MIX)
HW (φ, λε, ε, σ) =

∫ L

0

[1

2
ḠJ (φ′)

2
+

1

2
Ḡ

(
IWSV

)2

I∇Wσ
(φ′ − λε)2

+
1

2
ĒIWSV ε

2 + σIWSV (λ′ε − ε)
]
dz + Πext(φ) ,

(163)

where the Saint–Venant torsional constant J =
∫

Ω
n
G
‖∇WSV +J‖2dΩ appears

naturally in this context as measuring the magnitude of the Saint–Venant
component γ

SV
of the shear strain in (161). Here, and to be specific to the

problem later considered in the evaluation of the resulting model, we have
assumed again an isotropic linear elastic model, with the expression (163)
clearly showing the noted orthogonality of the Saint–Venant and warping
shear strain components.

Taking variation of the functional (163), we obtain the weak equations

δφΠ
(MIX)
HW =

∫ L

0

[T δφ′ − texδφ] dz − δφ(L)TL = 0 , (164)

δλεΠ
(MIX)
HW =

∫ L

0

[
− Ḡ

(
IWSV

)2

I∇Wσ
(φ′ − λε) δλε + IWSV σ δλ

′
ε

]
dz = 0 , (165)
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δεΠ
(MIX)
HW =

∫ L

0

IWSV
[
Ēε− σ

]
δε dz = 0 , (166)

δσΠ
(MIX)
HW =

∫ L

0

IWSV

[
λ′ε − ε

]
δσ dz = 0 , (167)

for all admission variations (e.g. δφ(0) = 0 and δλε(0) = 0 for the considered
fixed support at the root of the shaft with no warping).

In equation (164), we have introduced the short hand notation for

T (z) = ḠJ φ′︸ ︷︷ ︸
TSV (z)

+ Ḡ

(
IWSV

)2

I∇Wσ
(φ′ − λε)︸ ︷︷ ︸

TW (z)

, (168)

incorporating again the Saint–Venant torque TSV (z) and bishear TW (z) parts
of the total torque T (z). Equation (164) is again the weak form of balance
of moments about the shaft axis for this total torque T (z).

Equation (165) allows to introduce the bimoment BW (z) and its relation
with the bishear TW (z) in (168), recovering the strong form relation

TW (z) = − d

dz
BW (z) for BW (z) = IWSV σ , (169)

after integrating by parts the weak equation (165), together with the natural
boundary condition BW (L) = BWL = 0 for the assumed free end at the
shaft’s tip z = L or, equivalently (since IWSV > 0), σ(L) = 0. This same
calculation also identifies that essential boundary condition corresponding to
restrained warping at the opposite end, namely,

λε(0) = 0 for restrained warping at z = 0, (170)

fixing the new independent field λε(z) at that end. Physically, this corre-
sponds to fixing the average of the warping displacement (weighted by the
warping function WSV (x, y) as given by relation (160)), rather than a point-
wise imposition as it occurred in the TWKV and RBV formulations, despite
how similar condition (170) is with the corresponding condition (96) for the
RBV formulation. Note that φ′(0) 6= 0 necessarily, resolving the torque
anomaly discussed in Remark 2.3 allowing a non–zero Saint–Venant torque
TSV (0) 6= 0 too, hence avoiding the observed limitation of the original TWKV
formulation.
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The last two weak equations (166) and (167) allow to eliminate the mixed
parameters ε(z) and σ(z) pointwise along the shaft (note that no derivatives
are involved for these fields). Namely, we obtain

ε(z) = λ′ε(z) and σ(z) = Ēε(z) . (171)

The first of these relations identifies the compatibility relation underlying
the assumed mixed treatment, linking directly the amplitude of the axial
strain along the shaft with the rate of the average of the warping of the
cross sections. Rather than having the three–dimensional relation εz = u′z
pointwise over the cross section, equation (171)1 corresponds to the weighted
average relation

1

IWSV

∫
Ω

εzWSV dΩ = ε(z) = λ′ε(z) =
d

dz

(
1

IWSV

∫
Ω

uzWSV dΩ

)
, (172)

after using the assumed distribution (155) for the axial strain εz(x, y, z) and
the result (160). Note that these considerations are consistent with the es-
sential boundary condition (170), involving that same average through the
new field λε(z).

These results allow to write the bishear TW (z) and bimoment BW (z) in
(169) alternatively as

TW (z) = − d

dz

(
Ē IWSV λ

′
ε

)
and BW (z) = Ē IWSV λ

′
ε . (173)

This last relation is to be compared with the corresponding expressions (63)
and (104) for the bimoment distribution BW (z) in the TWKV and RBV
formulations, respectively.

Then, the additional governing equation in the proposed formulation is
obtained by equating the bishear TW (z) in relation (173) with the same bis-
hear given by (168). The final system of ordinary differential equations for
the mixed formulation, involving the resulting equation with the strong form
of the equilibrium equation (164), reads then

d

dz

[
ḠJ

(
φ′(z) +

(
IWSV

)2

J I∇Wσ

(
φ′(z)− λε(z)

))]
+ tex(z) = 0 ,

d

dz

[
ĒIWSV λ

′
ε(z)

]
+ Ḡ

(
IWSV

)2

I∇Wσ

(
φ′(z)− λε(z)

)
= 0 ,


(174)
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a second order system on the unknown fields φ(z) and λε(z), with the bound-
ary conditions discussed above. The high–order problem (68) of the con-
strained TWKV formulation is then avoided. Note that the weak form of
the system (174), namely, the variational equations (164) and (165) involve
only first derivative of the unknown fields φ(z) and λε(z).

After solving this system of equations for these two fields along the shaft,
one can recover the stresses on the cross sections as a post–processing. In-
deed, the availability of the shear strains (161) leads directly to

τ SV = Gφ′(z) (∇WSV + J) = n
G

(x, y)
TSV (z) (∇WSV + J)

J
, (175)

for the Saint–Venant component τ SV , following then the same form as in the
previous two considered direct formulations, and

τW = G
IWSV
I∇Wσ

(
φ′(z)− λε(z)

)
∇Wσ = n

G
(x, y)

TW (z)∇Wσ(x, y)

IWSV
, (176)

for the warping component τW of the total shear stress τ = τ SV + τW .
The last relations in (175) and (176) have been obtained after using the
constitutive structural relations (168) for the Saint–Venant torque TSV (z)
and the bishear TW (z). Similarly, equations (155)2 and (171) result in the
expression

σz = E λ′ε(z)WSV (x, y) = n
E

(x, y)
BW (z)WSV (x, y)

IWSV
, (177)

of the normal stress distribution on the cross section, with the last equality
obtained from the constitutive structural relation (169)2 for the bimoment
BW (z). As expected, expressions (175) to (177) for the different stresses
correspond to the analogous expressions for the same stresses derived in the
previous section for the general distribution functions Σε(x, y) and Σσ(x, y)
considered in that section.

Notwithstanding, its is interesting to verify directly that these stresses
are in equilibrium among themselves, regardless of the three–dimensional
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arguments considered in the previous section. Indeed, we have

∇ · τ = ∇ · (τ SV + τW ) =
TSV (z)

J
∇ · (n

G
(x, y) (∇WSV + J))︸ ︷︷ ︸
= 0 by (33)

+
TW (z)

IWSV
∇ · (n

G
(x, y)∇Wσ)︸ ︷︷ ︸

=n
E
WSV by (79)

= − 1

IWSV

d

dz

(
IWSV σ(z)︸ ︷︷ ︸
BW (z)

)
︸ ︷︷ ︸

−TW (z)

n
E
WSV

= −σ′(z)n
E

(x, y)WSV (x, y) = −σ′z , (178)

on a cross section Ω and, similarly,

τ · ν =
TSV (z)

J
n
G

(x, y) (∇WSV + J) · ν︸ ︷︷ ︸
= 0 by (33)

+
TW (z)

IWSV
n
G

(x, y)∇Wσ · ν︸ ︷︷ ︸
= 0 by (79)

= 0 , (179)

along the cross section boundary ∂Ω. As occurred with the original TWKV
formulation (see comments after equation (79)), the final arguments in (178)
requires that the warping constant IWSV (and, for that matter, the Saint–
Venant warping function WSV (x, y)) is, indeed, independent of z as in the
considered prismatic shafts; see Remark 5.4 below.

We also note that the relation (87) of a vanishing weighted average of the
gradient ∇Wσ in the warping stresses τW , together with the divergence free
characteristic of the Saint–Venant stresses τ SV , leads easily to

∫
Ω
τdΩ = 0,

that is, the total shear stresses in the proposed mixed formulation have indeed
a zero resultant force. The expressions (175) and (176) giving these two
components of the shear stress in terms of the Saint–Venant torque TSV (z)
and the bishear TW (z) are the same as expressions for the original TWKV
formulation. Hence, the arguments presented in Remark 3.3 in Section 3.2
above for that formulation apply exactly to the mixed formulation and so
we conclude that the shear stresses (175)-(176) do have the correct resultant
torque, the total internal torque T (z) (i.e.

∫
Ω
τ · JdΩ = TSV (z) + TW (z) =

T (z) by (168)). Similarly, the resultant axial force and bending moments
associated to the normal stress (177) vanish trivially given the normalizing
conditions (46) and (47) imposed from the beginning on the Saint–Venant
warping function WSV (x, y), its distribution function on the cross section
(consistently weighted by n

E
(x, y)).
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All these results show that the proposed mixed formulation resolves the
torque anomaly originally identified in Remark 2.3 for a general three–di-
mensional treatment of torsion with restrained warping and the stresses and
strains created. Furthermore, in contrast with the direct approximations of
the warping developed in Sections 3 and 4, this is accomplished with both
avoiding a higher-order problem for the driving fields as well as vanishing
stress and torque components like in the original TWKV formulation, in-
volving in addition shear and axial stresses in equilibrium in contrast with
the RBV formulation.

Remark 5.3. The system of differential equations (174) driving the newly
proposed mixed formulation is to be compared with the system of governing
equations (107) for the RBV formulation. In fact, we see that we can we
recover one from the other by switching{

RBV

formulation

}
I∇WSV ←→

(
IWSV

)2
/I∇Wσ

{
mixed

formulation

}
, (180)

in their respective equations. As observed in the numerical evaluations pre-
sented in Section 7, this will have a significant overall effect in the predicted
structural response of the shaft, like its flexibility. But note that the equations
(107) or (174) are only used in determining the generalized displacements of
the formulation φ(z) and λ(z) or λε(z) which, in turn, define the amplitude
of other quantities like stresses and warping displacements. At that level, the
RBV and mixed formulations consider completely different distributions. In
particular, the stresses for the RBV have been shown in Section 4.3 not to
be in equilibrium, as opposed to the stresses predicted by the current mixed
formulation, as described in this section. �

Remark 5.4. A careful look at the developments presented in this section
shows that the resulting structural model based on the fields φ(z) and λε(z)
applies to a shaft exhibiting a varying cross section or material parameters
in z, along the shaft’s length L. Even though we have not reflected this in the
notation employed, the starting assumed distributions (155) and (156) are
built with the particular warping functions WSV (x, y) and Wσ(x, y) obtained
for the particular cross section at any fixed z ∈ [0, L], also involving the par-
ticular material distributions n

G
(x, y) and n

E
(x, y) and material parameters

Ḡ and Ē for that section at z. All the calculations leading from there to the
functional (163) are to be understood for a particular cross section at any
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given z ∈ [0, L]. The resulting section constants and material parameters
involved in this functional may then be functions of z, a fact that have been
taken into account in deriving the governing equations from it, leading to
the final system of equations (174) where the different derivatives in z are
to be understood applying to the different expressions as grouped. Note also
the validity of the argument behind the relation (172) between averages over
the cross sections in this more general setting. In general, then, one may
consider the trivial extension of varying section with simply J(z), IWSV (z)
and I∇Wσ(z), neglecting other effects of the tapering of the shaft, as it is cus-
tomary in similar simplified treatments of tapered beams in beam theory. See
e.g. Timoshenko & Goodier [1951], page 341, or Sokolnikoff [1956],
page 186, for the analysis of shaft of varying circular cross section. Still, one
must be aware that the equilibrium relations for the section stresses are then
only approximation as pointed out in deriving equation (178), even though
the differences are usually neglected on practical grounds. Similar comments
apply exactly to the direct formulations discussed in previous sections. �

5.3. The TWKV formulation as the constrained limit of the mixed formula-
tion.

As we did for the RBV formulation, it is interesting to understand the
limit process (or processes) that recover the original TWKV constrained
formulation in this case for the current mixed formulation. To this pur-
pose, it proves convenient to eliminate the mixed fields ε(z) and σ(z) in the
Hu–Washizu functional (163), obtaining the two–field functional

Π(MIX)(φ, λε) =

∫ L

0

[1

2
ḠJ (φ′)

2
+

1

2
Ḡ

(
IWSV

)2

I∇Wσ
(φ′ − λε)2

+
1

2
ĒIWSV (λ′ε)

2
]
dz + Πext(φ) , (181)

in the two unknown fields φ(z) and λε(z). Taking the variation of this func-
tional results directly in the system of differential equations (174) in weak
form. In this way, the functional (181) defines a new direct formulation for
restrained warping based on the kinematics defined by the assumed warping
displacement (156). This is indeed the case but hidden in all this are the
mixed distributions (155) for the normal strain and stresses, the (average)
mixed treatment required for the compatibility relation in the formulation
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and, similarly, the proper (mixed) average boundary condition (170). For all
these reasons, we still refer to such direct formulation as mixed, and actually
prefer to consider the original Hu–Washizu functional (163).

In any case, the availability of the functional (181) allows us to easily
compare the current mixed formulation with the TWKV formulation of Sec-
tion 3. Indeed, comparing the direct functional (181) with the functional
(71) for the original TWKV formulation, we see that the latter formulation
is recovered if one imposes the constraint

$ε(z) := φ′(z)− λε(z) = 0 =⇒ λε(z) = φ′(z) , (182)

in the constrained limit. This expression defines the warping lag $ε(z) en-
compassed by the mixed formulation, similar to the warping lag $(z) in
(106) for the RBV formulation. Note that not only we recover the functional
of the TWKV formulation by imposing the constraint (182), but also the
assumed warping displacement (52) (that is, φ′(z)WSV (x, y) along the shaft)
from the new expression (156) and, thus, the boundary condition restraining
the warping (that is, φ′(0) = 0).

In turn, and as occurred for the RBV formulation discussed in Section
4.2, we can see that the functional (181) enforces the constraint (182) in two
ways. That is, it accomplishes its enforcement with large values of the non–
dimensional penalty parameter

κ
(MIX)
t :=

(
IWSV

)2

J I∇Wσ
, (183)

and by recovering the underlying Saint–Venant torsion for long shafts, en-
countering the two previous direct formulations in that limit too. The pa-
rameter κ

(MIX)
t is easily obtained by writing the functional (181) in non-

dimensional form; further details are omitted. Note only that

I∇Wσ ∼ (length)8 and, again, IWSV ∼ (length)6 , J ∼ (length)4 , (184)

for the dimensions of the involved section constants. See Remark 5.5 for
details on the limiting process for long shafts.

The parameter κ
(MIX)
t in (183) is the counterpart of the penalty param-

eter (110) obtained for the previous RBV formulation, after comparing their
corresponding definitions. In fact, this relation is clear given the analogy
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(180), depending only on the cross section geometry. Furthermore, as oc-
curred for the RBV formulation, the numerical evaluations presented in Sec-
tion 7 show that it drives the limit κ

(MIX)
t →∞ for open thin–walled sections

as t/h→ 0, whereas it remains finite for closed (hollow) thin–walled sections
and, thus, the mixed and TWKV produce significantly different results when
modeling the restrained warping of solid/hollow shafts.

It is interesting to compare in more detail the penalty parameter (183)
identified for the current mixed formulation with the corresponding param-
eter (110) for the RBV formulation. In fact, we easily observe that

κ
(RBV )
t

κ
(MIX)
t

=
I∇WSV /J(

IWSV
)2
/(JI∇Wσ)

=
I∇WSV I∇Wσ(
IWSV

)2 ≥ 1 (185)

=⇒ κ
(RBV )
t ≥ κ

(MIX)
t , (186)

where the inequality in equation (185) follows from∣∣∣∣∫
Ω

n
E

(WSV )2 dΩ

∣∣∣∣2︸ ︷︷ ︸
(IWSV )

2

=

∣∣∣∣∫
Ω

n
G
∇Wσ · ∇WSV dΩ

∣∣∣∣2

≤

(∫
Ω

n
G
‖∇Wσ‖2dΩ

)
︸ ︷︷ ︸

I∇Wσ

(∫
Ω

n
G
‖∇WSV ‖2dΩ

)
︸ ︷︷ ︸

I∇WSV

, (187)

after using, first, part of the result (81) and, second, the Cauchy-Schwarz
inequality for the n

G
> 0 weighted inner product. The limit process to the

constrained TWKV formulation driven by this parameter is then expected
to be more dominant for the RBV formulation.

Since the original TWKV is to be expected to be more stiff that any
of the other two formulations given its constrained character (unrealistically
over–stiff as shown in the numerical evaluations presented in Section 7), the
inequality (186) point to the stiffer response predicted by the RBV formula-
tion, again an over–stiff response when compared with full three–dimensional
simulations of elastic solids presented in that section. We carry out this nu-
merical evaluation in Section 7 for the model problem considered next.
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Remark 5.5. As discussed in Remarks 3.2 and 4.1 for the TWKV and RBV
formulations, respectively, an easy way to characterize the limiting process in-
volved for long shafts is by considering a prismatic shaft with non–varying
section constants along its length, loaded at one end and fully restrained at
the other, as shown in Figure 1. In this case, straightforward algebraic ma-
nipulations eliminating the field λε(z) reduce the system of equations (174)
to the (high order) equation (73) with now

L
(MIX)
T :=

√
ĒIWSV
ḠJ

α(MIX) ,

for α(MIX) := 1 +
J I∇Wσ(
IWSV

)2 = 1 +
1

κ
(MIX)
t

(
> 1 = α(TWKV )

)
,

(188)

for the characteristic length of interest here; further details are omitted.
Hence, the mixed formulation will recover effectively the global structural re-
sponse of the shaft associated with the underlying Saint–Venant torsion for
shafts of length L� L

(MIX)
T . Obviously, and as noted for the previous formu-

lations too, this limit can also be materialized (trivially but unrealistically) by
neglecting the section warping constant IWSV , leading to the vanishing of the

characteristic length L
(MIX)
T in (188). The connection of this characteristic

length with the penalty parameter κ
(MIX)
t shown by relation (188) implies that

L
(TWKV )
T < L

(RBV )
T ≤ L

(MIX)
T , (189)

with the later inequality following from the result (186). Because of the argu-
ments indicated in Remark 4.1, based on the vanishing of the Saint–Venant
torque at restrained supports in the TWKV formulation, the mixed formu-
lation will produce a much more effective way to reach the Saint–Venant
torsion solution for long shafts than the original constrained TWKV formu-
lation. Numerical tests also reveal an improved performance by the current
mixed formulation when compared to the RBV formulation. �

Remark 5.6. Some more insight on the arguments behind the newly proposed
mixed formulation developed in this section can be obtained by noting that the
second equation in the system (174) can be rewritten as

λε(z) = φ′(z) +
Ē

Ḡ

I∇Wσ
IWSV

ε′(z) , (190)
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assuming again, without loss of generality, constant section parameters as in
the previous remark. In this way, we can see that new independent field λε(z),
the amplitude of the average of the warping of the cross sections, differs from
the rate of twist φ′(z) by the rate of the amplitude of the axial strain ε′(z) (or,
equivalently, axial stress rate σ′(z)). For a shaft fully free to warp at both
ends and all along its lengths, this amplitude vanishes and we recover again
the basic underlying Saint–Venant solution in this case, with λε(z) = φ′(z)
and vanishing bishear by the relation (168). �

6. A model problem

As discussed in Remarks 3.2, 4.1 and 5.5 for the three formulations under
consideration, an evaluation of the features of the different formulations can
be accomplished by considering a prismatic shaft of length L, with non–
varying section constants along its length, subjected only to a torque TL or,
equivalently, the associated tip rotation φL at one end, free otherwise, while
the other end is not allowed to rotate nor warp. This is the case depicted in
Figure 1.

With tex(z) = 0, equation (68) for the TWKV formulation or the first
equation of the systems of equations (107) and (174) for the RBV and mixed
formulations, respectively, can be easily integrated once. The resulting value
corresponds to the total internal torque T (z) = TL, constant along the shaft.
For the TWKV formulation this results already in the third order equation
(73) on the twist rotation φ(x). For the RBV and mixed formulations, the
respective additional independent fields λ(z) and λε(z) can be eliminated
using the second equation in those systems, arriving also a third oder ordinary
differential equation in φ(z). Similarly, one may also reduce the boundary
conditions for that equation to the same form for the different formulations.
Further details are omitted. The resulting boundary–value problem has been
summarized in Box 1, following much of the notation introduced in those
remarks. To gain a better physical insight, we have reverted the problem to
its full dimensional form.

6.1. The exact solution in closed–form

A look at Box 1 leads to a few observations. First, we can observe that all
the three formulations result in a similar effective problem along the shaft’s
length for this case, a third order differential equation on φ(z) with dif-
ferent values of the warping constant, denoted generically by Ieff

WSV
in Box
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Box 1: Differential equation for a prismatic shaft: a summary.

Differential equation for a prismatic shaft of length L, with a
fixed end and no warping at x = 0, and a free end at x = L
with a torque TL applied:

ḠJφ′(z)− ĒIeff
WSV

φ′′′(z) = TL ,

φ(0) = 0 , φ′(0) = φ′
eff
0 , φ′′(L) = 0 ,


with the effective warping constant Ieff

WSV
:= IWSV α

eff for the
(non–dimensional) parameter αeff ≥ 1 given by

αeff =



1 , for the TWKV formulation,

1 + J
I∇WSV

, for the RBV formulation,

1 + J
(I2
WSV

/I∇Wσ)
, for the mixed formulation,

and the effective warping restraining at the shaft’s root φ′eff
0

given by

φ′
eff
0 = ΘTL

αeff − 1

αeff
for ΘTL :=

TL
ḠJ

,

the rate of twist in Saint-Venant’s torsion.

1. Interestingly, the different formulations result in a different rate of twist
φ′(0) = φ′eff

0 at the fixed end, the different values related on the resolution of
the torque anomaly discussed in the previous sections. They correspond to
φ′(0) = 0 for the TWKV formulation, λ(0) = 0 for the RBV formulation by
equation (96), and λε(0) = 0 by (170) for the newly proposed mixed formu-
lation. Remarkably, the latter two do allow a rate of twist φ′(0) 6= 0 at the

shaft’s root. We can observe that φ′eff
0 < Θ̃TL = TL/(ḠJ), the rate of twist

for the Saint-Venant solution with unrestrained (uniform) warping.
As noted in (180), the effective values in the resulting problem for the

RBV and mixed formulations can be obtained from each other by the con-
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sideration of the section constants I∇WSV and I2
WSV

/I∇Wσ , respectively. These
values, normalized by the torsional constant J , actually define the parameter
κt identified in equations (110) and (183) for the RBV and mixed formula-
tions, respectively, which drive these formulations to the constrained limit
defined by the TWKV formulation. In fact, the non–dimensional parame-
ter αeff in Box 1 defining the effective warping constant Ieff

WSV
and effective

boundary condition can be written as

αeff = 1 +
1

κt
, (191)

for those two formulations with those particular parameters κt, and even
for the TWKV by simply considering κt = ∞ in this case. Clearly, the
constrained TWKV formulation is recovered by both the RBV and mixed
formulation in the limit κt → ∞ for its corresponding values. Recall from
the result (186) that κ

(RBV )
t ≥ κ

(MIX)
t .

The solution of the differential equation presented in Box 1 can be written
in terms of non-dimensional quantities as

φ(z) = Θ̃TL z̃ +
(

Θ̃0 − Θ̃TL

) tanh(ρ)

ρ

(
1− sinh(ρ(1− z̃))

sinh(ρ)

)
, (192)

for z̃ := z/L ∈ [0, 1], Θ̃TL := ΘTLL = TLL/(ḠJ), Θ̃0 := φ′eff
0 L, and

ρ :=
L

LT
for LT :=

√
ĒIWSV
ḠJ

αeff , (193)

as some algebraic manipulations show. The length parameter LT corresponds
to the parameters identified in Remarks 3.2, 4.1 and 5.5 for the different
formulations. In particular, recall the inequalities (189) relating LT for the
three formulations under consideration.

We can recognize in Θ̃TL as the (non-dimensional) rate of twist of the
underlying Saint-Venant solution with uniform warping. In fact, we can easily
see that we recover that solution (the first term in (192)) when ρ→∞. This
can be accomplished if the warping stiffness is neglected (i.e. Ieff

WSV
→ 0) or,

more realistically, for long shafts L� LT , as discussed in those remarks. In
this case, the effects of the restrained warping are effectively limited locally
near the fixed end of the shaft.
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Similarly, the solution (192) identifies Θ̃0z̃ as the limit solution when the
restrained warping dominates (ρ→ 0). Note that this implies that φ(z̃) ≡ 0
in that limit for the TWKV formulation, that is, the shaft does not twist at
all. This is the response then that this formulation does predict in the limit
for short shafts. This situation is one more illustration of the constrained
character of this formulation as discussed in Section 3.

Remark 6.1. We note that the three formulations under consideration in-
volve completely different warping and stress distributions across any given
cross section, despite reducing to the same formal differential equation (up to
the section constants involved) summarized in Box 1 for the model problem
at hand. The evaluation of these different constants through a finite element
approximation of the governing problems for the different warping functions
at the section level does allow to obtain, besides the final coefficients of the
governing equation in Box 1 with exact closed–form solution (192) for φ(z)
and other structural fields along the shaft, the full characterization of these
stresses and warping over the cross sections for the different formulations, a
feature that we also compare in detail in our numerical evaluations presented
below. �

6.2. The shaft flexibility

Of interest is to obtain the twist rotation φ(L) = φL at the tip of the
shaft z = L for the given torque TL. Equation (192) results in

φL = fT TL for fT =
L

ḠJ

(
1− tanh(ρ)

αeff ρ

)
, (194)

identifying the flexibility of the shaft at hand in torsion fT . Note that fT <
f

(SV )
T = L/(ḠJ) (the flexibility of the shaft given by Saint-Venant’s solution

with unrestrained uniform warping), because αeff ≥ 1 and tanh(ρ) < ρ
since ρ > 0. This feature was expected given the stiffening character that
restraining the warping has in the shaft structural response. Note that this
observation applies to all three formulations considered here in modeling that
warping.

In fact, a careful analysis reveals that fT → f
(SV )
T in the limit ρ→∞ and,

thus, recovering Saint–Venant torsion for long shafts L� LT . As argued in
previous sections, this situation is to be expected, and it is replicated by all
the considered formulations. Obviously, these arguments also show that this
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response is also obtained for IWSV → 0 (so ρ → ∞ too), leading effectively
to no restrained warping inside the shaft at all.

More interesting is the treatment that the different formulations apply
to the opposite limit ρ → 0 while keeping finite the warping constant IWSV ,
that is, for short shafts L � LT keeping the cross section properties finite
(IWSV <∞). In this case, after noting that tanh(ρ)/ρ→ 1 and that αeff = 1
for the original TWKV formulation, we obtain

fT → 0 , for the TWKV formulation , (195)

whereas

fT → f
(SV )
T ·


1

1 + (I∇WSV /J)
, for the RBV formulation ,

1
1 + I2

WSV
/(I∇WσJ)

, for the mixed formulation ,
(196)

both limits again smaller than the Saint-Venant flexibility f
(SV )
T , but not

vanishing in contrast to the TWKV formulation in (195). In fact, given the
inequality (187), we conclude that

0 = f
(TWKV )
T < f

(RBV )
T ≤ f

(MIX)
T < f

(SV )
T , (197)

in the limit ρ→ 0. The over constrained character of the TWKV formulation
is again evident with these arguments.

6.3. The internal torque, bishear and bimoment diagrams along the shaft

The three considered formulations share the same expression for the Saint-
Venant part of the internal torque TSV (z) = ḠJφ′(z), as pointed by equations
(61), (112) and (168), for the TWKV, RBV and mixed formulations, respec-
tively. Hence, we obtain

TSV (z) = TL

(
1− cosh(ρ(1− z̃))

αeff cosh(ρ)

)
(198)

= φL
ḠJ

L
ρ
αeff cosh(ρ)− cosh(ρ(1− z̃))

αeff ρ cosh(ρ)− sinh(ρ)
, (199)

for the problem at hand in terms of the tip torque TL or, alternatively, the tip
rotation φL, the later using the relation (194) for the shaft’s flexibility. The
differential equation in Box 1 corresponds to the balance of torque along the
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shaft, giving a constant total internal torque T (z) = TL, in the current case
with no distributed external torque per unit length. Hence, the bishear is
given trivially in this case by TW (z) = TL−TSV (z), leading to the distribution

TW (z) = TL
cosh(ρ(1− z̃))

αeff cosh(ρ)
(200)

= φL
ḠJ

L
ρ

cosh(ρ(1− z̃))

αeff ρ cosh(ρ)− sinh(ρ)
, (201)

given again in terms of the tip total torque TL and, alternatively, of the tip
rotation φL.

The corresponding values of these two parts of the total internal torque
at the root z = 0 of the shaft are then given by

TSV (0) = TL
αeff − 1

αeff
and TW (0) = TL

1

αeff
, (202)

for the Saint-Venant and bishear, respectively, in terms of the tip torque TL.
It is interesting to note that these values depend only on the total torque TL
at the opposite end of the shaft, independent of the parameter ρ and hence
the shaft length L. On the other hand, at the tip of the shaft z = L, we
obtain

TSV (L) = TL

(
1− 1

αeff cosh(ρ)

)
and TW (L) = TL

1

αeff cosh(ρ)
, (203)

depending on the length of the shaft through the non-dimensional parameter
ρ, although we recover the limit

TSV (L) = TL and TW (L) = 0 for ρ→∞ , (204)

corresponding to long shafts L� LT , as expected. The observation made in
Section 3.2 that all the torque at the root of the shaft comes from the bishear
in the original TWKV formulation is confirmed by the relations (202) after
noting that αeff = 1 for this formulation. This is not the case for the RBV
and mixed formulations.

The bimoment BW (z) can be obtained by equilibrium, that is, by TW (z) =
−dBW/dz, a relation holding for the three formulations under consideration.
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Noting that BW (L) = 0 in all cases (free warping at the tip), we obtain

BW (z) = TLL
sinh(ρ(1− z̃))

αeff ρ cosh(ρ)
(205)

= φLḠJ
sinh(ρ(1− z̃))

αeff ρ cosh(ρ)− sinh(ρ)
, (206)

after integrating the bishear distribution (200)-(201). Note also that the dif-
ferential equation in Box 1 corresponds to the decomposition of the constant
total internal torque as T (z) = TSV (z) + TW (z) = TL for each of the terms in
that equation, so we also have

TW (z) = −ĒIeff
WSV

φ′′′(z) = −ĒIWSV α
eff φ′′′(z) , (207)

and

BW (z) = ĒIWSV α
eff φ′′(z) , (208)

both results for the problem at hand, with the latter resulting from the former
relation after using again the relation TW = −dBW/dz with the boundary
condition φ′′(L) = 0 included in Box 1 to impose BW (L) = 0. These relations
give an alternative way to obtain the distributions (201) and (206) directly
from the closed–form solution (192) for the twist rotation φ(z). Note the re-
lation of the non–dimensional parameter ρ in (193) with the material moduli
and different torsional constants when carrying out these arguments.

The value of the bimoment at the shaft’s root z = 0 is then given by

BW (0) = TLLT
tanh(ρ)

αeff
, (209)

in terms of the value TL of the total torque at the opposite end. In this case,
this value depends on the length of the shaft, through the non-dimensional
parameter ρ. However, it is interesting to observe that for long shafts L �
LT , we obtain

BW (0) = TL LT
1

αeff
for ρ→∞ , (210)

a constant finite value depending explicitly on the characteristic length LT
defined by (193) for each formulation.
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6.4. The shear and normal stresses over the cross sections

The shear stresses for the TWKV and mixed formulations share the form
of their distributions on a given cross section cross section, as given by equa-
tions (83) and (175)-(176), respectively. They have a Saint–Venant compo-
nent τ SV proportional to n

G
(x, y) (∇WSV + J) by the Saint-Venant torque

TSV (z)/J and a warping component proportional to n
G

(x, y)∇Wσ by the bis-
hear TW (z)/IWSV . Note that these amplitudes, even if given by relations
(198)-(201), will differ in actual values for each formulation. In particular,
we have

TSV (0) = 0 for the TWKV formulation , (211)

as observed in Section 3.2 and, directly, by expression (202) with αeff = 1,
while it does not vanish for the mixed formulation.

The form of the shear stresses for the RBV formulation (117) is com-
pletely different. While they still involve the same expression for the Saint
–Venant component τ SV proportional to n

G
(x, y) (∇WSV + J) by TSV (z)/J ,

the warping component τW in (120) is now given in terms of n
G

(x, y)∇WSV

instead of n
G

(x, y)∇Wσ, and proportional to the bishear in the combination
−TW (z)/I∇WSV . Hence, these two components directly combine. In particu-
lar, since we have

TSV (0)

J
− TW (0)

I∇WSV
=

1

J

(
TSV (0)− (αeff − 1)TW (0)

)
= 0 , (212)

after using the result (202) and the definition of the non-dimensional param-
eter αeff in Box 1 for the RBV formulation, the distribution of the total shear
stress at the fixed end z = 0 is given by

τ (x, y, 0) =
TSV (0)

J
J = TL

αeff − 1

αeff J
J =

TL
αeff I∇WSV

J (RBV) . (213)

This distribution corresponds, graphically, to the stress vectors τ = [τxz, τyz]
T

describing a rotation about the center of twist x̄
T
, regardless of the shape of

the cross section itself. The general lack of satisfaction by these stresses of
equilibrium and, in particular, the proper boundary conditions along the sec-
tion’s boundary is clear, confirming the general analysis presented in Section
4.3 for this formulation.

The final explicit expressions of the components τ SV and τW of the shear
stresses τ = τ SV + τW can be easily obtained from the torque distributions
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TSV (z) and TW (z) above. In particular, we have

τ SV (x, y, z)/Ḡ = ΘTL

(
1− cosh(ρ(1− z̃))

αeff cosh(ρ)

)
n
G

[∇WSV + J] (x, y) , (214)

for the Saint-Venant component, and

τW (x, y, z)/Ḡ = ΘTL

cosh(ρ(1− z̃))

αeff cosh(ρ)
n
G
·


J

IWSV
∇Wσ(x, y)

(
TWKV

& mixed

)
,

− J
I∇WSV

∇WSV (x, y) (RBV) ,

(215)
for the warping component, where the rate of twist ΘTL can be written al-
ternatively as

ΘTL =
TL
ḠJ

=
φL
L

αeff ρ cosh(ρ)

αeff ρ cosh(ρ)− sinh(ρ)
, (216)

in terms of the torque TL at the shaft’s tip or the tip rotation φL using the
relation (199).

Furthermore, the developments in the previous sections (in particular,
relations (76), (116) and (177)) show that the normal stress distribution
σz(x, y, z) in the shaft can be written in all three formulations as

σz(x, y, z) = σ(z) n
E

(x, y) WSV (x, y) for σ(z) = BW (z)/IWSV , (217)

thus all sharing the same distribution n
E

(x, y) WSV (x, y) on a given cross
section, with the magnitude determined by the bimoment BW (z) given by
(205)-(206). Note that the units of the parameter σ(z) ∼ (stress) · length−2,
as in (152) for the mixed formulation. Using equation (208), a general ex-
pression of these stresses is given by the relation

σz(x, y, z)/Ē = ΘTL

sinh(ρ(1− z̃))

LT cosh(ρ)
n
E

(x, y)WSV (x, y) , (218)

explicitly in terms of the second derivative of the closed–form solution (192).

Remark 6.2. For later reference in the evaluation of the different formula-
tions presented in the next section is the value of these stresses at the shaft’s
root z = 0. In this case, the distributions (214), (215) and (218) reduce to

τ SV (x, y, 0)/Ḡ = ΘTL

αeff − 1

αeff
n
G

(x, y) [∇WSV + J] (x, y) , (219)
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τW (x, y, 0)/Ḡ = ΘTL nG(x, y) ·


J

IWSV α
eff ∇Wσ(x, y)

(
TWKV
& mixed

)
,

−α
eff − 1
αeff ∇WSV (x, y) (RBV) ,

(220)

σz(x, y, 0)/Ē = ΘTL

tanh(ρ)

LT
n
E

(x, y) WSV (x, y) , (221)

with the total shear stress given simply by τ = τ SV + τW , all for the rate
of twist ΘTL given by (216) in terms of the torque TL at the shaft’s tip or
the tip rotation φL, as needed. We have written these expressions in such a
way that both the (incorrect) total stress τ in (213) for the RBV formulation
and the (unrealistic) τ SV ≡ 0 for the TWKV formulation (with αeff = 1) are
evident. �

6.5. The warping of the cross sections

The distribution of the warping displacement for the TWKV formulation
is easily obtained as

uz(x, y, z) = φ′(z)WSV (x, y)

= ΘTL

(
1− cosh(ρ(1− z̃))

cosh(ρ)

)
︸ ︷︷ ︸

:= φ′(z)
∣∣∣(TWK)

WSV (x, y) (TWKV) , (222)

where the rate of twist ΘTL is given by relation (216) in terms of the torque
TL or the rotation φL at the shaft’s tip. Note that no αeff parameter appears
in this expression since αeff = 1 for the TWKV formulation. For the RBV
and mixed formulations, the evaluation of the warping requires the additional
fields λ(z) and ε(z), respectively.

The warping displacement amplitude field λ(z) for the RBV formulation
can be obtained easily by combining the two equations (104) and (208) for
the bimoment, that is,

BW (z) = ĒIWSV λ
′(z) = ĒIWSV α

eff φ′′(z) , (223)
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for the problem at hand. Hence, we obtain

λ(z) = αeff
(
φ′(z)− φ′eff

0

)
= ΘTL

(
1− cosh(ρ(1− z̃))

cosh(ρ)

)
, (224)

after imposing the boundary condition λ(0) = 0, with φ′eff
0 defined in Box

1. The final warping displacement reads then, after some straightforward
calculations, as

uz(x, y, z) = λ(z) WSV (x, y)

= ΘTL

(
1− cosh(ρ(1− z̃))

cosh(ρ)

)
WSV (x, y) (RBV) , (225)

showing then, remarkably, the same distribution (222) as for the original
TWKV formulation. Note that the expressions, involving the parameter ρ,
may be the same, but their values will be different in general, since ρ varies
for each formulation, in particular depending on αeff by the relation (193).

Finally, for the mixed formulation, the warping field λε(z) can be obtained
in a similar manner, combining now relation (208) with equation (173), re-
sulting in the relation

λε(z) = αeff
(
φ′(z)− φ′eff

0

)
= ΘTL

(
1− cosh(ρ(1− z̃))

cosh(ρ)

)
, (226)

exactly as we did when deriving equation (224) for the RBV formulation
above. The final warping displacement reads then by (139)

uz(x, y, z) = φ′(z) WSV (x, y) +
IWSV
I∇Wσ

(φ′(z)− λε(z)) Wσ(x, y)

= ΘTL

[(
1− cosh(ρ(1− z̃))

αeff cosh(ρ)

)
WSV (x, y)

+
J

IWSV

cosh(ρ(1− z̃))

αeff cosh(ρ)
Wσ(x, y)

]
(MIXED) , (227)

after using the definition of the parameter αeff in Box 1 for the mixed for-
mulation in terms of the different torsional constants. We can observe that
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the warping displacement (227) does not vanish pointwise at the root z = 0.
Instead, and as discussed in Section 5.2, we have that λε(0) = 0, a value that
corresponds to the (weighted) average of the warping displacement (227) as
shown in equation (160).

Notwithstanding the different values of the warping displacements pre-
dicted by the different formulations, we find remarkable that the actual pa-
rameter controlling the warping along the shaft for all three formulations
coincides for the problem at hand, that is,

φ′(z)
∣∣∣(TWKV )

, λ(z)
∣∣∣(RBV )

, λε(z)
∣∣∣(MIX)

, (228)

all given by the expressions (222), (224) and (226), respectively. In (228),
we have used the special symbol “, ” to mean that those three fields share
the same explicit expression, but that same expression will result in differ-
ent values when used in combination with a particular formulation since it
depends on ρ and, thus, on the αeff , with a different value for each of the
three formulations. Similarly, the first term in the triad (228) is to be un-
derstood as φ′(z) in the TWKV formulation, that is, precisely for αeff = 1
as indicated in equation (222). In this respect, λ(z) or λε(z) are not equal
to φ′(z) in the RBV and mixed formulations, but are related to this rate of
twist as αeff (φ′(z) − φ′eff

0 ) by the (224) and (226), respectively. Note that
this combination reduces to φ′(z) only for the TWKV formulation, where
αeff = 1 and φ′eff

0 = 0.
In summary, the actual form of the warping distribution is the same

for the TWKV and RBV (namely, (222) and (225), respectively) for the
particular problem at hand, but different than the distribution (227) for the
mixed formulation. All formulations will exhibit different values though,
values that lead to different stresses and overall structural response of the
shaft predicted by the different distributions as discussed above. We evaluate
next the extent of these differences.

7. Numerical evaluation

The purpose of this section is to evaluate the different formulations con-
sidered in this work for the modeling of restrained warping in shafts in tor-
sion, namely, the TWKV, the RBV and the mixed formulation described in
the previous sections. The model problem considered in Section 6 provides
an interesting context where to evaluate the common and different aspects
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of these formulations, for different types of sections, together with a direct
comparison with the solution obtained with a full use of three dimensional
elasticity.

The three formulations require the Saint–Venant torsional constant J de-
fined by equation (39) and the warping constant IWSV defined by equation
(64), both in terms of the Saint–Venant warping function WSV (x, y), solution
of the (weighted) Laplace equation (33) satisfying the conditions (46) and
(47). In addition, the RBV formulation involves the section constant I∇WSV ,
also defined in terms of that function in equation (102), whereas the mixed
formulation considers the constant I∇Wσ given by equation (158) in terms
of the second warping function Wσ(x, y) solution of the (weighted) Poisson
equation (79). We carry out the solution of these Laplace and Poisson prob-
lems with a 2D finite element formulation on the cross section, arriving to
the evaluation of these different constants. We refer to Appendix A for some
remarks of this finite element treatment, including some properties that the
section constants computed this way satisfy.

We present next the results obtained for solid, open and closed (or hollow)
thin–walled, and composite sections in Sections 7.1 to 7.5. The specific cross
sections considered there are depicted in Figure 2. We follow the same plan
of exposition for all these cases, pointing out in this way the similarities and
differences among these different types of cross sections, emphasizing how
the three different formulations approximate the response of the shaft for
each of these possible section configurations. In all cases we also present a
full three–dimensional finite element analysis of the full 3D solid shafts.

7.1. Evaluation for solid cross sections

We start considering the case of solid cross sections, through the common
example provided by rectangular sections. As depicted in Figure 2, we con-
sider a h× t rectangular section, keeping fixed the long side h = 20 cm and
varying short side t in the range 0.1 ≤ t/h ≤ 1.0, that is, from a relatively thin
rectangle to a square section. Thin-walled cross sections, in open and closed
configurations, are studied in detail in the following sections. The section
is assumed made of an homogeneous linear elastic material, with a constant
Young’s modulus E = 200 GPa and Poisson’s ratio ν = 0.3, although the
computations on the cross section for the warping functions WSV (x, y) and
Wσ(x, y) only require, trivially, the values n

E
= 1.0 and n

G
= 1.0, following

the normalizations (3). In all cases, we consider regular finite element meshes
of the cross sections with 20 elements per side. Without loss of generality, we
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Figure 2: Numerical evaluation. Cases studied (clockwise from top left): rect-
angular solid section (h = 20 cm, varying t), channel (open) thin–walled section
(h = 20 cm, varying t), hollow box thin–walled section (h = 20 cm, varying
t), two–cell thin–walled section (h = 20 cm, varying t), and composite section
(h = 50 cm, t = 2 cm). The centers of twist/shear T are shown, symmetrically
located when not specified. The lengths h and b are defined from the outer walls.
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consider 4-node bilinear elements for the interpolation of the warping func-
tions. We note that with the double symmetry of the geometry of the cross
section at hand (including the material distribution), the warping functions
WSV (x, y) and Wσ(x, y) solving the (Neumann) boundary-value problems (33)
and (79), respectively, show (doubly) anti-symmetry.

Figure 3 depicts the computed warping functions WSV (x, y) (left column)
and Wσ(x, y) (right column) for the sections with aspect ratios t/h = 1.0,
0.5 and 0.1. Even though our implementation and different formulas in the
paper do not rely on coordinate systems centered at specific points (centroid,
shear center or alike) or aligned along particular directions (principal axis of
inertia or related), the satisfaction of the normalizing conditions (46) and
(47) is easily accomplished in this case since, due to the double symmetry
of the section, both centroids x̄

E
= x̄

G
and center of twist (shear center)

x̄
T

coincide trivially with the rectangle’s center. The horizontal and vertical
axes in Figure 2 correspond trivially to the inertia principal axes for this
case.

In the same way, we compute the relevant torsional constants from the
computed warping functions, using the standard 2 × 2 quadrature rule em-
ployed in the finite element simulations with the considered 4−node bilinear
element. Figure 4 shows the variation of J , IWSV , I∇WSV and I∇Wσ with the
section’s aspect ratio t/h. The plot of the Saint–Venant torsional constant J
shows also the value Jexact obtained by Fourier analysis1. A good agreement
of the computed solution with this value can be observed in this figure in
the whole range of considered aspect ratios t/h. For complete reference and
verification, we have included in Table 1 the value of these constants for the
specific section ratios t/h = 1.0, 0.5 and 0.1, corresponding to the specific
cases presented in detail in what follows as representative cases.

The plots shown in Figure 4 also include the estimates for a thin–walled
rectangle obtained in Appendix B.1 for all the different torsional constants.
They indicate that the values obtained from the computed warping functions
solving the exact section boundary–value problem capture well those thin–
wall limit values in the lowest range of the t/h ratios considered (correct
slopes). We note that the developments in this paper do not rely on these
estimated limit values at all, depending on the torsional constants computed

1Jexact = 1
3ht

3

[
1− 192t

π5h

∑
n odd

1
n5 tanh

(
nπh
2t

)]
; see e.g. Sokolnikoff [1956], page 132.
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Figure 3: Rectangular cross section: warping functions. Computed warping
functions WSV (x, y) (left) and Wσ(x, y) (right) for sections with thickness ratios
t/h = 1.0, 0.5, 0.1.
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Figure 4: Rectangular cross section: torsional section properties. Values of the
Saint–Venant torsional constant J , the warping constant IWSV and the two gra-
dient constants I∇WSV and I∇Wσ for different t/h ratios.

Table 1: Rectangular cross section: table of torsional constants for different
sections thickness ratio t/h (h = 20 cm).

t/h J [cm4] IWSV [cm6] I∇WSV [cm4] I∇Wσ [cm8]
1.0 2.25416620·104 8.66423278·103 4.12500467·103 2.94805924·104

0.5 4.58455629·103 2.03297383·104 3.74877704·103 1.58209907·105

0.1 5.02809625·101 4.25107929·102 1.29638570·103 1.67786200·102
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Figure 5: Rectangular cross section: shaft flexibility. Normalized torsional flexi-
bility fT /(L/ḠJ) versus t/h (left) and L/h (right). All formulations tend to the

Saint–Venant value (f
(SV )
T = L/ḠJ) for long shafts (large L/h).

by solving the associated boundary-value problems on the cross section. Still,
we find interesting to report these limit values for their practical use in that
thin–wall limit, if it applies for the case at hand. In addition, the solution of
the problem on the cross section allows direct access to the warping functions
for the particular cross section under consideration, and hence full details of
the stresses acting on it.

We first compare the three different formulations of torsion with re-
strained warping considered in this work among themselves. To this pur-
pose, Figure 5 depicts the non–dimensional flexibility fT/(L/ḠJ) in (194)
for a shaft of length L, for the TWKV, RBV and mixed formulations. In
particular, we include the variation of this flexibility with the section aspect
ratio t/h for shafts of length L/h = 5.0, 1.0 and 0.5 (left plot), and its vari-
ation with the length L/h for the aspect ratios t/h = 1.0, 0.5 and 0.1 (right
plot). We have taken the range of shaft’s length starting at the, perhaps,
unrealistic low value of L/h = 0.5 to explore the limits of the different ex-
pressions obtained in this work. Besides, we believe that these very short
lengths provide a good test for the different formulations in resolving the lo-
cal effects associated with retrained warping regardless of how long the shaft
may be.

All the different cases considered in Figure 5 confirm the much stiffer
character of the TWKV formulation, followed in order by the RBV and
the mixed formulations, with the latter providing always the more flexible
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Figure 6: Rectangular cross section: parameter κt versus t/h. Geometric factor
driving the limit process to the constrained TWKV formulation for the RBV and
mixed formulations.

response, for all aspect ratios t/h and all shaft lengths L/h. The constrained
character of the TWKV formulation leads physically to this stiffer response.
The use of the Saint–Venant torsional constant J of the particular section
t/h under consideration as normalization in the plots of Figure 5 allows to

confirm the limit value of Saint–Venant torsion f
(SV )
T = L/ḠJ for long shafts

and the importance of constrained warping for short shafts L/h, as observed,
in particular, in Sections 4.2 and 5.3 when analyzing the original TWKV
formulation as the constrained limit of the RBV and mixed formulations,
respectively.

In this respect, the analysis presented in those sections identified also
the penalty parameter κt, depending only on the cross section geometry,
driving that limiting process to the constrained TWKV formulation. Figure
6 depicts that parameter for both the RBV and mixed formulations (that
is, relations (110) and (183), respectively) versus the section’s aspect ratio
t/h, the parameter controlling the section geometry for the solid sections
considered here. We can first observe the monotonically increasing values
with a decreasing thickness of the section. Note that as the thickness t
is reduced, the solid section tends to an open thin–walled section, sections
studied in detail next in Section 7.2, as opposed to the closed (hollow) thin–
walled sections considered in Section 7.3.

Figure 6 also includes the penalty parameter κt for the different formu-
lations based on the estimated thin–walled values of the section torsional
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constants presented in Appendix B.1. The computed values show a good
agreement with these estimated values, especially in that thin limit. In both
cases, we emphasize the monotonic character of the dependence of the pa-
rameter κt on t/h (as a good penalty parameter, if we may say), especially
given that the individual section constants do not share that property as
seen in Figure 4. Furthermore, the result (186) by which κ

(RBV )
t ≥ κ

(MIX)
t is

confirmed by the values depicted in Figure 6. We also refer to Remark B.2 in
Appendix B.1 for an evaluation of the actual values of the parameter κt for
the different formulations, allowing a direct comparison between them and
actually quantifying their relative stiffness.

Hence, since these results show that κt → ∞ as t/h → 0 for the (open)
simply–connected topology of the cross section under study here, the different
formulations will tend to each other in the thin limit as shown in Sections
4.2 and 5.3. The differences between them become small then in the limiting
range of thinner sections (e.g. t/h = 0.1) as opposed to thicker sections,
like the square section t/h = 1.0. Looking at the left plot in Figure 5, this
agreement occurs in the whole range of shaft lengths (L/h = 5.0, 1.0 and
0.5), when t/h = 0.1. The actual values vary for each L/h. So it is not
the shaft length which, as seen above and argued in the paper, leads to
responses dominated by Saint–Venant torsion for long shafts (with, hence,
all different formulations dealing with the restrained warping diminishing
equally their effects), but the section geometry alone. This situation leads to
stronger effects of restrained warping for the thinner sections t/h with this
open configuration (solid to open thin–walled), closer to the stiffer response
of the TWKV formulation. In fact, looking at Figure 6, the values of the
parameter κt for the RBV and mixed formulations are close to each other,
with always κ

(RBV )
t ≥ κ

(MIX)
t as proven, a result that explains the stiffer

response observed above for the RBV formulation when compared to the
mixed formulation. This less stiff response is actually more accurate, as
the comparisons of these results with full three–dimensional finite element
simulations of the problem at hand presented below indicate.

First, though, we continue the comparison of the three structural theories
considered in this paper by depicting in Figure 7 the distribution of the
bishear TW (z) and bimoment BW (z) diagrams obtained in Section 6.3 by the
different formulations. We have considered again the sections with aspect
ratios t/h = 1.0, 0.5 and 0.1, showing for each case the diagrams for total
shaft length of L/h = 5.0, 1.0 and 0.5. All diagrams are shown normalized by
the torque TL at the shaft’s tip z = L (namely, TW (z)/TL and BW (z)/(TLL))
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Figure 7: Rectangular cross section: moment diagrams normalized by the tip
torque TL. Distribution of the bishear TW (z) (left) and bimoment BW (z) (right)
for different section aspect ratios t/h = 1.0, 0.5, 0.1, comparing different shaft’s
lengths L/h = 5.0, 1.0, 0.5 for each aspect ratio.
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and versus the non-dimensional distance z̃ = z/L from the fixed support
at the shaft’s root z = 0. They correspond to equations (200) and (205),
respectively.

We first observe that the effects of the restrained warping are more sig-
nificant for thinner sections (at least when looking at the RBV and mixed
formulations), decreasing from that fixed end along the length of the shaft.
This decrease along the shaft is relatively fast for longer shafts, nothing else
but a reflection of their local character. Despite this, the original TWKV
formulation is greatly affected by the unrealistic result (211) fixing the bis-
hear at the shaft’s root to TW (0)/TL = 1.0, a consequence of the way this
formulation the no-warping condition φ′(0) = 0 resulting on TSV (0) = 0 for
the Saint–Venant component of the torque. This situation is related to the
torque anomaly; see Remark 2.3 in Section 2.2 above.

This situation also affects the bimoment diagram for the TWKV formula-
tion, resulting in clear differences of the bishear TW (z) and bimoment BW (z)
diagrams for this formulation and the other two formulations, the RBV and
mixed formulations. These two formulations capture well those decreased
effects of the restrained warping, especially for thicker sections t/h = 1.0 and
0.5, resulting on similar values. Interestingly, all three formulations agree
well for the thinnest section considered t/h = 0.1. Still, the TWKV formula-
tion results in higher values of both the bishear TW (z) and bimoment BW (z),
confirming its stiffer character.

All these values drive the distribution of the stresses, both the shear and
normal stresses, on the shaft’s cross sections. In particular, Figures 8 and 9
show the shear stresses obtained by the different formulations at the shaft’s
root z = 0 for the square section t/h = 1.0 and rectangular section with
aspect ratio t/h = 0.5, respectively, both for the shaft of length L/h = 1.0.
They correspond to the relations (219)–(220). We have included the shear
stress vector τ = [τxz, τyz]

T , shown at the points where the distribution
functions gradients (i.e. ∇WSV and ∇Wσ) are evaluated, the 2 × 2 Gauss
points used in the numerical integration for the considered bilinear elements.
These vectors are shown on top of the contour plots of the magnitude of
these stresses ‖τ‖ =

√
τ 2
xz + τ 2

yz. We do that for the Saint–Venant shear
stress component τ SV , the warping component τW and the total shear stress
τ = τ SV + τW , all for each of the three considered formulations. We have
normalized the stresses for a unit rotation at the shaft’s tip, that is, we
consider φL = 1.0 in equation (216) defining the rate of twist ΘTL in the
stress formulas (219)–(220). This option (as opposed to a unit tip torque
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Figure 8: Rectangular cross section: shear stresses. Distributions of the Saint–
Venant shear stress τ SV , the warping shear stress τW and the total shear stress
τ for the square cross section t/h = 1.0 and L/h = 1.0 at the shaft root z = 0.
All values are normalized as τ/Ḡ and correspond to the case with a unit rotation
φL = 1.0 at the opposite tip of the shaft.
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Figure 9: Rectangular cross section: shear stresses. Distributions of the Saint–
Venant shear stress τ SV , the warping shear stress τW and the total shear stress
τ for the rectangular cross section t/h = 0.50 and L/h = 1.0 at the shaft root
z = 0. All values are normalized as τ/Ḡ and correspond to the case with a unit
rotation φL = 1.0 at the opposite tip of the shaft.
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TL = 1.0) allows a simpler comparison with the full three–dimensional finite
element solution considered later in this section.

The results for the original TWKV formulation show, in particular, the
vanishing of the Saint–Venant part of the shear stress τ SV observed in Sec-
tion 3.2, a fact associated with the direct dependence of these stresses in
(83) on φ′(0), vanishing at that end of the shaft. Again, an artifact of the
torque anomaly noted above. This results on the vanishing of the corre-
sponding torque TSV (0), with all the reacting torque arising from the bishear
TW (0)/TL = 1.0 and its corresponding shear stresses τW in (77).

This situation clearly differs with the stress distributions predicted by the
RBV and mixed formulations. The Saint–Venant shear stress τ SV does not
vanish in these two cases, following the distribution given by the combination
[∇WSV + J] (x, y) for both, with different magnitude as observed in Figures 8
and 9, especially in the latter case for the rectangular section wit t/h = 0.5.
The clear difference appears in the warping component of the shear stress
τW , which follows the distributions defined by ∇WSV (x, y) and ∇Wσ(x, y) for
the RBV and mixed formulations, respectively, as given by relation (220).

It is interesting to note that the similar distributions observed for the two
shear stress components τ SV and τW for the mixed formulation indicate the
similarity of the distributions given by [∇WSV + J] (x, y) and ∇Wσ(x, y), and
hence the total shear stress τ depicted at the right column of Figures 8 and 9.
This situation explains the similarities between the distribution of this total
shear stress for this mixed formulation and the original TWKV formulation,
even when the latter has no Saint–Venant component whatsoever. Note
that, for the cases considered with, in particular, L/h = 1.0 at z = 0, the
Saint–Venant component τ SV and the warping component τW for the mixed
formulation.

This situation is to be contrasted with the shear stress distributions ob-
tained with the RBV formulation. The resulting “rotational” character of the
final distribution of the total stress τ obtained in Section 6.4 (see equation
(213)) is blatantly apparent, including the circular pattern in the contour
plots of the magnitude of this stress; see the plots in the middle row, right
column in Figures 8 and 9. A consequence of this situation is the lack of satis-
faction of the boundary conditions expected for these shear stresses, namely,
defining shear stress vectors tangential to the section boundary. This con-
dition is clearly not satisfied as those plots clearly illustrate. This stress
distribution, observed in Section 4.3 above, is markedly incorrect as noted in
that section (the RBV stresses are not in equilibrium), even when the for-

95



TWKV RBV Mixed

t/h = 1.0

-2.00E-01

-1.56E-01

-1.11E-01

-6.67E-02

-2.22E-02

+2.22E-02

+6.67E-02

+1.11E-01

+1.56E-01

+2.00E-01
<z

-2.00E-01

-1.56E-01

-1.11E-01

-6.67E-02

-2.22E-02

+2.22E-02

+6.67E-02

+1.11E-01

+1.56E-01

+2.00E-01
<z

-2.00E-01

-1.56E-01

-1.11E-01

-6.67E-02

-2.22E-02

+2.22E-02

+6.67E-02

+1.11E-01

+1.56E-01

+2.00E-01
<z

t/h = 0.5

-2.00E-01

-1.56E-01

-1.11E-01

-6.67E-02

-2.22E-02

+2.22E-02

+6.67E-02

+1.11E-01

+1.56E-01

+2.00E-01
<z

-2.00E-01

-1.56E-01

-1.11E-01

-6.67E-02

-2.22E-02

+2.22E-02

+6.67E-02

+1.11E-01

+1.56E-01

+2.00E-01
<z

-2.00E-01

-1.56E-01

-1.11E-01

-6.67E-02

-2.22E-02

+2.22E-02

+6.67E-02

+1.11E-01

+1.56E-01

+2.00E-01
<z

Figure 10: Rectangular cross section: axial stress. Distribution of the axial stress
σz at the shaft root z = 0 for the cross sections with t/h = 1.0, 0.5 and shaft’s
length L/h = 1.0. All values are normalized by the material’s Young modulus as
σz/Ē and correspond to the case with a unit rotation φL = 1.0 at the opposite
tip of the shaft.

mulation may capture the overall structural response of the shaft in torsion.
Again, this situation is to be contrasted with the stress distribution obtained
with the mixed formulation.

The evaluation of the normal stress distribution σz at the shaft’s root
z = 0, a direct consequence of the restrained warping at that end of the
shaft, is of particular interest. As noted in Section 6.4, all three formula-
tions under study predict the same distribution of these stresses on a generic
cross section, namely, the one given by the Saint–Venant warping function
WSV (x, y). The actual magnitude of these stresses do vary though for each
formulation, as given by formula (221), together with the actual magnitude
of the rate of twist ΘTL given by equation (216). We consider again the case
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of a unit rotation φL = 1.0 at the shaft’s tip z = L, showing the values
normalized in this case by σz/Ē. Note that the non-dimensional quantities
ρ and αeff appearing in all these different formulas do depend of the partic-
ular formulation considered, the latter as defined explicitly in Box 1 for the
TWKV, RBV and mixed formulations.

The final obtained distributions are included in Figure 10 for the square
section t/h = 1.0 and rectangular section with t/h = 0.5, both for the
shaft with L/h = 1.0. The common distribution WSV (x, y) for the different
formulations is apparent in those contour plots, contours that follow the
perspective (elevation) view of that function shown in Figure 3 (left column).
The different magnitude of these stresses among the formulations is also clear
(note that the same scale of contour plots has been used in the plots of this
figure), with a higher value for the TWKV formulation and similar values
for the RBV and mixed formulations. This situation is a consequence of
similar relations we have observed above for the distribution of the bimoment
BW (z), the stress resultant driving these normal stresses; see also below for a
further analysis and comparison of the specific value of the bimoment BW (0).
The higher stresses σz at the shaft’s root predicted by the original TWKV
formulation is one more instance of the stiffer character of this formulation in
comparison with the RBV and mixed formulations, both showing a similar
overall estimation of the shaft’s response.

7.1.1. Three–dimensional analysis

In an attempt to evaluate all these results and conclusions in comparison
with the response not of an ideal shaft but of an actual elastic solid subjected
to torsion, we consider next a full three–dimensional finite element simula-
tion of the problem at hand. Figure 11 depicts two characteristic deformed
configurations of the many cases considered in this work. In particular they
correspond to the shaft with square section t/h = 1.0 and lengths L/h = 1.0
and 5.0, the former again to evaluate the appropriateness of the considered
structural theories for such short shaft, if that terminology is still allowed.
In fact, the results below allow to confirm these points.

As shown in Figure 11, we consider structured meshes of the three–dimen-
sional domain, keeping the same finite element mesh topology for the cross
sections, extending through 20 layers of regular 8-node brick elements along
the shaft length, with a graded distribution of the elements, with thinner ones
close to the fixed support, trying to catch better the more complex state of
stress at the shaft’s root. Enhanced strain QM1/E12 elements developed in
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Figure 11: Rectangular cross section: 3D shaft. Three–dimensional finite element
solution for shafts with L/h = 1.0, 5.0 and t/h = 1.0, showing the contours of the
axial displacement uz on top of the 3D deformed configuration of the shaft (left),
and the elevation plot of the resulting warping at the shaft’s tip z = L (right).

Simo et al. [1993] are considered. These elements show an improved (fully
locking-free) response in shear (and volume), especially when the geometry
of the element involves thin configurations.

As in all the previous developments, the shaft runs along the z axis with
the cross sections lying in planes parallel to the (x, y) Cartesian plane. In this
way, the different problems are run by imposing the displacement components
(ux, uy) at the tip of the shaft z = L to be the ones defined by (12)1,2 for a
unit tip rotation φL = 1.0 while the axial (warping) displacement is left free.
The center of twist is taken to be the one arising from the section analysis (see
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the developments in Section 2.4 above), which in this case trivially coincides
with the center of the rectangular section by its double symmetry. All the
three components of the displacement are set to vanish at the opposite end,
the shaft’s root at z = 0. A full three–dimensional isotropic linear elastic
response is assumed for the material.

Figure 11 shows the deformed configuration obtained for the shafts with
square cross section t/h = 1.0 of length L/h = 1.0 and 5.0. We have also
included the contour plots of the axial displacement component uz on top
of the deformed configurations, as well as the elevation plots of the warping
of the tip section at z = L. Those plots must be compared with the Saint
–Venant warping function WSV (x, y) calculated for the section at hand, and
shown in Figure 3, top left plot.

In order to evaluate the shear stress distributions obtained above for the
different considered formulations, we have included in Figure 12 the shear
and normal stress components on the cross section at the shaft’s root (z = 0)
obtained in the three–dimensional simulation for the square t/h = 1.0 and
rectangular sections t/h = 0.5, both for the shaft L/h = 1.0. These stresses
must be compared with the results shown in Figures 8 and 9 for the shear
stress, and Figure 10 for the normal stress. Good agreement can be observed
for the overall distributions for the normal stress σz and similarly for the
shear stress τ of the mixed formulation, avoiding in particular the incorrect
purely “rotational” pattern of the RBV formulation (observe the expected
drop of the shear stress level near the section’s corners). We note that only
the total stress τ is available for the three–dimensional simulations.

Similarly, we note that the stress distributions in Figure 12 have been
obtained with the usual L2–projections of the corresponding 3D values at
the quadrature points used in the 3D brick elements to the nodes, that is,

σ̄A(3D) :=

∫
Ω(3D)

NA
(3D) σ(3D) dΩ(3D)

/(∫
Ω(3D)

NA
(3D) dΩ(3D)

)
, (229)

for all nodes A = 1, nnode(3D) and corresponding finite element trilinear shape
functions NA

(3D) of the three–dimensional simulation over the domain Ω(3D) of
the 3D shaft. These nodal values (and its contour plots for the magnitude
of the plotted stress) are then shown for the section of interest (z = 0 here).
Thus the different locations of the stress vectors τ = [τxz, τyz]

T in Figure 12
when compared with those other figures based on the section (fully plane)
analyses. The boundary values of those stress vectors and, in particular, the
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Figure 12: Rectangular cross section: stresses. Shear and normal stresses in the
three–dimensional finite element solution at the shaft root z = 0 for t/h = 1.0,
0.5 and L/h = 1.0. Values are normalized as τ/Ḡ and σz/Ē, and they correspond
to the case with a unit rotation φL = 1.0 at the opposite tip of the shaft.

values at the section’s corners are to be understood in this context.
Given the direct link of the normal stress σz with the restrained warping

under analysis, we compare further the resulting distributions and especially
its magnitude. As noted above, all the considered formulations share the
spatial distribution on the cross section proportional to the Saint–Venant
warping function WSV (x, y). To this purpose, we show in Figure 13 the com-
puted difference of the axial stress σz−σz(3D) among the different formulations
and the 3D simulations. The contour plots of this difference at the nodes
(i.e. the nodal values of the projected 3D stresses (229) are compared with
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Figure 13: Rectangular cross section: axial stress difference. Comparison of the
axial stress at the shaft’s root z = 0 with the three–dimensional finite element
solution σz − σz(3D), for the sections t/h = 1.0, 0.5 and L/h = 1.0. All values
normalized by the material’s Young modulus as σz/Ē and correspond to the case
with a unit rotation φL = 1.0 at the opposite tip of the shaft.

the nodal values of the same stress for the plane analyses following a similar
projection scheme on the plane section with the plane shape functions) are
shown for the two sections t/h = 1.0 and 0.5, both for the case L/h = 1.0
again. We note that the mixed formulation shows the lowest values of that
difference, the largest values obtained by the constrained TWKV. The over-
stiff response of this formulation, in comparison in this case with an “exact”
three–dimensional simulation, is again concluded. The RBV formulation ap-
pears also on the stiffer side, compared to the more exact mixed formulation,
but not as accused as in the TWKV formulation.

The availability of the section stresses (229) for the three–dimensional
simulations allow to evaluate the associated values of the bimoment BW (z)
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and bishear TW (z) as defined by the relation (57) and (89), respectively.
Namely, we have

BW (z) =

∫
Ω

σz(3D)(x, y, z) WSV (x, y) dΩ

=

nnode
(2D)∑
B=1

σ̄Bz(3D)

(∫
Ω

NB
(2D)(x, y) WSV (x, y) dΩ

)
, (230)

and

TW (z) = −
∫

Ω

τ (3D)(x, y, z) · ∇WSV (x, y) dΩ

= −
nnode

(2D)∑
B=1

τ̄B(3D) ·
(∫

Ω

NB
(2D)(x, y) ∇WSV (x, y) dΩ

)
, (231)

for the section Ω at z involving a plane discretization with nnode(2D) nodes B and
corresponding plane shape functions NB

(2D). For the considered finite element
discretizations, these 2D shape functions are the restriction of the 3D NB

(3D)

shape functions used in (229) to the plane of the section. Similarly, we have
the Saint–Venant torque

TSV (z) =

∫
Ωz

τ (3D)(x, y, z) · [∇WSV + J] (x, y) dΩ

=

nnode
(2D)∑
B=1

τ̄B(3D) ·
(∫

Ω

NB
(2D)(x, y) [∇WSV + J] (x, y) dΩ

)
, (232)

although we do not depict it explicitly here since we trivially have TSV (z) =
T (z) − TW (z) for the total torque T (z) =

∫
Ω
τ · J dΩ, constant TL for the

particular model problem under study.
Figure 14 shows the bimoment BW (0) and bishear TW (0) at the shaft’s

root z = 0 versus the section aspect ratio t/h for shaft’s lengths L/h = 5.0,
1.0 and 0.5, and versus the shaft length itself L/h for the sections t/h = 1.0,
0.5 and 0.1. We have normalized these values by TLL and TL, respectively, for
the tip moment TL at z = L, showing the corresponding distributions (205)
and (202)2, respectively, for the different formulations under study and the
values computed by (230) and (231) for the three–dimensional simulations.

The plots in the top row of Figure 14 show a very good agreement between
the computed values of the bimoment BW (0) in the full three–dimensional
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Figure 14: Rectangular cross section: bimoment and bishear at the shaft’s root.
Values of the bimoment BW (0) (top) and the bishear TW (0) (bottom) at z = 0
versus the section aspect ratio t/h (left) and shaft’s length ration L/h (right)
obtained by the different formulations and the 3D finite element solution.

simulations and the newly developed mixed formulation. This can be ob-
served for the whole range t/h of solid sections under consideration and the
whole range of lengths L/h considered. Remarkably, this observation in-
cludes also the range around the considered limit value of L/h = 0.5, despite
its arguably unrealistic practicality. The effects of restrained warping are
important in this range of short shafts, and especially for thinner rectangu-
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lar sections. The results for the RBV formulation are consistently close to
the mostly overlapping values of the mixed formulation and the full three–
dimensional simulations. On the other hand, the TWKV formulation shows
bigger discrepancies, especially for the thicker sections, close to the square
section t/h = 1.0. Notably, both the RBV and, especially, the TWKV for-
mulations show values of the bimoment BW (0) consistently larger than the
solutions for the three–dimensional simulations and mixed formulation, one
further proof of the excessively stiffer character of those formulations

We can draw similar conclusions for the plots of the bishear TW (0) at the
bottom row of Figure 14, even though a lesser agreement can be observed
with the full three–dimensional simulations. We trace part of this discrep-
ancy to the more implied error in the evaluation of this torque with formula
(231), involving the gradient of the Saint–Venant warping function WSV (x, y)
instead of the function itself as for the bimoment BW (0) in (230). The agree-
ment with those simulations is still much closer with the mixed formulation,
followed closely by the RBV formulation, this being the case especially for
thicker sections close to the square section t/h = 1. Actually, in these cases,
the three–dimensional simulations confirm well the result obtained in (202)2

giving the root’s bishear normalized by the tip torque TW (0)/TL independent
of the shaft length. This result, however, does not seem to extend completely
to the considered thinner sections, for t/h = 0.1 in particular.

Still, these results are to be contrasted with the unrealistic value TW (0)/TL
= 1.0 for all section aspect ratios t/h and shaft lengths L/h predicted by
the original TWKV formulation due to what we referred to as the torque
anomaly. We remind the reader the origin of this anomaly, namely, the
warping driven directly by the rate of twist φ′(z) which is imposed to vanish
at that support, hence implying the vanishing of the Saint–Venant part of
the torque TSV (0) = 0. This formulation was seen in Section 4.2 to be
the constrained limit of the RBV formulation and, by extension, the mixed
formulation later proposed. This situation can be observed in the numerical
results presented here, with the results of these formulations tending to that
limit value given by the TWKV formulation for thinner sections. But the
results for the TWKV are overly unrealistic for general (thick) solid sections,
clearly now overstiff, showing that constrained character of the formulation.

Given this, it is of interest to revisit the values of the shaft’s flexibility
evaluated in Figure 5 for the three considered formulations and compare it
with the full three–dimensional simulations. The three structural formula-
tions rely on the torsional constant J in (39), common to all three, involving
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Figure 15: Rectangular cross section: shaft flexibility. Normalized torsional flexi-
bility fT /(L/ḠJ̃ref ) with a dimensional reference value (J̃ref = J (thin) = ht3/3),
allowing the incorporation of the 3D FEM solutions. Values (a) versus t/h for
different L/h ratios, and (b) versus L/h for different t/h ratios.
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the same Saint–Venant warping function WSV (x, y) giving J through that
equation. See also the values of the flexibility given by (194), directly pro-

portional to the Saint–Venant flexibility f
(SV )
T = L/ḠJ , hence the normal-

ization fT/(L/ḠJ) employed in that figure. This choice allowed us, among
other things, to evaluate the importance of the effects of restrained warping
for the sections and shaft lengths under consideration, recovering easily the
(ideal) response of Saint–Venant torsion in the limit of unrestrained warping
for long shafts. The three–dimensional elastic models of the shafts do not rely
on that function or the Saint–Venant torsional constant J . Hence, it is ade-
quate to use a different normalization, motivated only by the dimensionality
of the quantities involved.

In this way, Figure 15 depicts the flexibilities for the different formula-
tions normalized as fT/(L/GJ̃ref ) by a reference value J̃ref capturing the
dimensions of the section. We choose the thin–wall limit value, namely
J̃ref = J (thin) = ht3/3, and plot the flexibility both versus the section ratio
geometry t/h and the shaft length L/h, in each case for different values of the
other parameter. We have also included the ratio J̃ref/Jexact for the sections
t/h considered in the plot versus L/h, with Jexact given by the value referred
to in the Footnote 1. This value can be observed to be obtained asymp-
totically for both the structural formulations and the full three–dimensional
formulations for long shafts L/h. We trace the remaining difference to the
fixed finite element meshes considered in the analysis.

The results shown in this figure confirm the very good agreement between
the proposed mixed formulation and the full three–dimensional simulations in
all the ranges considered, including for very short shafts L/h, with the RBV
formulation coming close as opposed to the TWKV formulation showing big
disagreements with the full three–dimensional simulations. The differences
reduce as the aspect ratio of the section geometry t/h reduces for thinner
sections. These results, with all the additional aspects observed in this section
(including the observed different stresses), makes us conclude the idoneity of
the newly proposed mixed formulation, especially for thick solid sections,
as a better alternative to the original TWKV formulation and the RBV
formulation as well.

7.2. Evaluation for open thin–walled cross sections

We continue the evaluation of the different formulations of restrained
warping analyzed in this work with the consideration of open thin–walled
sections. As a matter of a fact, we pursue the evaluation presented in the
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previous section for rectangular cross sections further, but with thickness to
height ratios t/h lower than the lowest value considered there of t/h = 0.10.
Specifically, we shall consider the range 0.01 ≤ t/h ≤ 0.10 here. The results
presented in this section, and in the next section for closed (hollow) thin–
walled sections, show that it makes a difference to keep the simply–connected
topology of the cross section (that is, the cross sections usually referred to as
open thin–walled sections) for the wall thickness to control the limit process
to the constrained TWKV formulation by the RBV and mixed formulations
of restrained warping.

To make the comparison more interesting, we change the actual geom-
etry of the section, from a single rectangle to the channel section depicted
in Figure 2 on page 84. As shown in this figure, the two flanges has the
same length b = 0.4h. We consider h = 20 cm so b = 8 cm in the actual
simulations. This breaks the double symmetry of the section and, hence,
leaves open the location of the twist/shear center (and actually the section’s
centroid itself), at least in its horizontal position x̄

T
, as shown in Figure 2.

Actually, this move of the center of twist (which defines the principal pole of
the sectorial coordinate of the wall middle line) makes the section to exhibit
primary warping in the thin–wall limit t/h→ 0; see Appendix B.2 for details
on these considerations.

We note that all the developments and formulas of the paper apply to
general configurations, and axes locations and orientations {x, y} for the
section, obtaining in particular the twist/shear center as part of the analysis.
We continue considering a single homogeneous material, with the same values
E = 200 GPa for the Young’s modulus and Poisson’s ratio ν = 0.3, although
the results below are all shown in normalized form, only requiring again
the assumed homogeneous distributions n

E
(x, y) = n

G
(x, y) = 1 for these

material parameters.
Figure 16 depicts elevation plots of the warping functions WSV (x, y) and

Wσ(x, y) computed for the sections with aspect ratios t/h = 0.10, 0.05 and
0.01. These plots are to be contrasted with the original ones in Figure 3 for
the solid rectangular sections. When computing these warping functions, we
consider structured finite element discretization based on 4−node bilinear
elements for the solutions of the defining boundary–value problems (33) and
(79) on the cross section, with 4 equally–spaced elements through the wall
thickness, and a fixed number of elements along the walls, for all values of
t/h. Again, (simple) symmetry considerations apply. Actual meshes can be
seen in Figure 16 and other figures below.
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Figure 16: Channel cross section: warping functions. Computed warping func-
tions WSV (x, y) (left) and Wσ(x, y) (right) for sections with thickness ratios t/h =
0.10, 0.05, 0.01.
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Table 2: Channel cross section: twist/shear center position x̄
T

(Figure 2). Val-
ues (left column) computed (right column) thin–wall approximation (x̄(thin)

T
=

3 b̄2/(h̄ + 6 b̄), for h̄ = h− t and b̄ = b− t/2, being distances measured from the
wall’s middle line, for different t/h ratios (h = 20 cm).

t/h x̄
T

[cm] x̄(thin)
T

[cm]
0.10 2.28811887 2.45000000
0.05 2.59689539 2.63671875
0.01 2.78436565 2.78616071

In particular, the Saint–Venant warping function WSV (x, y) has been ob-
tained satisfying the normalizing conditions (46) and (47). This is accom-
plished after evaluating the section’s centroid x̄

E
= x̄

G
in (6) and the center

of twist x̄
T
, following the calculations (48)-(51), involving in particular the

inertias (11). All these calculations are handled automatically by the finite
element code, computing first the solution for an arbitrary center x̄∗

T
(ac-

tually, the origin in our input setting), and then use equations (48)-(51) to
determine the actual twist center x̄

T
. The second warping function Wσ(x, y)

is again obtained satisfying the normalizing condition (154) for the Neumann
type problem (79), by shifting a first computed solution with a fixed value
for an arbitrary node.

Table 2 includes the computed horizontal positions x̄
T

of the center of
twist (see Figure 2) for the three cases shown in Figure 16, together with
the approximate value x̄(thin)

T
given by (B.10) in Appendix B.2 assuming the

thin–wall limit. A good agreement is observed as the thickness t/h reduces.
Similarly, the plots of the Saint–Venant warping function WSV (x, y) in Figure
16 (left column) match well the linear distribution in the longitudinal coordi-
nate s of the primary warping in (B.9) for the thin–wall limit t/h→ 0, with
the bilinear distribution s n of the secondary warping contribution in that
expression being more evident as the thickness increases; see Appendix B.2
for a complete discussion of these issues.

We note again that all the developments considered in this work do not
depend on the availability of those estimates for the thin–wall limit. The
finite element simulations on the different sections provide the different tor-
sional constants needed by the formulations under study. Figure 17 shows
the computed values of the Saint–Venant torsional constant J in (39), the
warping constant IWSV in (64), and the other two relevant constants I∇WSV
and I∇Wσ in equations (102) and (158), respectively. We have also included
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Figure 17: Channel cross section: torsional constants. Values of the Saint–Venant
torsional constant J , the warping constant IWSV and the two gradient constants
I∇WSV and I∇Wσ for different t/h ratios.

Table 3: Channel cross section: table of torsional constants for different sections
thickness ratio t/h (h = 20 cm).

t/h J [cm4] IWSV [cm6] I∇WSV [cm4] I∇Wσ [cm8]
0.10 8.50099503·10+1 1.87665937·104 4.44404677·103 1.75869485·105

0.05 3.19982170·10−1 4.42779462·103 9.28004807·102 5.68392233·104

0.01 9.53031691·10−2 3.03596030·103 6.29488297·102 3.96167673·104
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Figure 18: Channel cross section: shaft flexibility. Normalized torsional flexibility
fT /(L/ḠJ) versus t/h (left) and L/h (right). All formulations tend to the Saint

–Venant value (f
(SV )
T = L/ḠJ) for long shafts (large L/h).

the thin–wall approximations derived in Appendix B.2. A perfect agreement
can be observed for the computed Saint–Venant torsional constant J with its
thin–wall limit J (thin) in the considered range of thickness t/h (overlapping
curves in Figure 17) whereas for the warping constant IWSV and gradient
constants I∇WSV and I∇Wσ the matching applies to the smaller values of t/h,
with a good agreement for the rest. Table 3 includes the numeric values for
the particular sections t/h depicted in Figure 16 and highlighted below as
representative examples.

As observed in the previous section, a quick evaluation of the three for-
mulations under study is achieved by comparing the shaft flexibility (194).
Figure 18 shows this flexibility, normalized by its Saint–Venant value with
uniform warping, that is, fT/(L/ḠJ), for different sections t/h and different
shaft lengths L/h. The plot at the left of this figure shows the effect of reduc-
ing the thickness of the walls, namely, the different formulations approach
each other, with the TWKV showing always the smallest flexibility of the
three, followed by the RBV formulation and the mixed formulation, the most
flexible formulation of the three.

This observation is clear for the shorter shafts L/h = 1.0 and, again
to evaluate this limit, for L/h = 0.5. The differences for longer shafts, like
L/h = 5.0 as shown in the left plot of Figure 18, are minimal in the considered
range of thickness ratios t/h. This situation is confirmed by the right plot
in that figure, showing the normalized flexibility fT/(L/ḠJ) versus the shaft
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Figure 19: Channel cross section: parameter κt versus t/h. Geometric factor
driving the limit process to the constrained TWKV formulation for the RBV and
mixed formulations.

length L/h. The three formulations basically coincide for long shafts, all
approaching asymptotically the value for Saint–Venant torsion (value 1.0 in
that plot). Note that this approach is much slower for the thinnest section
considered with t/h = 0.01.

These results follow the same pattern as observed in the previous section
for solid sections, with the indicated effects being more prominent. This can
be explained by analyzing the parameter κt identified in Sections 4.2 and 5.3
driving the approximation of the RBV and mixed formulations, respectively,
to the constrained TWKV formulation. Figure 19 shows that parameter
for those two formulations, a figure that has to be compared with Figure 6
for the solid sections studied in the previous section. We obtain again the
monotonically increasing value of κt with decreasing thickness ratios t/h, with
the stiffer RBV formulations always above the mixed formulation, confirming
the result (186).

This result shows again the tendency of these two formulation to converge
to the constrained TWKV formulation. One big difference of these two fig-
ures is the much bigger value of this penalty parameter for the thin–walled
sections under study in this section, two orders of magnitude bigger: 6,605
vs 26 maximum values for κ

(RBV )
t , 2,441 vs 21 for κ

(MIX)
t . The bigger differ-

ence between these two formulations, with a much stiffer RBV formulation,
is also noted. Figure 19 also includes the value of the penalty parameter κt
calculated with the thin–wall estimates of the different torsional constants
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involved, showing a very good agreement with the computed values in the
thin range of thickness considered in this case, thus leading to the same con-
clusions. We refer to Remark B.3 in Appendix B.2 for a complete discussion,
including the respective numerical values.

We must indicate that this tendency to converge to the constrained
limit encompassed by the TWKV formulation as the thickness ratio t/h de-
creases is not at all obvious, even if observed for the solid and open (simply-
connected) thin–walled section studied so far. We will see in the next section
that this situation will not be observed for closed (multiply-connected) thin–
walled sections. On the other hand, the limiting process of the overall re-
sponse of the shaft to the Saint–Venant solution for long shafts is a proof
of the locality of the effects of the restrained warping at the shaft’s root.
However, this process is slower for thin sections (small t/h), as shown by the
results in the right plot of Figure 18 showing the shaft’s flexibility fT/(L/ḠJ)
versus L/h for different sections t/h.

Figure 20 shows the diagrams for the bimoment BW (z) and the bishear
TW (z) along the shaft z̃ = z/L ∈ [0, 1], given by equations (205) and (200)
(normalized, again, by TLL and TL, respectively, for the torque TL at the
shaft’s tip z = L). We include the diagrams for the sections with t/h = 0.10,
0.05 and 0.01, and for the three different structural formulations under study.
Each of these plots show the results for the different length ratios L/h = 5.0,
1.0 and 0.5. The agreement of the three formulations as the thickness ratio
t/h reduces noted above for the shaft flexibility is also observed in these
diagrams. Similarly, the effects of the restrained warping at the shaft’s root
z = 0 are stronger for the longer shafts, larger L/h, as seen for the larger
values of both the bimoment and bishear.

Figure 20 is to be compared to Figure 7 for the solid sections, noting the
stronger effects of the restrained warping in the current open channel thin–
walled sections, especially as the thickness ratio t/h decreases. For solid sec-
tions, especially thicker ones like the square section, these strong effects were
observed for the original TWKV formulation, partly as a consequence of the
torque anomaly unrealistically fixing the value TW (0)/TL = 1.0. This fixed
value also applies in this case, as given again by equation (202)2, but now
the values obtained by the RBV and mixed formulation fall closer. Again,
the lowest values of the two stress resultants BW (z) and TW (z) are obtained
by the mixed formulation, in fact all along the shaft, followed with increas-
ing values, in order, by the RBV and TWKV formulations. This situation
matches again the results observed for the shaft flexibility predicted by these
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Figure 20: Channel cross section: moment diagrams normalized by the tip torque
TL. Distribution of the bishear TW (z) (left) and bimoment BW (z) (right) for
different section aspect ratios t/h = 0.10, 0.05, 0.01, comparing different shaft’s
lengths L/h = 5.0, 1.0, 0.5 for each aspect ratio.

114



different formulations.
These structural stress resultants create section stresses depicted in Fig-

ures 21 to 23. In particular, Figures 21 and 22 show the shear stresses at the
shaft’s root for the sections t/h = 0.10 and 0.05, respectively, both for the
shaft of length L/h = 1.0. We have depicted the Saint–Venant component
τ SV given by (219), the warping component τW by (220), and the total shear
stress τ = τ SV + τW , all as stress vectors at the quadrature points for the
different elements, superposed to contour plots of their magnitude. All these
values are shown again for a unit tip rotation φL = fTTL = 1.0, the actual
distribution not affected obviously by this normalizing choice.

The vanishing of the Saint–Venant component τ SV of the shear stress for
the TWKV formulation at the shaft root (the torque anomaly) and the lack of
satisfaction of the proper stress boundary conditions at the walls edge for the
RBV formulation is noted again. In particular, the RBV formulation results
in the unrealistic “rotational” pattern of the total stress τ shown by equation
(213). Note that in this case occurs around the center of twist x̄

T
as located

by the values included in Table 2. In contrast, the characteristic distribution
of the shear stresses under torsion can be observed for the TWKV and mixed
formulations. In this respect, note that Figure 16 shows the tendency of
the Saint–Venant warping function WSV (x, y) to become bilinear along the
wall’s tangent and thickness directions, with the secondary warping function
Wσ(x, y) showing a cubic variation along the direction of the middle line of
the different walls, all as the thickness decreases.

Figure 23 depicts contour plots of the normal axial stress distribution σz
at the shaft’s root z = 0 for the sections with t/h = 0.10 and 0.05, and
shaft’s length L/h = 1.0, given by relation (218). Note that all three formu-
lations follow the distribution given by the Saint–Venant warping function
WSV (x, y), depicted at the left column of Figure 16 for the different sections.
This stress is caused (or it causes, depending of personal preference) by the
bimoment BW (0) and the higher value of this quantity for the TWKV formu-
lation is clearly reflected in Figure 23, followed in order by the less stiff RBV
and mixed formulations. To evaluate the adequacy of all these results, direct
consequence of the approximation behind the different formulations, we un-
dertake again a full three–dimensional elastic analysis of the shafts at hand.

7.2.1. Three–dimensional analysis

We consider finite element simulations of the shafts under study, assum-
ing full 3D treatment of the solid with full three–dimensional linear elastic
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Figure 21: Channel cross section: shear stresses. Distributions of the Saint–
Venant shear stress τ SV , the warping shear stress τW and the total shear stress
τ for the channel cross section t/h = 0.10 and L/h = 1.0 at the shaft root z = 0.
All values are normalized as τ/Ḡ and correspond to the case with a unit rotation
φL = 1.0 at the opposite tip of the shaft.

116



TWKV formulation

-1.00E+00

-7.78E-01

-5.56E-01

-3.33E-01

-1.11E-01

+1.11E-01

+3.33E-01

+5.56E-01

+7.78E-01

+1.00E+00
jj=SV jj

+1.69E-04

+2.60E-04

+3.51E-04

+4.41E-04

+5.32E-04

+6.23E-04

+7.14E-04

+8.05E-04

+8.96E-04

+9.87E-04
jj=W jj

+1.69E-04

+2.60E-04

+3.51E-04

+4.41E-04

+5.32E-04

+6.23E-04

+7.14E-04

+8.05E-04

+8.96E-04

+9.87E-04
jj= jj

RBV formulation

+6.94E-04

+1.07E-03

+1.44E-03

+1.81E-03

+2.19E-03

+2.56E-03

+2.93E-03

+3.31E-03

+3.68E-03

+4.05E-03
jj=SV jj

+9.29E-03

+1.47E-02

+2.01E-02

+2.54E-02

+3.08E-02

+3.62E-02

+4.16E-02

+4.70E-02

+5.23E-02

+5.77E-02
jj=W jj

+9.29E-03

+1.49E-02

+2.04E-02

+2.60E-02

+3.15E-02

+3.71E-02

+4.27E-02

+4.82E-02

+5.38E-02

+5.94E-02
jj= jj

Mixed formulation

+1.57E-03

+2.41E-03

+3.26E-03

+4.10E-03

+4.94E-03

+5.79E-03

+6.63E-03

+7.48E-03

+8.32E-03

+9.16E-03
jj=SV jj

+1.38E-04

+2.12E-04

+2.86E-04

+3.60E-04

+4.35E-04

+5.09E-04

+5.83E-04

+6.57E-04

+7.31E-04

+8.06E-04
jj=W jj

+1.71E-03

+2.62E-03

+3.54E-03

+4.46E-03

+5.38E-03

+6.30E-03

+7.22E-03

+8.13E-03

+9.05E-03

+9.97E-03
jj= jj

τ SV τW τ

Figure 22: Channel cross section: shear stresses. Distributions of the Saint–
Venant shear stress τ SV , the warping shear stress τW and the total shear stress
τ for the channel cross section t/h = 0.05 and L/h = 1.0 at the shaft root z = 0.
All values are normalized as τ/Ḡ and correspond to the case with a unit rotation
φL = 1.0 at the opposite tip of the shaft.
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TWKV RBV Mixed
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Figure 23: Channel cross section: axial stress. Distribution of the axial stress σz
at the shaft root z = 0 for the cross sections with t/h = 0.10, 0.05 and shaft’s
length of L/h = 1.0. All values normalized by the material’s Young modulus as
σz/Ē and correspond to the case with a unit rotation φL = 1.0 at the opposite
tip of the shaft.

response of the material. We maintain the finite element discretizations of
the cross sections considered above for the separate section analyses. The
finite element discretization of the solid shafts consider 20 layers of three–di-
mensional 8−node brick elements along the length z ∈ [0, L] graded towards
the fixed root of the shaft at z = 0. Figure 24 shows two typical meshes for
the section with thickness ratio t/h = 0.10. The simulations are run by im-
posing the displacement (12)1,2 at the shaft’s tip z = L for the cross section
displacements (ux, uy), with a unit tip rotation φL = 1.0 and free warping
displacement uz(x, y, L). The three components of the three–dimensional
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Figure 24: Channel cross section: 3D shaft. Three–dimensional finite element
solution for shafts with L/h = 1.0, 5.0 and t/h = 0.10, showing the contours of
the axial displacement uz on top of the 3D deformed configuration of the shaft
(left), and the elevation plot of the resulting warping at the shaft’s tip z = L
(right).

displacements are fixed to vanish at the shaft’s root z = 0. The QM1/E12
enhanced strain element of Simo et al. [1993] is considered in the three–
dimensional finite element solutions, because of its superior performance in
shear.

Figure 24 depicts the solutions obtained for the shaft lengths of L/h =
1.0 and 5.0, both for the channel cross section with thickness ratio t/h =
0.10. We show the three–dimensional deformed configuration of the shaft,
with superposed contour plots of the axial (warping) displacement uz(x, y, z).
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Figure 25: Channel cross section: stresses. Shear and normal stresses in the
three–dimensional finite element solution at the shaft root z = 0 for t/h = 0.10,
0.05 and L/h = 1.0. Values are normalized as τ/Ḡ and σz/Ē, and they cor-
respond to the case with a unit rotation φL = 1.0 at the opposite tip of the
shaft.

Separately, we show elevation plots of this computed displacement component
at the tip z = L, with free warping. These plots have to be compared with
the Saint–Venant warping function WSV (x, y) computed for this section and
shown in Figure 16 (top left corner). Good agreement is observed.

Focusing on the restrained warping caused by the fixed support, we in-
clude in Figure 25 the shear stress τ and normal (axial) stress σz at the root
z = 0 for the shafts with thickness ratios of t/h = 0.10 and 0.05, both for
the shaft of length L/h = 1.0. We show contour plots of the magnitude of
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TWKV RBV Mixed
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Figure 26: Channel cross section: axial stress difference. Comparison of the axial
stress at the shaft’s root z = 0 between the different considered formulations
with the three–dimensional finite element solution σz − σz(3D), for the different
cross section t/h = 0.10, 0.05 and L/h = 1.0. All values are normalized by
the material’s Young modulus as σz/Ē and correspond to the case with a unit
rotation φL = 1.0 at the opposite tip of the shaft.

these quantities in this figure, including the stress vectors corresponding to
the shear stress τ as well. Note that these are the three–dimensional stresses
σ̄A(3D) in the solid volume of the shafts, projected to the nodes following the
relations (229). They correspond then to a full three–dimensional state of
stress, including the stress components avoiding the distortion of the cross
section itself, a component not present in the structural formulations of tor-
sional warping considered in this paper. This component shows clearly in
the plots of shear stresses in Figure 25.

121



The normal stress σz(x, y, 0) at the shaft’s root is indeed a direct con-
sequence of the restrained warping at that support, motivating then the
inclusion in Figure 26 the contour plots of the difference σz − σz(3D) of this
stress for the different formulations under study with the computed three–
dimensional solutions. We show contour plots of this difference for the sec-
tions with thickness ratios of t/h = 0.10 and 0.05, both for the shaft with
L/h = 1.0, that is, for the same full three–dimensional solutions shown in
Figure 25. As occurred for the solid sections in Figure 12 we observe a bigger
discrepancy with the TWKV formulations when compared to the RBV and
mixed formulations, in this order. This discrepancy/error reduces for thinner
sections, smaller t/h. Still, the stress level σz remains higher for the RBV
and, especially, the TWKV formulations, confirming the stiffer character of
the approximation assumed by these formulations when contrasted to the
proposed mixed formulation.

This higher stress level is also confirmed by evaluating the bimoment
BW (0) at the shaft’s root causing the normal stresses σz(x, y, 0). Figure 27
shows this bimoment, normalized as BW (0)/(TLL), together with the asso-
ciated bishear, normalized the by tip torque as TW (0)/TL. These quantities
are plotted versus the section thickness ratio t/h and the shaft’s length ratio
L/h, showing different curves for several of the other parameter in each case.
The values of the bimoment and bishear for the three–dimensional finite el-
ement solutions are obtained using the relations (230) and (231) based on
the nodally projected 3D stresses (229), while the values for the different
structural theories are given by relations (209) and (202), respectively.

The plots in Figure 27 indicate a very good agreement between the three–
dimensional and the three different structural theories for the bimoment
BW (0), specially for the mixed formulation, always better than the RBV
and TWKV formulations, in this order. The differences are small though,
especially for thin (small t/h) sections and long shafts (large L/h). The
bishear TW (0) exhibits, in contrast, a bigger discrepancy between the struc-
tural theories and the full three–dimensional solutions, especially again for
long shafts and thinner sections. Still, we can observe the fixed value of
TW (0)/TL = 1 for the bishear at the root obtained by the TWKV formula-
tion for all sections and shaft’s length (the torque anomaly, leading to the
vanishing of the Saint–Venant shear stresses in Figure 21 and 22), with the
other structural formulations and the 3D solutions only approaching that
limit for very thin sections.

This situation reveals again the constrained character of the original
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Figure 27: Channel cross section: bimoment and bishear at the shaft’s root.
Values of the bimoment BW (0) (top) and the bishear TW (0) (bottom) at z = 0
versus the section aspect ratio t/h (left) and shaft’s length ration L/h (right)
obtained by the different formulations and the 3D finite element solution.

TWKV formulation, leading to an over-stiff response of the shaft when com-
pared to the full three–dimensional finite element solutions as shown in Fig-
ure 28. As occurred for the solid sections in Figure 15, we normalize the
torsional flexibility as fT/(L/ḠJ̃ref ) for a dimensional reference value J̃ref ,
independent of the structural theories, absent in the full three–dimensional
solutions. We use the thin–wall limit J (thin) as it can be found in equation
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Figure 28: Channel cross section: shaft flexibility. Normalized torsional flexibility
fT /(L/ḠJ̃ref ) with a dimensional reference value (J̃ref = J (thin)), allowing the
incorporation of the 3D FEM solutions. Values versus thickness ratio t/h (left),
and shaft’s length L/h (right).

(B.11) in Appendix B.2.
The stiffer response of the TWKV formulation over the RBV and mixed

formulations is confirmed in the plots shown in Figure 28, although with a
substantially less difference than for the solid sections as observed in Figure
15. Clearly, we are now in the range of thin to very thin sections where
the limit process to warping–twist constraint encompassed by the TWKV is
reached. We emphasize again that this observed response as the thickness
ratio t/h reduces applies only to open (simply–supported) section topologies
considered so far. The situation may, and will, change for the hollow closed
thin–walled sections considered next.

7.3. Evaluation for closed (hollow) thin–walled cross sections

Next we undertake the analysis of the different formulations for closed
thin–walled sections. These sections are characterized by a multiply con-
nected topology in contrast to the simply connected open thin–walled sec-
tions of the previous section. We consider first a single cell section, in par-
ticular, the box section presented in Figure 2 on page 84, but with two
thickness distributions along the wall. It consists of a square hollow section
of height/width h = 2b, with thicknesses tf and tw along the opposite sides
of the wall. Two cases are considered in what follows, namely, (1) a con-
stant thickness distribution tf = tw = t and (2) the non-uniform distribution
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tf = tw = t
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Figure 29: Box cross section (tf = tw = t, Neuber tube): warping functions.
Computed warping functions WSV (x, y) (left) and Wσ(x, y) (right) for sections
with thickness ratios t/h = 0.10, 0.05, 0.01.
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tf = 2tw = 2t
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Figure 30: Box cross section (tf = 2tw = 2t): warping functions. Computed
warping functions WSV (x, y) (left) and Wσ(x, y) (right) for sections with thickness
ratios t/h = 0.10, 0.05, 0.01.
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tf = 2tw = 2t for, say, the flanges and the webs; see Figure 2. The particular
value of h = 2b = 20 cm is considered in the numerical simulations, with
thickness ratios in the range 0.01 ≤ t/h ≤ 0.10, expressed in terms of the
web thickness tw = t for all cases. This is the same range considered for
the open thin–walled sections of the previous section but, as we shall see,
the different topology of the cross section will have significant consequences
on how the three different formulations of restrained warping compare with
each other.

The consideration of the two different cases is significant to the study
presented here, since the case with tf = tw = t is an example of the so-called
Neuber tubes (see Gjelsvik [1981], page 128) in contrast to the second case
with tf = 2tw = 2t. Neuber tubes are hollow thin-walled sections in which
the primary warping, defined in terms of the sectorial coordinate along the
wall middle line as described in Appendix B.3, vanishes. In that thin–wall
limit, the only warping that the section suffers is then given by a bilinear
distribution over the wall, the secondary warping, as occurred for the thin
rectangular sections considered in Section 7.1. As noted in that appendix,
this situation leads, for example, to a small warping constants IWSV (i.e. of
order t3) as opposed to more general thin–walled closed sections (with IWSV
of order t), as it is the case for the section configuration with tf = 2tw.
We emphasize that these considerations are only strictly valid in the very
limit of thin–walls t/h → 0. Our main purpose is to evaluate the idoneity
of the different formulations of restrained warping under study for this type
of sections, including the effects of these considerations. Hence, we follow
a scheme in the exposition similar to the previous sections, making cross
comparisons easy.

In this way, Figures 29 and 30 show the computed warping functions
WSV (x, y) and Wσ(x, y) for the two cases tf = tw and tf = 2tw, respectively.
In both cases, we present the solutions for the specific cross sections with
t/h = 0.10, 0.05 and 0.01 as representative examples in the considered range
of thickness ratios t/h. In all cases, we consider finite element discretizations
of the plane section with 4 equally spaced 4−node bilinear quadrilateral
elements through the web thickness and a proportional number of elements
across the flanges, with a constant number of elements along the walls for
all aspect ratios t/h. Double symmetry considerations apply. Due to these
conditions, the centroids x̄

E
= x̄

G
and the twist/shear center x̄

T
all coincide

with the geometric center of the section.
The considerations noted above regarding the warping function WSV (x, y)
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become clear by comparing the computed values shown in Figures 29 and
30, especially as the thin–wall limit is approached. The characteristic bilin-
ear distribution, with a linear dependence through the thickness, is clearly
the only dominant component present in the computed warping function
WSV (x, y) for the Neuber tube tf = tw in Figure 29 in that thin limit. In
contrast, the characteristic limit distribution of the primary warping along
the wall length dominates the alternative section with tf = 2tw in Figure 30.
We refer to Appendix B.2 for the complete characterization of these functions
in the thin–wall limit. We emphasize again that all these considerations be-
hind those limit estimates are only approximations corresponding to the thin
limit. The approach presented here does not rely on any of these approxi-
mate considerations, as they are considered for typical thin–walled sections in
practice. Instead, we compute the exact warping function WSV (x, y) for any
thickness, as well as the second warping function Wσ(x, y). In this respect,
it is interesting to observe the considerable difference of this second function
for the two characteristic cases under consideration. We remind the reader
that this function depends directly on the Saint–Venant warping function,
as it appears in the boundary-value problem (79).

Figures 31 and 32 depict the torsional constants obtained from those com-
puted warping functions for each case under consideration. We include again
the Saint–Venant torsional constant J , the warping constant IWSV and the
two additional constants I∇WSV and I∇Wσ , all shown for the considered range
of the thickness ratio t/h. In all cases we include the values corresponding to
the thin–wall limit presented in Appendix B.2. The computed values (evalu-
ated directly from the computed warping function WSV (x, y) and not relying
on any approximations for small thickness t) can be seen in Figures 31 and 32
to match well these thin–wall limits as t/h→ 0. Tables 4 and 5 include the
actual numeric values for the three sections t/h = 0.10, 0.05 and 0.01 used
as representative cases in what follows. These are the sections shown in the
original Figures 29 and 30 in several of the figures to follow. The different
orders of magnitude of some of these torsional constants for the two different
section geometries, a consequence of the previous arguments, is to be noted.

It is also interesting to observe the different dependence of some of the
torsional constants on the thickness ratio for the two box sections considered
here. Comparing the results in Figures 31 and 32 for each of these cross
sections, the most significant difference is in the nature of the distribution of
the IWSV and I∇Wσ section constants. The warping constant IWSV is of order
o ((t/h)3) for the Neuber tube tf = tw = t, whereas it is of order o ((t/h))
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Figure 31: Box cross section (tf = tw = t, Neuber tube): torsional constants.
Values of the Saint–Venant torsional constant J , the warping constant IWSV and
the two gradient constants I∇WSV and I∇Wσ for different t/h ratios.

Table 4: Box cross section (tf = tw = t, Neuber tube): table of torsional constants
for different sections thickness ratio t/h (h = 20 cm).

t/h J [cm4] IWSV [cm6] I∇WSV [cm4] I∇Wσ [cm8]
0.10 1.23677966·104 1.57591655·103 3.37620344·103 3.81971644·103

0.05 7.04796191·103 2.82805259·102 2.12270476·103 7.18179690·102

0.01 1.56287589·103 3.84789924·100 5.07306512·102 1.40319061·101
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tf = 2tw = 2t
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Figure 32: Box cross section (tf = 2tw = 2t): torsional constants. Values of
the Saint–Venant torsional constant J , the warping constant IWSV and the two
gradient constants I∇WSV and I∇Wσ for different t/h ratios.

Table 5: Box cross section (tf = 2tw = 2t): table of torsional constants for
different sections thickness ratio t/h (h = 20 cm).

t/h J [cm4] IWSV [cm6] I∇WSV [cm4] I∇Wσ [cm8]
0.10 1.50314876·104 2.92100250·104 5.23517907·103 7.42990212·105

0.05 8.96257119·103 2.62850975·104 3.78409548·103 8.81626379·105

0.01 2.06474176·103 8.03505311·103 9.94116910·102 3.12143230·105
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for the section with tf = 2tw = 2t. This mimics exactly the difference
between the same constant for the rectangular section in Figure 4 and for
the open channel section in Figure 17, respectively. This difference arises
from the presence of (sectorial) primary warping in the latter, as noted in
Appendix B.2.

Similarly, the gradient constant I∇Wσ shows a response of order o ((t/h)3)
for the Neuber tube tf = tw = t, whereas it is of order o ((t/h)) for the section
with tf = 2tw = 2t. The former differs from the o ((t/h)5) of a single thin
rectangle as noted in Appendix B.3. It is interesting that the other gradient
constant I∇WSV shows to be of order o ((t/h)) for both sections. As shown
by the analysis in Appendix B for the thin–wall limit estimates, this is due
to the coupling of the longitudinal and transversal (through–the–thickness)
wall directions in the evaluation of this constant arising from the bilinear
character of the Saint–Venant function W

(thin)
SV in the so–called secondary

warping.
Note that the Saint–Venant torsional constants J shows the same order

o ((t/h)) as this gradient constant I∇WSV for both section configurations. All
these observations are perfectly captured and, hence, confirmed by the com-
puted values of all these constants based on the exact Poisson problems for
the two warping functions WSV (x, y) and Wσ(x, y).

With these constants at hand, we evaluate the shaft’s flexibility (194) for
the three different formulations under study and different lengths of the shaft.
Figure 33 depicts the normalized values fT/(L/ḠJ) versus the thickness ratio
t/h and the shaft length L/h, each plot for different characteristic values of
the other parameter. Both cases tf = tw and tf = 2tw are shown in this
figure in separate plots. The difference in scales for each of these two cases
is to be noted, showing the lesser influence of the restrained warping for
the first case (the Neuber tube), as expected. Nevertheless, we can observe a
considerable difference between the values obtained by the three formulations
for both cases. The differences become smaller again the thinner the section
and the longer he shaft, but comparing these results with the corresponding
Figure 18 for the channel open thin–walled section of the last section, the
differences even for thin sections are much more significant. We remark that
we are considering the same range of thickness ratios t/h. Note, though,
that the difference with the Saint–Venant value L/ḠJ is smaller. In any
case, the TWKV formulation shows to be much stiffer than the RBV and
mixed formulations, in this order again, for the whole range of t/h and L/h
ratios. This over–stiffness is more accentuated for the case tf = 2tw when

131



tf = tw = t

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
t/h

0.94

0.95

0.96

0.97

0.98

0.99

1.00

F
le
x
ib

il
it
y,

f T
=
(L

=
G

J
)

Flexibility vs. t/h (for di,erent L/h)

TWKV
RBV
MIXED

L/h = 5
L/h = 1
L/h = 0.5

0 1 2 3 4 5 6 7 8 9 10
L/h

0.94

0.95

0.96

0.97

0.98

0.99

1.00

F
le
x
ib

il
it
y,

f T
=
(L

=
G

J
)

Flexibility vs. L/h (for di,erent t/h)

TWKV
RBV
MIXED

t/h = 0.1
t/h = 0.05
t/h = 0.01

tf = 2tw = 2t

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
t/h

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
le
x
ib

il
it
y,

f T
=
(L

=
G

J
)

Flexibility vs. t/h (for di,erent L/h)

TWKV
RBV
MIXED

L/h = 5
L/h = 1
L/h = 0.5

0 1 2 3 4 5 6 7 8 9 10
L/h

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
le
x
ib

il
it
y,

f T
=
(L

=
G

J
)

Flexibility vs. L/h (for di,erent t/h)

TWKV
RBV
MIXED

t/h = 0.1
t/h = 0.05
t/h = 0.01

Figure 33: Box cross section: shaft flexibility. Normalized torsional flexibility
fT /(L/ḠJ) versus t/h (left) and L/h (right), for the two considered geometries
of the section tf = tw (top) and tf = 2tw (bottom). All formulations tend to the

Saint–Venant value (f
(SV )
T = L/ḠJ) for long shafts (large L/h).
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compared to the Neuber tube with tf = tw.
Figures 34 and 35 include the diagrams for the bishear TW (z) and bi-

moment BW (z) for the three representative sections t/h = 0.10, 0.05 and
0.01, and different shaft’s lengths L/h, all for the three formulations under
study and for the two cases tf = tw and tf = 2tw, respectively. In contrast
with the previous two sections, we show here these quantities normalized by
the rotation φL at the tip of the shaft z = L (namely, TW/(φLḠJ/L) and
BW/(φLḠJ)) to illustrate the relations (201) and (206), respectively. Even
with this normalization, the TWKV formulation shows significant discrepan-
cies with the other two formulations near the fixed support at the shaft’s root
z = 0. This situation is even observed for the thinnest section t/h = 0.01,
and for all the shaft lengths. Recall that TW (0)/TL = 1.0 for this formulation
due to the torque anomaly. These discrepancies extend along the length of
the shaft especially for the case tf = 2tw with a dominant primary warping,
as shown in Figure 35. In all cases, the TWKV formulation overestimates
both the bishear and bimoment, all along the shaft, not only near that fixed
support. The full three–dimensional simulations presented below will prove
this result, and specifically the big overshoot at the root, to be unrealistic,
particularly when compared with the RBV formulation and, especially, with
the mixed formulation.

The shear stresses on the cross section at the fixed support z = 0 are
shown in Figures 36 and 37 for the sections with t/h = 0.10 and 0.05, re-
spectively, both for the Neuber tube tf = tw with L/h = 1.0. As in previous
sections, we include the Saint–Venant shear stress component τ SV , the war-
ping shear stress τW and the total shear stress τ , both as stress vectors at
the plane section quadrature points and as contour plots of their magnitude.

Analyzing the results shown in these figures, we can observe that both
the TWKV and mixed formulations capture the characteristic constant dis-
tribution through the wall thickness as the thickness t/h reduces, up to stress
concentrations at the walls corners. We do not include the plots for the thin-
ner sections with t/h = 0.01 because they are difficult to view at that thick-
ness, but they confirm this well–known result for closed (hollow) thin–walled
sections in torsion. We find remarkable that the original TWKV formulation
accomplishes this result with a vanishing Saint–Venant component τ SV due
to the torque anomaly, just with the contribution of the warping component
τW (and hence the associated bishear TW (0)/TL = 1 for this formulation).
In contrast, the RBV formulation misses completely this characteristic shear
stress distribution, leading instead to the previously noted “rotational” pat-
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tf = tw = t
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Figure 34: Box cross section (tf = tw = t, Neuber tube): moment diagrams
normalized by the tip rotation φL.
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tf = 2tw = 2t
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Figure 35: Box cross section (tf = 2tw = 2t): moment diagrams normalized by
the tip rotation φL.
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TWKV formulation
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Figure 36: Box cross section (tf = tw = t, Neuber tube): shear stresses. Distri-
butions of the Saint–Venant shear stress τ SV , the warping shear stress τW and
the total shear stress τ for the channel cross section t/h = 0.10 and L/h = 1.0
at the shaft root z = 0. All values are normalized as τ/Ḡ and correspond to the
case with a unit rotation φL = 1.0 at the opposite tip of the shaft.
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TWKV formulation
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Figure 37: Box cross section (tf = tw = t, Neuber tube): shear stresses. Distri-
butions of the Saint–Venant shear stress τ SV , the warping shear stress τW and
the total shear stress τ for the channel cross section t/h = 0.05 and L/h = 1.0
at the shaft root z = 0. All values are normalized as τ/Ḡ and correspond to the
case with a unit rotation φL = 1.0 at the opposite tip of the shaft.
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tern (213) of the stress vectors τ around the center of twist. We note that
this distribution is incorrect in nature (in the sense that it does not satisfy
the correct boundary conditions along the wall edges), even though it may
capture the overall structural response of the shaft in terms of the associated
bishear TW (0). The mixed formulation shows the correct stress distribution
and does capture that structural response too, actually better for this type
of sections as well.

The shear stresses for the section configuration with tf = 2tw = 2t are
shown in Figures 38 and 39 for the sections with t/h = 0.10 and 0.05, respec-
tively. The shaft length of L/h = 1.0 is considered again. For the TWKV
and mixed formulations, we observe the same trend to a constant stress dis-
tribution through the thickness for the thinner section, with the expected
concentration along the thinner web as expected. The same deficiencies of
the stress distribution predicted by the RBV can be observed in this case. It
misses completely that dominance of the component tangential to the middle
lines of the walls, constant through the thickness. The concentration along
the webs is lost, with the main contribution to the torque taken by the section
concentrated at the section’s corners.

Figures 40 and 41 show the distribution of the axial stress σz at the fixed
support of the shaft for, again, the two sections t/h = 0.10 and 0.05, both for
the shaft L/h = 1.0, and for the Number tube tf = tw and the case tf = 2tw,
respectively. The distribution of this stress is proportional to the Saint–
Venant warping function WSV (x, y) for all the three formulations considered
here, and hence those two section configurations show completely different
distributions, with the absence of the primary warping for the Neuber tube,
at least for the thinner section. Still, we can observe again the much higher
level of stress obtained with the TWKV formulation followed in order by the
RBV and mixed formulations, for both cases tf = tw and tf = 2tw. This
situation agrees with the distributions observed for the solid and open thin–
walled sections in the previous section. It also confirms the stiffer character
of the TWKV and RBV formulations in comparison with the mixed formu-
lation, even for entirely different warping distributions. To finally decide on
the adequacy of these formulations for this type of sections, we consider full
three–dimensional finite element analyses as presented next.

7.3.1. Three–dimensional analysis

We continue with the full three–dimensional of the shafts at hand, con-
sidering a graded distribution of 8−node enhanced QM1/E12 brick elements
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TWKV formulation
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Figure 38: Box cross section (tf = 2tw = 2t): shear stress. Distributions of the
Saint–Venant shear stresses τ SV , warping stresses τW and total stresses τ for the
channel cross section t/h = 0.10 and L/h = 1.0 at the shaft root z = 0. All values
are normalized as τ/Ḡ and correspond to the case with a unit rotation φL = 1.0
at the opposite tip of the shaft.
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Figure 39: Box cross section (tf = 2tw = 2t): shear stress. Distributions of the
Saint–Venant shear stresses τ SV , warping stresses τW and total stresses τ for the
channel cross section t/h = 0.05 and L/h = 1.0 at the shaft root z = 0. All values
are normalized as τ/Ḡ and correspond to the case with a unit rotation φL = 1.0
at the opposite tip of the shaft.
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TWKV RBV Mixed
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Figure 40: Box cross section (tf = tw = t, Neuber tube): axial stress. Distri-
bution obtained by the different formulations of the end axial stress σz at the
shaft root z = 0 for the cross section with t/h = 0.10, 0.05 and shaft’s length
L/h = 1.0. All values are normalized by the material’s Young modulus as σz/Ē
and correspond to the case with a unit rotation φL = 1.0 at the opposite tip of
the shaft.

along the shaft length. We consider again 20 layers of such elements. We
impose the plane (ux, uy) displacements (12)1,2 with a unit rotation φL = 1,
leaving the axial displacement uz free at the shaft’s tip z = L. We fix all
these 3D displacement components at the opposite end z = 0.

The plots in Figure 42 illustrate the assumed 3D finite element discretiza-
tion. It includes the deformed configurations for the section with t/h = 0.10
and shaft length L/h = 1.0 for the two cases considered here, the Neuber
tube tf = tw = t and the section with varying thickness tf = 2tw = 2t. Su-
perposed to these deformations we show contour plots of the axial (warping)
displacement uz, including separate elevation plots of this displacement on
the section at the shaft tip. This distribution must be compared with the the-
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TWKV RBV Mixed
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Figure 41: Box cross section (tf = 2tw = 2t): axial stress. Distribution obtained
by the different formulations of the end axial stress σz at the shaft root z = 0 for
the cross section with t/h = 0.10, 0.05 and shaft’s length L/h = 1.0. All values
are normalized by the material’s Young modulus as σz/Ē and correspond to the
case with a unit rotation φL = 1.0 at the opposite tip of the shaft.

oretical distribution given by the Saint–Venant warping function WSV (x, y)
shown in Figures 29 and 30 for that particular section in those two respective
cases. The same scaling is used for the two cases, allowing a direct compar-
ison of the warping between the two. In this way, the three–dimensional
simulations confirm the higher amount of warping for the case tf = 2tw over
the Neuber tube tf = tw.

The three–dimensional shear and normal stress at the root of the shaft
are included in Figures 43 and 44 for sections t/h = 0.10 and 0.05, both for
L/h = 1.0, so they can be compared with the same stresses obtained by the
different structural formulations presented in Figures 36 to 40, and Figures
38 to 41 for each case. The stresses shown are the nodally projected values
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Figure 42: Box cross section: 3D shaft. Three–dimensional finite element solution
for shafts with L/h = 1.0, 5.0 and t/h = 0.10, showing the contours of the axial
displacement uz on top of the 3D deformed configuration of the shaft (left), and
the elevation plot of the resulting warping at the shaft’s tip z = L (right).

given by equation (229). The characteristic constant distribution through the
thickness, tangential to the wall middle line, of the shear stress τ noted above
as the thickness t/h decreases is clearly recovered in the simulations as a full
3D elastic solid. The stress distribution obtained by the RBV formulation of
Figures 36-37 and 38-39 are confirmed to be completely unrealistic.

To evaluate better the level of the normal stresses σz we have included in
Figures 45 and 46 the difference of this stress in the 3D simulations with the
one predicted by the different structural theories given by equation (221),
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Figure 43: Box cross section (tf = tw = t, Neuber tube): stresses. Shear and
normal stresses in the three–dimensional finite element solution at the shaft root
z = 0 for t/h = 0.10, 0.05 and L/h = 1.0. Values are normalized as τ/Ḡ and
σz/Ē, and they correspond to the case with a unit rotation φL = 1.0 at the
opposite tip of the shaft.

all projected to the nodes. As occurred for the solid and open thin–walled
sections, we can observe a higher level of error for the TWKV formulation,
followed in order by the RBV and mixed formulation. This error is much
bigger for the case tf = 2tw in Figure 46 where the primary warping dom-
inates. We have kept constant the color scale of the contour plots in these
figures among the three formulations to observe these differences, a signifi-
cant difference for the original TWKV constrained formulation. Remember
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Figure 44: Box cross section (tf = 2tw = 2t): stresses. Shear and normal stresses
in the three–dimensional finite element solution at the shaft root z = 0 for t/h =
0.10, 0.05 and L/h = 1.0. Values are normalized as τ/Ḡ and σz/Ē, and they
correspond to the case with a unit rotation φL = 1.0 at the opposite tip of the
shaft.

that this axial normal stress shows a spatial distribution on the cross section
given by the Saint–Venant warping function for all structural formulations.

The structural stress resultant driving this normal stress is the bimoment
BW (0) at the fixed support z = 0. Figures 47 and 48 include this quantity
as well as the bishear TW (0) for the sections with tf = tw and tf = 2tw,
respectively. They show the dependence of these stress resultants on the
section aspect ratio t/h and the shaft length L/h for the three structural
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Figure 45: Box cross section (tf = tw = t, Neuber tube): axial stress difference.
Comparison of the axial stress at the shaft’s root z = 0 between the different
considered formulations with the three–dimensional finite element solution σz −
σz(3D), for the different cross section t/h = 0.10, 0.05 and L/h = 1.0. All values
normalized by the material’s Young modulus as σz/Ē and correspond to the case
with a unit rotation φL = 1.0 at the opposite tip of the shaft.

theories under study as well as the three–dimensional finite element solutions.
The values for the 3D solutions are obtained using the postprocessing given
by relations (230) and (231) for the bimoment and bishear, respectively,
in terms of the nodally projected 3D stresses in (229). In contrast to the
similar results in previous sections, and to illustrate the results (201) and
(206) evaluated at z = 0 in terms of the tip rotation φL, we have used
the normalization BW (0)/(φLḠJ̃ref ) and TW (0)/(φLḠJ̃ref/L) in terms of the
dimensional factor J̃ref = J (thin) in equation (B.24).

The plots in these figures show a very good agreement for the values
of both the root bimoment BW (0) and bishear TW (0) with the 3D results
for the newly proposed mixed formulation when compared to the other two
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Figure 46: Box cross section (tf = 2tw = 2t): axial stress difference. Comparison
of the axial stress at the shaft’s root z = 0 between the different considered
formulations with the three–dimensional finite element solution σz − σz(3D), for
the different cross section t/h = 0.10, 0.05 and L/h = 1.0. All values normalized
by the material’s Young modulus as σz/Ē and correspond to the case with a unit
rotation φL = 1.0 at the opposite tip of the shaft.

structural formulations, especially the TWKV formulation that clearly over-
estimates these stress resultants. This agreement is good in the whole range
of section thickness t/h and shaft lengths L/h, and better for the Neuber
tube tf = tw in Figure 47. We can also observe the completely different re-
sponse of the closed (hollow) thin–walled sections considered in the current
section with that of the open thin–walled sections studied in the previous sec-
tion. In particular, comparing the results in this figure with the similar plots
in Figure 27 for the (open) channel section, showing a much closer agree-
ment among the three structural theories, confirm that the basic warping–
twist constraint underlying the original TWKV formulation (that is, warping
magnitude given by the rate of twist φ′(z)) only dominates the thin–walled
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Figure 47: Box cross section (tf = tw = t, Neuber tube): bimoment and bishear
at the shaft’s root. Values of the bimoment BW (0) (top) and the bishear TW (0)
(bottom) at z = 0 versus the section aspect ratio t/h (left) and shaft’s length
ration L/h (right) obtained by the different formulations and the 3D finite element
solution.

sections when they have a simply connected topology. This conclusion ap-
plies to both the cases of thickness distributions, that is, when the primary
warping dominates or not in the thin–wall limit.
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Figure 48: Box cross section (tf = 2tw = 2t): bimoment and bishear at the shaft’s
root. Values of the bimoment BW (0) (top) and the bishear TW (0) (bottom) at
z = 0 versus the section aspect ratio t/h (left) and shaft’s length ration L/h
(right) obtained by the different formulations and the 3D finite element solution.

This situation is confirmed by evaluating the parameter κt identified in
this work for both the RBV and mixed formulations as controlling the limit
process to the constrained limit given by the TWKV formulation. Figure 49
shows this parameter versus the thickness ratio t/h for those two formula-
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Figure 49: Box cross section: parameter κt versus t/h. Geometric factor identified
to drive the limit process to the constrained TWKV formulation for the RBV and
mixed formulations if κt → ∞. No such trend is observed for the current box
section in either configuration: tf = tw, Neuber tube (left), or tf = 2tw (right).

tions, and for each of the considered cases tf = tw and tf = 2tw. The plots in
this figure are to be compared with Figure 19 for open thin–walled sections.
Not only the actual values of this parameter are much smaller for both closed
thin–walled sections than for that case, but the monotonic increasing char-
acter of κt as the thickness decreases observed for open thin–walled sections
is lost. This result is a clear proof that reducing the thickness ratio t/h does
not define a penalty process approaching the constrained TWKV formula-
tions for closed (hollow) thin–walled sections. This observation also explains
the differences observed above in all the aspects of the solutions obtained by
the different structural formulations for this section topology. This conclu-
sion applies to both examined configurations of the cross section, with and
without primary warping in the thin–wall limit.

These conclusions are also confirmed when the parameter κt is calculated
with the thin–wall estimates of the different torsional constants, as presented
in Appendix B.3. The plots in Figure 49 also include the distributions κt(t/h)
using those estimated constants for the different formulations. They show a
good agreement, especially in the thin–wall limit, as expected; see Remark
B.4, in particular, where we have included detailed numerical comparisons.
Notably that agreement is not as good as for the open channel cross section
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Figure 50: Box cross section: shaft flexibility. Normalized torsional flexibility
fT /(L/ḠJ̃ref ) with a dimensional reference value (J̃ref = J (thin)), allowing the
incorporation of the 3D FEM solutions. Values versus thickness ratio t/h (left)
and shaft’s length L/h (right), for the section configuration tf = tw, Neuber tube
(top) and tf = 2tw (bottom).
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of Section 7.2, another clear indication of the completely different nature of
the warping in these two type of thin–walled sections.

To finish this section, we emphasize the over–stiff response of the whole
shaft with the TWKV formulation, when compared not only to the RBV and
mixed formulations, but also to the full three–dimensional elastic solutions;
in fact, with a much marked difference. Figure 50 allows this comparison by
considering the normalized shaft flexibility fT/(L/ḠJ̃ref ) for the common di-
mensionally normalizing factor J̃ref = J (thin), showing the results both versus
the section thickness ratio t/h and shaft lengths L/h. We have included sepa-
rate plots for the two different thickness distributions. In all cases, and along
the whole range of the defining ratios t/h and L/h, the observed over–stiff
response of the TWKV and, to a lesser degree, the RBV is to be noted. The
scale in the plots in this figure indicate also that this less accurate response
of these formulations is especially significant when the (primary) warping
dominates like in the section configuration with tf = 2tw when compared to
the Neuber tube tf = tw. These plots are to be compared to Figure 28 for
the channel open thin–walled sections with its much closer agreement among
the different solutions in that case. The appropriateness of the proposed
mixed formulation of restrained warping, especially for these closed thin–
walled sections, is concluded.

7.4. Evaluation for multi–cell thin–walled cross sections

Next we consider the evaluation of the different formulations for multi–
cell closed sections, exploring also the thin–wall limit. In particular, we study
the two–cell section shown in Figure 2 on page 84. The double symmetry
of the section makes the middle web to exhibit only secondary warping in
the thin–wall limit, that is, its primary (sectorial) warping vanishes, making
it efficiently equivalent a single cell only in that very limit. It is of interest
though to view its effects for finite thicknesses, as consider here. The semi-
circular wings makes also the section of interest in the evaluation of those
thin–wall approximate estimates, as undertaken in Appendix B.4.

The center boxed part is defined by a square h = 2b box, divided in
two by the web of thickness tw = t. The outer top and bottom walls are
connected by the two semicircular segments, all with the same thickness
tf = t. We fix h (the section height from the outer walls) and vary t in
the range 0.01 ≤ t/h ≤ 0.10, the same as in the previous sections when
studying thin–walled sections. Similarly, we consider a homogeneous material
distribution, so n

E
(x, y) = n

G
(x, y) = 1.0. The double symmetry leads easily
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Figure 51: Two–cell cross section: warping functions. Computed warping func-
tions WSV (x, y) (left) and Wσ(x, y) (right) for sections with thickness ratios
t/h = 0.10, 0.05, 0.01.
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to the coincidence of the centroids and shear/twist center x̄
E

= x̄
G

= x̄
T

with the geometric center of the section; see Figure 2. The actual numerical
simulations consider h = 2b = 20 cm, with E = 200 GPa and ν = 0.3 for the
Young modulus and Poisson ratio, respectively, in the 3D simulations below.

For now, we focus on the two–dimensional numerical solution of the war-
ping functions on the plane cross section. To that purpose, we consider
structured finite element discretization of the section geometry with 4−node
bilinear elements. We consider 4 elements uniformly distributed through
the thickness of the walls, with proportional number of elements along the
length of each wall. Double symmetry considerations apply. Figure 51 shows
representatives cases of the considered meshes, together with elevation plots
of the computed warping functions WSV 9x, y) and Wσ(x, y). Specifically, we
consider the cross sections with t/h = 0.10, 0.05 and 0.01 as in the previous
example, thus allowing more direct comparisons.

The availability of the warping functions allows the evaluation of the
different torsional constant of interest for the considered sections. Figure
52 depicts them as they vary with the thickness ratio t/h in the considered
range. We show again the Saint–Venant torsional constant J , the warping
constant IWSV and the two gradient constants I∇WSV and I∇Wσ , all shown
for the considered range of the thickness ratio t/h. We have also included
the thin–wall limit estimate obtained in Appendix B.4, observing a good
agreement especially in the low range of thicknesses t/h as expected. Table 6
includes the numeric values for the three representative sections t/h = 0.10,
0.05 and 0.01 shown in Figure 51 and other figures below in this section.

The availability of these torsional constants allow us to evaluate the exact
solutions of the model problem outlined in Box 1 for the different formula-
tions, as developed in Section 6 for different thickness ratios t/h and shaft
lengths L/h. We start again with the normalized shaft flexibility fT/(L/ḠJ),
as given by equation (194). Figure 53 depicts the variation of these values
versus both the thickness ratio t/h and the shaft length L/h, each plot in-
cluding different representative values of the other parameter. The plots
show significant differences of the values computed by the different formula-
tions, especially for thicker sections and longer shafts. Interestingly, and in
contrast with the single cell box cross sections considered in Section 7.3, the
curves versus L/h (right plot in Figure 53) obtained for the different section
geometries t/h match each other well for a given formulation, all converg-
ing to the pure Saint–Venant solution fT/(L/ḠJ) = 1 for long shafts (large
L/h). This convergence is clearly slower for the TWKV formulation when
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Figure 52: Two–cell cross section: torsional constants. Values of the Saint–
Venant torsional constant J , the warping constant IWSV and the two gradient
constants I∇WSV and I∇Wσ for different t/h ratios.

Table 6: Two–cell cross section: table of torsional constants for different sections
thickness ratio t/h (h = 20 cm).

t/h J [cm4] IWSV [cm6] I∇WSV [cm4] I∇Wσ [cm8]
0.10 3.16599435·104 1.62488850·105 1.17737445·104 9.11281099·106

0.05 1.77438378·104 8.93618602·104 6.27119852·103 5.47580817·106

0.01 3.88215938·103 1.95546204·104 1.32217133·103 1.27403112·106
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Figure 53: Two–cell cross section: shaft flexibility. Normalized torsional flexibil-
ity fT /(L/ḠJ) versus t/h (left) and L/h (right). All formulations tend to the

Saint–Venant value (f
(SV )
T = L/ḠJ) for long shafts (large L/h).

compared with the other two formulations, a sign of the stiffer response of
this (constrained) direct formulation for the current cross section topology
as well. As in previous cases, the lowest flexibility always corresponds to the
TWKV formulation, followed in order by the RBV and mixed formulations.

Similarly, Figure 54 allows to compare the diagrams of the bishear TW (z)
and bimoment BW (z) along the shaft length with the same diagrams obtained
in previous section, in particular the single cell box cross sections as shown
in Figure 34 and 35 for the different thickness distributions. Again, we
include the diagrams for the three representative values t/h = 0.10, 0.05 and
0.01, and different shaft’s lengths L/h, all for the three formulations under
study. Clearly, the diagrams obtained for the two–cell section considered here
compares well with the latter in Figure 35, corresponding to the box section
with tf = 2tw, in contrast with the former in Figure 34, corresponding to the
Neuber tube tf = tw. We conclude that the source of the widely distributed
stress resultants TW (z) and BW (z) along the shaft, quantities characteristic
of the restrained warping caused by the end support at z = 0, is the stronger
warping characteristic of the primary warping that appears in these cross
sections, as opposed to that Neuber case only showing the smaller secondary
warping across the thickness of the wall.

Comparing the different formulations, we observe again the overall higher
values of the bishear TW (z) and the bimoment BW (z) predicted by the TWKV
formulation, followed in order by the RBV and mixed formulations. The 3D
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Figure 54: Two–cell cross section: moment diagrams normalized by the tip rota-
tion φL. Distribution of the bishear TW (z) (left) and bimoment BW (z) (right) for
different section aspect ratios t/h = 0.10, 0.05, 0.01, comparing different shaft’s
lengths L/h = 5.0, 1.0, 0.5 for each aspect ratio.
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Figure 55: Two–cell cross section: shear stresses. Distributions of the Saint–
Venant shear stress τ SV , the warping shear stress τW and the total shear stress
τ for the channel cross section t/h = 0.10 and L/h = 1.0 at the shaft root z = 0.
All values are normalized as τ/Ḡ and correspond to the case with a unit rotation
φL = 1.0 at the opposite tip of the shaft.

results presented below will confirm that those values corresponds to an over–
estimation of the more realistic value obtained by the mixed formulation.
This is especially the case near the fixed support restraining the warping at
z = 0. Recall that the TWKV formulation unrealistically makes the Saint–
Venant torque to vanish at that end, forcing the bishear (or warping torque)
to have the fixed value TW (0) = TL, the torque acting at the opposite tip of
the shaft z = L by equilibrium. The values shown in Figure 54 at the shaft’s
root vary because we show the normalized values for a fixed tip rotation
φL, that is, TW/(φLḠJ/L) and BW/(φLḠJ). Still, the much higher values
predicted by the TWKV formulation, and thus its stiffer response of the
shaft, is clear.
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Figure 56: Two–cell cross section: shear stresses. Distributions of the Saint–
Venant shear stress τ SV , the warping shear stress τW and the total shear stress
τ for the channel cross section t/h = 0.05 and L/h = 1.0 at the shaft root z = 0.
All values are normalized as τ/Ḡ and correspond to the case with a unit rotation
φL = 1.0 at the opposite tip of the shaft.

The shear stresses on the cross section associated with the different formu-
lations, in their Saint–Venant τ SV and warping τW components, are given
by equations (219)-(220) at the shaft’s root. Their values depend on the
computed warping functions WSV (x, y) and Wσ(x, y), through the non–di-
mensional parameter αeff given by in Box 1 for the different formulations
in terms of the different torsional constants. Figures 55 and 56 show these
stresses, together with the total shear stress τ = τ SV + τW , for the sections
with t/h = 0.10 and 0.05, respectively, both for the shaft with L/h = 1.0.
The completely unrealistic nature of these stresses for the direct RBV formu-
lation is clearly depicted again by the rotational pattern shown by the shear
stress vectors τ . The anomaly of the vanishing of the Saint–Venant compo-
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Figure 57: Two–cell cross section: axial stress. Distribution obtained by the
different formulations of the end axial stress σz at the shaft root z = 0 for the
cross section with t/h = 0.10, 0.05 and shaft’s length L/h = 1.0. All values are
normalized by the material’s Young modulus as σz/Ē and correspond to the case
with a unit rotation φL = 1.0 at the opposite tip of the shaft.

nent τ SV for the original TWKV formulation is to be noted again, although
the total shear stresses τ show the correct pattern. In fact, as shown by the
relation (220), the mixed formulation follows the same distribution, given
by the (weighted) gradient n

G
∇Wσ of the second warping function Wσ(x, y),

although with a different magnitude.
For the axial stress σz on a cross section, given by equation (221) at the

shaft’s root, all three formulations share the same distribution n
E
WSV (x, y),

with again a different magnitude. Figure 57 shows this axial stress for, again,
the two sections t/h = 0.10 and 0.05, both for the shaft L/h = 1.0. We use
the same scale range in all plots, thus showing the much higher stress level
predicted by the TWKV formulation followed in order by the RBV and
mixed formulations, a new indication of the over–stiff response of the first
two formulations. Note that the direct source of this stress is the bimoment
BW (0), with the higher value for those formulations.

7.4.1. Three–dimensional analysis

We contrast the previous conclusions with full three–dimensional simula-
tions of the different shafts as full three–dimensional solids. To that purpose
we consider again finite element discretizations of the problems at hand with
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Figure 58: Two–cell cross section: 3D shaft. Three–dimensional finite element
solution for shafts with L/h = 1.0, 5.0 and t/h = 0.10, showing the contours of
the axial displacement uz on top of the 3D deformed configuration of the shaft
(left), and the elevation plot of the resulting warping at the shaft’s tip z = L
(right).

8−node enhanced QM1/E12 brick elements, again 20 layers of the elements
along the axis direction of the shaft z, with a graded distribution towards
the root of the shaft at z = 0. We impose the plane (ux, uy) displacements
(12)1,2 with a unit rotation φL = 1, leaving the axial displacement uz free
at the shaft’s tip z = L. All 3D displacement components are imposed to
vanish at the opposite tip of the shaft z = L.
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Figure 59: Two–cell cross section: stresses. Shear and normal stresses in the
three–dimensional finite element solution at the shaft root z = 0 for t/h = 0.10,
0.05 and L/h = 1.0. Values are normalized as τ/Ḡ and σz/Ē, and they cor-
respond to the case with a unit rotation φL = 1.0 at the opposite tip of the
shaft.

The considered finite element meshes can be seen in Figure 58 for the
shafts with lengths L/h = 1.0, 5.0 and the section with t/h = 0.1. We have
included the deformed configuration of the twisted shafts with superposed
contours of the level of the axial (warping) displacement uz. Separate ele-
vation plots of this warping displacement at the end tip of the shaft z = L
is also shown separately. The resulting distribution matches well the Saint–
Venant warping function WSV (x, y) shown in the top left corner of Figure 51,
its theoretical value.

Figure 59 shows the distribution of total shear stress τ and normal axial
stress σz for the section at the shaft’s root z = 0 obtained in the three–
dimensional simulation for the shafts with t/h = 0.1 and 0.05, both for the
length of L/h = 1.0. As occurred in the previous sections, these stresses
correspond to the nodally projected values (229) from their values evaluated
at the quadrature points of the three–dimensional brick elements. The the-
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Figure 60: Two–cell cross section: axial stress difference. Comparison of the axial
stress at the shaft’s root z = 0 between the different considered formulations with
the three–dimensional finite element solution σz − σz(3D), for the different cross
section t/h = 0.10, 0.05 and L/h = 1.0. All values normalized by the material’s
Young modulus as σz/Ē and correspond to the case with a unit rotation φL = 1.0
at the opposite tip of the shaft.

oretical constant through–the–thickness of the shear stresses, with the shear
stress vectors τ following the direction of the wall, can be easily observed,
with the web showing no shear stress to all practical purposes. Interestingly,
that same web shows a high level of normal stress σz.

The difference between the axial stress resulting from the full three–di-
mensional elastic simulations with the same stress predicted by the different
formulations is shown in Figure 60. As occurred in previous sections, this
modeling error is much higher for the TWKV formulation followed by the
RBV and mixed formulation. In particular, the latter shows a good resolution
of that axial stress σz along the central web, while some error can be appreci-
ated for the two direct formulations. This comparisons basically refer to the
level of the stress since all formulations predict the same distribution, given
by the weighted Saint–Venant warping function n

E
WSV (x, y) as noted above.

This difference in the level of axial stress is directly linked to the discrep-
ancy of the bimoment BW (0) at the shaft’s root predicted by the different
formulations. Figure 61 compares this value as well as the bishear TW (0) at
that same section among the different formulations for different geometries of
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Figure 61: Two–cell cross section: bimoment and bishear at the shaft’s root.
Values of the bimoment BW (0) (top) and the bishear TW (0) (bottom) at z = 0
versus the section aspect ratio t/h (left) and shaft’s length ration L/h (right)
obtained by the different formulations and the 3D finite element solution.

the shaft’s cross section as determined by the thickness ratio t/h and the shaft
length L/h, all with the values obtained from the stresses obtained in the
three–dimensional simulations (and their nodal projections (229)) through
the postprocessing formulas (230) and (231) for the bimoment and bishear,
respectively. The resulting values have been normalized in terms of the tip
rotation φL. In all cases, the very good agreement of the 3D solutions with
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Figure 62: Two–cell cross section: parameter κt versus t/h. Geometric factor
identified to drive the limiting process to the constrained TWKV formulation for
the RBV and mixed formulations if κt →∞. No such process is observed for the
current two–cell section.

the values obtained with the proposed mixed formulations can be clearly
observed, noting the much over–stiff response of the original TWKV formu-
lation. The RBV formulation, releasing the warping–twist constraint of that
original formulation, falls in between, but still on the stiff side, this conclu-
sion arising from the always higher values of these two quantities BW (0) and
TW (0).

These results agree well with the same observations made for the single–
cell closed section reported in Figures 47 and 48, especially with the latter
corresponding to that section with a significant primary warping, as it is the
case for the current two–cell section. In fact, we see a far more matching of
the values obtained with different aspect ration t/h for a given formulation.
In both cases though, the results are quite different to the ones obtained
for the open channel section presented in Figure 27, also developing primary
warping along the wall.

In that case of an open thin–walled section, the three structural formu-
lations were quite close, especially in the thin–wall limit. As discussed in
Section 7.2, this is due to the penalization that this limit imposes for the
warping–twist constraint encompassed by the TWKV formulations. This
was not the case for thin closed single–cell sections and continues not being
the case for the two–cell section under consideration here. This situation is
again illustrated by the evaluation of the parameter κt identified in this work
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Figure 63: Two–cell cross section: shaft flexibility. Normalized torsional flexibil-
ity fT /(L/ḠJ̃ref ) with a dimensional reference value (J̃ref = J (thin)), allowing
the incorporation of the 3D FEM solutions. Values versus thickness ratio t/h
(left), and shaft’s length L/h (right).

for both the RBV and mixed formulations. The variation of this parameter
with the thickness ratio t/h is shown in Figure 62 for those two formula-
tions. The low value of this parameter, with no monotonic increase as the
thickness ratio t/h is reduced in contrast with what occurred for the open
channel thin–walled section in Figure 19, is a clear proof of this situation.
We have included the evolution of this parameter κt evaluated with both the
actual torsional constants for the section and with the thin–wall estimated
formulae obtained in Appendix B.4. In particular, we refer to Remark B.5
for a detailed consideration of the actual numerical values involved for this
parameter κt for both of these formulations.

As we did the previous sections, we conclude the evaluation for the two–
cell closed thin–walled section by comparing directly the shaft flexibility pre-
dicted by the three structural formulations under study with the three–di-
mensional simulations of the full 3D elastic solid. To this purpose, we normal-
ize these values as fT/(L/ḠJ̃ref ) with the formulation–independent dimensio-
nal factor J̃ref = J (thin), the thin–wall limit estimate for a given section t/h.
The resulting values are shown in Figure 63 for both different thickness ratios
t/h and shaft lengths L/h. The good agreement obtained with the mixed
formulation with the full three–dimensional simulations is to be contrasted
with the stiffer responses obtained with the RBV and TWKV formulations,
especially the latter. The appropriateness of the proposed mixed formulation
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Figure 64: Composite cross section: warping functions. Computed warping func-
tions WSV (x, y) (left) and Wσ(x, y) (right) for the considered composite section
(t/h = 0.04).

is also concluded for the multi–cell cross sections considered here.

7.5. Evaluation for composite cross sections

To illustrate the generality of the results presented here as it refers to
general distributions of the material for inhomogeneous shafts, we consider
briefly the composite cross section depicted in Figure 2 on page 84. It consist
an I-beam made of a linear elastic material with Young modulus E1 = Ē =
200 GPa and Poisson’s ration ν1 = 0.3 (so G1 = Ḡ = 76.92 GPa), with a
rectangular slab on its top with a linear elastic material with E2 = Ē/10 =
20 GPa and ν2 = 0.20, say, steel and concrete, respectively. Perfect bond
is assumed between the two parts. As indicated in referring to these values,
we take the values for the steel profile as the reference values Ē and Ḡ for
the elastic parameters, leading to the distributions n

E1
= n

G1
= 1.0 for the

thin–walled part of the section and n
E2

= 0.10 and n
G2

= 0.1083̄ for the slab
at the top of the composite section.

The dimensions of the different parts of the assumed cross section are
indicated in Figure 2, keeping the height h = 50 cm of the I-profile as the
reference value in the normalizations below. Note also than a different thick-
ness is considered along the walls of this profile, taking as reference in our
normalizations the value t = tw = tc of the web and top flange. The cross
section is kept constant in the arguments to follow, varying only the length
of the shaft (i.e. the ratios L/h). The resulting value t/h = 0.04 for the

167



Table 7: Composite cross section: table of torsional constants for the section
under consideration (h = 50 cm, t = 2 cm).

t/h J [cm4] IWSV [cm6] I∇WSV [cm4] I∇Wσ [cm8]
0.04 4.23488407·103 1.75506164·106 1.63767657·105 4.53999995·107

Table 8: Composite cross section: table of section centers. Vertical positions
(from the bottom) of the torsional center and the Young’s and shear centroids
(h = 50 cm, t = 2 cm).

t/h ȳ
T

[cm] ȳ
E

[cm] ȳ
G

[cm]
0.04 4.84813375·101 3.36881551·101 3.40540865·101

thickness ratio locates the I-profile part of the section at the middle of the
range of open thin–walled sections studied in Section 7.2, whereas the con-
crete slab at the top, with an aspect ratio of d/w = 0.2 (in the notation
shown in Figure 2) puts that part in the range of solid rectangular sections
analyzed in Section 7.1 above.

Figure 64 depicts the computed warping functions WSV (x, y) and Wσ(x, y)
for the considered composite cross section. It also depicts the assumed plane
finite element mesh for the analysis of this fixed section. It consists of a
structured mesh with 2 equally spaced 4−node bilinear quadrilateral elements
through the thickness for the thin–walled part of the section, 10 elements
through the thickness of the top slab, and proportional elements along the
other different lengths. Symmetry considerations apply.

The plot of the Saint–Venant warping function WSV (x, y) in Figure 64
(left plot) shows the dominance of that thin–walled part in the overall war-
ping of the section, at least at the tip of the shaft. This function with the
second warping function Wσ(x, y) (right plot in that figure) lead to the tor-
sional constants of interest in the analysis below, namely, the Saint–Venant
torsional constant J , the warping constant IWSV and the two gradient con-
stants I∇WSV and I∇Wσ . We have included all the computed values in Table
7. The calculation of the warping functions and the section constants also
provides the location of the twist/shear center x̄

T
following the arguments

presented in Section 2.4. Table 8 shows the coordinate ȳ
T

of this center along
the vertical axis of symmetry of the section, measured from the bottom of
the section. We have also included the vertical position of the centroid of
the Young modulus distribution ȳ

E
and the centroid of the shear modulus
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Figure 65: Composite cross section: shaft flexibility. Normalized torsional flexi-
bility f/(L/ḠJ̃ref ) with the reference value J̃ref = J , the numerically computed
value for the fixed section. Convergence to the Saint–Venant theory for long
shafts can be observed.

distribution ȳ
G

, both centroids located along that vertical axis of symmetry
of the section.

Figure 65 shows the value of the shaft flexibility fT/(L/ḠJ̃ref ) (for J̃ref =
J , the computed Saint–Venant torsional constant for the fixed cross section
under study), for different lengths L/h as given by the result (194) in terms of
those different section constants for the problem at hand. The three different
formulations of restrained warping show basically the same value for all L/h’s,
basically indicating the dominance of the thin–walled part of the section and,
in this case too, the stiffer part. This result conforms with the results for
open thin–walled cross sections presented in Section 7.1, where the warping–
twist constraint underlying the TWKV formulation is reached for small wall
thickness in this type of sections. The situation would be different if the thin–
walled part of the section was multiply connected, as observed in Section 7.3,
an analysis we do not undertake here for the sake of brevity.

In Figure 65 we have also included the result obtained with a full three–
dimensional simulation of the solid shaft, showing a good overall matching
with the values predicted by the different structural theories under study.
It is significant that this occurs again for low values of the ratio L/h, as
low a L/h = 0.5. As in previous sections, the 3D finite element simulations
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Figure 66: Composite cross section: 3D shaft. Three–dimensional finite element
solution for shafts with L/h = 1.0, 5.0, showing the contours of the axial dis-
placement uz on top of the 3D deformed configuration of the shaft (left), and the
elevation plot of the resulting warping at the shaft’s tip z = L (right).

consider 20 layers of QM1/E12 enhanced brick elements along the length
of the shaft, smoothly graded as the fixed support at z = 0 is approached.
Typical meshes can be seen in Figure 66.

As in previous sections, the three–dimensional simulations are run im-
posing a unit rotation φL = 1 with the imposed plane displacements (12)1,2

at the shaft tip z = L, fixing all displacement components at the opposite
fixed support z = 0. Figure 66 shows the deformed configuration for the
shaft lengths L/h = 1.0 and 5.0, depicting the contour plots of the warping
displacement uz. We have included separate elevation plots of the computed
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Figure 67: Composite cross section: shear stresses. Distributions of the Saint–
Venant shear stress τ SV , the warping shear stress τW and the total shear stress
τ , all at the shaft root z = 0, for the considered cross section (t/h = 0.04) and
shaft’s length L/h = 1.0. All values are normalized as τ/Ḡ and correspond to
the case with a unit rotation φL = 1.0 at the opposite tip of the shaft.
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Figure 68: Composite cross section: axial stress. Distribution obtained by the
different formulations of the end axial stress σz at the shaft root z = 0 for the
considered cross section (t/h = 0.04) and shaft’s length L/h = 1.0. All values
are normalized by the reference Young modulus as σz/Ē and correspond to the
case with a unit rotation φL = 1.0 at the opposite tip of the shaft.

warping of the section at the tip of the shaft in the 3D simulations, with
the distribution to be compared with the Saint–Venant warping function
WSV (x, y) in Figure 64 (left plot).

Figure 67 shows the shear stresses at the shaft’s root z = 0 for the shaft of
length L/h = 1.0, obtained with the TWKV, RBV and mixed formulations.
As in previous sections, we include the Saint–Venant component τ SV in (219)
the warping component τW in (219) and the total shear stress τ = τ SV +
τW . We note the similar distributions obtained by the TWKV and mixed
formulations for the total stress τ (not its components due to the torque
anomaly of the former formulation), with the bigger stresses occurring at the
top flange of the (stiffer) I-profile, whereas the RBV formulation gives again
the observed rotational pattern (213) around the center of twist, loading then
especially the lower flange instead.

The normal stress σz at the fixed root of the shaft corresponding to that
same case is shown in Figure 68 for the TWKV, RBV and mixed formulations.
The three formulations result in a stress proportional to the weighted Saint
–Venant warping function n

E
(x, y)WSV (x, y) given by formula (221). The

plots in this figure indicate that the two flanges of the I-profile, the stiffer
part of the composite section, take the main part of the normal stress σz
in a basically linear and symmetric manner along each individual flange,
especially the bottom one; see the warping function WSV (x, y) in the left plot
of Figure 64. As noted in Section 3.2, this situation clearly illustrates the
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Figure 69: Composite cross section: axial stress difference. Comparison of the
axial stress at the shaft’s root z = 0 between the different considered formulations
with the three–dimensional finite element solution σz − σz(3D), for the shaft with
L/h = 1.0 (t/h = 0.04). Values are normalized as σz/Ē, and they correspond to
the case with a unit rotation φL = 1.0 at the opposite tip of the shaft.

popular representation of the bimoment BW (0) causing these stresses and the
associated bishear TW (0) as two equal and opposite bending moments and
associated shear forces acting on the flanges; see e.g. Oden & Ripperger
[1981], page 226. As noted in the introduction presented in Section 1, it
was precisely this observation that motivated the original developments by
Timoshenko in Timoshenko [1905, 1906, 1910] for thin–walled sections; see
Timoshenko & Gere [1961], page 213.

We compare these normal stresses for the different formulations with the
ones obtained in the full three–dimensional finite element simulations, pro-
jected to the nodes of the section at the shaft’s root using equation (229).
This results in the plots shown in Figure 69. We observe the bigger difference
occurring again in the solution of the TWKV formulation followed, in order,
by the RBV and mixed formulations.

The higher stresses in the TWKV formulation confirms the overstiff re-
sponse obtained with this formulation also for composite cross sections of
the type considered in this section. This situation is also apparent when
looking at the resulting bishear TW (z) and bimoment BW (z) diagrams shown
in Figure 70. These diagrams are normalized by the tip torque TL for shafts
of length L/h = 0.5, 1.0 and 5.0. In all cases, the TWKV formulation falls
above the diagrams for the RBV and mixed formulations, always in this or-
der monotonically, especially for shorter shafts. As the length of the shaft
increases, the overall effects of the restrained warping at the root z = 0 re-
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Figure 70: Composite cross section: moment diagrams normalized by the tip
torque TL. Distribution of the bishear TW (z) (left) and bimoment BW (z) (right)
for different shaft lengths L/h = 0.5, 1.0, 5.0.
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duces, as it can be verified by the lower overall values of both bishear and
bimoment, including the values of these quantities for the fixed support at
that end. However, note that the TWKV formulation forces TW (0)/TL = 1.0
in an unrealistic manner, a consequence of the vanishing of the Saint–Venant
torque and stresses at that end with no warping and φ′(0) = 0, that is, a con-
sequence of the torque anomaly discussed in Remark 2.3 in combination with
the warping–twist constraint (93). The only way to resolve this anomaly and
maintain balance of moments with the applied torque TL is the appearance
of the unrealistically high bishear at that support, regardless of the type of
cross section involved (like in all the ones studied above in this paper) or the
length of the shaft.

The better resolution of these issues by the mixed formulation is to be
noted again. It leads also to more accurate distributions of the stresses on
the cross sections, especially when compared with the incorrect distributions
obtained with the RBV formulation. These results indicate the appropriate-
ness of the newly proposed mixed formulation for composite cross sections
too.

8. Concluding remarks

We have presented in this paper an analysis of different treatments of re-
strained warping in elastic shafts. Specifically, we have considered the orig-
inal TWKV formulation of Timoshenko-Wagner-Kappus-Vlasov, the RBV
formulation of Reissner-Benscoter-Vlasov, and a newly developed mixed for-
mulation of the problem at hand, the latter motivated on ideas originally
considered by Reissner in general terms from an alternative framework. The
different formulations have been developed in detail, together with their anal-
ysis and comparative evaluation in the context of the model problem of a
prismatic shaft under a tip torque/twist rotation while having a restrained
warping at its opposite end. The evaluations include both the computation
of the involved warping functions via finite element discretizations of the
considered cross sections in order to evaluate the torsional section constants
and stress distributions, as well as full three–dimensional solid finite element
simulations of the elastic shaft to assess the accuracy of the different formula-
tions. These comparisons include not only the overall structural response of
the shaft, in the form of the shaft’s flexibility in torsion and the diagrams of
the additional stress resultants created by restraining of the warping (namely,
bishear and bimoment), all obtained exactly and in closed–form for the model
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problem, but also the distribution of the shear and normal stresses on the
shaft’s cross sections predicted by the different formulations based on the
computed warping functions for different cross section topologies.

Based on these analyses and evaluations, we can draw the following con-
cluding remarks:

1. The original TWKV formulation encompasses a kinematic constraint
by which the rate of twist φ′(z) along the shaft in z drives directly the
amplitude of the warping of the different cross sections. We refer to
this condition as the warping–twist constraint. The distribution of that
warping displacement on the cross section is given by the original Saint
–Venant warping function WSV (x, y), uniformly along the shaft.

2. The RBV formulation relaxes that constraint considering a general field
λ(z) along the shaft to define the amplitude of the warping displace-
ment besides the twist rotation φ(z) itself, still keeping the basic dis-
tribution WSV (x, y) over all cross sections and, consequently, still uni-
formly along the shaft.

3. In a first mixed treatment of the problem at hand, both the axial strain
and stress normal to the cross section are given general assumed distri-
butions over it while being uniform along the shaft, crucially in combi-
nation of a completely general distribution of the warping displacement
creating that normal strain in the whole shaft. This generality allows to
identify an alternative distribution on this warping displacement over
the cross section, involving two different components defined in terms
of two separate warping functions: the original Saint–Venant warping
function WSV (x, y) and a second warping function Wσ(x, y). For the
linear elastic problem considered herein, the first function is given by
the classical (weighted) Laplacian problem of the Neumann type on
the cross section domain, while the second warping function satisfies a
(weighted) Poisson problem also of the Neumann type driven by the
first function as its source.

4. This insight allows the development of a new fully structural mixed
formulation to model restrained warping in torsion, introducing an in-
dependent field λε(z) along the shaft’s length, defining with the twist
rotation φ(z) the amplitude of each of those two components of the
warping displacement, a combination that varies along the shaft. The
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independent field λε(z) is introduced so it corresponds physically to
the average warping displacement of the particular cross section at z,
leaving free the twist rotation and, hence, releasing the warping–twist
constraint of the original TWKV formulation.

5. Perhaps, the key aspect behind the new mixed formulation, in some
sense the distinctive feature of this formulation, is the non–uniform
character of the shape of the distribution of the warping over the cross
sections along the shaft. The two driving fields, the twist rotation φ(z)
and the warping field λε(z), define the warping of the cross section,
in both shape and amplitude, through the combinations of the two
different components identified in Item 3 above. This situation takes
full advantage of having two independent driving fields at the structural
level when compared to the RBV formulation. A major consequence
of this new warping kinematics is that it results in the proper stress
distributions discussed below.

6. A clear indication of the constrained character of the TWKV formu-
lation is given by the fourth order differential equation on the twist
rotation φ(z) governing this formulation, in contrast to the second or-
der system of differential equations on the twist φ(z) and either the field
λ(z) or λε(z) governing the RBV or mixed formulations, respectively.

7. Particular combinations of the section constants identified here act
effectively as “penalty” parameters driving the RBV and mixed for-
mulations to the constrained TWKV formulation in a limit process.
The explicit bounds obtained analytically for these parameters points
to the stiffer response of the RBV formulation when compared to the
mixed formulation in approaching the constrained TWKV formulation,
a much stiffer model of the structural response of the shaft given pre-
cisely its constrained character.

8. Having developed all three formulations from fully kinematic consid-
erations of the idealized shaft (axis with cross sections attached), the
stresses predicted by each of them are readily available for analysis and
evaluation. In particular, all three formulations result in the same form
of the distribution for the normal stresses acting on the cross sections,
namely, the Saint–Venant warping function WSV (x, y) for the particular
cross section with their magnitude given directly by the aforementioned
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bimoment. Similarly, each formulation identifies two components of
the total shear stress on a cross section, the Saint–Venant and warping
components depending, respectively, on the Saint–Venant and bishear
parts of the total internal torque acting on the cross section. The three
formulations differ considerably on the origin and final form of the war-
ping component of the shear stress.

9. In particular, the prediction of the warping shear stress by the RBV
formulation is physically incorrect, in the sense that it results in to-
tal stresses that do not satisfy equilibrium equations, in contrast with
the equilibrated stresses involved in both the TWKV and mixed for-
mulations. The RBV formulation considers incorrectly warping shear
strains and stresses proportional to the gradient of the Saint–Venant
warping function WSV (x, y) alone, leading to unrealistic situations as
the numerical evaluations illustrate.

10. Despite this completely different warping shear strains and stresses at
the cross section level, the RBV and mixed formulations have been
shown to lead to similar governing problems at the structural level
along the shaft. In fact, for both cases, we recover a system of sec-
ond order differential equations in the corresponding driving fields but
with differing coefficients, involving different combinations of the sec-
tion torsional constants.

11. Remarkably, the distributions of the warping shear stresses for the
TWKV and mixed formulations exhibit the same distribution form
on a given cross section, namely, the (weighted) gradient of that sec-
ond warping function Wσ(x, y), as opposed to WSV (x, y) in the RBV
formulation. For the mixed formulation, this component follows nat-
urally from the shear strain associated to that new independent field
λε(z), whereas it arises as a Lagrange multiplier–type response enforc-
ing the warping–twist constraint in the TWKV formulation (that is,
by static equilibrium considerations solely, with no associated strains
involved). The new mixed formulation accomplishes this correct mod-
eling of the warping stresses without the need of the warping–twist
constraint, resulting in an overall improved modeling as the numerical
results presented here show. This is a clear consequence of the assumed
two component warping distribution indicated in Item 5.
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12. The complete restrainment of the warping at a support forces the
TWKV formulation to eliminate the rate of twist at that end due to
the warping–twist constraint and, thus, the Saint–Venant component
of the shear stress and its resultant Saint–Venant torque altogether.
Therefore, the TWKV formulation must rely entirely on the bishear
at that end to balance any applied torque when trying to model such
a fixed support. We refer to this situation as a torque anomaly. As
shown in the numerical evaluations presented here, this situation leads,
in general, to unrealistic diagrams of the bishear and bimoment along
the shaft, contributing to that over–stiff response associated with the
TWKV formulation. Both the RBV and mixed formulations are not
affected by this anomaly, since they do not involve the warping–twist
constraint.

13. The analyses and evaluations presented here, including the closed–
form exact solutions of a typical model problem, show that the original
TWKV formulation leads to an overstiff response of the shaft, followed
in order by the RBV formulation and mixed formulation, in all type
of cross sections cases considered (solid, open and closed thin–walled,
and composite sections). In particular, the mixed formulation has been
shown to lead to more accurate results when compared with full three–
dimensional finite element simulation of the elastic solids at hand. This
situation has been observed for all type of sections and for the whole
range of thickness ratios t/h of the cross sections and shaft length L/h,
for the section height h.

14. This more accurate modeling of the mixed formulation applies even
as the effects of restrained warping are local in nature, concentrated
near the restrained sections (usually by fixed supports, stiffeners or
similar). For this reason, the overall structural response of the shaft
tends to the basic Saint–Venant torsion for long shafts L � LT , with
the the analyses presented here identifying explicitly the characteristic
length scale LT associated with the different formulations in terms of
the section constants that they involve. All formulations recover this
limit response in that case, but on the overstiff side by the both the
TWKV and RBV direct formulations due to their limited resolution of
those local effects.

15. However, we note that the recovery of the Saint–Venant torsion should
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be understood for the overall structural response of the shaft (e.g. its
flexibility), with still the need to model correctly the local effects as-
sociated with the restrained warping associated with a fixed support,
stiffener or similar. The aforementioned relevance in obtaining the local
stresses correctly, specially in combination with more general inelastic
material models as noted above, is of clear practical importance. In this
respect, we note the good agreement observed between the solutions
obtained with the newly proposed mixed formulation and full three–di-
mensional finite element simulations even for unrealistically very short
shafts, as considered for the range of the length ration L/h for all sec-
tion topologies.

16. The warping–twist constraint behind the TWKV is effectively reached
by the other two formulations (and full three–dimensional simulations
for that matter, that is, physically) for open (simply–connected) thin–
walled sections as the thickness/height ratio t/h of the cross section is
reduced. Hence, the three formulations lead to similar results in the
thin limit for this type of sections. Precisely because of that constraint,
the effects of restrained warping become important for this type of
sections relative to solid sections.

17. On the other hand, for thin–walled sections involving a multiply–con-
nected topology that limit is not attained as the thickness ratio t/h
of the cross section reduces. Hence, closed (hollow) thin–walled sec-
tions, as well as general solid sections, are modeled much better by the
proposed mixed formulation. This distinct limit behavior for the differ-
ent types of cross sections has been clearly observed in the numerical
evaluations presented in this paper, and confirmed by the analytical
estimates obtained for thin–walled sections presented in Appendix B.

18. Interestingly, the conclusions in the previous two items on the different
performance of open and closed sections applies when the section ex-
hibits the so–called primary warping given by the sectorial coordinate
along the cross section’s wall or only the higher order secondary war-
ping through the thin wall thickness. The numerical results presented
here for different particular cross sections, with open or close topolo-
gies, involving one or the other warping, corroborate this conclusion,
as it does the thin–wall estimates obtained in the analyses included in
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Appendix B. All these results and conclusions apply to both single and
multiple cell hollow sections, as the developments in this work show.

All these conclusions point to the adequacy of the newly proposed mixed
formulation in modeling torsion with restrained warping. Along them, we
have identified the extension of the formulation to nonlinear models as being
of major interest, including the consideration of inelastic material responses.
In fact, this is one of our motivations in considering general distributions
of the elastic parameters in this work, besides its inherent interest when
analyzing composite elastic shafts as also evaluated here.

Similarly, we are considering the extension of the new mixed formula-
tion to general geometrically nonlinear formulations, including it in a general
model of curved rods twisting with restrained warping. This includes both its
theoretical characterization as well as its computationally implementation,
along the lines presented in e.g. Simo & Vu-Quoc [1991], Gruttmann
et al. [2000], both based on a RBV treatment of the warping, two represen-
tative examples of a widely used option in this nonlinear setting despite the
limitations found in this paper. In this respect, both the reduced order of
the governing problem noted in Item 6 (thus requiring simpler interpolations
of the fields involved) and the noted generality in terms of the distribution of
the material properties in all the developments presented here (thus allowing
the treatment of more general material models noted above) will help in this
endeavor. We plan to present these extensions in future publications.

Appendix A. Some remarks on the finite element approximation
of the section constants

The three structural formulations considered in this work involve different
warping functions that are the solution of particular boundary–value prob-
lems defined on the cross section domain, leading to explicit expressions of
the different torsional constants involved for a particular formulation at the
structural level as well as to a complete description of the distribution of
several quantities on the cross section itself, including the different stresses
and warping displacement. We have undertaken the numerical solution of
these boundary–value problems through finite element analysis on the plane
domains for different types of cross sections, leading to approximations of
those warping functions and the resulting torsional constants derived from
them. We want to understand better this approximation in this appendix.
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Specifically, the direct formulations TWKV and RBV presented in Sec-
tions 3 and 4, respectively, require only the Saint–Venant warping function
WSV (x, y) solution of the boundary-value problem (33). The mixed formula-
tion in the final form presented in Section 5.2 requires in addition the function
Wσ(x, y) solution of the boundary–value problem (140) with, in particular,
the stress function Σσ(x, y) given by (149)2, thus recovering the Poisson prob-
lem (79) in terms of the Saint–Venant warping function WSV (x, y). Note that
the original TWKV formulation only requires the second warping function
Wσ(x, y) to recover the warping shear stresses τW as a post–processing with
none of the torsional constants involved in this formulation (namely, J and
IWSV ) depending on this function. The mixed formulation requires instead
the evaluation of the torsional constant I∇Wσ directly related to this warping
function by its definition (158), besides those other two section constants. On
the other hand, the RBV formulation requires, instead, the gradient section
constant I∇WSV given by (102).

We approximate the boundary-value problem (33) using the weak form∫
Ω

n
G

(x, y)
(
∇W h

SV + J
)
· ∇(δW h

SV ) dΩ = 0 ∀δW h
SV ∈ Vh , (A.1)

the space of (finite element) admissible variations Vh ⊂ V = H1(Ω)/R, ac-
counting for solutions of the original problem up to a constant. To accomplish
this in practice, we fix the value of the function W h

SV (x, y) at one node of the
finite element mesh while solving the problem (A.1) for an arbitrary point as
center of twist in J, and then obtain the final function and the actual center
of twist using relations (48)-(51), and thus imposing the conditions (46) and
(47).

We approximate the second boundary-value problem (79) in a similar
way, with the weak form∫

Ω

[
n
G

(x, y)∇W h
σ · ∇(δW h

σ ) + n
E

(x, y) W h
SV δW

h
σ

]
dΩ = 0 ∀δW h

σ ∈ Vh ,

(A.2)
for the same finite element approximation Vh ⊂ V = H1(Ω)/R. As for the
problem (A.1), we solve the finite element problem (A.2) in practice by fixing
first the value of the function W h

σ (x, y) at one node of the finite element mesh
and then shifting all the computed nodal values by imposing the normalizing
condition (154).

Different arguments presented in the paper are based on particular re-
lations between the two warping functions WSV (x, y) and Wσ(x, y) that also

182



apply for their finite element approximations as defined above. In particular,
we have:

i. The orthogonality relation (38) follows directly from the weak equation
(A.1) by choosing W h

SV (x, y) as variation, a valid choice after having
normalized it to have a zero (weighted) average.

ii. The property (159) of the constant I∇Wσ , critical in the argument (160)
motivating the warping field λε(z) in the mixed formulation, follows
directly for the finite element warping functions in the same way by
simply considering W h

σ (x, y) as variation in the weak equation (A.2).

iii. Finally, equation (81) also holds for the discrete functions after com-
bining the weak equations (A.1) and (A.2) with W h

σ (x, y) and W h
SV (x, y)

as variations, respectively. Hence, the estimate (187) applies, with the
Cauchy–Schwarz part of the argument still applying for the finite el-
ement functions, and so are its consequences on the relative strength
(186) penalty parameters for the RBV and mixed formulations, on the
orderings of the characteristic lengths (189), and the limit flexibilities
(197) for all three formulations under study. All these results apply
when the section constants obtained in with the considered finite ele-
ment approximations are involved.

With these results, the final formulations based on the considered finite
element approximation of the section problems share the same properties
of their continuum forms as elaborated in the main paper. For example,
theTWKV and mixed formulations involve section stresses in equilibrium
understood in the (finite element) weak sense. Typical considerations in
finite element approximations (e.g. the use of full quadratures, approximate
domain geometry and so on) apply to all these arguments.

Remark A.1. It is interesting to observe that the weak form (A.1) corre-
sponds to a finite element approximation of the variational problem consisting
in minimizing the functional

J(W ) :=

∫
Ω

n
G

(x, y) ‖∇W + J‖2 dΩ , (A.3)

among all functions W (x, y) ∈ V = H1(Ω)/R. Given than the functional
(A.3) corresponds to the Saint–Venant torsional constant J as given by (39)

183



(hence the name employed in (A.3) for the functional), we conclude that the
approximate torsional constant J(W h

SV ) := Jh ≥ J = J(WSV ) that is, the
considered finite element approximation of the Saint–Venant constant Jh is
an upper bound of its exact value J , a result that can be found in Washizu
[1982], page 188, for the case of homogeneous sections. This reference also
discusses complementary formulations, based on the the well-known Prandtl
stress function for the shear stresses on the cross section (Prandtl [1903]),
obtaining lower bounds of the torsional constant. �

Remark A.2. Similarly, the problem (A.2) is the finite element approxima-
tion of the minimization of the functional

Iσ(W ) :=

∫
Ω

[
n
G

(x, y) ‖∇W‖2 + 2 n
E

(x, y) WSV W
]
dΩ , (A.4)

among all functions W (x, y) ∈ V = H1(Ω)/R. For the actual solution of the
continuum problem Wσ(x, y), we actually have

Iσ(Wσ) = −
∫

Ω

n
G

(x, y) ‖∇Wσ‖2 dΩ = −I∇Wσ (A.5)

and similarly Iσ(W h
σ ) = −Ih∇Wσ , involving now the discrete approximation

W h
SV (x, y) in its definition. Neglecting this approximation (and, again, typical

finite element approximations like the domain geometry and numerical inte-
gration), we conclude that Ih∇Wσ ≤ I∇Wσ , i.e., a lower bound in this case. �

Appendix B. Estimates of the torsional constants for thin–walled
sections

The developments presented in this work do not rely on explicit formulas
for the different torsional constant describing the response of the particular
cross section under consideration. Instead, we calculate them from the war-
ping functions WSV (x, y) and Wσ(x, y) obtained by solving the corresponding
boundary–value problems on the given cross section. The generality and
added accuracy of this approach makes it interesting in our opinion. Fur-
thermore, the availability of those functions allow a complete evaluation of
the stresses and warping distributions on the cross sections.

Still, it is convenient to have estimates of those constants in particular
cases, for their practical use and for the evaluation of the considerations pre-
sented in this work. A typical example is the case of thin–walled sections, in
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the different configurations considered in the paper. Estimates for the Saint
–Venant torsional constant J (thin) and the warping constant I

(thin)
WSV

in that
thin–wall limit can be broadly found in the literature; see e.g. the mono-
graphs Oden & Ripperger [1981] and Gjelsvik [1981], or handbooks like
Young et al. [2012], among many others.

Notwithstanding, the section constants I∇WSV and I∇Wσ that appear in
our developments are new to the best of our knowledge, so having similar
estimates I

(thin)
∇WSV and I

(thin)
∇Wσ in the thin–wall limit is of practical interest too.

We present next these estimates for the different cross sections studied in the
main paper. We consider homogeneous sections (i.e. n

E
(x, y) = n

G
(x, y) =

1) in all cases.

Appendix B.1. Estimates for a thin rectangular section

Even though we do not explore the full thin–wall limit in the results
presented in Section 7.1 for a solid rectangular section, estimates for the
different torsional constants are still of interest given their use in the analysis
of other sections presented below. In particular, we have the well–known,
broadly–used values

J (thin) =
1

3
h t3 , and I

(thin)
WSV

=
h3 t3

144
, (B.1)

for the Saint–Venant torsional constant and warping constant, respectively.
Referring to Figure 2, the thickness parameter corresponds to the length t,
so t� h is assumed in these values and all the formulas to follow.

In the thin–wall limit behind the formulas (B.1), an estimate for the Saint
–Venant warping function solving the boundary–value problem (33) is given
by the bilinear function

W
(thin)
SV (s, n) = s n , (B.2)

for the Cartesian coordinates (s, n) corresponding to the distance s along the
middle line for the long side of the rectangle and the perpendicular thickness
direction n, both measured from the center of the rectangle; see Figure 2.
The function (B.2) is a common consideration for thin rectangles; see e.g.
Gjelsvik [1981], page 69, among others. It can be easily seen to satisfy
exactly the differential equation and the Neumann boundary conditions along
the long side of the rectangle for the problem (33), but only approximately
to order o(t/h) for the same boundary conditions along the short side of the
rectangle, including its corners. In this respect, see Remark B.1 below. We
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note that the bilinear function (B.2) can indeed be guessed when observing
the computed Saint–Venant warping functions in Figure 3.

Given the function (B.2), we easily obtain

I
(thin)
∇WSV =

h3 t

12

[
1.0 +

(
t

h

)2
]
, (B.3)

for the gradient constant I∇WSV =
∫

Ω
n
G
‖∇WSV ‖2dΩ in (102). Note that, as

opposed to the traditional torsional constants (B.1) of order o((t/h)3), the
new constant (B.3) is of order o(t/h). As developed in the following sec-
tions, this observation has important consequences in the estimation of this
constant in more general sections, as different contributions to the warping
displacement of the cross section will lead to terms of the same order.

The second gradient constant I∇Wσ =
∫

Ω
n
G
‖∇Wσ‖2dΩ in (158) can be

written as

I
(thin)
∇Wσ =

h3 t5

1440

[
1.0 +

51

42

(
t

h

)2
]
, (B.4)

after estimating the second warping function as

W (thin)
σ (s, n) =

s n

8

(
4

3
n2 − t2

)
, (B.5)

in the thin limit t� h. This function is motivated by considering the thick-
ness direction n as dominant in the thin–wall limit of the Poisson problem
(79) with the source function (B.2). The cubic dependence n3 through the
thickness can clearly be observed in the actual computed solution of the exact
Poisson problem in Figure 3 for small t/h aspect ratios.

Remark B.1. As noted above, the limit function (B.2) only satisfies approx-
imately the boundary conditions along the short sides of the rectangle. It leads
to the classical approximation of linear shear stresses through the thickness
in the direction along the now wall. It is well–known that these shear stresses
only account for half the torque acting on the section, a result that goes back
to Kelvin and Tait (see Thompson & Tait [1903], page 267), so it requires
the consideration of additional transversal point loads at those ends of the
rectangular cross section in the thin limit. It also requires the introduction of
an additional constant shear flow through–the–thickness, of lower order o(t2),
for a more general curved open thin–walled section; see Popov [1970] for de-
tails, and to Davini et al. [2008] for a modern treatment in the context of
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Γ−convergence. In fact, these considerations apply not only to the wall ends
but also to wall junctions, as they occur in the other sections considered be-
low, where the considered limit estimates for the warping functions will show
discontinuities. This level of detail has no direct consequence in this work
and, hence, avoided in this appendix; recall also that the estimates presented
here only provide an added verification of the values obtained from solving
the exact problems. Nevertheless, we refer to the monograph by Gjelsvik
[1981] were these considerations are nicely accounted by treating the thin
walls as plates/shells with junctions. One consequence of these arguments
worth noting, though, for our purposes here is that the limit function (B.2)
does not lead to the torsional constant estimate J (thin) in (B.1)1 when com-
bined with formula (39)1 for the Saint–Venant torsional constant J , namely,
J =

∫
Ω
n
G

(∇WSV + J) · J dΩ. This formula just leads to half the value (B.1)1

if used with the approximate Saint–Venant function (B.2), since the formula
is a direct moment balance of those linear shear stresses in the thin–wall
limit, missing those end contributions . Interestingly, the alternative expres-
sion (39)2, that is, J =

∫
Ω
n
G
‖∇WSV + J‖2dΩ, does lead to the correct value

(B.1)1 for the Saint–Venant torsional constant estimate J (thin). Not sur-
prisingly, the equality in equation (39) relies crucially on WSV (x, y) being an
exact solution of the problem (33). The correct warping constant is obtained

correctly by the formula (64), that is, I
(thin)
WSV

=
∫

Ω
n
E

(W
(thin)
SV )2dΩ. �

Remark B.2. The availability of the thin–wall estimates presented in this
section allows to estimate the relative stiffness of the RBV and mixed formu-
lations in imposing the kinematic warping–twist constraint behind the TWKV
formulation. Namely, we can estimate the penalty parameters

(
κ

(RBV )
t

)(thin)

=
I

(thin)
∇WSV

J (thin)
=

1

4

(
t

h

)−2
[

1 +

(
t

h

)2
]
, (B.6)

for the RBV formulation, confirming that κ
(RBV )
t →∞ as t/h→ 0, and

(
κ

(MIX)
t

)(thin)

=

(
IWSV

)2

J (thin) I
(thin)
∇Wσ

=
5

24

(
t

h

)−2
[

1 +
51

42

(
t

h

)2
]−1

, (B.7)

for the mixed formulation, so κ
(MIX)
t → ∞ as t/h → 0 too. With these
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results, we conclude that(
κ

(RBV )
t

)(thin)

(
κ

(MIX)
t

)(thin)
−→ 1/4

5/24
=

6

5
= 1.20 as t/h −→ 0 , (B.8)

confirming the stiffer response of the RBV formulation when compared with
the mixed formulation as observed in the numerical evaluations presented in
Section 7.1. In fact, given (B.8), we could say that the RBV formulation
is 20% stiffer than the mixed formulation for thin rectangular sections when
approaching the constrained TWKV formulation, an over–stiff formulation
for finite thickness ratios t/h as observed in the main paper. �

Appendix B.2. Estimates for an open thin–walled channel section

Open thin–walled sections are characterized for showing a large amount
of warping in general. This is due to the appearance of the so–called primary
warping, characterized by a constant through–the–thickness distribution and
a general variation along the middle line of the section’s thin wall. Actually,
in the thin limit, this variation is given by the sectorial coordinate along the
middle line of the section’s wall, as originally denoted by Vlasov [1961].
This coordinate corresponds to double the area swept along this line from
the center of shear/twist of the section. In fact, the three normalizing con-
ditions (46)-(47) allow to determine that center (the principal pole of the
sectorial coordinate) and its principal origin. We refer to Oden & Rip-
perger [1981] or Gjelsvik [1981], among others, for complete details on
these considerations.

In contrast, the warping defined by the limit function (B.2) for the rect-
angular section is a typical example to the so–called secondary warping, char-
acterized by a linear variation along the thin through–the–thickness direction
n. For the rectangular section of the previous section, with the center of twist
(principal pole) located along the (straight) axis of the thin rectangle, the
primary warping vanishes. This situation resulted, in particular, in the war-
ping constant I

(thin)
WSV

in (B.1)2 of order o((t/h)3), and the gradient constant

I
(thin)
∇Wσ in (B.4) of order o((t/h)5). The cubic order o((t/h)3) of the Saint–

Venant torsional constant J (thin) in (B.1)1 can be seen to be characteristic of
open thin–walled sections (as opposed to the closed hollow sections consid-
ered in the following sections). We note once more the first order o(t/h) of

the first gradient constant I
(thin)
∇WSV in (B.3), despite the fact that the original
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rectangular section only shows secondary warping. As a consequence, it is
crucial to consider both the primary and secondary warpings in the limit
warping functions when estimating this constant I

(thin)
∇WSV .

The channel section depicted in Figure 2 exhibits primary warping be-
cause, in contrast to the rectangular cross section previously considered, the
center of shear/twist is now located out of the wall’s middle line and the
sectorial coordinate does not vanish identically as in that case. With the
help of all these considerations, we can identify the thin limit function

W
(thin)
SV (s, n) =

x̄
(thin)
T

s− s n for the web ,

± h̄
2
s− (x̄(thin)

T
+ s)n for the flanges ,

(B.9)

with (+) for the top flange, (−) for the bottom flange, all in terms of the wall
length coordinate s along the different parts of the wall, normal through–the–
thickness coordinate n, and the position of the shear/twist center given by
the (positive) distance x̄(thin)

T
measured from the middle line of the web, all

as shown in Figure 2. The normalizing conditions (46) and (47) are satisfied
by the function (B.9) if

x̄(thin)
T

=
3 b̄2 tf

6 b̄ tf + h̄ tw
, (B.10)

after imposing, in particular, equation (47)2, where we have introduced the
lengths h̄ := h− tf and b̄ = b− tw/2 along the wall middle line. This result
locates the center of shear/twist.

Similarly, the function (B.9) leads to

J (thin) =
1

3
h̄ t3w +

2

3
b̄ t3f , (B.11)

and

I
(thin)
WSV

=
h̄2 b̄3 tf

12

2 h̄ tw + 3 b̄ tf
h̄ tw + 6 b̄ tf

+
t3f
18

[(
x̄(thin)
T

+ b̄
)3 −

(
x̄(thin)
T

)3
]

+
h̄3 t3w
144

, (B.12)

for the Saint–Venant torsional constant and the warping constant, respec-
tively, in the thin–wall limit t/h → 0 as it can be found in the literature,
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at least for the principal part of the latter; see e.g. Young et al. [2012]
(page 430). The limit warping function (B.9) considers both the primary
and secondary warping contributions, the latter given by the terms linear
in the thickness coordinate n resulting in the two last contributions to the
warping constant I

(thin)
WSV

in (B.12). Note the higher order o((t/h)3) nature of
these terms, similar to the term obtained for the rectangular section in (B.1),
but opposed to the o(t/h) contribution of the primary sectorial coordinate,
now the leading contribution to the warping constant. We have included the
thin–wall estimates (B.11) and (B.12) in the plots of the computed torsional
constants in Figure 17, observing a very good agreement with those com-
puted value based on the exact governing problem. We consider the case
tf = tw = t in the main paper.

As justified above, the reason for considering both the primary and sec-
ondary warpings in the limit function (B.9) is the evaluation of the thin–
wall estimate of the new gradient torsional constant I∇WSV , not found in the
literature. Proceeding with the gradient of that function and some straight-
forward manipulations, we obtain

I
(thin)
∇WSV =

h̄3 tw
12

+
h̄

3

[(
x̄(thin)
T

+
tw
2

)3

−
(
x̄(thin)
T

− tw
2

)3
]

+
b̄

12

[(
h̄+ tf

)3 −
(
h̄− tf

)3
]

+
2 tf
3

[(
x̄(thin)
T

+ b̄
)3 −

(
x̄(thin)
T

)3
]
. (B.13)

If one only considers the primary sectorial contribution to the limit warping
function (B.9), a simple calculation shows that this gradient constant would
reduce to

I
(thinP )
∇WSV =

(
x̄(thin)
T

)2
h̄ tw +

1

2
h̄2 b̄ tf , (B.14)

which provides a poor thin–wall estimate. The secondary warping leads to
contributions of order o(t/h), missing in (B.14). We have seen this dis-
crepancy when comparing these estimated values with the exactly computed
values. Indeed, we have included the full thin–wall estimate (B.13) in the
plot for that constant in Figure 17. The good agreement of the full estimate
I

(thin)
∇WSV in (B.13) with the computed values of I∇WSV is apparent in the whole

range of aspect ratios t/h considered.
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Finally, based on the warping function (B.9) as the source term in the

Poisson problem (79) we can estimate the second warping function W
(thin)
σ

(s, n), with the linear terms in s of W
(thin)
SV (s, n) leading to cubic s3 dis-

tributions along the different parts of the wall, matched at the junctions;
further details are omitted. This allows to obtain the thin–wall estimate of
the second gradient torsional constant

I∇Wσ =
b̄ tw
4

[
b̄4

80

(
x̄(thin)
T

)2
+ 4C2

1 +
x̄(thin)
T

b̄2

3
C1

]

+
h̄2 b̄3

24

[
8

5
b̄2 + 4

(
x̄(thin)
T

)2 − 5b̄x̄(thin)
T

]
, (B.15)

for

C1 :=
h̄

4

[
b̄2 − 2 b̄ x̄(thin)

T
− 1

2
h̄ x̄(thin)

T

]
, (B.16)

with x̄(thin)
T

given in turn by formula (B.10). Here, we have neglected the sec-
ondary warping in the estimated thin–wall limit for the Saint–Venant warping
function in (B.9) (the bilinear term s n). It results in high–order terms in
the thickness in this case. As illustrated in the corresponding plot in Figure
17, the estimate (B.15) shows a good agreement with the computed values
based on the finite element solution of the exact boundary–value problem
(with the finite element solution of the exact Saint–Venant warping function
WSV (x, y) as well).

Remark B.3. Evaluating the penalty parameter κt as in Remark B.2 but for
the channel cross section considered in the main paper (with b = 0.4h and
tf = tw = t), we obtain(

κ
(RBV )
t

)(thin)

∼ 0.67842

(
t

h

)−2

as t/h −→ 0 , (B.17)

and (
κ

(MIX)
t

)(thin)

∼ 0.24702

(
t

h

)−2

as t/h −→ 0 . (B.18)

Note that we have the same order for the penalty parameter κt ∼ (t/h)−2 →
∞ as t/h→ 0 as for the rectangular cross section in Remark B.2 even though
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the order of several of the sections constants in (t/h) differs. Given the results
(B.17)-(B.18), we conclude that(

κ
(RBV )
t

)(thin)/(
κ

(MIX)
t

)(thin)

−→ 2.7464 as t/h −→ 0 , (B.19)

that is, the RBV formulation is close to three times stiffer than the mixed
formulation in approaching the constrained TWKV formulation for the con-
sidered open channel section, a cross section with dominant primary warping.
These estimates agree well with the computed values for the exact problem re-
ported in Figure 19. Indeed, for the lowest thickness ratio considered in that
figure, t/h = 10−2, we obtain

κ
(RBV )
t = 0.66051 · 104 , and κ

(MIX)
t = 0.24412 · 104 , (B.20)

so
κ

(RBV )
t

/
κ

(MIX)
t = 2.7056 , (B.21)

computed values that show a very good agreement with the estimated values
(B.17) to (B.19). The high order of magnitude of the values (B.20) indicates
the role of the parameter κt as a penalty parameter imposing the warping–
twist constraint for this type of sections as shown in the paper, in contrast of
the closed thin–walled sections considered next. �

Appendix B.3. Estimates for a closed thin–walled box section

The thin–wall limit approximation of the Saint–Venant warping function
for closed hollow sections involves a correction of the middle line’s sectorial
coordinate accounting for the now constant shear flow across the thickness
of the wall in that limit; see e.g. Gjelsvik [1981], page 100. For the single–
cell box cross sections considered in Section 7.3, the final limit function can
be written as

W
(thin)
SV (s, n) =


b̄
2
β s− s n for the left/right webs ,

− h̄
2
β s− s n for the top/bottom flanges ,

(B.22)

referring to the sketch of the section in Figure 2, including the definition of
the (s, n) coordinates along the middle line of each wall, and corresponding
lengths h̄ := b − tf and b̄ := b − tw. The coordinate n refers again to the
thickness direction, with s being measured along the wall. In (B.22) we
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have considered both that primary (sectorial) warping and the secondary
(thickness) warping of the section, corresponding to the first and second

terms in W
(thin)
SV (s, n), respectively.

In particular, the primary warping contribution is proportional to the
non–dimensional factor β given by

β :=
h̄ tf − b̄ tw
h̄ tf + b̄ tw

. (B.23)

In this way, for the first considered cross section in Section 7.3 with b = h
and tf = tw, we have β = 0, that is, the section develops no primary war-
ping, a Neuber tube as referred to in the main paper. We can observe that
the computed exact functions WSV (x, y) matches these considerations for the
thin cross sections considered in Section 7.3. Note how the elevation plots of
this function shown in Figure 29 for the Neuber tube tf = tw (with b = h)
converges to the characteristic bilinear distribution of the secondary warping
β = 0 in (B.22). This situation is to be contrasted with the corresponding
plots in Figure 30 for the section with tf = 2tw, showing clearly the computed
warping functions WSV (x, y) having a thin–wall limit with a linear distribu-
tion along the walls strongly dominating the whole distribution, the primary
warping β 6= 0 in (B.22).

Based on the function (B.22), we can directly obtain the thin–wall limit
estimates

J (thin) =
2 b̄2 h̄2

b̄/tf + h̄/tw
+

2

3
h̄ t3w +

2

3
b̄ t3f , (B.24)

for the Saint–Venant torsional constant (J (thin) =
∫

Ω
n
G
‖∇W (thin)

SV + J‖2dΩ),

I
(thin)
WSV

=
1

24
β2 b̄2 h̄2

(
h̄ tw + b̄ tf

)
+

1

72

(
h̄3 t3w + b̄3 t3f

)
, (B.25)

for the warping constant (I
(thin)
WSV

=
∫

Ω
n
E

(W
(thin)
SV )2dΩ), and

I
(thin)
∇WSV =

1

2
β2 h̄ b̄

(
h̄ tf + b̄2 tw

)
(primary warping contrib.)

+
1

6

(
h̄3 tw + b̄3tf

)
+

1

6
h̄ t3w +

1

6
b̄ t3f , (B.26)

for the first gradient constant (I
(thin)
∇WSV =

∫
Ω
n
E
|∇W (thin)

SV ‖2dΩ). In particular,
we recognize the well–known (second) Bredt’s formula (Bredt [1896])

J
(thin)
Bredt =

4 AO2∮
ds/t(s)

, (B.27)
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(with AO = area enclosed by the middle line loop) for the Saint–Venant
torsional constant of closed single–cell sections in the first term of the esti-
mate (B.24). It captures the leading linear order o(t/h) in the thickness as
t/h→ 0 for closed hollow sections. The last two terms in the estimate (B.24)
for J (thin) are higher order o((t/h)3) corrections arising from the considered
secondary thickness warping, terms which are usually neglected in practice.
Note that they simply correspond to the contributions of the thin rectangle
defining each wall following the estimate (B.1)1 for a single thin rectangle.
The plots of the Saint–Venant torsional constant in Figures 31 and 32 in-
corporate these higher–order terms for the thin–wall estimate J (thin), leading
to a slightly better matching with the computed values based on the exact
problem for the larger values in the considered range of t/h thickness ratios.

The thin–wall estimate (B.25) for the warping constant I
(thin)
WSV

has a simi-
lar structure. Its first term, depending on the non–dimensional the parameter
β, corresponds to the primary warping and it leads to an order o(t/h) war-
ping constant, whereas the last two terms in that estimate are the higher
order o((t/h)3) contributions of the secondary thickness warping, mimicking
again the contributions (B.1)2 for the rectangular portions of the walls. This
different nature of the contribution to the limit of the warping constant be-
comes apparent for the Neuber tubes with vanishing primary warping β = 0,
a situation clearly evident when comparing the values of the computed exact
warping constants depicted in Figures 31 and 32 for the sections with tf = tw
(Neuber) and tf = 2tw (non Neuber), respectively.

The main reason why we engage in a discussion of these details is to point
out the different nature of the new torsional constant I∇WSV . As occurred
for the cross sections topologies considered in the previous two sections, the
secondary warping results in contributions of leading order to this section
constant. The first term in the second line of estimate (B.26) is of order
o(t/h), the same order as the contributions of the primary warping to that
constant in the first line, proportional to the parameter β2. This explains
the response of that constant obtained when solving for its exact values and
reflected in Figures 31 and 32. While the plots for the warping constant IWSV
and the, next explored, warping gradient constant I∇Wσ change completely
its response as the ratio t/h changes for the two cases considered in those
figures (the Neuber case tf = tw and tf = 2tw respectively), as opposed to
the similar response obtained for the gradient formula I∇WSV and, for that
matter, the Saint–Venant torsional J itself, due to the Bredt’s contribution
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noted above.
We proceed with the evaluation of the second warping function W

(thin)
σ

(s, n) as before, approximating the Poisson problem (79) by its particular-
ization to the longitudinal s direction, resulting in a cubic variation s3 along
the walls after matching the solution at the different corners. This approach
produces the estimate of the second gradient torsional constant I∇Wσ

I
(thin)
∇Wσ =

b̄2 h̄2

1440
β2
(
h̄ tw

(
h̄2 + 5 b̄2

)
+ b̄ tf

(
b̄2 + 5 h̄2

) )
, (B.28)

when primary warping is present, that is, when β 6= 0 in (B.22). We have
neglected the secondary warping (second term in this last equation) in the
thin estimate (B.28). It agrees well with the computed solutions of the exact
problem as shown in Figure 32 for the section with tf = 2tw experiencing
that primary warping (β 6= 0).

We treat the Neuber tube tf = tw = t, b = h (so β = 0) separately,
accounting for the secondary warping in (B.22) (the bilinear (s n term), the
only one present in the thin–wall limit for this cross section. Note that
this is a discontinuous function, exhibiting jumps at the corners ranging in
value as [[WSV ]] = ±h̄ t/2. Restricting the problem again along the dominant
longitudinal direction along the walls, we obtain the estimate

I
(thin)
∇Wσ =

h̄5 t3

2160
for tf = tw = t , b = h (so β = 0) , (B.29)

which we have also included in the corresponding plot of Figure 31. As it can
be observed in this figure, it shows a good agreement with the values com-
puted from the exact problems. Note that this estimate is of order o((t/h)3)
so it does not affect the leading term of order o(t/h) for the predicted value
(B.28) when primary warping is present (i.e. β 6= 0), as seen in the good
matching with the computed value in the corresponding plot of Figure 32,
and so it happens in Figure 17 for the channel section which also involves a
discontinuous secondary warping in (B.9) at the wall corners.

Remark B.4. The numerical results presented in Section 7.3 for the closed
box section of interest here have shown that the thin–wall limit does not
make neither the RBV nor the mixed formulations approach the constrained
TWKV. As depicted in Figure 49, the parameter κt driving this limiting
process remains finite for all t/h, small values in particular, for both formu-
lations. It even vanishes as t/h→ 0 for the mixed formulation in the case of
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a Neuber tube. All these observations are confirmed by the estimates derived
above. In particular, we have:

i. The two section constants driving the RBV, with κ
(RBV )
t = I∇WSV /J ,

remain of the same order (∼ h3t so κ
(RBV )
t ∼ finite), in the presence

or not of primary warping. Even when no warping occurs, the Saint–
Venant constant J is dominated by the twisting itself (the J term alone
in its definition J =

∫
n
G
‖∇WSV + J‖2dΩ), as it happens with the

basic circular sections exhibiting no warping whatsoever. Remarkably,
the new constant I∇WSV is affected by the secondary thickness warping
in its leading terms so it exhibits the same order. In this way, the
estimates obtained above show that(

κ
(RBV )
t

)(thin)

∼ 1

3
as t/h→ 0 (case tf = tw = t) ,

(
κ

(RBV )
t

)(thin)

∼ 1

2
as t/h→ 0 (case tf = 2tw = 2t) ,

 (B.30)

both being finite values (b = h in both cases).

ii. The response of the mixed formulation, driven by the parameter κ
(MIX)
t

= I2
WSV

/(JI∇Wσ) is more involved, and it depends on the presence of
primary warping or not. A similar calculation with the thin–wall esti-
mates derived above lead to(

κ
(MIX)
t

)(thin)

∼ 5

3

(
t

h

)2

as t/h→ 0 (case tf = tw = t) ,

(
κ

(MIX)
t

)(thin)

∼ 5

48
as t/h→ 0 (case tf = 2tw = 2t) ,


(B.31)

hence vanishing in the limit for the first case (Neuber tube).

iii. The values (B.30) and (B.31) are to be compared with the values (B.20)
for the open channel cross section, confirming the lack of enforcing the
warping–twist constraint for the current closed box sections as opposed
to the open one. All these estimated limit values agree well with the
computed values with the exact problem as shown in Figure 49. Note
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that the RBV always comes stiffer than the mixed formulation with, in
particular,(
κ

(RBV )
t

)(thin)/(
κ

(MIX)
t

)(thin)

−→ 24/5 = 4.80 as t/h −→ 0 ,

(B.32)
for the case tf = 2tw = 2t, a value that compares well with the value

κ
(RBV )
t

/
κ

(MIX)
t = 4.8064 , (B.33)

obtained with the values of the torsional constants computed from the
exact problem. �

Appendix B.4. Estimates for a two–cell thin–walled section

The main characteristic of the two–cell section depicted in Figure 2 for the
estimates evaluated here is the presence of the semicircular arcs at its sides,
thus involving varying arms for their in-plane rotation. The final estimate
that we consider for the Saint–Venant warping function in the thin–wall limit
can be written as

W
(thin)
SV =



(F̂ − R̄) s− n s for the top/bottom flanges ,

−R̄ (F̂ − R̄)
(
π
2
− α

)
+b R̄ cosα− n b cosα for the semicircular wings ,

−n s for the middle web ,

(B.34)

with

R̄ := h̄/2 and F̂ := R̄
4 b+ π R̄

2 b+ π R̄
, (B.35)

for and the angle α and the coordinates (s, n) along the walls as shown in
Figure 2. These expressions involve the lengths measured along the middle
line, namely, h̄ = h−tf , withR in equation (B.35) corresponding to the radius
of the semicircular ends, and b = h for the section under consideration; see
Figure 2. The contributions involving the factor F̂ in the expressions (B.34)-
(B.35) correspond to the aforementioned correction of the sectorial coordinate
along the middle line accounting for the constant shear flow through–the–
thickness of the wall; see again Gjelsvik [1981] for details.
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The limit warping function (B.34) includes the secondary warping given
by the terms depending on the thickness direction n, with the remaining
terms corresponding to the primary warping. Based on this function, we
obtain the thin–wall estimate

J (thin) =
2
(
2 b h̄+ π R̄2

)2
tf

2 b̄+ π R̄

+
1

3
h̄w t

3
w +

2

3

(
2 b+ π R̄

)
t3f −

2

3
b

(
1− π

8

b

R̄

)
t3f , (B.36)

for the Saint–Venant torsional constant,

I
(thin)
WSV

=
16

3
C2

2 b
5 tf + b2 R̄3 tf

(
π +

2

3
π3C2

2 − 16C2

)
+
b3 t3f

9
+
π b2 R̄ t3f

12
+
h̄3 t3w
144

, (B.37)

where C2 := R̄/2 b+ π R̄,

I
(thin)
∇WSV = R̄2 b2

[
π + 8 π C2

3 − 16C3

]
ln

(
R + tf/2

R− tf/2

)
+ 16 b3 tf C

2
3

+ π b2 R̄ tf

[
1 +

1

12

(
tf
R̄

)2
]

+
4 b3 tf

3

[
1 +

1

4

(
tf
b

)2
]

+
h̄3
w tw
12

[
1 +

(
tw
h̄w

)2
]
, (B.38)

for the first gradient constant, and

I
(thin)
∇Wσ = 4C2

4 b
3 tf +

4

5
C2

3 b
7 tf +

8

3
C4 C3 b

5 tf + R̄3 b2 tf

[
π5

40
C2

3 R̄
2 + π R̄2

+
2 π

R̄2
C2

5 −
π3

3
C3 C5 − 8C5 + 2

(
π2 − 8

)
C3 R̄

2

]
, (B.39)

with

C4 :=

[
C3

3

(
−2 b3 − 3π b2 R̄ +

π3

2
R̄3

)
− 2R̄3

]/(
πR̄ + 2b

)
, (B.40)
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and

C5 :=

[
C3

3

(
−4 b3 +

3π2

2
b R̄2 +

π3

4
R̄3

)
+ 2R̄3

]/(
πR̄ + 2b

)
, (B.41)

for the second gradient constant.
As in the previous cases, we have accounted for both the primary and

secondary warpings in the estimates (B.24)-(B.26), and only the primary

warping in the estimate (B.28) for I
(thin)
∇Wσ . The resulting higher order contri-

butions to this estimate follow the same pattern of the estimate (B.3) for a
thin rectangle, like the web at the center of the current two–cell hollow sec-
tion. In all cases, we can observe a very good agreement with the computed
values based on the exact problem; see the common plots in Figure 52.

In particular, the estimate J (thin) of the Saint–Venant torsional constant
in (B.36) includes in its first and leading term of order o(t/h) the Bredt’s
theory (extended to multi–cell sections) as in (B.27). The other terms in
(B.36) are higher–order corrections (order o((t/h)3)) introduced by the sec-
ondary warping. As occurred with the single–cell section cross of the previous
section, the first two terms of these high–order corrections can be identified
with the usual open (simply–connected) section contribution of the different
walls (including the web at the center of the section, which only exhibits this
thickness warping by symmetry). Interestingly, we now obtain an additional
correcting term due to the curvature of the side walls; note the appearance
of 1/R̄ in the estimate (B.36). All of these correcting terms are of order
(o((t/h)3) in front of the leading Bredt’s term of order o(t/h). These terms
are neglected in practice and, indeed, make no significant difference in the
low range of values t/h considered in Section 7.4. However, we have no-
ticed an improvement when compared with the exact computed values for
the larger values of t/h, as it can be verified by the good matching of the two
curves in the corresponding plot of Figure 52. Similarly, the contributions of
the secondary thickness warping to the warping constant I

(thin)
WSV

can be easily
identified with the last three terms of order o((t/h)3) versus the first ones of
order o(t/h).

However, and as occurred for the previous cross sections, the correct
estimation of the section constant I∇WSV requires the consideration of both
primary and secondary warpings. Hence, our consideration of the latter
from the beginning even if it may lead to higher order contributions for
other constants. Of the five terms of order o(t/h) in the expression (B.38)

for I
(thin)
∇WSV , only the first two (the first line of this expression) can be traced
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to the primary warping alone. Note that the logarithmic term in this last
expression can approximated as∫ R−ttf/2

R−ttf/2

dr

r
= ln

(
R + tf/2

R− tf/2

)
≈ tf
R̄

(B.42)

that is, of leading order o(t/h), giving the contribution of the primary warping
along the semicircular ends of the cross section. Here, we have used the radial
coordinate r := R − n ∈ [R − tf/2, R + tf/2] in those ends, and we have
neglected higher–order terms using the similar approximations

∫
n/r dr ≈ 0

and
∫
n2/r dr ≈ t3f/(12R) in the evaluation of expression (B.38) for the

estimate I
(thin)
∇WSV . Again, a good agreement with the values computed with

the exact problem can be observed in the plot corresponding to this torsional
constant in Figure 52.

The remaining order o(t/h) terms in the estimate (B.38) (lines two and
three in this expression) can be traced to the secondary warping in the eval-
uation of the gradient torsional constant I∇WSV . Note that this includes a
leading order contribution of the web at the center of the section (line three
in that estimate), as occurred with the single thin rectangle of Appendix B.1,
when it only adds higher order contributions to the other constants, by sym-
metry. Hence, our interest of considering this two–cell cross section as dif-
ferent to the single–cell cross section of the previous section.

Finally, the estimate of the second gradient constant I∇Wσ in (B.39) have
been obtained after reducing the Poisson problem (79) to the longitudinal
direction s, accounting only for the primary terms (terms not dependent in
n) in the limit Saint–Venant function (B.34) as we did for the previous cross
sections above. A good agreement with the computed values from the exact
value reported in Figure 52 can be observed.

Remark B.5. Given the thin–wall estimates (B.36)-(B.39) for the different
torsional constants of the two–cell hollow section under consideration, we
obtain the ratio of the κt parameters for the RBV and mixed formulations(

κ
(RBV )
t

)(thin)

(
κ

(RBV )
t

)(thin)
=

I
(thin)
∇WSV /J

(thin)(
I

(thin)
WSV

)2

/(J (thin)I
(thin)
∇Wσ )

∼ 0.33909

0.07068
= 4.3999 , (B.43)

as t/h → 0. In both cases, the orders of the different torsional constants
involved in their definition match so the individual values of the κt remain
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finite (and non-zero), indicating again that these formulations do not impose
the warping–twist constraint behind the original TWKV formulation. The
full three–dimensional simulations presented in the paper indicate that this
unconstrained situation is a more realistic modeling for this type of sections.
The limit thin–wall estimates agree well with the corresponding values calcu-
lated from the sections constants obtained by the FEM solution of the exact
problem on the cross section. In particular, we have

κ
(RBV )
t

κ
(MIX)
t

=
0.34058

0.07312
= 4.4052 for t/h = 0.01 , (B.44)

combining the values for the different constants for that low thickness ratio
t/h as it can be found in the Table 6. These values give also an estimation
of the stiffer response of the RBV formulation over the proposed mixed for-
mulation, not reaching the over–stiff response predicted by the constrained
TWKV formulation, an unrealistic situation as indicated above. �

Appendix C. Summary of the theoretical developments

As a quick reference, we present in this appendix a self–contained sum-
mary of the main theoretical developments presented in this report. After
presenting in Appendix C.1 a brief summary of the basic solution of Saint–
Venant torsion with uniform warping underlying all the different formulations
considered in this work for restrained working, we include in Appendix C.2 a
summary of these formulations in a bullet–list style. In particular, the main
equations for the TWKV, RBV and mixed formulations are condensed to
three different boxes. Finally, the relation among these three formulations,
especially as it refers to the underlying warping–twist constraint, is taken
briefly in Appendix C.3. The setup and notation introduced in the main re-
port is considered throughout all the expressions in this appendix including,
in particular the Cartesian system with the shaft’s axis along the z direction
and cross sections Ω in the x− y plane.

Appendix C.1. The Saint–Venant problem in torsion and its basic solution

The first fundamental assumption reducing the three–dimensional prob-
lem defined by the prismatic elastic shafts to the structural models of interest
here is the consideration of the cross sections Ω infinitesimally rotating rigidly
in their planes about the shaft’s axis z by the amount φ(z) the twist rotation.
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This implies that the in–plane coordinates of the infinitesimal displacements
u(x,y) = [ux, uy]

T can be written as

u(x,y) = φ(z) J(x, y) where J(x, y) :=

[
−(y − ȳ

T
)

(x− x̄
T
)

]
, (C.1)

for the center of twist x̄
T

= (x̄
T
, ȳ

T
) defined by the relations in Remark C.1

below. As in the main report, here and in all what follows we consider the
common assumption of small infinitesimal displacements and strains.

Clearly, it remains to define third component of the displacement uz(x,
y, z), the warping displacement. Basic Saint–Venant torsion, involving a
uniform warping along the shaft, is recovered by considering

uz(x, y, z) = φ′ WSV (x, y) , φ′(z) = φ′ = constant rate of twist, (C.2)

independent of the axial coordinate z (here (·)′ := d(·)/dz), where we have
introduced the Saint–Venant function WSV (x, y) defined on the cross section
by the (weighted) Laplacian problem

∇ ·
(
n
G

(x, y)
(
∇WSV + J

))
= 0 in Ω ,(

∇WSV + J
)
· ν = 0 along ∂Ω ,

 (C.3)

with the characteristic Neumann boundary condition along the boundary
∂Ω of the cross section with unit outward normal ν. Here, as in the main
preport, ∇(◦) denotes the plane gradient operator ∇(·) in the plane of the
cross section Ω, and so is the Euclidean dot product “ · ” and associated
Euclidean norm ‖(·)‖, as used in what follows.

The solution (C.2) with the particular problem (C.3) defining the shape
of the warping distribution given by WSV (x, y) follows from well–known ar-
guments based on the equilibrium of the shear stresses

τ SV = Gφ′(z) (∇WSV + J) = n
G

(x, y)
TSV (z) (∇WSV + J)

J
, (C.4)

where φ′(z) = φ′ for the basic Saint–Venant solution so far, only involving
these stresses too. The last expression in this equation introduces the resul-
tant torque of these stresses, the Saint–Venant torque TSV (z) (again all the
internal torque T (z) so far), given by

TSV (z) =

∫
Ω

τ SV · J dΩ =

∫
Ω

τ SV · (∇WSV + J) dΩ = Ḡ J φ′(z) , (C.5)
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for the Saint–Venant torsional constant

J :=

∫
Ω

n
G

(∇WSV + J) · J dΩ =

∫
Ω

n
G
‖∇WSV + J‖2 dΩ > 0 . (C.6)

The equality between these two expressions of J , as it does for the second
equality in (C.4), follows from the orthogonality relation

∫
Ω
n
G

(∇WSV + J) ·
∇WSV dΩ = 0, a direct consequence of the relations (C.3) defining the Saint
–Venant function WSV (x, y). We have kept a general dependence on z in
the expressions (C.4) and (C.6), even though the quantities involved are
constant along the shaft in this basic Saint–Venant solution, because the same
expressions apply in this general form in all three formulations of restrained
warping considered next.

Remark C.1. The Neumann problem (C.3) defines the Saint–Venant func-
tion WSV (x, y) up to an additive constant and up to the values of the two
coordinates of the center of twist x̄

T
= [x̄

T
, ȳ

T
]T . In fact, none of these three

values are relevant to the basic Saint–Venant solution considered so far, but
need to be specified in the solution with restrained warping discussed next. As
motivated below, we need to impose the relations∫

Ω

n
E

(x, y)WSV (x, y) dΩ = 0 , (C.7)

and ∫
Ω

x
E
n
E

(x, y)WSV (x, y) dΩ =

∫
Ω

y
E
n
E

(x, y)WSV (x, y) dΩ = 0 , (C.8)

where we use, without loss of generality here, the shifted coordinates x
E

:=
[x

E
, y

E
]T := [x − x̄

E
, y − ȳ

E
]T for the centroid of the Young modulus distri-

bution x̄
E

= (
∫
n
E
x dΩ)/An

E
, for the weighted area An

E
:=
∫

Ω
n
E

(x, y) dΩ.
The center of twist can then be found by imposing the relations (C.8), result-
ing in

x̄
T

:= x̄∗
T

+

[
0 −1
1 0

]
Ĩ−1Q̃ , (C.9)

with

Ĩ :=

∫
Ω

x
E
xT
E
n
E

(x, y) dΩ , and Q̃ :=

∫
Ω

x
E
n
E

(x, y)W ∗
SV (x, y) dΩ ,

(C.10)
for the solution W ∗

SV (x, y) of the problem (C.3) with an arbitrary point x̄∗
T

.
As noted in Section 2.4 of the main report, the particular point given by the
relations (C.9) corresponds to the shear center of the section Ω too. �
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Appendix C.2. Three models of restrained warping in torsion: a summary

The Saint–Venant solution (C.2) assumes a constant rate of twist φ′(z) =
φ′ and, consequently, a uniform warping displacement uz(x, y, z). This is
obviously not the general situation. Non–uniform warping occurs when it
is restrained by a support as in Figure 1 in page 14, or a stiffener or other
mechanism, or simply when a general distributed torque tex(z) is applied
along the shaft. The consideration of a varying warping along the shaft
requires an alternative approximation of the axial displacement uz(x, y, z)
and of the associated axial normal strain εz (= u′z or its approximation)
and the resulting normal stress σz. Different approximations lead to specific
structural formulations of restrained warping in torsion.

With the normal stress σz, a new component of the total shear stress
τ and corresponding stress resultants appear as direct consequence of the
restrained warping. The best way to introduce these new quantities is to
observe the algebraic decomposition

T (z) =

∫
Ω

τ · J dΩ =

∫
Ω

τ · (∇WSV + J) dΩ︸ ︷︷ ︸
=:TSV (z)

−
∫

Ω

τ · ∇WSV dΩ︸ ︷︷ ︸
=:TW (z)

, (C.11)

of the total internal torque T (z) in the Saint–Venant torque already intro-
duced in the previous section, and the new bishear TW (z) (sometimes also
referred as the warping torque), together with the bimoment BW (z) defined
as

BW (z) :=

∫
Ω

σzWSV dΩ , (C.12)

both for the cross section at z. Denoting the warping component of the shear
stress by τW := τ − τ SV for the Saint–Venant shear stress component τ SV
in (C.4), the definition (C.11) of the bishear TW (z) leads also to

TW (z) = T (z)−TSV (z) =

∫
Ω

τ · J dΩ−
∫

Ω

τ SV · J dΩ =

∫
Ω

τW · J dΩ , (C.13)

after using the relations (C.5)1 and (C.11)1, that is, the bishear TW (z) is the
resultant torque of the warping shear stresses τW .

With the bishear TW (z) and bimoment BW (z) now available, the balance
between these two new stress resultants is then characterized (and, in general,
postulated) at the structural level by the relation

TW (z) = − d
dz
BW (z) , (C.14)
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along the shaft z ∈ [0, L]. This relation follows directly from section stresses
satisfying the 3D equilibrium relation

∇ · τ + σ′z = 0 in Ω , with τ · ν = 0 along ∂Ω , (C.15)

as a simple use of integration by parts shows together with the definitions
(C.11) and (C.12) of TW (z) and BW (z), respectively. Note that the three–
dimensional equilibrium relations (C.15) do imply the structural equilibrium
relation (C.14), but not the other way around, as observed for the stresses
in the RBV formulation below. Similarly, we note that we may simply have
the warping shear stress τW in (C.15) instead of the total stress τ , since the
Saint–Venant component τ SV is in equilibrium by itself, without any normal
stress σz. Similarly, τ SV leads to no bishear TW (z) given the relation (C.13)

With these general considerations at hand, we have summarized in Boxes
C.1, C.2 and C.3 the significant relations associated to the TWKV, RBV
and mixed formulations, respectively, the three formulations of interest in
this work. Each box starts by identifying the structural fields involved in
each formulation, the fundamental assumption in the treatment of the war-
ping displacement uz(x, y, z) and its relation with the axial strain/stress (the
assumed axial strain compatibility), to arrive at the governing equations
defining those fields. We also include the resulting expressions for the bimo-
ment and bishear distributions along the shaft (or, simply, their diagrams)
as well as the section warping stresses involved, both normal σz and shear
τW . All three formulations share the expressions (C.4) and (C.5) for the
Saint–Venant shear stress component τ SV and its resultant torque TSV (z),
respectively. We add the following remarks:

C.1. The TWKV formulation. Box C.1 in page 206 reveals:

C.1.1. The TWKV formulation relies on a single structural field, the
twist rotation φ(z), which defines the warping displacement uz(x,
y, z) as in the basic Saint–Venant solution (C.2), even with a
non–constant rate of twist φ′(z). That is, one assumes equation
(Box C.1-1), the Wagner assumption.

C.1.2. The only governing equation for the single unknown field φ(z)
is given by equation (Box C.1-3), which is nothing else but the
balance of moment equation (dT/dz + tex(z) = 0 for the total
torque T (z) = TSV (z) + TW (z).
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Box C.1: Summary of the TWKV formulation

� Independent structural fields: φ(z).

� Assumed warping displacement:

uz(x, y, z) = φ′(z)WSV (x, y) . (Box C.1-1)

� Axial strain/stress: Strong (pointwise) strain compatibility

εz = u′z = φ′′(z)WSV (x, y) , and σz = Eεz . (Box C.1-2)

� Governing equations: Fourth order differential equation

d

dz

[
ḠJφ′(z)− d

dz

(
ĒIWSV φ

′′(z)
)]

+ tex(z) = 0 , (Box C.1-3)

for the warping constant

IWSV :=

∫
Ω

n
E

(x, y)
(
WSV (x, y)

)2

dΩ . (Box C.1-4)

� Restraining warping boundary condition: φ′(0) = 0.

� Stress resultants: TSV (z) = Ḡ Jφ′(z), and warping resultants

BW (z) = Ē IWSV φ
′′(z) and TW (z) = − d

dz
BW (z) . (Box C.1-5)

� Stresses: τ = τ SV + τW , with τ SV given by (C.4) and

τW = n
G

(x, y)
TW (z)∇Wσ(x, y)

IWSV
, (Box C.1-6)

σz = E φ′′(z)WSV (x, y) = n
E

(x, y)
BW (z) WSV (x, y)

IWSV
, (Box C.1-7)

with Wσ(x, y) defined by the Poisson problem

∇ · (n
G

(x, y) ∇Wσ) = n
E

(x, y) WSV (x, y) in Ω ,

∇Wσ · ν = 0 along ∂Ω ,

 (Box C.1-8)

with again
∫

Ω
n
E
Wσ dΩ = 0 imposed for a unique function.
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Box C.2: Summary of the RBV formulation

� Independent structural fields: φ(z), λ(z).

� Assumed warping displacement:

uz(x, y, z) = λ(z)WSV (x, y) . (Box C.2-1)

� Axial strain/stress: Strong (pointwise) strain compatibility

εz = u′z = λ′(z)WSV (x, y) , and σz = Eεz . (Box C.2-2)

� Governing equations: Second order system of differential equations

d

dz

[
ḠJ

(
φ′(z) +

I∇WSV
J

(
φ′(z)− λ(z)

))]
+ tex(z) = 0

d

dz

[
ĒIWSV λ

′(z)
]

+ ḠI∇WSV
(
φ′(z)− λ(z)

)
= 0

 (Box C.2-3)

for the first gradient section constant

I∇WSV :=

∫
Ω

n
G

(x, y) ‖∇WSV ‖2dΩ > 0 . (Box C.2-4)

� Restraining warping boundary condition: λ(0) = 0.

� Stress resultants: TSV (z) = Ḡ Jφ′(z), and warping resultants

BW (z) = ĒIWSV λ
′(z) and TW (z) = ḠI∇WSV

(
φ′ − λ

)
. (Box C.2-5)

� Stresses: τ = τ SV + τW , with τ SV given by (C.4) and

τW = −G
(
φ′ − λ

)
∇WSV = −n

G
(x, y)

TW (z)∇WSV (x, y)

I∇WSV
, (Box C.2-6)

σz = E λ′(z)WSV (x, y) = n
E

(x, y)
BW (z)WSV (x, y)

IWSV
. (Box C.2-7)
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Box C.3: Summary of the mixed formulation

� Independent structural fields: φ(z), λε(z)
and mixed fields ε(z) and σ(z) eliminated locally.

� Assumed warping displacement:

uz(x, y, z) = φ′(z)WSV (x, y)+
IWSV
I∇Wσ

(
φ′(z)−λε(z)

)
Wσ(x, y) . (Box C.3-1)

� Axial strain/stress: Given by the assumed distributions

εz = ε(z)WSV (x, y) and σz = σ(z)n
E

(x, y)WSV (x, y) , (Box C.3-2)

for the mixed parameters given by σ(z) = Ēε(z) and by the weak
(average) compatibility relation ε(z) = λ′ε(z).

� Governing equations: Second order system of differential equations

d

dz

[
ḠJ

(
φ′(z) +

(
IWSV

)2

J I∇Wσ

(
φ′(z)− λ(z)

))]
+ tex(z) = 0

d

dz

[
ĒIWSV λ

′
ε(z)

]
+ Ḡ

(
IWSV

)2

I∇Wσ
(φ′ − λε) = 0

 (Box C.3-3)

for the second gradient section constant

I∇Wσ :=

∫
Ω

n
G

(x, y) ‖∇Wσ‖2dΩ > 0 . (Box C.3-4)

� Restraining warping boundary condition: λε(0) = 0.

� Stress resultants: TSV (z) = Ḡ Jφ′(z), and warping resultants

BW (z) = ĒIWSV λ
′
ε(z) , and TW (z) = Ḡ

(
IWSV

)2

I∇Wσ
(φ′ − λε) . (Box C.3-5)

� Stresses: τ = τ SV + τW , with τ SV given by (C.4) and

τW = G
IWSV
I∇Wσ

(φ′ − λε) ∇Wσ = n
G

(x, y)
TW (z)∇Wσ(x, y)

IWSV
, (Box C.3-6)

σz = E λ′ε(z)WSV (x, y) = n
E

(x, y)
BW (z)WSV (x, y)

IWSV
. (Box C.3-7)
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C.1.3. Besides the Saint–Venant torsion constant J in (C.6), the TWKV
formulation (and the remaining two formulations as well) uses the
warping constant IWSV defined in (Box C.1-4).

C.1.4. The boundary condition restraining the warping at the shaft’s
root z = 0 is give by φ′(0) = 0, restraining the rate of twist too.
As a consequence, the Saint–Venant shear stress component τ SV
in (C.4) vanishes entirely and so is its resultant torque TSV (0) =
0, a partial “torque anomaly”, in the sense that it is partially
resolved by TW (0) 6= 0 (so T (0) 6= 0), in general, although it
distorts the stress resultants diagrams along the shaft.

C.1.5. The bishear TW (z) is only defined from the bimoment BW (z) by
the structural equilibrium relation (C.14); see Appendix C.3 be-
low.

C.1.6. Similarly, the associated warping component τW of the shear stre-
sses in (Box C.1-6) are obtained by using the 3D equilibrium re-
lation (C.15) from the normal stress (Box C.1-7). Hence, they
are in equilibrium by construction. The explicit expression of the
warping shear stress τW uses the new warping function Wσ(x, y)
defined by the Poisson problem (Box C.1-8).

C.1.7. For the TWKV formulation, the second warping functionWσ(x, y)
only appears in a post–processing step, in the sense that it is not
involved in the governing equation (Box C.1-3) driving the un-
known field φ(z), but only in the evaluation of the full distribution
of the warping shear stress component τW in (Box C.1-6). This
is not the case for the mixed formulation below where it plays a
crucial role at the structural level too. The function Wσ(x, y) is
not involved in any form in the RBV formulation discussed next.

C.2. The RBV formulation. Box C.2 in page 207 reveals:

C.2.1. The RBV involves an additional independent field λ(z)besides
the twist rotation φ(z). The new field gives the amplitude of the
warping of the cross section by (Box C.2-1), instead of φ′(z), with
still a uniform shape of the distribution on the cross sections along
the shaft defined by the Saint–Venant warping function WSV (z).
Note that we can associate the new field with the weighted aver-
age λ(z) =

(∫
Ω
uzWSV dΩ

)
/IWSV too.
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C.2.2. The axial strain is still defined strongly (pointwise) by the three–
dimensional compatibility relation εz = u′z.

C.2.3. The two governing equations (Box C.2-3) define a second order
system of ordinary equations in the fields φ(z) and λ(z)). The
first of these equations corresponds to the balance of moments
along the shaft (dT/dz + tex(z) = 0), while the second equation
corresponds to the equilibrium relation dBW/dz + TW (z) = 0 in
(C.14). In contrast to the TWKV formulation, the enforcement of
these relations is done separately, with the help of the additional
field λ(z), reducing the original fourth order differential equation
(Box C.1-3) to a second order system of differential equations.

C.2.4. These arguments identify the relations bimoment BW (z) and bis-
hear TW (z) in (Box C.2-5), both defined directly in terms of the
driving fields φ(z) and λ(z).

C.2.5. In particular, the bishear TW (z) involves the new gradient tor-
sional constant I∇WSV in (Box C.2-4). The formulation still uses
the Saint–Venant torsional constant J and the warping constant
IWSV , given by the original equations (C.6) and (Box C.1-4), re-
spectively.

C.2.6. Restraining the warping at the fixed support at z = 0 is accom-
plished by imposing the boundary condition λ(0) = 0, indepen-
dent of the twist rotation φ′(z) or its rate. This also frees the
Saint–Venant shear stress component τ SV in (C.4) and its re-
sultant torque TSV (0) in (C.5), avoiding altogether the “torque
anomaly” pointed in Item C.1.4 for the TWKV formulation.

C.2.7. The warping stresses (Box C.2-6) and (Box C.2-7) are not in equi-
librium, in the sense that they not satisfy the 3D equilibrium
equation (C.15), but the stress resultants (Box C.2-5) do satisfy
the structural balance equation (C.14); see Section 4.3 in the
main report for an extended discussion.

C.3. The mixed formulation. Box C.3 in page 208 reveals:

C.3.1. The mixed formulation also considers two basic (displacement–
like) structural fields, the twist rotation φ(z) and an indepen-
dent warping field λε(z), besides two mixed fields ε(z) and σ(z)
defining the axial strain and stress distribution.
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C.3.2. Distinctively, the assumed distribution for the warping displace-
ment (Box C.3-1) involves now two separate components, the
first one defined in terms of the original Saint–Venant function
WSV (x, y) and driven by the twist rotation, while the second de-
pends on the second warping function Wσ(x, y) through the new
structural independent field λε(z) along the shaft. Different com-
binations of these components lead to a non–uniform warping
displacement along the shaft in form on individual cross sections
too.

C.3.3. The specific expression (Box C.3-1) of the warping displacement
involves the new section constant I∇Wσ defined by (Box C.3-4)
in terms of the second warping function Wσ(x, y) determined by
the Poisson problem (Box C.1-8). Given the defining relations
in this problem, we obtain I∇Wσ = −

∫
Ω
n
E
WSVWσdΩ after some

straightforward manipulations and integration by parts, assuring
that

λε(z) =
1

IWSV

∫
Ω

n
E

(x, y)WSV (x, y)uz(x, y, z)dΩ , (C.16)

given the combination of torsional section constants in (Box C.3-
1). That is, the new field λε(z) corresponds to the weighted
average of the warping of the cross section. The average rela-
tion (C.16) is similar to the one noted in Item C.2.1 for the field
λ(z) in the RBV formulation, but in that case this field controls
entirely (pointwise) the warping displacement (Box C.2-1) in its
only WSV (x, y) component.

C.3.4. In addition, the mixed formulation considers the assumed dis-
tributions (Box C.3-2) of the axial strain εz(x, y, z) and stress
σz(x, y, z) in terms of the mixed structural fields ε(z) and σ(z),
respectively. Both distributions are of uniform shape along the
shaft, given by the Saint–Venant function WSV (x, y). This set-
ting allows the mixed treatment of the axial strain compatibility,
which reduces to ε(z) = λ′ε(z), thus holding in average since we
also have ε(z) = (

∫
Ω
n
E
WSV εzdΩ)/IWSV as in equation (C.16) for

λε(z).

C.3.5. The mixed formulation involves again a second order system of
ordinary equations (Box C.3-3) in terms of the two fields φ(z)
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and λε(z) alone, after eliminating the mixed fields ε(z) and σ(z).
The two equations in the system (Box C.3-3) correspond again to
the balance of torque and balance of warping stress resultants,
respectively, as in Item C.2.3 for the previous RBV formulation.

C.3.6. Similarly, the restrainment of the warping at the fixed support
z = 0 is accomplished by the boundary condition λε(0) = 0. This
is consistent with the (average) mixed treatment of the strain
compatibility in the axial direction indicated in Item C.3.3 rather
than the similar condition in Item C.2.6 for the RBV formulation
that leads to a pointwise enforcement in that case. The rate
of twist φ′(0) is again not involved in the restraining, avoiding
altogether the “torque anomaly” of the TWKV formulation in
Item C.1.4 so we do not have zero Saint–Venant stresses τ SV nor
torque TSV (0), necessarily.

C.3.7. The warping shear and normal stresses in equations (Box C.3-6)
and (Box C.3-7) are in equilibrium in the sense that they satisfy
the three–dimensional equilibrium equation (C.15).

To conclude this summary list, we note that the normal stress σz predicted
by each formulation will, in general, show different values (magnitude), but
all three formulations share the same distribution shape over a cross section,
namely, proportional to n

E
(x, y)WSV (x, y), as given by equations (Box C.1-

7), (Box C.2-7) and (Box C.3-7), respectively. The conditions (C.7) and (C.8)
on this particular combination of functions assure then that no axial force
and bending moments are associated to the normal axial stress σz, keeping
all the arguments presented in this paper to the torsion problem of interest
here. By the way, the condition (C.7) also assures the well–posedness of the
Poisson problem (Box C.1-8) with pure Neumann boundary conditions.

Appendix C.3. The warping–twist constraint

The developments in the previous section identify the constrained char-
acter of the original TWKV formulation in two key ways. First, the resulting
governing equation (Box C.1-3) for this formulation is a high order differen-
tial equation (fourth order to be specific) for the single driving field φ(z) in
contrast to the second order system of differential equations (Box C.2-3) and
(Box C.3-3) for that field φ(z) and an additional independent field, λ(z) or
λε(z), for the RBV and mixed formulations, respectively.
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Secondly, and perhaps more revealing, the warping shear stresses τW in
(Box C.1-6) for the TWKV formulation arises solely from static considera-
tions based on the equilibrium equation (C.15) with no explicit dependence
on the driving field φ(z). Similarly, the bishear TW (z) in (Box C.1-5)2 is again
given directly by the structural balance equation (C.14), with no explicit ex-
pression relating this stress resultant wit the driving field in a structural
constitutive form involving the material and section parameters. This situa-
tion is to be contrasted again with the expressions of the warping stress τW
in (Box C.2-6) and (Box C.3-7) or of the bishear TW (z) in (Box C.2-5)2 and
(Box C.3-5)2, all for the RBV and mixed formulations, respectively.

Pursuing further this last aspect, we can identify the absence of a warping
shear strain associated to the basic kinematic assumption (Box C.1-1) of the
TWKV formulation. Indeed, denoting the total shear strain by γ := ∇uz +
φ′J and its Saint–Venant component by γ

SV
:= φ′ (∇WSV + J), the warping

component γ
W

reads

γ
W

:= γ − γ
SV

=


0 (TWKV ) ,

−
(
φ′ − λε

)
∇WSV (RBV ) ,

IWSV
I∇Wσ

(
φ′ − λε

)
∇Wσ (MIXED) .

(C.17)

This expression also indicates that the RBV and mixed formulations recovers
that constrained situation when{

λ(z) or λε(z)
}

= φ′(z) , (C.18)

for the RBV or mixed formulations, respectively. The statement (C.18) iden-
tifies what we referred to as the warping–twist constraint.

In order to characterize how the RBV and mixed formulations enforce the
warping–twist constraint (C.18) in a limit process (or processes), we summa-
rize here the variational principles behind each formulation, starting with
the TWKV formulation whose governing equation (Box C.1-3) corresponds
to the Euler–Lagrange equation of the functional

Π(TWKV )(φ) =

∫ L

0

[
1

2
ḠJ (φ′)

2
+

1

2
ĒIWSV (φ′′)

2

]
dz + Πext(φ) , (C.19)

for the potential energy of the external loading Πext(φ) = −
∫ L

0
tex(z)dz −

TLφ(L). Without loss of generality, we assume here a conservative loading
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given by a distributed torque tex(z) and tip torque TL. The potential (C.19)
is to be compared with the functionals

Π(RBV )(λ, φ) =

∫ L

0

[
1

2
ḠJ
(
φ′
)2

+
1

2
ḠI∇WSV

(
φ′ − λ

)
2

+
1

2
ĒIWSV

(
λ′
)2

]
dz + Πext(φ) , (C.20)

and

Π
(MIX)
HW (φ, λε, ε, σ) =

∫ L

0

[
1

2
ḠJ
(
φ′
)2

+
1

2
Ḡ

(
IWSV

)2

I∇Wσ

(
φ′ − λε

)2

+
1

2
ĒIWSV ε

2 + IWSV σ
(
λ′ε − ε

)]
dz + Πext(φ) , (C.21)

behind the governing equations (Box C.2-3) and (Box C.3-3) for the RBV and
mixed formulations, respectively. For the latter, the functional (C.21) is of
the Hu–Washizu form, revealing the mixed treatment behind the assumed
distributions (Box C.3-2) for the axial strain and stress, as well as the result-
ing weak compatibility relation for the axial strain parameter ε(z) = λ′ε(z).
See Section 5.1 in the main report for a complete derivation motivated by
the full three–dimensional mixed treatment.

Clearly now, we recover the original functional (C.19) of the TWKV
formulation from the functionals (C.20) and (C.21) when the parameters

κ
(RBV )
t :=

I∇WSV
J

or κ
(MIX)
t :=

(
IWSV

)2

J I∇Wσ
(C.22)

for either the RBV or the mixed formulations approach the limit κt → ∞,
that is, they act as penalty parameters. As noted in Remarks 4.1 and 5.5,
the three formulations will also meet in the limit for long shafts, where the
first factor in all the three functionals (C.19), (C.20) and (C.21) dominates,
producing effectively the Saint–Venant solution (with φ′(z) = λ(z) = λε(z) =
constant) for most of the shaft away from the local effects restraining the
warping.

A look at the parameters (C.22) indicate their dependence on the ge-
ometry of the cross section (including the material distribution given by
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the distributions n
E

(x, y) and n
G

(x, y) for composite sections) through the
different combinations of the torsional constants for each of these two formu-
lations. In fact, we can observe that we recover the mixed formulation from
the RBV formulation by replacing I∇WSV by (IWSV )2/I∇Wσ , an argument that
also applies to the functionals (C.20) and (C.21), and governing equations in
(Box C.2-3) and (Box C.3-3). Note, however, that this direct relation between
these two formulations is only at the structural level, with each formulation
producing completely different warping and stress distributions at the cross
section level, with even the stresses being physically incorrect for the RBV
formulation as noted above.

Furthermore, even at the structural level the RBV and mixed formula-
tions are expected to produce different results despite the relation (C.23),
especially given the result

κ
(RBV )
t ≥ κ

(MIX)
t , (C.23)

given that (IWSV )2 ≤ I∇WSV I∇Wσ , a result obtained in equation (187) of the
main report from the Cauchy–Schwarz inequality.

Given the result (C.23), the RBV formulation predicts a stiffer structural
response of the shaft when compared to the mixed formulation, with both of
these formulations being overshadow in that respect by the original TWKV
formulation given its constrained character. It is precisely one of the main
objectives of the current work to evaluate these features of the three for-
mulations under study, confirming and quantifying these results for different
cross sections topologies, especially in the thin–wall limit (hence the notation
employed for the parameter κt for a thickness t).

In particular, the numerical evaluations presented in this report show that
the limit process κt →∞ is indeed obtained for open (simply–connected) in
the thin–wall limit t/h→ 0, but not in closed (multiply–connected) sections.
Hence, the discrepancy among the different formulations can quite significant
for solid/closed sections. Complete details for the different section configu-
rations can be found in the main report.
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