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Abstract

In this paper, we review the literature on the relation
between solving nonspecific goal problems and leaming.
Research has shown that reduced goal-specificity
facilitates learning of rules and principles of the target
domain. Researchers have accounted for this effect using a
cognitive load theory (Sweller, 1988) and a dual space
theory of problem solving (Vollmeyer, Burns, & Holyoak,
1996). Other researchers have shown that learning can be
both facilitated by nonspecific as well as specific goals and
account for their findings using goal appropriateness
theory (Miller, Lehman, & Koedinger, 1997). We judge
each theoretical account by evaluating their consistencies
with unified theories of cognition and other empirical data.
We note the shortcomings of the each theory and
incorporate elements of each to explain all the data.

Introduction

The specificity of the goal of a problem can be quite varied.
The goal can be very specific. For example, in order to get
lunch, a person short on cash might set a specific goal to go
to the bank on First Street before going to lunch. A student
solving a geometry problem might be asked to find the
value of a particular angle in a given diagram. On the other
hand, the goal can be relatively nonspecific. The person
short on cash might set a nonspecific goal to go get cash
before lunch. The geometry student might be asked to find
the values of all angles in the figure.

A number of researchers have explored the relation
between goal specificity and learning addressing the
question: Do students leam more from solving problems
with specific goals or non-specific goals? This question is
related to the more general debate about discovery learning:
Do students learn more when given specific tasks or when
given open-ended discovery tasks?  Inspection of the
research literature on these questions leads unequivocally to
the answer “It depends!”. The goal of this paper is to
clarify what it depends on, namely, under what
circumstances do nonspecific goal problems lead to better
learning and when do they lead to poorer learning? The
approach is first, to systematically investigate the theoretical
conjectures different researchers use to explain their
apparently conflicting results and second, to sift these
conjectures through the filter of unified theories of cognition,
ACT-R (Anderson, 1993) and Soar (Newell, 1990).
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Reduced-Goal Specificity Effect

Sweller and his colleagues (Sweller, Mawer, & Ward, 1983;
Owen & Sweller, 1985; Sweller, 1988) can be credited with
originating investigations of the relationship between goal
specificity and leamming. In their studies, they have
consistently found that students learn more in nonspecific
goal conditions than in specific goal conditions. For
example, a nonspecific goal geometry problem may ask a
problem solver to find all the angles in a figure. The goal of
such a problem is nonspecific in that it does not ask for a
specific value for a specific angle. In the specific goal
condition, study participants are instead asked for a specific
angle. Sweller et al. (1983) found that nonspecific goal
participants acquired appropriate problem schemas better
than specific goal participants.

Sweller, Mawer, & Ward (1983) also found that
participants who solved nonspecific goal physics problems
exhibited behavior more characteristic of expertise than
participants who solved specific goal physics problems.
Initially, participants in both groups solved a set of specific
goal problems by using means-ends analysis. However,
only the participants who solved a set of nonspecific goal
problems switched to a forward-working strategy on the last
set of specific goal problems. In contrast, participants who
solved only specific goal problems continued to use means-
ends analysis.

Means-ends analysis is characterized by working backward
from the goal state and setting subgoals to reduce the
difference between the current state and the goal state.
Larkin, McDermott, Simon, and Simon (1980) and Simon
and Simon (1978) found that novice physics problem
solvers used means-ends analysis to solve the problems.
On the other hand, expert problem solvers used a working-
forward strategy (see also, Koedinger & Anderson, 1990).
The experts were able to recognize and choose the
appropriate equations that lead to the goal and apply them
immediately.

In addition to the expert-like strategy use, Sweller et al.
(1983) found that the nonspecific goal participants wrote
significantly fewer equations without variable substitution to
solve these problems. They also solved these problems
with fewer moves. These behaviors are also characteristic of
expertise. In contrast, participants in the specific goal group
wrote equations that required variable substitution (i.e.,
equations with two unknown variables), and performed the
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same number of moves to solve the final set of problems as
they did on the initial problems. These results also indicate
that the participants who solved nonspecific goal problems
developed expertise.

Similar results have been found with geometry and
trigonometry problems. In a series of studies similar in
design to the physics studies, Sweller et al. (1983) found
that reduced goal specificity on geometry problems also
facilitated the switch from a means-ends to a forward-
working strategy. More participants in the nonspecific goal
condition used a forward-working strategy on the final
problems than participants in the specific goal condition. In
their experiments testing the participants ability to apply the
sine, cosine, and tangent trigonometric ratios, Owen and
Sweller (1985) found that participants who went through a
nonspecific goal acquisition phase committed fewer errors at
post-test. ~ More importantly, they committed fewer
fundamental errors, i.e., basic errors indicating the lack of
understanding of the meaning of each trigonometric ratio,
when to apply it, and how to apply it. Furthermore, on a
structurally different trigonometry problem given after the
post-test, participants in the nonspecific goal group
continued to commit fewer fundamental errors.

Taken together, these results appear to provide a strong
case, at least under the conditions studied, that learning is
more effective when students practice with nonspecific goal
problems rather than specific goal problems. Why might
this be so?

Cognitive Load Theory

Sweller and colleagues (Owen & Sweller, 1985; Sweller,
1988) have proposed an explanation for the positive effects of
nonspecific goal problems on learning as illustrated by links
1,2, and 3 in Figure 1. Problem solvers tend to solve
nonspecific goal problems using a forward-working strategy
(link 1) while those solving specific goal problems tend to
use a means-ends strategy as was demonstrated in Sweller et
al. (1983).

Further, Sweller (1988, Owen & Sweller, 1985) argues
that means-ends analysis, with its emphasis on subgoal
storage and difference reduction, is taxing to a limited
coguitive processing capacity. A forward-working strategy,
in contrast, does not require subgoal storage and thus
requires less cognitive load (link 2 in Figure 1). The final
step in Sweller’s argument (link 3) is that since more
cognitive resource is required to use a means-ends strategy,
there is less resource that can be allocated to the learning of
rules. Or, to state it the other way, a forward-working
strategy requires less cognitive resource and thus there is
more available to leamning,

What evidence is there to support Sweller’s argument that
means-ends analysis places a heavy load on this resource
(link 2)?  Sweller presented some indirect evidence
consisting of performance characteristics of the strategies
used. He found that solution times are longer and
mathematical errors more frequent when participants use a
means-ends strategy (Owen & Sweller, 1985). Sweller
(1988) also provided a theoretical argument in the form of a
cognitive model that showed means-ends strategy requiring
more cognitive resources than a working-forward strategy.
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In particular his production system model illustrated that
more productions, cycles, and conditions must be matched
to implement a means-ends strategy compared to a2 working-
forward strategy.

Sweller (1988) also gave some direct evidence for his
cognitive load theory. In an experiment with trigonometry
problems, in addition to the primary task of solving the
problems, participants performed the secondary task of
reproducing the problem structure and correct solution path
on preceding problems. The hypothesis was that if means-
ends analysis requires more cognitive load, fewer resources
would be available to perform the secondary task. Sweller
found that participants who solved specific goal problems by
using means-ends analysis performed more poorly on the
secondary task by committing fewer errors in reproducing
the structure and solution path of previous problems. This
supports the hypothesis that more excess capacity is
available when solving nonspecific goal problems than
conventional problems (Sweller, 1988).

The proposition that cognitive load has a direct influence
on learning (link 3, in Figure 1) is inconsistent with the
ACT-R (Anderson, 1993) and Soar (Newell, 1993) theories
of cognition. In ACT-R, leaming results from successfully
analogizing from past examples (Anderson, 1993). Thus,
leaming occurs when a correct representation of the current
situation has been mapped to an analogous past situation.
In Soar, learning occurs when new chunks are created to
remedy an impasse during problem solving (Newell, 1990).
Under both of these unified theories of cognition, learning
mechanisms do not draw on cognitive resources and thus,
cognitive load cannot have a direct impact on learning.

An alternative explanation for the relation between
cognitive load and learning is that rather than a direct link,
there is an indirect link between cognitive load and
performance (link 9). Sweller has shown that under
conditions of less cognitive load, participants in the worked
example condition commit fewer errors during acquisition
than participants who solved conventional problems
(Sweller & Cooper, 1985). The enhanced performance
during acquisition may account for the learning on the post-
test (link 10). This explanation then is consistent with
both theory and results,

Other researchers have proposed alternative theories for
why nonspecific goals can lead to better learning. Further,
there are also some experimental results in which the
specific goals lead to more learning, suggesting, at best, the
need for boundary conditions on the Cognitive Load theory.

Alternative Theoretical Accounts

The tasks and problems used by Sweller were quite simple.
The mathematics problems required knowledge of only two
or three theorems or principles. No one has tried to
replicate these results for a bigger search space in domains
similar to Sweller’s. However, other researchers have
explored goal specificity in different domains.

Vollmeyer, Burns, and Holyoak (1996), using a dynamic
problem solving environment, found advantages of
nonspecific goal problem solving over specific goal problem
solving. In a biology-lab simulation, participants were
asked to explore and learn the system. The nonspecific goal



group was not given any goals to aim for during the
learning rounds. However, the specific goal group was
informed of the goal during the leaming rounds. Leaming
or solving the biology-lab system requires relatively
complex induction not only of the connections between four
input and four output variables, but also the strengths of
connections. As they lcarned the system, the participants
completed a structure diagram to indicate how they believed
the input variables affected the output variables. In the
solution round, both groups were asked to bring the
biology-lab to a specified state, which was the same as the
specific goal group had during the learning rounds. In the
transfer round, both groups were asked to bring the system
to a new state not seen before by either group.

Vollmeyer et al. (1996) found that the nonspecific goal
group produced better structure diagrams, but both groups
performed equally well in the solution round. However, the
nonspecific goal group committed fewer errors in the transfer
round than those in the specific goal group. This result
suggests that acquisition of the structure and rules of the
system was fostered by using a nonspecific goal.

Stevenson and Geddes (1997) found analogous results
with their dynamic control task. The task required
participants to interact with a “computer person” named
Clegg. The nonspecific goal group were asked to play with
Clegg to find out the pattern that explained his behavior.
The specific goal group were asked to learn how Clegg
operated by trying to bring him to a specified emotional
state (e.g., “make Clegg very friendly”).

Stevenson and Geddes (1997) found that participants in
the nonspecific goal condition outperformed participants in
the specific goal condition. They were better able to predict
Clegg’s response on later test trials. They also provided
better rules describing Clegg’s behavior.

How do these researchers account for their results?
Though the results are similar to Sweller’s results, instead
of using a cognitive load account, these researchers account
for their data with a dual space theory of learning,

Dual Space Theory

Simon and Lea (1974) defined two spaces where search
during problem solving can occur: instance space and rule
space. They proposed that a search in instance space is
characterized by testing a new state against a goal state.
This behavior is an essential feature in problem solving.
However, when a problem solver examines the rule space by
gencrating a hypothesis (i.e., a possible “rule”, as opposed
to a specific instance) and experimenting in the instance
space to test the validity of the hypothesis, this behavior is
characteristic of learning. A problem solver engages in rule
induction when he or she makes connections between the
rule space and the instance space. Klahr and Dunbar (1988)
have proposed an analogous dual space theory consisting of
hypothesis space and experiment space.

Applying the dual space theory described above,
Vollmeyer et al. (1996) suggested that nonspecific goal
problems accelerate the induction of rules by encouraging
problem solvers to search through hypothesis space (see link
4 of Figure 1). On the other hand, specific goal problems
promote the search through instance or experiment space
alone, which may be an effective method for finding a
solution to a problem but is not conducive for learning
general rules and principles. Thus, participants in specific
goal conditions are less apt to induce rules about the
problem structure.,

Stevenson and Geddes (1997) similarly interpreted their
results with a dual space theory. They suggested that the
rule learning that was facilitated by nonspecific goals and the
instance leaming that was fostered by specific goals can be
best accounted for by a dual space model. Specific goals
appear to lead to the acquisition of more superficial relations
(*“without understanding” as educators would say) while
nonspecific goal problems lead to the acquisition of deeper
domain principles (learning “with understanding™). This
misdirected attention prevents the leaming of rules.

Goal Appropriateness Theory

Miller, Lehman, and Koedinger (1997) found that free
exploration (nonspecific goal problem solving) was not the

Less Cognitive Load
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7
Specific Goals

More Effective Learning

Figure 1: Alternative explanations for the relation between goal specificity and learning.

766



only condition that had a positive influence on learning.
These authors used a microworld called Electric Field
Hockey (EFH) to test the specificity of the goal on leaming,
The pedagogical goal of this interactive microworld was to
help students develop a qualitative understanding of the
physics of electrical interaction. The immediate goal of the
EFH computer game was to maneuver “pucks” into nets
analogous to the sport of hockey.

The authors found that their EFH-Soar model of learning
in the standard goal condition was able to become skilled at
the game. However, it did not learn the underlying physics
principles, Miller et al. hypothesized that by changing the
task so that participants would have to follow a specific
path, they would have to employ underlying physics
principles. To test their hypothesis, the authors used three
conditions. Students in the nonspecific condition were asked
to freely explore the EFH environment (they played with
charges and their interaction--no hockey-like goal was
presented on the screen). Students in the standard-goal
condition were asked to play the EFH game and try to get
the puck into the net. Students in the specific-path
condition were asked to get the puck into the net by
following a specified path outlined for them. The authors
posited that the specific-path was more likely to require
physics principles and thus be more difficult and demanding
of cognitive load.

These authors found that students in the exploratory
learning (nonspecific goal) condition leamed the physics
principles better than students in the conventional standard-
goal condition. This was illustrated by their higher scores
on a post-test consisting of questions created to assess their
acquisition of the underlying physics principles. However,
students in the specific-path condition also performed better
on the post-test than students in the standard-goal
condition. Note, the specific-path condition is more
detailed and “specific” than the “standard goal” condition
that is most like the condition used by Sweller and other
rescarchers.  In addition, students in the specific-path
condition progressed more slowly through the levels of the
microworld than students in the standard-goal condition.
This result suggests that the specific-path condition was
more difficult than the standard-goal condition.

Obviously, these results contradict those of Sweller’s and
cannot be accounted for by Cognitive Load theory. How
can an even more specific goal, which presumably is more
taxing on cognitive resources than a conventional goal,
result in better learning?

Perhaps, it is not the specificity of the goal per se that
affects learning. Rather, learning may be influenced by the
appropriatencss of the goal and subgoals that it elicits to the
target activities that are the objectives of instruction. What
matters is that the goal is pedagogically related to the task
at hand. So, if cither goal (specific or nonspecific) elicits
pedagogically relevant knowledge, it will lead problem
solvers to engage in a search of hypothesis space that will
result in effective learning. Thus, contrary to Sweller,
Miller et al. (1997) suggest that leaming may be achieved
either through solving specific or nonspecific goal problems
(see Figure 1, links 6, 7, and 8).
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Under a Goal Appropriateness account, Miller et al.
suggest that students in the nonspecific goal condition
learned the principles of physics because they set appropriate
goals for themselves (link 6). Students in the specific-path
condition had the appropriate goals set for them (link 7).
However, students in the standard-goal condition had an
inappropriate goal set for them. Their goal was to get the
puck into the net. In other words, their goal was to play the
game. In contrast, students in the nonspecific and specific
goal conditions set or were given specific pedagogical goals.
Thus, their goals were appropriate and lead to more effective
learning of the principles of physics (link 8).

The findings from Charney, Reder, and Kusbit (1990)
provide additional support for a goal-appropriate account.
These researchers trained participants on a computer
spreadsheet application. Participants either tried to learn the
system through a problem-solving tutorial or through free
exploration. In the problem solving tutorial (specific goal)
condition, participants were given problems with specific
goals to solve. Participants in the free exploration
(nonspecific goal) condition were allowed to set up their
own goals to learn the system.

Charney, Reder, and Kusbit (1990) found that participants
learned the spreadsheet application better when they went
through a problem-solving tutorial. The tutorial set many
specific goals for the students to solve. It tested them on
skills and commands relevant to learning the spreadsheet.
In other words, it set appropriate goals for them to learn the
application. On the other hand, students in the free
exploration condition did not leamn the application because
they did not set appropriate goals to learn it.  These
students were computer novices and were not aware of the
function and utility of a spreadsheet. Thus, as Charney et
al. (1990) suggested, the students in the nonspecific goal
condition could not set appropriate goals for themselves.

Note the results of Charney, Reder, and Kusbit (1990) did
not replicate those of earlier discovery leaming studies. For
example, Carroll, Mack, Lewis, Grischkowsky, and
Robertson (1985) found that participants who explored
(called *“guided exploration” by the authors) a word
processor learned the program better than participants who
followed a conventional tutorial. These participants were
guided in their exploration of the word processor by function
cards which gave them hints (rather than step-by-step
specifications given by the manual) to set up goals to
perform a targeted function. The participants who followed
the self-study manual had difficulty recognizing and
adopting the appropriate goals.

In addition, as noted by Charney et al., participants in the
Carroll et al. study were not naive to the function of the
word processing program. The participants were temporary
office workers who were skilled typists and had relevant
knowledge of the goals and strategies used to produce
business letters. Consequently, these participants were able
to set specific, understandable, and appropriate goals on
their own (Carroll et al., 1985, pp. 296-297). Though the
data appear to be contradictory, the Goal Approprateness
theory accounts for the results from both studies,



Discussion

We have reviewed evidence illustrating the benefits of
solving problems with nonspecific goals. Sweller and his
colleagues suggest that nonspecific goals lead to more
effective lcarning because they promote a working forward
strategy which bears little cognitive load (Sweller, 1988).
Other rescarchers, however, suggest the nonspecific goals
lead to more effective learning because they induce a scarch
through hypothesis space (Vollmeyer et al, 1996;
Stevenson & Geddes, 1997). A third set of researchers
(Miller et al., 1997, Chamey et al., 1990) suggest that
irrespective of the specificity of the goal, learning is most
effective when problem goals are appropriate and
pedagogically related to the task at hand.

Although these theories appear to account for the results of
studies they came from, do they generalize to the results of
others’ experiments? And do they do so in a way that is
consistent with the unified theories, ACT-R and Soar?

Can the cluster of results supporting the dual space theory
(Vollmeyer et al.,, 1996; Stevenson & Geddes, 1997) be
accounted for by the Cognitive Load or Goal
Appropriateness theories? We focus on the Vollmeyer
results to investigate this question.

First, does Cognitive Load theory account for the
Vollmeyer results? A straightforward application of
Cognitive Load theory to Vollmeyer’s task is difficult since
it is not clear how the nonspecific goal condition in this
case would lead to a working forward strategy (link 1).
However, Vollmeyer et al. reported that specific goal
subjects, despite being instructed to use a rule-induction
strategy (i.e., vary one thing at a time), eventually switched
to a difference-reduction strategy (i.e., iteratively tweak
multiple input variables to achieve the specified outputs).
Thus, according to Cognitive Load theory these subjects
should experience greater cognitive load (inverse of link 2)
and therefore less effective leaming (inverse of link 3).

As discussed above, the direct relation between cognitive
load and learning (link 3) is inconsistent with ACT-R and
Soar. Furthermore, the data do not even support the
modification of Cognitive Load theory (links 9 and 10)
since the nonspecific group, under less cognitive load, did
not perform better during training,

Does Goal Appropriateness account for the Vollmeyer
results? Since the nonspecific goal group was instructed to
learn the rules of the system, they operated under an
appropriate goal to perform well in the transfer round. They
also performed well in the solution round because they had
already learned the rules of the system. The specific goal
group performed equally well in the solution round because
they already had previous attempts at attaining the goal.
Thus, their goal was only appropriate for doing well in the
solution round.

Can the cluster of results supporting the Goal
Appropriateness theory (Miller et al, 1997; Chamey et al.,
1990) be accounted for by the Cognitive Load or Dual Space
theories? We focus on the Miller results to investigate this
question.

The finding that the specific-path condition from Miller et
al., which is more “specific’ and requires higher load,
facilitated learning is inconsistent with Cognitive Load
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theory. The Dual Space account also cannot explain this
effect. The specific-path condition, much like the specific
condition used by Vollmeyer et al. (1996) and Stevenson
and Geddes (1997), requires the problem solver to bring the
system to a particular state,  Accordingly, Dual Space
theory predicts this to lead to a search of only instance space
and consequently should not facilitate leaming.

Unlike Cognitive Load theory, Goal Appropriateness
theory suggests that cognitive load should not have a direct
effect on learning. What is important is that the goals bring
to bear knowledge required to interact successfully with the
system. Thus, as Miller et al. suggested, solving goal-based
problems will transfer to learning when goal-dependent
knowledge and pedagogically relevant material agree. This
knowledge-dependent account is consistent with the learning
mechanisms of both the Soar (Newell, 1990) and ACT
(Anderson, 1993) unified theory of cognition.

Note Cognitive Load theory predicts that the more
cognitive resources that are available, the more likely it is
for learning to take place. This suggests a linear relation
between cognitive load and learning. Accordingly,
cognitive load theory suggests that solving very simple
problems, which requires low load, will result in leaming
and that solving very difficult problems, which requires high
load, will not likely result in learning.

The relation between cognitive load and learning is more
likely U-shaped than linear. One can imagine conditions of
reduced cognitive load (e.g., solving very simple problems,
having the experimenter solve the problems for the
participant) where learning would not likely occur. For
example, if students were only given worked out examples
to study and were not required to solve any problems,
would we expect any learning? Cognitive Load predicts
learning to occur due to the low load required. However,
Anderson and Singley (1993) showed that calculus students
who selected and applied their own operators (high load
condition) learned more than students who had a computer
select and apply the operators for them (low load condition).
On the other end, one can imagine situations of very high
cognitive load (e.g, performing multiple tasks
simultaneously, solving very difficult problems) where
learning should also be inhibited.

Finally, we address whether Sweller's results can be
accounted for by Dual Space or Goal Appropriateness
theory? In Sweller’'s studies, participants in both the
specific and nonspecific goal groups were asked to find
values to mathematics problems. Unlike participants in
Vollmeyer et al. (1996) and Stevenson and Geddes (1997),
they were not explicitly asked to induce rules to explain the
system. Along this line of reasoning, it appears that
Sweller’s participants only operated in instance space and
thus, the superior learning of the nonspecific group can not
be accounted for by the Dual Space theory. However, it
possible that because nonspecific goal participants did not
get caught up in the high load difference-reduction strategy,
they bad more capacity available to engage in rule
induction. And it is this rule induction activity that leads
to more effective learning. This account, combining
elements of both Cognitive Load theory and Dual Space



theory, has the advantage of being consistent with the
learning mechanisms of ACT-R and Soar.

Can Goal Appropriateness theory account for Sweller’s
results? We think it can, but here again, we need to borrow
elements of Dual Space theory. Rather than low working
memory load in the nonspecific goal condition, freeing
students to do rule-induction, perhaps nonspecific goals
encourage rule space search whereas specific goals encourage
instance space search, distracting participants from the more
general learning that results from rule space search. Thus,
according to Goal Appropriateness, the attainment of a
cormrect representation of the problem, which is aided by an
appropriate goal, which can be achieved under low or high
cognitive load, is the important prelude to learning.

Is Goal Appropriateness consistent with a dual space
account of problem solving? A distinction must be made
between goals that are appropriate for learning and goals that
are appropriate for problem solving.  Goals that are
appropriate for inducing rules may lead to a search of the
hypothesis space. Goals that are intended for solving a
problem may lead to an exploration of instance space.

Note solving a problem with goals to induce rules is
analogous to a science model of problem solving. On the
other hand, goals intended to find a specific value is
analogous to an engineering model of problem solving
(Schauble, Klopfer, & Raghavan, 1991). The science model
of problem solving, which is characterized by the search for
rules and causal relations among variables (i.e., searching
hypothesis space), has been shown to lead to more general
learning and understanding. In contrast, an engineering
model, which is characterized by maximizing or achieving a
certain specified target (i.e., searching instance space), does
not result in the learning of rules and principles. However,
it can lead to good results for just those specific goals
targeted. This further supports the conjecture that more
appropriate goals facilitate learning.

In summary, it appears that none of the theories can
account for all of the results. Neither Cognitive Load or
Dual Space can account for the Miller et al. and Chamey et
al. results. Without incorporating elements of Dual Space,
the Goal Appropriateness theory cannot account for cither
the Vollmeyer or Sweller results. We have provided
arguments for how combining elements of Goal
Appropriateness and Dual Space can account for all results.

While the Cognitive Load theory alone fairs poorly in
accounting for all the results and, at least without
modification, is inconsistent with ACT-R and Soar, we are
not ready to reject all elements of it. Modifications of the
theory to include a U-shaped relation with learning mediated
by either performance enhancement or increased hypothesis
search appear to strengthen the theory.  Furthermore,
combining Cognitive Load and Dual Space seems to
provide a better explanation for Sweller’s results than Dual
Space and Goal Appropriateness.
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