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A B S T R A C T

Many models posit the use of distinctive spatial features to recognize letters of the alphabet, a fundamental
component of reading. It has also been hypothesized that when letters are in close proximity, visual crowding
may cause features to mislocalize between nearby letters, causing identification errors. Here, we took a data-
driven approach to investigate these aspects of textual processing. Using data collected from subjects identifying
each letter in thousands of lower-case letter trigrams presented in the peripheral visual field, we found char-
acteristic error patterns in the results suggestive of the use of particular spatial features. Distinctive features were
seldom entirely missed, and we found evidence for errors due to doubling, masking, and migration of features.
Dependencies both amongst neighboring letters and in the responses revealed the contingent nature of pro-
cessing letter strings, challenging the most basic models of reading that ignore either crowding or featural
decomposition.

1. Introduction

Visually discriminating closely-spaced items is a challenging task
that is accomplished seemingly effortlessly in everyday life. A para-
digmatic example is reading, which involves the recognition of words
comprising groups of letters that are often closely spaced together. A
variety of theories exist to describe the mechanisms involved in pro-
cessing complex visual information like text, generally proposing that
information is processed independently and in parallel amongst con-
stituent items such as the letters in a word. Here, we focus on char-
acterizing the interactions and dependencies between adjacent letters
and letter parts, believing these to be significant causes of recognition
errors, which could in turn slow down reading.

Many theories of object recognition posit the use of spatial “fea-
tures” for recognition. In the most basic formulation, features are
simply spatial parts of compound objects like letters—for example the
dot in a lower-case “i.” These parts are distinctive, constituting the
fundamental elements of object recognition processes. Items are re-
cognized based on their constituent features, most likely in a parallel
fashion for highly learned stimuli such as the arrays of letters that
comprise words (Pelli, Burns, Farell, & Moore-Page, 2006).

Keen observations of the interaction effects between adjacent letters
date back at least to Korte (1923). In this prescient treatise, Korte de-
scribes how letters and letter parts interact in a myriad of ways, such as

migrations of features between letters, doubling of parts, and feature
losses, as translated and summarized by Strasburger (2014). However,
these observations were based on subjective verbal reports from sub-
jects, lacking direct empirical support. These ideas are often invoked in
a general sense by the contemporary literature on crowding (Pelli,
Palomares, & Majaj, 2004; Levi, 2008), which is the modern term for
interference effects from neighboring items, a phenomenon that wor-
sens with increasing distance from the fovea (Bouma, 1970; for reviews,
see Levi, 2008 or Pelli, 2008). Crowding is proposed to be a funda-
mental bottleneck limiting vision.

A stereotypical description of a crowded percept is one that has
parts that are “jumbled” (Pelli et al., 2004; Levi, 2008). Details are
present, but they cannot be assigned to the correct items, and have an
indeterminate character. This description is in clear contrast to the
deleterious effect of blur, which renders an object and its parts difficult
to resolve. The proposed theoretical underpinning of the jumbled per-
cept is a two-stage process involving first detection of features, and then
their integration, which in crowded conditions may be compromised
(Pelli et al., 2004). In the faulty over-integration hypothesis, identifi-
cation errors are due to integration zones that are erroneously larger
than a single item, causing features from adjacent items to become
intermixed and leading to confusion about which features are in the
target and which are in the flankers.

Despite the intuitive appeal and the widespread reference to the

https://doi.org/10.1016/j.visres.2019.01.005
Received 4 July 2018; Received in revised form 5 January 2019; Accepted 9 January 2019

⁎ Corresponding author.
E-mail address: drcoates@central.uh.edu (D.R. Coates).

Vision Research 156 (2019) 84–95

Available online 05 February 2019
0042-6989/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00426989
https://www.elsevier.com/locate/visres
https://doi.org/10.1016/j.visres.2019.01.005
https://doi.org/10.1016/j.visres.2019.01.005
mailto:drcoates@central.uh.edu
https://doi.org/10.1016/j.visres.2019.01.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.visres.2019.01.005&domain=pdf


two-stage model, there is surprisingly scant experimental evidence
supporting feature interactions, and some researchers have questioned
the need for the feature abstraction. Since the early phenomenological
descriptions of Korte (1923), only a few studies have sought to directly
demonstrate feature migrations, or the spatial transfer of object parts to
neighboring items. Wolford and colleagues performed the seminal ex-
periments in a series of studies (Wolford, 1975; Wolford & Shum,
1980). One study used symbols containing features that comprised
well-defined features of “tick” marks positioned on boxes in an array,
and found positive evidence for feature perturbations, including an
important directionality of errors towards the fovea.

However, these results have been called into question by Butler and
colleagues (Butler & Morrison, 1984; Butler, Mewhort, & Browse,
1991), who ascribed the errors to migration of whole units, or guesses
based on other members of a limited response set. Other authors have
also noted that the results might be explained more parsimoniously by
the migration of entire items (Hanus & Vul, 2013), based on a faulty
location signal or “local sign,” (Chung & Legge, 2009) or inadequately
focused spatial attention (Strasburger, 2005). Resolving this debate is
crucial for understanding precisely how object parts in arrays of items,
such as letters in a word, are processed.

Analyzing the errors made while perceiving trials with multiple
letters can provide the definitive evidence to answer this question.
Letters constitute the ideal stimuli for this question, since they contain
multiple parts, are highly learned, and are sufficiently heterogeneous to
reveal complex processes involved in discrimination. Most crowding
paradigms require that the subject report only a single item, such as the
middle letter of a group, although there are several exceptions (Ağaoğlu
& Chung, 2016; Harrison & Bex, 2015; Zhang, Zhang, Liu, & Yu, 2012),
which have identified errors and mislocalizations at the level of entire
characters (or single-feature items). To fully understand how features
may interact, it is critical to understand the perception of each item in
the presented array with a full-report response, such as in the present
study. Otherwise, it is impossible to precisely determine the fate of parts
in all positions.

Most recent studies of interactions between proximal items have
typically been performed with elementary stimuli such as Gabors
(Parkes, Lund, Angelucci, Solomon, & Morgan, 2001), T-like stimuli
(Greenwood, Bex, & Dakin, 2009), oriented “clock-face” stimuli (Ester,
Klee, & Awh, 2014; Ester, Zilber, & Serences, 2015), and rotated “C”s
(Ağaoğlu & Chung, 2016; Harrison & Bex, 2015; Harrison & Bex, 2017).
Importantly, in these studies stimuli varied along a single dimension,
with one or two components that are present in every stimulus. In these
cases, models based on “pooling” (Parkes et al., 2001), “averaging”
(Greenwood et al., 2009), or the combination of proximal feature va-
lues in a population code (Harrison & Bex, 2015; van den Berg,
Roerdink, & Cornelissen, 2010) have successfully captured the influ-
ence of neighboring items. Letter recognition, however, likely involves
the detection and integration of features that are binary (elements may
or may not be present in a stimulus) and that assume a variety of
complex spatial relationships, making the relevance of pooling or
averaging in letter recognition uncertain. It is difficult to apply the
pooling and averaging theories to explain letter recognition errors. For
instance, what would pooling or averaging predict as errors for “b” and
“j,” which each contain multiple non-overlapping features, such as an
ascender and a round part, versus a descender and a dot?

One study (Põder & Wagemans, 2007) used stimuli comprising
conjunctions of features on three independent feature dimensions
(spatial frequency, orientation, and color), finding that flankers biased
target responses, in a way consistent with feature and object mis-
localizations and feature pooling. While this paradigm may more clo-
sely mimic letter recognition, the independence of letter features has
been questioned (Townsend, Hu, & Evans, 1984), a topic returned to at
length in the Discussion. Also, item composition based on three ever-
present feature dimensions differs from the more variable nature of
letter features. Furthermore, as stated previously, the single-item report

paradigm precludes understanding of all aspects of multi-item re-
cognition, such as whether features truly “migrate,” rather than simply
being doubled, and whether certain distinctive features are always
noticed, even if mislocalized amongst flankers.

Determination of the distinctive spatial features of letters (even in
an isolated context) also has a long history (for a review, see Grainger,
Rey, & Dufau, 2008). The most well-known proposals for letter features
are the simple line segment-based decomposition of capital letters,
originating with Selfridge’s Pandemonium model (Selfridge, 1958) and
tested psychophysically by Gibson (Gibson, 1969); as well as the more
complex analysis of lower-case letters by Bouma (1971). These two
proposals, like most of the subsequent refinements, were based on
patterns determined from the confusion matrices of letter identification
experiments. Here, we continue this approach and extend the in-
vestigations of Bouma (1971) by showing how the lowercase letter
features he proposed interact amongst displays comprising three ad-
jacent letters (letter trigrams). Like Bouma, we use peripheral pre-
sentation to induce maximal errors, which also strengthens the effects
of crowding between the letters, and provides insight about the factors
limiting peripheral reading.

We performed a detailed analysis of the errors from five subjects
reporting their full percepts of ten thousand peripheral trigrams, in-
vestigating at both a letter level and a feature level. To anticipate our
results, we found strong evidence for feature-based interactions that
defy simple letter-based models. The interactions revealed de-
pendencies between items, such as a balanced loss and gain of spatial
features, arguing against simple models based on independent re-
cognition of each letter. Finally, we introduce several characteristic
principles of letter feature interactions in peripheral letter trigrams: (1)
features absent from a trigram are rarely “imagined”, (2) presence of a
feature category in a trigram is seldom entirely missed, (3) for adjacent
letters with identical features, feature instances are often lost due to
redundancy masking (Yildirim, Coates, & Sayim, 2019), and (4) both
feature migrations and feature “doubling” may occur when features
migrate between items.

Taken together, these results place strong constraints on the me-
chanisms involved in processing letter arrays, and help inform sophis-
ticated models of both reading and crowding with realistic compound
items like alphabetic letters.

2. Methods

2.1. Experimental details

Five subjects with normal or corrected-to-normal vision, aged
18–20, participated in this study. All subjects gave their oral and
written consent before the commencement of data collection. This re-
search was approved by the Institutional Review Board at the
University of California, Berkeley, and was conducted in accordance
with the Code of Ethics of the World Medical Association (Declaration
of Helsinki). Testing was performed binocularly in a dimly-lit room
(standard office room light turned off).

Subjects viewed three-letter trigrams (random sequences of three
letters) presented at 10° below a small fixation target in the lower visual
field. We refer to these three items as the left, middle, and right letter
(respectively), and refer to the left and right letters as the “outer let-
ters.”

A small square was presented as the fixation target at the center of
the monitor and at the eye-level of each subject. An Eyelink II eye-
tracker (SR Research Ltd.) was used to ensure subjects’ fixation. Before
each block of trials, the standard 9-point calibration routine was per-
formed to calibrate subjects’ eye positions, followed by a drift-correct.
The experiment only proceeded after a successful calibration as defined
by the Eyelink software.

On each trial, before a trigram stimulus was presented, subjects’ eye
positions while fixating at the fixation target were compared with
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calibrated values obtained during calibration. If the eye positions de-
viated from the fixation target by more than 1° in any direction, the
trigram stimulus would not be presented and an audio tone alerted the
subject to refixate properly. Trigrams, comprising lower-case letters
rendered in Arial font, were presented for 50ms or 200ms, within se-
parate blocks. Letter size had an x-height of 1.2°, with a center-to-center
letter separation of 1.3° (despite the fact that Arial is a proportional-
width font). This letter size was chosen such that subjects’overall per-
formance for identifying letters was around 50%, which yielded a good
number of error trials for analyses while keeping subjects sufficiently
motivated for the task. The task of the subjects was to type the identities
of the three letters (from left to right) using the keyboard.

Stimuli were generated using MATLAB (Mathworks, MA) and
Psychtoolbox (Brainard, 1997; Pelli, 1997) on a MacBook Pro com-
puter, and were displayed on a Sony GDM-F500R monitor at a resolu-
tion of 0.029 cm/pixel. Randomization was balanced such that each of
the 26 letters of the alphabet appeared in the middle position exactly
200 times for each of the two durations, resulting in 10,400 trigrams
over the course of the experiment for each subject. Less than 1% of
trials were discarded due to eye movements or invalid (non-letter) re-
sponses.

2.1.1. Perimetric complexity for letters
To quantify the gain or loss of spatial parts of letters, we used a

standard measure of the spatial content of each letter, the perimetric
complexity (Attneave & Arnoult, 1956; Pelli et al., 2006), defined as the
perimeter squared divided by the ink area. This measure has been found
to be highly correlated with other measures of the spatial complexity of
letters, such as the length of each letter skeleton (Bernard & Chung,
2011). Table 1 lists the perimetric complexity for each of the 26 letters.

2.1.2. Bouma (1971) letter features
To investigate the interactions of letter parts, we used features based

on those defined by Bouma (1971). Bouma identified features based on
letter confusions observed when subjects viewed isolated lower-case
letters in the IBM “pingpong ball” Courier font. In his study, observers
viewed letters in two conditions: eccentric (7°) and foveal (at a far
distance), with little difference observed between errors in the two
conditions. Table 2 shows the features present in each letter, for the five
feature sets we used: descenders, ascenders, oblique, round, and arch.
Note that a letter can belong to multiple sets (contain multiple fea-
tures), such as “b,” which has both an ascender and a round part. Also,
not all letters are represented with this set of features, such as “a,e,s.”
Our goal was not to offer a comprehensive model of letter recognition
in trigrams, but rather to show the dependencies between adjacent
letters and features of letters. Furthermore, we are mostly interested in
analyzing error patterns, rather than characterizing when trigrams are
correctly identified.

2.2. Data analysis

As letter confusion data is heterogeneous and highly non-Gaussian,
we relied heavily on Monte Carlo strategies to characterize statistical
significance. Two simulations encoded constraints at different levels of
analyses, in order to determine the magnitude of error patterns that
could happen by chance. The simulations are described below, one
generating simulated responses at the letter level (Section 2.2.1), and
one generating random feature sets (Section 2.2.2).

2.2.1. Letter level independence model from confusion matrix simulations
The first simulation, at the letter level, was used to test hypotheses

about independence between recognition of the three letters in the
trigram (Section 3.1). To quantify dependencies between the letter
positions, we tested the various analyses against simulated responses
generated with the assumption of independence between the letter
positions. That is, random letter responses were derived from the cor-
responding positional confusion matrices alone, independently of
neighbors. This constitutes a baseline “null-model” with which to test
hypotheses about whether recognition of a single letter is modulated by
neighboring letters.

Specifically, we determined separate confusion matrices for each of
the three letter positions (left, middle, right). Then, for each trial we
generated a synthetic response using independent random draws from
the corresponding distributions (including correct identification) for
each of the three presented letters. Repeated simulations (representing
one thousand complete experiments) were used in subsequent analyses
throughout the paper.

2.2.2. Feature-level random letter sets to assess feature robustness
Section 3.2 describes different error patterns that suggest letter

feature processing, such as the likelihood of an erroneous migration of a
“descender feature” between a flanker and the middle letter. As the
letter feature assignments are somewhat arbitrary, it is important to
determine how likely the effects observed could be due to chance, ra-
ther than being characteristic interactions arising from the particular
sets of letters sharing a feature. To determine chance levels, we gen-
erated random letter sets of the same cardinality as each feature set, and
re-ran our analyses on the empirical data with one thousand random
sets to assess the “significance” of each observed effect.

For example, for the descender set (“g j p q y”), one thousand
random five letter sets were generated. The idea is that a completely
random letter set (such as the meaningless set “x q l s v”) should not
exhibit any distinctive characteristics. To contrast with the descender
set (which has a high incidence of flanker-middle mislocations), there
should not be a particularly high incidence of migrations between those
in the meaningless set (which presumably do not share a “feature”).
Analysis using the empirical data and one thousand five letter sets
provide a baseline for the likelihood of each statistical effect (here
flanker-middle mislocation) by chance in arbitrary letter sets, and ef-
fects strongly outside those in the random range can be attributed to
featural interactions. We simulated letter sets of size five for descenders
and arch letters, size six for oblique letters, size seven for round letters,
and size eight for ascender letters.

3. Results

Our results can be divided into two broad categories. First, we
present analyses that were performed at the letter level, including
characterization of letter transpositions, dependencies between letter
positions, as well as the influence of letter complexity. After these, we
show how decomposing letters into the features proposed by Bouma
(1971) reveals evidence suggestive of featural effects that have pre-
viously been assumed, such as feature migrations between letters, and
introduce several new principles governing feature interactions in
crowding.

Table 1
Perimetric complexity for Arial letters.

a 64.9 b 65.0 c 50.3 d 65.5 e 61.7 f 46.7 g 76.0 h 64.0 i 40.6
j 50.5 k 55.9 l 36.4 m 85.6 n 57.2 o 50.2 p 64.4 q 65.5 r 35.8
s 54.9 t 42.6 u 56.7 v 47.4 w 83.1 x 43.7 y 57.0 z 56.1
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3.1. Letter level analysis

3.1.1. Gross error counts
Fig. 1 shows the counts of the different types of overall errors for

each subject. Subjects made at least one error in 42–55% of trials. By far
the largest type of error that occurred was the error in which the two
outside letters were reported correctly, but the middle letter was mis-
identified. This is consistent with conventional observations of errors in
crowded letter strings (Bouma, 1973) and accounted for nearly half of
the total errors for each subject (or 22–33% of all trials for each sub-
ject). Trials in which only the left or right letter was misidentified oc-
curred approximately equally (~6% of all trials). Two-letter errors with
adjacent letters constituted approximately 3% of all trials, while two-
letter errors with only the outside letters occurred less than 1% of the
time. Finally, three-letter errors were rare (~1% of all trials).

Results from the two stimulus durations (50ms and 200ms) were not
considerably different. The proportion of correct trials for the five
subjects were 43%, 50%, 53%, 40%, 55%, respectively, for stimuli
presented for 50 ms, and 48%, 58%, 61%, 50%, 60% for stimuli pre-
sented for 200 ms. Therefore, results for the two durations were com-
bined for all analyses presented here.

3.1.2. Letter error confusion matrices
To implement the independence model, we computed individual

confusion matrices for each subject at each letter position. The three
positional confusion matrices, aggregated over all subjects, are shown
in Fig. 2. As described earlier, rows from each confusion matrix defined
the distributions that were used to generate synthetic responses for each
letter in each position, including correct responses.

The diagonals, indicating correct identification of each letter, are
not easy to distinguish in confusion matrices, so we have plotted the
proportion correct for each letter in each position separately in Fig. 3,
which also shows individual data. While there are some differences
between the letters identified correctly for each subject, subjects were
remarkably consistent in which letters were identified most easily (“z”
and “j”) and which letters were least correctly identified (“t” and “i” for
example). There is some degree of asymmetry in identification rates
(“c” has more errors in the left position, for example), which we discuss
later.

3.1.3. Letter transpositions
The transposition of adjacent letters has been found to explain a

significant portion of errors in crowding (typically 10-40% of errors),
and are thought to be indicative of non-stimulus-related factors such as
erroneous location coding (Chung & Legge, 2009). In the present ex-
periment, however, transpositions of letters happened infrequently. We
define letter transpositions simply as those trials in which responses for
a pair of adjacent letters were exactly switched. For example, a trial
with stimulus “xdj” and response “xjd” is classified as a transposition
between the middle letter and the right letter. The middle letter was
switched with one of the outer letters in only approximately 0.8% of all
trials, with a roughly equivalent prevalence for switches to the left and
right. Thus, approximately 1.6% of all errors were due to a letter mis-
localization, much smaller than typically found.

If the source of these errors was simply an erroneous location signal,
there should be no identifiable relationship between the transposed
letters. That is, transpositions should involve random letter pairs, in-
dependent of the identity of the letters. We tested this in two ways.
First, we analyzed the distributions of letters that were transposed, and
second, we analyzed the transpositions simulated by the independence
model. The distributions of transposed letters in the empirical data
appeared highly non-uniform, suggesting a dependence on particular
letters and letter pairs.

In the simulations, we found that transposition errors occurred
much less frequently than in the empirical data, approximately one
tenth of the occurrence (<0.1% of all simulated trials). Thus the em-
pirical transpositions did not simply occur “by chance” from in-
dependent confusions in the two letters. Also, the simulated transpo-
sitions happened most frequently for the letters with the highest overall
confusion rates, unlike in the empirical data. Taken together, these
results show that transpositions were neither independent of the par-
ticular letters that were switched, nor did they simply result from the
overall error susceptibility of the individual letters.

3.1.4. Error rate contingency on neighbor identification
Since the likelihood of transpositions was dependent on the iden-

tities of each element in an adjacent pair, this suggests that the overall
accuracy rate for a letter might be correlated with the accuracy in
identifying a neighboring letter. Indeed, we found that the probability
of error occurrence at a given position was dependent on whether an
error occurred in a neighbor.

Table 2
Feature decomposition, inspired by Bouma (1971). “j”=descender letters, “l”=ascender letters, “x”=oblique letters, “o”=round letters, “n”=arch letters.

a b c d e f g h i j k l m n o p q r s t u v w x y z

j g j p q y
l b d f h i k l t
x k v w x y z
o b c d g o p q
n h m n r u

Fig. 1. Summary of errors for each subject. In the
figure legend, an “a” indicates a correct answer in the
corresponding position (order: left, middle, right),
while an “X” indicates an error in that position.
Incorrectly identifying the middle letter and correctly
identifying the two outside letters was by far the
most common error for all subjects, constituting
nearly half of the error trials for each subject (or
approximately a quarter of the total trials for each
subject). Total number of trials are shown on the left
axis, while the proportion of total trials are shown on
the right axis. Each subject made at least one error on
42–55% of trials.

D.R. Coates et al. Vision Research 156 (2019) 84–95

87



Table 3 shows the complete set of conditional probabilities for
middle/outer pairs, for each subject individually as well as for the ag-
gregated data. Each pair of columns shows the identification error rate
of a letter position conditioned on whether the neighbor was erroneous,

and when the neighbor was correctly identified. The main finding is
that for all pairs of adjacent letters in every subject, the incidence of
errors was significantly higher when a neighboring letter was in-
correctly identified, with an elevation of 30% to 200%.

As expected, in simulations based on the independence model, these
contingencies were completely absent, with performance at a given
position independent of performance at other positions. Simulated error
proportions were centered around the mean of the empirical neighbor-
error and neighbor-correct values with little variation. A demonstrative
example is shown graphically in Fig. 4. The two empirical data points
(shown by the green and red lines, indicating conditioning on neighbor-
correct versus neighbor-error, respectively) are well outside the range
of values predicted by the simulations, shown as the colored histo-
grams. Thus, the differences between neighbor-correct and neighbor-
error shown in Table 3 are highly significant based on these Monte
Carlo confidence intervals.

3.1.5. Conservation of complexity
As the previous analysis showed that errors in neighboring positions

were correlated, we next investigated whether balanced gain and loss of
spatial parts of each letter might underlie the concomitant errors. While
a more detailed analysis based on feature decomposition will come
later, we first examined an overall measure of the spatial content of
each letter based on the perimetric complexity of each stimulus and
response.

We define the change in perimetric complexity (Δ complexity) as
the complexity of the response minus the complexity of the stimulus.
Therefore, a positive value means that complexity is gained in the re-
sponse, while a negative value means complexity is lost. Fig. 5 plots the
summed complexity change for the outer letters versus the complexity

Fig. 2. Aggregate confusion matrices for left, middle, and right letters, respectively. Cells are colored by occurrence from light/pastel to dark (see the color bar on the
far right for values of occurrence). Letters presented are shown in rows while responses are shown in columns. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 3. Proportion correct for each subject identifying each of the 26 letters
presented in each position. Proportion is colored as indicated by scale bar, with
darker colors indicating worse performance. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 3
Errors contingent on performance in neighboring positions for each of the subjects. Each column indicates conditional probability of error occurrence, as specified in
column label. For example, the first column represents the probability of a left letter error when there is a middle letter error, while the second column shows the
probability of a left letter error when the middle letter is identified correctly. See also Fig. 4 for an illustration of this example demonstrating robustness based on
simulations.
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change for the middle letter, for trials with an error in the middle letter
and at least one of the outer letters.

There was a negative correlation (r=−0.28) between the com-
plexity changes in the middle and outer positions, indicating that when
the middle letter lost (gained) features, the outer letters gained (lost)
features. To determine the robustness of this statistic, we also computed
the correlation for simulated trials with the three independent confu-
sion matrices for each subject. In simulations from the independence
model, the absolute value of the correlation never exceeded 0.05, de-
monstrating that the observed correlation we found was extremely
unlikely to occur by chance.

As shown by the marginal histograms in Fig. 5, the changes in
complexity in both positions were roughly centered around zero.
However, the mean change of the middle letter was slightly positive
(0.13), indicating a gain in complexity, while the mean change of the
outer letters was negative (−0.28), a small loss.

3.1.6. Error dependence on letter confusability
It is already well known that crowding is stronger when flanking

items are similar to a central target, a result found along basic stimulus
dimensions like color and shape (Kooi, Toet, Tripathy, & Levi, 1994) as
well as the confusability of letters (Bernard & Chung, 2011; Freeman,
Chakravarthi, & Pelli, 2011). To expand these findings, we also tested
the influence of similarity, but with the added ability to examine errors
in the outer positions in addition to the middle letter. Like Bernard and
Chung (2011), we assumed that the confusability of a pair of letters
(defined empirically by their confusion prevalence) is indicative of their
visual similarity, and thus used confusion proportions directly as the
measure of visual similarity.

Our analysis determined whether the number of errors in each ad-
jacent letter pair depended on the confusability of the two letters. The
incidence of letter confusions at the middle position was used to define
the confusability of each pair of letters. We performed this analysis
separately for the left and right pairs as follows. First, we binned trials
by the number of letters correctly reported: 0, 1, or 2. Then, for each of

Fig. 4. Illustration of Monte Carlo approach to sta-
tistical robustness determination of error con-
tingencies (Section 3.1.4). The conditional likelihood
of a subject making a left letter error is shown by the
two vertical lines, conditioned on whether the
middle letter was correctly identified (green vertical
line) or erroneous (red vertical line). A left letter
error was about 40% more likely when a middle
letter error occurred, and simulations from the in-
dependence model (colored histograms) show that
this difference was extremely unlikely to happen by
chance. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 5. For trials with an error in the middle position
and at least one outer letter, the summed change in
complexity of the outer letters is plotted against the
change in complexity of the middle letter. A positive
number indicates that complexity is gained in the
response. Each point represents a single trial. The
correlation coefficient, given in the upper right
corner, indicates a negative correlation—complexity
gain/loss is balanced between letter positions.
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these subsets, we computed the average confusability of the letters in
each pair across trials. As a baseline we also performed this operation
on simulations from the independence model.

The results are plotted in Fig. 6. Empirical results are shown with
the points and lines. Clearly, the number of letters correctly reported is
inversely correlated with the confusability of the two letters comprising
the pair. However, simulations showed that this trend also is present in
the independence model, shown as the distributions on each plot. On
the other hand, complete errors in which both the outer and the middle
letter are incorrectly identified are well outside the 95% confidence
interval predicted by the model for eight out of ten of the (subject, side)
groups, all except (S5, right/middle) and (S3, left/middle). Thus, errors
in the response are correlated, in a stimulus-dependent way that cannot
be predicted by the individual confusion matrices.

3.2. Principles of letter feature interactions

The previous analyses showed that identification of a particular
letter in a group of closely-spaced letters is strongly dependent on
properties of the adjacent letters: both stimulus properties as well as
correlated response patterns. One hypothesis for what might cause this
interference is the existence of interactions between particular spatial
parts (“features”) of adjacent letters. To test this hypothesis, we used
the feature decomposition outlined by Bouma (1971), and performed a
detailed micro-analysis of feature presence and absence in the confu-
sion results from empirical data and simulations.

Several characteristic patterns suggestive of letter feature sensitivity
emerged from the empirical results: (1) features were seldom “hallu-
cinated” if they were completely absent from a trigram; (2) if present
anywhere in a trigram, a feature was rarely missed; (3) with multiple
instances of a feature within a trigram, the quantity of the feature in the
response was often underestimated; and (4) features could either “mi-
grate” or be doubled in adjacent locations. We describe each of these
principles in more detail using the descender set as an illustrative ex-
ample.

The first two error patterns are observed globally, at the level of
feature classes in the entire trigram, which we report in the next two
sections. First, we describe the rarity of global false alarms (few “ghost
features”), and then we describe the paucity of global misses. Following
these, we turn to the final two error patterns, which are revealed by

feature false alarms and feature misses in the middle letter. Specifically,
we show how the latter two types of item errors can often be explained
by the presence of a feature in a flanking letter, which interferes with
recognition of the middle letter. For the final two principles we focus on
the middle letter errors due to their prevalence, as outer letter errors
were much rarer. For all subsequent analyses, only trials with at least
one error were included.

3.2.1. Lack of ghost features
When no instances of a feature occurred in a trigram, it was quite

rare that this feature was reported anywhere in the response.
Hallucination of such a “ghost” feature would constitute a global false
alarm, an error that was quite rare in these data. For error trials without
any descenders, the probability of reporting a descender at any position
was 2.7%, much less than the nearly 44.3% probability of reporting a
descender across all trials. These statistics are shown as the first nu-
meric column of the first two rows of Table 4. We quantified the ro-
bustness of this result using both Monte Carlo approaches. First, we
determined the percentage of hallucinations in simulations from the
independent confusion matrices model, which resulted in estimates
between 4.1% and 4.8% (95% confidence interval). Then, we computed
the probability of hallucinations for randomly-generated 5-letter sets,
which resulted in a 95% confidence interval of 9.8%–41.6%, making
the observed false alarm percentage well outside the bounds expected
by chance. Hallucinations of oblique features, shown in the third nu-
meric column, were also strikingly small (1.5%). Round features were
hallucinated more often (9.6%), but still outside the 95% confidence
intervals predicted by both types of simulations. Thus the absence of
ghost features was outside of the 95% confidence intervals for all fea-
ture types except ascenders and arch letters. We consider the arch let-
ters further in Section 3.2.4. Ascenders included the most letters, and
false alarms had a variety of causes, including confusions between
descenders and ascenders (there was a descender in stimuli resulting in
ghost ascender trials 64% of the time.)

In summary, the feature letter sets we evaluated had unique char-
acteristics. It was rare for a subject to respond with a letter containing a
feature if there were no instances of the feature in the trigram. Neither
the confusion matrix simulations nor the random feature letters could
reproduce this behavior. We propose that the distinctiveness of these
letter features made their complete absence salient and unmistakable.

Fig. 6. The average confusability of letters for each pair of middle and outer letters, plotted against the number of correct letters reported in the pair. Points and lines
show the empirical data, while colored “violin plots” show the distributions resulting from 1000 simulations. Correct reports are negatively correlated with overall
confusability, in both the data and the simulations.
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3.2.2. Few global misses
The previous section showed that features were rarely invented if

entirely absent from a trigram, but what about when features were
present—how often were they missed? If at least one instance of a
feature occurred in a trial, there was a very low probability that the
subject would report zero instances and entirely “miss” the feature.
Descenders were missed in only about 2.2% of the error trials, much
less than the 55.6% probability of not reporting a descender across all
trials (Table 4, first numeric column of the third and fourth numeric
rows.)

The 95% confidence region from random letter sets was 9.5–10.6%,
and from the independent confusion matrix simulations was
11.6%–40.4%, as shown in Table 4. All five of the features displayed a
significantly small number of misses compared to the simulations.
Again the descender and oblique (3.1%) had the strongest effect. Ex-
istence of a feature in the trigram nearly always resulted in a report of
the feature in at least one of the three positions. Ascenders and round
letters were also rarely missed, though their percentages were higher
(5.2% and 6.0%, respectively), likely due to the larger set-size of each
feature set. Arch letters also achieved significantly fewer global misses
(8.3%) than either simulation predicted. As before, we propose that the
salience of these features caused their presence to be unambiguous,
resulting in a response (either correct or incorrect) with at least one
feature instance.

3.2.3. Feature false alarms and inward migrations
While false alarms were rare for features that did not occur in a

stimulus at any position, feature false alarms in the middle letter did
occur frequently. It can be inferred from the lack of global hallucina-
tions that the false alarms for the middle item were generally due to
occurrence of the feature in a flanking letter, a fact we now demon-
strate. Statistics are given as rows of Table 5, referenced by a row
number. Columns represent the different feature types evaluated. In this
section the first column, corresponding to the descender feature, is fully
described. Each cell contains both the conditional statistic determined
from the empirical results (in bold), as well as 95% intervals resulting
from either the independent confusion matrix simulations (the par-
enthesized range immediately below the value) or the random letter
feature set simulation (the subsequent parenthesized range).

For descenders, half of the errors with a descender response in the
middle position contained a descender false alarm (row 1: 49%). This
result in itself is not notable, since this percentage is within the range of
both the independent confusion matrices and the random letter set si-
mulations. However, the presence of a feature in a flanking outer po-
sition strongly coincided with middle feature false alarms. Row 2 shows
that 61% of all middle letter descender false alarms contained a des-
cender in at least one flanker, much more than predicted by either of
the simulations (32–39% or 30–45%). Furthermore, when an outer
flanking letter contained a descender, the likelihood of a middle letter
descender false alarm almost quadrupled (row 5: 3.6×), increasing from
11% (row 4, no flanking feature) to 41% (row 3, flanking feature),
again far outside the range from either of the simulations, suggesting a
role for flanking features in feature false alarms.

To determine the fate of the features from the outer flankers, we
analyzed whether outer feature losses varied depending on middle
letter feature false alarms. Specifically, a flanker feature loss con-
comitant with a middle letter feature gain can be taken as evidence of
an inward feature mislocation. For descenders, the percentage of trials
with conditional flanker feature loss was 36% in the presence of a
middle descender false alarm (row 6), significantly higher than pre-
dictions from either simulation. Without the middle descender false
alarm conditional, the percentage of error trials with a loss of a des-
cender feature was much smaller (row 7: 6%). Thus, the feature false
alarm increased the likelihood of an outer loss by six times (row 8),
strongly suggesting the presence of inward feature mislocations.

Moving to the other feature columns, this conditional ratio was even

higher for the oblique feature (12.9×), mainly due to an even smaller
unconditional inward mislocation rate (2%). The remaining three fea-
tures (arch, ascender, and round) had smaller ratios, but in excess of the
95% confidence intervals from the simulations. These features also had
weaker ratios of feature false alarms contingent on flanker features,
compared to descender and oblique, yet were significantly associated
with a feature in the flanker, except in the case of the arch letters. The
arch letters were especially prone to false alarms, as seen previously
with ghost feature errors. Many types of stimuli appeared to contribute
to these confusions, especially round letters and ascenders in both the
middle letter and the outer letters.

3.2.4. Feature loss: repeated features “merge” due to redundancy masking
Lastly, we examined trials in which a feature in the middle position

was lost, which often resulted from multiple instances of the feature
occurring in a trigram. To isolate these cases, we analyzed trials in
which the middle letter contained a feature and the response omitted
the feature (a middle position feature “miss”). For the descender, fea-
ture loss comprised 61% of all the error trials involving a middle des-
cender letter. To determine the cause of these losses, we analyzed
feature contingencies within all three trigram letters in the stimulus and
response. When a middle descender loss occurred, there was a des-
cender in at least one of the outer positions of the presented trigram a
remarkable 77% of the time, far outside the confidence intervals from
both the independent confusion matrices and random letters: 27–32%
and 26–37%, respectively, as shown in Table 6.

Analyzed in a different way, the probability of losing a descender in
the middle letter was five times as great when an outer letter contained
a descender than when it did not (59% vs. 11%, respectively).
Interestingly, however, the probability of losing a descender in the
middle letter was only slightly higher when both outer letters contained
a descender (66%: not shown); one flanking feature appeared to be
enough to induce a feature loss. In summary, a flanking descender
significantly increased the likelihood of losing a middle descender.
Additionally, in almost all cases (98–99% for all feature types), the
feature was retained in the outer letter. Therefore, the flanking feature
survived crowding, while the middle feature was lost. The two instances
of the feature effectively merged together, which we ascribe to re-
dundancy masking.

The other feature error of interest was feature migration toward the
flanking letters, which would be evidenced by a feature gain in the
outer letters concomitant with a loss in the middle position. While these
errors were more rare than those due to interference from existing
flanking features, these feature migrations could be clearly identified.
First, whereas descender gains in flanking letters happened on ap-
proximately 14% of the trials when there was a middle feature loss,
these descender gains happened on only 0.6% of error trials without a
middle error loss, making an outward mislocation 24 times more likely
in the presence of the middle feature loss.

Most of the other feature types followed a similar pattern to the
descenders, although only the oblique errors were as dramatic, having a
similar percentage of errors corresponding to feature losses (57%), and
a similarly large increase in outward mislocations due to middle feature
loss errors (15.7×). With oblique flankers, the increase in middle fea-
ture losses conditioned on the presence of outward features tripled
(3.2×). Ascenders had a smaller percentage of errors that were due to
losses (28%), meaning that a majority of errors with ascenders retained
the ascender feature, unlike the previously described features.
However, like the other error types, a flanking ascender was likely to be
present when a middle ascender was lost (61%). The round and arch
features had weaker effects, but only the ratio of outward mislocations
with arches did not exceed 95% confidence intervals. Interestingly, in
80% of the trials in which an arch letter in the middle was lost, an
ascender letter was reported in the middle, regardless of the flankers.
We hypothesize that only one of the vertical components was correctly
identified, causing errors much like the redundancy masking reported
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earlier, but at the sub-feature level.

4. Discussion

To explain how groups of letters are processed, theories often make
assumptions about underlying mechanisms, such as the parallel and
independent nature of letter processing, the use of spatial features for
recognition, and interactions (such as migrations) of features between
letters. In this study we tested these assumptions by analyzing an ex-
tensive dataset of behavioral responses from subjects identifying all
three letters in thousands of trigrams presented in their lower visual
field. We performed analyses at both the letter and feature level, finding
evidence for both inter-letter dependencies and feature-level interac-
tions.

Note that our goal was not to provide a complete model of letter
processing. All 26 letters were not represented in the feature sets, for
example. Rather, our intent was to reveal broad characteristics of
crowded letter confusions. We demonstrated several forms of inter-
letter dependence, including the effects of confusability on adjacent
letter errors, conservation of complexity, and a response contingency in
errors amongst neighbors. These findings challenge models that process
each letter individually in parallel, and suggest that at least a portion of
letter recognition processing in multi-letter arrays requires dependent
units of more than a single letter. General processing deficiencies such
as inattentiveness on certain trials cannot explain our results, due to the
strong stimulus dependencies observed.

Nor was our goal to construct a full model of feature-based crowded
item processing. As stated in the Introduction, several previous studies
have used arrays of homogeneous items on continuous feature dimen-
sions to quantitatively characterize how multiple features in the
crowding zone may interact. Due to the heterogeneity of letter features
(including the featural differences we report in Tables 4–6), it appears
challenging to construct generic rules for predicting the behavior of
quantities of non-specific “letter features,” although some authors have
made precise proposals (Pelli et al., 2006). Our analyses were not de-
signed to test hypotheses about specific numbers of features (such as the
number of oblique or cardinal strokes). Instead, we simply evaluated
the detection of “obliqueness” amongst the three letters in each trigram.
Decomposing letters into specific quantities of features would be a
straightforward extension of our analysis and several historical models
have proposed exactly these types of featural decompositions for letters
(Geyer & DeWald, 1973). However, such an approach should in-
corporate the findings of Townsend and colleagues (Townsend et al.,

1984), who found that detection dependencies can exist even amongst
the strokes within single characters.

We observed letter mislocations much less frequently than typically
reported in the literature, which is typically greater than 15% of errors
(Huckauf & Heller, 2002; Strasburger, 2005; Freeman et al., 2011;
Zhang et al., 2012; Strasburger & Malania, 2013). The cause for this
difference is unclear, although our use of a full-report paradigm is a
likely contributor. In a previous experiment reporting all three letters of
a trigram presented in the lower visual field, we observed<10% of
errors to be letter mislocations (Chung, Li, & Levi, 2012). Furthermore,
in all of the previous studies showing a large proportion of letter
transpositions, letter strings were presented in the left or right visual
field, in a radial arrangement with respect to fixation (Huckauf &
Heller, 2002; Strasburger, 2005; Strasburger & Malania, 2013; Zhang
et al., 2012), whereas ours were presented in the lower visual field,
with the letters tangentially arranged with respect to fixation. Despite
their small number, the mislocations observed did not reflect the oc-
casional transpositions of random, unrelated letters pairs, as might be
expected from a faulty position signal (Chung & Legge, 2009). Such an
effect should be stimulus-independent, whereas we found that the
mislocation rate was correlated with the confusability of adjacent let-
ters.

The analysis of letter errors in terms of a feature decomposition was
conceived as a method to investigate the validity of the hypothesis that
features may float freely between letters. This has remained a topic of
some debate (Strasburger & Malania, 2013), especially since transpo-
sitions of entire letters are often observed, including in the early for-
mulation of Wolford (1975). With accuracy at a reasonable level
(50–60%), letter mislocalization errors were rare, yet confusions did
not appear haphazard. Instead, specific error patterns revealed the in-
fluence of neighboring letters on identification.

The characteristics observed reflect the nonlinear and hetero-
geneous aspects of letter processing. The principles of distinctiveness
(few global feature hallucinations and misses) illustrate the nonlinear
nature most easily. One explanation of letter recognition represents
letters as numerical values along several separable feature axes, de-
termined for example using multidimensional scaling (Kuennapas &
Janson, 1969). However, with such a formulation, it is difficult to ex-
plain how the existence of a feature in the stimulus can so strongly
influence the outcome in a dichotomous fashion. Rather, our empirical
results suggest that feature presence or absence is binary rather than
graded. On the other hand, the exact location of these features can be
indeterminate, as proposed by crowding theories, a result demonstrated

Table 4
Feature detection at the global (trigram) level. For each feature(in columns), each cell indicates the percentage of error trials falling into the categories described in
Section 3.2.1 and Section 3.2.2. The two ranges below each statistic indicate the 95% confidence intervals from simulations: the first row from the independent
confusion matrices model, and the second row from random n-character letter sets. Global feature errors (false alarms and misses of feature categories in the entire
trigram) are distinctive, and can not be explained by chance.

Descender Ascender Oblique Round Arch
(95%indep) (95%indep) (95%indep) (95%indep) (95%indep)
(95%letters5) (95%letters8) (95%letters6) (95%letters7) (95%letters5)

Global feature hallucinations 2.7% 19% 1.5% 9.6% 14%
(4.1%–4.8%) (22%–24%) (2.4%–2.9%) (11%–12%) (12%–13%)
(9.8%–42%) (17%–57%) (12%–46%) (15%–51%) (9.8%–42%)

Unconditional feature response 44% 73% 47% 63% 50%
(41%–42%) (72%–73%) (47%–47%) (62%–63%) (50%–50%)
(41%–57%) (61%–75%) (48%–64%) (55%–70%) (41%–57%)

Global feature misses 2.2% 5.2% 3.1% 6% 8.3%
(9.5%–11%) (7.8%–8.6%) (5.8%–6.6%) (8.1%–9%) (9.6%–11%)
(12%–40%) (8.8%–27%) (11%–36%) (10%–31%) (12%–40%)

Unconditional feature omittance 56% 27% 53% 37% 50%
(58%–59%) (27%–28%) (53%–53%) (37%–38%) (50%–50%)
(43%–59%) (25%–39%) (36%–52%) (31%–45%) (43%–59%)
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by the feature gain and loss analyses. In fact, the ability for features to
mislocalize confirms the early observations of Korte (1923) concerning
free-floating features (Strasburger, 2014), which has also been invoked
by Pelli et al. (2004) to characterize crowding.

The heterogeneous nature of letter processing was also revealed
with this analysis. While confusion matrices capture the overall con-
fusability of pairs of letters, we have shown that there are additional
distinctive patterns at the level of particular sets of letters, in this case
those sets of letters defined by “features.” Here, the features had a clear
interpretation in terms of distinctive spatial parts, although this was not
a necessity for our analysis. Several of the feature principles we ob-
served have been previously studied, but not in the context of crowding,
nor with lowercase letters. Townsend and colleagues studied the de-
tection of discrete line segments in square uppercase letters and an
artificial alphabet in a series of studies (Townsend, Hu, & Ashby, 1981;
Townsend et al., 1984). Using conditional probability, they found evi-
dence for dependence between features of compound items, rather than
independent, uniform detection of features. One differing result is their
finding of what they termed “ghost features,” which correspond to our
hallucinations. They did find evidence for ghost features (Townsend
et al., 1984), which they used to reject high threshold feature sampling
assumptions. Since they presented items foveally, very short presenta-
tion times were needed to induce errors (< 10ms), which could explain
the difference observed. Imagination may become more engaged with
weak stimulus information.

We did not consider how adjacent spatial features in certain dis-
positions could conjoin, leading to errors resulting from direct spatial
combination of constituent features, such as an “l” combining with an
“o” to its right to form a “b.” This type of error was suggested for groups
of tiny, closely spaced capital letters in the fovea (Liu & Arditi, 2000).
The asymmetries seen in the individual letter accuracy plots (such as a
“c” to the left being less accurate) could also suggest this type of

interaction. Nevertheless, while this type of error may have been the
source of some portion of feature errors, we were able to capture many
errors by simply assuming that features are combined in pairs or in the
entire trigram without regard for particular spatial arrangements (i.e., a
“bag of features” approach).

We found that a major factor driving the disappearance of a feature
in the middle position was the occurrence of the feature in a neigh-
boring letter. This is reminiscent of the phenomenon of redundancy
masking, whereby identical items in close proximity cannot be properly
individuated: the repeated element may be identified correctly, but the
exact number is uncertain (Sayim & Taylor, in revision; Yildirim,
Coates, & Sayim, 2017; Yildirim et al., submitted). Here, we found that
a pair of adjacent features may effectively “merge” together, creating a
percept containing only one instance of a feature, which was typically
reported in the flanker rather than the more heavily-crowded middle
letter. With feature false alarms in the middle position, a similar pattern
emerged. The most typical report was doubling of a feature that already
existed in a flanker, although migration from the outward letter into the
center letter was also observed.

We believe these results shed light on fundamental aspects of the
process of recognizing letters that are in close proximity, which is often
the case in text. We find evidence for the hypothesis that letters are
composed of features, and that these features have certain identifiable
signatures that statistically emerge from the behavioral responses.
Features can mix amongst neighboring items, likely leading to the
identification errors that are observed with crowded text. These feature
errors happen even in the absence of letter transpositions, bolstering the
free-floating feature hypothesis, though with additional important de-
pendencies such as adjacent letter confusability. All in all, these results
present a clear challenge to the simplest models of textual processing
that posit independent detection and integration at a letter level.
Instead, more sophisticated models of reading should include a visual

Table 5
Feature contingencies for middle letter feature false alarms (FAs). For each feature column, each row shows the percentage of error trials satisfying the given
condition described in Section 3.2.3. The two ranges below each statistic indicate the 95% confidence intervals from simulations: the first row from the independent
confusion matrices model, and the second row from random n-character letter sets.

Descender Ascender Oblique Round Arch
(95%indep) (95%indep) (95%indep) (95%indep) (95%indep)
(95%letters5) (95%letters8) (95%letters6) (95%letters7) (95%letters5)

(1) Percentage of feature errors that are feature: FAs p(FA|feature_error) 49% 34% 33% 35% 51%
(46–52%) (33–35%) (30–35%) (34–37%) (50–52%)
(59–97%) (48–88%) (53–95%) (53–92%) (59–97%)

(2) Pct. of feature FAs having feature in flanker: p(flanker_feature|FA) 61% 60% 65% 56% 27%
(33–40%) (53–56%) (38–47%) (48–52%) (35–39%)
(31–46%) (49–61%) (37–51%) (43–56%) (31–46%)

(3) Pct. of feature FAs, given feature in flanker: p(FA|flanker_feature) 41% 33% 24% 31% 40%
(19–22%) (27–28%) (9.7–12%) (24–26%) (37–40%)
(38–75%) (35–65%) (38–71%) (37–67%) (38–75%)

(4) Pct. of feature FAs, given no feature in flanker: p(FA¬| flanker_feature) 11% 22% 6.3% 21% 41%
(26–32%) (28–30%) (13–18%) (26–28%) (41–45%)
(43–78%) (37–68%) (42–76%) (39–71%) (43–78%)

(5) Increased likelihood of feature FA given flanker feature: (Row 3/Row 4) 3.6× 1.5× 3.9× 1.5× 1.0×

(1.3–1.5) (1.0–1.1) (1.3–1.6) (1.1–1.1) (1.1–1.2)
(0.9–1.3) (1.0–1.2) (0.9–1.2) (0.9–1.2) (0.9–1.3)

(6) Pct. of flanker feature losses, given FA: p(flanker_feat_loss|FA) 36% 14% 28% 13% 12%
(1.8–2.1%) (3.6–4.1%) (0.7–0.9%) (2.6–3%) (1.1–1.4%)
(2.1–16%) (3.9–18%) (2.8–17%) (3.5–18%) (2.1–16%)

(7) Pct. of flanker feature losses: p(flanker_feat_loss) 5.8% 7.5% 2.2% 5.7% 3.7%
(0.3–1.8%) (1.5–2.6%) (0–1.3%) (0.9–2.1%) (0.3–1%)
(3.7–14%) (5–14%) (4.3–14%) (4.7–14%) (3.7–14%)

(8) Increased likelihood of flanker feature loss given FA: (Row 6/Row 7) 6.1× 1.9× 12.9× 2.2× 3.2×

(0.2–0.9) (0.4–0.7) (0.0–1.5) (0.3–0.7) (0.3–0.8)
(0.6–2.7) (0.6–1.7) (0.6–2.0) (0.6–1.8) (0.6–2.7)
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word processing module that reflects the optimal use of distinctive
letter features gated by the bottleneck of crowding.
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