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ABSTRACT Multidrug-resistant tuberculosis (TB) is an alarming threat, and targeted
deep sequencing (DS) may be an effective method for rapid identification of drug-
resistant profiles, including detection of heteroresistance. We evaluated the sensitiv-
ity and specificity of targeted DS versus phenotypic drug susceptibility testing (pDST)
among patients starting first-line anti-TB therapy in Botswana. Overall, we found high
concordance between DS and pDST. Lower sensitivity of DS, which targets established
high-confidence resistance variants, was observed for detecting isoniazid resistance
among HIV-infected patients.

KEYWORDS HIV infections, next-generation sequencing, diagnostics, drug-resistant
tuberculosis, heteroresistance, single-molecule overlapping reads

The recent rollout of molecular-based diagnostic approaches represents an impor-
tant step forward in reducing the time required to identify multidrug-resistant

tuberculosis (MDR-TB; defined as resistance to both isoniazid [INH] and rifampin [RIF])
(1). However, widely used methods such as GeneXpert MTB/RIF and line-probe assays
may not detect drug-resistant strains when they represent a small proportion of the
population due to microevolution or concomitant infection with drug-susceptible strains
(mixed infections) (2, 3). Targeted deep sequencing with the single-molecule-overlapping
read (SMOR) assay is a promising molecular approach that allows rapid characterization
of drug-resistant profiles by targeting resistance-conferring mutations at multiple
bacterial loci with high levels of sequencing depth (e.g., �10,000� coverage) (4–6) and
enables the identification and quantification of rare and ultrarare genetic variants down
to a resolution as low as 0.1% in a heterogeneous sample (7).

We examined the clinical utility (sensitivity and specificity) of deep sequencing in
detecting INH and RIF resistance at reported analytical sensitivities for detecting minority
drug-resistant variants (resistance-associated variants [RAV]) for GeneXpert MTB/RIF
(�50%) (8), line-probe assays (�5%) (2), and phenotypic drug susceptibility testing
(pDST) with the mycobacteria growth indicator tube (MGIT; �1%) (2) among patients
starting first-line anti-TB therapy in Botswana (1). From 2012 to 2016, the Kopanyo
study enrolled all patients diagnosed with TB in the Gaborone and Ghanzi districts of
Botswana (9). Mycobacterium tuberculosis DNA was extracted from positive sputum
cultures of recruited patients and underwent 24-locus mycobacterial interspersed
repetitive units-variable number of tandem repeats (MIRU-VNTR) genotyping.
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Based on MIRU-VNTR, 99 patients with mixed or possibly mixed infections (defined
as the presence of �2 repeats at one or more loci in the same sputum sample) and 200
patients randomly selected from 1,396 patients with single-strain infection were in-
cluded in the present study. M. tuberculosis DNA from primary cultures used for
MIRU-VNTR underwent targeted deep sequencing with the SMOR assay (5, 6). We
targeted three critical gene regions known to confer resistance with a 25,000� depth
of coverage, inhA promoter and the katG gene (associated with INH resistance) (10) and
the RIF resistance-determining region (RRDR) of the rpoB gene (11). Fifteen samples
with an average depth of �2,000 total reads were excluded to minimize misclassifica-
tion of low-frequency variants due to sequencing errors (6). For the RIF specificity
analysis, an additional 19 samples were excluded due to failed deep sequencing reads.
pDST was performed for all cultured isolates with the MGIT 960 system and was used
as the reference standard for sensitivity and specificity calculations. All discordant
samples between deep sequencing and pDST were retested with MGIT.

Overall, 241 patients with known HIV status and pDST results were included in the
final analysis (Table 1). Of these, 222 (92.1%) patients had M. tuberculosis strains that
were susceptible to both drugs, 8 (3.3%) were monoresistant to INH, 4 (1.7%) were
monoresistant to RIF, and 7 (2.9%) were resistant to both drugs (MDR-TB).

Deep sequencing of the targeted loci correctly identified those who were pheno-
typically susceptible to RIF (211/211; 100% specificity) and to INH (226/226; 100%
specificity), regardless of HIV infection status (Fig. 1). Among 11 specimens that showed
phenotypic resistance to RIF, deep sequencing identified all 11 as genotypically resis-
tant (11/11; 100%), regardless of HIV infection status. Among HIV-infected patients,
targeted deep sequencing detected 6 out of 10 patients with phenotypic INH resistance
at RAV frequency of �50% and 7 out of 10 patients at RAV frequency of �5% and �1%

TABLE 1 Characteristics of participantsa

Characteristic

No. of HIV-negative
patients (%) or
median (IQR)

No. of HIV-positive
patients (%) or
median (IQR)

Allb patients
(%) or median
(IQR)

District
Gaborone 79 (73.8) 122 (91.0) 207 (83.5)
Ghanzi 28 (26.2) 12 (9.0) 41 (16.5)

Gender
Male 63 (58.9) 78 (58.2) 145 (58.5)
Female 44 (41.1) 56 (41.8) 103 (41.5)

Age in years 28.4 (22.0–38.0) 36.7 (32.6–44.0) 34.2 (26.4–42.0)

Prior hospitalization
No 64 (59.8) 70 (52.2) 139 (56.0)
Yes 24 (22.4) 40 (29.9) 66 (26.6)
Unknown 19 (17.8) 24 (17.9) 43 (17.3)

Prior TB
No 95 (88.8) 110 (82.1) 211 (85.1)
Yes 12 (11.2) 24 (17.9) 37 (14.9)

Smear microscopy
Negative 12 (11.2) 31 (23.1) 46 (18.5)
Positive 95 (88.8) 103 (76.9) 202 (81.5)

Phenotypic DST
Susceptible 102 (95.3) 120 (89.6) 229 (92.3)
INH-monoresistant 2 (1.9) 6 (4.5) 8 (3.2)
RIF-monoresistant 0 4 (3.0) 4 (1.6)
MDR-TB 3 (2.8) 4 (3.0) 7 (2.8)

CD4� T cell count NA 196 (104–394) NA
aIQR, interquartile range; DST, drug susceptibility testing; INH, isoniazid; RIF, rifampin; MDR-TB, multidrug-
resistant TB; NA, not available.

bIncludes 7 patients with unknown HIV status.
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(versus 100% among HIV-uninfected patients; Fig. 1). The overall sensitivity of deep
sequencing for INH resistance detection (regardless of HIV infection status) was 80%
(12/15) at RAV frequency of �1%. All INH-resistant isolates had a MIC of 0.2 �g/ml. No
differences were found between isolates with different RAV frequencies. We verified all
discordant samples at RAV frequency of �5% via SMOR and confirmed that there were no
minor variants or any other single-nucleotide polymorphisms (SNPs) occurring within
the inhA promoter and katG high-confidence resistance regions.

Table 2 shows the characteristics of patients with discordance between deep
sequencing and pDST at RAV frequency of �50%. All four discordant cases were HIV
positive; one had single-strain infection, two had possibly mixed infections, and one
had mixed infection with 17% RAV detected in the katG gene.

Overall, we found a very high concordance between deep sequencing and pDST
among patients starting first-line TB therapy in Botswana. Sensitivity of deep sequenc-
ing of the targeted loci may be lower for detecting INH resistance among HIV-infected
individuals. Notably, we were able to detect an INH-resistant isolate with 17% RAV in
the katG gene, which could have been missed by less sensitive tests. This indicates that
deep sequencing could, in principle, improve early detection of INH resistance com-
pared to conventional molecular tests in clinical settings where there is a high preva-
lence of heteroresistant infections.

Our findings are consistent with studies by other groups that observed reduced
sensitivity for molecular detection of INH resistance in high-HIV settings. Dorman et al.
reported 62% sensitivity for MTBDRplus v1 in detecting INH resistance among TB patients
in South Africa (12), while Luetkemeyer et al. reported 70.6% sensitivity among HIV-
infected patients in South Africa, Botswana, and South America (13). It is possible that
the mechanisms of acquiring resistance are different in some HIV-positive patients who
were previously treated with INH preventive therapy (14).

Our findings also highlight the possibility that noncanonical mutations not covered

FIG 1 Sensitivity and specificity of targeted deep sequencing in detecting INH resistance at different RAV
frequencies, stratified by HIV infection status. INH, isoniazid; RAV, resistance-associated variants.

TABLE 2 Characteristics of patients with discordance between deep sequencing and pDST at RAV frequency of �50%a

Patient Gender
Age
(yr) HIV

CD4� T
cell count

Smear
microscopy pDST INH pDST RIF MIRU-VNTR

TB treatment
outcome RAV frequency (%)

1 Male 47 Positive 142 Positive Resistant Susceptible Single strain Defaulted �0.1 all loci
2 Male 28 Positive Unknown Positive Resistant Susceptible Possibly mixed infectionb Completed �0.1 all loci
3 Female 34 Positive 773 Positive Resistant Susceptible Possibly mixed infectionb Completed �0.1 all loci
4 Male 39 Positive 17 Negative Resistant Susceptible Mixed infectionc Completed 17.01 katG 315ACC
aAbbreviations: pDST, phenotypic drug susceptibility testing; INH, isoniazid; RIF, rifampin; MIRU-VNTR, 24-locus mycobacterial interspersed repetitive units-variable
number of tandem repeats; RAV, resistance-associated variants.

bDefined as the presence of �2 repeats at a single locus in the same sputum sample.
cDefined as the presence of �2 repeats at more than one locus in the same sputum sample.
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by our SMOR assay may be responsible for clinical INH resistance, particularly among
HIV-infected TB patients. While katG and inhA promoter mutations explain the majority
of resistance to INH, a subset of INH-resistant clinical isolates do not carry these
common mutations (15). Mutations in katG and inhA promoter genes have been shown
to confer low fitness costs, allowing the mutant microbe to survive and propagate
without negative selection pressure (16). It is possible that mutant M. tuberculosis
strains with reduced fitness are more likely to survive and replicate in immunocom-
promised HIV-infected hosts, and these mutations may be missed by targeting only
high-confidence, well-published RAVs. However, our results are limited by the small
sample size of patients with drug-resistant TB. Additional research on a larger sample
size of drug-resistant TB patients is needed to confirm our findings.
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