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Abstract: 15 
Aims:  16 
Quantile regression is an alternate type of regression analysis that has been shown to have 17 
numerous advantages over standard linear regression. Unlike linear regression, which uses the 18 
mean to fit a linear model, quantile regression uses a data set’s quantiles (or percentiles), which 19 
leads to a more comprehensive analysis of the data. However, while relatively common in other 20 
scientific fields such as economic and environmental modeling, it is infrequently used to 21 
understand biological and microbiological systems. 22 
 23 
Methods and Results: 24 
We analyzed a set of bacterial growth rates using quantile regression analysis to better understand 25 
the effects of antibiotics on bacterial fitness. Using a bacterial model system containing 16 variant 26 
genotypes of the TEM β-lactamase enzyme, we compared our quantile regression analysis to a 27 
previously published study that uses the Tukey’s range test, or Tukey Honestly Significantly 28 
Different (HSD) test. We find that trends in the distribution of bacterial growth rate data, as viewed 29 
through the lens of quantile regression, can distinguish between novel genotypes and ones that 30 
have been clinically isolated from patients. Quantile regression also identified certain 31 
combinations of genotypes and antibiotics that resulted in bacterial populations growing faster as 32 
the antibiotic concentration increased- the opposite of what is expected. These analyses can 33 
provide new insights into relationships between enzymatic efficacy and antibiotic concentration. 34 
 35 
Conclusions:  36 
Quantile regression analysis enhances our understanding of the impacts of sublethal antibiotic 37 
concentrations on enzymatic (TEM β-lactamase) efficacy and bacterial fitness. We illustrate that 38 
quantile regression analysis can link patterns in growth rates with clinically relevant mutations and 39 
provides an understanding of how increasing sub-lethal antibiotic concentrations, like those found 40 
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in our modern environment, can affect bacterial growth rates and provide insight into the genetic 41 
basis for varied resistance.  42 
 43 
 44 
Significance: 45 
Quantile regression analysis provides a distinctive way of analyzing bacterial growth rate data that 46 
has not yet been done and offers unique advantages to microbiologists. Identifying the mutations 47 
that are most likely to appear in the clinic can help scientists and epidemiologists better predict the 48 
directionality of antibiotic resistance and develop novel pharmaceuticals to combat this worldwide 49 
crisis. 50 
 51 
 52 
Introduction  53 
 54 
Antibiotic resistance is a serious public health threat and responsible for over thirty-five-55 
thousand deaths worldwide in 2019 (Arnold, Thom et al. 2011, Frieri, Kumar et al. 2017, Centers 56 
for Disease Control and Prevention 2019, Iwu, Korsten et al. 2020, Kaur, Pham et al. 2021). Due 57 
to the abuse of antibiotics, multi-drug-resistant pathogens have been rising across the globe 58 
(Zhuang, Achmon et al. 2021). Bacteria are regularly exposed to sub-inhibitory concentrations of 59 
antibiotics found in wastewater from agriculture (Leiva, Pina et al. 2021, Sanz, Casado et al. 60 
2021) and from clinics (Bojar, Sheridan et al. 2021). These sub-inhibitory concentrations of 61 
antibiotics accelerate the diversification of resistance genes (Li, Phulpoto et al. 2021, Li, Xia et 62 
al. 2021, Byun, Ha Han et al. 2022, Xu, Tan et al. 2022) and increase the prevalence of 63 
antibiotic-resistant pathogens more than lethal concentrations do (Mira, Meza et al. 2015, Mira, 64 
Østman et al. 2021, Byun, Ha Han et al. 2022). 65 
 66 
Β-lactam antibiotics are the most widely prescribed antibiotics worldwide because of their 67 
efficacy and low toxicity to human and animal organisms (Demain and Elander 1999). However, 68 
due to their abuse, β-lactam resistance is prominent. As a result, the most studied group of 69 
resistance genes are those that encode for β-lactamases, enzymes that cleave the active site of β-70 
lactam antibiotics and render them inactive (Poole 2004). To combat increasing resistance, 71 
different types of β-lactam antibiotics have been developed that differ structurally but have the 72 
same mechanism of action, ranging from early penicillins to fourth generation cephalosporins 73 
and β-lactam with the β-lactamase inhibitors. Typically, the newer the antibiotic generation, the 74 
more complex the chemical structure and/or the more effective against bacteria that produce β-75 
lactamases. 76 
 77 
In an earlier study (Mira, Østman et al. 2021), we investigated the effects of sub-inhibitory 78 
concentrations of β-lactam antibiotics on two representatives from the penicillin group, 79 
representatives from all four generations of cephalosporins, and one penicillin with beta-80 
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lactamase inhibitor on the selection of different combinations of the four point mutations within 81 
a TEM β-lactamase resistance gene, blaTEM-85. Briefly, (Mira, Østman et al. 2021) measured the 82 
growth rate of 16 TEM genotypes that contained different combinations of the four substitutions 83 
found in blaTEM-85 in the presence of three sub-inhibitory concentrations of β-lactam antibiotics. 84 
Using the Tukey honestly significant difference (HSD) test, we calculated all pairwise p-values 85 
between growth rates across antibiotic concentrations. Surprisingly, we were able to identify 86 
significant increases in growth rates as antibiotic concentration increased for 10 β-lactam 87 
antibiotics.  88 
 89 
The Tukey HSD, like standard linear regression, relies on the assumption that variance is equal 90 
across the groups associated with each mean—also referred to as homogeneity of variance. 91 
However, errors are often non-normally distributed, which can happen when response variables 92 
behave differently at varying levels of the independent variable. For example, growth rates could 93 
differ markedly at low versus high concentrations of antibiotics due to the genetic background of 94 
the bacterial population, mutation rates, or limiting effects of the antibiotic. For this reason, we 95 
re-examine our data from this earlier study using quantile regression analysis. 96 
 97 
Quantile regression analysis is an alternative approach to studying the relationships between 98 
response and independent variables first proposed by Koenker (Koenker 1978). As the name 99 
implies, quantile regression uses quantiles (also known as percentiles) within a dataset, rather 100 
than just the mean, and can provide a more comprehensive analysis (De Oliveira, Fischmeister et 101 
al. 2013, Chen, Bertke et al. 2021). In clinical studies, quantile regression can identify trends not 102 
otherwise seen in standard linear regression, such as differences between high- and low-risk 103 
patients (Staffa, Kohane et al. 2019). Quantile regression has been particularly useful in ecology 104 
(Thomson, Weiblen et al. 1996), where limiting factors (uncontrolled factors that are not 105 
measured but nonetheless influence the response variable) arise in dealing with ecological and/or 106 
biological datasets. In our case, limiting factors include the mutations, and different 107 
combinations of mutations, that are present in the TEM β-lactamase gene. In spite of its many 108 
advantages, only a few studies have applied quantile regression to biological datasets (Villain, 109 
Lozano et al. 2014). In addition, we are unaware of any study that uses quantile regression 110 
analysis on microbial growth rates over time or considers limiting factors on microbial growth 111 
rate, even though limiting factors are prevalent in microbial fitness datasets.   112 
 113 
In this study, we analyze previously published bacterial growth rate data (Mira, Østman et al. 114 
2021) to investigate whether quantile regression can enhance our insight into the effects of sub-115 
inhibitory drug concentrations on the selection of point mutations within a TEM β-lactamase 116 
resistance gene, blaTEM-85. Specifically, we use quantile regression analysis to investigate the 117 
effects of sub-inhibitory antibiotic concentrations on the evolution of TEM resistance genes, 118 
which other approaches that assume normally distributed errors may have missed. The 119 
differences across quantiles provide a more complete picture of the association between 120 
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antibiotic concentration and growth rates and how point mutations affect enzymatic efficacy, 121 
which may be linked to bacterial fitness.  Overall, these analyses can lead to an improved 122 
understanding of the impact of sublethal concentrations of antibiotics in the environment on 123 
bacterial fitness.  124 
 125 
 126 
Methods  127 
 128 
Quantile Regression Analysis 129 

To investigate whether quantile regression analysis provides more insight into bacterial growth 130 
rates than standard linear regression, we used a dataset containing growth rates of variant TEM 131 
genotypes on the pBR322 plasmid expressed in E. coli strain DH5aE (Table 1) (Goulart, 132 
Mahmudi et al. 2013).  Specifically, we used all 16 combinations of the four amino acid 133 
substitutions present on the β-lactamase gene blaTEM-85 (Mira, Østman et al. 2021), only 10 of 134 
which have been clinically identified (Jacoby 2020)(Table 1). These genotypes range from the 135 
wild-type TEM-1, that confers resistance to only penicillins, four individual single substitutions 136 
that each carry their own resistance phenotype based on the location of the substitution in the 137 
TEM enzyme, the six possible combinations of double mutations, four possible triple 138 
combinations and finally TEM-85 that contains all four substitutions and has evolved to confer 139 
resistance to penicillins as well as higher generations of cephalosporins (Mira, Østman et al. 140 
2021) (Table 1). It is important to note that these genotypes all carry individualized efficacy to 141 
different generations of β-lactam antibiotics depending on the location of the point mutation 142 
within the TEM enzyme and any interactions the amino acid residues have with one another. We 143 
exposed each of the 16 variants to various sublethal concentrations of 12 β-lactam antibiotics for 144 
22 hours (Table 2). The β-lactam antibiotics represented all generations, from early penicillins to 145 
fourth generation cephalosporins and β-lactam + inhibitor combinations. The growth rates were 146 
calculated using the growthrates package (Hall, Acar et al. 2014).  147 
 148 
Creating quantile regression plots 149 
We first normalized and plotted the growth rate data to the highest concentration of each 150 
antibiotic, scaling the growth rate values by a factor of 1000 to make the analysis easier and to 151 
control for numerical ill-conditioning (top panel, Figure 1). We then calculated the slopes of the 152 
lines of best fit through each quantile (20th, 40th, 60th, and 80th). Using the quantreg package in 153 
R, we then generated quantile regression plots that represent these slopes at each quantile 154 
(bottom panel, Figure 1). 155 
 156 
Identifying genotypes with non-normal distributions of growth rate 157 
Using the quantile regression plots for each antibiotic, we identified genotypes that had 158 
differences in distribution—i.e., those in which quantile regression analysis would be most 159 
useful. For the purposes of this study, we focus on non-normally distributed data to better 160 
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understand effects across quantiles. We visualized quantile regression plots using the rq function 161 
from Koenker’s quantreg package in R and identified four types of trends, representing how the 162 
distribution of the data changes across quantiles (Figure 2). A constant trend (Figure 2, Panel A) 163 
is normally distributed data and represents genotypes that grew at the same rate- indicating stable 164 
enzymatic activity- across the concentrations of antibiotic. An increasing trend (Figure 2, Panel 165 
B) indicates non-normally distributed data at the higher quantiles and represents genotypes that 166 
led to an increase in enzymatic activity the faster the bacteria grew. Contrarily, a decreasing 167 
trend (Figure 2, Panel C) indicates non-normally distributed data at the higher quantiles and 168 
represents genotypes that led to a decrease in enzymatic activity the faster the bacteria grew 169 
Finally, a U-shaped trend (Figure 2, Panel D) indicates non-normally distributed data at both the 170 
higher and/or lower quantiles with a dip in the middle quantiles. This type of trend represents 171 
genotypes that led to fluctuations of enzymatic activity as the antibiotic concentrations increased. 172 
It is important to note the sign of the slopes (y-axis). In some cases, for any trend, the slopes at 173 
quantiles are positive, indicating that as the antibiotic concentration increased, so did the growth 174 
rates. These distribution patterns in the quantile regression plots can give us insight into the 175 
efficacy of the TEM enzyme in the presence of increasing concentrations of certain antibiotics. 176 
 177 
Results 178 
In order to test the hypotheses that analyzing different quantiles of bacterial growth might 179 
provide a more complete picture of the relationship between antibiotic concentrations and 180 
bacterial fitness, we examined distribution patterns in the quantile regression plots across 181 
genotypes (Figure 3). Across all genotypes (gray bars, Figure 3), we found ~32% constant 182 
trends, meaning that growth rate data was normally distributed across increasing antibiotic 183 
concentrations in 32% of antibiotic treatments. Genotypes that have been clinically identified 184 
account for 71% of the normally distributed data. However, most of the data (~68%) showed 185 
non-normal distributions (i.e., increasing, decreasing, or U-shape trends) shown by the green, 186 
red, and yellow bars, respectively (Figure 3).  187 
 188 
To investigate whether certain antibiotics or β-lactam generations produce more non-normal 189 
distributions in growth rate data, we visualized the trend for each genotype-antibiotic pair 190 
(Figure 4). We found that ampicillin (AMP) and ampicillin + sulbactam and piperacillin + 191 
tazobactam (SAM, TZP) had largely decreasing trends.  AMP, SAM, and TZP had more of an 192 
impact on growth rates in higher quantiles than lower quantiles, which means that the faster the 193 
bacteria grew, the more the antibiotic treatment inhibited their growth. 194 
 195 
Second-generation cephalosporins cefaclor, cefotetan and cefuroxime (CEC, CTT, and CXM) 196 
resulted in mostly increasing trends. These antibiotics had less of an impact on growth rates at 197 
higher quantiles compared to lower quantiles. In other words, the slower the bacteria grew, the 198 
more the antibiotic inhibited their growth. Cefaclor (CEC) showed mostly increasing trends 199 
across all genotypes, specifically in genotypes that encode L21F and/or R164S substitutions 200 
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(L21F, R164S, LR, RE, RT, LRT, RET, and TEM-85). Cefotetan (CTT) provided similar results, 201 
with largely increasing trends for amino acid substitutions L21F, E240K, and T265M (LE, LT, 202 
RT, LRE, LET, TEM-85).  203 
 204 
Neither third- nor fourth-generation cephalosporins showed a prevalent pattern in their quantile 205 
regression trends. We noticed a similar number of increasing and decreasing trends, with slightly 206 
more decreasing trends overall. However, the genotype that carries the single amino acid 207 
substitution R164S exhibited increasing trends across 80% of third generation cephalosporins. 208 
We also noticed a shift in trends in the fourth-generation cephalosporin cefepime (FEP) as the 209 
number of substitutions increased (Figure 4). The pattern changed from consistent decreasing 210 
trends in TEM-1 wildtype, single-substitution, and double-substitution genotype variations to 211 
increasing trends in two triple-substitution genotypes and the four-substitution TEM-85. This 212 
indicates that the β-lactamase enzyme became more efficient at hydrolyzing FEP at higher 213 
concentrations as the number of amino acid substitutions increased.  214 
 215 
Next, we compared the clinically isolated genotypes to those that have not yet been clinically 216 
isolated to see if there was any significant difference in quantile regression patterns that 217 
correlated to the TEM enzyme’s ability to hydrolyze β-lactam antibiotics. We found that the 218 
genotypes that have not been clinically isolated had more decreasing trends across all antibiotics 219 
(46%) than clinically identified genotypes (26%; compare red boxes for genotypes without and 220 
with an asterisk in Figure 4). Decreasing trends indicate that the faster the bacterial populations 221 
grew, the more inefficient the TEM enzyme was at hydrolyzing the antibiotics or the more 222 
effective the antibiotics were at inhibiting growth. However, accumulated mutations in 223 
populations with decreasing trends may have resulted in faster growth unrelated to the TEM 224 
enzyme’s ability to hydrolyze antibiotics. Clinically and non-clinically isolated genotypes had 225 
similar frequencies of increasing trends (22% and 26%). In these cases, when the bacterial 226 
populations grew faster, the TEM enzyme was able to sufficiently hydrolyze increasing 227 
antibiotic concentrations.  228 
 229 
Finally, we identified patterns in genotypes or antibiotics that resulted in a positive slope across 230 
some or all quantiles. A positive slope indicates that growth rates increased along with antibiotic 231 
concentration - the opposite of what is expected when exposing bacterial populations to 232 
antibiotics. Apart from cefotetan and ceftazidime (CTT, CAZ), all other antibiotics had at least 233 
one genotype that exhibited a positive slope (Figure 4). Approximately 27% of all treatments (13 234 
antibiotic treatments X 16 genotypes) had positive slopes at some or all quantiles. Half of these 235 
positive slopes occurred across all quantiles, 29% at higher quantiles (50th to 90th) and 21% at 236 
lower quantiles (10th to 40th) (Figure 4). There was no direct correlation between the quantile 237 
regression trends and positive slopes. However, nearly all genotypes (12/16) had a positive slope 238 
in part or all the quantiles in the presence of the only penicillin we tested, ampicillin (AMP). We 239 
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also noticed genotypes that have been clinically identified had positive slopes across all quantiles 240 
more often than non-clinically identified genotypes. 241 
 242 

Discussion 243 

In contrast to our earlier study (Mira, Ostman et al. 2021), which assumed homogeneity of 244 
variance and used the Tukey HSD test, our quantile regression analysis of the same dataset has 245 
provided more robust findings related to amino acid substitutions and enzyme efficacy, antibiotic 246 
class, and whether genotypes have been clinically identified.  247 

Typically, as antibiotic concentration increases, bacterial growth rate decreases. However, some 248 
bacteria can hydrolyze antibiotics so quickly that they can use the degraded antibiotics as a 249 
carbon source for continued growth and proliferation (Dantas, Sommer et al. 2008). This is the 250 
case for some TEM genotypes (Mira, Meza et al. 2015, Mira, Østman et al. 2021). Authors 251 
previously showed that growth rate increased as antibiotic concentration increased in response to 252 
at least one antibiotic for all but two TEM genotypes: T265M and LET. However, our quantile 253 
regression analysis revealed that all genotypes had positive slopes across some or all quantiles, 254 
including T265M and LET- meaning the presence of these amino acid substitutions allowed the 255 
bacterial populations to grow faster as antibiotic concentration increased. LET only had positive 256 
slopes at the lower quantiles for the penicillin/inhibitor treatment piperacillin + tazobactam 257 
(TZP), which suggests that the slower the bacteria grew, the better the TEM enzyme with the 258 
L21F/ E240K/T265M substitutions was at hydrolyzing TZP and using the degraded antibiotic 259 
product as a carbon source for faster growth.  260 

The location of amino acid substitutions within the TEM enzyme can influence the enzyme’s 261 
efficacy, even if not located in the binding site. For example, the genotype with the single 262 
substitution T265M had positive slopes across all quantiles in the presence of ampicillin (AMP), 263 
in upper quantiles in the presence of cefuroxime (CXM), and in lower quantiles in the presence 264 
of cefprozil (CPR). CXM and CPR are second- and third generation cephalosporins, so their 265 
structures are more complex than AMP, a penicillin class antibiotic. The T265M substitution is 266 
distant from the binding site of the enzyme, positioned on the outer face of the β-sheet but buried 267 
by surrounding amino acids (Knox 1995). Recently, this single mutation has been identified 268 
clinically and has shown resistance to β-lactam inhibitor treatments like piperacillin + 269 
tazobactam (TZP) and resistance to some third-generation cephalosporins (Mulvey and Boyd 270 
2009). This clinical isolate also had a G162T mutation in promoter region P4, resulting in 271 
hyperproduction of the TEM gene; this could explain the resistance to β-lactamase inhibitor 272 
treatments (Mulvey and Boyd 2009). In this study we used E. coli strain K12, which lacks the P4 273 
region, potentially explaining why we did not see positive slopes for T265M in any β-lactam 274 
inhibitor treatments.   275 
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Our analysis reveals that TEM genotypes that have been identified in the clinic have more 276 
positive slopes across all antibiotic treatments than non-clinically identified genotypes, 277 
particularly in the presence of AMP. Genotypes are typically clinically identified when they are 278 
highly selected for in natural environments (Shawky, Suleiman et al. 2021), which can correlate 279 
with a more stable and effective enzyme. In fact, we find that clinical isolates had normal 280 
distributions across all quantiles in 71% of treatments, compared to only 32% among non-281 
clinically isolated genotypes. This suggests that normal distributions across all quantiles 282 
correlates with more-stable enzymatic activity throughout populations.  283 

R164S is the most common amino acid substitution observed within the more than 220 clinically 284 
identified TEM β-lactamases and is highly selected for because it increases enzyme efficacy in 285 
response to higher-generation cephalosporins. The 164th amino acid position is just below the 286 
binding site that contains the catalytic glutamate at position 166 (Herzberg 1991, Knox and 287 
Moews 1991). In R164S, serine (S) replaces arginine (R), resulting in a hydrogen-bonding amino 288 
acid with one less hydrogen bond donor (Palzkill, Le et al. 1994). This reduction in the number 289 
of hydrogen bonds eradicates electrostatic attraction and allows for more flexibility in the 290 
binding site, creating more space for the bulky sidechains of third- and fourth-generation 291 
cephalosporins (Escobar, Tan et al. 1994). We found increasing trends in R164S populations for 292 
five cephalosporin treatments—the highest number of increasing trends across all 16 genotypes 293 
tested. Increasing trends mean that the faster a bacterial population grows, the better it is at 294 
hydrolyzing the applied antibiotic. R164S showed no increasing trends in penicillin or penicillin 295 
+ inhibitor treatments, supporting the idea that R164S is selected for cephalosporin resistance. 296 

In comparison to clinical isolates, non-clinically identified genotypes are suspected to have less 297 
stable or effective enzymes. This likely has to do with the amino acid substitution locations and 298 
their impact on the three-dimensional structure of the enzyme and is reflected in the distribution 299 
of growth rate data and quantile regression trends. For example, genotypes LE, LRE, and LET 300 
have the double substitution LE (L21F and E240K) in common and have not been clinically 301 
identified. The first amino acid substitution, L21F, is a recently identified point mutation in 302 
TEM-117, a TEM β-lactamase first clinically isolated in 2003; no current research demonstrates 303 
L21F’s role in TEM β-lactamase (Box, Paauw et al. 2002, Zeil, Widmann et al. 2016). Although 304 
no work has been done on L21F as a single mutation, it has been clinically identified with other 305 
amino acid substitutions within TEM β-lactamase, though not solely with E240K (Goussard and 306 
Courvalin 1999, Baraniak, Fiett et al. 2005, Morris, Whelan et al. 2006, Drissi, Ahmed et al. 307 
2008). E240K is positioned at the end of β-strand B3 such that the hydrophilic glutamic acid (E) 308 
residue is exposed, allowing it to interact with the acylamide substituents of cephalosporins 309 
(Knox 1995). However, B3 is too far in proximity to interact with smaller ligands like the 310 
inhibitors (clavulanic acid or sulbactam). Therefore, substitutions at this position typically do not 311 
appear in inhibitor-resistant TEM variants (Knox 1995). Overall, the distribution of growth rate 312 
data and trends in the quantile regression analysis reflect likely enzyme instability in LE 313 
genotypes. The genotypes that include LE have the highest numbers of decreasing trends in their 314 
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quantile regression plots (LE has eight, and LRE and LET both have seven) across all antibiotics. 315 
This means that the higher the antibiotic concentration, the slower these genotypes grew, 316 
suggesting an enzyme less effective at hydrolyzing β-lactam antibiotics. Likewise, genotypes 317 
with LE combination also had positive slopes at lower quantiles in the presence of penicillin + 318 
inhibitor (TZP) and a second-generation cephalosporin (CEC). This indicates the slower the 319 
populations grew, the TEM β-lactamase enzyme was more effective at hydrolyzing TZP and 320 
CEC. Altogether, these results suggests that the combination of L21F and E104K are selected for 321 
at lower concentrations of antibiotics, highlighting the influence of sub-lethal concentrations of 322 
antibiotic in the environment on the evolution of antibiotic resistance. 323 

 324 

Conclusion 325 

While infrequently used for biological datasets and not previously used for bacterial growth rate 326 
data, our study demonstrates that quantile regression analysis offers unique advantages to 327 
microbiologists. Our results show that quantile regression analysis provides a more detailed 328 
understanding of how increasing sub-lethal antibiotic concentrations, similar to those found in 329 
the environment, affect bacterial growth rates and provides insight into the genetic basis for 330 
varied responses. We illustrate how quantile regression analysis can link patterns in growth rates 331 
with certain types of β-lactam antibiotics and with clinically relevant mutations that can either 332 
hinder or enhance enzymatic activity on antibiotics. Ultimately, identifying the mutations that are 333 
most likely to appear in the clinic can help scientists and epidemiologists better predict the 334 
directionality of antibiotic resistance and develop novel pharmaceuticals to combat this 335 
worldwide crisis.   336 
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Figure Legends 492 
Figure 1: Representative data showing how quantile regression plots are made. 493 
Top: Growth rate (cells/minute X 10-3) plotted against normalized antibiotic concentration. X-494 
axis ranges from 0 (no antibiotic) to 1 (highest concentration of antibiotic). Four quantiles are 495 
plotted (80th quantile – red, 60th quantile – orange, 40th quantile – blue, 20th quantile - black) 496 
across the growth rate data. Bottom: Quantile regression plots show the slope of each quantile 497 
line plotted across all quantiles. The colored dots represent the slope of the best fit model of each 498 
line in the above graph which corresponds to each of the quantiles. The red solid horizontal line 499 
represents data that would be normally distributed with the 95% confidence interval of normally 500 
distributed data shown by the red dotted lines. The gray shaded area represents the variation of 501 
the data calculated using the quantile regression package.  502 
 503 
 504 
Figure 2: Four common trends of quantile regression plots. A) Constant: a trend remaining 505 
within the confidence intervals (red dotted lines) of the quantile regression plot. This type of 506 
trend means that the slope of the line of best fit at each quantile remains within the confidence 507 
intervals of a standard linear regression. Constant trends signify that the data is normally 508 
distributed and that a standard linear regression would work well. Variation that deviates beyond 509 
the red dotted lines signifies that the data is not normally distributed and that there are different 510 
effects at different quantiles. This example is given with the genotype R164S/E240K in the 511 
presence of cefepime (FEP) B) Increasing: a trend from bottom left to upper right. In this trend 512 
type, lower quantiles have more-negative slopes than higher quantiles. In our study, this trend 513 
means that higher antibiotic concentrations have a more detrimental effect on bacterial 514 
populations that grow slower (lower quantiles) compared to populations that grow faster (higher 515 
quantiles). This example is given with the genotype L21F/R164S in the presence of cefprozil 516 
(CPR) C) Decreasing: a trend from upper left to bottom right; the opposite of the increasing 517 
trend described above. Here, lower quantiles have less-negative slopes than higher quantiles, 518 
meaning that higher antibiotic concentrations have a more detrimental effect on bacterial 519 
populations that grow faster (higher quantiles) than on those that grow slower (lower quantiles). 520 
This example is given with the genotype L21F in the presence of cefotaxime (CTX) D) U-521 
shaped: the extreme ends of this trend (80th and 20th quantiles) have less-negative slopes and the 522 
middle quantiles (25th to 75th quantiles) have more-negative slopes. This means that higher 523 
antibiotic concentrations are less detrimental to the bacterial populations that grow fastest and 524 
slowest compared to those in the middle. This example is given with the genotype 525 
R164S/E240K/T265M in the presence of ceftriaxone. 526 
 527 
Figure 3: Frequency of quantile regression trend types for TEM-85 genotypes across all 528 
antibiotic treatments. The number of occurrences of each trend type across the 16 TEM 529 
genotypes. Total number of U-shaped trends are yellow, constant trends are gray, decreasing 530 
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trends are red, and increasing trends are green. The genotypes that have been clinically identified 531 
are marked with an asterisk (*).  532 
 533 
Figure 4: Quantile regression trends and positive slopes for TEM-85 genotypes across 534 
antibiotic treatments. Antibiotics are listed by increasing chemical complexity and class (first 535 
column) and identified by abbreviation (second column). Genotypes that have been clinically 536 
identified are marked with an asterisk (*). Genotypes are listed in subsequent columns in order of 537 
increasing number of substitutions, from wild-type (TEM-1) to TEM-85, which contains all four 538 
substitutions. The count of each trend type by antibiotic is listed in the table to the right.  539 
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Tables 540 
Table 1: Variant TEM genotypes.  541 
Genotypes are listed by increasing number of substitutions, from TEM-1 (no substitutions, 542 
wildtype) to TEM-85 (four amino acid substitutions). The number of substitutions is listed in the 543 
first column; full amino acid substitutions are listed in the second column. If the genotypes have 544 
been clinically isolated, their TEM name (third column) and year of first isolation (last column) 545 
are denoted 546 
 547 

No. of 
Substitutions 

Substitution Isolated Year 

0 TEM-1 TEM-1 1965 

1 L21F TEM-117 2003 

1 R164S TEM-12 1999 

1 E240K TEM-191 2011 

1 T265M TEM-168 2009 

2 L21F/R164S TEM-53 1999 

2 L21F/E240K - - 

2 L21F/T265M TEM-110 2002 

2 R164S/E240K TEM-10 1989 

2 R164S/T265M - - 

2 E240K/T265M - - 

3 L21F/R164S/E240K - - 

3 L21F/R165S/T265M TEM-102 2003 

3 L21F/E240K/T265M - - 

3 R164S/E240K/T265M - - 

4 L21F/R164S/E240K/T265M TEM-85 2005 

 548 
   549 
  550 
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 551 
Table 2: Antibiotics and concentrations used to measure bacterial growth rates 552 
Antibiotics are listed in order of increasing complexity (β-lactam generation) in the first column, 553 
followed by full antibiotic name and abbreviation. The three concentrations used in (Mira, 554 
Østman et al. 2021) are listed in the last column.  555 
 556 

Antibiotic Name Abbreviation Concentrations 
(µg/mL) 

β-lactam group 

Amoxicillin AMX 256, 512 Penicillin 
Ampicillin AMP 1024, 2048, 3072 Penicillin 

Ampicillin + Sulbactam SAM 8, 16, 32 Penicillin + β-lactamase 
Inhibitor 

Piperacillin + 
Tazobactam 

TZP 32, 64, 128 Penicillin + β-lactamase 
Inhibitor 

Cefaclor CEC 2, 4, 8 2nd generation cephalosporin 
Cefotetan CTT 0.063, 0.125, 0.25 2nd generation cephalosporin  

Cefuroxime CXM 2.25, 3, 4 2nd generation cephalosporin  
Ceftazidime CAZ 0.125, 0.25, 0.5 3rd generation cephalosporin  

Cefprozil CPR 8, 12, 16 3rd generation cephalosporin 
Ceftriaxone CRO 0.025, 0.05, 0.1 3rd generation cephalosporin 
Cefotaxime CTX 0.03, 0.06, 0.123 3rd generation cephalosporin 
Ceftizoxime ZOX 0.0078, 0.0156, 

0.03 
3rd generation cephalosporin 

Cefepime FEP 0.0312, 0.0625, 
0.125 

4th generation cephalosporin 

 557 
 558 


