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Summary

Technology development in biological research often aims to either increase the number of cellular 

features that can be surveyed simultaneously or enhance the resolution at which such observations 

are possible. For decades flow cytometry has balanced these goals to fill a critical need by 

enabling the measurement of multiple features in single cells, commonly to examine complex or 

hierarchical cellular systems. Recently, a format for flow cytometry has been developed that 

leverages the precision of mass spectrometry. This fusion of the two technologies, termed mass 

cytometry, provides measurement of over 40 simultaneous cellular parameters at single-cell 

resolution, significantly augmenting the ability of cytometry to evaluate complex cellular systems 

and processes. In this Primer, we review the current state of mass cytometry, providing an 

overview of the instrumentation, its present capabilities, and methods of data analysis as well as 

thoughts on future developments and applications.

Introduction

Biological research across fields has shed light on the complexity of cellular systems, 

recognizing the unique features of individual cells within populations once assumed to be 

homogeneous. As a result, increasing effort has been invested to develop methods capable of 

quantifying cellular features at single-cell resolution. While the single-cell mindset is 

increasingly prevalent, it stems from a long history of investigation. Studies of single cells 

utilizing microscopy to discern features of cellular organization and behavior date back 

centuries. Similarly, investigations of inherently diverse cellular networks, such as that 

which exists within the immune system, have for decades relied heavily on high-throughput 

single-cell analysis platforms such as flow cytometry, in many respects paving the road for 

the current single-cell revolution in modern biology.
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Simultaneously, the research community has sought to develop methods by which multiple 

aspects of cellular processes can be assessed or quantified simultaneously, ushering in the 

age of “-omics” technologies. These approaches have aimed to capture a wealth of 

knowledge contained at a particular level of cellular behavior—genomic, transcriptomic, 

proteomic, metabolomic, etc.—from any biological sample. Approaches intended to 

multiplex such measurements have, in turn, required development of new methods in data 

analysis to integrate computational and statistical tools with biological research.

While the two aforementioned goals—increased resolution and parameterization—have long 

inspired the development of research technologies, only recently have the tools in each arena 

become sufficiently mature to begin bridging the gap between them. The vision of a 

technology capable of multiplexing single-cell measurements on an “-omics” scale is 

coming to fruition in a variety of venues. Advances in single-cell genomics, transcriptomics, 

proteomics, functional assays and imaging each offer attractive alternatives for capturing 

multi-dimensional information that clarifies cellular identity and function. Here we focus on 

one such method, mass cytometry, which uniquely enables the quantification of over 40 

parameters on single cells with the throughput required to survey millions of cells from an 

individual sample (Bandura et al., 2009; Bendall et al., 2011; Ornatsky et al., 2010). These 

characteristics enable investigating complex cellular systems as what they are—coordinated 

systems—by observing the diversity of cellular phenotypes and behaviors in a single sample.

Filling the Gap: Single-Cell Resolution with High Parameterization

When deciding how to address a biological question, researchers are often faced with a 

dilemma: should we (A) cast a broad net and capture as much information as possible at a 

particular level of cellular behavior or (B) take a highly-targeted approach to reveal a more 

limited number of cellular features with higher resolution? The tools available for either 

option have never been better. We are now able to sequence the entire genome or 

transcriptome of a given sample routinely, and advances in microfluidics have enables 

studies of single-cell transcriptomes in up to thousands of cells (Klein et al., 2015; Macosko 

et al., 2015). Alternatively, modern imaging technologies enable tracking single molecules in 

cells or individual cells even within a living organism.

However, a gap still remains when considering all these alternatives—one that mass 

cytometry is currently able to fill: resolution at the level of single cells, parameterization of 

over 40 simultaneous dimensions, and throughput enabling the measurement of millions of 

cells from an experimental sample. Throughput at this scale is essential for thorough 

characterization of complex cellular samples, where rare cell populations with essential 

biological function would otherwise be missed. The deep parameterization is sufficient to 

identify the major cell subsets in a sample with sufficient parameters “left over” for studies 

of cellular behavior. For example, quiescent hematopoietic stem cells comprise only 1 in 

25,000 mononuclear cells in bone marrow of young adults according to a recent study (Pang 

et al., 2011), and a subset thereof may have unique biological activity. Moreover, the 

variance within a cell type may provide biological insights, as in the frequency of cells 

responding to a stimulus (Bendall et al., 2014) as measured by phosphorylation of signaling 

proteins. The true nature of this distribution would be obscured in the absence of sufficient 
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sampling. Another advantage of the method compared to other modalities is that mass 

cytometry is not restricted to investigating one level of cellular metabolism—protein levels, 

posttranslational modifications, and proteolysis products can all be quantified from a single 

experiment (Bendall et al., 2012; Bjornson et al., 2013). Simultaneous measurement of 

mRNA transcripts by mass cytometry has been demonstrated (Frei et al., 2016), DNA 

synthesis can be monitored by incorporation of modified nucleotides (iodo-deoxy-uridine) 

(Behbehani et al., 2012), and activity-based probes can be utilized to quantify aspects of the 

cellular state such as hypoxia or enzymatic activity (Edgar et al., 2014). This platform thus 

opens new possibilities in biosciences, providing a tool capable of capturing diverse aspects 

of cellular behavior simultaneously in millions of individual cells.

In this Primer, we provide an overview of the current state of the art in mass cytometry. 

Below we’ll first describe the basic principles and reagents used in mass cytometry 

experiments, followed by an overview of the biological questions mass cytometry can 

answer. We then address the current limitations of the technology. With the technical 

foundation established, we’ll turn our attention to designing effective mass cytometry 

experiments, followed by an overview of data analysis and current computational tools that 

facilitate data interpretation. We conclude with a perspective on the future directions of the 

field.

Basic Principles

At its core, mass cytometry is a fusion of two experimental platforms: flow cytometry and 

elemental mass spectrometry (Fig. 1). The current instrumentation for mass cytometry is 

called Cytometry by Time-Of-Flight (CyTOF) and is described in detail elsewhere (Bandura 

et al., 2009; Bjornson et al., 2013), but we provide a brief overview here. The motivation 

behind this fusion of technologies was to increase the number of cellular parameters that 

could be quantified simultaneously, a goal that has similarly propelled the development of 

new reagents for fluorescence-based flow cytometry for decades (Baumgarth and Roederer, 

2000). The advantage of utilizing mass spectrometry as a means of quantification lies in the 

ability to distinguish between different reporters. Conventional flow cytometry utilizes 

fluorophores as reporters, quantifying their light emission as a proxy for molecular 

expression. However, fluorophore emission spectra overlap, making them more difficult to 

distinguish from one another, especially as more parameters are measured in a single 

experiment. In contrast, elemental mass spectrometry is able to discriminate isotopes of 

different atomic weights with high accuracy. This fundamental difference enables 

significantly more cellular features to be assayed simultaneously using a mass-based 

platform. Thus, rather than coupling probes (often antibodies) to fluorophores, mass 

cytometry experiments utilize probes coupled to unique stable, heavy-metal isotopes. Thus, 

the quantity of reporter ions in a particular mass channel becomes a proxy for molecular 

expression with little signal overlap between parameters.

When performing a mass cytometry experiment, cells of interest are first incubated (or 

“stained”) with a cocktail of affinity reagents (the most common being antibodies). These 

affinity reagents have been previously conjugated to a polymer chain of chelating groups 

that bind purified, stable heavy metal isotopes (Lou et al., 2007; Ornatsky et al., 2008). 
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These probes bind targets of interest on and/or within the cell, enabling the attached metal 

ions to serve as reporters for the expression level of the target. Cells are then passed in a 

single-cell suspension into a nebulizer, which places cells into droplets for introduction into 

the mass cytometer.

Upon entering the instrument, cells travel through an argon plasma, in which covalent bonds 

are broken to produce free atoms, which become charged in the process. The resulting ion 

cloud is passed through a quadrupole to discard common biological elements, enriching for 

heavy-metal reporter ions, which are separated by their mass-to-charge ratio in a time-of-

flight mass spectrometer. The ion counts are converted to electrical signals and ultimately 

into a data matrix in which every column represents a distinct isotope measured and each 

row represents a single mass scan of the detector. Because the ion cloud from a single cell 

occupies 10–40 scans of the detector (a parameter termed “event length”), these signals are 

integrated into single-cell events for later analysis.

Mass Cytometry for High-Dimensional Imaging

Recently, antibodies labeled with mass tags have found an additional application in new 

high-dimensional imaging modalities. While not the focus of this Primer, we review them 

briefly here. One such method, termed imaging mass cytometry pairs laser ablation of tissue 

sections stained with metal-labeled antibodies to the CyTOF mass cytometer (Giesen et al., 

2014). This method has the advantage of utilizing the same equipment as mass cytometry on 

suspension samples. Another approach, called multiplexed ion beam imaging (MIBI), uses 

an ion beam to liberate metal ion reporters, which are quantified by mass spectrometry 

(Angelo et al., 2014). While requiring more specialized equipment, this latter method offers 

increased speed, sensitivity and resolution. We anticipate that advances in methods such as 

these will transform our understanding of tissue architectures by enabling high-dimensional, 

quantitative analyses in situ.

Observing, Quantifying and Interrogating Cellular Processes

Mass cytometry uniquely enables investigation of cell identity and behavior at the level of 

proteins and the properties (e.g. isoforms or posttranslational modifications) of proteins, 

which are largely the key executors of biological processes. Determination of cell identity is 

often accomplished by measuring levels of transmembrane proteins expressed on the cell 

surface (Ornatsky et al., 2008). When used as so-called “markers,” these proteins can reveal 

the lineage and maturation state of individual cells, as these proteins often have restricted 

patterns of expression across cell types. In the biological story told by a mass cytometry 

experiment, these markers can be used to define the identities of our characters.

While cell-surface proteins are often used as markers, these molecules execute critical 

biological processes, and their quantification can provide insight into cellular behavior. 

These include molecules such as cell-signaling receptors, adhesion molecules, and receptor 

ligands. As an example, activated dendritic cells upregulate the expression of MHC 

molecules as well as co-stimulatory receptors such as CD80 and CD86. Therefore, 

identifying changes in the expression of these cell-surface proteins reveals biological insight 
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regarding the behavior of these cells. As another example, the antigen specificity of a T cell 

can be revealed by using peptide:MHC tetramers that bind to a specific T cell receptor, 

revealing clonal expansion and cellular differentiation during an infection (Newell et al., 

2013). These proteins describe how our characters are equipped to interact with their 

surroundings, reflecting the context and setting.

Looking inside the cell, mass cytometry is, for instance, able to enumerate the expression of 

transcription factors that drive gene expression programs (Spitzer et al., 2015; Zunder et al., 

2015b). Moreover, the technology is capable of resolving cell signaling programs by 

measuring the phosphorylated (or otherwise post-translationally modified) forms of the 

proteins that comprise these cascades in manners that reflect biological mechanism or 

clinical outcomes (Bendall et al., 2011; Bodenmiller et al., 2012; Gaudilliere et al., 2014; 

Krishnaswamy et al., 2014; Mingueneau et al., 2013; 2014). Methods for quantifying RNA 

transcript levels by flow cytometry are also translatable to the mass cytometry platform, 

enabling elucidation of cellular behavior at another level of metabolism (Frei et al., 2016). 

These types of measurements reveal how the characters are each processing and reacting to 

information at a given point in time, allowing mass cytometry to become an objective 

narrator of the biological story told by a sample.

Mechanisms of intercellular communication, such as production of cytokines and growth 

factors, are additionally quantifiable within single cells (Newell et al., 2012). A method for 

robustly identifying phases of the cell cycle and monitoring cellular proliferation by 

incorporation of iodo-deoxyuridine (IdU, analogous to the fluorescent BrdU) has been 

described (Behbehani et al., 2012). By interrogating these cellular programs, researchers 

gain insight as to how a cell is responding to its environment, ascertaining the actions that 

each cell takes and developing the plot.

Thus, the majority of the tools available for interrogating cellular programs by flow 

cytometry have now been translated across to the mass cytometry platform. However, 

increased parameterization enables the assessment of many of these processes in diverse cell 

types simultaneously. The suite of cellular processes that can be enumerated by mass 

cytometry provides the potential to reveal the behavior of individual cells in a more holistic 

manner. This allows researchers to interrogate a cellular program of interest in great depth, 

surveying many molecular players that together mediate a cellular decision. By monitoring 

these processes simultaneously, mass cytometry can reveal co-regulation and crosstalk 

between cellular programs. Thus, it is now possible to observe cell signaling, proliferation 

and cell death programs in many cell types simultaneously.

To illustrate some of the above with an example, a recent study of B cell development in the 

healthy human bone marrow identified coordination points of cell signaling, proliferation 

and cell death in distinct stages of maturation (Bendall et al., 2014). These coordination 

points were only discernable because of the high-dimensional data that mass cytometry 

provides. For instance, the unambiguous identification of a checkpoint between the pre-B I 

and pre-B II cell stages required simultaneous quantification of 19 cell-surface proteins, 2 

intracellular enzymes (TdT and RAG1), a proliferation marker (Ki67), a phosphorylated cell 
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signaling protein (p-STAT5), and a modified form of a protein involved in apoptosis (cleaved 

PARP).

While B cell development has been studied for decades, this study was also able to reveal 

new cell subsets because proteins that were not previously known to discriminate early B 

cell progenitors (TdT vs. CD24) were measured simultaneously along with the markers 

required to exclude more and less mature cell types (Bendall et al., 2014). In hindsight, this 

observation could have been made using fewer parameters, but it was previously not seen 

because this particular combination of proteins required would not have been intuitive based 

on the canonical model of human B cell development. As with RNA-seq and its precursor 

technology of gene expression arrays, mass cytometry enables a hypothesis generation 

approach to biological inquiries of complex cell populations.

Thus, the dimensionality afforded by mass cytometry results in a more complete story of 

how a system is structured at the cellular level and regulates its behavior. As with a plot 

twist, such as the physiological perturbations caused by pathology, mass cytometry is 

similarly adept at identifying cellular rewiring, as showcased in a recent study of acute 

myeloid leukemia (Levine et al., 2015).

Current Limitations

While a profusion of cellular processes can be simultaneously investigated using mass 

cytometry, the technological platform does have some important limitations to consider 

when designing an experiment. Because cells are atomized and ionized, it remains infeasible 

to recover living cells after analysis. Moreover, due to the dynamics of ion flight in the mass 

spectrometer, the throughput of mass cytometry lags behind that of fluorescence-based 

instruments. Additionally, the sensitivity of mass reporters falls shy of few, more quantum-

efficient fluorophores (such as phycoerythrin), making it more difficult to measure 

molecular features that are expressed at very low levels using mass cytometry. That said, the 

sensitivity range of ions across the mass range is 3–4 fold in difference, whereas 

fluorophores must contend with a vast range (50 fold) encumbered by serious issues in 

spectral output (which can be partly remedied by fluorescence compensation).

As with all new technologies, standards are being established for the comparison of data 

across laboratories and instruments. A recent study compared the ionization efficiency 

across CyTOF 2 mass cytometers, demonstrating that quantitative comparisons between 

instruments is significantly improved by normalization (Tricot et al., 2015). Because each 

instrument had a characteristic efficiency profile, comparison of data from the same 

instrument can be accomplished by incorporating polystyrene beads for data normalization, 

as described in more detail below (Finck et al., 2013). The authors of this former study 

concluded that another normalization reagent containing all measured reporter ions would 

facilitate highly quantitative inter-instrument comparisons (Tricot et al., 2015).

Perhaps most important are limitations shared by fluorescence-based flow cytometry. Some 

mediators of cellular behavior, such as many small molecule metabolites, are difficult or 

impossible to measure by CyTOF or fluorescence based cytometry because there is no easy 
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technical approach that maintains small molecules and a binding agent associated with the 

cell. While certain cellular attributes can be measured (such as pH or ion concentration) with 

environmentally sensitive chemicals or modified fluorescence proteins, the development of 

mass cytometric analogues for such purposes is more difficult to contemplate. While one 

activity-based probe for mass cytometry has been developed (Edgar et al., 2014), further 

elaboration in this area could expand the realm of cellular processes available for 

investigation using these both cytometry platforms. Finally, the static nature of either mass 

cytometry or fluorescence based flow cytometry precludes serial measurements of the same 

cells, limiting measures of individual single cells over time.

High-quality affinity reagents with minimal cross-reactivity are required (as for all methods 

using antibodies or other affinity reagents), but numerous validated antibodies are 

commercially available, and probe design for mRNA detection is facilitated by user-friendly 

tools (Frei et al., 2016). Despite the use of affinity reagents, the cost of mass cytometry per 

cell is very favorable to other single-cell analysis modalities. The cost of reagents, 

disposables, and data acquisition is approximately 0.005 cents per cell when acquired by 

mass cytometry. In contrast, an estimated value for cells measured by single-cell RNA-

sequencing using the Fluidigm C1 system and unique molecular identifiers (Islam et al., 

2013) comes in at $22 per cell, (even when reagents are made in house; Heger, GenomeWeb, 

2014). This amounts to a 4400-fold higher cost compared to mass cytometry. Even on a per-

parameter, per-cell basis, assuming 4,000 genes are measured per cell, this amounts to a 44-

fold cost differential in favor of mass cytometry.

Because mass cytometry currently focuses on the use of affinity-based reporters, the targets 

to be measured must be determined prior to sample acquisition. Therefore, the information 

collected about a sample is limited to the information content captured by the dimensions 

measured. Given this, careful consideration should be made as to which markers might 

provide the most information content to answer the biological question at hand. Even despite 

this fact, an advantage of high-parameter analysis is that unexpected juxtapositions of these 

markers often reveal novel biological or clinical findings (Bendall et al., 2011; 2014; 

Gaudilliere et al., 2014; Krishnaswamy et al., 2014; Spitzer et al., 2015). For example, one 

application of mass cytometry comes in classifying types of cells, which can also be thought 

of as “information content” clusters. Cell populations are essentially groups of cells defined 

by the co-expression of markers, which reflect the networks of genes that determine such 

protein expression patterns. Even given prior knowledge and careful panel design, cells 

expressing unique combinations of proteins have been discerned that would not have been 

intuitive based on the literature findings (Bendall et al., 2011; 2014; Spitzer et al., 2015).

While this limitation (and opportunity) is clear from years of work in high dimensional flow 

cytometry, other single cell modalities have their own inherent, and subtle, biases that can 

cause data to be difficult to interpret. For instance, single-cell RNA-sequencing (RNA-seq) 

is capable in theory of quantifying genome-wide transcript expression, but the depth of 

sequencing and efficiency of mRNA capture biases towards the most highly abundant 

transcripts (which are not always the most important biologically). For instance, traditional 

RNA-seq methods can require up to 50 mRNA copies per cell for reproducible detection in 

every cell (Hashimshony et al., 2012). Technical manipulation of cells prior to lysis and 
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reverse transcription for RNA-seq can introduce technical artifacts that can limit clear 

interpretation of the results (Dvinge et al., 2014). In contrast, like flow cytometry, mass 

cytometry can be performed on fixed cells—essentially preserved in a manner that limits 

biologically related artifacts driven by technical procedures. While a method for single-cell 

RNA-sequencing of fixed cells has been recently reported, it currently enables detection of 

only the 3,000–4,000 most highly-abundant transcripts (Thomsen et al., 2015). Improvement 

in unbiased RNA amplification technologies for single cells, targeted RNA-seq, or merging 

the measurement of multiplexed RNA on a per cell basis with the throughput of mass 

cytometry as per Frei et al. might overcome some of these limitations.

Beyond the limitations above, the next important challenge for mass cytometry has been the 

interpretation of the complex datasets that result (a fortunate problem to which we turn our 

attention below). In order to contextualize this, we will first provide an overview of 

experimental design for mass cytometry.

Experimental Design and Reagent Development

Mass cytometry can be a powerful tool for interrogating complex biological systems. 

However, each mass cytometry experiment is a time-consuming endeavor. Maximizing the 

information content generated requires considerable planning. Here, we delineate the 

questions we usually pose to guide our own experimental and technical strategies.

The most critical aspect of a successful mass cytometry experiment is establishing clear 

goals at the onset: What question(s) ought the experiment answer? Is it a specific biological 

mechanism one is after? Are you interested in a “systems” understanding how the individual 

signaling components within a cell are behaving, or are you more interested in the 

intercellular dynamics of a complex cellular system? Are you measuring the behavior of one 

sample, or are you collecting a series of samples from a cohort of patients? Answering these 

questions up front will have great implications regarding effective experimental design. 

Because so many different aspects of biology can be interrogated using mass cytometry, it 

becomes essential to clarify the experimental intent from the onset.

Having set clear goals, we then identify the types of cell samples required to answer the 

desired question(s). Will we need primary patient samples, or will a cell line suffice? Are we 

interested in how cellular behavior changes over time? Are we attempting to quantify 

differences amongst or between groups of samples? Do the biological processes under 

investigation require activation or exogenous perturbation of the samples? The answers to 

these and other questions will begin to determine the scope of the experiment, which can 

range from a few, well-controlled samples to dozens of patient specimens. Understanding 

the scale of the experiment will critically inform the remainder of the planning.

We next identify the panel of cellular features that we will measure. A helpful place to start 

is to delineate the major landmarks, or the types of cells, to identify in the samples. 

Depending on the experimental goals, these may include features that determine the identity 

of cells as well as the behavioral state of the cells (which are not always mutually exclusive 

attributes). Do the experimental goals require the identification of every subpopulation of 
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immune cell, would we be happy to focus on a particular set of cell subsets, or are we 

studying a cell line where cell-surface markers are less helpful? Mass cytometry experiments 

can range from identifying nearly every type and sub-type of cell in a given sample (Spitzer 

et al., 2015) all the way to dedicating just a few parameters that reveal broad classes of cells 

while using the remaining parameters to measure behavioral states (Bodenmiller et al., 

2012).

If the experimental goal is to characterize one cellular process exhaustively, we can dedicate 

most parameters to enumerating cellular features that shed light on that process of interest, 

perhaps all the relevant members of a signaling cascade or a cell death program. If the goal 

is to more broadly characterize cellular behavior, however, we must decide which processes 

we will assess and choose cellular features to measure that best describe those processes. For 

example, if a study aims to provide a granular understanding of the cell cycle state, we 

would include several parameters that enable delineation of G1, S, G2, and M phases 

(Behbehani et al., 2012). If, on the other hand, cell division is only one small aspect of the 

study, a broad proliferation marker, like Ki-67, usually suffices. For flow cytometry experts 

accustomed to working with 12–15 markers, choosing a few dozen parameters for 

measurement may seem luxurious. However, narrowing down which parameters to measure 

is rarely obvious and critically defines the types of conclusions that can be drawn.

We usually start by creating a wish list of markers without consideration of practicality. We 

narrow the list by prioritizing the cell types in which we are most interested (this defines the 

surface markers). We then prioritize the intracellular attributes most relevant. Next, we 

determine which markers would require new reagent development and which already have 

high-quality reagents, and then we determine whether the staining conditions for the markers 

are compatible with each other. If sample supply is not limited, it is always possible to create 

multi-panel designs to accommodate the desired biology. For instance, if one is studying 

immune infiltrates of tumors, it makes sense to create a panel focused on tumor cells and, 

separately, an immune targeted panel. The flexible reuse of signaling systems in biology can 

often enable the same set of intracellular markers to be used in multiple panels, but subtle 

considerations of which markers ought to be in which panel have to be made.

Mass cytometry is relatively new to the scene, and as such commercial reagents for use “off 

the shelf” are less prevalent that those for fluorescence based approaches. While more 

reagents are introduced regularly, highly customized antibody panels often require in-house 

conjugations of purified antibodies to polymer chains binding heavy metal ions of choice 

(Bjornson et al., 2013; Lou et al., 2007). While the chemistry involved is a conventional 

method for labeling proteins (maleimide coupling through –SH groups), it remains essential 

that all newly-conjugated antibodies be subjected to rigorous validation and titration to 

confirm binding to the target of interest and ascertain the appropriate staining concentration 

in the system of interest. Because the instrument sensitivity varies across the mass range of 

isotope reporters, and each metal isotope is available at slightly different purities, choosing 

the best channel for each parameter requires some advance planning. For instance, while 

metals with several stable isotopes can be purified highly (95–99%), the small residual levels 

of other isotopes will result in signal bleed from one channel into another of the same 

element. Moreover, several reporter metal ions oxidize at a low frequency (1–2%), gaining 
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an apparent mass of 16amu and resulting in signal bleed into that corresponding channel. 

However, because the interferences between isotopes pale in comparison to the spectral 

overlap between some fluorophores (often >50% in multicolor panels), complications with 

multicolor flow cytometry due to as spectral compensation artifacts are simply not an issue 

on a mass cytometry platform. These considerations require some navigation, but when 

evaluated carefully, it is a straightforward procedure to enable a 30- to 45-dimensional panel 

of cellular features that can be quantified on nearly any sample of interest that can be 

rendered into a single cell suspension.

A key consideration is controlling for experimental noise between sample runs. Minor 

differences in the number of cells per sample or pipetting error when adding affinity reagents 

can potentially introduce small amounts of technical variance, as is also true for 

fluorescence-based flow cytometry. In order to make the most precise comparisons between 

critical samples, methods for barcoding individual conditions are used that enable pooling 

samples for downstream staining and acquisition (Behbehani et al., 2014; Bodenmiller et al., 

2012; Mei et al., 2015; Zunder et al., 2015a). These strategies use distinct combinations of a 

panel of metals, and each of these combinations serves as a unique barcode for an individual 

sample. After staining samples with these barcode metals, multiple samples can be pooled 

together into the same tube and then stained with cocktails of antibodies. After data 

collection, each respective sample is deconvoluted prior to analysis by identifying every cell 

with that particular barcode. Therefore, samples that require the most precise comparisons 

should be barcoded together to reduce technical variability. In addition to sample barcoding, 

a data normalization approach has been developed based on bead standards. These beads 

contain metal ions, and they are mixed with the cell sample and thus sampled continuously 

along with the cells. By monitoring the signal captured from these normalization beads over 

time, it becomes possible to correct for variability in the sensitivity of the instrument over 

the course of an experiment or between experiments (Finck et al., 2013). An open-source 

algorithm accompanying Finck et al. normalizes the data from each cell by computing an 

average of the signal intensities from beads, providing an effective and reproducible 

approach to data normalization that accommodates inter-sample and intra-sample variability 

(Finck et al., 2013).

Taking these factors into consideration, it becomes possible to design a thorough experiment 

to evaluate cellular attributes or behaviors in millions of individual cells from each sample of 

interest. However, deciding which of many analytical approaches to use in order to best 

derive biological meaning out of the data remains a key next step. We are often asked—

which informatics technique is best? The answer depends on the biological question at hand 

and often is several.

An Iterative Approach to Data Analysis

As with other types of high-dimensional “-omics” data, mass cytometry provides 

opportunities to view the resulting data from many perspectives (Table 1, Fig. 2). On the one 

hand, mass cytometry data sets can be treated exactly the way flow cytometry data has been 

for decades. It remains possible to ask questions in the data by identifying specific cells of 

interest by partitioning cells in one-dimensional histograms or two-dimensional scatter plots 
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(a process called “gating”) and quantifying a feature of interest, such as a population 

frequency or a measure of behavioral state. However, this would limit the value of the 

multiparameter approach.

Utilizing analysis methods that take advantage of the increased parameterization of mass 

cytometry allow researchers to test more hypotheses within a single data set. Rather than 

conducting independent studies to assess whether certain cell types change their behavior, 

mass cytometry can enable all cell subsets to be studied at once. Instead of focusing an 

experiment entirely on understanding whether a given subset of cells is proliferating, it is 

possible to monitor cell death, cytokine production or cell signaling simultaneously.

Simply thinking about cytometry data from the vantage of performing multiple experiments 

simultaneously would limit the opportunities provided by data structured in this manner. It is 

key to realize that simultaneous measurements provide a wholly different kind of insight 

(Chester and Maecker, 2015). Measuring two parameters in an experiment really provides 

information regarding parameter 1, parameter 2 and how parameters 1 and 2 change together 

(Fig. 3). In principle, this type of information is available from any dataset in which more 

than one measurement is taken across samples, including any multicolor fluorescence-based 

flow cytometry experiment. However, when working with data in higher dimensions, the 

problem of extracting and interpreting the meaningful information “tied up” in multiple 

dimensions becomes more pressing—and more exciting to consider!

As the number of analytical tools available for application to mass cytometry datasets 

continues to increase, researchers now have choices: which method(s) is most appropriate 

for the biological question at hand? Due to the high-dimensional nature of these datasets, 

new types of questions can be asked. Does the method I need even currently exist? In many 

cases in our lab we have found either the tools do not exist, or due to computational 

limitations, an algorithm that works for a 10-dimensional flow cytometry dataset may not be 

practical for a 40-dimensional dataset. Therefore, especially in these early days of the 

technological platform, an iterative approach to data analysis will likely prove necessary. 

Which approach is best for the question in mind? Our answer has been, “try them each and 

interpret for yourself.” Just as there are multiple strategies for aligning sequencing reads to a 

genome, there are now a number of ways to visualize and analyze mass cytometry data. The 

fact is that each approach makes certain assumptions about the nature of the underlying data 

and has the potential to showcase different facets thereof, and will inspire different insights 

from the same original data (Diggins et al., 2015). In the next sections we enumerate some 

of the techniques developed to date that we have found most useful.

Visualization Strategies to Facilitate Dynamic Analysis

One instance in which the “curse of dimensionality” becomes immediately apparent is 

visualizing data: How can we see all of our cells on one page to view the structure of a 

system? Conventional methods limit the researcher to viewing data in up to 3 dimensions, 

which are often insufficient for meaningful interpretation and identification of many cells of 

interest. To represent more information in a space interpretable by humans, the data must be 

compressed by reducing its dimensionality. Attempts to do so require extracting information 
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from high-dimensional space in order to preserve the organization of the original data. 

Several approaches have been proposed to address this challenge, each with distinct 

advantages (or drawbacks). They often draw on principles from extensive prior work on 

dimensionality reduction in statistics/machine learning.

One older approach for dimensionality reduction that has been applied to mass cytometry 

data is principal component analysis (PCA), which attempts to capture the most variance 

within a dataset by creating linear combinations of dimensions to define new compound 

variables (Bendall et al., 2011; Newell et al., 2012). PCA does provide a visualization space 

that is somewhat comprehensible, as the axes are derived from the original parameters 

measured. However, PCA operates under an assumption that the underlying data are 

parametric, which is not always the case, and the method does not guarantee that the first 2 

or 3 compound variables will enable an effective visualization in a tractable space. 

Moreover, the dimensions of largest variance in the data may not truly answer the question 

at hand, as interesting biological differences are often subtle ones. Therefore, PCA does 

provide a convenient method for visualizing mass cytometry data, but it does have several 

constraints of which one must be aware.

The first algorithm specifically developed to reduce the dimensionality of mass cytometry 

data into a 2-dimensional projection was termed Spanning-Tree Progression Analysis of 

Density-Normalized Events (SPADE) (Bendall et al., 2011; Qiu et al., 2011). The method 

leverages a previously developed concept in cytometry analysis, grouping common cells 

together by applying a clustering algorithm (Aghaeepour et al., 2013; Chan et al., 2008; 

Pyne et al., 2009). SPADE implements a density-dependent down-sampling to avoid 

obscuring rare cell populations, and then clusters similar cells. Clustering is only a first 

component of this algorithm, used to partition cells into groups that are more easily 

visualized in the later steps. This is achieved by connecting clusters together in a minimum-

spanning tree, a graph in which each cluster is connected to its 2 nearest neighbors while 

minimizing the total edge length. The cell events are then up-sampled to re-capture the 

original data density. SPADE therefore enables the entirety of a high-dimensional cytometry 

dataset to be visualized in one planar image. Applying the algorithm to data from healthy 

human bone marrow exhibited its ability to showcase the structure of the hematopoietic 

system (Bendall et al., 2011). Importantly, having contained a given subset of cells within a 

cluster, the population size or relative expression of any given set of markers (or ratios 

thereof) can be represented by the size of the node in the graph or its color.

Public implementations of the SPADE algorithm provide researchers a means to interact 

with the data in user interfaces such as that incorporated into the analysis suite Cytobank 

(www.cytobank.org) (Chen and Kotecha, 2014), visualizing cellular features of interest 

across all the cells in a dataset. However, a limitation of the method is the rigid connectivity 

of the structure, which can prevent similar cell clusters from positioning themselves 

correctly in a structure that truly represents the underlying biology. The stochastic nature of 

the density-dependent down-sampling also prevents the graph from being deterministic, 

meaning that its results can vary between iterations. Moreover, the coordinates of a cluster in 

the visualization have no meaning, so the user can manipulate the organization. More 

recently developed algorithms have sought to address these limitations.
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A newer strategy for dimensionality reduction of mass cytometry data, Visualization of t-

Distributed Stochastic Neighbor Embedding (viSNE), illustrates the structure of high-

dimensional data without clustering cells into mutually exclusive groups (Amir et al., 2013). 

Instead, this approach grants each individual cell a unique location in a 2-dimensional 

projection that maximizes the similarity—and distinctiveness—of the cell states in the 

system. The resulting output is a visualization that resembles a dot plot. However, this data 

representation comes with a tradeoff. First, applying the approach to very large numbers of 

cells is currently computationally unfeasible. In addition, subtle differences in cell 

population densities can be obscured. A method has also been developed to identify local 

maxima from viSNE plots to find putative cell populations for later characterization 

(Shekhar et al., 2014). While viSNE provides single-cell resolution, and can robustly group 

similar cells in a 2-dimensional plane, it sacrifices certain features that may be required to 

address biological questions pertaining to global system structure or cell lineage 

relationships.

Most recently, we have implemented a new strategy for visualizing global structure that 

incorporates prior knowledge as a guide for the researcher (Spitzer et al., 2015). This 

algorithm, termed Single-cell analysis by fixed force- and landmark-directed (Scaffold) 

maps, is based on yet another strategy, force-directed graphs (Eades, 1984; Fruchterman and 

Reingold, 1991). Cells are first clustered to enable visualizing the entirety of the data set. 

Clusters are then spatialized in a 2-dimensional plane by two forces until the energy of the 

system is minimized. The first is a repulsive force: all nodes are repelled by one another as if 

they were equivalent poles of magnets. The second is an attractive force: if two clusters are 

sufficiently similar to one another, they are connected by a spring (i.e., an edge) that pulls 

them together in the final layout. To incorporate prior knowledge into these maps, manually-

gated landmark populations can be included alongside unsupervised cell clusters in the final 

layout. This enables the landmark nodes to be fixed in place before overlaying data from 

distinct samples onto the reference structure. This approach uniquely allows an 

uncharacterized sample to be viewed with respect to a characterized reference for rapid 

comparison of their global structure. Because each sample can be clustered individually, new 

data can be integrated and compared to an existing reference framework, which will enable 

the collation of datasets over time into a repository moving forward. Alternatively, samples 

can also be clustered together to enable extremely precise comparisons. The approach is 

capable of discerning immune organization across distinct runs of instruments, between 

fluorescence based cytometry and mass cytometry datasets, and even across species (Spitzer 

et al., 2015).

Force-directed layouts can similarly be implemented in the absence of manually-identified 

landmarks to visualize the landscape of a cellular compartment (Spitzer et al., 2015; Zunder 

et al., 2015b). These graphs enable visualizing clusters without the constraint of a minimum-

spanning tree, allowing clusters to form as many edges as the data should dictate. The result 

is a more robust final structure in which all sufficiently similar clusters form connections, 

and the length of these edges reflects their similarity. This flexible framework enables the 

incorporation of time course data (FLOW-MAP) (Zunder et al., 2015b), and an approach to 

extract groups of similar cells from a graph using community detection (PhenoGraph) 

Spitzer and Nolan Page 13

Cell. Author manuscript; available in PMC 2017 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Levine et al., 2015) is also available. These graphs can similarly be colored by individual 

parameters for interactive data analysis.

Although the arena of mass cytometry data visualization has seen an emergence of several 

tools with which to interrogate structure in datasets, researchers ought to consider which 

method seems best suited for their particular questions. Notwithstanding, these tools provide 

great opportunities for revealing the organization in high-dimensional data. We speculate 

that improvements made to these algorithms, as well as the development of novel strategies, 

will continue to sharpen the visualization toolkit of the cytometry community, enabling the 

discernment of biological structure from complex high-dimensional data.

Analytical Methods for Characterizing Biological Processes and Cellular 

Diversity

In addition to the suite of visualization tools described above, a number of strategies for 

discerning, organizing and characterizing biological processes from mass cytometry data 

have additionally been developed. These methods uniformly take advantage of high-

dimensional data content to model dynamic events such as cell-signaling cascades and cell 

death programs from cytometric data. One such strategy utilizes Bayesian network analysis 

to reconstruct cell signaling pathways from phospho-specific flow cytometry data (Sachs et 

al., 2005). While this method has not yet been applied to mass cytometry data, its increased 

parameterization and reduced crosstalk between reporters should provide a distinct 

advantage over fluorescence-based methods for this type of analysis.

More recently, a method has been developed to ascertain the effect of one signaling protein’s 

activity on that of another (Krishnaswamy et al., 2014; Mingueneau et al., 2014). This 

approach conditions across the activity range of one signaling molecule in the dataset and 

asks how a second signaling molecule behaves across this range at the single-cell level. The 

strategy is capable of highlighting key aspects of signal transduction behavior and cross talk 

between co-regulated pathways. While these strategies have heretofore been applied to cell 

signaling, additional cellular behaviors, such as mediators of proliferation, cell death or 

intercellular communication (i.e. cytokines, growth factors, etc.), could be similarly 

assessed.

Another type of question that a mass cytometry experiment can address is to define a cellular 

progression, such as a differentiation trajectory from a primitive to a mature cell type. A 

recent example examined the path of B cell lymphopoiesis in human bone marrow (Bendall 

et al., 2014). This study provided a generalizable algorithm for discerning the most likely 

path from a defined starting point (such as a stem cell) to an ending point (such as a mature 

cell) in single cell data called Wanderlust. The method, which defines the cellular 

progression as an average of k-nearest neighbor graphs through the data, enables identifying 

cellular events that take place over the course of this cellular trajectory. For example, cell-

signaling states, proliferative bursts and coordinated points of cell death can be identified 

along the cellular differentiation pathway. One current limitation is that the algorithm makes 

the assumption of a linear differentiation scheme (i.e., no branch points are permitted), 

providing opportunities for future developments.
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Rather than modeling a differentiation scheme, another question to which mass cytometry 

data can provide an answer is that of cellular diversity. Several studies have investigated 

variability within a particular cell population in order to understand the suite of possible 

fates a cell can adopt. Adopting tools from ecology, the diversity of human natural killer 

cells has been quantified using the Inverse Simpson Index (Horowitz et al., 2013). 

Intriguingly, this score of NK cell diversity serves as a prognostic metric of HIV acquisition 

(Strauss-Albee et al., 2015), demonstrating the utility of high-dimensional single-cell 

observations. Moreover, the application of visualization tools described above can also 

provide insight regarding the phenotypic variability of cell populations (Becher et al., 2014; 

Spitzer et al., 2015; Wong et al., 2015).

Transforming Data into Statistical Inference

While these methods aim to reveal biological mechanism from mass cytometry data, yet 

another approach identifies cellular features that correlate with a desired outcome, such as 

patient survival. The algorithm is termed Cluster Identification, Characterization & 

Regression (Citrus) (Bruggner et al., 2014) and combines hierarchical clustering of cell 

events with machine learning approaches to identify statistically significant features between 

groups of samples or to build a predictive model for a particular sample type (Bair and 

Tibshirani, 2004). The result is a robust method for identifying groups of cells with 

behavioral characteristics that correlate with an annotated feature of the samples of interest, 

such as time to recovery or overall survival. Recently applied to immune behavior during hip 

replacement surgery, the method identified cell signaling features predictive of patient 

recovery from trauma (Gaudilliere et al., 2014). Other approaches for building predictive 

models from fluorescence-based flow cytometry data (Aghaeepour et al., 2013) will likely 

find applications in the analysis of mass cytometry data as well. A final approach is the use 

of correlation clusters to map “modules” of interacting features across a complex immune 

landscape (Hotson et al., 2016). This approach can be used to discover novel interacting 

cellular components in a complex cellular system.

From Present to Future

While many methods for utilizing mass cytometry to investigate biological systems have 

been developed, the applications thereof are just at their beginning. Many important and 

unanswered questions in immunology could find their answers through the implementation 

of these approaches. One analytical strategy that we believe is particularly amenable to 

future development is the immune system reference framework that utilizes the Scaffold 

maps algorithm (Spitzer et al., 2015). These concepts are specifically designed to provide a 

foundation on which future studies can be layered for detailed comparison. By creating an 

analytical platform that is extensible, the reference framework will enable meta-analyses 

across multiple cytometry experiments, and ultimately single-cell data from other platforms, 

analogous to what has been achieved with transcriptomics data. In this way, the effects on 

the immune system of any perturbation or change in context can be discerned and compared 

to results from other studies for additional insight. Additionally, the concept should allow a 

data-driven encyclopedia of immunology to be collated in a format that facilitates analysis 

moving forward. While currently built on data from the mouse, the addition of human data 
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as well as studies in other organisms will expand its utility. Studies to assess optimal 

strategies for comparing datasets are currently underway.

In the last few years, mass cytometry has transitioned from a promising emerging 

technology to a developed and accepted platform for high-dimensional single-cell analysis. 

It is now possible to discern cellular populations of interest while simultaneously 

interrogating many facets of cellular behavior from a single experiment. This potential 

expands the utility of cytometry for revealing mechanism at the level of the fundamental 

biological unit—the cell—with the throughput required to capture the emergent properties of 

integrated cellular systems. The development of new technologies has historically allowed 

researchers to ask questions from perspectives previously unattainable. Mass cytometry will 

likely do the same.
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Figure 1. Workflow of a typical mass cytometry experiment
Single cells are acquired, and a viability stain is applied to mark dead cells for exclusion 

from analyses. Fixation can optionally be applied at this point to preserve the cell state. 

Multiple samples can be barcoded with unique combinations of heavy metal tags, enabling 

them to be pooled together prior to staining to minimize technical variability at this step. 

After pooling samples into one tube, cells are then incubated with antibodies targeted against 

proteins of interest. Cell permeabilization can be performed if intracellular targets are to be 

measured. Cells are nebulized into droplets as they are introduced into the mass cytometer. 

They then travel into an inductively-coupled argon plasma (ICP), in which covalent bonds 

are broken and ions are liberated. The ion cloud is filtered by a quadrupole to remove 

common biological elements and enrich the heavy metal reporter ions to be quantified by 

time-of-flight mass spectrometry. Ion signals are integrated on a per-cell basis, resulting in 

single-cell measurements for downstream analysis. Data are compiled in an FCS file that can 

then be parsed and plotted in a variety of ways.
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Figure 2. Computational methods developed for mass cytometry data analysis
Several classes of tools have been recently developed to assist in the interpretation of mass 

cytometry data. Here, we focus on those methods developed specifically for this purpose. 

Sample results are shown from different classes of algorithms designed to assess the global 

structure of a sample (Scaffold maps), the relationship between two molecules in single cells 

(DREMI/DREVI), or the cellular/molecular features that correlate with or best predict a 

clinical outcome or sample type (Citrus), respectively.
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Figure 3. The challenge of visualizing high-dimensional data without information loss
High dimensional data is challenging to visualize due to the amount of information that must 

be captured in an effective representation. Here are two examples of how information 

content is lost by compressing the dimensionality of data. A) 2-dimensional data is 

compressed into 1 dimension: Left) the frequency of a property called dimension 2 is plotted 

against the frequency of a property called dimension 1, revealing 3 distinct cell populations. 

Right) Plotting just the frequency of the Dimension 1 property loses this view. B) 3-

dimensional data showing the range of cells that have 3 different properties (dimensions) 

and how they relate to each other (left) is compressed into 2 dimensions (middle) and 1 

dimension (right). The trajectory of cells is entirely lost in the lower-dimensional 

representations.
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Table 1

Algorithms developed or applied to the analysis of mass cytometry data. Methods are grouped by the 

biological questions they seek to answer, including the partitioning of cells into subsets, the visualization of 

the global structure of a sample, the progression of cells through a continuum (such as differentiation), the 

diversity of cells in a sample, the signaling networks in cell samples, and cellular features that correlate with or 

predict outcome. It is important to note that these goals are not always mutually exclusive—for instance, 

SPADE and Scaffold Maps aim to reveal the global structure of a sample but utilize clustering algorithms as a 

means of partitioning cells to achieve this goal.

Type of Question Tools Available Unique Features References

Cell Population Identification Manual Analysis – Gating 
Clustering Algorithms

Easy interpretation: grounded in prior 
knowledge

Pervasive in the literature

Many available each with unique 
advantages

Newly developed methods for 
mass cytometry analysis:

• Shekhar et al., PNAS 
(2013)

• Levine et al., Cell 
(2015)

Global Data Structure SPADE Unsupervised analysis, density-
dependent downsampling to preserve 
rare cell events

Qiu et al., Nat. Biotechnol. (2011)

viSNE Single-cell resolution on resulting 
images, which resemble a scatter plot

Amir et al., Nat. Biotechnol. 
(2013)

Scaffold Maps Integrates prior knowledge for 
interpretability, new data can be 
compared to an existing reference

Spitzer et al., Science (2015)

Cellular Progression Wanderlust Defines most likely linear path from a 
known starting cell to a known ending 
cell

Bendall et al., Cell (2014)

FLOW-MAP Enables analysis of time course data, 
no assumptions about differentiation 
path or directionality

Zunder et al., Cell Stem Cell 
(2014)

Cellular Diversity Inverse Simpson Index Defines the diversity of a cell 
population based on heterogeneity of 
protein expression

Strauss-Albee et al., Sci. Trans. 
Med. (2015)

Signaling Network Inference DREMI/DREVI Reveals the dependence of one 
molecular feature on the levels of 
another

Krishnaswamy et al., Science 
(2014)

Correlative/Predictive Features 
of Clinical Outcome or Sample 
Type

Citrus Identifies significant features between 
groups of samples, build predictive 
model of clinical outcome

Bruggner et al., PNAS (2014)
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