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Abstract

The Clean Water Act (CWA) addresses nonpoint source pollution primarily by
funding public works projects. Our study evaluates changes in rural watersheds before
and after CWA projects are implemented, compared to watersheds without funding.
We find that projects significantly reduce water pollution, with corresponding increases
in human population and residential construction. Using housing values, we estimate
that economic benefits exceed government costs by at least fourfold. Over half of this
benefit is attributable to new housing. Our findings show that pollution can impede
urbanization, suggesting more broadly that residential development is an important
mechanism of revealed preference for environmental quality.
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1 Introduction

A vast literature uses housing prices to quantify the economic benefits of reducing pollution.
Hedonic valuation is intuitive and empirically tractable: people should pay higher prices
for homes that have better environmental amenities. Given the right assumptions, these
relative differences in prices represent people’s willingness to pay for reductions in pollution
(Bishop et al., 2020). Total social benefit can then be calculated by multiplying the estimated
price effect(s) by the stock of homes (e.g. Chay and Greenstone, 2005; Gamper-Rabindran
and Timmins, 2013). This approach seems sensible for urban areas; if housing supply is
highly inelastic, improvements in environmental quality should primarily lead to higher prices
(Kahn and Walsh, 2015). However, this approach might significantly underestimate economic
benefits in rural and suburban areas, where undeveloped land can be repurposed to build
new housing (Taylor and Druckenmiller, 2022).

We examine this possibility in the context of surface water pollution, testing whether
the U.S. Clean Water Act Section 319(h) program increases residential development. Since
1990, Section 319 has provided annual funding to state water quality agencies for nonpoint
source pollution projects. Most of this pollution is due to agricultural and other runoff,
and this pollution is typically very salient. Specific projects take many forms, such as
sediment retention basins, riparian fencing for livestock, and treatments for algae blooms.
The vast majority of projects are in rural and suburban areas, and the “watershed-based”
approach provides very localized treatments (EPA, 2011). Social benefits can accrue through
numerous mechanisms, including recreational and fishing potential, drinking water quality,
and aesthetic value. There is ample scope for new construction in rural areas and anecdotal
evidence that these public works projects attract new residents. These factors make the
Section 319 program an ideal setting to test our urbanization hypothesis: does reducing
surface water pollution lead to increased residential development in rural areas?

Using data from a variety of government sources, our study evaluates changes in rural
watersheds before and after Section 319 projects are implemented, compared to changes in
watersheds without any projects. We first show that average reductions in surface water
pollution from 1990 to 2020 are 68 percent larger in watersheds with projects, despite very
similar trends (and average levels) for treated and never-treated watersheds before the start
of the Section 319 program. This large average treatment effect is highly robust across
different econometric models and analyses. Next, we show that Section 319 projects increase
treated watersheds’ total population and housing units by about ten percent. We also
find significant positive effects for housing values. Altogether, there is strong evidence that
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reducing water pollution causes increased residential development. Finally, we use these
estimates to conduct a cost-benefit analysis. We calculate that Section 319 program benefits
are $7.62 per dollar of federal Section 319 cost and $4.28 per dollar of total government costs,
with about 56 percent of the benefit accruing through new home construction.

Our paper makes several contributions. Most directly, we show that the Clean Water
Act Section 319 program significantly reduces water pollution. Although state governments
have conducted case studies for selected projects, to our knowledge we provide the first
comprehensive nationwide evaluation. Broadly, there is a “dearth of economic research on
water pollution” (Keiser and Shapiro, 2019a). Our study contributes to the “critical area”
of research needed on nonpoint source pollution control (Olmstead, 2010).

In addition, we demonstrate by revealed-preference that the benefits of these public
works projects greatly exceed costs. This favorable finding is an outlier in a literature that
typically finds negative net-benefits for water quality policies (Keiser et al., 2019). Several
factors could potentially reconcile this distinction. Nonpoint source pollution is the primary
source of U.S. water quality impairments, and pollution programs have diminishing marginal
benefits (Olmstead, 2010). Surface water pollution is also salient and directly affects amenity
value. Compared to point source and municipal water pollution, the U.S. spends much
less addressing nonpoint sources—the Section 319 program is one of only two major federal
policies targeting nonpoint sources (Keiser et al., 2019; Keiser and Shapiro, 2019a).1 Finally,
hedonic valuations that focus only on the intensive margin of increased prices for existing
homes may miss important categories of benefits (Keiser et al., 2019). In this study, we find
that residential development is an important mechanism for economic benefits.

In doing so, we contribute evidence more generally on the determinants of housing supply.
Natural resources and terrain directly influence development (Burchfield et al., 2006; Saiz,
2010). Zoning policies, land use regulations, and infrastructure investments also play a role
(Glaeser et al., 2005; Glaeser and Ward, 2009; Fretz et al., 2022). Our findings help to
address the “considerable” research gap on how pollution affects housing supply (Kuminoff
et al., 2013).2 Based on our estimates, quantifying valuation only through housing prices
would fail to include more than half of the economic benefits of the Section 319 program.

1In addition to Section 319, nonpoint source water pollution projects are also sponsored by the USDA
through the U.S. Soil and Water Resources Conservation Act (RCA), discussed below in Section 4.

2A related literature considers how urbanization impacts pollution (e.g. Cropper and Griffiths, 1994;
Glaeser and Kahn, 2010; Deng and Mendelsohn, 2021).
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2 Data

Our study compiles data from several sources. We start with EPA’s Grants Reporting and
Tracking System (GRTS), which describes each Clean Water Act Section 319 project. The
most granular level of reporting for project locations is a 12-digit Hydrologic Unit Code,
or “subwatershed,” which we use as our unit of analysis.3 Because project activities vary
greatly and the same subwatershed may have multiple (possibly related) projects, we define
a binary indicator for whether a subwatershed is “treated” with any Section 319 project. As
shown in Figure 1, about 32 percent of subwatersheds are treated during 1990-2020.

To evaluate how these projects affect water pollution, we use data from EPA’s Storet
and Storet Legacy Data Center, and USGS’s National Water Information System. We fol-
low related literature in quantifying pollution as dissolved oxygen deficit, defined as 100
minus dissolved oxygen saturation in percentage points (Keiser and Shapiro, 2019b; Flynn
and Marcus, 2023). Nonpoint source pollution increases dissolved oxygen deficits as microor-
ganisms decompose pollutants. We restrict the sample to measurements from surface waters
and assign these values to subwatersheds using the latitude and longitude of the monitoring
site. The data provides fairly comprehensive but imperfect coverage, so we impute miss-
ing dissolved oxygen deficits within-subwatershed for about 33 percent of subwatershed-year
observations in order to form a balanced panel spanning 1970-2020.4

For population and housing characteristics, we use data from the Integrated Public Use
Microdata Series (IPUMS, Manson et al., 2021). The United States has been fully Tracted
since 1990, and we use complete counts of population and housing at the Census Block level
from the 1990, 2000, 2010 and 2020 decennial censuses. We additionally use Census Tract-
level average and total owner-occupied housing values from the 1990 and 2000 census long
form and the 2006-2010 and 2016-2020 American Community Survey (ACS) 5-year waves.5

We map these characteristics to the subwatershed level by spatially joining subwatershed and
Census Block geodatabases, following Ren and West (2022a) in using subwatershed-block
population weights to assign Tract-level housing values.

The vast majority of Section 319 projects are in rural areas. Because our study focuses
3The U.S. Geological Survey (USGS) divides the country into contiguous hydrologic units at various

scales using a nested structure: region, subregion, basin, subbasin, watershed, and subwatershed. There are
about 103,000 subwatersheds, with an average area of 106 square kilometers.

4See Ren and West (2022a) for additional discussion of the last observation carried forward imputation.
Appendix A shows that our results are robust to using the unbalanced panel with only non-imputed data.

5The census data provide housing counts for a set of price ranges. To determine total value, we use the
midpoint of each range, e.g. $95,000 for the $90,000 to $99,999 bin. We then sum the value for all homes.
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on urbanization, we restrict our analysis to subwatersheds that are “rural” when treatment
begins. Using the Census Bureau’s urban/rural distinction, we include only subwatersheds
with no “urban” Census Blocks in 1990. This results in a balanced panel of 3,995,646 sur-
face water pollution observations for 78,346 rural subwatersheds during 1970-2020. Housing
values are only defined in populated areas, so we further restrict the population and housing
sample to subwatersheds with positive population and housing in all four decennial years,
resulting in a balanced panel with 247,912 observations covering 61,978 subwatersheds in
1990, 2000, 2010 and 2020.

Table A1 presents summary statistics for the two panel datasets. About one-third of
subwatersheds are treated by at least one Section 319 project. The median and mean year of
initial funding is 2008. Note that we observe very few subwatershed treatments prior to 2002,
when the EPA started requiring projects to be geolocated. For the water pollution sample
in Panel [A], the average dissolved oxygen deficit is 12.94 percent, with a standard deviation
of 16.7. Panel [B] shows that populated subwatersheds have 604 people and 280 homes on
average during 1990-2020. The average subwatershed has 148 owner-occupied housing units,
with an average value of 179,288 and total value of 30.97 million (2020$).6

3 Results

3.1 Clean Water Act Section 319 projects reduce water pollution

We estimate the effects of CWA Section 319 projects by comparing the change in outcomes
in treated subwatersheds before and after projects are implemented, relative to the change
in subwatersheds without any projects. Section 319 grants are not randomly assigned. For
the estimates to have a causal interpretation, the identifying assumption is that the change
in outcomes in untreated subwatersheds serves as a credible counterfactual for the change in
outcomes in treated subwatersheds.

Figure A1 provides some support for this parallel trends assumption. In 1970, the average
dissolved oxygen deficit is 15.02 percent for eventually-treated subwatersheds, compared to
14.85 percent for never-treated subwatersheds. At the start of the Section 319 program in
1990, to-be-treated subwatersheds’ average deficit is 12.79, compared to 12.66 for the never-
treated. Thus, the pretreatment difference between groups is 0.17 percentage points in 1970
and 0.13 pp in 1990, a very stable and small difference (about one percent of the sample

6This 53 percent of homes being owner-occupied is close to the national rate (U.S. Census Bureau, 2022).
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mean).7 In contrast, by the end of the posttreatment period in 2020, the average deficit is
9.11 percent for treated subwatersheds and 10.44 for untreated subwatersheds, a difference
of −1.33 percentage points. From 1970 to 1990, the difference-in-differences is −0.04 pp,
and from 1990 to 2020 it is −1.46 pp.

To examine these patterns more dynamically, we use the full panel for years 1970-2020
and regress dissolved oxygen deficit on subwatershed fixed effects, year fixed effects, and a
set of indicators for years before or after a subwatershed is first treated. Figure 2 plots the
resulting point estimates and 95 percent confidence intervals, with standard errors two-way
clustered by subwatershed and year.8 All pretreatment estimates are insignificant and close
to zero, further supporting the identification strategy. Following treatment, water pollution
in treated subwatersheds is significantly reduced compared to the counterfactual, with the
treatment effect growing in magnitude over time. This pattern reflects the purpose of many
projects is to mitigate pollution, which should yield accumulating improvements.

We quantify this effect in Table 1. Motivated by the dynamic pattern shown above,
our preferred regression model is the long differences specification of Equation (1). We also
estimate the canonical two-way fixed effects (TWFE) specification of Equation (2).

∆yis,2020,1990 = ∆treatedi,2020,1990δ + ∆ϕs,2020,1990 + ∆ϵis,2020,1990 (1)

yist = treateditβ + θi + ψst + υist (2)

The long differences specification has one observation per subwatershed, where ∆yis,2020,1990

is the change in dissolved oxygen deficit between 1990 and 2020 for subwatershed i located in
state s, ∆treatedi,2020,1990 indicates whether the subwatershed is ever treated between 1990
and 2020, ∆ϕs,2020,1990 is equivalent to a linear time trend for each state, and ∆ϵis,2020,1990

is the error term. In the TWFE model, yist is the dissolved oxygen deficit of subwatershed
i in year t, treatedit indicates whether the subwatershed is treated as of year t, θi are
subwatershed fixed effects, ψst are state-by-year fixed effects, and υist is the error term.

The first two columns present long differences results. The estimate is −1.46 percent-
age points (se = 0.153) in Column (1), which omits the state fixed effects. Column (2)
shows a very similar estimate of −1.5, or 11.6 percent of the sample mean. As a point of
comparison, average dissolved oxygen deficits fell by 2.22 pp in untreated subwatersheds be-

7As a more rigorous test of the parallel trends assumption, we conduct a Wald test using the methods
described in (and R package provided by) Sant’Anna and Zhao (2020) and Callaway and Sant’Anna (2021).
The p-value from this test is 0.795, indicating a statistically insignificant difference in pre-trends.

8Figure A2 shows a nearly identical pattern using a shorter panel from 1990-2020.

5



tween 1990 and 2020 (from Figure A1), so treatment reduces pollution by an additional 67.7
percent. Columns (3) and (4) present the two-way fixed effects results. Compared to the
long differences, these regressions show somewhat smaller estimates, but are still statistically
significant. This attenuation is expected for a treatment effect that accumulates over time.
In fact, all estimates in Table 1 likely understate the longer-run effects. Regardless, we find
that Section 319 projects cause economically significant reductions in water pollution.9

Not all subwatersheds are treated simultaneously, with Section 319 projects implemented
throughout 1990-2020 (especially 2002-2020). Estimates from two-way fixed effects models
may be biased when there are staggered treatments (Meer and West, 2016; Goodman-Bacon,
2021; Sun and Abraham, 2021). This potential bias is another reason to favor the long dif-
ferences models, which avoid these concerns. Notwithstanding, two-thirds of subwatersheds
are never-treated and only 7.9 percent of observations are treated. Figure A3 plots the
distribution of treatment timing. Despite the staggering, all subwatersheds have at least
20 pretreatment observations and treatment timing is compact, with a mean of 2008 and
standard deviation of 4.4 years. To formally examine the identifying variation, we use the
“Goodman-Bacon decomposition” (2021). Figure A4 shows that 90 percent of regression
weight is from comparing treated to untreated, and only 1.9 percent of weight is from “forbid-
den comparisons” between later-treated and earlier-treated subwatersheds. These exercises
further support a causal interpretation.

3.2 Section 319 projects increase housing development and value

Next, we explore whether Section 319 projects increase treated subwatersheds’ human pop-
ulation and housing density. This evidence speaks to the fundamental question of our study:
does reducing water pollution encourage residential development? We also evaluate housing
value to use in Section 4 for our cost-benefit analysis of the Section 319 program.

To examine these relationships, we estimate Equations (1) and (2) using the population
and housing sample.10 Recall that this balanced panel has one observation per populated
subwatershed in 1990, 2000, 2010, and 2020.11 For outcomes, we use Census full counts of
log-population and log-housing units, along with owner-occupied housing units’ log-count,
log-average value, and log-total value. Table 2 presents the results, with long differences
regressions in Panel [A] and two-way fixed effects regressions in Panel [B].

9Table A2 verifies results are similar in the unbalanced panel of non-imputed dissolved oxygen values.
10Again using the methods of Sant’Anna and Zhao (2020) and Callaway and Sant’Anna (2021), we find

support for parallel trends in residential development, e.g. the pre-trends p-value for housing units is 0.313.
11Table A3 verifies that the pollution results are robust to using this subset of populated subwatersheds.
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The long differences estimates show that treatment increases a subwatershed’s total pop-
ulation and housing units by about ten percent. At the sample mean, these effects equate to
about 58 more people and 29 new housing units. The estimated increase in owner-occupied
homes is somewhat smaller, at around four percent. This discrepancy could be due to mea-
surement error in mapping Tract-level data to subwatersheds or the five-year nature of the
ACS data. Alternatively, Section 319 projects might lead to relatively more construction of
multifamily (rental) dwellings; for instance, the site of a major infrastructure project might
be an appealing location to build apartments. Projects could also encourage increased de-
velopment of seasonal or vacation homes. The final two columns show treatment effects of
about three percent for average owner-occupied home value and about seven percent for
total value. In Panel [B], the two-way fixed effects estimates are also statistically significant
but somewhat smaller in magnitude, as one would expect for a dynamic treatment effect.

Collectively, the results in Table 2 provide strong support for our hypothesis. People
have a positive valuation of cleaner waters, and a primary mechanism of this valuation is to
increase residential development and urbanization in areas with less water pollution.12

4 Cost-benefit analysis

We use these estimates to conduct a back-of-the-envelope cost-benefit analysis of the CWA
Section 319 program. EPA provides total Section 319 costs for each year, but we observe few
projects prior to 2002, as discussed above. Because we can more accurately quantify benefits
post-2002, Table 3 presents results for both the full 1990-2020 period and for 2002-2020.13

Total owner-occupied home value for the average subwatershed is 30.97 million (2020$). If
we assume that treatment effects are homogeneous (in natural logs), then the estimated log-
increase of 0.066 translates to $2.11 million in benefit per subwatershed. With 23,091 rural
subwatersheds treated, this aggregates to $48.8 billion in added housing value for the full
period and $46.39 billion for projects during 2002-2020. Under the conservative assumption
that new homes are valued at the average for all homes, then about 56 percent of the total

12The results in Tables 1 and 2 imply that a one percent improvement in water quality leads to a 0.25
percent increase in average housing value and a 0.57 percent increase in total housing value (including new
construction). Although large, these elasticities are well within the range of the literature. A recent meta-
analysis by Guignet et al. (2022) includes 598 estimated elasticities between water pollution and housing
values. Our estimates of 0.25 and 0.57 would fall, respectively, at the 89th and 94th percentiles among the
values provided by Guignet et al. (2022), or the 79th and 89th percentiles restricted to positive elasticities.

13Tables A4 and A5 show that the results in Tables 1 and 2 are robust to dropping subwatersheds treated
prior to 2002. Any unobserved projects should attenuate estimated effects towards zero.
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benefit is attributable to net housing construction.14

The second panel shows costs. The national total Section 319 funding (in 2020$) is
$6.4 billion for 1990-2020 and $4.28 billion for 2002-2020. In the GRTS data, state and
local spending averages $0.783 per federal dollar. This brings total government spending
to $11.42 billion during 1990-2020 and $7.98 billion during 2002-2020. Comparing benefits
to costs, these back-of-the-envelope calculations show a ratio of economic value added to
federal expenditures of 7.62 during the full period and 10.83 during 2002-2020. Using total
government expenditures, the respective benefit-cost ratios are 4.28 and 5.82.

These calculations will overstate net benefits if there are unobserved social costs—for
example, if a community builds a golf course concurrently with implementing a Section 319
project, and the golf course also increases housing value.15 Our calculations could also be
(upward or downward) biased from heterogeneity in treatment effects or from measurement
error in the Census data on home values (Bishop et al., 2020). On the other hand, we cal-
culate value-added only for owner-occupied homes, omitting benefits for renters. We also
include Section 319 costs for both rural and urban areas but benefits only for rural subwater-
sheds; these grants likely provide at least some benefit to urban populations. Furthermore,
property valuation fails to capture some social benefits, such as people traveling to cleaner
water for recreation (Kuwayama et al., 2022). Finally, we reiterate that our estimates likely
understate the longer-run effects of a treatment that decreases pollution over time. Even
divided by four, the benefit-cost ratios calculated here exceed one.

5 Conclusions

In this paper, we investigate how reducing surface water pollution affects residential develop-
ment, with a specific evaluation of the U.S. Clean Water Act’s Section 319 nonpoint source
pollution program. We compare changes in watersheds before and after they receive Section
319 projects, relative to watersheds that never receive projects.

We find that projects are highly effective at reducing pollution, with corresponding in-
creases in human population, housing units, and home values. Incorporating the estimates
into a back-of-the-envelope cost-benefit analysis, we calculate that program benefits are $7.62

14This can be calculated as 0.037/0.066 or alternatively as:
(179288 ∗ (exp(log(148) + 0.037) − 148))/((179288 ∗ (exp(log(148) + 0.037) − 148)) + (148 ∗ (exp(log(179288) + 0.029) − 179288)))

15As mentioned above, some USDA funding through the U.S. Soil and Water Resources Conservation
Act (RCA) also pertains to nonpoint source water pollution. Total RCA spending is several billion dollars
annually, which could potentially greatly impact the cost-benefit calculation. In Appendix B, we provide
evidence that the effect of Section 319 projects on home values is robust to controlling for RCA spending.
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per dollar of federal Section 319 cost and $4.28 per dollar of total government costs. More
than half of the benefit accrues through new home construction.

Evidence of benefits exceeding costs is rare in the water policy literature. Our outlier
finding could be because the Section 319 program is one of the only U.S. policies addressing
nonpoint source pollution—the primary source of the country’s water quality impairments.
Surface water pollution is also highly salient and directly impacts amenity value. More
broadly, our study suggests that housing construction can be at least as important a dimen-
sion of environmental valuation as increased home values for existing homes.
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Figures and tables

Figure 1: Map of subwatershed grant award funding inclusion during 1990-2020

Notes: The figure plots whether each subwatershed is treated by any Clean Water Act Section 319 project
between 1990-2020. Funding decisions are made by state governments each year. There are about 103,000
subwatersheds in total, and about 32 percent of subwatersheds are included in at least one grant-funded project.
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Figure 2: Event study estimates for surface water pollution in rural subwatersheds
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Notes: The figure plots point estimates and 95 percent confidence intervals from a regression of dissolved
oxygen deficit on the set of indicators shown for years before or after a subwatershed is first treated by a
Clean Water Act Section 319 project. The regression includes subwatershed fixed effects and year fixed
effects. Each observation is a subwatershed-year tuple in a balanced panel for years 1970-2020. Only
rural subwatersheds are included, with rural/urban status defined as of 1990. Dissolved oxygen deficit
equals 100 minus dissolved oxygen saturation, measured as a percentage. A larger value indicates more
polluted water. About 32 percent of rural subwatersheds are included in a grant award made between
1990-2020. Standard errors for the confidence intervals are two-way clustered by subwatershed and year.
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Table 1: Effects of CWA Section 319 projects on surface water pollution in rural subwatersheds

Dependent variable: dissolved oxygen deficit

Long differences regressions Two-way fixed effects regressions

(1) (2) (3) (4)

Subwatershed is treated -1.462*** -1.504*** -1.060*** -0.514***
(0.153) (0.170) (0.169) (0.152)

State linear time trends Yes
Subwatershed fixed effects Yes Yes
Year fixed effects Yes Yes
State × year fixed effects Yes
Dependent variable mean 12.944 12.944 12.944 12.944
Number of subwatersheds 78,346 78,346 78,346 78,346
Observations 78,346 78,346 3,995,646 3,995,646

Notes: Each column presents estimates from a separate regression. Columns (1) and (2) use one observation
per subwatershed of the within-subwatershed change from 1990 to 2020. Columns (3) and (4) use a balanced
panel for years 1970-2020, where an observation is a subwatershed-year tuple. Only rural subwatersheds are
included, with rural/urban status defined as of 1990. The dependent variable is dissolved oxygen deficit, which
equals 100 minus dissolved oxygen saturation, measured in percentage points. Standard errors in parentheses
are two-way clustered by subwatershed and year for Columns (3) and (4).
*** p<0.01, ** p<0.05, * p<0.1
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Table 2: Effects of CWA Section 319 projects on population and housing in rural subwatersheds

Dependent variable (all are in natural logs)

Census full count ACS/Census long form owner-occupied housing

(1)
Population

(2)
Housing units

(3)
Housing units

(4)
Average value

(5)
Total value

Panel [A]: Long differences regressions: one observation per subwatershed of the change from 1990 to 2020

Subwatershed is treated 0.092*** 0.099*** 0.037*** 0.029*** 0.066***
(0.010) (0.009) (0.010) (0.003) (0.011)

Panel [B]: Two-way fixed effects regressions: balanced panel for years 1990, 2000, 2010, and 2020

Subwatershed is treated 0.053*** 0.059*** 0.016** 0.006*** 0.021***
(0.006) (0.005) (0.007) (0.002) (0.007)

State time trends (Panel [A]) Yes Yes Yes Yes Yes
Subwatershed FE (Panel [B]) Yes Yes Yes Yes Yes
State × year FE (Panel [B]) Yes Yes Yes Yes Yes
Number of subwatersheds 61,978 61,978 61,978 61,978 61,978
Observations (Panel [B]) 247,912 247,912 247,912 247,912 247,912

Notes: Each cell presents estimates from a separate regression. Panel [A] uses one observation per subwatershed of the within-
subwatershed change from 1990 to 2020. Panel [B] uses a balanced panel for years 1990, 2000, 2010, and 2020, where an
observation is a subwatershed-year tuple. Only rural subwatersheds with positive population and housing throughout 1990-
2020 are included, with rural/urban status defined as of 1990. Standard errors in parentheses are clustered by subwatershed
for Panel [B].
*** p<0.01, ** p<0.05, * p<0.1
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Table 3: Cost-benefit analysis of the CWA Section 319 program

Subwatersheds funded during Source

1990 - 2020 2002 - 2020

Benefits
Estimated log-increase in owner-occupied housing units 0.037 0.036 Table 2, Table A5
Estimated log-increase in average owner-occupied housing value 0.029 0.029 Table 2, Table A5
Estimated log-increase in total owner-occupied housing value 0.066 0.065 Table 2, Table A5
Number of owner-occupied housing units per subwatershed 148 148 Table A1
Average value of owner-occupied housing units (2020$) 179,288 179,288 Table A1
Total owner-occ. housing value per subwatershed (M 2020$) 30.974 30.974 Table A1

Increase in own-occ. housing value per subwatershed (M 2020$) 2.113 2.080 Calculated here
Share of value added from new housing (percent) 56.160 55.472 Calculated here

Total number of rural subwatersheds treated 23,091 22,299 Table A1
Total increase in value from new housing (B 2020$) 27.404 25.731 Calculated here
Total increase in value of existing housing (B 2020$) 21.393 20.655 Calculated here
Total increase in housing value (B 2020$) 48.797 46.386 Calculated here

Costs
Total Clean Water Act Section 319 federal funding (B 2020$) 6.402 4.283 EPA (CPI-adj.)
Average state and local expenditures per federal dollar ($) 0.783 0.862 EPA GRTS
Total federal and non-federal expenditures (B 2020$) 11.415 7.975 Calculated here

Ratios
Ratio of value added to federal expenditures 7.622 10.830 Calculated here
Ratio of value added to federal and non-federal expenditures 4.275 5.816 Calculated here

Notes: These back-of-the-envelope calculations assume homogeneity in treatment effects for owner-occupied housing value.
The calculated share of value added from new housing assumes that new homes are sold at the average housing value.

16



A Appendix tables and figures

Table A1: Summary statistics for rural subwatersheds

Median Mean SD Observations

Panel [A]: Surface water pollution sample: balanced annual panel for years 1970-2020

Number of subwatersheds 78,346
Share of subwatersheds treated 0.324 78,346
Year of initial funding 2008 2008 4.399 25,391
Year of initial funding if post-2002 2009 2009 4.055 24,583
Subwatershed is treated indicator 0.000 0.079 0.270 3,995,646
Dissolved oxygen deficit (percent) 10.855 12.944 16.695 3,995,646

Panel [B]: Population and housing sample: balanced panel for years 1990, 2000, 2010, and 2020

Number of subwatersheds 61,978
Share of subwatersheds treated 0.373 61,978
Year of initial funding 2008 2008 4.383 23,091
Year of initial funding if post-2002 2008 2009 4.017 22,299
Subwatershed is treated indicator 0.000 0.162 0.369 247,912
Dissolved oxygen deficit (percent) 10.170 11.912 16.632 247,912
Census full count

Population 153 604 1,220 247,912
Housing units 82 280 541 247,912

ACS/Census long form
Owner-occupied housing units 32 148 323 247,912
Average home value (2020$) 150,396 179,288 115,617 247,912
Total home value (millions 2020$) 4.397 30.974 103.098 247,912

Notes: Each observation is a subwatershed-year tuple. Only rural subwatersheds are included, with
rural/urban status defined as of 1990. The sample in Panel [B] is restricted from that in Panel [A]
to subwatersheds during the four decennial census years that have positive population and housing
throughout 1990-2020. Dissolved oxygen deficit equals 100 minus dissolved oxygen saturation, mea-
sured as a percentage. A larger value indicates more polluted water. Census full count population and
housing units use Census Block-level data from the 1990, 2000, 2010, and 2020 decennial censuses.
The ACS/Census long form variables use Census Tract-level data from the 1990 and 2000 decennial
census long forms and the American Community Survey 5-year waves 2006-2010 and 2016-2020. Cen-
sus data is assigned by spatially joining subwatersheds to Census Blocks and using subwatershed-block
population weights to assign Tract-level values.
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Figure A1: Average surface water pollution by subwatershed group and time period

Ever−funded subwatersheds in 1970   [15.02]

Never−funded subwatersheds in 1970   [14.85]

Ever−funded subwatersheds in 1990   [12.79]

Never−funded subwatersheds in 1990   [12.66]

Funded subwatersheds in 2020   [9.11]

Unfunded subwatersheds in 2020   [10.44]

Treatment
period

Pretreatment 
period

0 5 10 15
Average disolved oxygen deficit

Notes: This figure shows average dissolved oxygen deficit for two groups of subwatersheds in the three
indicated time periods (1970, 1990, and 2020). The first group consists of subwatersheds that (eventually)
are treated by a Clean Water Act Section 319 project between 1990 and 2020. The second group of
subwatersheds is never treated. Only rural subwatersheds are included, with rural/urban status defined
as of 1990. Dissolved oxygen deficit equals 100 minus dissolved oxygen saturation, measured in percentage
points. A larger value indicates more polluted water.
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Figure A2: Event study estimates for surface water pollution in rural subwatersheds:
Using a panel from 1990 - 2020
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Notes: The figure reproduces Figure 2 using a shorter panel from 1990 through 2020.
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Table A2: Effects of CWA Section 319 projects on surface water pollution in rural subwatersheds:
Robustness checks using only non-imputed dissolved oxygen values

Dependent variable: dissolved oxygen deficit

Long differences regressions Two-way fixed effects regressions

(1)
LOCF imputation

(2)
No Imputation

(3)
LOCF imputation

(4)
No Imputation

Subwatershed is treated -1.504*** -1.290*** -0.514*** -0.807***
(0.170) (0.192) (0.152) (0.184)

State linear time trends Yes Yes
Subwatershed fixed effects Yes Yes
Year fixed effects Yes Yes
State × year fixed effects Yes Yes
Dependent variable mean 12.944 12.518 12.944 12.518
Number of subwatersheds 78,346 36,332 78,346 78,346
Observations 78,346 36,332 3,995,646 2,672,658

Notes: Columns (1) and (3) reproduce, respectively, Columns (2) and (4) from Table 1. These estimations use a
balanced panel which has within-subwatershed imputed dissolved oxygen deficit values for some observations. Columns
(2) and (4) show results from estimations using the same specifications restricted to non-imputed dissolved oxygen
deficit data.
*** p<0.01, ** p<0.05, * p<0.1
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Figure A3: Timing of treatment inclusion for rural subwatersheds
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Notes: About 32 percent of rural subwatersheds are included in a Clean Water Act Section 319 project
between 1990-2020. The median and mean year of initial funding inclusion (if any) is 2008. For the full
1970-2020 panel, 7.9 percent of observations have a “subwatershed is treated” indicator status of one.
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Figure A4: Identifying variation from the three types of 2×2 difference-in-differences
comparisons for rural subwatersheds (Goodman-Bacon decomposition)
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Notes: The figure plots the total regression weight for each type of difference-in-differences compar-
ison, also known as the Goodman-Bacon (2021) decomposition, using regressions of dissolved oxygen
deficit on an indicator for the subwatershed being included in a Clean Water Act Section 319 grant
award. The regressions include subwatershed fixed effects and year fixed effects. Each observation is a
subwatershed-year tuple in a balanced panel for years 1970-2020. Only rural subwatersheds are included,
with rural/urban status defined as of 1990. For computational reasons, we use random draws (without
replacement) of 1000 subwatershed units to split the full panel into 79 balanced panel subsets, and per-
form the decomposition separately for each subset. Overall, 90.12 percent of identifying variation is from
comparisons of differences between treated and untreated units, 7.97 percent of regression weight is from
comparisons of differences between earlier-treated and later-treated units, and only 1.91 percent of weight
is from “forbidden comparisons” of differences between later-treated and earlier-treated units.
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Table A3: Effects of CWA Section 319 projects on surface water pollution in rural subwatersheds:
Robustness checks using subwatersheds with positive population and housing throughout 1990-2020

Dependent variable: dissolved oxygen deficit

Long differences regressions Two-way fixed effects regressions

(1) (2) (3) (4)

Subwatershed is treated -1.094*** -1.269*** -0.904*** -0.368**
(0.167) (0.179) (0.170) (0.155)

State linear time trends Yes
Subwatershed fixed effects Yes Yes
Year fixed effects Yes Yes
State × year fixed effects Yes
Dependent variable mean 12.906 12.906 12.906 12.906
Number of subwatersheds 61,978 61,978 61,978 61,978
Observations 61,978 61,978 3,160,878 3,160,878

Notes: This table replicates Table 1 using the same sample of subwatershed units that is used in Table 2.
*** p<0.01, ** p<0.05, * p<0.1
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Table A4: Effects of CWA Section 319 projects on surface water pollution in rural subwatersheds:
Robustness checks dropping subwatersheds that were funded prior to 2002

Dependent variable: dissolved oxygen deficit

Long differences regressions Two-way fixed effects regressions

(1) (2) (3) (4)

Subwatershed is treated -1.470*** -1.606*** -1.000*** -0.437***
(0.155) (0.172) (0.169) (0.158)

State linear time trends Yes
Subwatershed fixed effects Yes Yes
Year fixed effects Yes Yes
State × year fixed effects Yes
Dependent variable mean 12.933 12.933 12.933 12.933
Number of subwatersheds 77,538 77,538 77,538 77,538
Observations 77,538 77,538 3,954,438 3,954,438

Notes: This table replicates Table 1, dropping the 808 subwatershed units that were funded prior to 2002 (41,208
observations).
*** p<0.01, ** p<0.05, * p<0.1
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Table A5: Effects of CWA Section 319 projects on population and housing in rural subwatersheds:
Robustness checks dropping subwatersheds that were funded prior to 2002

Dependent variable (all are in natural logs)

Census full count ACS/Census long form owner-occupied housing

(1)
Population

(2)
Housing units

(3)
Housing units

(4)
Average value

(5)
Total value

Panel [A]: Long differences regressions: one observation per subwatershed of the change from 1990 to 2020

Subwatershed is treated 0.092*** 0.100*** 0.036*** 0.029*** 0.065***
(0.010) (0.009) (0.011) (0.003) (0.011)

Panel [B]: Two-way fixed effects regressions: balanced panel for years 1990, 2000, 2010, and 2020

Subwatershed is treated 0.054*** 0.060*** 0.017** 0.006*** 0.022***
(0.007) (0.006) (0.007) (0.002) (0.007)

State time trends (Panel [A]) Yes Yes Yes Yes Yes
Subwatershed FE (Panel [B]) Yes Yes Yes Yes Yes
State × year FE (Panel [B]) Yes Yes Yes Yes Yes
Number of subwatersheds 61,186 61,186 61,186 61,186 61,186
Observations (Panel [B]) 244,744 244,744 244,744 244,744 244,744

Notes: This table replicates Table 2, dropping the 792 subwatershed units that were funded prior to 2002 (3,168 observations).
*** p<0.01, ** p<0.05, * p<0.1
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B Section 319 projects and USDA RCA programs

As discussed in the main text, the Clean Water Act Section 319 program is not the only
source of funding for nonpoint source water pollution projects. In addition, some USDA
funding through the U.S. Soil and Water Resources Conservation Act (RCA) also pertains
to nonpoint source water pollution. Broadly, this strand of funding is used for protecting
natural resources and enabling farmers to take protective actions. Because some of these
USDA-funded projects may produce benefits in the same locations as the Section 319 projects
that we study, this could potentially have important implications for our cost-benefit analysis.

In this appendix, we provide discussion about the comparison between Section 319
projects and USDA-funded programs. Then, we use state-level data on Section 319 projects
and USDA RCA spending to estimate elasticities for total rural home value to both pro-
grams. The results of this exercise support that the effects our study finds for Section 319
projects are robust to controlling for RCA spending. Moreover, we find a much stronger
effect on total home value from Section 319 projects than from the USDA funding.

B.1 RCA expenditures data

The data on RCA program expenditures is provided by the USDA Natural Resources Con-
servation Service (NRCS). Data is available from 2005 to 2022, disaggregated at the program
by state by year level.16 The RCA covers broad programs targeting the conservation, pro-
tection, and enhancement of soil, water, and related natural resources. Some of the key
programs are the Conservation Stewardship Program (CSP), the Environmental Quality In-
centives Program (EQIP), and the Agricultural Conservation Easement Program (ACEP).
Multiple RCA programs can include spending on nonpoint source pollution projects, which
is not separated from other program spending. Following Keiser et al. (2019), we include
both technical and financial expenditures pooled over the full set of RCA programs. Figure
B1 shows the annual trend of the expenditures. In 2020 dollars, 3.93 billion of RCA funds
were expended in 2005, with annual spending rising to 5.35 billion in 2020. We reiterate
that it is unclear how much of this funding pertains to nonpoint source water pollution.

16Ideally, subwatershed or watershed level data would be of best use to isolate the variation of these
programs. However, to our knowledge, the finest spatial disaggregation is state level. The data does not
separate out values specifically for Hawaii, but a general group of “Hawaii/Pacific,” which accounts for only
0.6 percent of the total USDA RCA spending, so we exclude Hawaii in this analysis.

B1



B.2 Comparison between Section 319 and RCA funding

USDA RCA-funded projects might yield benefits in the same locations as the Section 319
projects that we study. If some of the benefit we estimate for Section 319 projects is instead
attributable to RCA spending, then our analysis would overstate the net-benefits for Section
319. To address this consideration, we test whether the estimated effects of Section 319
projects on housing values are robust to controlling for the RCA spending.

To do so, we estimate elasticities for state-level total rural housing value to Section 319
projects and USDA RCA funding. Because the RCA data are not available at the sub-state
spatial level, i.e. for specific subwatersheds, we aggregate our subwatershed population and
housing sample to the state by census year level, yielding one observation for each state in
each year 1990, 2000, 2010, and 2020. Our outcome of interest is the natural log of total
rural housing value, that is, the sum of the total housing value across the rural subwatersheds
within a state for each observed year. The independent variables of interest are the natural
log of Section 319-treated subwatersheds within the state and the natural log of cumulative
RCA spending within the state. Similarly to the main analysis, we conduct the estimation
using both the long differences model of Equation (3) and the two-way fixed effects model
(TWFE) of Equation (4).

∆log(y)s,2020,1990 = ∆log(S319)s,2020,1990δ + ∆log(RCA)s,2020,1990γ + ∆ϵs,2020,1990 (3)

log(y)st = log(S319)stβ + log(RCA)stϕ+ θs + ψt + υst (4)

The long differences specification has one observation per state, where ∆log(y)s,2020,1990 is
the change in the natural log of total rural home value between 1990 and 2020 for state
s, ∆log(S319)s,2020,1990 indicates the change in the log-number of treated subwatersheds in
the state between 1990 and 2020, ∆log(RCA)s,2020,1990 is the change in log-total cumulative
RCA spending in the state between 1990 and 2020, and ∆ϵs,2020,1990 is the error term. In
the TWFE model, log(y)st is the natural log of total rural home value for state s in year t,
log(S319)st is the log-number of treated subwatersheds in the state as of year t, log(RCA)st

is the log-total cumulative RCA spending in the state as of year t, θs are state fixed effects,
ψt are year fixed effects, and υst is the error term.

Table B1 presents the regression results. We first report the elasticity only for Section
319 projects in Column (1), setting γ = 0 and ϕ = 0. As with our primary results in Table 2,
there is a large and significant relationship between Section 319 projects and total rural home
value. The long differences results in Panel [A] indicate that a one percent increase in the
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number of treated subwatersheds in the state is associated with a 0.175 percent increase in the
total rural home value. As we would expect and have seen throughout the results tables, the
TWFE estimate is smaller at 0.05, but remains statistically significant. Column (2) shows the
estimated elasticity only for RCA spending. Here, we observe much smaller, insignificant
effects. Finally, Column (3) includes both independent variables in the regressions. The
estimated elasticity for Section 319 projects remains similar in magnitude and significance
to that in Column (1), despite controlling for RCA spending. There continues to be no
positive and significant estimated elasticity for home values to RCA spending.

We caution readers not to interpret the estimates for RCA spending as showing that these
programs do not add economic benefits, as measured by housing value. This state-level panel
is not ideal for quantifying the effects of interventions that are implemented at much more
spatially granular levels. However, we find it reassuring that the relationship between rural
housing values and Section 319 projects remains highly robust to controlling for this major
other policy that also targets similar sources of water pollution.

B3



Figure B1: Annual expenditures for USDA-funded RCA programs

0

2

4

6

8

20
05

20
10

20
15

20
20

Year

A
nn

ua
l s

pe
nd

in
g 

 (
bi

lli
on

s 
20

20
$)

Notes: Data is from the USDA Natural Resources Conservation Service (NRCS). Following Keiser et al.
(2019), both technical and financial expenditures are included, with spending summed across programs.
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Table B1: Estimated elasticities for state-level total rural housing value to Section 319 projects and
USDA Resources Conservation Act (RCA) funding

Dependent variable: Log(total home value)

(1) (2) (3)

Panel [A]: Long differences regressions: one observation per state of the change from 1990 to 2020

Log(S319-treated subwatersheds) 0.175*** 0.194***
(0.037) (0.042)

Log(USDA RCA spending) 0.036 -0.024*
(0.028) (0.014)

Panel [B]: Two-way fixed effects regressions: balanced panel for years 1990, 2000, 2010, and 2020

Log(S319-treated subwatersheds) 0.050** 0.048**
(0.019) (0.020)

Log(USDA RCA spending) 0.019 0.007
(0.017) (0.013)

State fixed effects (Panel [B]) Yes Yes Yes
Year FE (Panel [B]) Yes Yes Yes
States 50 50 50
Observations (Panel [B]) 200 200 200

Notes: The USDA RCA spending data is from Natural Resources Conservation Service (NRCS),
USDA. Panel [A] uses one observation per state of the within-state change from 1990 to 2020. Panel
[B] uses a balanced panel for years 1990, 2000, 2010, and 2020, where an observation is a state-year
tuple. Only rural subwatersheds with positive population and housing throughout 1990-2020 are
included, with rural/urban status defined as of 1990. Standard errors in parentheses are clustered by
state.
*** p<0.01, ** p<0.05, * p<0.1
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