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ABSTRACT OF THE DISSERTATION

Characterizing transcript diversity using long-read RNA sequencing

By

Fairlie Reese

Doctor of Philosophy in Biological Sciences

University of California, Irvine, 2023

Ali Mortazavi, Chair

Alternative transcripts arise from the same gene via alternative TSS usage, splicing, and

polyA site choice. Such transcripts can give rise to functional disparities in protein struc-

ture, post-transcriptional regulation, and translational efficiency. Moreover, their expression

in appropriate spatiotemporal contexts is a key feature of eukaryotic genomes. However,

detecting and quantifying these transcript isoforms across tissues, cell types, and species has

been challenging due to their longer lengths compared to the short reads typical of stan-

dard RNA-seq. In contrast, long-read RNA-seq (LR-RNA-seq) provides complete transcript

structures, enabling investigation of transcript features and usage with greater fidelity.

Here, I describe my work on application of LR-RNA-seq to characterizing and comparing

full-length transcriptomes. First, I describe Swan, a software library I developed to facilitate

visualization of full-length transcripts and to compare transcript usage between biological

conditions. Next, I describe the ENCODE4 human and mouse LR-RNA-seq datasets, where

I applied a novel triplet-based framework to harmonize and classify transcripts that share

transcript start sites, exon junction chains, and transcript end sites. Lastly, I discuss the

application of our single-nucleus LR-RNA-seq technique (LR-Split-seq) on two genetically

distinct mouse strains to uncover cell type and genotype-specific transcript usage patterns.

Collectively, these projects form a solid foundation for future analyses of long read transcrip-
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tomes to quantify changes in transcript diversity and transcript usage between samples, cell

types, and genotypes within and between species.
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Chapter 1

Introduction

1.1 Abstract

Alternative transcript isoforms can arise from a single gene that can result in functional dif-

ferences in protein structure or function, post-transcriptional regulation, and translational

efficiency. The balance and specificity of transcript isoform expression play crucial roles in

vital biological processes such as development and differentiation, whereas disruptions in

appropriate transcript isoform expression can lead to disease. While short-read RNA-seq

has been widely used to study gene expression over the past decade, but lacks the capability

to profile full-length transcript isoforms, which complicates the identification of both base-

line and disrupted transcript expression profiles. In contrast, long-read RNA-sequencing

(LR-RNA-seq) platforms, though lower in throughput, offer the advantage of sequencing

full-length transcript isoforms. Here, I describe the fundamentals of gene and transcript

expression and discuss various technologies, including LR-RNA-seq, used to study transcrip-

tion. I discuss prior findings based on these assays that attempt to characterize transcript

diversity and full-length transcriptomes. Finally, I explore how alternative transcript iso-

1



forms have been profiled in single cells or nuclei using both long and short-read RNA-seq

methods.

1.2 Introduction

The human genome, gene expression, and transcript isoforms

With few exceptions, the genomic sequence in each cell of a multicellular organism is the

same. Specialized functions of distinct organs or cell types are driven by distinct programs of

gene expression that activate or repress genes necessary for the cell to perform its prescribed

function. Before the human genome was first sequenced, it was estimated that humans, as

self-proclaimed highly complex organisms, had around 100,000 genes1. However, after the

human genome was sequenced and gene prediction efforts catalogued the transcribed regions

of the human genome, they were surprised to identify only around 25,000 protein coding

genes2,3. Given that seemingly less complex organisms such as C. elegans have a similar

number of protein coding genes as humans4, it follows that there is a different mechanism

that gives rise to the apparent complexity of higher eukaryotes. One mechanism by which

this complexity is derived is through alternative transcripts from the same gene encoded for

in DNA5. When RNA is transcribed from a gene, the mature mRNA products can take

multiple forms called transcript isoforms that are influenced by promoter choice, alternative

splicing, and by polyA site choice (Fig. 1.1a)6–9. The subsequent changes introduced by

these options can give rise to different RNA transcripts and subsequent protein products

that are distinct in their functional roles. In this way, with only 25,000 protein coding

genes, humans can hypothetically produce an order of magnitude more distinct proteins

that characterize cellular identity and distinct transcriptional programs from one another.

Alternative transcripts can additionally be subject to different post-transcriptional fates,

which are in part governed by the content of their 5’ and 3’ untranslated regions (UTRs).

2



The 3’ UTR often contains microRNA or RNA binding protein (RBP) binding sites which

can either enhance or reduce the potential for a protein coding mRNA to be translated6,7.

Regulatory elements can also exist in the 5’ UTR, such as microORFs, which can additionally

affect translational efficiency10. Both UTRs have also been found in some cases to harbor

sequence-based localization signals that affect where the transcript localizes in the cell11. To

holistically assess transcriptional diversity across biological contexts, it is crucial to consider

differences in splicing, as well as the 5’ and 3’ ends, due to their significant influence on the

functional outcome of transcribed RNA products.

The functional roles of alternative transcript isoforms

There are many examples of differential function of protein products that result from tran-

script choices. Transcripts of the same gene can also have strikingly opposing effects. In one

case, the gene BCL2L1, can produce two transcripts, one of which is pro-apopototic and the

other which is anti-apoptotic12. Alternative transcript usage by means of splice alteration

has been estimated to account for 15-60% of known genetic risk disease variants13,14. For

instance, Duchenne’s muscular dystrophy is caused by missplicing of the dystrophin gene

which introduces a premature stop codon15. Polygenic diseases are also often influenced

by alternative transcript usage. Disruptions in the relative abundances of different MAPT

transcripts have been implicated in neurodegenerative diseases such as Alzheimer’s Disease16.

Many biological processes rely on the expression of specific transcript isoforms of a gene

in the appropriate spatiotemporal context. Neurodevelopmental processes such as neural

stem cell differentiation, neuronal migration, and synaptogenesis rely on specific transcript

isoforms and splicing factors, which consequently affect the resultant transcripts17. There

are substantial changes in alternative splicing during muscle development and repair18,19.

Given that the regulatory potential and function of transcripts can differ drastically from

one another, transcript isoforms are important to study because they are essential for defining

the identity of a biological context.

3



Technological limitations to studying transcript identity and expression

Transcript isoforms and gene expression have been studied using many different assays in the

past. Expressed sequence tags (ESTs) relied on cloning of cDNA and subsequent sequencing

of each clone20. While they are useful for the discovery of transcribed genomic regions,

sequencing was typically single-pass and done using capillary sequencing, meaning both that

ESTs are difficult to use for estimating gene expression levels and that they are not long

enough to yield full-length transcript isoform information, as the average length of protein

coding transcripts from GENCODE v40 is 1.7 kb21. Separately, microarrays, which contain

arrays of specific complementary oligonucleotide probe sequences from transcribed genes,

were used to profile gene expression22. As microarrays use predesigned probes for target

capture, they require a priori knowledge of genes and cannot profile novel transcribed regions

in an unbiased manner. Furthermore, they can only capture specific transcript isoforms

on the basis of the probe design, meaning that certain transcripts will be missed. The

development of RNA-seq decoupled gene and transcript identification and quantification from

probes for a more unbiased method23. However, when performed on short-read sequencing

platforms such as Illumina, which have been the gold standard for years, RNA-seq reads

are not long enough to capture the entire structure of a transcript without assembly and

therefore cannot fully resolve each transcript isoform (Fig. 1.1b)5.

Studying transcript isoforms using long-read RNA-seq

Long-read RNA-seq (LR-RNA-seq) can sequence reads that are long enough to capture the

entirety of each transcript isoform (Fig. 1.1c). The two main long-read sequencing platforms

are from Pacific Biosciences (PacBio) and Oxford Nanopore (ONT)24–26. PacBio sequencing

works similarly to short-read Illumina sequencing in that cDNA molecules are sequenced

based on fluorescence of bases added to a complementary DNA sequence during second

strand synthesis25,26. By contrast, ONT flowcells sequence cDNA or unamplified RNA by

pulling a single-stranded molecule through an engineered pore with a motor protein. Each
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base of the read is called by measuring the voltage change across the membrane where the

pore sits, as different nucleotides will introduce different voltage changes24.

Both technologies, which were plagued by high error rates and low throughput in their earlier

years, have matured substantially. PacBio produces circular consensus (CCS) reads, which

help improve the basecalling error rate. Rather than reducing the native error rate, the

molecule of interest is sequenced repeatedly in a loop. This allows for multiple sequencing

passes to be performed on the same insert fragment, which can be harnessed bioinformatically

to create a consensus read with a current reported accuracy of 99.9%27. A similar circular

consensus correction approach has been applied to ONT as well, albeit using a custom

protocol28. ONT has been developing duplexed read technology such that the forward and

reverse copies of a target sequence are read in succession, which provides more information

about each base and allows for a decreased basecalling error rate. Currently, ONT’s highest

reported accuracy rate, using double-passed duplex reads and the most stringent basecalling

settings, is 99.9%29.

The throughput for long-read sequencing platforms has also improved dramatically. Recently,

PacBio has commercialized a library preparation technique called MAS-Iso-seq, which opti-

mizes the information yield of each run by concatenating multiple transcripts, which are on

average around 1 kb long. Because the PacBio platform is often used to sequence genomic

DNA where the fragments are often much longer, the optimal library size to yield the rec-

ommended number of CCS passes is 15-20 kb long. Thus, by concatenating multiple shorter

constructs together to reach this target length, the number of reads from an LR-RNA-seq run

has increased substantially30. Hypothetical maximum throughput for one PacBio flowcell

using their newest sequencing platform (the Revio) and MAS-Iso-seq has now increased to

around 100 million reads. The highest-throughput flowcell that ONT currently makes, the

PromethION, has a hypothetical yield of 290 Gb of sequence31. With these recent advances

5



in throughput and accuracy from both technologies, the field is now more than ever poised

to answer key questions regarding both transcript identity as well as transcript expression.

Computational approaches to studying long-read RNA-seq

As the sequencing approaches for LR-RNA-seq mature, so too do the computational tools

and workflows used to study such data. At the time of writing, an online database of software

tools to process long read sequencing data has around 800 unique tool entries, which has

increase from the 200 listed by the database in 201832. For LR-RNA-seq specifically, tools

roughly stratify by whether they are related to data preprocessing or downstream analysis.

Aside from platform-specific preprocessing steps such as CCS and basecalling, a typical

LR-RNA-seq preprocessing includes the following steps:

• Read mapping, which is typically done using minimap233

• Read annotation, which involves annotating each long read to its transcript of origin

either with or without a reference transcriptome annotation

• Transcript quantification, which assigns each transcript an expression value

The task of read annotation has been particularly challenging for researchers. This is often

done by either clustering reads that share the same sequence of splice junctions (also referred

to as intron chain or exon junction chain) or by determining which reference transcript

from an annotation such as GENCODE21 shares the same exon junction chain34–37. While

simple in theory, concordance of exon junction chain is complicated by small insertions or

deletions, called microindels, which are a well-known artifact of both the ONT and PacBio

platforms25. These introduce small differences at the 5’ and 3’ ends of splice junctions which

can cause algorithms that rely on exact exon junction chain matches to categorize reads

as from distinct transcripts even if they are simply technical artifacts. To this end, some

preprocessing workflows include correction of such artifacts35,38.
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Another complication arises from incomplete reads. Though both the ONT and PacBio

platforms have the capacity to sequence reads long enough to capture the majority of tran-

scripts, there often are many instances of what appear to be “incomplete” transcripts that

share a portion of the exon junction chain of either a reference transcript or another tran-

script already seen in the data. These likely result from a) degraded RNA in the input

sample, b) incomplete sequencing of an existing molecule (which is a more a more noticeable

problem the longer the transcript gets, such as transcripts from the TTN gene39), or c) from

true biological instances of shorter versions of transcripts. It is difficult to distinguish true

instances of alternative transcript usage via shortening from the experimental artifacts of

degradation or incomplete sequencing, and different workflows approach this issue in various

ways. Some rely on an updated version of transcript assembly that is sensitive to the nature

of LR-RNA-seq40. Others take a peak calling or clustering approach of read starts and ends

to distinguish artifacts from the biological truth via reproducibility37,41. Many other tools

rely on colocalization of external validation from 5’ and 3’ specific assays, such as CAGE and

PAS-seq, to determine the true transcript ends37,42. Additional tools incorporate information

about whether or not the polyA motif is found where a read’s 3’ end is41,43.

Quantification from LR-RNA-seq poses an additional challenge for the field. In theory, each

read, whether generated using PacBio or ONT, should represent precisely one molecule,

simplifying the quantification task. Many tools do take this simple route of counting reads

based on which transcript they were annotated to35,36. However, in practice, quantification

is intrinsically and sensitively tied to transcript annotation44, and some tools take common

structural features of the identified transcripts into account and thus can assign one read

count across multiple transcripts43. Other approaches harness statistical models that incor-

porate information about the each read, including its quality and likeliness to be full-length,

for quantification45,46.

Current analytical tools downstream of generating transcript annotations focus on transcript
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characterization, transcript isoform switching tests, and transcript visualization. Transcripts

are often first characterized by their novelty with respect to a reference annotation, though

as previously mentioned some annotation strategies are reference-free47,48. This is a step that

does not really share an analogous short-read RNA-seq workflow step, as one of the unique

advantages of LR-RNA-seq is its potential to discover unannotated full-length transcripts.

Transcript novelty categories as coined by SQANTI42 are frequently used to describe the

relationship of an identified transcript to an existing reference annotation (Fig. 1.2). Full

splice match (FSM, or known) transcripts share the entirety of their exon junction chain

with an existing transcript, incomplete splice match (ISM) transcripts share a subsequence

of their exon junction chain with an existing transcript, novel in catalog transcripts (NIC)

have all their splice sites in the reference but at least one unannotated splice junction, and

novel not in catalog (NNC) transcripts have at least one unannotated splice site. Addition-

ally, transcripts can be intergenic, or lie outside annotated gene boundaries; or genomic,

which are monoexonic, often intron-containing transcripts that fall within annotated gene

boundaries42. Further subclassifications of different novelty categories have been developed

as well by other groups37,46.

Characterization of transcripts can be done via functional prediction, which often relies on

defining a reference transcript for a gene to predict the change in function that a transcript

might have with respect to the reference. Defining a reference transcript is a rather prob-

lematic and circular issue, however, and suffers from its lack of sensitvitiy to what might

be the most highly-expressed transcript or transcripts from a gene in a given biological con-

text49,50. Functional prediction tools can predict changes at the 5’ and 3’ end as well as the

in the protein coding sequence. Protein coding sequence predictions are often followed up

by assessment for gain or loss of protein domains51–53.

Finding genes where transcripts are differentially abundant or expressed across distinct bi-

ological contexts is a unique problem. Classic differential expression tests that are often
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applied on the gene level can easily be applied on the transcript level as well, but are

confounded by differences solely driven by changes in gene expression54. To combat this,

researchers often use isoform switching tests instead, which are also referred to as differential

isoform expression or differential isoform usage tests52,54–58. These differ from basic differ-

ential expression tools as transcript expression is analyzed independently of the expression

of the gene that it comes for; represented as the percentage of the gene’s expression that

is attributable to that specific transcript. This metric, analogous in spirit to the percent-

spliced-in (Ψ) metric often used to quantify relative occurrence of individual AS events, is

referred to as percent isoform (π)57,59. These tests are more sensitive to phenomena such

as changes in the most highly-expressed transcript across biological contexts and can yield

insights into sample specificity of alternative transcripts.

Finally, visualization of alternative transcripts is an active field of LR-RNA-seq software

development. Some alternative events are difficult to see at genomic scale using traditional

genome browser style visualizations, and even if they are easy to see, they can still be difficult

to differentiate by eye for complex transcripts. Furthermore, genome browser tools offer no

solutions to visualizing transcript expression values across multiple samples. There have been

many tools developed to address these issues, which facilitate the thorough exploration of

LR-RNA-seq data. Some tools provide visualization options for transcript structure outside

of the genome browser setting56,60,61. Other tools display percent isoform expression values

for different transcripts from the same gene to enable visual understanding of transcript iso-

form switches52,55,56. Additional tools integrate visual tools with functional prediction tools

and display important features such as protein domain content alongside plotted transcript

models52.

The impact of library preparation, sequencing platform, and software tools on

long-read RNA-seq analysis tasks

The performance of different software tools, library preparation techniques, and sequencing
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platforms on the problems of both transcript annotation and quantification has recently been

assessed by the LRGASP consortium44. This effort sequenced samples using different library

preparation techniques, such as direct RNA, CapTrap cDNA62, R2C2 cDNA28, and standard

oligo dT primed cDNA; and different sequencing platforms (ONT and PacBio). Higher read

quality and longer read length of the sequencing platform were found to be associated with

improved performance on the transcript annotation task, and they therefore recommended to

use standard oligo dT primed cDNA libraries on the PacBio sequencing platform. However,

with the latest improvements in ONT error rate, it is unclear whether this recommendation

would hold. For the purposes of transcript quantification, they recommend cDNA sequenced

on the ONT platform; likely due, at the the time, to ONT’s increased throughput over

PacBio. Just as the library preparation method and sequencing platform affect the results,

so too do the software tools used; and the recommendations for which approaches to use

vary depending on whether the goal is quantification or transcript annotation. Therefore, it

is clear that careful considerations must be taken when designing experiments and analytical

pipelines when working with LR-RNA-seq data.

Prior work on studying transcript diversity and alternative splicing

It is an important task to catalog and to characterize transcripts based on the biological con-

texts they are in to understand how they might be perturbed upon genetic variation, disease

state, or during development. Many studies have looked at the complexity of the eukaryotic

transcriptome with respect to alternative splicing (AS) and transcriptional diversity. Gen-

erally, when the methodology used to study transcript diversity is length limited, such as in

the case of microarrays and short-read RNA-seq, this diversity is quantified on the level of

exon-level AS events. A study using microarray HapMap data in 2007 found that individual

AS events are more variable between human individuals than gene expression was, which

indicates the role of genetic diversity in driving choice of transcript isoform63. This result has

been replicated by other groups, including those done using short-read RNA-seq data rather
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than microarrays64. Several studies have attempted to assess the fidelity or stochasticity of

the splicing machinery by relating the relative gene structure in terms of exon and intron

content and length to the number of observed transcript isoforms or AS events. Generally,

they found that genes with more and longer introns have more splicing “noise” and therefore

yield a greater number of transcript isoforms for these genes65–67. However, these studies

claim opposing effects on the number of AS events or transcript isoforms that higher gene

expression levels yield65,66. Unsurprisingly, both studies suffer from their inability to assess

full-length content of each transcript (using ESTs and short-read RNA-seq) as well as from

their limited pool of samples. Indeed, it has also been shown that many characterized AS

events are tissue-specific, which suggests the increased importance in transcript specificity

as a determinant of tissue or cell type identity, and that key features of transcript diver-

sity will inevitably be missed when not considering a variety of samples67. It has also been

shown that splicing diversity is higher in humans than in mouse68 and has been suggested

that the increased splicing diversity in humans could be due to the altogether longer intron

sizes in human and association of intron size and splicing rate, as well as the tendency of

primate-specific Alu elements to exonize66,69,70. In 2013, it was reported that across 16 tis-

sues and 5 cell lines that, despite substantial diversity amongst detected transcripts, the most

ubiquitously-expressed genes typically use the same transcript as the most highly-expressed

one across their samples71.

The Encyclopedia of DNA elements (ENCODE) consortium has been a mainstay in genomics

since its pilot in 2003. Broadly, the goal of this consortium is to catalog and characterize all

the functional elements in the genome72. While a large part of the consortium’s efforts have

been to characterize the state of the DNA in terms of epigenetic marks, chromatin acces-

sibility, and 3D conformation, another critical component to understanding the regulatory

impact of the genome is by characterizing the actual transcriptional output of the genome.

To this end, ENCODE has always had an additional interest in high-throughput gene expres-
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sion assays, whether it be from microarrays or RNA-seq. In 2012 as a part of ENCODE2,

they demonstrated that 75% of the human genome is capable of being transcribed. Addi-

tionally, they studied splicing using short-read RNA-seq as many other groups have. Using

15 cell lines, they reported the capacity of the same cell lines to express multiple transcript

isoforms of the same gene, notably present in many cases at varying levels of expression73.

For ENCODE3 in 2020, they showed that while alternative splicing is a primary contributor

to cell type identity, it does not contribute as highly to the overall transcriptional programs

for major cell types74. However, each of these studies was performed using short-read RNA-

seq. For the final phase of ENCODE, our group was funded to produce LR-RNA-seq data

on ENCODE samples in addition to the prior transcriptional assays we have performed in

the past.

The first big consortium-level analysis of full-length transcriptomes from LR-RNA-seq came

out from GTEx in 2022 with ONT cDNA sequencing of 88 human tissue and cell line samples

that identified around 70,000 novel transcripts. Stratified by type of AS event, they found

that intron retention events and mutually exclusive exons were the least likely to already

have been annotated, which is unsurprising given that these events can span transcript

regions that might be too long to capture with short read data. As they also had access to

sample genotypes, they focused on the impact of alternative alleles on gene expression and

transcript usage. They found that when alternative alleles drove changes in transcript usage,

they same genes also frequently were differentially expressed. Additionally, they performed

variant effect prediction using the context of their novel transcripts and found that variants

with uncertain significance were the ones most often reclassified, indicating that unannotated

transcripts might help explain the linkage of uninterpretable variants to pathogenicity75.

The coordination between events that lead to transcript diversity has also been investigated.

If each AS event, TSS selection, and TES selection were completely independent from one

another (barring events that are incompatible), one would expect to see orders of magnitude
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more transcripts resulting from any multiexonic gene. However, it is well known that de-

spite some genes showing stochastic noise in alternative splicing decisions65, many pairwise

events are readily coordinated. Exon pairs can be mutually inclusive or exclusive76, splic-

ing efficiency of different introns has been linked to 3’ end cleavage77, and more recently, it

was shown that TSS selection influences both AS events and 3’ end site choice78. Notably,

it was demonstrated that genes with alternative TSSs have significantly more alternative

TESs as well, suggesting that highly transcriptionally diverse genes differ on multiple axes

of variability78.

Single-cell long-read RNA-seq

Single-cell and single-nucleus RNA-seq is a relatively young technology that enables re-

searchers to profile gene expression in individual cells. This is achieved by assigning a

unique sequence-based barcode to each cell, thus facilitating its identification. Currently,

two widely used approaches for cell barcoding are microfluidics-based barcoding, where each

cell is encapsulated in an oil droplet with its barcode; and combinatorial barcoding, which in-

volves ligating a sequence of unique barcodes to determine cell identity79–82. These methods

allow the identification of genes in specific cell populations that might otherwise be obscured

within the complex mixture of cell types present in a tissue sample. In bulk samples, gene

expression signals from rare or underrepresented cell populations often get overwhelmed by

more abundant cell types83. Single-cell RNA-seq is now routinely used to characterize a

multitude of biological phenomena where changes in gene expression at a cell type or cell

state resolved resolution can yield additional insights84,85.

For as long as single-cell RNA-seq has been around, groups have been using it to study

alternative splicing86–88. However, the traditional approaches that involve splice junction

counting to quantify AS events suffer immensely from the sparsity of single-cell data, as only

the fraction of reads that span exon-exon junctions are informative on top of the already

sparse single-cell data79. Furthermore, the very popular 10x single-cell platform only uses
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3’ end RNA selection, which limits the number of unique exon-exon junctions possible to

observe. This sparsity has led to the false appearance of bimodal splicing, where an AS event

is either always or never used, in each individual cell89,90.

In recent years, as throughput for LR-RNA-seq has improved, multiple groups have started

to perform single cell and single nucleus LR-RNA-seq experiments. As with short-read

sequencing, these have been done using both microfluidics and combinatorial barcoding

approaches91. Such techniques have been readily applied to study the cell type specificity

of alternative isoforms during development and in disease. For instance, it has been shown

that individual cell types contribute more to observed heterogeneity in alternative splicing

between tissues as compared to the aggregate of all cell types57. Single-cell LR-RNA-seq of

cancer samples has shown that cancerous cell types express more transcript isoforms at lower

levels, hinting at the cancer-specific dysregulation of transcriptional control92. Additionally,

research has demonstrated that cell types that do not dominate their resident tissue exhibit

a higher abundance of novel transcript isoforms in comparison to more highly-abundant cell

types93. The cell type specificity of exon pair coordination has also been investigated, both

for adjacent and distal exon pairs, which would be impossible to study using traditional

short-read RNA-seq76. Furthermore, the degree to which sub cell type, developmental age,

or tissue region exhibits more control over the variability of transcript isoforms has been

shown to vary drastically for different brain-resident cell types94.

In my previous work, in conjunction with my co-first author Elisabeth Rebboah, we devel-

oped LR-Split-seq in 2021, a single-cell LR-RNA-seq approaches that uses Parse Bioscience’s

combinatorial barcoding strategy with PacBio LR-RNA-seq. We developed experimental and

computational workflows needed to generate and process the data95. We applied this sys-

tem to the C2C12 cell line model of myogenesis (muscle differentiation) and found that we

were able to detect transcript isoform and TSS switches between distinct cell populations.

Notably, we showed that the TSS switches were concomitant with chromatin opening using
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corresponding single-nucleus ATAC-seq data96.

Of course, single-cell and single-nucleus LR-RNA-seq approaches are also faced with the

same challenge of sparsity that comes with studying gene expression or AS events in single

cells. A natural question given the sparsity is to what extent are the findings from existing

single-cell LR-RNA-seq efforts limited by the difficulty in sampling. Single-cell LR-RNA-seq

also comes with a unique set of challenges as compared to short-read approaches, some of

the most daunting of which are related to the efficiency of capturing full-length transcripts

in single cells or nuclei. Single-nucleus approaches, which are better suited for tissues that

are difficult to dissociate or are multinucleated97, definitionally enrich for the unprocessed

RNA that is only present in the nucleus. This leads to the off-target capture of transcripts

that have not been spliced or are in the process of splicing, which are almost entirely un-

informative for identification and quantification of transcript isoforms76,96. Furthermore, it

has been hypothesized that reverse transcription of full-length RNA molecules is impeded

by cell or nucleus fixation which is required for certain single-cell protocols, leading to the

increased appearance of truncated transcripts80. Both of these problems further exacerbate

the sparsity of single-cell LR-RNA-seq data. Moreover, there has been a lack of comprehen-

sive investigation into the extent to which single-cell data processing methods can effectively

generalize to single-cell LR-RNA-seq that address the specific research questions that can be

answered by the technology.

1.3 Conclusions

Long-read sequencing platforms have enabled the full-length characterization and quantifi-

cation of transcriptomes, which is important due to the profound impact that alternative

transcript usage can have in development and disease. Current studies that use LR-RNA-seq

have typically been restricted to smaller scale projects that seek to understand the difference
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between transcript usage in a limited number of biological contexts or samples. My project

aims to characterize the diversity of transcription from full-length LR-RNA-seq data across

samples, genotypes, and cell types.

In Chapter 2, I discuss Swan, which is a software tool that I developed for downstream

analysis and visualization of full-length transcriptomes. The Swan manuscript was published

in Bioinformatics in 2020 and showcases its capabilities on transcriptomes derived from

PacBio LR-RNA-seq data from the HepG2 and HFFc6 cell lines from ENCODE. I used

Swan to highlight the statistical testing features as well as the unique visualizations that

Swan produces. I have further updated the chapter to demonstrate newer features I added

to Swan by applying it to a more complex dataset comparing wild type and 5xFAD mice

from different sexes, ages, and brain tissues.

In Chapter 3, I present the work we did to characterize transcriptional diversity across

the ENCODE4 PacBio LR-RNA-seq datasets from human and mouse. We developed a

computational pipeline that allows us to call unique transcripts with the same exon junction

chain that use different transcript start sites (TSSs) or different transcript end sites (TESs)

and name transcripts according to their structural content. With this approach, we observed

that protein-coding genes have a median of two unique predominant transcript isoforms,

which represent the most highly expressed transcript per gene in each sample. We introduced

a novel method of describing transcriptional diversity that captures the contributions of

alternative TSS and TES usage as well as alternative splicing and showed that this method

can be used to compare transcriptional diversity across a range of biological contexts. We

further demonstrate that using this metric, for orthologous protein coding genes in human

and mouse, transcriptional diversity is not well conserved between the species. This work

was posted as a BioRχiv preprint in May 2023 and is currently in revision.

In Chapter 4, I discuss the application of our single-nucleus LR-RNA-seq assay, LR-Split-seq,

to the prefrontal cortex of two genetically distinct mouse strains, C57BL6/J and CAST/EiJ.
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We were able to find instances of transcript isoform switching between the different strains

which were particularly pronounced in both the GABAergic and glutamatergic neuronal

subpopulations. This work was done as a part of our involvement in the Impact of Genetic

Variation on Function (IGVF) consortium and will be used to write a manuscript with our

IGVF collaborators before the end of 2023.

Finally, in Chapter 5, I propose future directions for this work as well for the field of full-

length transcriptomics. I believe this field is still truly in its nascent stages as I have watched

the technology improve immensely over the last five years, and we have only begun to

scratch the surface regarding the biological insights that we can glean from the massive

amounts of data now being produced. Exploring the effect of genetic variation on alternative

transcript usage, probing RNA modifications, and improving single-cell and nucleus LR-

RNA-seq approaches are just a few of the topics that have yet to be thoroughly explored.
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Figure 1.1: Long-read RNA-seq captures full-length transcript isoforms. a,
Genomic DNA structure of an alternatively spliced gene and its resultant mRNA transcript
isoform products. b, Representation of exon-exon junction containing short reads that
would result from sequencing this gene. c, Representation of full-length long reads that
would result from sequencing this gene. (Figure from Park et al. 5).
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Figure 1.2: Transcript novelty categories determined by comparison to the
reference annotation. (Figure from Wyman et al. 36).
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Chapter 2

Swan: a library for the analysis and

visualization of long-read

transcriptomes

Note: This chapter was published in Bioinformatics in 2020. It has been revised with

additional data and text to reflect updates made to the software since then.

2.1 Abstract

Long-read RNA-sequencing technologies such as PacBio and Oxford Nanopore have dis-

covered an explosion of new transcript isoforms that are difficult to visually analyze using

currently available tools. We introduce the Swan Python library, which is designed to an-

alyze and visualize transcript models. Swan finds 4,909 differentially expressed transcripts

between cell lines HepG2 and HFFc6, including 279 that are differentially expressed even

though the parent gene is not. Additionally, Swan discovers 285 reproducible exon skipping
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and 47 intron retention events not recorded in the GENCODE v29 annotation. We addition-

ally apply Swan to a more complex dataset from control and 5xFAD mice. We find evidence

of TSS, isoform, and TES switching between the genotypes. The Swan library for Python 3

is available on PyPi and on GitHub.

2.2 Introduction

Alternative splicing plays a critical role in many biological processes and disease states.

However, standard genomic assays have difficulties capturing the comprehensive spectrum

of full-length alternative splicing due to the limitations of short reads in reconstructing

transcript isoforms98. Long-read sequencing platforms such as PacBio and Oxford Nanopore

have led to an explosion in discovery of transcript isoforms that were impossible to assemble

with short reads. Current transcript model visualization tools such as Sashimi or LeafCutter

plots are primarily designed for visualizing short reads rather than leveraging full-length

isoforms99,100. Furthermore, these tools display transcript isoforms on a genomic scale which

complicates interpreting and distinguishing similar transcripts from one another.

We introduce the Swan Python library, which is designed to analyze and visualize transcript

models. Swan’s graphical model approach allows the user to visually distinguish between

transcript models and to identify novel exon skipping and intron retention events commonly

missed by short reads. Furthermore, Swan incorporates statistical models to detect differen-

tial gene and transcript expression, enabling quantitative comparison of full-length transcript

models in different biological settings. While Swan was designed with long reads in mind,

it can support any transcriptome from a properly formatted GTF. We demonstrate Swan’s

utility by applying it to full-length PacBio transcriptome data from the HepG2 and HFFc6

human cell lines, which are publicly available on the ENCODE portal at the accessions listed

in Table 2.1.

21

https://pypi.org/project/swanvis/
https://github.com/mortazavilab/swan_vis


We furthermore demonstrate the updated utility of Swan by applying it to a more complex

dataset consisting of 5xFAD and wildtype (C57BL6/J) mouse samples produced as part of

MODEL-AD as processed in the ENCODE4 long-read RNA-seq dataset101. We find evidence

of TSS, isoform, and TES switching between the genotypes.

2.3 Materials and methods

2.3.1 Input and data structure

Transcriptome input and representation

Swan works by processing transcript models from either GTF files or from a TALON

database36 into a SwanGraph data structure consisting of a series of data frames and a

graph. Each unique genomic coordinate, exon, intron and transcript is recorded in the data

frames and used to construct a graphical representation of the transcriptome. In Swan, this

combination of data structures is known as a SwanGraph. Genomic locations are represented

as nodes. Introns and exons are represented as edges between nodes, and a full transcript

is represented as a path that traverses the nodes and edges present in the transcript. This

flexible scheme makes it possible to add additional datasets and track which nodes, edges

and full transcripts are present in each.

Transcript expression and metadata input and representation

Expression data can also be added for each dataset from a transcript ID-indexed counts ma-

trix TSV file. Swan will automatically calculate the expression and relative usage (percent

isoform57) of each transcript and its constituent features (transcript start sites, transcript

end sites, and exon junction chains), and store these values in AnnData102 format, which

is a commonly-used format to represent single-cell data in sparse matrix format as well as

22



metadata, which can be provided in TSV format. Using the AnnData structure facilitates

fast calculations, low memory and storage footprint, storage of complex hierarchical meta-

data, and direct compatibility with Scanpy plotting and analysis features102. In the case

that a transcriptome from Cerberus103 is added, Swan will automatically use the TSSs, exon

junction chains, and TESs assigned by Cerberus to calculate expression and usage of these

features. Optionally, the user can also add gene-level expression information.

Compatibility with single-cell data

Swan’s sparse data representation and usage of the AnnData data structure allows for com-

patibility with single-cell and nucleus datasets as well. For ease of use, users can add abun-

dance and metadata information directly from a preexisting AnnData object, which bypasses

the dense-matrix representation which in many cases is storage and memory prohibitive. By

default in single cell mode, Swan does not calculate percent isoform usage of each isoform

in a given cell; instead only opting to compute these statistics across a particular metadata

condition for downstream analytical tasks.

2.3.2 Visualization

SwanGraph visualizations

Swan’s plots directly correspond to the graphical representation present in the SwanGraph;

the nodes correspond to genomic coordinates, and the edges represent exons (regions be-

tween genomic coordinates present in the transcript) and introns (regions between genomic

coordinates not present in the transcript) (Fig. 2.1). Nodes and edges are colored according

to their role in the gene or transcript. Nodes that are used as transcription start sites (TSSs)

are colored blue, nodes that are used as transcription end sites (TESs) are colored orange,

and internal nodes that are traversed between the start and end of a transcript are colored
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yellow. Nodes with more than one classification (for example a node that can be used either

as a TSS or an internal node) are preferentially colored by their most “unique” role in the

gene (TES > TSS > internal). Exonic edges are colored green and intronic edges are colored

pink. Nodes are spaced out evenly regardless of genomic location. This makes it easier to

differentiate splicing events such as alternative 5’/3’ splice sites that are only a few base pairs

away from the canonical splice sites which are difficult to distinguish on a genomic scale.

Instead of the difference between these splice sites consisting of a difference of just a few

pixels such as in a genome browser-style representation, Swan’s visualization uses an entirely

different node to draw the user’s attention to the heterogeneity of splicing (Fig. 2.1).

Swan offers different visualization options. Gene summary graphs provide a high-level

overview of the splicing complexity of a specific gene where every node and edge present

in a gene is brightly colored (Fig. 2.2a). Transcript path graphs show the nodes and edges

traversed by a specific transcript isoform in bright colors through the rest of the gene graph,

where unused nodes and edges will be grayed-out (Fig. 2.2b). In both gene summary and

transcript path graphs, options exist to draw attention to nodes/edges that are not present

in the annotation (novel nodes/edges) or to nodes/edges that are seen in a specific dataset

(Fig. 2.2b).

Browser-style plots

Transcript paths can also be plotted using a traditional genome browser-style representation

to provide a familiar reference. These browser-style models can also be plotted directly onto

a figure axis alongside other figure elements. Swan can also plot BED regions that can be

displayed at the same genomic scale as the transcript models to provide additional context

about the genomic region that the transcripts are located in (Fig. 3.15d).

Swan reports

Swan can also generate a PDF report for a given gene which will plot the transcript path
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representation either in the nodes and edges representation or using the browser-style plots

for each transcript isoform in the gene, along with the presence or absence of each isoform

in the datasets that have been added to the SwanGraph. If abundance information has been

provided, Swan can add a heatmap to illustrate expression levels or percent isoform usage

of each transcript. There are many other additional options to tune the appearance of the

report, including the ability to aggregate information across different metadata conditions,

choose which transcript identifier is displayed, change the display order of the datasets, and

display multiple categories of metadata information using provided color mappings.

2.3.3 Analysis

Differential gene and transcript expression testing

Swan can perform differential expression tests using diffxpy102. Additionally, differential

expression tests can be run directly using Scanpy functions on the AnnData objects stored

in the SwanGraph.

Isoform switching testing

Unlike differential expression tests, isoform switching tests look only at the relative usage

of a transcript within a gene across conditions with no regard to absolute expression values.

This test therefore can find instances where the relative prevalence of a transcript is different

between conditions. Swan’s isoform switching test is implemented according to the strategy

described in Joglekar et al. 57 , and can be performed on the whole transcript, TSS, TES, or

exon junction chain level.

Novel intron retention and exon skipping event identification

Swan can detect novel exon skipping and intron retention events using the graphical tran-

25



scriptome representation. For intron retention, Swan finds novel exonic edges that span

intronic edges. For exon skipping, Swan finds novel intronic edges that span exonic edges

(Fig. 2.1b).

2.4 Results

Pilot Swan analysis

We obtained mapped PacBio RNA-seq datasets from the ENCODE portal for two replicates

of HepG2 and three replicates of HFFc6. We used TALON v5 to call transcript isoforms and

filter novel ones for high reproducibility for 22,857 transcript models in HepG2 and 28,814

in HFFc6. We then used TALON to obtain GTFs and abundance files for each dataset. We

fed the resulting transcript models and abundance information into Swan, along with the

GENCODE v29 annotation104.

Using diffxpy, Swan identified 4,009 differentially expressed genes and 4,909 differentially

expressed transcripts across cell lines. Of the differentially expressed transcripts, 279 belong

to a parent gene that is not differentially expressed and are therefore candidates for isoform

switching analysis. In addition, Swan found 285 novel exon skipping events and 47 novel

intron retention events. The gene ADRM1 is a candidate isoform switching gene based on the

aforementioned criteria. Moreover, the ADRM1 transcript that was called as differentially

expressed contains a novel intron retention event (Fig. 2.2, 2.3).

Swan analysis of the 5xFAD Alzheimer’s mouse model

To further demonstrate the utility of Swan, we applied it to a more complex dataset to com-

pare the transcriptomes between wild-type samples and from a mouse model of Alzheimer’s

disease (5xFAD). From the ENCODE4 long-read RNA-seq dataset103, we obtained processed
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data for all of the WT (C57BL6/J) and 5xFAD brain samples in mouse (Table 2.1). Between

genotypes, we found 696 TSS switching events, 1,676 isoform switching events, and 965 TES

switching events, as well as 1,466 novel exon-skipping events and 8,402 novel intron retention

events. One isoform switching gene was Csf2ra, which is a macrophage colony stimulating

factor subunit that has previously been known to engage in alternative splicing resulting in

functionally distinct protein isoforms (Fig. 2.4)105. This is a particularly interesting find-

ing as Csf -family genes, namely CSF1R, have been implicated in maintenance of microglial

homeostasis in the brain106. Mutations in and dysfunction of CSF1R have been implicated

in neurological and neurodegenerative diseases such as Alzheimer’s disease106,107 and over-

expression of Csf2 in mice has been associated with microgliosis108. We additionally called

differentially expressed transcripts and genes using PyDESeq2109 directly with our Swan-

Graph AnnData expression representations, and found 520 and 545 differentially expressed

transcripts and genes respectively between genotypes.

2.5 Discussion

As long-read RNA-seq as a sequencing assay has recently matured immensely, there arises a

clear need for computational tools to facilitate analyses that harness the full length nature

of the data. Swan provides a such platform for deeply exploring full-length transcriptome

data. Its intuitive visualizations and flexible analysis tools enable discovery of novel splicing

events and differential transcript usage.

Using Swan, we showed that we were able to find differentially expressed genes and transcript;

transcript, TSS, and TES usage changes; and novel intron retention and exon skipping events

in two distinct datasets. Notably, we found an transcript isoform switching event in Csf2ra

between 5xFAD and WT mice, demonstrating that a key factor in maintaining microglial

homeostasis changes predominant transcript isoforms between conditions.
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In particular, the SwanGraph data representation provides a clear avenue for exploring

transcriptomes at different granularities. By representing each transcript as a series of splice

sites or splice junctions, the relative abundances of splice sites or junctions can too be

analyzed in isolation, as well as TSSs and TESs. Furthermore, the data representation would

be ideal for studying the coordination of different alternative splicing events in conjunction,

which are known to undergo coordinated inclusion or exclusion even when far apart on the

genomic scale76. Additionally, the data representation naturally lends itself to graphical-

based predictive tasks. In this case, edge weights derived from the usage of each exon or

intron in the SwanGraph could be used to predict potential novel isoforms that might arise

from the exons and introns already annotated.
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Figure 2.1: Overview of Swan’s graphical transcriptome representation a,
Browser-style models of 4 transcripts from the same gene. Unique nodes and edges as
reflected in the SwanGraph are labeled. b, SwanGraph representation of transcripts in a,
with specific edges labeled by the type of alternative splicing event they illustrate.
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Figure 2.2: SwanGraph plots for transcripts from ADRM1. a, Gene summary plot
representing all known (GENCODE v29) and novel transcripts called from ADRM1 in
HFFc6 and HepG2 data. b, SwanGraph transcript path plot for novel ADRM1 transcript
ENCODET000312957, which contains an intron retention event.
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Figure 2.3: Swan report for transcripts from ADRM1 . Heatmap shows expression
level for each transcript. Bolded and asterisked models are differentially expressed
transcripts between human cell lines HepG2 and HFFc6 (q ≤ 0.05). Transcript novelty
categories are determined by TALON. Novel splice sites are outlined nodes and novel
combinations of splice sites are dashed edges. TSS nodes are blue and TES nodes are
orange. Exonic edges are green and intronic edges are pink.
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Figure 2.4: Swan report for transcripts from isoform switching gene Csf2ra.
Heatmap shows percent isoform values for each transcript. Novel splice sites are outlined
nodes and novel combinations of splice sites are dashed edges. TSS nodes are blue and
TES nodes are orange. Exonic edges are green and intronic edges are pink.
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Figure 2.5: TSS switching gene Lsp1. a, Swan report showing the transcript structure
and overall percent isoform values for the C57B6/J and 5xFAD genotypes for each Lsp1
transcript. b, Scanpy matrixplot showing the expression of each TSS separately by
genotype.
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ENCODE accession Sample description Swan analysis
ENCSR834DQL HepG2 Pilot
ENCSR902GAF HFFc6 Pilot
ENCSR131CES Cortex WT Female MODEL-AD

ENCSR644GDT Cortex WT Male MODEL-AD
ENCSR340GWV Cortex WT Male MODEL-AD
ENCSR411ZHA Hippocampus WT Female MODEL-AD
ENCSR926OGQ Hippocampus WT Male MODEL-AD
ENCSR214HSG Hippocampus WT Male MODEL-AD
ENCSR280VKU Cortex 5xFAD Female MODEL-AD
ENCSR674BKT Cortex 5xFAD Male MODEL-AD
ENCSR060OTU Hippocampus 5xFAD Female MODEL-AD
ENCSR404AEI Hippocampus 5xFAD Male MODEL-AD

Table 2.1: ENCODE experiment accessions for data used in this study.
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Chapter 3

The ENCODE4 long-read RNA-seq

collection reveals distinct classes of

transcript structure diversity

3.1 Abstract

The majority of mammalian genes encode multiple transcript isoforms that result from dif-

ferential promoter use, changes in exonic splicing, and alternative 3’ end choice. Detecting

and quantifying transcript isoforms across tissues, cell types, and species has been extremely

challenging because transcripts are much longer than the short reads normally used for RNA-

seq. By contrast, long-read RNA-seq (LR-RNA-seq) gives the complete structure of most

transcripts. We sequenced 264 LR-RNA-seq PacBio libraries totaling over 1 billion circular

consensus reads (CCS) for 81 unique human and mouse samples. We detect at least one

full-length transcript from 87.7% of annotated human protein coding genes and a total of

200,000 full-length transcripts, 40% of which have novel exon junction chains.
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To capture and compute on the three sources of transcript structure diversity, we introduce

a gene and transcript annotation framework that uses triplets representing the transcript

start site, exon junction chain, and transcript end site of each transcript. Using triplets

in a simplex representation demonstrates how promoter selection, splice pattern, and 3’

processing are deployed across human tissues, with nearly half of multitranscript protein

coding genes showing a clear bias toward one of the three diversity mechanisms. Evaluated

across samples, the predominantly expressed transcript changes for 74% of protein coding

genes. In evolution, the human and mouse transcriptomes are globally similar in types of

transcript structure diversity, yet among individual orthologous gene pairs, more than half

(57.8%) show substantial differences in mechanism of diversification in matching tissues. This

initial large-scale survey of human and mouse long-read transcriptomes provides a foundation

for further analyses of alternative transcript usage, and is complemented by short-read and

microRNA data on the same samples and by epigenome data elsewhere in the ENCODE4

collection.

3.2 Introduction

Most mammalian genes produce multiple distinct transcript isoforms5. This transcript struc-

ture diversity is governed by promoter selection, splicing, and polyA site selection, which

respectively dictate the transcript start site (TSS), exon junction chain (the unique series of

exon-exon junctions used in a transcript), and transcript end site (TES, and the resulting

3’ UTR) used in the final transcript. Each of these processes is highly regulated and is

subject to a different set of evolutionary pressures6–9. In protein coding genes, missplicing

can lead to nonfunctional transcripts by disrupting canonical reading frames or introducing

premature stop codons that predispose the transcript to nonsense mediated decay (NMD).

Conversely, the cellular machinery involved in promoter or polyA site selection for protein
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coding genes is only constrained by the need to include start and stop codons for the correct

open reading frame (ORF) in the final mRNA product.

Transcript structure diversity poses challenges for both basic and preclinical biology. As

computational gene prediction and manual curation efforts have identified ever more tran-

scripts for many genes21,110, a common assumption in genomics and medical genetics is that

we only need to consider one or at most a handful of representative transcripts per gene

such as those from the MANE (Matched Annotation from NCBI and EMBL-EBI) project50.

MANE transcripts are chosen with respect to their expression levels in biologically-relevant

samples and sequence conservation of the coding regions, and are perfectly matched between

NCBI and ENSEMBL with explicit attention to the 5’ and 3’ ends. This decision to focus

on one transcript per gene was driven in part by the difficulties in transcript assembly using

ESTs and short-read RNA-seq, which is the assay used for most bulk and single-cell RNA-

seq experiments23,111. The advent of long-read platforms heralded the promise of full-length

transcript sequencing to identify expressed transcript isoforms, thus potentially bypassing

the error-prone transcript assembly step24,26. However, as long-read RNA-seq (LR-RNA-seq)

produces more novel candidate transcripts, there is a need to find organizational principles

that will allow us to cope with the diversity of transcripts observed at some gene loci in

catalogs such as GENCODE21, while at the same time distinguishing the genes that do not

seem to undergo any alternative splicing.

Short-read RNA-seq has been the core assay for measuring gene expression in the second and

third phases of the ENCODE project for all RNA biotypes, regardless of their lengths, in both

human and mouse samples73,112,113. Short-read RNA-seq has also been used by many groups

to comprehensively characterize TSS usage114, splicing64, and TES usage115, but the chal-

lenges of transcript assembly given the combinatorial nature of the problem have precluded

a definitive assessment of the transcripts present. In addition to continuing Illumina-based

short-read sequencing of mRNA and microRNA, the fourth phase of ENCODE (ENCODE4)
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adds matching LR-RNA-seq using the Pacific Biosciences Sequel 1 and 2 platforms in a set of

human and mouse primary tissues and cell lines in order to identify and quantify known and

novel transcript isoforms expressed across a diverse set of samples. We report the resulting

ENCODE4 human and mouse transcriptome datasets. We implement a novel triplet scheme

that captures essential differences in 5’ end choice, splicing, and 3’ usage, which allows us

to categorize genes based on features driving their transcript structure diversity using a new

software package called Cerberus. We introduce the gene structure simplex as an intuitive

coordinate system for comparing transcript usage between genes and across samples. We

then compare transcript usage between orthologous genes in human and mouse and identify

substantial differences in transcript diversity for over half the genes.

3.3 Results

The ENCODE4 RNA dataset

This LR-RNA-seq study profiled 81 tissues or cell lines by using the PacBio sequencing

platform on 264 human and mouse libraries that include replicate samples and multiple

human tissue donors (Tables S1-2). Without consideration for the seven postnatal timepoints

in mouse, they represent 49 unique tissues or cell types across human and mouse (Fig. 3.1a,

Fig. 3.2). In addition, we sequenced matching human short-read RNA-seq (Fig. 3.2c) and

microRNA-seq (Fig. 3.3, Supplementary results) for most samples as well as for an additional

37 that were sequenced with short-read RNA-seq only. We detect the vast majority of polyA

genes (those with biotype protein coding, pseudogene, or lncRNA) whether we restrict the

analysis to short-read samples that have matching data in the LR-RNA-seq dataset (93.9%

of GENCODE v40 polyA genes and 90.6% of protein coding genes) or if we use all of the

short-read samples (Fig. 3.1b, Fig. 3.4a). 31.1% of all expressed genes are detected in most

(>90%) of the samples, and 34.0% are detected more specifically (<10% of samples) (Fig.
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3.1c, Fig. 3.4b).

For each LR-RNA-seq dataset, we first mapped the reads using Minimap233 and corrected

non-canonical splice junctions and small indels using TranscriptClean38, after which we ran

TALON36 and LAPA41 to identify each transcript by its exon junction chain and assign each

transcript a supported 5’ and 3’ end. Finally, to catalog transcript features and summarize

transcript structure diversity in our datasets, we ran Cerberus, which is described below.

It is important to emphasize that this pipeline (Fig. 3.1d) does not attempt to assemble

reads, so that every reported known transcript is observed from 5’ to 3’ end in at least one

read. We further required support from multiple reads for defining valid ends. Overall this

is a conservative pipeline that was designed to detect and quantify robust novel and known

transcripts (Materials and Methods).

Our LR-RNA-seq reads are oligo-dT primed and we therefore expect to see high detection of

transcripts from polyA genes, which we define as belonging to the protein coding, lncRNA,

or pseudogene GENCODE-annotated biotypes, across our datasets. Consistent with this

expectation, we detect 75.9% of annotated GENCODE v40 polyA genes and 93.7% of protein

coding genes at ≥ 1 TPM in at least one library in our human dataset (Fig. 3.1e). The

overwhelming majority of undetected polyA genes are pseudogenes and lncRNAs, which are

likely to be either lowly expressed or completely unexpressed in the tissues assayed. As

expected, GO analysis of the undetected protein coding genes yielded biological processes

such as smell and taste-related sensory processes that represent genes specifically expressed

in tissues that we did not assay (Fig. 3.4c). We find that many genes are either expressed in

a sample-specific manner (27.8% in <10% of samples) or are ubiquitously expressed across

many samples (28.2% in > 90% of samples), consistent with the short-read samples (Fig.

3.1f).

Transcriptionally active regions that are absent from GENCODE are candidates for novel

genes. Applying conservative thresholds that included a requirement for one or more re-
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producible splice junctions (Supplementary methods), we found 214 novel candidate genes

with at least one spliced transcript isoform expressed ≥ 1 TPM in human and 96 in mouse

at our existing sequencing depth. Applying the same criteria to annotated polyA genes,

we find 20,716 and 18,971 genes for human and mouse respectively, meaning that plausible

novel genes constitute less than 1.0% in human and 0.5% in mouse. We subsequently focus

analysis on transcripts from known polyA genes.

We then examined the distribution of gene expression values across our human LR-RNA-seq

dataset to characterize the abundance of genes and to assess whether we would be able to

measure differences in transcript abundance at our current sequencing depths. For each

library, we ranked each gene by TPM and found that the most highly expressed genes have

higher TPMs in primary tissue-derived libraries than cell line-derived libraries (Fig. 3.1g,

Supplementary methods). In particular, the tissue-derived liver libraries have the most

highly expressed genes at ranks 1, 5, and 10, which include ALB and FTL, as expected. We

also observed that the top 1,000 genes expressed in all but one liver library are expressed

≥ 100 TPM and that the top 5,000 are expressed ≥ 10 TPM. We can therefore confidently

measure major transcript expression usage with a conservative threshold of 10 TPM for at

least a third of expressed genes in each sample.

From genes expressed ≥ 10 TPM, we are able to capture over half (54.0%) of MANE tran-

scripts that are 9-12 kb long (Fig. 3.4d). Coupled with our read length profiles, we estimate

that we can reliably sequence the 99.7% of annotated GENCODE v40 polyA transcripts

that are <12 kb long from end-to-end if they are highly expressed (Fig. 3.4d-g). In mouse,

we observe similar read length profiles, sample separation, and gene detection patterns (Fig.

3.4h-j), including detection of 84.9% of annotated GENCODE vM25 protein coding genes

at ≥ 1 TPM (Fig. 3.4h). In summary, we are able to detect most of human and mouse

protein coding genes in our ENCODE LR-RNA-seq datasets at similar rates to short-read

RNA-seq, and our long reads are long enough to capture the vast majority of annotated
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polyA transcripts.

Different sources of transcript structure diversity

We compared the transcript start sites (TSSs), exon junction chains (ECs), and transcript

end sites (TESs) observed in the human LR-RNA-seq data with other prior assays of these

features and with established catalogs of these features. Cerberus is designed to identify

unique TSSs, ECs, and TESs from a wide variety of inputs that include LR-RNA-seq data,

reference atlases, and external transcriptional assays such as CAGE, PAS-seq, and the GTEx

LR-RNA-seq dataset75,115 (Supplementary methods). Cerberus numbers each TSS, EC, and

TES (triplet features) based on the annotation status of the transcript that it came from

(e.g. the most confidently annotated will be numbered first) as well as the order in which

each source was provided (Supplementary methods). Cerberus outputs genomic regions for

each unique TSS and TES and a list of coordinates for each unique EC. In all cases, the

gene of origin is also annotated (Fig. 3.5a). Using the integrated series of cataloged triplet

features, Cerberus assigns a TSS, EC, and TES to each unique transcript model to create a

transcript identifier of the form Gene[X,Y,Z], which we call the transcript triplet (Fig. 3.5b,

Fig. 3.6a). This strategy distinguishes the structure of two different transcripts from the

same gene solely on the basis of their transcript triplets. Additionally, it gives us the ability

to sum up the expression of TSSs, ECs, and TESs across the transcripts they come from to

enable quantification of promoter usage, EC usage, and polyA site usage respectively.

We applied Cerberus to the ENCODE human LR-RNA-seq data and to annotations from

GENCODE v40 and v29 to obtain transcript triplets for the transcripts present in each

transcriptome. Cerberus labels each triplet feature as known if it is detected in a reference

set (here defined as transcripts derived from GENCODE) of transcripts or novel if not.

Additionally, using the information from the GENCODE reference transcriptomes, we assign

the triplet [1,1,1] to the MANE transcript isoform for the gene, if it has one.
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Altogether, we detected 206,806 transcripts expressed ≥ 1 TPM from polyA genes, 76,469

of which have exon junction chains unannotated in GENCODE v29 or v40. From these

transcripts, we first sought to characterize the observed triplet features (expressed ≥ 1 TPM

in at least one library from polyA genes) in our dataset (Fig. 3.6b-d, Fig. 3.7a-f). We

found that 18.0% of TSSs, 37.3% of ECs, and 22.1% of TESs are novel compared to both

GENCODE v29 and v40 (Fig. 3.6b-d). We furthermore determined whether any novel triplet

features were supported by sources outside of the GENCODE reference. We used CAGE

and RAMPAGE data to support TSSs, GTEx transcripts to support ECs, and PAS-seq and

the PolyA Atlas regions to support the TESs (Supplementary methods). Of the novel triplet

features, 42.8% of TSSs, 17.9% of ECs, and 79.0% of TESs were supported by at least one

external dataset (Fig. 3.6b-d, Fig. 3.7a-c). While the intermediate transcriptome (in general

transfer format; GTF) for our LR-RNA-seq dataset from LAPA has single-base transcript

ends, the majority of our Cerberus TSSs and TESs derived from the LR-RNA-seq data are

101 bp in length and 99.8% are shorter than 500 bp, which is consistent with how Cerberus

extends TSSs and TESs derived from GTFs by n bp (here n=50) on either side (Fig. 3.5a,

Fig. 3.7d-e, Supplementary methods).

We further annotated the novelty of ECs compared to GENCODE using the nomenclature

from SQANTI42. For detected ECs from polyA genes, we find that the majority (62.7%)

of ECs were already annotated in either GENCODE v29 or v40. Novel ECs are primarily

annotated as either NIC (16.1%; novel in catalog, defined as having a novel combination

of known splice sites) or NNC (11.6%; novel not in catalog, defined as having at least one

novel splice site) (Fig. 3.7f). Given the high external support for our triplet features, we

were also able to predict CAGE and RAMPAGE support for our long-read derived TSSs

both in and across cell types using logistic regression (Fig. 3.8, Supplementary results). In

aggregate, a majority of our triplet features observed in our LR-RNA-seq data show were in

prior annotations or have external support from additional assays.
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We then examined the number of observed triplet features per gene. We find that most

protein coding genes (89.8%) express more than one triplet feature across our dataset (Fig.

3.6e-g). By contrast, only 33.7% of lncRNAs and 14.4% of pseudogenes express more than

1 transcript and therefore triplet feature per gene. These biotypes exhibit far less transcript

structure diversity as compared to protein coding genes. Overall, we find that our observed

triplet features are individually well-supported by external annotations and assays. We also

show that protein coding genes are far more likely to have more than one triplet feature than

lncRNAs and pseudogenes.

The ENCODE4 LR-RNA-seq transcriptome

Following our characterization of individual triplet features, we moved on to examining

our full-length transcripts. We first note that most observed transcripts with known ECs

belong to the protein coding biotype (Fig. 3.6h). In contrast to the gene-level analysis,

transcripts with known ECs are expressed in a more sample-specific manner, with 49.0%

expressed in <10% of samples and 4.4% expressed in > 90% of samples (Fig. 3.9a, Fig.

3.1f). Of the remaining protein coding transcripts with novel ECs, 53.0% are predicted to

have complete ORFs which are not subject to nonsense mediated decay (Supplementary

methods). Examining detected transcripts in our dataset based on the novelty of each

constituent triplet feature, we find that 52.0% of observed transcripts have each of their

triplet features annotated, and that more transcripts contain novel TSSs than novel TESs

(Fig. 3.6i). Consistent with our observation that protein coding genes generally have more

than one triplet feature per gene compared to the other polyA biotypes, we find that most

protein coding genes also have more than one transcript per gene (Fig. 3.6j, e-g). We

investigated the extent that lower expression levels of lncRNAs contribute to their overall

lower transcript diversity compared to protein coding genes. We found that the 137 lncRNAs

expressed > 100 TPM in one or more samples have the same median number of expressed

transcripts per gene as the 8,436 protein coding genes at the same expression level (median
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= 7) (Fig. 3.9b, Supplementary methods). Therefore the lower reported overall diversity of

lncRNAs is due to a combination of their lower expression levels and our sequencing depth.

We compared the number of TSSs and TESs that are detected per EC across the observed

transcripts from GENCODE v40 versus in our observed transcripts. We found that in

GENCODE v40, each multiexonic EC has a maximum of 3 TSSs or TESs across the polyA

transcripts and that the overwhelming majority of ECs are only annotated with 1 TSS and

TES (99.7% and 99.4% respectively) (Fig. 3.9c-d). In contrast, our strategy of transcriptome

annotation yields a substantial increase in the number of distinct TSSs and TESs observed

per EC, which more accurately reflects the biology of the coordination of promoter choice,

polyA site selection, and splicing across the diverse samples in our dataset (Fig. 3.9e-f).

The effect of this increase in annotated TSSs and TESs is also apparent when analyzing

our transcripts using traditional alternative splicing event detection methods, which are not

written to consider the more subtle differences in transcript structure at the 5’ and 3’ end

(Fig. 3.12, Supplementary results).

Predominant transcript structure differs across tissues and cell types

Different multiexonic genes with similar expression levels within the same sample can exhibit

vastly different levels of transcript structure diversity. For instance, the genes COL1A1 and

PKM have a high number of exons (60 and 47 exons, respectively across our entire human

dataset) and are highly expressed in ovary (548 and 506 TPM respectively). Yet, we detect

only one 6.9 kb long transcript for COL1A1 (Fig. 3.6k) whereas we detect 18 transcript

isoforms that vary on the basis of their TSSs, ECs, and TESs for PKM (Fig. 3.6l).

We then asked what fraction of overall gene expression is accounted for by the predominant

transcript, which is the most highly expressed transcript for a gene in a given sample. Com-

paring the TPM of genes expressed in ovary to the the percentage of reads from a gene that

come from that transcript (pi - percent isoform)57 of the predominant transcript, we find
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that 19.5% of protein coding genes expressed > 100 TPM have a predominant transcript

that accounts for less than 50% of the reads, and therefore are highly expressed with high

transcript structure diversity. Conversely, 26.8% of protein coding genes are expressed > 100

TPM and have a predominant transcript that accounts for more than 90% of the expression

of the gene (Fig. 3.6m). Globally, we generated a catalog of predominant transcripts for

each sample. The median number of predominant transcripts per protein coding gene across

samples was 2, and that 73.0% of protein coding genes have more than one predominant

transcript across the samples surveyed (Fig. 3.6n). Thus, the majority of human protein

coding genes use a different predominant transcript in at least one condition represented in

our sample collection.

Quantifying transcript structure diversity across samples using gene triplets and

the gene structure simplex

We developed a framework to systematically characterize and quantify the diversity between

the detected transcripts from each gene by computing a summary gene triplet, which is

related to but distinct from transcript triplets. For each set of transcripts from a given

gene, we count the number of unique TSSs, ECs, and TESs (Fig. 3.10a, Fig. 3.13). As

the number of exon junction chains is naturally linked to the number of alternative TSSs or

TESs (for instance, a new TSS with a different splice donor will lead to a novel EC regardless

of similarities in downstream splicing), we calculate the splicing ratio as 2×NEC

NTSS+NTES
to more

fairly assess the contribution of ECs to transcript diversity in each gene (Fig. 3.10a, Fig.

3.13). We then compute the proportion of transcript diversity that arises from each source

of variation: alternative TSS usage, alternative TES usage, or internal splicing (Fig. 3.10a).

Representing these numbers as proportions allows us to plot them as coordinates in a two-

dimensional gene structure simplex (Fig. 3.10b, Fig. 3.13). This enables us to visualize

how transcripts from a gene typically differ from one another and categorize genes based

on their primary driver of transcript structure diversity. Genes with a high proportion of
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transcripts characterized by alternative TSS usage (>0.5) will fall into the TSS-high sector

of the simplex, those with a high proportion of transcripts characterized by alternative

TES usage (>0.5) will fall into the TES-high sector of the simplex, and those with a high

proportion of transcripts characterized by internal splicing (>0.5) will fall into the splicing-

high portion of the simplex. Genes with more than one transcript that do not display a

strong preference for one mode over the other lie in the mixed sector, and genes with just

one transcript are in the center of the simplex, henceforth the simple sector (Fig. 3.10a-b,

Fig. 3.13, Supplementary methods).

We first used the gene structure simplex to compare different transcriptomes. We computed

gene triplets for protein coding genes for the following transcriptomes: GENCODE v40

transcripts from genes we detect in our LR-RNA-seq dataset; observed transcripts in our LR-

RNA-seq dataset (observed); and the union of detected major transcripts (observed major),

which we define as the set of most highly expressed transcripts per gene in a sample that are

cumulatively responsible for over 90% of that gene’s expression in any of our LR-RNA-seq

samples (Fig. 3.10c-j, Supplementary methods). The observed and observed major gene

triplets describe the diversity of transcription in each gene across all samples in the dataset.

Unsurprisingly, GENCODE genes show less density in the TSS or TES sectors of the simplex,

largely because the main focus of GENCODE is to annotate unique ECs rather than 5’ or 3’

ends. This causes a concomitant drop in diversity in these sectors in GENCODE compared

to the observed and observed major transcripts (Fig. 3.10f, h). Interestingly, there is also

a distinct enrichment of genes that occupy the splicing-high portion of the simplex in our

observed set compared to GENCODE (Fig. 3.10g). When considering the observed major

transcripts, we see an increase in the percentage of genes in the TSS and splicing-high sectors

over the set of all transcripts detected in our entire LR-RNA-seq dataset, but a decrease in

the TES-high sector (Fig. 3.10f-h). Overall, we compared gene triplets for transcripts

as annotated by GENCODE and observed in our LR-RNA-seq dataset and found higher

proportions of genes with high TSS and splicing diversity as compared to GENCODE.

46



We performed functional enrichment testing for genes in each sector from our observed major

set to determine shared characteristics of genes in each sector (Supplementary methods) (Fig.

3.11). Most notably, we found that genes in the TSS, TES, and mixed sectors were enriched

for DNA binding activity, demonstrating that DNA binding genes exhibit a large range of

transcript diversity behavior. The splicing, TES, and mixed sectors were also enriched for

RNA binding. The apparent diversity of transcripts from RNA binding genes is unsurprising

given the predisposition of RNA binding proteins such as splicing factors to themselves be

enriched for alternative splicing17. In fact, when limiting analyzed genes to just splicing

factors, we see that only 7.0% of genes fall in the simple sector as compared to the 33.9%

when considering all genes, demonstrating a clear tendency of splicing factors toward higher

transcript diversity (Supplementary methods). Finally, the simple sector yielded several

functions related to different signaling methods, such as hormone and cytokine activity. This

demonstrates that the flexibility of transcription is limited for genes involved in signaling.

Calculating sample-level gene triplets identifies genes that show distinct tran-

script structure diversity across samples

The observed gene triplets represent the aggregate repertoire of triplet features for each gene

globally across our entire LR-RNA-seq dataset. However, the overall transcript structure

diversity of a gene does not necessarily reflect the transcript structure diversity of a gene

within a given sample. Therefore, we computed gene triplets for each sample in our dataset

using all detected transcripts in each sample (sample-level gene triplets) or just the major

transcripts in each sample (sample-level major gene triplets). These gene triplets can also

be visualized on the gene structure simplex where each point represents the gene triplet

associated with a different sample (Fig. 3.10k).

In order to find genes that display heterogeneous transcript structure diversity across unique

biological contexts, we computed the average coordinate (centroid) for each gene from the

sample-level gene triplets and calculated the distance between it and each sample-level gene
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triplet (Supplementary methods). 2,892 unique genes had a distance z-score > 3 in at

least one sample and therefore demonstrate dissimilar transcript structure diversity from the

average. One such example is AKAP8L in the H9-derived pancreatic progenitors (z-score:

5.23). AKAP8L can bind both DNA and RNA in the nucleus and has been shown to have

functional differences on the protein level resulting from alternate transcript choice116,117. In

our data, transcripts of this gene generally differ in terms of the EC or TES choice, but this

behavior differs from sample to sample (Fig. 3.10k). For example, transcripts of AKAP8L

differ only in their ECs in H9 embryonic stem cells, whereas transcripts differ in their ECs

and TESs in the H9-derived pancreatic progenitors (Fig. 3.10l-m).

We also compared our sample-level gene triplets to the observed gene triplets to understand

how transcript structure diversity differs globally versus within samples (Fig. 3.10d, Fig.

3.6j, Fig. 3.14a-h). First, we simply counted the number of triplet features or transcripts

per gene and found that while most genes have more than one triplet feature or transcript

globally (Fig. 3.6e-g, j), on the sample level, most genes have far fewer triplet features and

transcripts; with a particularly pronounced difference for the TSS (Fig. 3.14a-d). We found

that the distributions of triplet features overall and in each sample were significantly different

from one another (two-sided KS test) (Fig. 3.14e-l, Supplementary methods).

To determine how transcript structure diversity for each gene changes from the global to

sample level using the gene structure framework, we computed distances between the global

observed gene triplets for non-simple genes to sample-level gene triplet centroids (Supplemen-

tary methods). We find that 3.2% of tested genes have a distance z-score > 2 between their

observed and sample-level centroid gene triplets. In support of our analysis on the individual

triplet feature level, we find that 94.8% of genes from the TSS-high sector in the observed set

do not share this sector with their sample-level centroid, indicating that genes with a large

number of promoters typically use them in a sample-specific manner. ACTA1, a gene that

encodes for an actin protein118, is the gene with the highest distance between observed and
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sample-level centroid. Its observed gene triplet is (1,18,1) and therefore splicing-high. How-

ever, in most samples where ACTA1 is expressed, it has only one transcript isoform (Fig.

3.14m). This drives the sample-level centroid behavior into the mixed sector (Fig. 3.14n).

In contrast, in heart and muscle ACTA1 expresses 18 and 15 transcripts respectively, which

all differ on the basis of their ECs (Fig. 3.14m-o). This illustrates how the gene structure

framework can be used to highlight differences between sample-specific and global transcript

structure diversity, and also shows that individual genes are substantially different.

Sample-specific and global changes in predominant and major transcript isoform

usage

Nevertheless, the transcript structure diversity pattern for the majority of genes is consistent

across samples where they are expressed at substantial levels. Elastin (ELN ), which is an

important component of the extracellular matrix119, is the gene with the greatest number

of detected transcripts in our dataset (283 in total). We find that in most samples, distinct

transcripts of ELN are characterized by different ECs (Fig. 3.15a). For example, in lung,

ELN has 32 major transcripts with 21 different ECs, but in 31 of its major transcripts,

uses only one TSS and two TESs (Fig. 3.15b). By contrast, the four transcripts from

the transcription factor CTCF expressed in lung use three TSSs but only one TES (Fig.

3.15c-d).

While the observed gene triplets for a gene represent the overall transcript structure diversity,

the observed major gene triplets capture diversity of the most highly expressed transcripts in

each sample. We computed the distances between the observed and observed major simplex

coordinates for protein coding genes. The transcription factor E4F1 120 has a high distance

between the observed and observed major gene triplets, which corresponds to a change from

the mixed to splicing-high sector (Fig. 3.15e-f). This sector change is driven by the use of

fewer TSSs and TESs in major transcripts. Overall, 83.7% of protein coding genes retain

their sectors between our observed and observed major triplets, while 4.8% genes in the
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mixed sector move to one of the three corners of the simplex (TSS, splicing, or TES-high)

(Fig. 3.15g). Thus, the differences between the observed and observed major gene triplets

in a subset of genes can be substantial.

One criterion for the identification of MANE transcripts is how highly expressed the tran-

script is compared to others50. Therefore, we assessed how frequently the MANE transcript

was the predominant one in each of our LR-RNA-seq libraries. Limiting ourselves to only

the genes that have annotated MANE transcripts in GENCODE v40, we found that 64.1%

of genes have a non-MANE predominant transcript in at least 80% of the libraries where

the gene is expressed (Fig. 3.15h). At the individual triplet feature level, 30.8% of TSSs,

40.9% of ECs, and 45.2% of TESs have a non-MANE predominant feature in at least 80% of

libraries (Fig. 3.15i-k). Therefore, though the MANE transcript typically is the most highly

expressed transcript in a library, most genes with MANE transcripts have some libraries

where this is not the case. For non-MANE predominant transcripts, only 17.0% were pre-

dicted to have the same ORF as the MANE transcript. Furthermore, 62.1% of non-MANE

predominant transcripts are predicted to encode for a full ORF that does not undergo NMD.

These results indicate that in many cases, the alternative predominant transcript in a sample

likely encodes for a distinct, functional protein. The genes where the MANE transcript and

triplet features are frequently not the predominant one represent loci that would suffer more

from restricting analyses to only a single transcript isoform.

For a subset of gene / library combinations where the MANE transcript or feature was not

the predominant one, the MANE transcript or feature was still expressed, albeit at a lower

level. For these gene / library combinations, we compared the expression of the predominant

transcript to the MANE one (Fig. 3.16a-d). We found that for predominant transcripts or

triplet features expressed <30 TPM, the MANE counterpart was expressed at a comparable

level. By contrast, for the opposite situation, where the MANE transcript or triplet feature

was the predominant one, we found that the secondary transcript was not expressed at
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a similar level (Fig. 3.16e-h). Overall, for most gene / library combinations, the MANE

transcript or triplet feature is the predominant one (Fig. 3.16i-l).

Comparing transcript structure diversity between species

We ran Cerberus on the ENCODE4 mouse LR-RNA-seq dataset to calculate transcript and

gene triplets to enable comparison of transcript structure diversity between the two species.

Compared to human GENCODE v40, GENCODE vM25 genes are less enriched in the TSS,

splicing, and TES-high sectors (Fig. 3.10f-j, Fig. 3.17a-e, Fig. 3.18a-c). For the mouse

observed and observed major gene triplets, we see relatively similar percentages of genes

in each sector (Fig. 3.17a-e, Fig. 3.18a-c). We found fewer predominant transcripts across

samples per protein coding gene in mouse than in human, which is expected due to the overall

lower number of tissues in our mouse data, with a median of 2 predominant transcripts per

gene and 57.7% of protein coding genes with more than one (Fig. 3.18d). Furthermore, we

observe that 54.5% of protein coding transcripts with novel ECs are predicted to encode for

full ORFs without NMD. Thus, the two transcriptomes have similar distributions of genes

in our gene structure simplex.

In order to make gene-level comparison for orthologous genes in both species, we subset

the human samples on those that are the most similar to the mouse samples and computed

“mouse matched” observed, observed major, and sample-level gene triplets (Supplemen-

tary methods, Table S1-2). We computed the sample-level centroids for each gene in both

species and computed the distance between each pair of 1:1 orthologs. Of the 13,536 or-

thologous genes, 4.3% have a distance z-score > 2 between the species and therefore exhibit

substantial changes in transcript structure diversity between the species. One of these is

ADP-Ribosylation Factor 4 (ARF4 ), which is the most divergent member of the ARF4

family121. Human ARF4 sample-level gene triplets are nearly always splicing-high whereas

mouse Arf4 sample-level gene triplets are mainly TES-high (Fig. 3.17f-g). We examined the

ARF4 / Arf4 transcripts expressed in matching embryonic stem cell samples (H1 in human
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and F121-9 in mouse) and found that, despite the homologous samples, all 3 of the expressed

human transcripts use the same TSS and TES but differ in the ECs whereas all 3 expressed

mouse transcripts use the same TSS and EC but differ at the TES (Fig. 3.17h-i). We find

globally that when comparing the observed major gene triplets between human and mouse,

only 42.2% of genes have the same sector in human and mouse (Fig. 3.17j). This result

holds even when restricting ourselves to comparing human tissues with adult mouse samples

or just a comparison between human and mouse embryonic stem cells (Fig. 3.17k). Thus,

we find substantial differences in splicing diversity for orthologous genes between human and

mouse.

3.4 Discussion

The ENCODE4 LR-RNA-seq dataset is the first large-scale, cross-species survey of transcript

structure diversity using full-length cDNA sequencing on long-read platforms. We identify

and quantify known and novel transcripts in a broad and diverse set of samples with uniformly

processed data and annotations available at the ENCODE portal. A new framework was

introduced for categorizing transcript structure diversity based on their exon junction chains

and ends using gene and transcript triplets, which allowed us to use the gene structure

simplex to visualize and compare gene triplets between samples and across species. The

results showed a full range of transcript structure diversity across the transcriptome, based on

promoter, internal splicing, and polyA site choice. As expected, the existing gene annotation

catalogs such as GENCODE have successfully captured individual features such as TSSs

and exons. However, GENCODE annotated full-length transcripts only represent a subset

of the TSS, EC, and TES combinations that we observe using our conservative pipeline that

requires full end-to-end support in a single read and support from multiple reads for defining

ends. From the human LR-RNA-seq quantification, we found more than one predominant
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transcript across samples for 73.0% of genes, which is in contrast with prior reports71,122.

We also found that for a substantial number of genes, transcript structure diversity and

major transcript usage for the same gene differs between tissues, samples, and developmental

timepoints. The majority of genes had at least one library where the MANE transcript is not

the predominant transcript. This could confound analyses such as variant effect prediction in

which it is common practice to consider only one transcript per gene. Finally, we found that

transcript structure diversity behavior differs quite strikingly between human and mouse

on a gene-by-gene basis. In matching samples, the dominant source of transcript structure

diversity differed for more than half of orthologous protein coding genes.

Our data and framework provide a foundation for further analyses such as the functional

impacts of alternative 5’ and 3’ ends, RNA modifications, RNA binding protein function,

allele-specific expression, and transcript half-life. Together with the accompanying tissue and

cell type annotations, this constitutes a transcript-level reference atlas that is structured ap-

propriately for integration of future single-cell long-read analysis. Exploration using the gene

structure simplex analysis will yield additional genes showing sample specific variance com-

pared to their average behavior when extended to new tissues, differentiation time courses,

or disease samples. The triplet annotation scheme for transcripts, based on mechanistically

distinct transcript features, organizes and simplifies high-level analysis of transcripts from

the same gene. We find it to be a useful and commonsense improvement over arbitrary

transcript IDs and we expect it to be widely applicable to transcriptomes of any organism

that uses regulated alternative splicing, promoter choice, or 3’ end selection.

Our annotations are consistent and extensive, yet they have several limitations. With the

current sample preparation protocol and depth of sequencing, we reliably detect transcripts

that are expressed above a minimum expression level of 1 TPM and are less than 10 kb long.

While 99.3% of GENCODE v40 polyA transcripts are less than 10 kb long, we are undoubt-

edly underrepresenting transcripts that are at the long end of the distribution, especially
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when they are expressed at low levels or in rare cell types within a tissue. RNA integrity

differences between the human cell lines and mouse tissues, both of which produce very high

quality RNA compared to human postmortem tissues, are expected to affect our results, be-

cause we have focused on full-length transcript sequencing rather than read assembly. Our

imposition of minimum expression and inherent length limitations could also lead to lower

sensitivity of splicing diversity in lncRNAs, which have thus far generated staggering tran-

script structure complexity when sequenced after enrichment capture123. We also had lower

detection of pseudogenes, and we hypothesize that the PacBio platform’s accuracy and read

length reduce the multimapping errors typical of short reads, especially for pseudogenes of

highly expressed genes.

Within these boundaries outlined above, we were able to assess the sources and specifics

of transcript structure diversity for major transcripts of most protein coding genes. Nearly

all studies that have examined alternative splicing have emphasized transcript isoform mul-

tiplicity per gene. Also as expected, studies that have applied more permissive processing

pipelines, used transcript assembly, or focused on nuclear RNA typically find evidence for far

more RNA transcripts, especially at lower expression ranges35,42,44,96,124. Assigning biological

functions to new transcripts from our collection or any other contemporary study is a major

challenge for the field. Unlike DNA replication’s elaborate mechanisms to ensure fidelity,

the three major processes of RNA biogenesis mapped here are understood to operate with

less stringent fidelity, and though it has long been debated, we consider evidence for the

existence of a new transcript isoform simply makes it a candidate of interest for a protein

coding, precursor, or regulatory function.

The range of regulation used by different genes was illuminating. COL1A1, a complex

gene in terms of number of exons, exhibited minimal transcript structure diversity in spite

of high expression versus other genes of similar expression levels, such as PKM with its

many transcripts resulting from all three mechanisms. This implies that transcript structure
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diversity is a property of the gene that has been optimized in evolution. This has major

implications for evaluating the functions of regulatory factors such as PAX6, which has 81

transcripts in GENCODE v40, and 33 transcripts in our dataset. Conventional gene-level

short-read RNA-seq profiling is likely obscuring important distinctions in transcript usage.

While not every one of these transcripts leads to a difference in the protein product, changes

at the 5’ and 3’ end are likely to alter the regulation of those transcripts. The incorporation

of transcript usage as well as its regulation within the framework of gene regulatory networks,

where appropriate, is a major challenge going forward.

Considering transcript structure diversity as a fundamental, tunable property of gene func-

tion, the mouse-human comparative results were the most surprising to us. In genomics

and in the wider biology community we often use orthology of mouse and human genes to

predict and interpret gene function in vivo, including many uses of mice as mammalian mod-

els for both basic and preclinical purposes. The differences in transcript structure diversity

that surfaced when we compared matching tissues from human and mouse suggests that

this diversity is rapidly evolving on a per gene basis, even between primates and rodents.

This is, however, consistent with prior observations of a large population of rapidly evolv-

ing candidate cis-regulatory elements125. The results presented here provide a roadmap for

evaluating the evolution of transcript structure diversity across species and impetus to focus

on it, especially for genes with substantial differences that would affect interpretation of

existing animal models and expectations for humanized gene-locus mouse models. It is hard

to underestimate the need for better methods to test the functional significance of different

transcript isoforms.
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3.5 Supplementary results

The ENCODE4 microRNA-seq dataset

We sequenced 254 human samples with microRNA-seq, which specifically captures mature

(21-25 bp) microRNAs. We mapped our microRNA-seq data to pre-microRNA sequences in

GENCODE v29. We detected 1,130 microRNAs at CPM ≥ 2 across the full dataset (Fig.

3.3a). Overall, microRNAs are more sample-specific than known genes in both short and

long-read RNA-seq (Fig. 3.3a, Fig. 3.1c, f, Fig. 3.4b). PCA of all microRNA samples shows

separation of brain samples from other tissues and cell lines by PC1, while cell lines are

separated by both PC1 and PC2 (Fig. 3.3b). Comparison of microRNA detection between

tissue types and cell lines reveals that brain samples have the least diversity when compared

to the full set of GENCODE v29 microRNAs (Fig. 3.3c), yet the most microRNAs expressed

at ≥ 2 CPM (Fig. 3.3d). This indicates that a core set of microRNAs are expressed in the

brain. Their high tissue-specific expression may be driving the clustering of brain samples

apart from non-brain tissues and cell lines, which overlap slightly (Fig. 3.3b). Comparison of

the overlap of detected microRNAs across the sample biotypes reveals that more microRNAs

overlap between brain and cell lines than between brain and non-brain tissues (Fig. 3.3e). Of

the 80 shared microRNAs between brain and cell lines, most (53) are expressed in neuronal

and glial derived cells.

Machine learning models predict the support for long-read TSS peaks by other

TSS-annotating assays and in a cross-cell type manner

We sought to identify a set of high-confidence TSS regions from our observed LR-RNA-seq

TSSs using multiple orthogonal TSS assays such as RAMPAGE and CAGE126,127. However,

matching data from external assays is only available for a few samples, such as our ENCODE

tier 1 cell lines GM12878 and K562. Therefore, we wanted to predict the external support for

our observed LR-RNA-seq TSSs. The majority of our observed TSS regions are supported by
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these external assays (Fig. 3.8a-b, Fig. 3.6b, Fig. 3.7a). We used a simple logistic regression

model that incorporates expression, DNase-Hypersensitivity (DHS)128, and length of our

LR-RNA-seq observed TSSs (Supplementary methods, Fig. 3.8c-d). Models trained and

tested on one experiment each from GM12878 and K562 TSS regions were able to predict

whether an LR-RNA-seq TSS region was also supported by RAMPAGE or CAGE assays,

with AUROC values as high as 0.95 for Cerberus and 0.98 for LAPA-annotated peaks in the

same cell type (Fig. 3.8e), which is expected given that LAPA regions are narrower than

Cerberus regions. Models trained on one cell type can also be used to predict the RAMPAGE

or CAGE support in another cell type, in a cross-cell type manner (Fig. 3.8f). This approach

may be used to define a set of high-confidence TSS regions from LR-RNA-seq that would

also be supported by RAMPAGE or CAGE where neither RAMPAGE nor CAGE data are

available in the cell type of interest. This demonstrates that TSSs derived from LR-RNA-

seq serve as a reasonable stand-in for CAGE and RAMPAGE, with the added benefit that

LR-RNA-seq profiles both ends and the exon structure of transcripts at the same time.

Applying Cerberus to the human ENCODE4 LR-RNA-seq dataset leads to the

largest number of detected alternative splicing events to date

We compared the detection of alternative splicing (AS) events in our dataset with a recent

LR-RNA-seq transcriptome published by the GTEx consortium75. We ran SUPPA2129 on the

observed LR-RNA-seq transcripts and obtained, for every gene and type of local AS event, a

list of AS transcripts. We found a considerably larger number of AS transcripts compared to

those reported in the GTEx LR-RNA-seq catalog. We observed a higher proportion of novel

AS transcripts defined by EC compared to TSS and TES (Fig. 3.12a), albeit lower than those

reported by GTEx. This is likely due to the fact that our novel transcripts are defined with

respect to a more recent GENCODE version (v40) than the one used by the GTEx study

(v26). In support of this, we found that the majority of our observed ENCODE LR-RNA-seq

transcripts, both known and novel, are missing in the GTEx catalog (Fig. 3.12b). On the
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other hand, although most of the GTEx novel transcripts are not reported in the ENCODE4

catalog, they represent combinations of already annotated splice junctions (NIC). From a

methodological perspective, we also found that Cerberus accounts for a larger variety of AS

events related to TSSs and TESs (0.25 < PSI < 0.75) compared to SUPPA2 (Fig. 3.12c).

Altogether, this indicates that the ENCODE4 LR-RNA-seq catalog provides the largest set

of novel and annotated AS events in the human transcriptome available to date.

3.6 Supplementary methods

B6/Cast mouse tissue collection

Mouse tissues were harvested from C57BL/6J (RRID:IMSR JAX:000664) x CAST/EiJ (RRID:IMSR JAX:000928)

F1 animals across 7 postnatal day (PND) or postnatal month (PNM) timepoints: PND4,

PND10, PND14, PND25, PND36, 2 months and 18-20 months. Tissues were flash frozen in

liquid nitrogen and stored at -80C prior to processing.

RNA extraction, cDNA preparation, and PacBio sequencing

All details for preparation and sequencing of PacBio cDNA are detailed on the ENCODE

portal. Relevant protocol document URLs for each library can be found in Tables S1-2 in

the “document url” column. RIN numbers, whether or not spike-ins were included, and the

platform the library was sequenced on are also included.

Preprocessing short-read RNA-seq data and data availability

All short-read RNA-seq data was preprocessed according to the details on the ENCODE por-

tal. Gene quantification of 548 short RNA-seq datasets were downloaded from the ENCODE

portal using this cart (https://www.encodeproject.org/carts/4ea7a43f-e564-4656-a0de-b09c92215e52/),

then TPM values for polyA genes were extracted from each of them.
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Preprocessing microRNA-seq data and data availability

Quantification of 254 microRNA-seq datasets using GENCODE GRCh38 V29 annotations

were downloaded from the ENCODE portal using this cart. Counts were concatenated across

all datasets and converted to CPM for downstream analyses.

Preprocessing LR-RNA-seq data and data availability

All LR-RNA-seq data was preprocessed according to the details on the ENCODE portal.

Briefly, reads are basecalled with CCS. We mapped reads to hg38 or mm10 using minimap233

with the following settings: -ax splice -uf --secondary=no -C5. We corrected for com-

mon long-read sequencing artifacts such as microindels and non-canonical splice junctions

(sans those with support from the GENCODE v29 or vM21 reference annotation) with Tran-

scriptClean38. The resultant BAM files are available as the “alignments” files for each file

accession (specified in the “ENCODE alignments id” column of tables S1-2) on the EN-

CODE portal.

Input and output files, including the final Cerberus GTFs, gene triplets, and transcript

triplets, are available at the following accessions:

• Human: ENCSR957LMA

• Mouse: ENCSR110KDI

Raw data are available at the following links:

• Human: https://www.encodeproject.org/carts/829d339c-913c-4773-8001-80130796a367/

• Mouse: https://www.encodeproject.org/carts/55367842-f225-45cf-bfbe-5ba5e4182768/

Human / Mouse LR-RNA-seq annotation with TALON and LAPA
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Mapped LR-RNA-seq BAMs were obtained from the ENCODE portal using the above cart

links for human and mouse respectively. Reads were annotated with their 3’ end A con-

tent using the talon label reads --ar 20 module and hg38 / mm10. A reference TALON

database was initialized either from GENCODE v29 or vM21 using talon initialize database

--l 0 --5p 500 --3p 300. Reads were annotated using TALON with the reference database

as input and default settings. Output transcripts were filtered for reproducibility of 5 reads

across 2 libraries, and for reads that had fewer than 50% A nucleotides in the last 20 bp

of the 3’ end to remove artifacts of internal priming using the talon filter transcripts

--maxFracA 0.5 --minCount 5 --minDatasets 2 command. Unfiltered and filtered tran-

script abundance matrices were obtained using the talon abundance command. A filtered

GTF was obtained using the talon create GTF command. From the unfiltered TALON

abundance, counts of each gene were computed by summing up counts for each transcript

per gene.

We ran LAPA41 on the BAM files output from TranscriptClean to create TSS and TES

clusters from LR-RNA-seq. If the BAM files had replicates, we filtered clusters by choosing

a cutoff that ensures a 95% replication rate. Samples without replicates were filtered with a

median cutoff of replicated clusters. Using those TSS and TES clusters and the read annot

created by TALON, we corrected TSSs and TESs of the filtered TALON GTF file. During

the correction, new transcript isoforms were created if the same exon junction chain mapped

to multiple start and end sites.

Gene rank analysis

For detected (≥ 1 TPM in any library) polyA genes in the human LR-RNA-seq dataset, we

ranked the genes in each library according to their expression (1 = most highly expressed)

and plotted the genes at specific ranks for each library by their TPM, split by cell line and

tissue derived libraries. For statistical testing between the cell line and tissue groups, we

performed a Wilcoxon rank-sum test with p-value thresholds P > 0.05; *P ≤ 0.05, **P ≤
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0.01, ***P ≤ 0.001, ****P ≤ 0.0001.

Novel gene analysis

For novel genes in both human and mouse, we first filtered our novel TALON transcripts for

those that passed the filters previously described (5 reads in at least 2 libraries and <50% A

nucleotides in the last 20bp of the 3’ end). We then selected only the transcripts that passed

this filter that belonged to novel intergenic genes and that had at least one spliced (i.e. more

than one exon) transcript isoform expressed ≥ 1 TPM. To make an analogous comparison

to our annotated genes, we performed the same filtering on our TALON transcripts with the

exception of requiring the transcripts to be from annotated polyA genes rather than from

novel intergenic genes.

Cerberus

Overview

Cerberus fills several roles. Firstly, it provides a way to harmonize transcriptomes based on

their TSS, EC, and TES content across diverse sources to determine transcript equivalence

even if the annotations were not performed in the same way. This is particularly helpful with

large datasets where it is time and memory prohibitive to annotate all long-read RNA-seq

reads at the same time. Second, it allows for incorporation of data from external assays or

references to either corroborate triplet features already in the Cerberus reference or to add

new entries to the reference. This is particularly helpful for TSSs and TESs, where there are

high-throughput assays that measure 5’ or 3’ end expression and identity, such as CAGE or

PolyA-seq; and where there are already reference atlases that catalog these features such as

the PolyA Atlas115 and FANTOM114. Thirdly, in annotating transcripts according to their

triplet features, it provides a way to distinguish transcripts from one another solely based

on their names. Finally, Cerberus’ downstream analysis tools leverage the triplet feature

content of each transcript to classify genes based on their transcript structure diversity from
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a given set of transcripts.

Obtaining annotated TSS / TES regions from GTFs

Given a GTF, cerberus gtf to bed (Fig. 3.5a) will extract the single base pair TSS and

TES coordinates and extend them by n bp on either side. Regions within m bp of one another

in the same gene are merged to ensure non-overlapping intervals. Each unique combination

of coordinates, strand, and gene is recorded in BED format.

Obtaining annotated exon junction chains from GTFs Given a GTF, cerberus

gtf to ics will extract each unique combination of intron coordinates, strand, and gene

and record them in a tab-separated format (Fig. 3.5a).

Assigning triplet features numbers

As part of both cerberus gtf to ends and gtf to ics (Fig. 3.5a), Cerberus numbers

triplet features based on their annotation status within the reference GTF, if any. For

triplet features derived from these GTFs, each TSS, EC, and TES is numbered from 1 to n

within each gene based on the annotation status of the transcript they were derived from.

Transcripts are first ordered by MANE status, then APPRIS49 principal status, and finally

whether the transcript comes from the GENCODE basic set. The result is that triplet

features from MANE transcripts are always numbered 1, and lower triplet feature numbers

within a gene correspond to transcripts with more importance as determined by GENCODE.

Merging TSS and TES regions across multiple BED files

For each input BED file, cerberus agg ends (Fig. 3.5a) takes a boolean argument for

whether the regions should be used to initialize new TSS / TES regions, a boolean argument

for whether the regions should be considered reference regions, and a name for each BED file

source. BED files without a gene identifier cannot be used to initialize regions. For the first

BED file, Cerberus creates a set of reference regions and uses the triplet feature numbers
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that were previously assigned by Cerberus to name each TSS or TES. The first BED file

must have gene IDs and must be used to initialize the regions. For each subsequent BED

file, in order, Cerberus determines which new regions are within m bp of a region already in

the reference. These regions are added as sources of support for the already-existing regions,

but do not extend the boundaries of existing regions in order to combat growing regions as

more data is added. If a region is not within m bp of an existing region and the initialize

regions option is turned on, the new region is added as a new region in the reference set.

After all new regions have been added, triplet feature numbers are computed by ordering

the features within each gene based on the number assigned by Cerberus in a previous step

and then incrementing the preexisting Cerberus reference maximum number. BED files that

are not used to initialize new regions will only ever be added as additional forms of support

for each region already in the reference.

Merging ECs across multiple EC files

For each EC file, cerberus agg ics (Fig. 3.5a) takes a boolean argument for whether the

ECs should be used as a reference and a source name. For the first EC file, Cerberus creates

a reference set of ECs and uses the EC numbers that were determined using cerberus

gtf to ics. For each subsequent EC file, Cerberus finds ECs that are not already in the

Cerberus reference set, orders the new ECs by their numbers from cerberus gtf to ics,

creates new numbers for each EC by, in order, assigning them numbers by incrementing from

the maximum existing number for a gene from the reference.

Creating a Cerberus reference

After generating separate aggregated TSS, EC, and TES files, cerberus write reference

(Fig. 3.5a) will write all three tables in a Cerberus reference h5 format. h5 is a well-

supported (readers exist in both Python and R) and commonly used data structure that can

store multiple tables. These results are stored in an additional table in the h5 file that maps
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each input transcript to the triplet features used.

Annotating a GTF with transcript triplets

Given an input GTF, cerberus annotate transcriptome will determine which TSS, EC,

and TES in the Cerberus reference set match each of the features in a transcript. For ECs,

this relies on exact matching of the EC and the gene. For 5’ and 3’ ends, Cerberus looks

for the closest TSS region from the same gene upstream or overlapping its TSS. For TESs,

Cerberus looks for the closest TES region from the same gene downstream or overlapping

its TES.

Updating GTFs and counts matrices with a Cerberus annotation

After each transcript from a transcriptome has been assigned a transcript triplet, the cor-

responding GTF and counts matrix from the transcriptome can be updated to use the new

transcript identifier using cerberus replace gtf ids and cerberus replace ab ids (Fig.

3.5b). Cerberus will replace the transcript ids with the transcript triplets and, if requested,

merge transcripts that are assigned duplicate transcript triplets, summing the counts in the

case of the counts matrix.

Gene triplet and gene structure simplex coordinate computations

Following transcriptome annotation, gene triplets can be calculated for different sets of anno-

tated transcripts using Cerberus’ Python API and the CerberusAnnotation data structure.

Regardless of the input set, Cerberus computes the gene triplets by counting the number of

unique TSSs, ECs, and TESs used across a set of transcripts (Fig. 3.10a, Fig. 3.13). This cal-

culation can be done without any filtering using the CerberusAnnotation.get source triplets()

function, which computes the number of TSSs, ECs, and TESs used across each transcrip-

tome previously annotated with cerberus annotate transcriptome. CerberusAnnotation.get expressed triplets()

will calculate the gene triplets for individual samples based on the subset of transcripts that
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are expressed in each sample and can optionally use a table of transcript / sample combina-

tions to determine which transcripts are used in each sample. Finally, CerberusAnnotation.get subset triplets()

simply takes in a list of transcripts to compute a gene triplet for the entire input set. In

all cases, the number of transcripts used to calculate the gene triplet is also recorded. After

computing the gene triplets, the EC count is converted to the splicing ratio. To generate

the gene structure simplex coordinates, the sum of the number of TSSs, splicing ratio, and

number of TESs is normalized such that they sum to one (Fig. 3.10a-b, Fig. 3.13).

Additionally, the sector assignments are generated for each gene triplet. Genes with a TSS

simplex coordinate > 0.5 are TSS-high, those with a TES simplex coordinate > 0.5 are

TES-high, and those with a splicing ratio simplex coordinate > 0.5 are splicing-high. Genes

where all three simplex coordinates ≤ 0.5 are mixed, and genes with just one transcript are

in the simple sector. An important note is that mixed genes can have the same coordinates

as a simple gene. To this end, when calculating gene triplets, the number of transcripts used

to generate the triplet is also recorded and used to separate out the simple from the mixed

genes (Fig. 3.10a-b, Fig. 3.13).

Computing gene triplet centroids

Given a set of gene triplets, the centroid is computed by averaging each gene structure

simplex coordinate. The resulting coordinate retains the property that it sums to one such

that it can still be accurately plotted in the simplex (Fig. 3.13).

Computing distances in the gene structure simplex

We compute the distance between any two points on the gene structure simplex as the Jensen-

Shannon distance (Fig. 3.13). Jensen-Shannon distance is a metric on probability distribu-

tions130. For a given pair of gene structure simplex coordinates, the Jensen-Shannon distance

is computed in Cerberus using Scipy131 with the scipy.spatial.distance.jensenshannon

function.
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Cerberus processing of human ENCODE4 LR-RNA-seq dataset

Obtaining annotated TSS / TES regions from GTFs

The GTF files from GENCODE v40, GENCODE v29, the LAPA output GTF representing

the human ENCODE LR-RNA-seq dataset, and the GTEx LR-RNA-seq GTF were used to

obtain TSS and TES regions associated with each transcript using cerberus gtf to ends.

For each GTF, the single base pair TSS and TES coordinates were extracted and extended

50 bp on either side, and regions within 50 bp of one another were merged. Each unique

combination of coordinates, strand, and gene were recorded.

Obtaining external TSS / TES regions

External datasets used to support TSSs were obtained from the ENCODE CAGE and RAM-

PAGE data, FANTOM CAGE data114, and ENCODE PLS, pELS, and dELS cCREs. Ex-

ternal datasets used to support TESs were obtained from ENCODE PAS-seq data, and the

PolyA Atlas115. Each file was downloaded in BED format and converted to the BED format

required for Cerberus.

Obtaining annotated exon junction chains from GTFs

The GTF files from GENCODE v40, GENCODE v29, from the human ENCODE LR-

RNA-seq output GTF, and the GTEx LR-RNA-seq GTF were used to obtain exon junction

chains from each transcript using cerberus gtf to ics. Each unique combination of intron

coordinates, strand, and gene were recorded.

Creating a set of reference triplet features

To create a consensus reference set of triplet features, cerberus agg ends and cerberus

agg ics (Fig. 3.5a) were run on the aforementioned TSS, EC, and TES sets, with m=20

for the TSSs and TESs. The triplet features from GENCODE v40 and v29 were used as
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reference features. For the TSSs, new regions were incorporated from GENCODE v40,

v29, the human ENCODE LR-RNA-seq data, and the GTEx data, whereas the CAGE,

RAMPAGE, and cCRE data were only used as forms of support for existing regions. For

TESs, new regions were incorporated from GENCODE v40, v29, the human ENCODE LR-

RNA-seq data, and the GTEx data, whereas the PAS-seq and PolyA Atlas regions were used

as forms of support for existing regions.

Transcriptome annotation

The GTFs of the GENCODE v40, GENCODE v29, and human ENCODE LR-RNA-seq tran-

scriptomes were annotated with cerberus annotate transciptome, updated GTFs were

generated with cerberus replace gtf ids with the update ends and collapse options used

(Fig. 3.5b). For the human ENCODE LR-RNA-seq data, cerberus replace ab ids was

also run on the filtered abundance file output from LAPA using the collapse option to gen-

erate a matching counts matrix (Fig. 3.5b).

Cerberus analysis of human ENCODE4 LR-RNA-seq

Finding observed transcripts and transcripts expressed in a sample

Observed transcripts are defined as transcripts that are expressed ≥ 1 TPM in any given

library. Observed transcripts in a specific sample are transcripts that are expressed ≥ 1

TPM in any library that belongs to the same sample.

Finding observed major transcripts and major transcripts in a sample

For each sample, each transcript is assigned a percent isoform (pi, 0-100) value that indi-

cates what percentage of the gene’s expression is derived from said transcript using Swan56.

Transcripts for a gene are then ranked by pi value. In order from the highest pi value tran-

script to the lowest pi value transcript, transcripts are added to the major transcript set

until the cumulative pi value of the set is > 90, yielding the sample-level major transcript
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set. The observed major transcripts for the entire dataset is computed by taking the union

of all major transcripts across all samples. In both cases, transcripts are limited to those

that have passed the observed and sample-level observed transcripts as defined above.

Gene triplet computations

Gene triplets were calculated for the following sets of transcripts, all just using polyA genes:

• All transcripts from annotated GENCODE v40 genes (v40)

• All observed transcripts (observed)

• All observed major transcripts (observed major)

• Detected transcripts in each sample (sample-level)

• Detected major transcripts in each sample (sample-level major)

• All observed transcripts in the dataset from samples that match the mouse samples

(mouse match)

• All observed major transcripts in the dataset from samples that match the mouse

samples (mouse match major)

Transcriptional diversity by gene biotype comparison

Using the gene triplets table, we found the gene / sample combination where each polyA

gene is most highly expressed and recorded the gene TPM and number of transcripts from

that gene in that sample. We then split each gene into its biotype category (protein coding,

lncRNA, or pseudogene) and into a TPM bin (lowly expressed, 1-10 TPM; medium expressed,

10-100 TPM; and highly expressed, 100-max TPM).

GO analysis of genes in each sector
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We used GSEApy’s Enrichr module132,133 to determine the enrichment of gene function

from the “GO Molecular Function 2021” database for genes in each of the five sectors as

categorized by their observed major triplets. We selected GO terms shown for those that

were in the top 5 results when sorted by most significant adjusted p-value.

Splicing factor sector analysis

We used this Biomart query to obtain a list of splicing factors. We determined each splicing

factor gene’s sector identity based on its observed major gene triplet, and compared the

percentage of genes per sector overall in the observed major category versus the splicing

factor observed major category.

Gene structure simplex distances computed

We computed the follow pairwise distances between simplex points:

• Sample-level gene triplet vs. the centroid for the sample-level gene triplets

• Observed gene triplet vs. the centroid for the sample-level gene triplets for each gene

with at least 2 transcripts

• Observed gene triplet vs. observed major gene triplet

Each set of distances was computed using only protein coding genes. Z-scores were also

computed for each comparison using Scipy’s stats.zscore function on all the distance

values.

Comparing sample-level to observed gene triplets

The number of transcripts, TSSs, ECs, and TESs was calculated for each gene globally (i.e.

# transcripts or triplet features / gene) and for each sample (i.e. # transcripts or triplet

features / gene / sample). For transcripts, TSSs, ECs, and TESs separately, a two-sided
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KS test was performed using Scipy’s stats.kstest function to assess statistical differences

between the global and sample-level transcripts or triplet features per gene distributions.

Calling predominant transcripts

On both the sample and library level, we called the most highly expressed transcript from

a gene the predominant transcript for that gene. On the sample level, we used the mean

expression of the transcript.

Predominant transcript MANE comparison

We first restricted this analysis to only consider genes which have annotated MANE tran-

scripts. For these genes, we determined how often the predominant transcript for a given

gene is the MANE transcript for a gene in each library.

Cerberus processing of mouse ENCODE4 LR-RNA-seq dataset

Obtaining annotated TSS / TES regions from GTFs

The GTF files from GENCODE vM25, GENCODE vM21, and from the LAPA output GTF

representing the mouse ENCODE LR-RNA-seq dataset were used to obtain TSS and TES

regions associated with each transcript using cerberus gtf to ends. For each GTF, the

single base pair TSS and TES coordinates were extracted and extended 50 bp on either

side, and regions within 50 bp of one another were merged. Each unique combination of

coordinates, strand, and gene were recorded.

Obtaining external TSS / TES regions

External datasets used to support TSSs were obtained from the ENCODE mouse PLS, pELS,

and dELS cCREs. External datasets used to support TESs were obtained from the mouse

PolyA Atlas. Each file was downloaded in BED format and converted to the BED format

required for Cerberus.
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Obtaining annotated exon junction chains from GTFs

The GTF files from GENCODE vM25, GENCODE vM21, and from the mouse LR-RNA-

seq GTF were used to obtain exon junction chains from each transcript using cerberus

gtf to ics. Each unique combination of intron coordinates, strand, and gene were recorded.

Creating a set of reference triplet features

To create a consensus reference set of triplet features, cerberus agg ends and cerberus

agg ics (Fig. 3.5a) were run on the aforementioned TSS, EC, and TES sets, with m=20

for the TSSs and TESs. The triplet features from GENCODE vM25 and vM21 were used as

reference features. New TSSs were incorporated from GENCODE vM25, vM21, the mouse

ENCODE LR-RNA-seq data, whereas the cCRE data were only used as forms of support

for existing regions. New TESs were incorporated from GENCODE vM25, vM21, and the

mouse ENCODE LR-RNA-seq data, whereas the PolyA Atlas regions were used as forms of

support for existing regions.

Transcriptome annotation

The GTFs of the GENCODE vM25, GENCODE vM21, and mouse ENCODE LR-RNA-

seq transcriptomes were annotated with cerberus annotate transciptome, updated GTFs

were generated with cerberus replace gtf ids with the update ends and collapse options

used (Fig. 3.5b). For the mouse ENCODE LR-RNA-seq data, cerberus replace ab ids

was also run on the filtered abundance file output from LAPA using the collapse option to

generate a matching counts matrix (Fig. 3.5b).

Cerberus analysis of mouse ENCODE4 LR-RNA-seq

Finding observed transcripts and transcripts expressed in a sample

Observed transcripts are defined as transcripts that are expressed ≥ 1 TPM in any given
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library. Observed transcripts in a specific sample are transcripts that are expressed ≥ 1

TPM in any library that belongs to the same sample.

Finding observed major transcripts and major transcripts in a sample

For each sample, each transcript is assigned a percent isoform (pi, 0-100) value that indi-

cates what percentage of the gene’s expression is derived from said transcript using Swan56.

Transcripts for a gene are then ranked by pi value. In order from the highest pi value tran-

script to the lowest pi value transcript, transcripts are added to the major transcript set

until the cumulative pi value of the set is > 90, yielding the sample-level major transcript

set. The observed major transcripts for the entire dataset is computed by taking the union

of all major transcripts across all samples. In both cases, transcripts are limited to those

that have passed the observed and sample-level observed transcripts as defined above.

Gene triplet computations

Gene triplets were calculated for the following sets of transcripts; all just using polyA genes:

• All annotated GENCODE vM25 genes (vM25)

• All observed transcripts in the dataset (observed)

• All observed major transcripts in the dataset (observed major)

• Detected transcripts in each sample (sample-level)

• Detected major transcripts in each sample (sample-level major)

Calling predominant transcripts

On both the sample and library level, we called the most highly expressed transcript from

a gene the predominant transcript for that gene. On the sample level, we used the mean

expression of the transcript.
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Human-mouse comparison

We found orthologous genes between human and mouse using this Biomart query, and subset

our considered genes to those that were protein coding, expressed in both species, and were

just 1:1 orthologs. We determined the sector of each gene in each species using the observed

major gene triplets in mouse, and the mouse match major gene triplets in human. We counted

the number of genes that have the same sector between human and mouse. Furthermore, we

compared the sector of each orthologous pair of genes between species just in the matching

embryonic stem cell samples (H1 in human, F121-9 in mouse) between human and mouse

to verify that the trend seen overall was reproducible on a more one to one comparison.

Additionally, we computed the centroids from the sample-level gene triplets from matching

samples in human and all sample-level gene triplets in mouse mouse and calculated the

Jensen-Shannon distances between sample-level centroids for each orthologous gene in human

and mouse.

ORF and NMD prediction

We used TAMA’s51 ORF / NMD prediction pipeline with minimal changes to support our file

formats. To pick one representative ORF from each transcript, we chose the ORF with the

highest percent identity from BLASTP134 to an annotated GENCODE v40 protein sequence;

breaking ties by considering ORF completeness. For transcripts with no BLASTP hits to

known transcripts, we picked complete ORFs; breaking ties by picking the longest ORF.

Comparing detection of AS events by SUPPA and Cerberus

We used SUPPA2 (v2.3129) to define alternative splicing (AS) events (A3: alternative 3’

splicing; A5: alternative 5’ splicing; AF: first exon; AL: last exon; IR: intron retention; SE:

exon skipping; MX: mutually exclusive exons). Specifically, we generated a catalog of local

AS events based on the Cerberus GTF file (function generateEvents) and used the novelties

of each observed transcript to compute the proportion of novel transcripts (based on EC,
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TSS, or TES) out of the total set of transcripts involved in a particular type of event.

Next, we used SUPPA2 to compute the Proportion of Splicing Index (PSI) for each type of

event using the observed transcript filtered expression matrix (polyA transcripts expressed

≥ 1 TPM in at least one library; function psiPerEvent). PSI values were averaged between

replicates of the same sample. We selected genes with at least one local AF or AL event,

applying a threshold of 0.25 < PSI < 0.75.

In order to compare the detection of AS events by SUPPA2 and Cerberus, we also computed

triplet feature PSI values based on events identified by Cerberus by dividing the counts

for any given TSS, EC, or TES by the total counts for the gene in a given sample. We

selected genes with at least one local event at the TSS or TES (0.25 < PSI < 0.75). Next,

we computed the intersection between genes showing AF (SUPPA2) and TSS (Cerberus)

events, and between genes showing AL (SUPPA2) and TES (Cerberus) events.

Machine learning models for RAMPAGE and CAGE TSS prediction

RAMPAGE and CAGE TSS annotation data for GM12878 and K562 were obtained from EN-

CODE portal (ENCSR000AEI, ENCSR000AER, ENCSR000CJN, ENCSR000CKA). LAPA

and Cerberus TSS regions derived from just one experiment each for GM12878 and K562

(ENCSR962BVU and ENCSR589FUJ respectively) were used for long-read data. Using

bedtools intersect135 a binary (0/1) label for each long-read peak was assigned depending

on whether the region overlapped with at least one peak in either of the RAMPAGE or

CAGE assays in the same cell type. Average DHS signal values over LR TSS peaks were cal-

culated using UCSC bigWigAverageOverBed on GM12878 and K562 DHS-seq experiments

(ENCSR000EMT, ENCSR000EOT). Test sets include long-read regions from chromosomes

2 and 3, whereas training sets include all other human chromosomes. 7 logistic regression

models were trained on each long-read experiment using all the 23-1 combinations of peak’s

TPM expression, DHS signal, and length (i.e. in R: glm(label TPM + DHS + length,
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type =”binomial”)) where the input parameters have been log2-transformed) and the AIC

values were calculated and ranked in each experiment and for each model type. The model

using all 3 parameters (TPM, DHS, and length) had the lowest AIC, meaning that given the

number of parameters and the observed RSS error, logit[label TPM + DHS + length] had

the highest predictive power and was therefore selected. For the same cell-type prediction, a

model is trained on [chr1, chr4-22, chrX] and tested on [chr2, chr3] for long-read data from

the same cell type (ex: K562). In cross-cell type prediction, a model is trained and tested

on two different cell lines (ex: trained on [chr1, chr4-22, chrX] of a GM12878 long-read

experiment and tested on [chr2, chr3] of a K562 long-read experiment). Cerberus replicates

belonging to the same experiment were combined by taking the average mean-normalized

TPM values of the identical peaks across different replicates.

Data and code availability

• Human LR-RNA-seq data / processing pipeline: https://www.encodeproject.org/

annotations/ENCSR957LMA/

• Mouse LR-RNA-seq data / processing pipeline: https://www.encodeproject.org/

annotations/ENCSR110KDI/

• Processing / figure generation code: https://github.com/fairliereese/paper_rnawg

• Cerberus: https://github.com/fairliereese/cerberus

3.7 Supplementary tables

• Table S1: Human LR-RNA-seq library metadata.

• Table S2: Mouse LR-RNA-seq library metadata.
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Figure 3.1: Overview of the ENCODE4 RNA datasets. a, Overview of the sampled
tissues and number of libraries from each tissue in the ENCODE human LR-RNA-seq
dataset. b, Percentage of GENCODE v40 polyA genes by gene biotype detected in at least
one ENCODE short-read RNA-seq library from samples that match the LR-RNA-seq at >
0 TPM, ≥ 1 TPM, and ≥ 100 TPM. c, Number of samples in which each GENCODE v40
gene is detected ≥ 1 TPM in the ENCODE short-read RNA-seq dataset from samples that
match the LR-RNA-seq. d, Data processing pipeline for the LR-RNA-seq data. e,
Percentage of GENCODE v40 polyA genes by gene biotype detected in at least one
ENCODE human LR-RNA-seq library at > 0 TPM, ≥ 1 TPM, and ≥ 100 TPM. f,
Number of samples in which each GENCODE v40 gene is detected ≥ 1 TPM in the
ENCODE human LR-RNA-seq dataset. g, Boxplot of TPM of polyA genes at the
indicated rank in each human LR-RNA-seq library. Not significant (no stars) P > 0.05; *P
≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001; Wilcoxon rank-sum test.
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Figure 3.2: Overview of the ENCODE4 LR-RNA-seq dataset. a, From top to
bottom, number of LR-RNA-seq libraries, samples (split by cell line / tissue identity as
well as timepoint, when relevant), and unique tissues or cell types in the ENCODE
LR-RNA-seq dataset split by species and tissue or cell line. b, Number of LR-RNA-seq
libraries versus the number of tissues or cell lines assayed, split by species and cell line /
tissue. c-d, Color legend and labels for each c, human sample, with samples that lack
corresponding short-read RNA-seq data denoted by a star d, mouse sample in the
LR-RNA-seq dataset; split by tissues and cell lines. e, Overview of the sampled tissues and
number of libraries from each tissue in the ENCODE mouse LR-RNA-seq dataset.

79



Figure 3.3: Overview and detection of microRNAs in the ENCODE
microRNA-seq dataset. a, Distribution of GENCODE v29 mature microRNAs detected
at CPM > 2 between cell lines, tissues, and brain tissue samples. b, PCA computed on
microRNAs detected > 2 CPM in each human microRNA-seq library, colored by cell line
and tissue designation and by brain tissue. c, Percentage of GENCODE v29 microRNAs
detected in at least one ENCODE human microRNA-seq library from either cell line,
tissue, or brain tissue samples at > 0 CPM and > 2 CPM. d, Number of samples in which
each GENCODE v29 microRNA is detected at > 2 CPM in the ENCODE human
microRNA-seq dataset. e, Overlap of detected (> 2 CPM) microRNAs in at least one
library derived from cell line, tissue, or brain tissue.
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Figure 3.4: Gene detection from short-read RNA-seq; gene detection, read
length and alignment QC in both human and mouse LR-RNA-seq. a, % of
GENCODE v40 polyA genes by gene biotype detected in at least one ENCODE short-read
library at various TPM thresholds. b, Number of samples in which each GENCODE v40
gene is detected in the ENCODE short-read RNA-seq dataset. c, Top 3 biological
processes from undetected GENCODE v40 protein coding genes. d, % and number of
detected GENCODE v40 MANE transcripts binned by transcript length. Restricted to
genes ≥ 10 TPM in at least one library. e, Number of raw reads vs. number of aligned
reads in each human LR-RNA-seq library. f, Median length of each raw read vs. median
read alignment length in each human LR-RNA-seq library. g, Post-TALON read length
profiles from human LR-RNA-seq data by tissue or cell line, and polyA transcript length
profile from GENCODE v40. h, % of GENCODE vM25 polyA genes by gene biotype
detected in at least one ENCODE mouse LR-RNA-seq library at various TPM thresholds.
i, Number of samples that each GENCODE vM25 gene is detected in the ENCODE mouse
LR-RNA-seq dataset. j, Post-TALON read length profiles from mouse LR-RNA-seq data
by tissue or cell line, and polyA transcript length profile from GENCODE vM25.
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Figure 3.5: Overview of Cerberus processing of transcriptomes and triplet
features. a, Workflow for generating a Cerberus reference: a collection of TSSs, ECs, and
TESs (triplet features) sourced from various inputs. b, Workflow for generating a Cerberus
transcriptome annotation, which assigns each transcript in a GTF a set of triplet features
(TSS, EC, TES) from the Cerberus reference.
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Figure 3.6: Triplet annotation of transcript structure maps diversity within and
across samples. a, Transcript triplet naming convention for 3 transcripts from the same
gene based on the transcript start site (TSS), exon junction chain (EC), and transcript end
site (TES) used. b-d, Triplet features detected in human ENCODE LR-RNA-seq from
GENCODE v40 polyA genes by novelty and support. Known features are annotated in
GENCODE v29 or v40. e-g, Triplet features detected in human ENCODE LR-RNA-seq
per GENCODE v40 polyA gene split by gene biotype. h, Transcripts from GENCODE v40
polyA genes detected from human ENCODE LR-RNA-seq that have a known EC by
biotype. i, Novelty characterization of triplet features in each transcript detected in the
human ENCODE LR-RNA-seq. j, Transcripts detected in human ENCODE LR-RNA-seq
per GENCODE v40 polyA gene by biotype. k, COL1A1 transcripts expressed in the ovary
sample from human ENCODE LR-RNA-seq. l, PKM transcripts expressed in the ovary
sample from human ENCODE LR-RNA-seq colored by expression level (TPM). m,
Expression level of gene (TPM) versus the percent isoform (pi) value of the predominant
transcript for each gene expressed in human ovary sample. n, Number of unique
predominant transcript per gene.
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Figure 3.7: Characterization of observed triplet features from human
LR-RNA-seq. a-c,Upset plots showing sources that overlap observed triplet features
derived from human ENCODE LR-RNA-seq for a, TSSs b, ECs c, TESs. d-e, Lengths of
observed d, TSSs e, TESs derived from human ENCODE LR-RNA-seq. f Novelty of
unique ECs detected ≥ 1 TPM from polyA genes in human ENCODE LR-RNA-seq.
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Figure 3.8: Machine learning models predict support for long-read TSS peaks by
other TSS assays in a cross-cell type manner. a, Number of long-read RNA-seq TSS
peaks called by RAMPAGE and CAGE. b, Number of long-read TSS peaks called by
Cerberus or LAPA supported by RAMPAGE or CAGE assays in GM12878 and K562
long-read experiments gm12878 3 and k562 2. c, Fraction of peaks used for the test (chr 2
and chr3) and training sets (all other chromosomes) in K562 and GM12878 long-read
experiments. d, Akaike Information Criterion (AIC) values for logistic regression models
trained using different sets of parameters. For each experiment, the AIC values for the 7
training settings have been ranked. The y-axis is the average ranking of each model over all
GM12878 and K562 long-read TSS peaks from Cerberus (left) and LAPA (right), where
logit[overlap TPM + DHS + peak length] is the best model (i.e with the lowest AIC). e,
Same-cell type ROC curves for logit[overlap TPM + DHS + peak length]. Models tested
on chr2 & chr3 and trained on other chromosomes in the same cell line. f, Cross-cell type
logit[overlap TPM + DHS + peak length]. Distribution of AUROC values for long-read
TSS experiments. Ex: To predict if a long-read TSS peak in K562 overlaps with a region in
K562 RAMPAGE and CAGE in a cross-cell type manner, a model is trained on a
GM12878. 85



Figure 3.9: Characterization of observed transcripts from human LR-RNA-seq.
a, Number of samples in which each transcript with a known EC is detected ≥ 1 TPM in
the human ENCODE LR-RNA-seq dataset. b, Boxplot of, for the sample where a gene is
most highly expressed, the number of transcripts expressed in that sample versus the TPM
of the gene in that sample; split by gene biotype and gene expression bin. c-f, Number of
unique TSSs or TESs per EC with at least 2 exons from transcripts c-d, annotated to
polyA genes in GENCODE v40, e-f, detected ≥ 1 TPM from polyA genes in human
ENCODE LR-RNA-seq.
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Figure 3.10: The gene structure simplex represents distinct modes of transcript
structure diversity across genes and samples. a, Transcripts for 5 model genes; 1 of
each sector. b, Layout of the gene structure simplex with the genes from a, plotted based
on their simplex coordinates. c-e, Gene structure simplices for the transcripts from protein
coding genes that are c, annotated in GENCODE v40, d, the observed set of transcripts in
human, e, the observed major set of transcripts, the union of major transcripts from each
sample detected in human. f-j, Proportion of genes from the GENCODE v40, observed,
and observed major sets that fall into the different sectors k, Gene structure simplex for
AKAP8L. l-m, Transcripts of AKAP8L expressed ≥ 1 TPM in l, H9 m, H9-derived
pancreatic progenitors colored by expression level in TPM.
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Figure 3.11: Genes in different sectors are enriched for distinct molecular
activities. a-e, Selected GO terms from the top 5 results for observed major genes in
sector for the a, TSS-high b, splicing-high c, TES-high d, mixed and e, simple sectors. X
axis indicates Enrichr combined scores.
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Figure 3.12: Alternative splicing (AS) detection by SUPPA and Cerberus. a,
Barplots showing, for each type of local AS event detected by SUPPA (y axis), the
proportion of observed known and novel transcripts identified by Cerberus (x axis), based
on novel events at the TSS, TES, or EC. b, Sankey plots showing the number of transcripts
classified as Known, Novel In Catalog (NIC), Novel Not in Catalog (NNC), Unspliced, or
Missing by Cerberus and GTEx. In the first panel we show the numbers for all transcripts,
while in the rest of the panels we focus on transcripts undergoing specific types of AS
events. c, Barplot showing, for each LR-RNA-seq sample (x axis), the number of observed
AS genes identified by both Cerberus and SUPPA (pink), only by Cerberus (dark gray), or
only by SUPPA (light gray). In the upper panel we compare Alternative-First (AF)-AS
genes by SUPPA and TSS-AS genes by Cerberus. In the lower panel we compare
Alternative-Last (AL)-AS genes by SUPPA and TES-AS genes by Cerberus.
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Figure 3.13: Overview of gene triplet based downstream analysis and
visualization with Cerberus.
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Figure 3.14: Uncovering sample-specific behavior of triplet features by
comparing observed and sample-level gene triplets. a-d, Number of features
detected per gene per sample for a, transcripts b, TSSs c, ECs d, TESs. e-h, Number of
features per gene per sample and observed overall showing the proportion of the
distribution that comes from each number of e, transcripts f, TSSs g, ECs h, TESs. i-l,
Number of observed overall triplet features or transcripts per gene versus the number of
samples each gene is expressed in for i, transcripts j, TSSs k, ECs l, TESs. m, Number of
ACTA1 transcripts expressed in each sample. n, Gene structure simplex for ACTA1. Gene
triplets with splicing ratio for the overall observed and sample-level centroid labeled.
Simplex coordinates for the GENCODE v40, observed set, and centroid of the samples also
shown for ACTA1. o, Browser models of transcripts of ACTA1 expressed ≥ 1 TPM in
heart colored by expression level in TPM.

91



Figure 3.15: Sample-specific and global changes in predominant and major
transcript isoform usage. a, Gene structure simplex for major transcripts of ELN. b,
Major transcripts of ELN expressed ≥ 1 TPM in lung colored by expression level in TPM.
c, Gene structure simplex for major transcripts of CTCF. d, From top to bottom: Major
transcripts of CTCF expressed ≥ 1 TPM in lung, TSSs of CTCF major transcripts
expressed ≥ 1 TPM in lung, ENCODE cCREs colored by type. e, Gene structure simplex
for E4F1. f, Gene structure simplex for major transcripts of E4F1. g, Sector assignment
change and conservation for protein coding genes in the human ENCODE LR-RNA-seq
dataset between the observed set of gene triplets (left) and the observed major set of gene
triplets (right). Percent of genes with the same sector between both sets labeled in the
middle. h-k, Percentage of libraries where a gene with an annotated MANE transcript is
expressed and the MANE h, transcript i, TSS j, EC k, TES is the predominant transcript
or triplet feature.
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Figure 3.16: Rank and expression of predominant and MANE transcripts. a-d,
For protein coding genes with MANE transcripts from GENCODE v40 where the
predominant transcript or triplet feature is not the MANE transcript or triplet feature but
is still expressed, expression of the predominant vs. the expression of the MANE a, TSS b,
EC c, TES d, transcript. e-h, For genes where the MANE triplet feature or transcript is
the predominant one and a secondary triplet feature or transcript is expressed, expression
of the secondary vs. MANE e, TSS f, EC g, TES h, transcript. i-l, Rank of MANE i TSS
j, EC k, TES l, transcript in each library where it is expressed.
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Figure 3.17: Conservation of gene triplets from human and mouse. a-e, Proportion
of genes from the GENCODE vM25, observed, and observed major sets that fall into the
a, TSS-high sector, b, splicing-high sector, c, TES-high sector, d, mixed sector, e, simple
sector. f, Gene structure simplex for ARF4 in human. Gene triplet with splicing ratio for
ARF4 transcripts in H1 labeled. Simplex coordinates for the GENCODE v40, sample-level
centroid, and observed set also shown for ARF4. g, Gene structure simplex for Arf4 in
mouse. Gene triplet with splicing ratio for Arf4 transcripts in F121-9 labeled. Simplex
coordinates for the GENCODE v40, sample-level centroid, and observed set also shown for
Arf4. h, Transcripts of ARF4 expressed ≥ 1 TPM in human H1 sample colored by
expression level in TPM. i, Transcripts of Arf4 expressed ≥ 1 TPM in mouse F121-9
sample colored by expression level in TPM. j, Sector assignment change and conservation
for orthologous protein coding genes between the observed major human set of gene
triplets (left) and the observed major mouse set of gene triplets (right). Percent of genes
with the same sector between both sets labeled in the middle. k, Sector assignment change
and conservation for orthologous protein coding genes between the sample-level H1 major
human set of gene triplets (left) and the sample-level F121-9 major mouse set of gene
triplets (right). Percent of genes with the same sector between both sets labeled in the
middle.
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Figure 3.18: The gene structure simplex for mouse. a-c, Gene structure simplices for
the transcripts from protein coding genes that are a, annotated in GENCODE vM25 where
the parent gene is also detected in our mouse LR-RNA-seq dataset, b, the observed set of
transcripts, those detected ≥ 1 TPM in the mouse ENCODE LR-RNA-seq dataset, c, the
observed major set of transcripts, the union of major transcripts from each sample detected
≥ 1 TPM in the mouse ENCODE LR-RNA-seq dataset. d, Number of unique predominant
transcripts detected ≥ 1 TPM across samples per gene.
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Chapter 4

Single-nucleus long-read RNA-seq of

genetically distinct mouse strains

reveals cell type and genotype-specific

transcript usage

4.1 Abstract

Genetic variation and cell type-specific splicing are both contributors to alternative transcript

usage. Here, we apply single-nucleus long-read RNA-seq (LR-Split-seq) to the prefrontal

cortex of two genetically distinct mouse strains: C57B6/J and CAST/EiJ in order to evaluate

the impact of both. We show that by using exome capture techniques, we are able to

overcome the experimental limitations of sampling full-length RNA in the nucleus. We find

that the genetic variation between strains is responsible for driving differential transcript,

transcript start site (TSS), and transcript end site (TES) usage in distinct cell types; and
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that these differences are seen more frequently in neuronal than non-neuronal cell types. We

demonstrate that the effects of genotype on transcript choice are pervasive and are often

captured globally in addition to in individual cell types.

4.2 Introduction

Genetic variation profoundly influences alternative transcript usage, which can arise from 5’

and 3’ end choice, as well as alternative splicing136,137. Alternative transcript usage can be

intrinsic and required for defining a specific cellular program, and disruption of appropriate

transcript expression can be pathogenic. An estimated that 15-60% of all identified disease-

associated single nucleotide variants are related to splicing13,14. Furthermore, cancer, a

disease of altered genetics, is highly enriched for splicing alterations138 and thus demonstrates

the impact of genetic variation or changes on transcript choice. The IGVF Consortium139

seeks to identify the impact of genetic variation on function, including splicing using a variety

of techniques, such as single-nucleus long-read sequencing96.

The brain harbors some of the most complex splicing and transcript structure changes among

human tissues140,141. Microexons, which are defined as exons less than < 27 bp in length, ex-

hibit complex coordinated inclusion and exclusion events that frequently modify underlying

protein function in the brain. These events show particularly high variability among neu-

ronal cell types and are highly conserved between human and mouse76,142,143. Furthermore,

misregulation of microoexon coordination is enriched in neurodevelopmental disorders142.

3’ UTRs are typically longer in neurons compared to non-neuronal cell types, leading to

high 3’ end diversity of transcripts in the brain deriving from the heterogeneous cell type

composition of neurons and non-neurons in the brain144. Prior single-cell transcript-resolved

efforts have investigated how the apparent transcript diversity in the brain arises and found

that changes in transcript usage in mouse are governed by cell type differences rather than
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regional differences in the brain, highlighting the importance of resolving transcript usage

based on cell type rather than bulk brain region57. Furthermore, drivers of differential tran-

script isoform usage differ between cell types in the brain, where some are more variable

based on subtype, brain region, or developmental age94.

Given the extensive role of genetic variation in influencing transcript isoform choice, the

abundance of alternative splicing and transcript usage in the brain, and the impact of cell

type on transcript usage, it is important to determine to what extent changes in transcrip-

tional outcomes are driven by change in cell type versus change in genotype in the brain.

Though cell type-resolved studies have in the past relied on FACS for isolation of specific

cell populations, single cell and single nucleus techniques are capable of sequencing the RNA

present in individual cells or nuclei. Single nucleus experiments present a distinct problem

when applied to full-length transcriptomics. The nucleus is the site of RNA transcription

and splicingand therefore many sequenced molecules are unspliced96. While still indicative

of expression on the gene level, which is the focus when performing traditional short-read

single-nucleus RNA-seq (snRNA-seq), unspliced reads are mostlynearly entirely uninforma-

tive for long-read snRNA-seq data, where the goal is to quantify fully-processed, spliced

transcript isoforms.

Here, we apply combinatorial barcoding-based long-read snRNA-seq (LR-Split-seq) and

short-read snRNA-seq to the same nuclei from the left cerebral cortex of two divergent

inbred mouse strains: C57B6/J and CAST/EiJ, which are part of the IGVF bridge sample

collection. We show that using targeted exome capture highly enriches for spliced transcripts

during single nucleus preparation though it does uniformly bias the gene expression profile

toward genes with less total intron length. We characterize global and cell type-specific

differences in transcript isoform usage across the main cell types in the brain, which are

particularly pronounced in neuronal cell types. We illustrate that the impact of genotype on

transcript choice is widespread, often evident both globally and within individual cell types,

98



which contrasts with our findings when comparing sexes where we call proportionally more

differential transcript usage events in specific cell types.

4.3 Results

Targeted exome capture increases spliced RNA yield from single nuclei

We performed LR-Split-seq96 on left cortices of two distinct mouse genotypes, C57BL6/J

and CAST/EiJ, with 4 biological replicates each (2 males and 2 females per genotype) all at

10 weeks of age (Fig. 4.1a). We sequenced two subpools of 13,000 nuclei using both short

read (Illumina NextSeq2000) and long read sequencing using two Oxford Nanopore (ONT)

platforms, which enables us to easily extend annotations or conclusions from the short read

to the long read and vice versa.

Previous studies applying LR-RNA-seq to single nuclei have demonstrated substantial en-

richment of unspliced, premature mRNA reads compared to full-length mature mRNAs96.

We used a targeted exome panel which should probe for exon-containing molecules to enrich

for fully-processed mRNA in single nuclei (Fig. 4.1a, Table 4.1). For the long read com-

ponent, we first produced 60 million ONT MinION reads total for each of the exome and

non-exome capture subpools. There was no effective difference in read lengths from each

technique (Fig. 4.1b). However, we saw a significant reduction of the percentage of monoex-

onic reads in the exome capture (two-sided KS test statistic = 0.44; p-value=0.0) (Fig. 4.1c).

Furthermore, when comparing all demultiplexed reads that were subject to exome capture

versus those that were not, we observed a 2-fold reduction in the number of genomic reads,

which are monoexonic and often intron-overlapping (Fig. 1.2, Fig. 4.1d-e). Thus our exome

capture reads help us overcome the limitations of RNA sampling in the nucleus and provide

us with more informative reads to study full-length, spliced transcript isoform usage
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Unbiased clustering showed clear differences between transcriptome signatures between ex-

ome capture and non-exome capture data (Fig. 4.2a-c). Given the clear separation, we

sought to characterize differentially expressed genes between the two techniques. We per-

formed differential gene expression on our LR-Split-seq data between the exome capture and

non-exome capture subpools. We found that the 4,942 genes upregulated in the non-exome

capture have a significantly longer median total intron length than those upregulated in

exome capture (Two-sided KS test statistic: 0.54, p-val: 2.4e-06) (Fig. 4.2d-e). This is

likely due to genes with a longer intron length providing unprocessed pre-mRNAs with more

potential sites to prime off of that would be filtered out with the exome capture.

LR-Split-seq recovers known cortical cell types

Given our success with the exome capture, we sequenced 106 million ONT PromethION

reads on the same exome capture subpool. We annotated cell types in the cortex using the

short read Split-seq across all of the subpools, including the exome capture and non exome

capture (Methods, Fig. 4.3a-c). Using the annotations from matched nuclei between the

short and long read, we found populations of canonical brain-resident cell types; dominated

mainly by the glutamatergic neurons (GLUT), GABAergic neurons (GABA), and astrocytes

(n = 9,170 total nuclei) (Table 4.2, Fig. 4.4a-d). As we relied on having matching nuclei

from the short and long read to call cell types, we discarded any nuclei that were absent

from or did not pass QC in the short-read Split-seq (Methods). As validation, we looked for

marker gene expression of known cell types in the brain and found strong cell type-specific

expression of said markers (Fig. 4.4e-f). We further recovered one versus all marker genes

distinguishing each cell type, many of which are corroborated by marker genes from the

literature (Fig. 4.4e-f, Fig. 4.5a).

On the transcript level, in order to be conservative in calling novel transcripts, we filtered out

novel transcripts that were not previously identified by consortium-level bulk LR-RNA-seq

(Methods)101. After filtering, we were left with 8,758 nuclei (Methods). We called marker
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transcripts for each cell type, some of which are transcripts of canonical marker genes, such as

Slc17a7, Apoe, P2ry12, and Cst2 (Fig. 4.5b). We investigated how often different transcripts

from the same gene are called as markers across the cell types. Limiting marker transcripts

to the top reported one for each gene and cell type, we found that 18 genes used different

marker transcripts for different cell types. One such example was Vamp2, which encodes for

a protein that is a part of the SNARE complex which is responsible for neurotransmitter

release145 (Fig. 4.5c-d).

Inter-cell type transcript isoform usage differs mainly in neuronal cell types

One of the current goals of single cell or nucleus LR-RNA-seq is to identify key transcript

isoform usage difference between distinct cell types. Hence, we conducted differential usage

(DU) testing, a method that detects genes involved in transcript isoform switching by ex-

amining alterations in transcript expression in relation to their parent gene55,57,146 between

each pair of cell types using Swan56. Our framework of characterizing transcripts based on

their transcript start site (TSS), exon junction chain (EC), and transcript end site (TES)

used allows for us to not only perform this DU testing on the full-length transcript iso-

form level (DU-T), but also on the TSS (DU-TSS), EC (DU-EC), and TES (DU-TES) level

(Fig. 3.6a)101. We found the most striking differences between the neuronal cell types and

astrocytes (168 for GABAergic, 283 for glutamatergic), followed by differences between the

neuronal cell types and oligodendrocytes and oligodendrocyte precursors (118 between oligo-

dendrocytes and glutamatergic neurons) (Fig. 4.6a-b, Fig. 4.7). Overall, both neuronal cell

types showed the most DU genes total across all cell types (Fig. 4.6b, Fig. 4.7c-f). These

results indicate that transcript isoform usage is the most different in neurons compared to

the rest of the brain-resident cell types. When considering all forms of differential transcript

feature usage, we find that the main differences are in the full-length isoform and exon junc-

tion chain (32.2% and 30.7% of all called DU respectively) (Fig. 4.6c). Remarkably, between

different cell types, the proportionally fewest events were called at the TSS level (16.1%)
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(Fig. 4.6c). For example, we found Cadm1, which is a cell adhesion molecule gene, was

found to to be DU-T / DU-EC between both GABAergic and glutamatergic neurons versus

the astrocytes as previously reported in studies using single-nucleus long-read RNA-seq76,147

(Fig. 4.6d). Remarkably, both the neuronal and astrocyte transcript isoforms use the same

TSS and TES but use a different EC which is characterized by an exon skipping event in

neurons.

Given our higher nuclei count and read count for GABAergic and glutamatergic neurons,

we wanted to characterize inter-neuronal variability of transcript usage at the sub type

level. Again using annotations that were performed in the corresponding short read nuclei,

we annotated neuronal subtypes and thresholded the subtypes used based on excitatory

neuron subtypes that had enough reads for testing (Methods, Table 4.3). We found the

most DU-T genes between the L2/3 intratelencephalic neurons and the other layers, with

the highest reported DU-T genes between them and the L5 pyramidal tract neurons (n

= 30) (Fig. 4.8a, Fig. 4.9a-c). Interestingly, the second highest number of DU-T genes

was between the L2/3 and L2 intratelencephalic neurons (n = 19) which demonstrates that

there is a clear distinction in transcriptional signature between intratelencephalic neurons

in the different cortical layers despite their spatial proximity (Fig. 4.8a). Overall, the L2/3

intratelencephalic neurons demonstrated the most differences at the level of DU across the

excitatory neuronal subtypes (Fig. 4.8b, Fig. 4.9d-f). Given the range of read depths

associated with each excitatory neuron subtype, we compared the number of DU-T genes we

called for each subtype to the number of reads in said subtype. Though unsurprisingly the

highest number of DU-T events we called was in the L2/3 intratelencephalic subtype with the

highest number of reads, an increase in read number did not correspond to a corresponding

increase in events for the other subtypes (Fig. 4.3c). When comparing our number of DU

events called across each transcript feature, we found once again that they are dominated by

DU-T and DU-EC (27.3% and 28.8% respectively), with relatively fewer contributions from

DU-TSS and DU-TES (Fig. 4.8d).
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Currently, the specificity of TSS usage between cell types has not been thoroughly investi-

gated in a single cell level, though it is generally agreed upon that TSSs are largely context-

specific74,148,149. Given this, we investigated to what extent DU-TSS events drive differences

in tissue identity versus cell type identity. Using the bulk ENCODE4 mouse LR-RNA-seq

dataset101, we performed pairwise DU tests for all transcript features between five tissues

at postnatal month 2: hippocampus, cortex, adrenal gland, and skeletal muscle (Methods).

We found that overall, the fraction of DU-TSS events between tissues resembles the fraction

of DU-TSS events between cell types, thus implying that TSS usage plays a similar role in

defining tissue and cell type identity, rather than playing a more distinguished role in one or

the other (Fig. 4.10).

Transcript diversity outlines to what extent multiple transcript isoforms are expressed in

the same biological context. We used the gene triplet-based method of assessing transcript

diversity in a cell type-specific manner to determine how coexpressed transcripts in the same

cell type typically vary from one another101. We found that across the glutamatergic neuron

population, genes are more likely to express more than one transcript than for astrocytes

(45.9% of genes versus 39.1% of genes) (Fig. 4.11a-b). However, by comparing to specific

glutamatergic neuron and astrocyte samples from the bulk human ENCODE4 LR-RNA-seq

data, it appears that our we are underestimating the transcript diversity in these populations,

where we see 60.2% and 67.9% of genes that express more than one transcript (Fig. 4.11c-d).

It appears that we are particularly underestimating the contribution of alternative splicing

and polyadenylation to transcript diversity, though notably the fraction of genes with their

predominant mode of transcript diversity deriving from alternative TSS usage does not

change nearly as much (Fig. 4.11).

Though the apparent diversity of genes in our LR-Split-seq data did not recapitulate the

same levels of diversity observed in corresponding bulk cell types, we still wanted to assess

what the function of genes with many observed transcript isoforms was in our distinct cell
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types. We took the top 100 genes with the most expressed transcript isoforms in each cell

type and performed GO enrichment (Methods). Broadly, we found that transcriptionally-

complex genes were involved in RNA splicing and processing, neuronal development, and

synaptic function (Fig. 4.12). Enrichment for self-regulatory RNA processing mechanisms

and neuronal function is a common feature of genes with a large number of transcript isoforms

and changes17.

LR-Split-seq enables identification of cell type-specific transcript isoform switch-

ing events between genotypes

We performed DU testing between our two genotypes in each cell type individually, again for

each transcript feature (full-length transcript, TSS, EC, and TES). Overall, we found again

that neuronal cell types have more DU events across all cell types between the genotypes

(Fig. 4.13a-b, 4.14a-c). However, we cannot rule out the possibility that the increased

number of DU-T genes in neurons is higher simply because of their increased abundance in

the overall mixture of cell populations in the brain, and thus the larger number of reads we

devote to sequencing them, which is a trend we do see for these comparisons (Fig. 4.13c).

We find similar rates of DU genes called based on which transcript feature is considered to

when we compare cell types or subtypes (Fig. 4.13d).

We wanted to assess whether the genes we called as DU between genotypes would have been

called so across the entire dataset rather than in individual cell types. Agnostic of cell type,

we also called DU genes for all transcript features across genotypes and intersected the events

called at the cell type level with those called globally (Fig. 4.13a). We found that 17.0%

of DU-T genes were exclusively found between genotypes in specific cell types, indicating

that a subset of genotype-induced transcript isoform switches are only detectable in specific

cell types, which the LR-Split-seq data enables us to identify (Fig. 4.13e, Fig. 4.14d-f). We

investigated which cell types the cell type-specific genotype DU events were present in. We

found that, consistent with our overall results, the largest proportion of these DU events
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occurred in neuronal cell types (Fig. 4.13f, Fig. 4.14g-i). Furthermore, only a handful of

cell type-specific genotype DU events were present in more than one cell type, indicating the

specificity of these transcript isoform switches (Fig. 4.13f, Fig. 4.14g-i). One such switch

only detected between genotypes in a specific cell type was Calm1 in GABAergic neurons,

called by both DU-T and DU-EC tests. Calm1 plays a crucial role in normal neural function

and development. It is associated with two known 3’ UTR isoforms, and maintaining the

right balance between them is critical for neurodevelopment and brain function150. Here, we

see a switch between a completely spliced, annotated version of the gene with the longer 3’

UTR and a version of the gene that appears to have a retained intron and a shorter 3’ UTR

(Fig. 4.13g).

For DU-T genes between the two genotypes that were called on the cell type and genotype-

wide level, we found several notable examples. Plp1 encodes for a protein that is a critical

component of the myelin sheath that oligodendrocytes produce151. The gene produces two

known spliced transcript isoforms each with an associated protein (PLP for the longer and

DM20 for the shorter), and the balance of these transcripts is modulated during develop-

ment151. Between genotypes, Plp1 is called as DU in oligodendrocytes based on the relative

abundance of said transcript isoforms. The CAST/EiJ mice use relatively more of the

shorter transcript isoform (DM20), which is the transcript isoform that typically dominates

during early myelination152, compared to the C57BL/6J mice (Fig. 4.15a). Additionally,

we found that Apoe, which harbors the allele with the highest associated risk for developing

Alzheimer’s disease153, was called as DIE between genotypes in the astrocytes specifically.

In this switch, we see the higher relative prevalence of a transcript isoform with a longer 3’

UTR that spans an intron in C57BL/6J versus CAST/EiJ (Fig. 4.15b).

Sex-specific transcript usage varies less than genotype-specific transcript within

cell types

We performed DU tests for each transcript feature between sexes in each cell type (Fig.
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4.16a). Overall, we found far fewer DU genes between sexes in each cell type than we

did between genotypes in each celltype, with the cell types with the most DU genes again

found in the neurons (Fig. 4.13b, 4.16b, Fig. 4.14a-c). As compared to the intra-cell type

genotype comparison, we called proportionally more DU-TSS events between sexes than we

did between genotypes in individual cell types (Fig. 4.16c). We investigated the extent to

which the intra-cell type comparisons capture global sex-specific DU patterns rather than

true cell type-specific DU. There were proportionally more cell type-specific sex DU genes

than there were for the genotype comparison (66.7% vs. 17.0% respectively), and all the

cell type-specific DU events were limited to exactly one cell type (Fig. 4.13e, Fig. 4.16d-e,

Fig. 4.17d-i). This suggests that while the number of DU events is lower between sexes

compared to between genotypes, these distinctions are more likely to manifest in particular

cell types rather than stemming from a comprehensive alteration in transcript preference,

which contrasts to the results from comparing genotypes. Though the sex comparisons

yielded fewer overall numbers, we still found interesting instances of DU-T between the

sexes. For instance, Mobp, another protein critical for the myelin sheath deposited on axons

by oligodendrocytes154, was called as DU-T, DU-EC, and DU-TES between the sexes only

in the cell type-specific comparison in the oligodendrocytes. The predominant transcript

isoform in females is missing the last exon that is seen in the predominant transcript isoform

in males. Furthermore, annotated CDS sequences indicate that the stop codon used is

different between the two transcripts (Fig. 4.16f).

4.4 Discussion

Here we present a cell type, genotype, and sex-specific map of differential transcript feature

usage in the cortices of C57BL/6J and CAST/EiJ mice. First, we showed that using exome

capture increased the yield of spliced RNA; decreasing the percentage of monoexonic reads
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from 80% to 40%, but that this capture strategy biases RNA sampling towards genes with

lower total intron length.

Using our DU approach, we are able to capture important sources of variation in transcript,

TSS, EC, and TES variation between genotypes, sexes, and cell types, and assess the extent

to which each feature plays a role in defining the transcript usage between contexts. Overall,

we found that DU events across all comparisons were dominant in the glutamatergic and

GABAergic neurons, though we suspect in many cases this is due to low sampling depth

in the other cell types, and reason that with increased read yield, we would uncover more

differences in transcript feature usage.

By comparing transcript feature usage globally and in specific cell types between genotypes,

we get a clearer picture of how often genotype drives global versus context-specific differences

in transcript usage. Here, we found that the majority of DU events found in individual cell

types were also called globally. This indicates that by and large, the effect of genetic variation

influences transcript choice irrespective of cell type. However, there is still a subset of

differences in transcript usage that are only reported in individual cell types, which highlights

the importance of considering cell type-specific differences in addition.

We furthermore show that biological sex does not drive as striking of differences in transcript

usage as genotype does. We detect far fewer DU events between sexes globally and in

individual cell types. Interestingly though, we do not observe as striking of overlaps between

global and cell type-specific switches between sexes as we do between genotypes. This implies

that while there are fewer events overall, sex is more likely than genotype to drive differences

in transcript usage within a specific cell type than globally.

This work represents a first effort towards the overarching goal of the IGVF consortium,

which seeks to assess the impact of genetic variation on function139. As splicing and alter-

native transcript usage are heavily linked to genetic variation136,137, an important aspect of
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understanding variant function is to determine the role they play in dictating transcriptional

outcomes. This work highlights genotype comparisons at the global and cell type level and

will serve as an analytical framework that can be harnessed for additional genotypes and

tissue types in the future. Future IGVF work from our group will sequence additional in-

bred genetically-distinct mouse strains in eight different tissues using both short-read and

long-read Split-seq. We estimate based on results here that transcript usage will vary mostly

across cell types and genotypes, though some cell types will harbor more genetically-distinct

DU signatures than others between genotypes. Based on the literature, we expect the most

transcriptional diversity to be present in the brain and muscle tissues140.

One limitation of this study is that our mapping was performed only using the C57BL/6J

mm10 reference genome. Though clearly the correct reference for the C57BL/6J mice, our

mapping for the CAST/EiJ mice was suboptimal based on its unique genome. As we ex-

tend this work to additional mouse genotypes, it will critical to map reads to their correct

genotypes to minimize technical error that might arise from mapping issues, or to build a

pangenome that represents the entire gamut of genetic diversity across the unique mouse

strains.

4.5 Methods

Mice and tissue collection

Mice were housed at the UCI Transgenic Mouse Facility (TMF) in a temperature-controlled

pathogen-free room under 12 hour light/dark cycles (lights on at 07:00 hr, off at 19:00

hr). The animal experiments were reviewed and approved by the Institutional Animal Care

and Use Committee (IACUC), protocol AUP-21-106, “Mouse genomic variation at single

cell resolution”. Left cerebral cortex tissues of 10 week old mice were harvested from 12
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C57BL/6J and 12 CAST/EiJ (2 males and 2 females per genotype) between the hours of

09:00 to 13:00. Tissues were stored in 1 mL Bambanker media in cryotubes kept at -80°C

until nuclei isolation.

Purification of nuclei from mouse tissues

Tissues were thawed in Bambanker media on ice until the tissue could be extracted and lysed

using Nuclei Extraction Buffer (Miltenyi Biotec cat. #130-128-024). Using forceps, tissues

were transferred to a chilled gentle MACS C Tube (Miltenyi Biotec cat. #130-093-237) with

2 mL Nuclei Extraction Buffer supplemented with 0.2 U/uL RNase Inhibitor (New England

Biolabs cat. M0314L). Nuclei were dissociated from whole tissue using a gentleMACS Octo

Dissociator (Miltenyi Biotec cat. #130-095-937). The resulting suspension was filtered

through a 70 um MACS SmartStrainer then a 30 um strainer (Miltenyi Biotec cat. 130-110-

916 and #130-098-458, respectively). Nuclei were resuspended in 3 mL PBS + 7.5% BSA

(Life Technologies cat. #15260037) and 0.2 U/ul RNase inhibitor for manual counting using

a hemocytometer and DAPI stain (Thermo Fisher cat. #R37606).

Nuclei fixation

After counting, 4 million nuclei per sample were fixed using Parse Biosciences’ Nuclei Fix-

ation Kit v2 (cat. #ECF2003), following the manufacturer’s protocol. Briefly, nuclei were

incubated in fixation solution for 10 minutes on ice, followed by permeabilization for 3 min-

utes on ice. The reaction was quenched, then nuclei were centrifuged and resuspended in

300 uL Nuclei Buffer (Parse Biosciences cat. #ECF2003) for a final count. DMSO (Parse

Biosciences cat. #ECF2003) was added before freezing fixed nuclei at -80°C in a Mr. Frosty

(Sigma-Aldrich cat. #635639).

Split-seq experimental protocol

Nuclei were barcoded using Parse Biosciences’ WT Kit v2 (cat. #ECW02030), following
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the manufacturer’s protocol. Fixed, frozen nuclei were thawed in a 37°C water bath and

added to the Round 1 reverse transcription barcoding plate at 19,500 nuclei per well, with

alternating columns in rows A and C containing C57BL/6J males and females and rows

B and D containing CAST/EiJ males and females. In situ reverse transcription (RT) and

annealing of barcode 1 + linker was performed using a thermocycler (Bio-Rad T100, cat.

#1861096). After RT, nuclei were pooled and distributed in 96 wells of the Round 2 ligation

barcoding plate for the in situ barcode 2 + linker ligation. After Round 2 ligation, nuclei

were pooled and redistributed into 96 wells of the Round 3 ligation barcoding plate for

the in situ barcode 3 + UMI + Illumina adapter ligation. Finally, nuclei were counted

using a hemocytometer and distributed into 8 subpools of 13,000 nuclei. The nuclei in each

subpool were lysed and cDNA was purified using AMPure XP beads (Beckman Coulter

cat. #A63881), then the barcoded cDNA underwent template switching and amplification.

Importantly, for two subpools (“13G” and “13H”) we increased the number of PCR cycles

to 13 cycles from 12, and increased the extension time from 3 minutes to 13 minutes in order

to increase the yield of full-length barcoded cDNA. cDNA from one of the subpools (“13G”)

also received exome capture treatment using Parse Biosciences’ Custom Gene Capture Kit

(cat. #GCE1001) and a Mouse Exome Panel (Twist Bioscience, cat. #102036). 1 ug of

cDNA was hybridized with a blocker solution to block repetitive sequences, then hybridized

with the exome panel overnight. Captured molecules were purified using Streptavidin beads,

then amplified again using the cDNA amplification reagents from the WT Kit v2 (Parse

Biosciences cat. #ECW02030). The cDNA for all 8 subpools were cleaned using AMPure

XP beads and quality checked using an Agilent Bioanalyzer before proceeding to Illumina and

Nanopore library preparation. All 8 subpools were fragmented, size-selected using AMPure

XP beads, and Illumina adapters were ligated. The cDNA fragments were cleaned again

using beads and amplified, adding the fourth barcode and P5/P7 adapters, followed by size

selection and quality check with a Bioanalyzer. Libraries were sequenced with two runs of

the Illumina NextSeq 2000 sequencer with P3 200 cycles kits (1.1 billion reads) and paired-
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end run configuration 140/86/6/0. Libraries with 5% PhiX spike-in were loaded at 1000 pM

for one run and 1100 pM for the second run and sequenced to an average depth of # million

reads per library.

LR-Split-seq experimental protocol

Nuclei were barcoded and cDNA was purified as specified in the previous section. LR-Split-

seq libraries were generated using an input of 200 fmol from the amplified, barcoded Split-seq

cDNA before fragmentation (section 2 of the Split-seq protocol). Libraries were built using

Oxford Nanopore Technologies Ligation Sequencing Kit (SQK-LSK114) and NEBNext Com-

panion Module for Oxford Nanopore Technologies Ligation Sequencing (E7180L). The Short

Fragment Buffer (SFB) from the Ligation Sequencing Kit (SQK-LSK114) during the second

wash step. Libraries were loaded on R10.4.1 flowcells (FLO-PRO114M, FLO-MIN114) with

an input of 20 fmol and 12 fmol, respectively. Sequencing was done on the GridION and

PromethION 2 Solo instruments using the MinKNOW software.

Short-read Split-seq data processing

Fastqs between the two NextSeq runs were concatenated and aligned using kallisto v0.49.0,

bustools v0.42.0, and kb python v0.27.3 with the mm39, GENCODE vM32 genome by run-

ning the following command: kb count --h5ad --gene-names --sum=nucleus --strand=forward

-r ref/r1 RT replace.txt -w ref/r1r2r3.txt --kallisto=$kallisto --bustools= $bustools

--workflow= nac -g ref/c57bl6j.t2g -x SPLIT-SEQ -i ref/c57bl6j.idx -t 24 -o kallisto counts/b01 13A/

-c1 ref/c57bl6j.c1 -c2 ref/c57bl6j.c2 next1 B01 13A R1.fastq.gz next1 B01 13A R2.fastq.gz.

Reference file r1r2r3.txt contains expected barcodes for the 3 rounds and both sets of bar-

codes, and reference file and r RT replace.txt contains oligo dT and corresponding random

hexamer barcodes for round 1 barcoding. The resulting counts matrices were merged across

the 8 subpools after adding a unique subpool identifier to the 24-nucleotide cell barcodes,

then filtered in Seurat v4.1.1 using the following QC metrics across all nuclei: > 500 UMIs,
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> 300 genes expressed, < 0.2 doublet score calculated via Scrublet v0.2.3, and < 0.5% mi-

tochondrial gene expression per nucleus. There were 87,913 final filtered nuclei recovered

across all 8 subpools, and 11,013 nuclei for exome capture subpool “13G”. For annotation

purposes, the exome capture subpool was integrated with the other 7 non-exome capture

subpools using Harmony v1.0. Clustered nuclei across all 8 subpools were manually an-

notated using expression of known marker genes and Seurat label transfer from external

datasets for guidance.

LR-Split-seq data preprocessing

The following processing details apply to both the exome capture and non-exome capture

data, as well as the MinION and PromethION data.

Reads were basecalled with Nanopore’s basecalling software Guppy in super-accurate mode.

Adapters were trimmed from reads with Porechop with added custom adapter sequence

reflecting the Split-seq adapters in the libraries.

Reads were demultiplexed using LR-Split-pipe95 with the following settings: -k WT -c v2

-l1 mm 4 -l2 mm 4 --max read len 10000 --max linker dist 200.

Demultiplexed reads were mapped to the mm10 reference genome with minimap233 using

the following settings: -ax splice -k14.

Once again using LR-Split-pipe95, aligned reads were tagged and filtered for cells with at least

100 identified UMI using the following settings: -k WT -c v2 --merge primers --min umi

100.

Reads were then run through TranscriptClean38 with the following settings: --correctIndels

True --correctMismatches False --canonOnly --primaryOnly.

We used TALON’s36 read labeler with the mm10 reference genome to obtain the genomic
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sequence around each read’s 3’ end to flag potential internal priming artifacts. We ran it

with the following settings: --ar 20.

To call observed transcript isoforms in each cell, reads were annotated with TALON using

the union of transcript isoforms reported by the ENCODE4 mouse LR-RNA-seq project

and those from GENCODE vM25 for GENCODE vM25 annotated genes21,101. TALON was

run to use cell barcode tags present in the input alignment files with the following settings:

--cb --l 0 --5p 500 --3p 300 -c 0.8. Using the ENCODE4 annotation allows us to

track transcript isoforms by their TSS, exon junction chain, and TES used. We produced

gene and transcript-level AnnData objects without filtering using the talon create adata

utility.

LR-Split-seq exome capture versus non-exome capture comparisons

Using the MinION data, we obtained the read lengths from the read annotation file out-

put from TALON. We obtained the number of exons per transcript from the information

TALON provides in the output transcript-level AnnData object. For the transcript novelty

assignments, we used the novelty categories for transcripts from our reference as defined

by Cerberus from the bulk ENCODE4 mouse LR-RNA-seq dataset101. For transcripts that

were novel to this reference, we used the TALON novelty categories they were assigned.

We merged cell metadata from the short-read Split-seq data in with the LR-Split-seq data

using corresponding cell barcodes. Using Scanpy102, we filtered out nuclei with < 500 UMI,

novel genes, and genes expressed in < 5 nuclei. We normalized the data to 10,000 counts,

logged it, and scaled it. We called the top 4,000 highly-variable genes, performed PCA, and

found nearest-neighbors using n neighbors=10, n pcs=30, metric=cosine. We com-

puted the UMAP using default Scanpy parameters and performed Leiden clustering with

resolution=0.25.

Using PyDESeq2155, we called differentially-expressed genes between the exome capture
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and non-exome capture subpools from the unfiltered AnnData directly from TALON (less

novel genes), using the different mouse individuals as replicates. We ran the test using de-

fault settings. We called significantly differentially-expressed genes with a log2(fold change)

threshold of 1 and an adjusted p-value threshold of 0.01. Using our input reference GTF,

we determined the total intron length for each transcript. For each gene, we took the me-

dian total intron length across all transcripts. We scipy131 two-sided KS test to determine

whether the median total intron length between genes upregulated in the exome capture

versus non-exome capture were significantly different.

LR-Split-seq gene-level single-nucleus processing

Using the PromethION data from the exome capture subpool, we merged cell metadata from

the short-read Split-seq data in with the LR-Split-seq data using corresponding cell barcodes.

Using Scanpy102, we filtered out nuclei with < 500 UMI, novel genes, and genes expressed

in < 5 nuclei. We additionally only retained nuclei that also passed QC in the short-read

Split-seq data. We normalized the data to 10,000 counts, logged it, and scaled it. We called

the top 4,000 highly-variable genes, performed PCA, and found nearest-neighbors using

n neighbors=10, n pcs=30, metric=cosine. We computed the UMAP using default

Scanpy parameters.

We called marker genes from each cell type using Scanpy’s rank genes groups on the log-

normalized data. We plotted the top three gene marker results called for each cell type.

LR-Split-seq transcript-level single-nucleus processing

Using the PromethION data from the exome capture subpool, we merged cell metadata

from the short-read Split-seq data in with the LR-Split-seq data using corresponding cell

barcodes. We filtered out all transcripts that were novel with respect to the ENCODE4 bulk

mouse LR-RNA-seq dataset and transcripts belonging to novel genes.

114



Given the low remaining read depth per nucleus after filtering out all novel transcripts

unique to the LR-Split-seq data, we used Scanpy102 to filter out nuclei with < 60 UMI.

We further filtered out transcripts expressed in just one nucleus. We normalized the data

to 10,000 counts, logged it, and scaled it. We called the top 10,000 highly-variable tran-

scripts, performed PCA, and found nearest-neighbors using n neighbors=10, n pcs=30,

metric=cosine.

We called marker transcripts from each cell type using Scanpy’s rank genes groups on the

log-normalized data. We plotted the top three transcript marker results called for each cell

type.

LR-Split-seq marker transcript analysis

Using the markers reported from the previous step, we called the highest marker transcript

for each cell type / gene combination using the scores column in the rank genes groups

output. That is to say, for every gene / cell type combination we retained the single best-

scoring marker transcript. We then counted up how many unique best-scoring marker tran-

scripts there were across the cell types, and determined how many genes had more than one

best-scoring marker transcript across cell types.

LR-Split-seq DU tests

For all of the following, we performed all DU tests (DU-T, DU-TSS, DU-EC, and DU-

TES). All DU tests were done using Swan’s die gene test function56. Briefly, this test

compares the pseudobulked percent isoform (π) values for each transcript in a gene between

two conditions. It creates an nx2 table (where n = the number of transcripts) and performs

a χ2 test on this table, which results in the p-value for the switch for the gene. To quantify

effect size, DPI (∆π) values are calculated as the sum of the difference between π values for

each transcript for the top two highest π values with the same sign. Significant switches were

called with a ∆π threshold of ≥ 10 and an adjusted p-value threshold of ≤ 0.05. For each
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test, we computed the fraction of DU events that were called as DU-T, DU-TSS, DU-EC, or

DU-TES.

Inter-cell type tests

DU tests were performed between each unique pair of cell types.

Inter sub-cell type tests

We considered only our sub cell types for those that had at least 50,000 reads total across

the constituent population of nuclei. We performed DU tests between each unique pair of

sub cell types.

Intra-cell type genotype tests

We performed DU tests between C57BL/6J and CAST/EiJ within each cell type in our

LR-Split-seq dataset.

Inter-cell type genotype tests

We performed DU tests between C57BL/6J and CAST/EiJ globally across our LR-Split-seq

dataset.

Intra-cell type sex tests

We performed DU tests between male and female mice within each cell type in our LR-Split-

seq dataset.

Inter-cell type sex tests

We performed DU tests between male and female mice globally across our LR-Split-seq

dataset.

ENCODE4 bulk LR-RNA-seq inter-tissue DU tests
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We obtained expression and percent isoform usage data from the ENCODE4 mouse LR-

RNA-seq dataset. We limited the datasets used to just the C57BL/6J / CAST/EiJ F1

hybrid mice at 2 months of age, which is the closest represented time point to the mice

from our LR-Split-seq dataset. Using the same strategy as described in the previous section,

we performed DU tests between each unique pair of the five tissues: hippocampus, cortex,

adrenal gland, skeletal muscle, and heart.

Bulk and single-nucleus cell type-specific transcript diversity

For our LR-Split-seq data, we used Cerberus’101 get subset triplets to compute the tran-

script diversity across genes for each transcript expressed in each cell type separately. Ad-

ditionally, we used the sample det triplets from the ENCODE4 human bulk LR-RNA-seq

dataset for the PGP1-derived excitatory neurons and astrocytes to compare diversity in our

LR-Split-seq cell types directly to analogous bulk data.

Characterization of genes with high transcript diversity

We obtained a list the top 100 genes per cell type by number of transcript isoforms expressed.

We performed gene ontology (GO) term enrichment analysis using the R package EnrichR133

to query the “GO Biological Process 2021” database.
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Figure 4.1: Exome capture in single nuclei improves spliced RNA yield. a,
Experimental overview for comparison of exome capture vs. non exome capture
LR-Split-seq libraries. b, Kernel density estimations for read length distributions by
capture strategy. c, Percentage of demultiplexed reads by number of exons in each read
between exome and non-exome capture. d-e, Percentage of demultiplexed reads by novelty
category in d, non-exome capture and e, exome capture.
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Figure 4.2: Upregulated genes in non-exome capture are enriched for longer
total intron length. a-b, UMAP of MinION LR-Split-seq data colored by a, capture
strategy and b, unbiased cluster assignments. c, Percentage of nuclei assigned to each
cluster by capture strategy. d, Volcano plot of differentially expressed genes when
comparing exome capture to non-exome capture. e, Median total intron length for genes
upregulated in exome capture vs. non-exome capture.
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Figure 4.3: Short-read Split-seq recovers canonical cortical cell types and
subtypes. a, UMAP of short-read Split-seq unbiased clustering on nuclei and proportions
of nuclei per genotype, sex, subpool, and sub-cell type per cluster. b, UMAP of short-read
Split-seq general cell type assignments for exome capture supbool only. Proportions of
nuclei per genotype, sex, and cell type per cluster. c, UMAP of short-read Split-seq sub
cell type assignments for exome capture supbool only. Proportions of nuclei per genotype,
sex, and sub cell type per cluster.
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Figure 4.4: LR-Split-seq captures distinct cell types in mouse cortex. a, UMAP of
gene-level exome capture PromethION LR-Split-seq colored by cell types as annotated in
the corresponding short-read Split-seq cells. b, UMAP of LR-Split-seq data colored by
genotype. c, Number of nuclei recovered per cell type from the transcript-level LR-Split-seq
data. d, Number of nuclei recovered per sub cell type from the transcript-level
LR-Split-seq data. e, Expression of marker genes for cortical cell types from literature. f,
Marker gene expression for different cell types in the gene-level LR-Split-seq UMAP.
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Figure 4.5: Unbiased marker gene and transcript analysis from LR-Split-seq. a,
Top 3 marker genes from each cell type in gene-level LR-Split-seq. b, Top 3 marker
transcripts from each cell type in transcript-level LR-Split-seq. c, Expression of two
recovered marker transcripts of Vamp2 plotted on the gene-level UMAP. These transcripts
were called as markers of astrocytes and glutamatergic neurons respectively. d, Expression
and transcript models of marker Vamp2 transcripts in each cell type.
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Figure 4.6: Pairwise cell type DU-T analysis reveals cell type-specific transcript
isoform usage. a, Number of DU-T genes between each pair of cell types. b, Number of
DU-T genes between each cell type and every other cell type. c, Total number of DU genes
called on the whole transcript, TSS, EC, and TES level across all comparisons. d, Swan
report of DU gene Cadm1, which displays exon skipping (highlighted) in the neuronal cell
types compared to the astrocytes.
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Figure 4.7: Pairwise cell type DU-TSS, DU-EC, and DU-TES analysis reveals
cell type-specific usage. a-c, Number of a, DU-TSS b, DU-EC d, DU-TES usage genes
between each pair of cell types. d-f, Number of d, DU-TSS b, DU-EC d, DU-TES usage
genes between each cell type and every other cell type.
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Figure 4.8: Pairwise excitatory neuron subtype DU-T analysis reveals neuronal
subtype-specific transcript isoform usage. a, Number of DU-T genes between each
pair of excitatory neuron subtypes. b, Number of DU-T genes between each excitatory
neuron subtype and every other excitatory neuron subtype. c, Total number of reads per
excitatory neuron subtype versus the total number DU-T genes. d, Total number of DU
genes called on the whole transcript, TSS, EC, and TES level across all comparisons.
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Figure 4.9: Pairwise cell type DU-TSS, DU-EC, and DU-TES analysis reveals
excitatory neuron subtype-specific usage. a-c, Number of a, DU-TSS b, DU-EC d,
DU-TES usage genes between each pair of excitatory neuron subtypes. d-f, Number of d,
DU-TSS b, DU-EC d, DU-TES usage genes between each excitatory neuron subtype and
every other excitatory neuron subtype.
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Figure 4.10: Number of DU events between tissues in the bulk ENCODE4
LR-RNA-seq mouse dataset.
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Figure 4.11: Transcript diversity from cell types in LR-Split-seq does not reflect
transcript diversity from bulk cell line data. a-b, Gene structure simplices and
proportion of genes per sector assignments as described in Reese et al. 101 for LR-Split-seq
transcripts observed in a, glutamatergic neurons and b, astrocytes. c-d Gene structure
simplices and proportion of genes per sector assignments from the ENCODE4 bulk human
LR-RNA-seq dataset for transcripts observed in c, PGP1-derived excitatory neurons and
d, PGP1-derived astrocytes.
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Figure 4.12: Genes with high transcriptional diversity in distinct cell types
demonstrate enrichment for neural processes. Selected GO terms associated with
the top 100 transcriptionally-diverse genes in each cell type.
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Figure 4.13: LR-Split-seq on two distinct mouse strains reveals cell type-specific
genotype DU-T events. a, Overview of comparisons. DU tests were performed between
genotypes globally and within each cell type. b, Number of DU-T genes called in each cell
type between genotypes. c, Number of reads per cell type versus the number of called
DU-T genes between genotypes. d, Total number of DU-T, DU-TSS, DU-EC, and
DU-TES genes called between genotypes in each cell type. e, Intersections of DU-T genes
called globally and in specific cell types. f, Overlap of cell type only DU-T genes by cell
type they were called in. g, Swan report of DU-T gene Calm1, called in the cell type
comparison but not globally, in the GABAergic neurons.
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Figure 4.14: LR-Split-seq on two distinct mouse strains reveals cell type-specific
DU-TSS, DU-EC, and DU-TES events between genotypes. a-c, Number of a,
DU-TSS b, DU-EC and c, DU-TES genes in each cell type between genotypes. d-f,
Intersections of d, DU-TSS e, DU-EC and f, DU-TES genes called globally and in specific
cell types. g-i, Overlap of cell type only g, DU-TSS h, DU-EC and i, DU-TES genes by
cell type they were called in.
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Figure 4.15: DU-T between genotypes in Plp1 and Apoe. a, Swan report for
transcripts of Plp1, which was called as DU-T between genotypes globally and specifically
in the oligodendrocytes. Differences between transcripts highlighted in blue. b, Swan
report for transcripts of Apoe, which was called as DU-T between genotypes globally and
specifically in the astrocytes.
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Figure 4.16: LR-Split-seq on two distinct mouse strains reveals cell type-specific
DU-T events between sexes. a, Overview of comparisons. DU tests were performed
between sexes globally and within each cell type. b, Number of DU-T genes called in each
cell type between sexes. c, Total number of DU genes called between sexes in each cell type
on the whole transcript, TSS, EC, and TES level. d, Intersections of DU-T genes called
globally and in specific cell types. e, Overlap of cell type only transcript level DU-T genes
by cell type they were called in. f, Swan report of DU-T gene Mobp, called between sexes
only in the oligodendrocytes.
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Figure 4.17: LR-Split-seq reveals cell type-specific DU-TSS, DU-EC, and
DU-TES events between sexes. a-c, Number of a, DU-TSS b, DU-EC and c,
DU-TES genes in each cell type between sexes. d-f, Intersections of d, DU-TSS e, DU-EC
and f, DU-TES genes called globally and in specific cell types. g-i, Overlap of cell type
only g, DU-TSS h, DU-EC and i, DU-TES genes by cell type they were called in.
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Platform Exome capture Non-exome capture
Nanopore MinION X X

Nanopore PromethION X
Illumina NextSeq2000 X X

Table 4.1: Sequencing platforms used for exome capture and non-exome capture subpools.

Cell type label Description Number of nuclei
GLUT Glutamatergic (excitatory) neuron 4542
GABA GABAergic (inhibitory) neuron 2195

Astrocyte Astrocyte 1047
Oligodendrocyte Oligodendrocyte 462

OPC Oligodendrocyte precursor cell 241
Microglia Microglia 99

Endothelial Endothelial 70
VLMC Vascular lepotomeningeal cell 66

Ependymal Ependymal 23
Pericyte Pericyte 13

Table 4.2: General cell types, their corresponding labels, and number of nuclei called from
transcript-level PromethION LR-Split-seq data.
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Sub cell type label Description Number of nuclei
L2.3 IT Layer 2/3 intratelencephalic neuron 1400

Meis2 Medium spiny neuron 1066
Astrocyte Astrocyte 1047

L4 IT Layer 4 intratelencephalic neuron 696
L2 IT Layer 2 intratelencephalic neuron 656

L6 CT Layer 6 corticothalamic neuron 651
L5 IT Layer 5 intratelencephalic neuron 566
MOL Mature oligodendrocyte 439

GABA General GABAergic neuron 344
Pvalb Pvalb+ inhibitory neuron 285
OPC Oligodendrocyte precursor 214

Vip Vip+ inhibitory neuron 189
L2 PPP Layer 2 post-pre-par subiculum 174

L5 PT Layer 5 pyramidal tract neuron 161
Sst Sst+ inhibitory neuron 157

Lamp5 Lamp+ inhibitory neuron 109
L5.6 NP Layer 5/6 near-projecting neuron 105

Microglia Microglia 99
Car3 Car3+ excitatory neuron 90

Endothelial Endothelial 70
VLMC Vascular lepotomeningeal cell 56

Neuroblast Neuroblast 45
GLUT General glutamatergic neuron 43

COP Committed oligodendrocyte precursor 27
MFOL Myelin-forming oligodendrocytes. 23

Ependymal Ependymal 23
Pericyte Pericyte 13

ABC Slc47a1+ VLMC 10

Table 4.3: Sub cell types, their corresponding labels, and number of nuclei called from
transcript-level PromethION LR-Split-seq data.
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Chapter 5

Future directions

Improving variant-aware transcript identification with pantranscriptomes

Though the field of analyzing full-length transcriptomes has dramatically matured through

the last few years, there are certainly clear avenues to continue advancing the field. Re-

cent pangenome projects, recognizing the importance of being able to incorporate genetic

variation and diversity into any genomics workflow, have incorporated multiple individu-

als as sources of genetic variability both at the single nucleotide polymorphism (SNP) and

structural variant (SV) level156. In contrast to linear reference genome based approaches,

pangenomes typically represent genomic sequence using graph models where any given walk

through the graph represents a valid haplotype157. Therefore pangenomes simultaneously

represent any possible haplotype from the cohort of individuals that was used to generate it.

Representing genetic diversity using pangenomes has already improved variant calling (par-

ticularly for SVs) and reference mapping tasks on a variety of genomics data156. A clear next

step forward is applying a similar philosophy to generate a pantranscriptome, which would

improve efforts to call transcripts with sensitivity to the variation in the genome they derive

from. This would provide a clear benefit for tasks where genetic variation is important to con-

137



sider, such as variant effect prediction in patient transcriptomes where pathological variants

might be overlooked due to their transcriptomic context in current reference annotations158.

While pantranscriptomic methods have been developed to generate pantranscriptomes, map

short-read RNA-seq data to said pantranscriptomes, and quantify haplotype-specific tran-

script expression, these tools are new and limited in scope. Notably, an unsolved problem is

determining which haplotype-specific transcripts are equivalent to one another. While per-

haps simple if the difference in haplotype between transcripts is a simple SNP, this becomes

more complicated if the difference contains structural variation159. Furthermore, there is less

interest in creating pangenomes for model organisms such as mice, as inbred strains inher-

ently lack the genetic diversity that would necessitate pangenome-based bioinformatic anal-

ysis. An additional forseeable difficulty arises when comparing transcriptomes across species

as the problem of determining transcript equivalence would even further exacerbated based

on newfound variation. Approaches have been developed using normal reference genomes to

call the same transcripts and exons across species but this problem remains to be solved in

pantranscriptomics160,161. Moreover, existing pantranscriptomic methods are designed ex-

clusively for short-read RNA-seq and remain to be adapted and optimized for application to

LR-RNA-seq data.

Optimizing computational and experimental protocols to improve long-read single-

cell RNA-seq

The sparsity of single-cell RNA-seq data, coupled with the already-sparse nature of quan-

tification of transcripts rather than genes as well as the difficulty in recovering full-length

transcripts from single-cell or single-nucleus library preparation protocols, demonstrate that

there still remains much to do to improve the quality and throughput of long-read single-cell

RNA-seq experiments. Long-read single-nucleus experiments currently suffer from problems

due to off-target capture of unspliced RNA from the nucleus and transcripts that do not ap-

pear to be full-length. Both our group and others have demonstrated that performing exon
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capture enrichment in single-nucleus LR-RNA-seq protocols immensely improves spliced read

yield76 (Fig. 4.1). Of course, this selection step is accompanied by a natural bias based on

the capture panel being used, and additional work could be done to capture spliced RNA

from the nucleus in a less biased manner. For example, since splicing is known to occur

co-transcriptionally162, the nucleoplasmic fraction of RNAs, which should be fully processed

in comparison to chromatin-associated RNA, can be selectively amplified.

The abundance of seemingly non full-length transcripts could be addressed in several ways.

To enrich for full-length transcripts rather than incomplete artifacts of reverse transcrip-

tion, 5’ end capture enrichment coupled with oligo dT priming could be done62. As previ-

ously mentioned, current combinatorial-based barcoding approaches80,82 rely on a fixation

step that may hinder full-length reverse transcription due to rigid secondary structures and

bound proteins, which have been immobilized. To address this limitation, an alternative

approach could involve reversing the crosslinks before performing reverse transcription on

the cDNA. In the current methods, reverse transcription occurs during the barcoding phase

using complementary sequence primers, which would not be compatible with this alternative

approach. Instead, the barcoding strategy could employ blunt-end ligation of cell barcodes

directly onto the RNA molecule, enabling the crosslinks to be reversed before reverse tran-

scription. Implementing any of these strategies could enhance the yield of informative reads

from long-read single-cell or nucleus RNA-seq experiments, addressing the sparsity issue

and enabling more robust conclusions regarding cell type specificity of transcript isoform

expression.

The experimental portions of long-read single-cell RNA-seq experiments are not the only

aspect that long-read single-cell RNA-seq could be improved. Aside from demultiplexing

long reads to their cells or nuclei of origin, there is a distinct lack of effort on improving how

transcript-level information is used to perform classical single cell preprocessing tasks, such as

feature selection, dimensionality reduction, and clustering, which influence how different cell
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types are called. As researchers care about both absolute transcript expression and relative

transcript usage, it would follow that both of these numbers should be taken into account,

and it is unclear now how this could be done given their inherent dependence. Thoughtful

metrics that take both into account might be able to reveal cell subtypes or cell states that

would be otherwise undiscoverable with short-read single-cell methods. Therefore, efforts

should be made to improve the underlying statistical methods and metrics used to process

long-read single-cell RNA-seq data.

Profiling the spatial specificity of transcript isoform expression

Many organs are known to have complex spatial organization and show regional-specific

profiles of gene expression. For instance, the human brain cortex is divided into distinct

cortical layers that each have characteristic patterns of gene expression163, and the regional

specificity of gene expression is known to be altered in certain disease conditions164. Spatial

transcriptomic techniques employ a spatial barcoding strategy such that RNA molecules

within each “spot” are all assigned the same barcode, allowing for region-resolved transcrip-

tomic profiling. One study has used LR-RNA-seq in conjunction with spatial barcoding in

the mouse brain. However, they did not examine full-length transcript isoforms and instead

focused in specific AS events like exon skipping; suggesting that further improvements could

be made to enable full-length capture of transcript isoforms57.

Improving computational tools to analyze long-read RNA-seq data

Many computational tools that were developed to process and analyze LR-RNA-seq datasets

even just a few years ago are now struggling to keep up with the orders of magnitude increase

in throughput of long-read sequencing platforms. Though many more newly-developed tools

are much faster37, others are simply not feasible to cope with the raw number of reads that

are now generated. Existing and new methods should be written to use multithreading

capabilities as well as sparse and efficient data representations in order
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Additionally, as the structure of samples used for a given study grow more complex, there

is a need for statistical methods tools that can perform more complex statistical tests on

LR-RNA-seq datasets. For instance, multi-way differential gene expression tests exist, but

differential isoform usage methods are always limited to pairwise comparisons. Moreover, in

datasets with continuous value metadata like timepoint, age, or disease progression score,

it is logical to incorporate differential isoform usage tests that consider these factors. Sim-

ilar to analogous methods used for differential gene expression testing165, these approaches

can unveil genes with isoform expression not only differing between two conditions but also

displaying significant variability across multiple conditions. Similarly, for inquiries involv-

ing the coordination of alternative TSS, splicing, and TES usage, it is valuable to develop

approaches that extend beyond computing pairwise coordination scores for these transcript

features. Novel methods capable of detecting complex coordination events involving multiple

exons would offer deeper insights into the mechanisms and coordination of transcription and

transcript processing.

Network based approaches to identify regulators of transcript isoform identity

Network analysis is a common technique used in genomics and transcriptomics to describe

relationships between genes. In gene regulatory networks (GRNs), directional links between

genes imply regulatory relationships between genes where the source of an edge is the regula-

tor gene and the sink is the target gene. GRNs are often used to describe how the expression

of transcription factors influences target gene expression. Coexpression networks are able

to infer sets of features (in most cases genes) that are coregulated across a set of samples.

Though these relationships are informative to building GRNs, there is no directionality of

coregulatory relationship in said networks. Application of network analysis methods would

be well-suited to helping understand what the regulators driving transcript isoform choice

are and how transcript isoform choice is coregulated. However, a grand challenge in this

problem would be what features to include in such a network. Specific transcript isoforms of
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splicing factors and RNA binding proteins influence the splicing of their target transcripts in

different ways17. Furthermore, as transcript isoform expression is definitionally dependent

on the expression of the gene that it derives from, it is clear that representing these factors

by their gene expression values alone would not be sufficient.

Assessing transcriptomic diversity across additional sources

In Chapter 3, I presented a way that we can assess and quantify transcript diversity between

a set of transcripts based on the TSS, exon junction chain, and TES used in each transcript.

However, these three transcript features are not the only defining characteristics of any given

transcript. As mentioned earlier, transcripts can vary based on genetic variation, both in

terms of SNP and SV content. Furthermore, transcripts can differ in RNA modifications.

Over 150 unique varieties of RNA modifications, which happen post-transcriptionally, have

been characterized166,167. Termed epitranscriptomics, this field holds promise to investigate

how RNA modifications confer differential function to the end product of the transcript. Sev-

eral diseases have been linked to disruption of genes that perform RNA editing changes168

and therefore including RNA modifications as a level of information about transcript diver-

sity would help understand the landscape of functional RNA product diversity. The ONT

long-read platform is currently the only sequencing technique that is capable of detecting

such modifications as it is able to sequence RNA directly (dRNA). This protocol has been

particularly difficult to work with in the past due to its high input sample requirements,

lower throughput, and specific error rate169. However, current reports from ONT claim that

they have new chemistry versions for dRNA that will increase throughput 3-4x compared to

existing chemistry, and improve error rates170. Therefore ONT’s hypothetically infinitely-

tunable basecalling, capacity to sequence dRNA, and promised improvements in throughput

and error rate hold promise for being able to identify and read out these modifications in indi-

vidual molecules at scale167. In the future, both genetic variation as well as epitranscriptomic

characteristics of transcripts should be incorporated to characterize transcritpional diversity
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on a more resolved level that might yield additional mechanistic insights into differential

RNA product function.
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hannes Buchner, Johannes Kulick, Johannes L Schönberger, José Vińıcius de Miranda
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