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On using the seasonal cycle to interpret extratropical
temperature changes since 1950
Karen A. McKinnon1 and Peter Huybers1

1Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA

Abstract Extratropical near-surface air temperature variability is explored on three different time scales:
the seasonal cycle, observed changes in temperature since 1950, and the equilibrium response to increasing
CO2 in an atmospheric general circulation simulation with fixed sea surface temperatures. Exploration is
undertaken using an energy balance model (EBM) that parameterizes advective land-ocean heat fluxes.
The EBM is tuned only to the climatological seasonal cycle yet captures 47% of the variability in observed
multidecadal temperature changes in the extratropics and 78% of the variability in the equilibrated model
simulation. The subseasonal time scale of atmosphere-surface heat fluxes explains, at least in the context
of this EBM, the ability to infer patterns of multidecadal change using information primarily drawn from the
seasonal cycle.

1. Introduction

The importance of ocean heat uptake in influencing patterns of temperature variability is well established.
These patterns include the amplitude and phase of the seasonal cycle of surface temperature [North and
Coakley, 1979; North et al., 1981; McKinnon et al., 2013], internally generated surface temperature variabil-
ity [Kim and North, 1991], and transient surface temperature changes in response to increased radiative
forcing [Stouffer et al., 1989; Manabe et al., 1991; Kim et al., 1992]. The common influence of ocean heat
uptake amongst seasonal, interannual, and decadal time scales of temperature variation suggests that the
observed response at one time scale may inform about the others. Indeed, the amplitude of the seasonal
cycle in surface temperature has previously been used as a predictor for equilibrium climate sensitivity
across an ensemble of general circulation models [Knutti et al., 2006], and the magnitude of the sea-
sonal cycle is a good predictor of the magnitude of decadal variability in regional surface temperatures
[Huybers and Curry, 2006].

That there are common controls on surface temperature variability for the seasonal cycle and longer time
scales has previously been demonstrated using an energy balance model (EBM), wherein atmospheric heat
transport was parameterized as a diffusive process [Kim and North, 1991; Kim et al., 1992]. Here we revisit this
topic from the standpoint of a longer instrumental record and an EBM that permits for analytical solutions.
Furthermore, as opposed to the diffusive and isotropic representation of horizontal heat fluxes used in the
earlier EBM studies, heat transport is parameterized based on mean atmospheric circulation, allowing for
anisotropy due to the climatological wind patterns.

The EBM is written in a minimalist manner so as to isolate the influence of advection of heat between land
and ocean on surface temperature patterns. Excess heat not realized as a temperature increase is stored in
the ocean. While this approach ignores many additional important processes, such as changes in meridional
heat transport, the spatial structure of perturbative radiative forcing, and spatial and temporal variabil-
ity in mixed layer depth, it allows us to isolate the effect of ocean heat storage on temperature variability.
The model is presented and minimally tuned to the seasonal cycle (section 2), shown to give accurate pre-
dictions at longer time scales using equilibrium results from a general circulation model (GCM) with fixed
sea surface temperatures (section 3), and then compared to observed temperature variations over recent
decades (section 4). The skill—or lack thereof—of the EBM is used as a metric to assess the importance
of advective heat fluxes and ocean heat uptake in influencing surface temperature as compared to other
climate processes that are excluded from the model.
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2. Amplitude of the Seasonal Cycle in Surface Temperature
2.1. EBM Formulation
The near-surface air temperature anomaly (hereafter simply “temperature”), Ti,j , is modeled as a mixture
between land and ocean temperatures, weighted by a mixing parameter, mi,j

Ti,j = mi,jTland + (1 − mi,j)Tocean. (1)

“Land” and “ocean” refer to the end-member cases where the heat flux divergence is zero, so the
end-members are in local radiative equilibrium. The indices i, j indicate spatial dependence. These
end-members are modeled using two linearized energy balance models:

Cland

dTland

dt
= R + 𝜆Tland (2)

and

Cocean

dTocean

dt
= R + (𝜆 − 𝜅)Tocean, (3)

where C is heat capacity, with Cland < Cocean, R is a perturbative radiative forcing, 𝜆 is a feedback parameter,
and 𝜅 is a linear diffusivity that controls the rate of heat uptake by the deep ocean. Parameters lacking sub-
scripts are constant in space. Ocean temperature, Tocean, represents the mixed layer, and the deep ocean is
assumed to have infinite heat capacity for the scenarios considered here.

Energy balance equations similar to equations (2) and (3) are more typically applied with respect to the
global mean [e.g., Wigley and Schlesinger, 1985; Raper et al., 2002; Gregory and Forster, 2008]; here the
end-members are reflective neither of the global mean nor of the average land and ocean temperatures.
Instead, each model equation captures the temperature response for land or ocean if each was con-
trolled only by its heat capacity, the feedback parameter, and—in the case of the ocean—heat uptake by
the deep ocean.

Local temperatures, Ti,j , are then expressed as

Cland

dTi,j

dt
= R + 𝜆Ti,j − Hi,j, (4)

Hi,j = (1 − mi,j)
[
(Cocean − Cland)

dTocean

dt
+ 𝜅Tocean

]
. (5)

In this formulation, temperature is modeled as a fast, land-like response to forcing that is damped by the
horizontal, dominantly zonal heat flux divergence, Hi,j , due to atmospheric advection. The magnitude of
damping is a function of Relative Land Influence, mi,j . Relative Land Influence is a scalar measure of the
relative magnitude of atmospheric heat fluxes from land as compared to ocean at a given location and
is calculated from an ensemble of Lagrangian air parcel back trajectories. The parcel trajectories are sim-
ulated using the Hybrid Single-Particle Lagrangian Integrated Trajectory model [Draxler and Hess, 1997,
1998; Draxler, 1997] and the meteorological fields from National Centers for Environmental Prediction
-Department of Energy (NCEP-DOE) reanalysis [Kanamitsu et al., 2002]. Values from zero to one grade from
purely marine to purely continental influence (Figure S1 in the supporting information). Further details
regarding Relative Land Influence can be found in McKinnon et al. [2013] and the supporting information.
The model is written such that the net diverged heat is implicitly stored in the mixed layer (first term on the
right-hand side of equation (5)) and deep ocean (second term on the right-hand side of equation (5)).

2.2. Application to the Seasonal Cycle
To model the extratropical seasonal cycle, we prescribe a sinusoidal forcing function, R, with annual fre-
quency, 𝜔. The seasonal cycle is negligibly influenced by the deep ocean in the EBM, so the value of 𝜅 in
equation (3) is set to zero for simplicity. Consistent with this assumption, the seasonal time scale results
are insensitive to the choice of 𝜅. The amplitude and phase of R vary in latitude, so we examine the annual
component of temperature normalized by that of the forcing, i.e., the gain [Stine et al., 2009]. Annual compo-
nents of temperature and forcing are calculated as the magnitude of the once-per-year Fourier component
[Thomson, 1995]. Equations (4) and (5) yield a gain, Gi,j , of

Gi,j =

[
𝜆2 + 𝜔2(Cland(1 − mi,j) + Coceanmi,j)2(

𝜆2 + C2
land𝜔

2
) (

𝜆2 + C2
ocean𝜔

2
) ]1∕2

. (6)
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Table 1. Model Parameters for the EBM in the Three Different Scenariosa

Name Symbol Value Units

Land heat capacity Cland 2 meters water equivalent (mwe)
Ocean heat capacity Cocean 76 mwe
Angular frequency 𝜔 2𝜋 (year)−1 year−1

Radiative forcing (2x CO2) R2x 3.48 W m−2

Radiative forcing rate (before 1982) 𝛽1 0.06 W m−2 (decade)−1

Radiative forcing rate (after 1982) 𝛽2 0.53 W m−2 (decade)−1

Meters water equivalent mwe 4.18×106 J m−2 K−1

Scaling parameter for Relative Land Influence k 0.52 ± 0.01 (unitless)
Seasonal cycle feedback parameter 𝜆seasonal −2.48 ± 0.15 W m−2 K−1

Fixed SST equilibrium feedback parameter 𝜆AM2.1 −2.09 ± 0.09 W m−2 K−1

Multidecadal change feedback parameter 𝜆HadCRUT4 −0.57 ± 0.04 W m−2 K−1

Linearized ocean diffusivity 𝜅 7.69 ± 2.02 W m−2 K−1

aParameters are inferred from fitting the model to the data, via minimizing the mean squared deviations
across gridboxes, and are shown with their 95% confidence intervals.

Figure 1. EBM fit to the seasonal cycle. (a) Gain of the observed seasonal
cycle from the HadCRU climatology. (b) Gain predicted by the EBM. (c)
Observed gain (vertical axis) compared to modeled gain (horizontal axis)
after binning. The squares show the mean of the bin, whereas the whiskers
show one standard deviation across the gridboxes within the bin. Number
of bins is assigned as a function of number of gridboxes, n, according to
the Rice Rule as ⌈2n1∕3⌉, and there is approximately the same number of
gridboxes in each bin.

A related expression is obtained for
the phase offset, or lag, between
the forcing and the temperature
response. Heat capacities, Cland and
Cocean, are respectively set to 2 and
76 meters of water equivalent, con-
sistent with previously used values
[McKinnon et al., 2013]. All parameter
values are given in Table 1.

To estimate gain from observations
(Figure 1a), we use the Hadley Cen-
tre monthly temperature climatology
at 5◦ × 5◦ resolution [Morice et al.,
2012], scaled by the seasonal
forcing. The forcing is the sum of
two annual period terms: (1) the
top-of-the-atmosphere (TOA) solar
forcing, scaled by a coalbedo, and
(2) the seasonal cycle in meridional
heat flux convergence. We explicitly
include meridional heat flux con-
vergence in the forcing because it
is not otherwise parameterized in
the model but acts to damp the sea-
sonal cycle in heating [Donohoe and
Battisti, 2013] and, therefore, should
also be accounted for when estimat-
ing gain. Note that the availability
of observationally based estimates
of seasonal heat flux convergence
and our approach of using the sea-
sonal cycle to tune the EBM is distinct
from later applications of the EBM,
when it is used to predict anoma-
lies in temperature at longer time
scales, and when anomalies in heat
flux convergence are not included.
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Both the TOA solar forcing and the coalbedo are from the Clouds and Earth’s Radiant Energy System Energy
Balanced and Filled climatology product [Loeb et al., 2009]. Meridional heat flux convergence is from the
analysis of Fasullo and Trenberth [2008]. The amplitude and phase of the forcing varies as a function of lat-
itude but is constant in longitude, such that all zonal structure in the EBM is due to structure in Relative
Land Influence.

Analysis is restricted to the extratropics (10–60◦ in both hemispheres) due to weak once-per-year solar influ-
ence relative to other processes in the deep tropics [Sobel et al., 2001] and the combination of fewer data
and strong local feedbacks [Hwang et al., 2011] in the high latitudes. Locations where less than 50% of the
variance in the monthly climatology is explained by an annual period sinusoid are also excluded from all
analyses. The remaining domain covers 64% of the global area. Estimation of the annual period compo-
nents of temperature and forcing using daily rather than monthly values gives essentially the same results
[McKinnon et al., 2013].

Two free scalar parameters are jointly adjusted to fit the EBM to the seasonal cycle. The first, k, scales the
range of Relative Land Influence. Specifically, while the spatial pattern of Relative Land Influence is fixed
from the analysis of the Lagrangian back trajectory ensemble (see supporting information), it spans an arbi-
trary range between zero and one. The scalar parameter, k, translates the unscaled values of Relative Land
Influence, m∗

i,j , from equation (S1) to scaled ones, mi,j , as mi,j = km∗
i,j . The scaled values allow for a proper

allocation of local heat fluxes between outgoing longwave radiation, 𝜆Ti,j , and heat flux divergence, Hi,j

(see equations (4) and (5)). The second free parameter is the feedback parameter, 𝜆. The two parameters
are jointly constrained (see Figure 2b) through minimizing the sum of squared deviations across gridboxes
between the EBM and observations. Operationally, we use the MATLAB nonlinear fitting toolbox, which uti-
lizes the Levenberg-Marquardt algorithm for minimization. The value of k is fixed to the value found here in
all subsequent analyses.

The EBM fit to the seasonal cycle indicates a feedback parameter value of −2.48 ± 0.15 Wm−2K−1, where a
more negative 𝜆 is associated with a smaller equilibrium temperature response to a given forcing. Uncer-
tainties are 95% confidence intervals based on model fit to the data and do not include the effects of
error in model choice or in the observational data. The gains predicted from the EBM and observed in the
Hadley Centre data have a correlation of 0.81 across space (Figure 1). This correlation indicates that the
model is largely capable of reproducing the seasonal climatology in the selected domain, but because we
approach the seasonal cycle as a tool for model tuning, we do not make any claims as to the significance of
the correlation.

3. An Equilibrium Experiment

To explore whether the seasonal results are also informative for longer time scale responses, we examine the
annual mean temperature changes (Figure S2a) from a set of Geophysical Fluid Dynamics Laboratory AM2.1
model simulations [The GFDL Global Atmospheric Model Development Team, 2004]. The simulations begin in
equilibrium with preindustrial CO2 concentrations. Sea surface temperatures (SSTs) are fixed to their orig-
inal equilibrated values, then CO2 concentrations are doubled, and the model is integrated until it attains
a new equilibrium, which occurs almost entirely within a model year. The fixed SST experiment allows us
to examine temperature changes due to increasing CO2 in the end-member case where all temperature
change is confined to the land and atmosphere, because the ocean adjustment time scale is effec-
tively infinite. This maximizes the signal of differential land and ocean warming in response to increased
radiative forcing.

Temperature change is calculated as the difference in annual average temperature between the control and
the 2x CO2 simulations, where 60 years of model output from three different simulations are used in the
control average and 40 years from two different simulations are used in the 2x CO2 average. We regrid the
AM2.1 model output to the 5◦ resolution of the Hadley temperature data.

Representation of the equilibrium near-surface air temperature change, ΔTi,j , due to land-ocean heat fluxes
parameterized in the EBM, is particularly simple for a fixed SST model simulation. In this case, all changes in
temperature are related to warming over land; warming over the ocean is due only to advection of heat from
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the land, as represented by Relative Land Influence. Using equations (4) and (5), this temperature change
can be written as

ΔTi,j = −
R2x

𝜆
mi,j. (7)

R2x is the radiative forcing due to CO2 doubling, set at 3.48 Wm−2 [Held et al., 2010]. Although R2x is expected
to have latitudinal structure, we use a single global mean value for the purpose of isolating the contribution
of advective land-ocean heat fluxes to the pattern of warming. Unlike the seasonal cycle analysis, meridional
heat flux convergence anomalies are not included or parameterized. The values of Relative Land Influence,
mi,j , are fixed from the seasonal cycle analysis, and the only adjustable parameter in the model is 𝜆. As can
be seen in equation (7), temperature change (Figure S2b) is expected to be linear in Relative Land Influence
and have zero warming for zero Relative Land Influence. The feedback parameter can be calculated directly
from the best fit line through the origin between mi,j and ΔTi,j , giving 𝜆 = −2.09 ± 0.09 Wm−2K−1.

The EBM predicts the majority of the equilibrium temperature structure in the AM2.1 model simulation
(r = 0.87 and p value < 0.01, Figure S2). Model skill is not simply due to the land/ocean contrast in warm-
ing, as model predictions are independently significant over land (r = 0.66 and p value < 0.01) and ocean
(r = 0.71 and p value < 0.01). Significance of these correlations is estimated using a Monte Carlo method
whereby surrogate fields of Relative Land Influence are obtained using the Iterative Amplitude Adapted
Fourier Transform algorithm [Venema et al., 2006], which involves phase randomizing the original field using
a two-dimensional Fourier transform. This algorithm preserves the spatial autocorrelation structure [Theiler
et al., 1992] as well as the distribution of the original field. We then compute the correlation between the
EBM estimate of ΔTi,j based on the surrogate field and the ΔTi,j produced in the AM2.1 simulation. This pro-
cess is repeated 10,000 times to provide a null distribution against which the correlation obtained from
using the actual Relative Land Influence field is compared. We present one-sided p values because a positive
relationship between the observed and modeled temperature change is expected.

The primary residual between the EBM and AM2.1 is that the EBM shows less warming as a function of lat-
itude, overestimating warming at lower latitude and underestimating it at higher latitudes. The crossover
point occurs between 40 and 45◦ in both hemispheres. On average, the EBM overestimates the warming by
0.06◦C (0.02◦C) at latitudes below this crossover point and underestimates it by 0.07◦C (0.02◦C) above this
point in the Northern (Southern) Hemisphere. Additionally, the ratio of land to ocean warming is greater in
the AM2.1 simulation (6.7) than in the EBM (4.8), suggesting that the EBM may overestimate the magnitude
of heat fluxes from land to ocean. Finally, the warming over central South America is overestimated. Misfit in
this region is also apparent for the seasonal cycle case and the multidecadal predictions considered in the
next section. The origin of this misfit may stem from misspecification of Relative Land Influence because of
biases in the NCEP-DOE reanalysis related to poor representation of the effects of the Andes [e.g., Rusticucci
and Kousky, 2002].

4. Interpretation of Recent Decadal Trends

Having tuned the EBM to the seasonal cycle and demonstrated skill in reproducing simulated equilib-
rium conditions, we now turn to comparing the EBM results to observed temperature changes since 1950,
interpreted as a response to a trend in radiative forcing. Other influences on temperature such as land use
changes, spatial variability in forcing or feedbacks, and variations in circulation are not accounted for.

Based on equations (4) and (5), assigning zero temperature change at some time t0 and assuming that
radiative forcing increases at a constant rate 𝛽 , the temperature change at t1 is

ΔTi,j = mi,j

[
𝛽Cland

𝜆2

[
exp

[
𝜆t1

Cland

]
− 1

]]
+ (1 − mi,j)

[
𝛽Cocean

(𝜆 − 𝜅)2

[
exp

[
(𝜆 − 𝜅)t1

Cocean

]
− 1

]]
−

𝛽t1

𝜆
. (8)

The final term, − 𝛽t1

𝜆
, is equivalent to the equilibrated case in equation (7). The first and second terms are

the transient damping induced by land and ocean heat uptake, though the small heat capacity of the land
makes the first term negligible. The only free model parameters are 𝜆 and 𝜅, which are chosen based on
minimizing the sum of squared deviations across gridboxes between the EBM and the observations. The
heat capacities and Relative Land Influence field are fixed to the values used in the seasonal cycle analysis.
Like the AM2.1 scenario, meridional heat flux anomalies are not included.
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Figure 2. Radiative forcing and time scale-dependent sensitivity. (a)
Median CMIP5 radiative forcing (natural and anthropogenic) from Forster
et al. [2013] and the piecewise linear fit used to force the EBM for multi-
decadal temperature change. (b) The root-mean-square deviation (RMSD,
in ◦C(k Wm−2)−1) between the EBM and the observed gain as a function of
𝜆 and the scaling factor, k, for Relative Land Influence (see section 2.2). The
seasonal cycle model is insensitive to the value of 𝜅, which is set to zero. (c)
The RMSD (◦C) for 1950–2012 temperature change as a function of 𝜆 and
𝜅. In both Figures 2b and 2c, the black star indicates the best fit value for
the EBM.

We set t0 to be 1850, when the per-
turbative temperature change was
likely to be small. For this long period,
a piecewise rather than single linear
forcing function is employed, but the
resulting estimate of ΔTi,j is similar
to that in equation (8); specifically,
the expected relationship between
mi,j and ΔTi,j remains linear. The
piecewise linear forcing has a single
breakpoint in 1982, where the break-
point and trends are determined from
maximizing the fit to the ensemble
median Coupled Model Intercompar-
ison Project Phase 5 (CMIP5) global
average forcing as estimated by
Forster et al. [2013] (Figure 2a).

To compare the EBM to the obser-
vations, we calculate temperature
change in the Hadley Centre Cli-
mate Research Unit 4th generation
temperature dataset (HadCRUT4)
[Morice et al., 2012] as the differ-
ence between the first and last
20 year intervals of the period
1950–2012 (Figure 3a). Gridboxes
are only included in the analysis
if they have data available for all
months of at least 80% of the years in
each interval.

The pattern of warming expected
due to ocean heat uptake (Figure 3b)
is significantly correlated with the
observed warming (r = 0.68 and p
value < 0.01). Correlations between
the EBM predictions of temperature
change and the observations are
between 0.45 and 0.70 for any pair

of intervals ranging in length from 10 to 30 years, where the second interval must end in 2012, but the
first interval can begin as early as 1900 (Figure S3). The correlation declines for earlier intervals when fewer
gridboxes meet the inclusion criteria, as well as for shorter intervals spanning the recent past, presumably
because the ratio of interannual variability in temperature to the temperature response radiative forcing is
larger. The correlation between the EBM estimate of ΔTi,j and the observations remains significant when
individually considering ocean (r = 0.28 and p value < 0.03) or land (r = 0.52 and p value < 0.04), indicating
skill beyond the first-order land/ocean contrast. The correlation over the ocean is lower than over land, likely
because the EBM lacks representation of ocean heat transport and changes in mixed layer depth.

Consistent with the previous work using observations to determine climate parameters [e.g., Forest et al.,
2002], the linear diffusivity, 𝜅, which parameterizes deep ocean heat uptake, is only weakly constrained
(see Table 1). Note that our definition of 𝜅 (equation (3)) scales the change in temperature of the ocean
end-member to calculate ocean heat uptake rather than the global mean temperature change, as is done in
Gregory and Forster [2008].

Although we do not expect the global ocean heat uptake anomalies calculated by the EBM to be accurate
because the model is constrained using only extratropical data and does not account for ocean dynamics,

MCKINNON AND HUYBERS ©2014. American Geophysical Union. All Rights Reserved. 6
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Figure 3. As in Figure 1 but for the observed change in temperature in the
HadCRUT4 data set between 1950 and 2012.

amongst other important processes,
we do compare our estimates to
those from the literature as a con-
sistency check. We find that our
estimates are smaller than those
obtained from combining the esti-
mates of Lyman et al. [2010] and
Purkey and Johnson [2010], as well as
smaller than those from Otto et al.
[2013] for the most recent decade.
They are, however, consistent with
estimates from Otto et al. [2013] for
the 1970s, 1980s, and 1990s, as well
as those from Wunsch and Heimbach
[2014] for 1992–2011 and from Loeb
et al. [2012] for 2000–2008. Note that
Loeb et al. [2012] and Otto et al. [2013]
consider the planetary, rather than
ocean only, heat uptake anomalies;
however, the numbers are roughly
comparable because the majority
(approximately 90%) of the plane-
tary energy imbalance is stored in
the ocean.

The residuals between the HadCRUT4
data and the EBM are surprisingly
similar to those from the AM2.1 anal-
ysis, despite the fact that the latter
was a fixed SST model experiment.
Specifically, the EBM underestimates
the meridional gradient in tempera-
ture change. Like the AM2.1 analysis,
the crossover between overestimat-
ing and underestimating warming

occurs between 40 and 45◦, with an average overestimation in the lower latitudes of 0.12◦C and an average
overestimation in the higher latitudes of 0.11◦C in the Northern Hemisphere. Whether meridional patterns
in Southern Hemisphere residuals exist is unclear because the data are sparse.

5. Discussion and Conclusions

The significance of the relationship between the patterns of warming predicted by the EBM and those from
an atmospheric GCM equilibrium simulation and observed over the past half century suggest that there
may be value in interpreting the inferred values of the feedback parameter, 𝜆. The value of 𝜆, however, is not
strictly comparable to estimates of effective sensitivity in climate models because the domain we consider
is not global in scope; therefore, 𝜆 incorporates the influence of any heat fluxes into or out of the domain.
Instead, this feedback parameter is a metric of the temperature sensitivity to radiative forcing in the extra-
tropics. The value of 𝜆, −0.57 ± 0.04, found from fitting our model to the instrumental record exceeds the
upper value of the CMIP3 estimates [Soden and Held, 2006], which range from −1.64 to −0.88 Wm−2K−1. The
difference could either reflect heat flux convergence into the extratropics or a more sensitive extratropics
as compared to the globe. The AM2.1 feedback parameter, −2.09 ± 0.09 Wm−2K−1, is more negative than
that found for the coupled version of the model, CM2.1, of −1.37 Wm−2K−1 [Soden and Held, 2006], possibly
reflecting the fact that fixing ocean surface temperature in AM2.1 limits the strength of positive feedbacks,
like the water vapor feedback.

The analysis also suggests that the magnitude of the feedback parameter depends on the time scale under
consideration. The feedback parameter for the seasonal cycle is significantly more negative than that for the
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1950–2012 temperature change. This difference in sensitivity is not simply due to the different magnitude of
ocean heat uptake on seasonal versus longer time scales because the EBM’s feedback parameter and ocean
diffusivity are jointly constrained by the observations (Figures 2b and 2c). Such time scale-dependent differ-
ences in feedback strength have been found for the water vapor and lapse rate feedbacks in GCMs [Colman
and Hanson, 2013], as well as the total feedback parameter over the oceans based on an analysis of obser-
vations and reanalysis [Bony et al., 1995]. A separate application of radiative kernels [Shell et al., 2008] to
National Center for Atmospheric Research Community Climate System Model version 4 (CCSM4) also sug-
gests that the net feedback for the seasonal cycle is more negative than that for the response to ramped
radiative forcing.

Although the intentionally simple nature of the EBM allows for ease of interpretability, there are substantial
limitations. A diversity of important climate processes were explicitly excluded such as possible changes in
meridional heat transport, spatial variability in radiative forcing, spatial or temporal structure in the ocean’s
mixed layer, and land cover distributions and their changes. We cannot conclusively attribute model resid-
uals to any of these processes or ensure that the strength of the model fit is not in part due to coincidental
cancelation of processes not modeled. Other consideration include that we cannot apply this model in the
deep tropics because tuning relies on the presence of a strong once-per-year season cycle and that our
metric of Relative Land Influence would be compromised by changes in atmospheric circulation.

It appears, however, that this minimalist model at least partially captures the advective land-ocean heat
fluxes that lead to similar patterns of variability at different time scales. This result may seem surprising given
the substantial spatial structures in forcing and feedbacks [Zelinka and Hartmann, 2012; Armour et al., 2013]
but may result from horizontal heat transport diverging heat away from regions experiencing larger forcing
and/or less negative feedbacks. Such an effect has been shown using aquaplanet simulations in which tem-
perature changes due to feedbacks are strongly anticorrelated with those due to transport [Feldl and Roe,
2013]. The meridional structure of the residuals between the EBM predictions and the AM2.1 simulation, as
well as the HadCRUT4 observations, are consistent with simulations showing increased poleward heat trans-
port in response to increased radiative forcing, with the switch from divergence to convergence occurring
around 40–45◦N in model simulations [Held and Soden, 2006].

The interpretability of the equilibrium and multidecadal patterns of temperature change predicted by the
EBM suggests that the repeatedly observed seasonal cycle contains valuable information for constraining
and understanding longer-term temperature responses to radiative forcing. In future work, it would be use-
ful to further explore similarities between seasonal and longer-term temperature variability in the context
of more complete models.
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