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ABSTRACT OF THE DISSERTATION

Secure and Efficient Wireless Networks

by

John Michael Bellardo

Doctor of Philosophy in Computer Science

University of California, San Diego, 2006

Professor Stefan Savage, Chair

In 1985, the Federal Communications Commission ”opened” a range of radio

frequencies called the Industrial Scientific and Medical band. For the first time anyone

could transmit high-speed data wirelessly without a license and with minimal regulatory

restrictions. Building on this opportunity, the IEEE’s 802.11 protocol enabled cheap

untethered access to nearby wired networks and ultimately transformed how millions of

businesses, governments, and casual computer-users access the Internet.

However, the designers of 802.11 did not anticipate the magnitude of their suc-

cess, and thus the protocol is hard-pressed to meet many of the new demands placed on

it. In particular, 802.11’s decentralized management structure poses unique challenges

for both security and performance. This dissertation focuses on two key instances of

these problems: denial-of-service and channel efficiency.

In 802.11, each wireless client implements the media access control protocol

(MAC) to share the common radio medium more effectively while maintaining the de-

centralized design of the protocol. Additionally, each client implicitly trusts that the

other clients are faithful in their MAC implementation. Under these best-case circum-

stances the protocol operates as designed, however, nothing prevents a client from abus-

ing this trust. In this work I evaluate two of the more critical abuses of trust, both of

which result in a denial-of-service attack where a well-behavied client is denied access

to the wireless meduim. In addition, I propose defense mechanisms that successfully

xiii



protect the networks while preserving the decentralized nature of 802.11.

The desire to efficiently use all availabile radio channels arises because typi-

cal deployments have many more access points and clients than they do channels. This

creates a high degree of contention for a limited resource. The decentralized nature of

802.11 exasborates this issue because each access point makes a locally greedy chan-

nel decision even though the aggergate of the local decisions does not yield a global

optimum. To that end I propose and evaluate a number of different automated chan-

nel selection policies and synchronization techniques using a large, real world testbed,

identifing the current best practice and quantifing its performance improvement.

xiv



Chapter 1

Introduction

Wireless data networks, and 802.11-based products in particular, have been

one of the fastest growing network technologies in the last decade. In fact, a survey

of market analysts performed by the Dell’Oro Group [Gro] places the worldwide mar-

ket for 802.11 equipment at $3.4 billion for the year 2006. This popularity is driven

by two main factors. Wireless networks provide convenience that has become the de

facto standard in developed countries. Society has evolved to the point where continu-

ous connectivity is the norm, not the exception. 802.11 technology has been used, in a

large part, to meet the connectivity expectation. To a lesser extent there are a number

of circumstances where wireless networks are a more suitable solution than wired net-

works, while providing sufficiently high bandwidth to satisfactorily support the primary

network application.

While there are a number of benefits inherent to this popularity (e.g. the low

hardware prices this commodity status has created) it is also accompanied by the specter

of increased scrutiny. Network operators are discovering the design limitations and

complications inherent to the 802.11 specification. For example, several cities, such

as Philadelphia [Com] and Mountain View [Blo], are now in the process of providing

blanket 802.11 coverage over their entire jurisdiction. Such a large deployment exposes

efficiency problems at the networks scale to sizes not anticipated by the 802.11 design-

ers.

1
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However, even more concerning is the prevalence of 802.11 networks used to

carry mission and life critical data. For example the health care industry is eagerly adopt-

ing 802.11 networks for use with their patient interaction devices, such as heart monitors

and intravenous fluid dispensers, to achieve better quality and monitoring capabilities.

A recent press release [Net] from Sharp HealthCare [Web] includes the following para-

graph on their usage of WiFi:

“We have wireless-enabled intravenous (IV) pumps that automatically
gather essential medication information from a central database to ensure
the safety of our patients. This allows us to focus more on patient care,
rather than administration,” said Wiesenberg. Each smart IV medication
system is equipped with an 802.11b PCMCIA card that communicates with
a central server that stores medication profiles. These profiles are continu-
ously downloaded to each IV pump to ensure no errors in the distribution
of medication to patients. Sharp is also using the wireless environment
for bedside charting, electronic medical records, custom pharmacy applica-
tions, emergency room admission and ordering, and traditional data center
applications.

These mission-critical uses of 802.11 underscore the importance of under-

standing and improving security vulnerabilities in 802.11.

My thesis addresses key security and efficiency shortcomings in the 802.11

specification. It achieves this through a mix of careful analysis of the specification,

instrumentation and measurement of deployed wireless networks, and careful design of

solutions to the identified problems. In particular all the resolutions to the problems that

I propose have been tested in real networks, are shown to work, and are easily deployed

on existing 802.11 hardware today.

1.1 Contributions

In this thesis I address two particular areas of concern in 802.11 wireless net-

works: availability and efficiency. To improve availability I performed a security anal-

ysis of the specification itself, identifying several potential vulnerabilities. Afterwards

I ranked the vulnerabilities in order of decreasing severity, based on both the expected
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impact and the ease with which the attack can be mounted. I implemented the first two,

most potent, attacks and tested them using a controlled, but real, 802.11 network. Based

on my experiences mounting these attacks I proposed, implemented, and evaluated de-

fenses for these two attacks. The methodology used in developing these defenses allows

them to be easily retrofitted into existing hardware, as well as introducing a general

framework for further devising defenses.

Addressing efficiency problems in wireless networks is more involved. To ac-

complish this I designed and deployed a 200 node wireless testbed inside a building at

UCSD. Using this testbed I evaluated initial channel selection algorithms. These algo-

rithms run once when the AP starts up, and then isn’t run again unless the access point

is restarted. I looked at the achieved “goodput” for a number of common algorithms,

and identify the best performer of the group. In addition, I identify a fundamental flaw

in those algorithms that negates their added complexity as compared to random channel

selection. I propose a new coordination algorithm and protocol to address this problem,

and demonstrate that using the algorithm avoids the inherent limitation and restores the

performance benefits of the more complex algorithms.

1.2 Organization of the dissertation

This thesis is organized in three main chapters. Chapter two provides the back-

ground information on the 802.11 protocol that is necessary to better understand the rest

of the work and discusses the more important challenges with the large 802.11 testbed I

created at UCSD. Chapter four uses the testbed to examine the impact of channel selec-

tion in infrastructure wireless networks, and proposes a new protocol that ameliorates

the the biggest problem discovered. Chapter four evaluates availability problems in the

802.11 specification, and proposes tractable solutions to them. Chapter five and six dis-

cuss future directions and conclude, respectively. In addition, the appendix provides

detailed information on the operation of the testbed.



Chapter 2

802.11 Background and Infrastructure

2.1 Introduction

The research and ideas presented in this thesis require intimate knowledge of

the inner-workings of IEEE 802.11 wireless networks. This chapter provides an in-depth

review of the 802.11 media access control (MAC) subset that is relevant to understand

the research presented. In addition it reviews some of the fundamental apsects of 802.11

networks. The complete IEEE 802.11 specification [Soc99] is available online.

The second part of this chapter is devoted to introducing and discussing the

wireless testbed infrastructure that I deployed at UCSD. Detailed information about the

hardware and capabilities of the platform at discussed. I also discuss the major obstacles

encountered while deploying such a large testbed, and how I solved them.

2.2 Network Topology

Wireless networks were designed to emulate a direct connection to a wired

network in order to provide a better experience to the user. However, creating this ap-

pearance utilizing a radio interface required a number of abstractions, protocols, and

standards. One of the fundamental standards was selecting a network topology. Since

this work deals exclusively with the infrastructure topology, it is discussed in this sec-

tion.

4
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AP1

C1

C2

AP2

C3

C4

BSS / BSSID

BSS / BSSID

ESS / ESSID

Figure 2.1: General layout of an infrastructure topology.

The infrastructure topology abstracts the broadcast radio medium to create the

illusion of a dedicated connection to a wired network. This abstraction is created by

installing a bridge node, called an access point (AP), on the wired network. The AP

accepts wireless clients and forwards traffic destined for the clients to and from the

wired network. Due to the relatively limited range of the radios employed by 802.11, a

number of APs must be deployed to provide contiguous coverage over larger physical

areas. This density, combined with the unpredictable nature of mobile wireless clients,

results in two complementary mechanisms for managing these infrastructure networks:

identification and association.

2.2.1 Identification

One important aspect of location is identifying otherwise autonomous APs

that belong to the same network. 802.11 achieves this by creating a logical abstraction

surrounding each AP that encompasses all the clients it serves. This abstraction is called

the Basic Service Set, or BSS. Each BSS is assigned an lexicographical identifier by

the network operator termed the Basic Service Set Identifier, or BSSID. The BSSID

assigned by the network operator presumably allows the user identify the correct BSS
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(e.g. the BSSID used at UCSD is “UCSD”).

When multiple APs are deployed the union of their BSSes is called the ex-

tended service set, or ESS. The ESS also has an identifier, called the ESSID. Prag-

matically the BSSID and the ESSID are the same. In order for a client to identify an

ESSID, which is desirable for mobile clients that might associate with multiple APs,

all APs in the ESS use the same ESSID. For example, the ESSID at UCSD is “UCSD”.

Therefore the specification defines a conceptual difference between the BSS/BSSID and

ESS/ESSID even though the only important, user visible attribute, is the ESS/ESSID.

Figure 2.1 graphically depicts an infrastructure network with the various service sets

and identifiers labeled.

2.2.2 Association

The illusion of a point-to-point link requires the client to be communicating

exclusively with an AP, however a client that just entered the coverage area of a networks

does not know what APs exist or which one the client wishes to utilize, nor does the

AP know which client is using it. To address these issues 802.11 includes a series of

management functions that effect an “association” between a client and an AP. This

functionality is unique to 802.11 wireless networks, and is necessary to understanding

part of the security work presented in chapter 4.

Initially a client has no idea about which APs are within communication range,

nor does it know any of the properties that make a particular AP more desirable (e.g. the

ESSID of the AP). To learn this information it performs a scan of the radio spectrum.

This is a procedural scan, where the client first switches to one of 802.11’s channels

(e.g. 802.11b utilizes 11 channels) and probes for APs. 802.11 defines a special probe

request frame format for this purpose. All APs that receive the probe request respond

with a probe response frame. This response frame includes important properties of the

AP, such as the actual channel of operation 1, the BSSID, and the transmission rates
1Because the channels in 802.11 overlap it is commonplace for a probe request sent on channel 1 to be head by an

AP on an adjacent channel (channel 2 or 3), and the subsequent response to also be heard on channel 1. By including
the channel information in the response a client is able to filter out this cross-channel chatter.
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supported by the AP.

In addition to responding to probe requests, AP periodically (by default, once

every 100 milliseconds) transmit a beacon frame that contains the same information

present in the probe response frame. This beaconing gives the client an option to per-

form passive scans, where they do not generate a probe request, but still receive all the

necessary information. Once a client has completely scanned the spectrum and com-

piled a list of APs within range it selects one of them. The actual selection criteria varies

depending on the purpose of the network deployment, however one rather common cri-

teria is ensuring the ESSID matches a list of preferred ESSIDs (e.g., only associate with

“UCSD” and “home”).

Once a client selects a particular AP it is necessary to inform the AP of the

selection so it can begin forwarding traffic destined to the client. 802.11 accomplishes

this through a two step process. The first step is authentication and the second is asso-

ciation. Separating these two steps allows a client to be authenticated at multiple APs

simultaneously, which reduces the amount of time required for a mobile client to move

an association to a different AP.

Authentication allows a client to prove its legitimacy to the AP. 802.11 pro-

vides a generic framework for this, ostensibly to allow any number of different authen-

tication algorithms. In addition to the framework the standard defines two particular

instantiations, which have become the only two used in practice. The first is open au-

thentication, were an AP simply accepts all clients that attempt to authenticate 2. This is

the most common form used in networks. The second form uses a key, distributed out

of band, known by the client and the AP, to establish that the client is authorized to use

the AP’s services.

After authenticating a client still must inform the AP it is going to use the AP

to bridge to the wired network. It does this through a process known as association.

Authentication is a prerequisite for association. After a client has scanned the network,

authenticated, and associated with an AP, it gains access to the wired network connected
2In practice some APs use an Access Control List (either black or white) to deny authentication attempts even

though they employ “open” authentication
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to the AP.

In addition to the association and authentication mechanisms there is also a

deauthentication and disassociation mechanism. These are not requests that can be

granted or denied, and therefore serve a informational purpose. A client can inform

the AP it is no longer authenticated (or associated), which permits the AP to clear any

internal state used by the client. Likewise an AP can inform the client it is no longer

authenticated an inform it of such so the client knows it needs to reestablish an associa-

tion.

2.3 Interference

The work in chapter 3 goes to great lengths to minimize the impact of inter-

ference on the performance of 802.11 networks. As such it is necessary to have a good

understanding of the sources and problems created by interference in 802.11 networks.

The impact from interference falls into two broad categories, direct impact (e.g., the

transmission was not received) and indirect impact (e.g., the transmitter is required to

wait a certain amount of time before attempting retransmission). This section details the

impact of both these sources.

2.4 Direct Impact of Interference

The cost of direct interference on the performance of the network is clear.

The frame is lost, and another mechanism must be used to recover it. However, direct

interference also has the same impact if the explicit acknowledgment for a frame is lost,

and there are two terms related to direct interference that are important to understand.

First, 802.11 employs a positive acknowledgment scheme whereby each uni-

cast frame (that is, a frame with only one intended wireless recipient) is acknowledged

by the recipient upon successful reception. Direct interference can effect either the trans-

mission of the data frame or the transmission of the acknowledgment frame. In either

case the result is the same – the transmission is considered a failure.
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  AC1 C2

Figure 2.2: A depiction of hidden terminal interference. Nodes C1 and C2 can not hear

each other and always result in a collision at AP A.

2.4.1 Direct Interference Terminology

There are three common terms that describe the source of direct interference,

hidden terminal, exposed terminal, and broadband. Hidden terminal interference occurs

when two nodes that can not detect each others energy interfere. Consider the situation

where there is a client C1, an AP A, and a client C2 physically located in a line in that

order. Furthermore C1 and C2 mutually can not detect each other. If C1 and C2 both

attempt to transmit to A at the same time the transmissions will collide and neither may

get through. This is the hidden terminal problem and is depicted in figure 2.2

The exposed terminal problem occurs when a node, again C1 in our example,

defers to another node, C2, even though the two transmission could have occurred si-

multaneously without causing a collision. This is typically the case when C1 and C2

are communicating with nodes that are not within range of each other, as depicted in

figure 2.3.

It is important to note that channels in 802.11 overlap. The 802.11b signal

occupies approximately 22 Mhz of spectrum centered around the channel’s middle fre-

quency. Since channels are spaced 5 Mhz apart there is significant overlap. For example,

channels 1 and 2 share approximately 17 Mhz of the same spectrum. It is also impor-
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A1 C1 C2 A2

Figure 2.3: A depiction of exposed terminal interference. Nodes C1 and C2 defer to

each other’s transmissions, however no collision would have occurred because AP’s A1

and A2 are only within range of their respective clients.

tant to realize that the radio signal does not cease to exist after the aforementioned 22

Mhz spacing. It is only attenuated to the point where the probability of causing inter-

ference is minimal. However it is still possible for frames transmitted in channel 1 to

be successfully decoded in channel 11. Some work refers to interference from nodes

on the same channel as co-channel interference and different channels adjacent-channel

interference.

Broadband interference is a generic term that captures all interference from

sources that don’t understand the 802.11 protocol. Common man-made sources of

broadband interference are microwaves, radars, and baby monitors. Additionally na-

ture provides sun spots and other phenomena that have the potential to interfere with

radio transmissions.

2.5 Indirect Impact of Interference

The indirect performance impact of interference can be much more costly

and prolonged than the direct impact. For example, as a result of detected interfer-

ence on two consecutive transmissions, a wireless node may decrease its transmission
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rate, which drastically reduces the performance of the network. The rate may not be

increased for many seconds. This section explains the important 802.11 media access

control (MAC) rules, and how they contribute to the indirect impact of interference.

2.5.1 Retransmission

As mentioned previously, 802.11 uses positive acknowledgments (ACKs) of

all unicast frames. In addition to these ACKs, the 802.11 MAC can retransmit a failed

frame a small number of times (the actual number is vendor specific, but 7 is frequently

used). While detection (e.g., the ACK isn’t received) and retry typically happen faster

than if left to higher layers, much of the added performance impact is only present when

frames are retransmitted.

2.5.2 Deferring

802.11 employs carrier sense in an attempt to avoid interfering with other

nodes. Before attempting transmission a node must observe silence on the radio for a

period of time. The exact length is one of three values, depending on the collision status

and type of the frame being transmitted. These values are collectively called interframe

spacing.

When transmitting an ACK or clear-to-send frame, the node must wait for the

short interframe spacing (SIFS) period. When attempting the first transmission of any

other frame it must wait a DCF interframe spacing (DIFS) period. When retransmitting

a frame following a previous unsuccessful transmission of the same frame it must wait

an extended interframe spacing period (EIFS). The exact values for these periods vary

between 802.11a and 802.11b, however the relationship SIFS < DIFS < EIFS always

holds. Additionally the EIFS is significantly greater than the DIFS, making retransmis-

sions more costly.

If, during the waiting period, another transmission is detected the countdown

timer for that period is suspended. This state is known as deferred in the specification.

Deferring means the period counter is not reset when another transmission is detected.
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2.5.3 Backoff

A node performs backoff under two circumstances. First, when another trans-

mission is detected during the DIFS period preceding the original transmission of a

frame, and secondly for a MAC retransmission of a failed frame. Backoff is performed

by creating a number of fixed length time slots after the DIFS (or EIFS) period. A node

initially picks a random slot and must wait until that slot is reached before transmitting.

This waiting period is in addition to the DIFS period and obeys the same deferral rules

discussed above.

There is one exception to backoff. If no other transmission is heard during the

DIFS period immediately preceding the first transmission of a frame, a node is allowed

to transmit that frame in the first time slot without selecting a random slot and waiting.

When a failed transmission attempt is detected, in addition to waiting an EIFS

period as discussed above, the number of time slots (not the length of a slot) is doubled.

The exponentially growing number of time slots creates an exponentially growing wait-

ing period before the next retransmission can occur. This quickly dominates the cost of

multiple retransmissions.

The indirect cost of interference, through the combination of retransmissions,

deferring, and backoff as found in 802.11, can be quite high. In some cases it can

waste tens of milliseconds for a single transmission, time which could have been used

transmitting more data instead of continually making no progress on the same frame.

This, coupled with the change in 802.11 transmission rate explained at the beginning

of this section, can substantially worsen the impact of direct interference that otherwise

would have been considered a minor nuisance.

2.6 Wireless Testbed

The existing installed base of 802.11 equipment is valued in the billions of

dollars, and by some estimates, is still experiencing phenomenal sales growth. Therefore

any work whose goal is to improve the inherent deficiencies in the protocol needs to be
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acutely aware of how the proposed solutions will actually operate in real deployments.

With this constraint in mind I performed a series of exploratory experiments

aimed at increasing the relevance of my results. The experiments consisted of running

a series of small simulations using topologies I could easily recreate in the lab. The

same data was collected from the test topology and compared with the simulated results.

Unfortunately, due to the richness of a real wireless environment and relative lack of

expressiveness in the simulators, I was not able to achieve reasonable results from the

simulator, even after multiple refinement iterations.

This experience is not unique to my work. In [KNG+04] Kotz et.al. debunk

the six most common assumptions found in the most common simulators. Some of the

identified assumptions include circular transmission ranges of radios, link symmetry,

and perfect delivery probabilities for links that do exist. As a result of this work, and my

experiences with wireless simulators, I decided to use large scale wireless experimen-

tation as the foundation of my thesis work. In order to run these experiments I had to

build and deploy a large wireless testbed.

I initially approached building an experimental as a straightforward engi-

neering problem, however, after two years of operational experience, my opinion has

changed. There are good reasons beyond simple funding constraints 3, for example the

operational complexity necessary to maintain the entire system, that our deployment is

the single largest academic 802.11 testbed that I am aware of.

2.7 Installation Characteristics

Size is one of the key attributes of our wireless testbed, in two senses. Our

testbed contains a large number of radios, 180, spread over a large indoor space, 150,000

square feet. Figure 2.4 shows the deployment locations for four of the five floors covered

in the Computer Science and Engineering building at the University of California, San

Diego.
3In fact, the entire testbed cost somewhere on the order of $60,000, which is not an inordinate amount of money

given current grant funding levels.
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1st Floor

2nd Floor

3rd Floor

4th Floor

Figure 2.4: CSE Building floorplan with wireless node locations depicted. This building

comprises roughly 150,000 square feet spread over four floors (and a smaller basement,

not shown). Circles indicate testbed nodes, and triangles indicate campus production

access points. The basement houses an additional 12 nodes not shown in this figure.
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Each node in our testbed contains two independent radios. This has a number

of benefits. It enables research into multi-hop topologies, it enables measurement-based

research projects that monitor two channels at the same point in space simultaneously,

and it reduces the overall hardware costs of our infrastructure. It does, however, also

have a drawback. Simultaneous transmissions from both radios are more likely to inter-

fere with each other due to the close proximity, and the average distance between nodes

is greater.

In addition to placing two radios in every node, I installed nodes in pairs (re-

ferred to as pods). Before installation I performed a series of bandwidth measurements

to determine the minimum spacing necessary between two nodes in a pod without undue

intra-pod interference. The nodes are installed as close to this minimum as conditions

permit. This pairing provides passive measurement research projects the ability to mon-

itor up to four different channels from what is effectively a single point in space. This is

enough coverage to monitor the traditionally non-overlapping channels in 802.11b plus

one channel in between.

Each node is directly connected to a dedicated wired network, which in turn

connects to the building’s network. The nodes are powered using Power over Ethernet.

This reduces the installation complexity, expense, and improves the visual aesthetics.

In order to support the widest array of research, each node is an embedded

computer that uses a Pentium class CPU and has 64 megabytes of non-volitale FLASH

memory and 128 megabytes of RAM soldered on the logic board. The limited amount

of unremovable non-volitale FLASH memory, coupled with the size of the testbed, led

to the biggest problems in deployment.

2.8 Operating System Image

Even though the specifications for the testbed nodes appear adequate the

amount of FLASH memory is a big constraint. It is difficult to fit a modern operating

system (OS) and all the necessary supporting applications into 64 megabytes of storage.
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The standard operating system sources for desktop machines (e.g., Redhat, FreeBSD,

etc.) result in OS installations in the Gigabytes, while embedded distributions are small

but lack many of the necessary features. This situation creates a tradeoff between fitting

everything within the 64 Megabyte limit and what functionality the resulting image pos-

sesses. Through my experience addressing various aspects of this tradeoff I developed

a few key criteria for the OS image.

Most importantly the image needs to be easily customizable, because there are

a number of features that are necessary to conduct the underlying research. Building all

the required software packages by hand is one extreme that represents the ultimate in

flexibility, however compilation for this embedded environment is tricky as discussed

below. A better solution is being able to install prebuilt packages. Unfortunately most

prebuilt packages contain files that are unnecessary for the operation of the program

(e.g., documentation and header files). The extra files can constitute a large fraction of

the disk space required to install the package.

My solution to this problem was a combination of using preexisting packages

and building programs by hand. In order to use the package I had to manually identify

all the unneeded files and dependencies, and then write a cleanup program that removed

them after installation. Due to the difficulty in compiling programs by hand, I only took

that approach when no acceptable package was available. Even when compiled myself

it was still necessary to identify and remove unneeded files.

The ability to update an OS image as newer software becomes available is

also important. The updates typically involve security fixes and new features, both of

which are important. The update process for prebuilt packages is generally streamlined

by the package provider, however once the unneeded files have been removed most of

the update scripts fail. To solve this problem updates are achieved through rebuilding

and reinstalling the entire OS image. This process is entirely automated and discussed

in the next section. Updates to software built by hand are more involved, because they

require downloading a newer version of the source code and replicating the build. As a

result those programs don’t get updated as frequently.
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Another important feature of the OS image is stability. Once an image has

been constructed and tested, it is important for the features and interfaces present in the

image to remain the same. This minimizes the amount of work required to maintain

all the custom software for each wireless experiment. This stability is achieved through

stringently evaluating software changes proposed for the image.

The ability to develop new software and compile existing packages for the

image is important, however is it more difficult to achieve. Standard procedure for com-

pilation has the compiler running within the exact environment it is compiling for, how-

ever with only 64 Megabytes of memory available for the OS image, it is not possible to

even install a compiler. This forces the use of an external environment for compilation.

For our testbed this external environment is a desktop computer with the same

OS image installed on it. Unfortunately once the compiler, related files, and other tools

are installed the image begins to drift apart from the image on the testbed nodes. Over

time this version mismatch between the shared libraries on the compilation machine and

the testbed nodes increases. This mismatch can be so severe that it precludes compiling

some software packages. This is the primary reason compilation can be difficult, and

prebuilt software packages are the preferred method of installing functionality.

The image selected for the testbed was a small Linux distribution called Peb-

ble. Pebble employs the Debian package management system. I added all of the afore-

mentioned infrastructure to pebble. Unfortunately the resulting structure is brittle, and

OS updates are still rather difficult to apply.

2.9 Image Installation

After a suitable image is created, getting it installed on the machines is a chal-

lenge. The FLASH memory, where the OS image needs to be installed, is soldered on

to the logic board. This eliminates the possibility for a normal installation, where the

flash is removed, placed in a desktop computer equipped with a flash writer, and the OS

imaged installed. Instead a network installation procedure is necessary.
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The predictable and reasonably well documented steps of the process start

by configuring DHCP to provide the appropriate auxiliary information fields that al-

low PXE, the network boot loader, to locate a valid configuration. Other parts of the

process include configuring a TFTP server, which PXE uses to load the kernel and con-

figuration files, writing the configuration files themselves, and compiling the kernel so

that it supports using NFS for the root file system. This whole process, when coupled

with a bootable image on a network file server, boots the nodes into a full-feature unix

environment.

The installation script uses this environment to install the actual OS image

onto the flash resident in each node. Unfortunately this is another area where good,

standardized support is lacking. As a result I had to create my own custom and complex

installation scripts. The end result of this whole process is what amounts to a custom

linux distribution.

Despite the well known shortcomings in existing wireless simulators and their

related models, simulation results continue to constitute the bulk of wireless research.

In contrast, the work presented in this thesis is grounded in experimental design, imple-

mentation, and measurement. In order to achieve those goals I needed to install a large

scale testbed at UCSD.

During the course of the installation I discovered why these networks and

resulting research are not more prevalent. I’ve presented the high level challenges and

my solutions to those problems in this chapter. Appendix 1 provides more in-depth

detail about the operation of the testbed.



Chapter 3

Automatic Channel Selection in

Infrastructure Networks

3.1 Introduction

The success of 802.11 technology has greatly increased the density of network

deployments – either by design, in the case of enterprise networks designed to maximize

coverage, or serendipitously in high-density urban housing. Moreover, overlaid on these

deployments are independent commercial “hotspots” and new municipal area networks

all sharing the same unlicensed frequency bands.

With this increase in density comes an increased need to carefully manage

shared spectrum resources. In particular, each 802.11 access point (AP) can indepen-

dently select among a set of partially overlapping “channels” within a particular fre-

quency range (2.4Ghz for 802.11b and 802.11g and 5.2Ghz for 802.11a). Thus, each

AP’s selection of channel defines a coverage cell in which its clients may communicate.

Dense network deployments have spatial overlap between these cells (sometimes inten-

tionally to eliminate coverage dead zones) that also creates the opportunity for interfer-

ence. Since performance is inversely related to interference and contention, differences

in channel assignments can ultimately create significant differences in user experience.

This is particularly apparent in urban deployments where a single apartment building

19
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may have 10’s of APs all using the same factory-default channel.

The problem of channel assignment is not addressed in the 802.11 specifica-

tion, and as a result a number of best-practice techniques have evolved. For example, in

engineered networks, enterprise administrators try to manually minimize the possibil-

ity of interference by carefully selecting channels from the so-called “orthogonal” sets

(e.g., 1, 6 and 11 for 802.11b).1 However, such manual assignments are ad hoc, time

consuming and error prone and can only reflect a particular static view of the network

(sometimes based on a set of initial measurements termed a “site survey”). Thus, there

has been considerable interest in automating this process in such a way that operational

overhead is minimized and performance is maximized.

Enterprise equipment vendors have attempted to address this problem through

various proprietary techniques. Unfortunately, since they are proprietary, the only pub-

licly available information about them is in the form of marketing literature. Given the

goals and general lack of accountability of this information, it tends to grossly overstate

performance and doesn’t provide the intimate details necessary for a good comparison.

This chapter address this problem in the context of two key components. First,

using large-scale experimental measurements, I consider a range of automatic channel

selection policies that are common in either modern APs or contemporary literature, and

compare the quality of the assignments they generate. Second, I identify and explore the

impact of unintended synchronization that occurs in when multiple APs employ these

policies independently. I define a distributed synchronization approach that provides

significant improvements in overall performance in a real network setting. Finally, I

analyze the underlying reasons for these improvements and their implications for future

work in this area.
1In fact such channels are not truly orthogonal in any formal sense, but their separation is sufficient to provide a

minimum attenuation for a given physical layer implementation (e.g., for 802.11b the spectral mask guarantees that a
signal will attenuate by at least -50dB over 22Mhz). This is generally sufficient to minimize the probability that such
a signal will overwhelm a competitor, although it may still “interfere” in the sense that other transmitters may defer
to its transmissions.
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3.2 Related Work

The channel assignment problem has long been studied in the wireless con-

text, most commonly as an application of graph coloring which has a large theoreti-

cal literature including proofs of hardness and practical approximations[HS65, KMS94,

ALM+92, SLM92]. However, a pure graph coloring representation lacks the expressive-

ness to capture the richness of the wireless environment (particularly interference and

attenuation) which has led to a variety of more specialized models typically including

weighted graph algorithms or their integer programming equivalents. These algorithmic

approaches are discussed in relation to 802.11 in [LKC02, Moh], while [KWBF03] and

[MMS03] explore the same problems in the context of cellular networks.

More concretely, several papers describe centralized schemes for making

channel assignments based on measures of interference. Brik et al. describe a hypo-

thetical system in which a central server tracks all aspects of available spectrum based

on reports from clients [BRBB05]. Servers then provide frequency “leases” to clients

(using a dedicated control channel) to minimize overall interference. A less radical pro-

posal is provided by Mishra et al. who propose a system that learns range sets and

interference sets based on proposed 802.11k client measurements [MBB+06]. Using

this information a centralized server then assigns channels to APs. Using simulations

driven by empirical measurements they show that such assignments are likely to improve

overall throughput. Finally, Raniwala et al. explore similar algorithms in the context of

multi-hop multi-radio mesh networks[RGcC04, RcC05].

Recently, Mishra, et. al. [MBA05] also explores distributed channel assign-

ment in infrastructure networks. They propose an abstract metric, the I-value, which at-

tempts to better model interference characteristics as a graph coloring parameter. They

provide approximation algorithms that minimize the I-value and show that these produce

assignments with improvements in abstract quality metrics (e.g. number of conflicting

edges in a graph). Finally, Raju et. al. describe small-scale measurements of two chan-

nel selection policies (similar to the “least occupied” and “RSSI Max” policies described
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later) and show performance improvements in an ad-hoc nteworking context.

My work is distinguished from previous efforts largely by its empirical na-

ture. Rather than rely on simulation, I perform large-scale measurements of a 160 node

network and explore the real performance impact of different channel selection policies

in this environment. Moreover, I build a distributed channel selection algorithm and

demonstrate that it is practical and effective in this context. Finally, I use analysis of

empirical measurements to explain why our policy leads to better performance.

3.3 Channel Assignment Policies

In this section I present the channel assignment algorithms I study in this chap-

ter. I categorize channel assignment algorithms according to the mechanisms and poli-

cies they employ. The mechanism determines how an AP acquires information about its

radio environment (i.e., does it scan or randomly sample), and the policy dictates how

this information is used to select a channel. Table 3.1 summarizes these policies.

The Fixed policy is the most basic. In this policy all APs select the same

channel. It corresponds to the deployment of APs using a default configuration. The

majority of consumer APs ship from the factory with a pre-programmed channel, and

individual users typically neglect to change this setting. This interaction makes the Fixed

policy the de-facto standard for consumer equipment, even though it is intuitively the

worst.

In the Random policy, each AP selects a channel uniformly at random on

which to operate. This policy is easy to implement and avoids the pervasive channel

conflicts of a Fixed policy. However, due to the limited number of non-overlapping

channels in environments like 802.11b, this policy will not scale well to dense deploy-

ments.

Scaling to denser deployments presumably requires policies that take into ac-

count their radio surroundings, such as the operating channels of neighboring APs. In

the subsequent policies, APs actively scan all channels for fixed intervals and record
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Table 3.1: Channel assignment policies considered in this chapter.
802.11b Policies 802.11a Policies
Fixed Fixed
Random Random
Unoccupied Unoccupied
Least Occupied Least Occupied
RSSI Sum RSSI Sum
RSSI Max RSSI Max

information about wireless activity on the channels. Policies then use the information

obtained by scanning channels to make channel assignment decisions.

The Unoccupied policy selects an unoccupied channel. An unoccupied chan-

nel is one in which no beacons from other APs were observed during the scanning

interval.

The Least Occupied policy also selects among unoccupied channels. If no

such unoccupied channels exist, however, Least Occupied chooses the channel with the

fewest other APs observed.

When choosing among occupied channels, the Unoccupied and Least Occu-

pied policies consider each AP equivalent in terms of the impact of sharing a channel. In

practice, however, the degree of interference is influenced by the signal strength of the

interfering AP at the node being interfered with. As a result, I consider two additional

policies based on the signal strength of other APs measured while scanning.

The RSSI Sum policy treats interference effects as additive, and therefore

adds together the signal strengths (RSSI) for each unique AP operating on a channel

to create a synthetic channel “score”. If more that one signal strength measurement

is available for a given AP, which occurs when multiple beacons are overhead in the

measurement period, all the measurements for that AP are averaged before summing

into the score. The AP selects the channel with the lowest score.

Similarly, the RSSI Max policy assigns a score to each channel and selects

the channel with the lowest score. This policy, however, uses the maximum RSSI value

measured on a channel as the score. The intuition being that the AP with the largest
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signal strength will dictate the channels performance characteristics.

Note that, to avoid clearly poor selections, all policies except Fixed and Ran-

dom by default avoid overlapping channels when possible. In the event of a tie for the

“best” channel, a policy removes all the standard overlapping channels from considera-

tion. For example, in 802.11b, the channels 2,3,4,5,7,8,9, and 10 are removed. If, after

removal, there are no channels left, all overlapping channels are added back into the set

for consideration.

Even after filtering out the overlapping channels it is still possible that multiple

channels tie for “best”. A particular policy implementation is free to break this tie in

any technique. All of the implementations studied in this work break the tie by selecting

the first available channel. The impact of this choice is evaluated later in this chapter.

3.4 Experimental Setup

In this section I describe the testbed infrastructure used for performing realistic

experiments, and the methodology for evaluating channel selection policies.

3.4.1 Testbed Infrastructure

All the experiments for this work were performed using the wireless testbed

described in chapter 2. In order to measure network performance it is desirable to place

a known and repeatable load on the network. This requires some of the radios in the

testbed to act as clients. However, due to the physical proximity of the two radios inside

a single node, it is not possible to have one act as a client and the other an AP without

noticeable interference. This occurs because of cross talk between the boards, regardless

of the channel separation between the radios. A straightforward solution would be to

use one radio in a pod 2 as an AP and another radio, located in the other node in the

pod, as a client. Unfortunately that reduces the total AP count in the experiment from

80 down to 40, too small to model a large infrastructure networks.
2Recall there are two nodes per pod, each of which has two radios
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Figure 3.1: Goodput as a function of offered load for an average of 10 different random

channel assignments. Each value on the x-axis is the number of 1K packets transmitted

from a user-level application on the client to its associated AP.

Therefore I settled on a third, compromise solution. Each node in the testbed

operates as an AP and participates in the channel selection process, which provides the

scale necessary for this work. When measuring the performance of a channel assignment

only a subsection of the network is checked. This is akin to sampling from a larger

population. This sampling does not bias the results because none of the channel selection

algorithms are aware of which subset is going to be measured.

To sample the network performance I deployed nine additional nodes in re-

search labs and faculty offices in one wing of the building on the third floor. These

nodes emulate client devices that connect to the testbed APs, and enable the use of con-

trolled workloads between clients and APs as the basis for evaluating channel selection.

The hardware and software configuration of these nodes closely matches that of the

testbed nodes, which facilitates collecting the same set of statistics at both ends of the

network connection.

3.4.2 Evaluation Methodology

I performed all experiments using both the 802.11a and 802.11b frequency

ranges. When using 802.11a, I used the eight 802.11a channels dedicated for indoor
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use. Our testbed nodes are the only devices operating in the 802.11a frequencies in the

building, therefore I have sole use of these channels when performing experiments.

Unfortunately for these experiments the building where the testbed is located

also has a deployed 802.11b access network. This “production” network increases the

uncertainty of the 802.11b experimental result. Section 3.4.3 discusses how the produc-

tion access network interacts with our experiments in more detail.

To exercise the network for a particular channel assignment, I used two user-

level applications running on the client nodes and the APs. A source application on the

client transmits packets to its associated AP and tracks the number of bytes it sends. A

sink application on the AP then tracks the number of bytes actually received. The num-

ber of bytes received for the duration of an experiment measures the “goodput” between

the client (source) and AP (sink). At both the client and AP, I recorded various statistics,

such as the number of collisions, that provide insight into the underlying variations in

performance observed during an experiment.

The traffic pattern for these experiments was a constant offered load from each

client. In the experiments, each client sends 1K UDP packets at a constant rate to the

APs. Figure 3.1 shows the relationship between network goodput and offered load for

a random set of channel assignments. For this particular channel assignment policy, the

goodput peaks around a rate of 1500 packets per second. Unless otherwise noted all

experiments used an injection rate of 4096 packets per second. This value, chosen to be

substantially higher than the 1500 mark found in the previous experiment, ensured that

the network is saturated.

A number of the policies I evaluate rely on randomness. To reduce the effects

of variability from random choices, I average the measured goodputs across 5–10 dif-

ferent channel assignments generated by the same policy. For a given set of policies, I

generate all of the assignments in close time proximity to each other. Doing so exposes

every algorithm to roughly the same variations in the wireless environment. For exam-

ple, when comparing the Fixed, Random, and Unoccupied policies, I would generate

one assignment using each policy in quick succession, and then repeat the process to



27

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2  4  6  8  10  12  14
%

 E
xp

er
im

en
ts

Total Goodput (MBits per second)

Fixed
6 days later

Figure 3.2: Overall goodput for two experiments performed 6 days apart using the same

channel selection policy.

create the second, third, etc. assignments.

The associations between clients and APs are predetermined and fixed in order

to remove potential variability introduced as channel assignments change. Each mea-

surement period lasts for 60 seconds, and, again, were performed cyclicly to minimize

the impact of changes in the wireless environment. I measure the goodput for an indi-

vidual assignment at least 5 times to account for minor variations in measurement. The

net result of this process is a set of between 25 and 50 goodput measurements for each

policy.

3.4.3 Impact of uncontrollable load

802.11a and b networks operate in two different parts of the spectrum, each

of which has unique attenuation and propagation characteristics. One of the goals of

this work is to examine the behavior of the policies in these different environments to

determine whether a single policy works best in both spectrums, or if different policies

are required.

As mentioned previously, the wireless testbed is deployed in a building that

already has a production 802.11b access network. I ran all 802.11b experiments during

the evening and night hours to avoid the heaviest usage periods. However, there is still
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Figure 3.3: Performance achieved by the 802.11a policies when adding one new AP to

a preexisting network.

a large variation in these results, sometimes greater than 25%. Figure 3.2 shows the

observed performance difference for the same channel selection policy taken approxi-

mately a week apart. Unfortunately, the variation of 25% as seen in the graph introduces

too much noise into the 802.11b results for them to be conclusive. However, the bulk

of the results reported in this chapter are based on measurements taken using 802.11a,

where no other devices are operating and the environment is pristine. In addition, there

are some 802.11b results from the 2005 holiday break when the building was officially

closed and ostensibly vacant. While these 802.11b results do not paint a complete pic-

ture of all the policies, they do provide insight and are discussed as appropriate.

3.5 Evaluating the Policies

To begin, I consider the scenario of a single AP being added to an existing

802.11 environment. This corresponds to an individual user installing a new AP in an

apartment building where neighbors already have APs of their own, or a reset of a single

AP in an enterprise infrastructure network (e.g., due to configuration change or firmware

upgrade).

To eliminate the probability of a “straw man” experiment (e.g., all other APs

are operating with a poor channel selection) I first create a high-quality assignment for
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Figure 3.4: Performance achieved by the 802.11a policies when used across an entire

network.

our testbed using the best performing algorithm identified in this chapter (RSSI Sum

with Bsync synchronization as described later). Given this “baseline” assignment, one

of the APs was then instructed to select a new channel, using the policy being evaluated,

and a series of goodput measurements are taken between clients and their associated

APs as described in the methodology section 3.4.2. Figure 3.3 plots the CDF of these

data points on a per-policy basis, referred to as the goodput CDF, for all the policies

tested. From the graph, it is clear the selection policy makes relatively little difference

when a single AP is added to an already existing network.

The various policies better differentiate themselves when all APs in the net-

work employ the same policy. Figure 3.4 shows the resulting goodput CDF under this

scenario. For this experiment all APs were started at the same time. Surprisingly all the

policies besides random perform similar to the fixed policy. This indicates the added

complexity of the other policies is both unnecessary and detrimental.

802.11b networks also exhibit a similar pattern of behavior. Figure 3.5 shows

similar data for 802.11b, however due to the time constraints when the building was

closed, only a subset of the policies were evaluated. It is clear that the counter intuitive

result for the random algorithm holds in the 802.11b frequency range.

The explanation for this behavior is that the tie breaking rule is used more

than the normal policy, and therefore dominates the performance of the channel selec-
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Figure 3.5: Performance for a subset of 802.11b policies while the building was closed

over the holidays.
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Figure 3.6: Performance of the standard 802.11a policies.

tion algorithm. Recall that the exact tie breaking rule was left to the discretion of the

implementation, and that all the implementations in this work pick the lowest channel

when there are ties. This tie breaker is very similar in function to what is commonly

found in equipment: pick the first channel in the list of best channels.

The following example better illustrates the problem. Two APs passively scan

the spectrum at roughly the same time. Since both are passively scanning neither one

hears the other. Also assume there are no other APs nearby. After both APs complete

their respective scans all channels have the same score, hence the tie breaking rule se-
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Figure 3.7: Simultaneous start of the channel selection algorithm as compared to a com-

pletely staggered start using the RSSI Max policy in 802.11a. This graph reveals some

of the lost performance potential due to the race condition.

lects a channel. If the rule deterministically picks a channel, either by selecting the

lowest channel or the first in the list, both APs end up operating on the same channel

and interfering with eachother.

To verify this explanation I changed the policies to use a random tie breaker

and re-ran the same set of experiments. Figure 3.4 shows the goodput CDF with a

random tie breaker. Random is no longer the clear winner, however it still performs

respectably. Clearly reverting to a random tie breaker is not an ideal solution because

some performance benefit is lost. However, before the situation can be more adequately

addressed, it requires a more detailed investigation.

3.6 Race Condition

When multiple APs are turned on simultaneously, two subtle but related prob-

lem surface. First, during the scanning phase, two nearby APs will never detect each

other because they are both passively scanning. Since both APs are scanning the same

number of channels at the same rate they completely miss one another. Second, it is

extremely likely that the AP that finishes its scan first will select a channel that the other
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AP has already scanned. Since the channel was already scanned the information that the

first AP is operating in that channel will be excluded from the information the second

AP uses to make its channel selection. Since both APs were scanning at the same time,

it is also extremely likely that the radio conditions observed during the scan are similar.

Therefore, when the second AP makes its selection it is likely to pick the same channel

the first AP did. For example, the least occupied channel policy is very similar to “fixed”

in such situations.

To evaluate the potential impact this synchronization has on performance I ran

another set of experiments controlling the startup time explicitly. Channel assignment

on the APs were centrally controlled such that only one AP was selecting a channel at a

time. For example, AP1 was allowed to completely finish its channel selection algorithm

before AP2 started. I refer to this as staggered startup. The other scenario, where all

APs begin their channel selection at the same time, is referred to as simultaneous startup.

Figure 3.7 compares performance of the RSSI Max policy under both the staggered and

simultaneous startup models. The graph shows a performance difference of over 30

MBps, on average, between the two models. In essence, there is significant performance

potential that cannot be realized when the startup times are simultaneous.

The race condition is predicated on the assumption that APs get started at

the same time. However, in our experience this is a entirely realistic assumption due

to synchronized reboots. The three main reasons for an operational AP rebooting after

deployment all lead to this problem: bulk firmware upgrade, bulk programming changes,

and building power failure. The first two are artifacts of centrally managed networks,

where updates are usually processed with automated tools in bulk. The third reason,

power outages, can occur in apartment buildings as well as centrally managed networks.

A common approach to remove the impact of synchronization in distributed

protocols is to simply add random jitter to the process. Thus, each AP could select a

random delay before initiating their own channel selection process, thereby avoiding

a race wither other APs. However, this “solution” is deceptively simple and is highly

sensitive to the choice of how much delay to use. For example, Figure 3.8 illustrates
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Figure 3.8: Performance with 5 seconds of random jitter added to the start time in

802.11a. This jitter does not increase overall network performance over the synchro-

nized case.

that adding a random delay of 0-5 seconds to each AP makes no perceivable impact

on goodput. This is due to the transitive nature of the channel selection process – one

AP’s choice of channel may impact all other AP’s decisions. Thus, to be effective the

range of jitter values must be large enough that no two APs should expect to overlap

in their scanning phase. Unfortunately, the exact size of this value is a function of the

size and deployment of the network and is difficult to calculate in advance. A value

large enough to be sufficient for dense deployments would be overbearing on small and

medium networks, and a happy medium value wouldn’t work well for large networks.

Finally, for many networks this approach can introduce large delays (in excess of 10

minutes) before the overall network is ready for use.

To address this problem I developed an explicit synchronization protocol,

called Bsync, that schedules channel selection among APs.

3.7 Bsync: Ameliorating the Race Condition

Section 3.6 described the race condition present when APs are simultaneously

powered up, and showed how this can be mitigated by staggering AP startup time. The

staggered startup model, however, is impractical for two reasons. First, it requires a
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centralized scheduler to order each AP’s channel selection times – particularly difficult

in deployments with multiple administrators such as office or apartment buildings. The

second problem is the amount of time required to converge on a complete channel as-

signment. For the 802.11a policies tested in this chapter the staggered start model took

approximately 980 seconds to converge in our testbed. To address these two concerns I

propose a distributed synchronization algorithm, called bsync.

In addition to eliminating the channel selection race condition, the design is

motivated by two other goals. First, bsync must operate completely over the wireless

network interface. This allows the algorithm to work in dense networks that cross ad-

ministrative boundaries as are commonly found in office and apartment buildings. The

second goal is that bsync delivers an acceptable convergence time. Unfortunately, as

explained before, this second goal is at odds with perfectly solving the race condition.

Optimally addressing the race condition in this scenario, with no constraints

on when an AP can join or leave the channel selection process, is provably impossi-

ble via a reduction to asynchronous consensus [Lam96]. An optimal, perfect solution

notwithstanding, most nodes in a dense infrastructure network will not be able to di-

rectly communicate with each other over the radio, and the time complexity inherent in

multihop synchronization would be excessive. Therefore, my approach assumes each

node only makes local decisions based on overheard broadcast traffic and short timeout

values. This allows forward progress at a reasonable rate, and as this chapter will show

later, reasonably solves the race condition problem.

The bsync algorithm is divided into four distinct phases as follows: Scan,

Scheduling, Waiting, and Announce. Figure 3.9 illustrates these phases, related phase

transitions, and how much time is spent in each phase from the prospective of a single

AP participating in bsync. Figure 3.10 depicts the interaction between multiple APs run-

ning bsync simultaneously. These two figures, in combination with the detailed protocol

description that follows, completely explain bsync’s operation.
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Turn in
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Select Channel
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Operation
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    (# chans) * (chan dwell secs)
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               (# nodes) * 2 secs

Figure 3.9: The 4 phases of bsync, phase transitions, and time spent in each phase. Note

the only phase whose length varies is the waiting phase.
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Figure 3.10: Diagram showing multiple APs running bsync simultaneously. Circles

represent preexisting APs, while stars are new APs running bsync.

3.7.1 Scan Phase

The goal of the scan phase is to learn about other APs that are already op-

erating within range of the current AP. This is accomplished using the same strategy

employed by other scanning algorithms. Each candidate channel is visited in turn, lis-

tening for beacons from other APs. Basic statistics are tracked for each AP another

AP hears, including the number of beacons it sent, the average signal strength, and the

channel of operation. At the end of the scan phase, an AP has discovered other nearby

APs, but has not yet learned about nearby APs also scanning the spectrum.

The amount of time spent in this phase is a function of the number of channels

scanned and the channel dwell time (how long one waits to hear beacons on a particular

channel). I refer to this scan duration as S, defined by S = dwell ∗ channels. Once the

scan is complete the AP transitions to the scheduling phase.

3.7.2 Scheduling Phase

The scheduling phase permits APs participating in bsync to discover each an-

other. At the beginning of this phase an AP switches to a well-known channel. In
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the implementation this was the first channel in the spectrum range. Once operating

in the channel the AP beacons as if it were an operational AP. These beacons provide

both the mechanism for transmitting the bsync synchronization data and the algorithm’s

mnemonic lineage.

Each beacon frame is augmented to indicate that the AP supports bysnc and to

provide additional information key to the protocol – the ultimate choice of channel and

a timeout value (described below). Each AP receiving one of these beacons notes this

information for later use.

An AP participates in the scheduling phase for S seconds, the same amount of

time spent in scanning during the first phase. This duration was chosen to compensate

for small amounts of jitter in the actual start times of the bsync algorithm, as expected

when startup is nearly simultaneous. Once this time has elapsed an AP moves to the

waiting phase.

3.7.3 Waiting Phase

Before starting bsync’s third phase, the waiting phase, an AP creates a local

scheduling order. It does so by sorting all the “friendly” APs in increasing numeric order

by MAC address. After sorting it assigns a timeout value of 2 seconds to each other AP.

An AP leaves this phase when its MAC address is at the top of the list. However, while

it is waiting, it continues beaconing. The data field in these beacons contain the amount

of time remaining in the waiting phase, assuming the AP must wait for all timeouts.

During this waiting period an AP is also listening to the other beacons. If

another AP reports a channel selection it is duly noted and that AP is removed from

the schedule. Additionally, if it overhears another decision timeout value, the local AP

updates its timeout value to reflect the other AP’s countdown. In this way, APs typically

wait long enough to accommodate the selections of other APs they can’t directly com-

municate with. Clearly this does not result in perfect synchronization, however the next

section demonstrates the synchronization is very good. Once all the previous APs have

either timed out or selected a channel, an AP moves to the announce phase.
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3.7.4 Announce Phase

This is perhaps the simplest phase. Before entering this phase an AP uses all

the statistics gathered in the first three phases and selects a channel based on its policy.

Then, for S seconds, the AP announces its channel selection by indicating the frequency

(in Mhz) of its selected channel in the beacon frames it sends on the well known coor-

dination channel. This announcement allows other APs after it in the selection order

to update their internal accounting to reflect the channel selection, and then proceed to

select their channel as appropriate. Once this phase is completed the AP switches to the

selected channel and begins normal AP operation.

3.8 Evaluating Bsync

In this section I evaluate Bsync according to its goodput performance for

clients, and its convergence time to produce a channel assignment.

3.8.1 Bsync goodput

I used a similar experimental setup to evaluate Bsync as with the previous

experiments. I implemented the Bsync mechanism and measured its performance for

the complete set of policies. Figure 3.11 compares a single 802.11a policy, RSSI Max,

to both the synchronized and staggered startup models; Bsync was only tested using the

synchronized model. Bsync performs substantially better than the simultaneous model,

but not quite as well as the staggered model. This difference stems from the inherent

tradeoff between synchronization quality and convergence time.

The simultaneous startup experiments represent both the worst and expected

case. That is, the effects of the race condition are most pronounced with simultaneous

startup, such as after power failures and bulk management operations. The staggered

set of experiments represents the best case because it perfectly prevents the race con-

dition. However, under the same set of assumptions that form the basis of Bsync, it

is very difficult to have an algorithm that simultaneously guarantees synchronization,
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Figure 3.11: Performance of Bsync with the RSSI Max policy compared with simulta-

neous and staggered startups for 802.11a.

has a reasonable convergence time, and does not make any assumptions about the LAN

connectivity of the APs.

Figure 3.12 shows the performance of Bsync RSSI Sum in an 802.11b en-

vironment compared to the Fixed, Random, and Least Occupied policies with a fully

staggered start. Due to time constraints over the holidays there is not a complete data set

that includes all combinations of policies and startup models. However, the staggered

startup model is an upper bound for the Least Occupied policy. That is, no other syn-

chronization technique can do better. Therefore it represents the best possible scenario

for the policy. The fixed policy is included to provide a frame of reference to interpret

the absolute performance numbers on the graph. The performance of random is inde-

pendent of the startup model used. Bsync RSSI Sum outperforms the other policies,

including Least Occupied with the most generous startup model, even though Bsync

used the synchronized startup model.

3.8.2 Convergence Time

In addition to evaluating the goodput performance of a particular channel as-

signment, I also measured the converge time required to achieve that assignment.

Table 3.2 shows the number of seconds required for a given policy to converge
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Figure 3.12: Performance comparison for Bsync with the RSSI Sum policy and a subset

of the other 802.11b policies taken while the building was closed over the holidays. The

Least Occupied policy employed a fully staggered startup.

Table 3.2: Convergence times for the Least Occupied policy across all startup models.

Results are from 802.11a with a dwell time of 1 second. Each point is an average of 10

runs.

Policy Startup Model Convergence Time
Random Simultaneous 8 sec

Least Occupied Simultaneous 15 sec
Least Occupied Bsync 55 sec
Least Occupied Staggered 985 sec

to a channel assignment under different startup models. Bsync convergence time is 15

times faster than the staggered startup model, and only 4 times slower than the simul-

taneous model. As a result, I conclude that the convergence time of Bsync for a large,

dense network is acceptable and practical.

As an upper bound, I can calculate the maximum Bsync convergence time by

considering how low it spends in each phase. Referring back to Figure 3.9, which shows

each phase labeled with its duration, let d be the dwell time for the scanning phase of the

algorithm, and c be the number of available channels (which varies due to technology

and geopolitical region). The total scan time, S, is then defined as S = d ∗ c. The

scan phase of Bsync takes S seconds, as does the scheduling and announcement phases.
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In addition to these fixed values, there is a variable timeout applied for each AP in the

selection schedule. This timeout value is initially set to two seconds for each AP; if

there are 10 APs to pick before a given AP, for instance, then that AP would have an

additional 20-second delay. To help maintain selection order, however, APs report their

remaining time until selection in the beacon frames. Other APs that overhear this value

use it to establish a more accurate timeout, however a strict bound of 2 seconds since

the previous selection is maintained to ensure timely progress. As a result, the actual

contribution of the timeouts to the total running time can not exceed 2 ∗ n before any

particular AP in the selection order, which is bounded by the total number of APs in the

network (n). In all the experiments d was set to 1 second. The final upper time bound

is:

Tu = 3 ∗ d ∗ c + 2 ∗ n

3.9 Explaining the Goodput Differences

While the previous sections presented the overall goodput differences among

the various channel assignment algorithms, they did not investigate the underlying

cause. A number of interrelated mechanisms in 802.11 indirectly relate to the channel

assignment and impact overall network goodput. Consider, for example, the automatic

rate selection logic built into all 802.11 products. If one channel assignment caused an

AP to operate at a suboptimal rate, then this assignment negatively impacts goodput.

To explore underlying causes of performance differences among channel as-

signment algorithms, I augmented the 802.11 madwifi driver to collect statistics related

to link-level events: transmission rate, retries, losses, and contention. Some of this in-

formation is directly available from the wireless card itself, and I can infer the remainder

from experimental observations.

802.11 has multiple rate encodings available for transmission. The lower

speeds are more resilient to interference, while the higher ones more susceptible. This

interference robustness tradeoff creates a challenge for the wireless radios. For immedi-
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ate performance, a radio will want to transmit at the highest possible rate. A single loss,

however, is potentially more harmful to overall network goodput than transmitting tens

of frames at a slightly lower rate. As a result, wireless cards constantly reevaluate the

effectiveness and loss characteristics of a particular rate, and adapt the rate they use to

current wireless conditions.

I compute a transmission rate metric that tracks the performance potential lost

due to transmission at a rate other than the fastest rate, regardless of whether or not the

fastest rate would result in successful reception. More concretely, the metric computes

the amount of airtime required to send the frame at the rate selected by the wireless card,

computes the amount of time required to send the frame at the highest available rate,

and subtracts the two values. The result is the amount of airtime unused by transmitting

at the lower rate. This airtime is summed across the all packet transmissions in an

experiment and represents the lost potential due to the use of a slower transmission rate.

The maximum rate represents an upper bound and is useful for comparing different

algorithms because all experiments were performed in the same environment with the

same inherent rate limitations.

In addition to adjusting transmission rates, the 802.11 MAC protocol listens

for radio silence before transmitting a frame. If one radio observes another radio’s

transmission, the listening radio delays sending its frame until such a time as the other

node is no longer transmitting. This is the fundamental property behind the medium

contention metric, which tracks the amount of time wasted because two radios were

contending for the medium at the same time.

Since the wireless card does not provide a direct way to measure contention,

I measure it indirectly. I compute the amount of time required to transmit a frame,

including all MAC framing overhead, using the transmission rate selected by the card.

I take measurements of the actual time required to transmit each individual frame, and

the difference between the two times is the amount of airtime wasted due to contention.

While this metric is a measurement of wasted airtime, it is not a measurement

of wasted potential. If the wireless card had no other frames waiting to be transmit-
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Figure 3.13: Performance lost potential due to underlying 802.11 properties as seen in

one 802.11b experiment. The loss is measured in bits wasted per kilobyte successfully

transmitted.

ted, then whatever delay was introduced by the contention would not impact the node’s

goodput. Consequently, I exclude measurement unless there is at least one frame queued

up behind the frame that experienced contention.

I note that there are other factors ambiguously measured with this technique

that bias the contention results. The 802.11 MAC layer retransmits unicast frames for

which no acknowledgment is received from the intended wireless recipient. The timing

technique used to measure contention includes time lost due to retransmissions, if any.

The wireless card reports the number of retransmission attempts required to successfully

send a frame; this information enables us to track lost potential due to retransmissions

separately. Likewise, it is possible for a frame to fail entirely. When this occurs, the lost

transmission time is credited to the loss metric.

The net result is three different metrics based on the same frame timing tech-

nique. I count contention overhead when the frame is successfully transmitted on the

first attempt, retry overhead when the frame has one or more retries and is successful,

and loss overhead when the transmission is not successful.
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As a basis of comparision among various metrics, I convert all metrics orig-

inally measured in the time domain into bits. The conversion factor is based on the

well-known 802.11 timing information. I use the amount of time required to transmit a

single 1KB UDP packet, including all framing and other MAC overhead, at the highest

available rate to determine the number of frames that could have been transmitted. The

1KB size is selected to match the frames used to measure goodput. Given that each

frame is fixed in size, I compute the lost goodput by multiplying the number of lost

frames by the size of the frame.

Figure 3.13 breaks down the cause of lost performance potential for a subset of

the channel assignment policies in one of the experiments. It shows that Bsync produces

the lowest loss in all categories among the channel assignment policies. Further, the

transmit rate, retry, and loss categories all minimally contribute to lost performance

potential, leaving contention as the primary factor.

Bsync was successful in creating a low-retry, low-loss environment that allows

the transmission rate adaptation algorithm to select the near-maximum rate values for

all frames. The results also indicate that further improvements beyond Bsync require

reducing contention. In contrast, the other four policies lose performance potential to a

combination of loss, transmit rate, and contention. The higher losses force the wireless

card to use slower rates, as reflected in the transmission rate metric. Finally, the large

contribution of the transmit rate to total lost potential underscores the need to provide a

high quality radio environment that allows the fastest rate to be used.

3.10 Channel Selection Conclusions

Increasing density has made the careful management of shared spectrum a

critical problem for 802.11 access networks. This chapter provides large-scale empiri-

cal measurements that directly relate 802.11 performance to the particular policies used

by access points to select their initial channels. I have shown that startup synchroniza-

tion can create selection races that significantly reduce performance and I described a
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new distributed algorithm for efficiently minimizing the probability of such races. I have

described empirical measurements demonstrating that the combination of this synchro-

nization algorithm and a channel selection policy based on explicit channel measure-

ments can provide superior performance to existing approaches. Finally, I have shown

that the biggest reasons for these benefits are reductions in contention and increases in

the average sending rate.



Chapter 4

802.11 Denial-of-Service

Vulnerabilities and Defenses

4.1 Introduction

The standardization committee responsible for developing 802.11 had the

foresight to realize that wireless networks would be used to carry sensitive data. That

is, data whose disclosure would create some form of irrevocable harm if seen by an ad-

versary. To address this the specification provides the option of encrypting the network

traffic before it is transmitted. Experience with actual 802.11 networks bears the impor-

tance of privacy out. For example, there are a number of point-of-sale devices that use

wireless networks to process credit card transactions.

The designers were not the only people who realized the importance of pri-

vacy. Indeed, recent research has demonstrated basic flaws in 802.11’s encryption mech-

anisms [FMS01, BGW01] and authentication protocols [ANJ01] – ultimately leading to

the creation of a series of protocol extensions and replacements (e.g. WPA, 802.11i,

802.1X) to address these problems. However, most of this work has focused primarily

on the requirements of access control and confidentiality, rather than availability.

While the protocol designers correctly anticipated the need to protect privacy,

they failed to realize the need for availability. There are circumstances, like sensors

46
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monitoring patients in a hospital or temperature monitors on a nuclear reactor, where a

lack of data is unacceptable. Continuing with the hospital example, if a patient entered

cardiac arrest but the heart rate monitor couldn’t transmit that information to the nurse,

the consequences could be severe. Unfortunately issues surrounding the availability of

802.11 networks are completely unaddressed in the standard. In fact, 802.11 is highly

vulnerable to denial-of-service attacks, which prevent legitimate users from using the

network. This chapter focuses on the problem of availability in 802.11 networks.

In general, denial-of-service attacks are an important, yet vexing, security

problem. All networks, wired or wireless, are vulnerable to attacks on their availability

of some form another. Ultimately, what differentiates these vulnerabilities is how much

effort they require to exploit and how much exposure risk the attacker must tolerate. For

example, a determined attacker may physically disrupt a wired communications chan-

nel by severing a link, but this requires physical access to the network. More simply,

an attacker may overwhelm the channel’s capacity by sending thousands of spurious

packets, but this same flood can provide a means for tracking an attack back to its ori-

gin [SWKA00, Sto00, BC00]. Perhaps the most insidious attacks leverage weaknesses

in the underlying signaling, routing or media access protocols to prevent the channel

from being used while making minimal demands on the attacker.

While all of these vulnerabilities are present in wired networks, they are partic-

ularly threatening in the wireless context. In particular, without a physical infrastructure,

an attacker is afforded considerable flexibility in deciding where and when to attack, as

well as enhanced anonymity due to the difficulty in locating the source of individual

wireless transmissions. Moreover, the immaturity and limitations of today’s wireless

network management tools greatly decreases the probability that an attack on low-level

802.11 functionality will be detected. Finally, as I will show, if the attacker is clever,

the channel may be disrupted using relatively infrequent transmissions, with low power

consumption and minimal identification risk.

In this chapter I analyze the efficacy and practicality of attacks on the 802.11

MAC protocol. Through a combination of implementation and simulation I show that
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an attacker can easily control the availability of existing 802.11 networks. Moreover, I

argue that a significant subset of these attacks will not be addressed by planned secu-

rity upgrades incorporated in the WPA or 802.11i standards. Finally, I describe minor

modifications to 802.11 implementations that eliminate or mitigate these attacks and

evaluate their effectiveness. The rest of this chapter is structured as follows: Section

4.2 describes related security research concerning 802.11 networks while Section 4.3

describes and categorizes 802.11 denial-of-service vulnerabilities. I analyze attacks on

these vulnerabilities in Section 4.4 along with the effectiveness of potential defenses,

and conclude in Section 4.5.

4.2 Related Work

A great deal of research has already been focused on 802.11 network security.

The first part of the 802.11 specification [Soc99] to fall under scrutiny was the wired

equivalency protocol (WEP). WEP was intended to provide the same level of privacy

over wireless networks as is present on wired networks. It primarily relies on encrypting

payload data and using challenge-response based shared secret authentication. In 2001,

Fluhrer et. al. identified recurring weak keys in WEP, and showed how to use them

to recover the secret key [FMS01]. Once the key is known, an attacker can both fully

utilize network resources and monitor the traffic of other network nodes. In a recent

paper, Stubblefield et al, demonstrate an implementation of this attack that was able to

recover a 128-bit WEP key purely through passive monitoring [SIR02].

In addition, a number of attacks that don’t require knowledge of the shared

secret have been identified. Borisov et al demonstrated the possibility of modifying

WEP protected frames [BGW01]. They also show how to inject new messages, how to

spoof authentication frames, and how to recover the plain text from encrypted frames.

All these attacks are mountable using commodity hardware, without knowledge of the

WEP key. Problems beyond WEP shortcomings have also been identified. Arbaugh et

al discuss the weakness of Lucent’s proprietary “closed networks” mechanism, and the
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limitations of the widely-used MAC address based access control [ANJ01].

As part of his thesis [Lou01] Daniel Lough develops and applies the VER-

DICT attack taxonomy to 802.11 wireless network and identifies a number of vulner-

abilities, including the deauthentication attack presented in this chapter. He does not,

however, present the details of the attack or develop defense techniques. A 2002 Black-

Hat presentation [BL02] by Baird and Lynn provides details and demonstrates imple-

mentations of three 802.11 MAC layer DoS attacks, including the deauthentication at-

tack, but does not propose any solutions as this work does.

To provide a long-term solution to these and other problems, the 802.11 work-

ing group has proposed the standard use of the 802.1X protocol [Soc01] in future ver-

sions of 802.11. However, even 802.1x has been shown to be vulnerable in the wireless

context. A. Mishra and W. Arbaugh identify two such vulnerabilities which have been

tested in operational settings: session hijacking and man in the middle attacks [AA02].

They also recommend modifications to 802.1X increase its effectiveness. A number

of the denial-of-service attacks I consider, particularly those arising from known weak-

nesses in 802.11’s unauthenticated management layer, are well-addressed by the intro-

duction of 802.1X, although practically speaking I expect these attacks to remain viable

for the foreseeable future.

Congestion-based MAC layer denial of service attacks have also been studied

previously. Gupta et al [GKF02] looked specifically at 802.11 ad hoc networks and

show that traditional wireline-based detection and prevention approaches don’t work,

and propose the use of MAC layer fairness to mitigate the problem. Kyasanur and

Vaidya also look at congestion-based MAC DoS attacks, but from a general 802.11

prospective, not the purely ad hoc prospective [KV02] . They propose a straight forward

method for detecting such attacks. In addition they propose and simulate a defense

where uncompromised nodes cooperate to control the frame rate at the compromised

node. Unlike these papers, I focus on attacks that can be staged with a minimum of

effort by the attacker.
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4.3 Vulnerabilities

The 802.11 MAC layer incorporates functionality uniquely designed to ad-

dress problems specific to wireless networks. In particular, this includes the ability to

discover networks, join and leave networks, and coordinate access to the radio medium.

The vulnerabilities discussed in this section result directly from this additional function-

ality and can be broadly placed into two categories: identity and media-access control.

4.3.1 Identity Vulnerabilities

Identity vulnerabilities arise from the implicit trust 802.11 networks place in

a speaker’s source address. As is the case with wired Ethernet hosts, 802.11 nodes are

identified at the MAC layer with globally unique 12 byte addresses. A field in the MAC

frame holds both the senders and the receivers addresses, as reported by the sender of

the frame. For “class one” frames, including most management and control messages,

standard 802.11 networks do not include any mechanism for verifying the correctness

of the self-reported identity. Consequently, an attacker may “spoof” other nodes and

request various MAC-layer services on their behalf.

Exemplifying this class of vulnerability is the deauthentication attack. After

an 802.11 client has selected an access point to use for communication, it must then

authenticate itself, using one of two mechanisms: null key authentication and shared

key authentication. In the context of this vulnerability, the distinction between these two

mechanisms is unimportant – in the end the client and the access point come to agree

that they are authenticated. However, part of the authentication framework is a message

that clients and access points can use to explicitly request deauthentication from one

another. Unfortunately, this message itself is not authenticated using any keying material

in current 802.11 networks. Consequently, the attacker may spoof this message, either

pretending to be the access point or the client, and directing it to the other party (see

Figure 1). In response, the access point or client will exit the authenticated state and will

refuse all further packets until authentication is reestablished. How long reestablishment
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Figure 4.1: Graphical depiction of the deauthentication attack. It is noteworthy that the

attacker needs only generate one packet for every six exchanged between the client and

access point (AP).

takes is a function of how aggressively the client will attempt to reauthenticate and any

higher-level timeouts or backoffs that may suppress the demand for communication. By

repeating the attack persistently a client may be kept from transmitting or receiving data

indefinitely.

One of the strengths of this attack is its great flexibility: an attacker may elect

to deny access to individual clients, or even rate limit their access, in addition to simply

denying service to the entire channel. However, accomplishing these goals efficiently

requires the attacker to promiscuously monitor the channel and send deauthentication

messages only when a new authentication has successfully taken place (indicated by the

client’s attempt to associate with the access point). As well, to prevent a client from “es-

caping” to a neighboring access point, the attacker must periodically scan all channels to
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ensure that the client has not not switched to another overlapping access point. Finally,

it is not possible in current implementations to broadcast a deauthentication request and

so the overhead of this method scales linearly with the number of clients to be attacked.

A very similar vulnerability may be found in the association protocol that

follows authentication. Since a client may be authenticated with multiple access points

at once, the 802.11 standard provides a special association message to allow the client

and access point to agree which access point shall have responsibility for forwarding

packets to and from the wired network on the client’s behalf. As with authentication,

association frames are unauthenticated, and 802.11 provides a disassociation message

similar to the deauthentication message described earlier. Exploiting this vulnerability

is functional identical to the deauthentication attack. However, it is worth noting that

the disassociation attack is slightly less efficient than the deauthentication attack. This

is because deauthentication forces the victim node to do more work to return to the

associated state than does disassociation, ultimately requiring less work on the part of

the attacker.

There are many other vulnerabilities that take advantage of the implicit trust

in MAC source addresses – some less well-known and others quite baroque.

For example, the power conservation functions of 802.11 have many identity-

based vulnerabilities. To conserve energy, clients are allowed to enter a sleep state

during which they are unable to transmit or receive. Before entering the sleep state

the client announces its intention so the access point can start buffering any inbound

traffic for the node. Occasionally the client awakens and polls the access point for any

pending traffic. If there is any buffered data the access point delivers it and subsequently

discards the contents its buffer. By spoofing the polling message on behalf of the client,

an attacker may cause the access point to discard the clients packets while it is asleep.

Along the same vein, it is possible to trick the client node into thinking there

are no buffered packets at the access point when in fact there are. The presence of

buffered packets is indicated in a periodically broadcast packet called the traffic indi-

cation map, or TIM. If the TIM message itself is spoofed, an attacker may convince a
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Figure 4.2: Diagram depicting the NAV Attack in action. The gradient portion of the

attacker’s frame indicates bandwidth reserved by the NAV although no data is actually

sent. Continually sending the attack frames back to back prevents other nodes from

sending legitimate frames.

client that there is no pending data for it and the client will immediately revert back to

the sleep state.

Finally, the power conservation mechanisms rely on time synchronization be-

tween the access point and its clients so clients know when to awake. Key synchroniza-

tion information, such as the period of TIM packets and a timestamp broadcast by the

access point, are sent unauthenticated and in the clear. By forging these management

packets, an attacker can cause a client node to fall out of sync with the access point and

fail to wake up at the appropriate times.

All of the vulnerabilities in this section can be resolved using 802.1X preau-

thentication functionality and explicit authentication of management frames. However,

given an installed based of over 15 million 802.11 devices and a significant managerial

burden imposed by 802.1X (in particular, shared key management) it seems likely that

these attacks will remain effective. In Section 4.4 I will demonstrate a simple system-

level solution to these problems that can be implemented locally as a software upgrade

– without any management burden and applicable in a public access environment.
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4.3.2 Media Access Vulnerabilities

802.11 networks go through significant effort to avoid transmit collisions. Due

to hidden terminals [BDSZ94] perfect collision detection is not possible and a combi-

nation of physical carrier-sense and virtual carrier-sense mechanisms are employed in

tandem to control access to the channel. Both of these mechanisms may be exploited by

an attacker.

First, to prioritize access to the radio medium four time windows are defined.

For the purposes of this discussion only two are important: the Short Interframe Space

(SIFS) and the longer Distributed Coordination Function Interframe Space (DIFS). Be-

fore any frame can be sent the sending radio must observe a quiet medium for one of

the defined window periods. The SIFS window is used for frames sent as part of a

preexisting frame exchange (for example, the explicit ACK frame sent in response to

a previously transmitted data frame). The DIFS window is used for nodes wishing to

initiate a new frame exchange. To avoid all nodes transmitting immediately after the

DIFS expires, the time after the DIFS is subdivided into slots. Each transmitting node

randomly and with equal probability picks a slot in which to start transmitting. If a col-

lision does occur (indicated implicitly by the lack of an immediate acknowledgment),

the the sender uses a random exponential backoff algorithm before retransmitting.

Since every transmitting node must wait at least an SIFS interval, if not longer,

an attacker may completely monopolize the channel by sending a signal before the end

of every SIFS period. While this attack is effective, it requires the attacker to expend

considerable energy since on 802.11b networks an SIFS period is only 20 microseconds,

leading to a duty cycle of 50,000 packets per second.

A more serious vulnerability arises from the virtual carrier-sense mechanism

used to mitigate collisions from hidden terminals. Each 802.11 frame carries a duration

field that indicates the number of microseconds that the channel is reserved. This value,

in turn, is used to program the Network Allocation Vector (NAV) on each node. Only

when a node’s NAV reaches 0 is it allowed to transmit. This feature is principally used

by the explicit request to send (RTS) / clear to send (CTS) handshake that can be used
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to synchronize access to the channel when a hidden terminal may be interfering with

transmissions.

During this handshake the sending node first sends a small RTS frame that

includes a NAV large enough to complete the RTS/CTS sequence – including the CTS

frame, the data frame, and the subsequent acknowledgment frame. The destination node

replies to the RTS with a CTS, containing a new NAV updated to account for the time

already elapsed during the sequence. After the CTS is sent, every node in radio range

of either the sending or receiving node will have heard the NAV and will respect it for

the duration of the future transaction. While the RTS/CTS feature is rarely enabled in

practice, respecting the virtual-carrier sense function indicated by the NAV is mandatory

in all 802.11 implementations.

An attacker may exploit this vulnerability by asserting a large NAV which

prevents well-behaved clients from gaining access to the channel (as shown in Figure 2).

While it is possible to use almost any frame type to assert the NAV, including an ACK,

using the RTS has some advantages. Since a well-behaved node will always respond to

RTS with a CTS, an attacker may co-opt legitimate nodes to propagate the attack further

than it could on its own. Alternatively, this approach allows an attacker to transmit with

extremely low power or using a directional antennae, thereby reducing the probability of

being located. The maximum value for the NAV is 32677, or roughly 32 milliseconds,

so an attacker need only transmit approximately 30 times a second to jam all access to

the channel.

Finally, it is worth noting that RTS, CTS and ACK frames are not authenti-

cated in any current or upcoming 802.11 standard. Moreover, even if they were authenti-

cated, this would only provide non-repudiation since, by design, the virtual-carrier sense

feature impacts all nodes on the same channel.
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Figure 4.3: Packets sent by each of the 4 client nodes during the deauthentication attack.

The first attack, against the MacOS client, started at second 15 and lasted 8 seconds.

The second attack against all the clients started at 101 and lasted for 26 seconds. The

attacking node consumes a negligible amount of bandwidth due to the rate limiting.

4.4 Practical Analysis of Attacks and Defenses

Attacks of the nature presented in this chapter typically have a sound theo-

retical background, but run into hard, unforeseeable problems in practice. With this in

mind I attempted to implement a number of the different attacks. My efforts were met

with varying degrees of success, and in some cases I resorted to simulation to make up

for the limitations of commodity hardware, but in each case this provided insight into

which attacks should be the most alarming.

From a practical perspective, one of the key questions is “what commodity

hardware is capable of generating the frames required for the attack?”. I feel that imple-

mentation in commodity hardware is an important barrier, since it dramatically expands

the set of potential attackers. At first glance this appears to be a trivial problem since

all NICs are able to generate arbitrary bit patterns. However, in practice, all 802.11(a,b)

NICs I are aware of implement key MAC functions in firmware and moderate access to

the radio through a constrained interface. The implementation of this firmware, in turn,

dictates which cards can be used effectively by an attacker. For example, not all NICs
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Figure 4.4: Packets sent by each of the 4 client nodes during the deauthentication attack

with an access point modified to defend against this attack. The first attack, against the

MacOS client, started at second 10 and lasted 12 seconds. The second attack against

all the clients started at 30 and lasted through the end of the trace. The attacking node

consumes a negligible amount of bandwidth due to the rate limiting.

will accept raw 802.11 frames for transmission, and even the most flexible firmware in-

terfaces, such as that provided by the Atheros Chipset, still overwrite key protocol fields

with computed values. Most NIC’s firmware will silently filter packets using reserved or

illegal values in the frame header fields or those containing control packets (such as RTS

or CTS). Moreover, the firmware frequently overwrites key fields such as the duration

field and the frame check sequence. In the end, I found that it was possible to exploit

most of the identity-based vulnerabilities purely through software, but the media-access

vulnerabilities could not be similarly exploited.

In the remainder of this section, I analyze my implementation of the deauthen-

tication attack and a preliminary defense mechanism, followed by a similar examination

of the NAV attack and defense driven by simulation.

4.4.1 Deauthentication Attack

My implementation of this attack promiscuously monitors all network activ-

ity, including non-data 802.11 frames, and matches the source and destination MAC



58

address against a list of attack targets. If a data or association response frame is received

from a target, I issue a spoofed deauthentication frame to the access point on behalf of

the client. To avoid buffer overflow in congested networks on the attacking machine,

deauthentication frames are rate limited to 10 frames per second per client. This limit is

reset when an access point acknowledges receipt of a deauthentication frame.

I tested this implementation in a small 802.11 network composed of 7 ma-

chines: 1 attacker, 1 access point, 1 monitoring station, and 4 legitimate clients. The

access point was built using the Linux HostAP driver, which provides an in-kernel

software-based access point. Each of the clients attempted to transfer, via ftp, a large

file through the access point machine – a transfer which exceeded the testing period.

I mounted two attacks on the network. The first, illustrated by the thin rectangle in

Figure 3, was directed against a single client running MacOS X. This client’s transfer

was immediately halted, and even though the attack lasted less than ten seconds, the

client did not resume transmitting at its previous rate for more than a minute. This am-

plification was due to a combination of an extended delay while the client probed for

other access points and the exponential backoff being employed by the ftp server’s TCP

implementation.

The second attack, delineated by the wider rectangle in the same figure, was

directed against all four clients. Service is virtually halted during this period, although

the Windows XP client is able to send a number of packets successfully. This anomaly

has two sources. First, these are not data packets from the ftp session but rather UDP

packets used by Window’s DCE RPC service and not subject to TCP’s congestion con-

trol procedure. Second, there is a small race condition in my attack implementation

between the time a client receives the successful association response and the time the

attacker sends the deauthentication frame. The WinXP client used this small window to

send approximately ten UDP packets before the attacking node shut them down. Modi-

fying the implementation to send the deauthentication packets after both authentication

and association would mitigate this effect.

A number of smaller, directed attacks were performed in addition to those in
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figure 3. The small tests were done using the extended 802.11 infrastructure found at

UCSD with varied victims. Recent versions of Windows, Linux, and the MacOS all gave

up on the bad access point and kept trying to find others. Slightly older versions of the

same systems never attempted to switch access points and were completely disconnected

using the less sophisticated version of the attack. The attack even caused one device, an

HP Jornada, to consistently crash.

The deauthentication vulnerability can be solved directly by explicitly authen-

ticating management frames, as is planned using 802.1X in future 802.11 firmware.

However, given the millions of existing 802.11 devices without this functionality, and

the overhead in managing a shared key system, it seems likely that many 802.11 net-

works will be vulnerable to these attacks for some time. However, a system-level de-

fense can be constructed against these same attacks by delaying the effects of deauthen-

tication or disassociation requests. By queuing such requests for a specified period of

time (e.g. 5-10 seconds) before acting, a node has the opportunity to observe subsequent

packets from the client. If a data packet arrives after a deauthentication or disassocia-

tion request is queued, that request is discarded – since a legitimate host would never

generate packets in that order. This approach has the advantage that it can be imple-

mented with a simple firmware modification to existing NICs and access points, without

requiring a new management structure.

To test this defense I modified the access point used in my experiments as

described above, using a timeout value of 10 seconds for each management request. I

then executed the previous experiment again using the “hardened” access point. The

equivalent results can be seen in Figure 4. From this graph it is difficult to tell that the

attack is active, and the client nodes continue their activity oblivious to the misdirection

being sent to the access point.

My proposed solution to the deauthentication problem has a potential impact

on nodes that roam between access points. For roaming to function correctly a mobile

node disassociates from one access point and associates with another. The association

determines how the packets destined for the mobile node are routed. In certain cir-
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cumstances leaving the old association established for an additional period of time may

prevent the routing updates necessary to deliver packets through the new access point.

Or, in the case of an adversary, the association could be kept open indefinitely using

spoofed packets. While both these situations are possible, I will show they are not likely

to occur in practice.

There are two main infrastructure configurations that support roaming. For

lack of a better name I refer to these as “intelligent” and “dumb”. In the “intelligent”

configuration the access points have a means of coordination. This coordination can be

used to, among other things, update routes for and transfer buffered packets between

access points when a mobile node changes associations. Since the wireless standards

don’t specify a coordination interface, they tend to be vendor specific and only work

within a single vendor’s product line. In contrast “dumb” access points have no means

of coordination. They rely on the network technology connecting the access points to

handle routing changes when a node switches associations.

Intelligent infrastructures, due to their preexisting coordination, are easily

modified to avoid the aforementioned problems caused by the deauthentication time-

out. Since the mobile node must associate with the new access point before it can

transmit data, and since the access points are coordinated (either directly or through a

third party), the old access point can be be informed when the mobile node makes a

new association. Based on this information the old access point can immediately honor

the clients deauthentication request. As an alternative to direct notification all packets

for a host “in limbo” can be forwarded to an authoritative 3rd party who decides which

access point transmits the data. Both of these solution leverage preexisting coordination

channels.

Dumb infrastructures are a little more problematic because of their lack of co-

ordination and reliance on the underlying network topology. If that underlying topology

is a hub, which is a rarity these days, there is no problem because all packets are already

delivered to all access points. If the underlying topology is routed, then either the access

points must have some mechanism to coordinate routing changes and fall in the “intelli-
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Figure 4.5: Results from the ACK based NAV Attack simulation with 18 client nodes.

The attack begins at time 40 and ends at time 60. The dark region at the bottom of the

graph during the attack is the attacker.

gent” category or the mobile client is issued a new transport layer address and no MAC

conflicts are exposed. That leaves switched topologies. Switches learn the MAC ad-

dresses based on observed traffic. Existing switches already gracefully support moving

a MAC from one port to another, but have problems when one MAC is present across

multiple ports. In the non-adversarial case the mobile node will switch access points,

proceed to send data using the new access point, and cease sending data through the old

access point. From the switches perspective this is equivalent to a MAC switching ports.

The mobile node may not receive data packets until it has sent one allowing the switch

to learn its new port, but that limitation applies regardless of the deauthentication time-

out. In the adversarial case the attacking node could generate spoofed traffic designed

to confuse the switch. But even in this case there not an additional attack. If the access

point was WEP enabled or otherwise protected it would not relay the packet and the

switch wouldn’t get confused. It it wasn’t WEP enabled, or if the WEP key had been

cracked, the attacker can mount this attack regardless of the deauthentication timeout,

so there are no new vulnerabilities.



62

4.4.2 NAV attack

Motivated by the success of the previous attack, I attempted an implementa-

tion exploiting the NAV vulnerability. However, as stated earlier, I was unable to to

coerce any of my commodity NICs to generate packets with explicitly modified dura-

tion values. Instead, the remainder of this section explores the NAV vulnerability in the

context of the popular ns simulator.

I implemented the NAV attack by modifying the ns [Sim] 802.11 MAC layer

implementation to allow arbitrary NAV values to be sent periodically, 30 times a sec-

ond, by the attacker. The attacker’s frames were sent using the normal 802.11 access

timing restrictions, which was necessary to prevent the attacker from excessively col-

liding with other in-flight frames (and thereby increase the amount of work required of

the attacker). In addition the attacker was modified to ignore all NAV values transmitted

from any other node. The network topology was chosen to mimic many existing 802.11

infrastructure deployments: a single access point node, through who all traffic was be-

ing sent, 18 static client nodes and 1 static attacker node, all within radio distance of the

access point. As with the previous experiments, ftp was used to generate the long-lived

network traffic. I simulated attacks using ACK frames with large NAV values, as well

as the RTS/CTS sequence described earlier. Figure 5 shows the ACK flavor of the NAV

Attack in action, but both provided similar results: the channel is completely blocked

for the duration of the attack.

The NAV attack is much harder to defend against in practice than the deau-

thentication attack.

One approach to mitigate its effects is to place a limit on the NAV values

accepted by nodes. Any packet containing a larger NAV value is simply truncated to

the maximum value allowable. Strict adherence to the required use of the NAV feature

indicates two different limits: a low cap and a high cap. The low cap has a value equal to

the amount of time required to send an ACK frame, plus media access backoffs for that

frame. The low cap is usable when the only packet that can follow the observed packet

is an ACK or CTS. This includes RTS and all management (association, etc) frames.
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Figure 4.6: Results from the ACK based NAV Attack simulation with 18 client nodes

modified to implement defense. The attack begins at time 40 and ends at time 60. The

dark region at the bottom of the graph during the attack is the attacker.

The high cap, on the other hand, is used when it is valid for a data packet to follow the

observed frame. The limit in this case needs to include the time required to send the

largest data frame, plus the media access backoffs for that frame. The high cap must be

used in two places: when observing an ACK (because the ACK my be part of a MAC

level fragmented packet) and when observing a CTS.

I modified my simulation to add these limits, assuming that a value of 1500

bytes as the largest packet. While this isn’t strictly the largest packet that can be sent

in an 802.11 network, it is the largest packet sent in practice because most packets are

bridge to ethernet, which has a roughly 1500 byte MTU. Figure 6 shows a simulation

of this defense under the same conditions as the prior simulation. While there is still

significant perturbation, many of the individual sessions are able to make successful

forward progress. However, I found that simply by increasing the attacker’s frequency

to 90 packets per second, the network could still be shut down. This occurs because the

attacker is using ACK frames, whose NAV is limited by the high cap.

To further improve upon this result requires us to abandon portions of the

standard 802.11 MAC functionality. At issue is the inherent trust that nodes place in

the NAV value sent by other nodes. By considering the different frame types that carry
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NAV values I can define a new interpretation of the NAV that allows us to avoid most

possible DoS attacks. The four key frame types that contain NAV values are ACK, data,

RTS, and CTS, and I consider each in turn.

Under normal circumstances the only time a ACK frame should carry a large

NAV value is when the ACK is part of a fragmented packet sequence. In this case

the ACK is reserving the medium for the next fragment. If fragmentation is not used

then there is no reason to respect the NAV value contained in ACK frames. Since frag-

mentation is rarely used (largely due to the fact that default fragmentation thresholds

significantly exceed the Ethernet MTU) removing it from operation altogether will have

minimal impact on existing networks.

Like the ACK frame, the only legitimate occasion a data frame can carry a

large NAV value is if it is a subframe in a fragmented packet exchange. Since I have

removed fragmentation from the network, I can safely ignore the NAV values in all data

frames.

The third frame type to be concerned with is the RTS frame. The RTS frame

is only valid in an RTS-CTS-data transmission sequence. If an RTS is seen on the

network, it follows that the node seeing the RTS will also be able to observe the data

frame. The 802.11 specification precisely defines the time a CTS frame, and subsequent

data frame, will be sent. Therefore the NAV value in the RTS packet can be treated

speculatively – respected until such time as a data frame should be sent. If the data

frame is not observed at the correct time, either the sender has moved out of range or

the RTS request was spoofed. In either case it is safe for the other node to ignore the

duration of the NAV.

The last frame to consider is the CTS frame. If a lone CTS frame is observed

there are two possibilities: the CTS frame was unsolicited or the observing node is a

hidden terminal. These are the only two cases possible, since if the observing node

wasn’t a hidden terminal it would have heard the original RTS frame and it would be

handled accordingly. If the unsolicited CTS is addressed to a valid, in-range node, then

only the valid node knows the CTS is bogus. It can prevent an this attack by responding
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to an such a CTS with a null function packet containing a zero NAV value – effectively

undoing the attackers channel reservation. However, if an unsolicited CTS is addressed

to a nonexistent node, or a node out of radio range, this is indistinguishable from a

legitimate hidden terminal. In this case, there is insufficient information for a legitimate

node to act. The node issuing the CTS could be an attacker, or they may simply be

responding to a legitimate RTS request that is beyond the radio range of the observer.

An imperfect approach to this final situation, is to allow each node to inde-

pendently choose to ignore lone CTS packets as the fraction of time stalled on such

requests increases. Since hidden terminals are a not a significant efficiency problem in

most networks (as evidenced by the fact that RTS/CTS are rarely employed) setting this

threshold at 30 percent, will provide normal operation in most legitimate environments,

but will prevent an attacker from claiming more than a third of the bandwidth using this

attack.

It should also be noted that existing 802.11 implementations use different re-

ceive and carrier sense thresholds. The different values are such that, in an open area,

the interference radius of a node is approximately double its transmit radius. In the

hidden terminal case this means that although the hidden terminal can not receive the

data being transmitted, it still detects a busy medium and won’t generate any traffic that

would interfere with the data, so the possibility of an unsolicited CTS followed by an

undetectable data packet is very low.

But ultimately the only foolproof solution to this problem is to extend explicit

authentication to 802.11 control packets. Each client-generated CTS packet contains an

implicit claim that it was sent in response to a legitimate RTS generated by an access

point. However, to prove this claim, the CTS frame must contain a fresh and crypto-

graphically signed copy of the originating RTS. If every client shares keying material

with all surrounding access points it is then possible to authenticate lone CTS requests

directly. However, such a modification is a significant alternation to the existing 802.11

standard, and it is unclear if it offers sufficient benefits relative to its costs. In the mean-

time, the system-level defenses I have described provide reasonable degrees of protec-
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tion with extremely low implementation overhead and no management burden. Should

media-access based denial-of-service attacks become prevalent, these solutions could be

deployed quickly with little effort.

4.5 Conclusion

802.11-based networks have seen widespread deployment across many fields,

mainly due to the physical conveniences of radio-based communication. This deploy-

ment, however, was predicated in part on the user expectation of confidentiality and

availability. This chapter addressed the availability aspect of that equation. I examined

the 802.11 MAC layer and identified a number of vulnerabilities that could be exploited

to deny service to legitimate users. Two such attacks were explored in detail, including

testing in experimental environments and simulation. In each case the attack was shown

potent.

In addition to demonstrating the attacks, I provided and analyzed countermea-

sures that are practical to implement on existing consumer hardware. In one instance

the countermeasures completely defeated the attack, while in the other they severely

limited its effectiveness. This chapter helps to underscore the care that must be taken

when deploying 802.11 networks in mission critical applications.

4.6 Special Thanks

A special thanks goes out to the residents of csl-south, who were at times

unwitting victims of the DoS exploits.
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Chapter 5

Future Directions and Insights

There are a number of future directions that build on this work. They fall

into two categories, work that is directly related to that presented here, and work that is

not directly related, but has the same goals and motivations. This chapter reviews each

category in turn.

Chapter 4 describes two specific denial-of-service attacks vulnerabilities in the

802.11 specification, along with techniques that protect against them. These security

problems are just the tip of the iceberg. In general there is a need for a range of similar

defenses to improve the robustness of the protocol. Some of these defenses are merely

adaptations of the techniques in chapter 4, while others require additional originality.

Unfortunately there is an inherent security limitation in wireless networks –

the shared wireless medium. Being forced to use a common resource requires a certain

level of cooperation among devices in the network. A fruitful avenue of research is to

determine just what that minimum level of cooperation is to achieve an operational net-

work. Of course there is probably not a simple answer, but instead a spectrum of options

where increasing cooperation decreases security while simultaneously increase network

performance or utilization. Gaining a good understanding of this tradeoff space would

greatly benefit the development and deployment decisions of future wireless protocols.

The area of wireless channel selection needs some clarification and direction.

As it stands, there have been a number of proposed algorithms that all aim to address
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similar problems. Typically the only factor differentiating the motivations of all these

algorithms is the set of assumptions around which the algorithm is based. To the best of

my knowledge, this work is the first to build and utilize a large wireless testbed to eval-

uate channel selection algorithms. It would be rather beneficial to use the infrastructure

and run a series of head to head comparisons between all the currently proposed algo-

rithms. In addition to the raw performance comparison, it can be reasonably expected

to obtain insights into the various shortcomings in the existing algorithms, and hence

guide future research efforts.

The overarching goal behind this thesis, to addresses shortcomings in the

802.11 specification, is a formable task, and, in general, there is a substantial amount

of work left to do. One glaring hole is a lack of understanding the important interac-

tions present in deployed networks. While there has been some progress made in this

direction [CBB+06], it is far from complete.

In addition to better understanding of operational wireless networks in gen-

eral, there are some parts of the 802.11 specification that are not being used for various

reasons. One of these is the point controller function (PCF). Without going into the

details of PCF, it should be possible to design and carry out a series of experiments that

demonstrate the merits, or lack thereof, of PCF.



Chapter 6

Conclusion

Recent years have seen an explosion in growth of 802.11-based products. This

happened in part because of the convenience and price point of the hardware. Unfortu-

nately this same growth that is beneficial for the wireless market exposes shortcomings

in the standard. This thesis addressed two such areas, security and management.

In particular I improved 802.11’s robustness against denial-of-service attacks.

I performed a security evaluation of the protocol, identified numerous vulnerabilities,

and then tested and evaluated two of them using actual hardware. My experience during

development provided insights into workable defense mechanisms, which I also tested

and showed to work as conceived.

The second problem I addressed is the area of automatically managing large

wireless networks, specifically looking at the problem of assigning channels to individ-

ual access points. I deployed a large wireless testbed at UCSD which was then used

to measure a number of different selection algorithms. Based on these measurements I

concluded that the RSSI Sum policy was the best. Additionally I identified a race con-

dition common among scanning-based channel assignment algorithms. I proposed and

evaluated a new coordination protocol, Bsync, that succeeds in avoiding the majority of

the aforementioned race condition.
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Appendix A

Wireless Testbed Manual

A.1 Chapter Outline

Large scale testbeds are neither easy or straightforward, and typically involve

hundreds of man-hours worth of effort to design, implement, and deploy. The hallmark

of my research is experimental understanding of real systems, and as such I’ve been

involved in a number of infrastructure rollouts.

This chapter discusses the largest such rollout – a 180 radio wireless testbed

deployed in the Computer Science and Engineering Building (EBU3B) at the Univer-

sity of California, San Diego (UCSD). This information serves two main purposes. First,

it provides a rough blueprint for, and conveys information about the scope of, similar

projects that other academic and industrial institutions may desire to undertake. Sec-

ondly it provides detailed operating information for the existing testbed with the intent

of streamlining future research that leverages the testbed’s unique capabilities.

A.2 Overview

Size is one of the key attributes of our wireless testbed, in two senses. Our

testbed contains a large number of radios, 180, spread over a large indoor space, 150,000

square feet. Figure A.1 shows the deployment locations for four of the five floors cov-

ered in the Computer Science and Engineering building at UCSD.
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1st Floor

2nd Floor

3rd Floor

4th Floor

Figure A.1: CSE Building floorplan with wireless node locations depicted. This building

comprises roughly 150,000 square feet spread over four floors (and a smaller basement,

not shown). Circles indicate testbed nodes, and triangles indicate campus production

access points. The basement houses an additional 12 nodes not shown in this figure.
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Each node in our testbed contains two independent radios. This has a number

of benefits. It enables research into multi-hop topologies, it enables measurement-based

research projects that monitor two channels at the same point in space simultaneously,

and it reduces the overall hardware costs of our infrastructure. It does, however, also

have a drawback. Simultaneous transmissions from both radios are more likely to inter-

fere with each other due to the close proximity, and the average distance between nodes

is greater.

In addition to placing two radios in every node, I installed nodes in pairs (re-

ferred to as pods). Before installation I performed a series of bandwidth measurements

to determine the minimum spacing necessary between two nodes in a pod without undue

intra-pod interference. The nodes are installed as close to this minimum as conditions

permit. This pairing provides passive measurement research projects the ability to mon-

itor up to four different channels from what is effectively a single point in space. This is

enough coverage to monitor the traditionally non-overlapping channels in 802.11b plus

one channel in between.

Each node is directly connected to a dedicated wired network, which in turn

connects to the building’s network. The nodes are powered using Power over Ethernet.

This reduces the installation complexity, expense, and improves the visual aesthetics.

In order to support the widest array of research, each node is an embedded

computer that uses a Pentium class CPU and has 64 megabytes of non-volitale FLASH

memory and 128 megabytes of RAM soldered on the logic board. The next section,

Node Specific Information goes into detail regarding the hardware and software specifics

for each node.

A.3 Node Specific Information

The nodes are the main component of the testbed. Getting them operational

required a number of specific hardware and software settings, and in some case changes.

This section details what is required for the testbed nodes.
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A.3.1 Hardware Specifications

The wireless testbed is composed of two similar nodes, both manufactured by

Soekris [Soea]: the net4826 [Soec] and the net4801 [Soeb]. Both boards use a 266 Mhz

Geode SC1100 processor from AMD and have 128 megs of RAM. The 4826 has 64

megabytes of non-volitale FLASH memory soldered on the the board while the 4801

sports a standard compact flash slot. The 4801 lacks PoE. As a result the 4826’s are per-

manently deployed in building’s hallways powered via PoE, while the 4826 are deployed

in various labs where AC outlets are readily available.

Both boards have two mini-PCI slots, each of which is populated with an

Atheros 5212-based 802.11 card. Atheros-based cards were chosen primarily because

they employ a software-based radio. Software radios push the burden of protocol imple-

mentation out to the driver, which in turn provides a richer environment for performing

wireless experiments.

A.3.2 Power-over-Ethernet customization

The Power-over-Ethernet (PoE) implementation on the net4826 is not fully

802.3af compliant. This contradicts the product specifications page and other marketing

literature available from Soekris. The non-compliance was confirmed via email with

Soekris’s lead engineer.

802.3af, the PoE specification, provides two ways to deliver power to compli-

ant devices. Option 1 is placing the voltage on the unused data pairs of the Cat-5 cable.

The unused pairs are numbered 3 and 4. Pair 3 is composed of pins 4 and 5, while pair

4 is composed of pins 7 and 8.

The second option is delivering the power on the two used data pairs. These

are pairs 1 and 2 composed of pins 1+2, and 3+6 respectively. The circuitry for accepting

the power varies depending on which pairs the power is delivered on.

The 802.3af specification mandates that devices accept both power delivery

options, however, as designed, the net4826 only accepts power on the unused pair. Un-

fortunately the PoE switches used in the testbed deliver power on the data pairs, and as
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Figure A.2: The location of the ethernet isolation transformer on the Soekris net4826

board. The image on the left shows the whole board, while the image on the right is a

close up shot of the transformer. In both images the transformer is circled.

such are incompatible with the 4826’s.

Fortunately there is a way to modify the 4826’s to accept power on the data

pairs, but it does require a steady hand with a soldering iron. Accepting the power over

the data pairs requires an ethernet isolation transformed with a center tap. The power

is extracted using the center taps to avoid degrading the data signal past the point of

usefulness. The ethernet isolation transformer used in the 4826, a MIDCOM 7090-37

[Mid], includes pins for the center taps. The PoE modification solders wires to those

two pins, and loops them underneath the logic board to connect with the power input

circuitry. Detailed soldering instructions are presented in the next paragraph.

The first step is to locate the ethernet isolation transformer IC. It is immedi-

ately behind the ethernet jack as indicated in figure A.2. Once located identify the two

center tap pins. They are pins 2 and 6 of the IC as depicted in figure A.3. It may also be

useful to refer to the data sheet for the IC, available at [Mid].

Once the pins are located solder one wire to each pin, being careful not to

short other pins on the chip. This may require multiple attempts so keep some solder

wick handy. Figure A.4 shows the IC with wires soldered to the pins.

Loop the wires around the side of the ethernet jack to the underside of the
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Figure A.3: The location of the center tap pins for the ethernet isolation transformer on

the Soekris net4826 board. Each of the two pins is circled.

board. Instead of attempting to locate a more appropriate location I simply soldered the

other end of the wires to the unused pins in the ethernet jack. This has to effect of taking

the power from the data pairs and placing it on the unused pairs, which is where the

board expects the power to be delivered. It also has the effect of transmitting the power

back through the unused pairs to whatever device, most likely a switch of some sort, the

4826 is connected to. Depending on the device this may or may not cause damage. It is

of no consequence for our HP switches [Hew].

Use figure A.5 to locate the soldering locations for the other end of the wires.

Note this is on the bottom of the logic board. Figure A.6 shows the wires soldered in

the correct location.

That is it. Reassemble the case the enjoy. In case you are concerned, there

is still adequate clearance for the logic board despite the newly added wires and their

routing around the edge of the board.

A.3.3 Mounting Considerations

The net4826’s are mounted using the standard enclosure as sold by Soekris,

however the case does not come with a mounting solution. To get around that limitation

I found a metal picture hanger at Home Depot [Hom] that has a security clip to prevent
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Figure A.4: A wire soldered to each of the center tap pins.

casual theft.

The bracket comes in two parts. The first part is screwed to the wall using

drywall anchors or other suitable attachments. It is important that the bracket be elec-

trically isolated from the screws. I experienced grounding problems because the metal

bracket was in contact with the metal screw, which was in contact with a metal part of

the building’s structure. This resulted in difficult to diagnose power sharing problems

where two APs would share the power provided by one PoE connection.

The second part of the bracket needs to be welded to the net4826’s enclosure.

Fortunately there is a machine shop on campus that does this work for a nominal fee.

The name of the group is the Campus Research Machine Shop (CRMS), and it is located

in the basement of Urey hall. TritonLink has a department listing page with a link to

the home page for CRMS, which has all the contact information necessary to get a job

started. It is necessary to remove the logic boards from all the cases, and obviously

provide the brackets to the shop. It has typically taken between 2 and 4 days for the

work to be completed, even on large orders.
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Figure A.5: The location of the ethernet jack pins on the bottom of the Soekris net4826

board. The image on the top left shows the whole board, the image on the top right

is a close up shot of the ethernet jack pins, and the image on the bottom identifies the

particular pins in question. The interesting parts of all images are circled.

A.4 Node Software

Each testbed node runs a version of linux that has been tailored for their unique

characteristics. The base distribution is pebble, but then packages are added and re-

moved. Complete custom applications are installed to streamline management. This

section reviews the software configuration in depth.
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Figure A.6: The wires soldered to the ethernet jack pins on the bottom of the Soekris

net4826 board.

A.4.1 Pebble Linux Distribution

The base distribution used for the APs is Pebble [NYCc] available from NYC

Wireless [NYCb]. Pebble was chosen because it is well suited to run off of compact

flash. During normal operation the root filesystem is mounted read-only. This substan-

tially reduces the wear and tear on the flash itself, increasing the lifetime of the node.

For the few applications that need to write files, the distribution creates a small ramdisk

mounted on /rw. This is initially populated with the files from /ro, so any changes that

need to be persistent in the /rw filesystem across reboots need to be written in /ro. The

distribution provides two convenience functions to write to flash, remountrw and re-

mountro. Remountrw mounts the root filesystem writable so all changes are persistant.

Once you are finished making changes, the remountro command remounts the system

read-only, its normal operating state. For more operational details on pebble refer to the

readme included in the distribution [NYCa]. At the time of this writing the version em-

ployed was v36. However the base distribution was aggressively modified to fit under

the 64 megabyte flash limit in the 4826s.

In addition to removing unneeded files I also replaced the linux kernel in the

distribution with a custom 2.4.31 kernel. The new kernel is patched to better take ad-

vantage of hardware features on the net4826, including the watchdog circuit. Another
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kernel patch brings the wireless extension support up to version 26. I also reduced the

drivers to the minimum set necessary to run the hardware, again to save space on the

resource constrained device. Of course, a new kernel necessitates compiling all the

corresponding kernel modules, so those are also updated.

The fully patch kernel source is available in the wireless project at

/projects/wireless-aps/soekris/pebble/pebble-v36/kernel-2.4.31-ucsd-soekris/linux-

2.4.31-ucsd-soekris.

A.4.2 Installation Process

The installation process is completely custom, due to the fact the flash is not

removable from the net4826. At a high level the box performs a network boot into an

install image, reformats and installs the pebble image and additional required packages,

and then reboots. However understanding the process in enough detail to reproduce or

modify it requires a more detailed explanation.

Network Booting

In order to network boot the BIOS is configured to attempt a PXE first, and

boot from the local disk second. The information necessary for a network boot is de-

livered in three stages. First the box obtains an IP address using DHCP. Along with

the IP address is a “next-server” record that instructs the PXE network boot loader to

contact a tftp server for the next boot loader in the chain. PXE obliges and loads PX-

ELinux, which in turn searches for a configuration files using a well-known progression

of truncated MAC addresses.

Once an appropriately named configuration file is located PXELinux loads it

and presents the boot options via the serial console. For the installation phase the default

boot option is a NFS root boot into the installation image. After the option prompt times

out it proceeds to boot into the NFS root image. It is worth noting that there are a

number of kernel compile time options required to support NFS booting. Refer to the

kernel .config file in the linux-2.4.31-ucsd-soekris directory for the exact options.
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The NFS root image is another customized pebble image. There is a sub-

stantial security problem with NFS root. The two machines have to have mutual trust

because the client needs write permission to the root filesystem. This also usually pre-

cludes booting a number of nodes from the same root image. However, pebble’s read-

only nature solves both of these problems. The NFS root image is made read-only, and

pebble operates correctly because it already assumes a read-only root partition, abet flash

instead of NFS. In our system the group’s file server, homebrew, directly serves the NFS

root image to all the testbed nodes. This installation-only root filesystem is available for

inspection and modification at /projects/wireless-aps/master-image/bootstrap.

Installation Script Actions

After the usual startup scripts have run and the box has booted to the

NFS root image, the custom installation script is run. This script is accessible at

/projects/wireless-aps/master-image/bootstrap/pebble-inst/install.sh. The first action it

takes is reformatting the flash and selecting the custom kernel image. Kernel se-

lection is hard coded in the install script. Once the flash is reformatted the instal-

lation process untars the base pebble image to the flash. The base image is found

in /projects/wireless-aps/master-image/bootstrap/pebble-inst/pebble.v36.tar. After this

completes the clean packages.sh script from the skeleton directory (see section A.4.3

for more information on that directory) is run to remove unused packages and install

new ones. The current clean packages.sh script removes the contents of a number of

cache directories, man pages, and so on, and then installs the packages listed in section

A.4.4.

Once the cleaning script has been executed all files from the skeleton directory

are copied to the flash, potentially overwriting files that were also included in the base

pebble distribution. This is the primary method to change configuration files and install

unpackaged applications in the main testbed image. In addition to normal files there is a

tar archive that contains special device files. This is necessary to preserve the major and

minor device numbers associated with the device files. At this point ownership of files
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in /ro/home is changed to match the user’s account name instead of root.

The next step is to create a lilo.conf file. The script creates an entry for each

kernel found in the newly installed filesystem, and an entry to perform a network boot

reinstall. The set of kernel parameters required for the boxes is hardcoded into the

installation script. After creating the lilo.conf file it runs lilo to install the bootloader on

the flash.

After installing the bootloader the installation script looks for files specific to

the particular machine being installed, keyed by IP address, and copies them over to

the local flash image. This mechanism provides machine dependent configuration files

which can be used for ensuring ssh host key consistency across installations, among

other things.

After coping the machine specific files two configuration files are modified to

reflect the IP and hostname of the box. Then the module dependancy information is

recomputed, the flash unmounted, and the box rebooted.

It is worth noting that, unless the default network boot action of reinstall is

changed to local boot, the reinstallation process is recursive and never ending. Refer to

the management tools in section A.6.5 for information on changing the default network

boot option.

A.4.3 Pebble Skeleton Directory

The pebble skeleton directory contains all the custom machine generic and

specific files that are installed during the installation process. The machine specific

files are located in /projects/wireless-aps/master-image/bootstrap/pebble-inst/mach-files

and keyed by IP address. The machine agnostic files are located in /projects/wireless-

aps/master-image/bootstrap/pebble-inst/skel, however they should not be edited directly.

Instead there is a process for updating a shadow directory and a script to copy the con-

tents of the shadow directory into the actual skeleton directory.

The shadow directory is located in /projects/wireless-

aps/soekris/pebble/pebble-v36/skel. Any programs that are compiled by hand are
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pointed to this directory as the installation destination. This extra level of indirection

allows for removal of unnecessary files to remain under the 64 megabyte limit. For

example man pages are not needed on the nodes themselves. In fact the man application

is node even installed.

All configuration files are also edited in the shadow skeleton directory. Once

the shadow skeleton directory is satisfactory the files are copied to the real skeleton

directory using the makefile in /projects/wireless-aps/soekris/pebble/pebble-v36. Make

must be run as root to ensure appropriate file ownership is retained.

A.4.4 Additional Pre-Built Packages

Six packages are installed in addition to the packages included with the base

pebble distribution. These are intentionally installed without resolving dependancies

because doing so results in an image that doesn’t fit within 64 megabytes. The packages

are:

1. screen – Enables log-lived jobs that are started from an interactive shell while

allowing the original connection to be terminated. Very useful for managing ex-

periments manually.

2. sudo – To avoid passing out the root password to anyone and everyone who wants

to do something interesting with the testbed.

3. libc6 – To enable dynamic linking of programs compiled using slightly different

installations of pebble.

4. libglib1.2 – Same justification as libc6.

5. libstdc++5 – Enable dynamically linked c++ programs to run on the testbed.

6. less – Limited feature set of the “more” pager is overly restrictive.
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A.4.5 Additional Custom-Built Packages

A number of application were complied and installed from source, in ad-

dition to those pre-packaged applications discussed in section A.4.4. The source

code for all the packages in this section can be found in /projects/wireless-

aps/soekris/pebble/pebble-v36/apps.

Ganglia [The] was installed to provide near realtime operational status about

the testbed nodes. Ganglia includes a monitoring component that reports a number of

predetermined metrics, such as uptime and network usage, via local area multicast to an

aggregation node. This data is presented via a web page that allows visualization and

troubleshooting.

Hdparam [Gaz] is added to the distribution because the net4801’s have the

capability to hold a laptop hard drive, and at one point in the evolution of testbed each

node actually had a disk drive. The utility allows tweaking of performance characteris-

tics for the drive controller. Of interest in the testbed was the setting to enable DMA for

the controller. DMA is disabled by default which wastes the box’s precious CPU cycles.

In addition to monitoring via ganalia, monitoring is also available via SNMP

[CFSD]. To achieve this I installed net-snmp [Teaa]. However, before installing it I

added a substantial number of values to the MIB. These were all aimed at reporting

detailed statistics about each wireless interface, and included such items as the number

of retries, the number of frames sent at each available transmission rate, and so on.

Openslp [Teab] is used to aid metric collection via the SNMP reporting mech-

anism. Openslp in an implementation of the IEEE standards track service location pro-

tocol, based on Apple’s Bonjour [AC]. It allows a monitoring node to query the network,

via a broadcast probe, and discover all testbed nodes that are powered on. This enables

monitoring software to dynamically and intelligently adjust their SNMP data collection

as nodes join and leave the testbed.

Lastly I compiled and installed version 26 of the linux wireless tools [Tou].

These user-level tools are necessary to match the v26 wireless extensions that were

added to the custom linux kernel.
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A.4.6 Custom-Written Applications

There are two custom written applications installed on the testbed nodes.

The first is daemon-watch, which is available in /projects/wireless-aps/daemon-watch.

Daemon-watch forks a child process and continually relaunches it when it dies. The in-

tent of this program is to provide a level of robustness to experimental processes which

crash for unknown reasons.

The second application was not written from scratch, but rather heavily cus-

tomized. It is a capture portal based on NoCatSplash [Wir] to provide roaming authen-

tication for testbed users, insuring they know they are using an experimental platform.

Since the customizations are highly involved there is a whole section, A.4.11, devoted

to them in this chapter.

A.4.7 BIOS Configuration

The serial BIOS on the testbed nodes is upgraded to version 1.28. Additionally

the console speed is set to 115200 bps and the boot order is set to network boot followed

by booting from the local disk. This boot order is important because it allows a way

to recover nodes that experience sporadic corruption to the system image. It forces the

boxes to first attempt a PXE boot, at which point the box can be instructed to reinstall

the system image, regardless of the state of it’s current image.

The BIOS command sequence for setting these parameters is:

set ConSpeed=115200

set BootDevice=F0 01 02 00

It is worth noting that new boxes ship from the factory with a console speed of 19200.

In addition to the configuration there is one anomaly in the BIOS that is worth

mentioning. After a warm reboot the PXE network boot loader always fails to contact

the DHCP server. This means network boot never works after a soft reboot. If network

boot is desired a hard reboot, using the PoE control scripts described in A.6.5, must be

used.
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A.4.8 Custom Software Configurations

The testbed nodes contain a number of custom configuration and configuration

scripts that keep them operating. This section details a number of the most important

ones.

The initial configuration of a node’s radios is controlled by the

ath[01] config.sh script found in the /ro/root/scripts directory. These scripts are run

once during the startup process of the node, and should be run on completion of any

experiments. This guarantees the radios are always in a known good state.

The testbed nodes include a hardware watchdog. Briefly, a hardware watchdog

is additional circuitry, either on the logic board or in the CPU, that reboots the node

at a fixed interval. In order to prevent rebooting, the CPU must periodically clear a

register. When OS crashes it gets detected after a small period of time and the box

rebooted. Support for the watchdog requires a kernel extension and corresponding user

level application. The application /usr/sbin/watchdog runs periodically and requests that

the kernel reset the watchdog state. The watchdog driver is compiled in to the custom

version of the kernel used in the testbed.

NTP [Aut] is used to keep the system clocks on the testbed nodes roughly

synchronized. For some purposes, like monitoring the status of the nodes, this level

of synchronization is sufficient. However some projects require more accurate syn-

chronization and can use the NTP system clock as a starting point to reduce the com-

plexity of attaining the necessary accuracy. In addition there is a cronjob that runs

/ro/root/scripts/save ntpdrift.sh every 30 minutes. The script remounts the flash read-

write, saves the current NTP drift file, and then remounts it read-only. This prevents the

measured drift value from being completely lost when the node reboots.

In addition to the standard set of metrics reported by ganglia there is a script

that runs on the testbed nodes to report more specific information of interest. The name

of the script is report clients, and it is located in /ro/root/scripts/report clients.sh. Re-

port clients is started from an init.d script at the appropriate run levels. New metric

values are reported every 10 seconds. Although its name might suggest otherwise this
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scripts reports a large number of additional metrics as follows:

• associated clients ath0 – The number of clients currently associated with the ath0

interface. This value is reported by the driver and read via the proc filesystem.

• associated clients ath1 – The number of clients currently associated with the ath1

interface.

• status code – A numerical code for the nodes current action. See the description

of custom status reporting in section A.4.9 for more details.

• status string – A textual description of the status code. See the description of

custom status reporting in section A.4.9 for more details.

• ntp offset – The difference between the node’s wall clock and NTP time as re-

ported by the server bigben.ucsd.edu. This data enables monitoring of the differ-

ence, and flagging large values. The quality of the NTP synchronization, down

to the sub-millisecond level, is important for some of the experiments run on the

testbed.

• ntp drift – The value contained in the NTP drift file. Storing this values allows it

to be restored when a node is reimaged.

In addition to directly reporting these metrics, the report clients script calls the

/root/scripts/dev detailed stats.pl perl script to report summary statistics on the wireless

cards. These additional metrics include the transmission and reception rate, in units of

bytes and packets per second, since the last time values were reported. The numbers are

reported for all interfaces.

In addition to the script running as daemons, there are three periodic tasks

managed by cron. The first task calls /ro/root/scripts/apscan.sh 6 times an hour. Ap-

scan instructs the wireless cards to perform a full spectrum scan, and emails the scan

results to a single address for consolidation. However, to prevent interrupting long

running experiments, the script first checks for the presence of /tmp/ath0scan.lock and
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/tmp/ath1scan.lock. If these files exist the scanning action on the associated interface is

skipped.

The second periodic job is pruning old trace files from the built-in hard drives,

and is accomplished via the /root/scripts/cleanstats cron.sh script. This is legacy code

because the hard drives have been removed from the nodes for some time now. However

it does still run and hence needed documentation.

The last cron job is /root/scripts/save ntpdrift.sh. As its name implied, this

script persistently saves the NTP drift file to the flash memory so its contents are not lost

across reboots.

A.4.9 Custom Status Reporting

One important custom metric reported by the testbed nodes is status. Sta-

tus reporting enables monitoring of the nodes progress during image reinstallation, and

provides an easy way to determine if all the nodes are running the correct process for

a given experiment. Status is reported in two parts, a numeric status code and a cor-

responding status string. The code is authoritative and intended for use in monitoring

logic. The string is intended for visualization purposes only, eliminating the visualiza-

tion tool from the burned of knowing all the various status codes a priori. The status

code is written as an ASCII number into the file /tmp/status.code, and the status string

into /tmp/status.string.

The installation script makes heavy use of the status string, which in turn al-

lows a visualization tool to display the exact reinstallation progress for all nodes. The

strings reported by the installation process progress from formatting, through installing

base image, pruning image, installing custom files, installing custom devices, installing

bootloader, installing machine specific files, computing dependencies, and rebooting.

See section A.4.2 for a detailed description of the installation process.



89

A.4.10 Customized Atheros Driver Information

Each different project that utilizes the testbed typically requires a different

customized Madwifi [Mad] driver. The drivers used for the work presented in this

thesis can be found in /projects/wireless-aps/soekris/pebble/pebble-v36/kernel-2.4.31-

ucsd-soekris/madwifi-cvs. The details of driver customizations are located in their re-

spective chapters, however it is worth noting that the customizations typically require

modifying the supporting user level applications with appropriate logic to understand

the newly added metrics.

A.4.11 Capture Portal

One of the motivations behind deploying such a large wireless testbed is at-

tracting a diverse user population. The users in turn generate a realistic workload, which

creates more confidence in experimental results. However there was substantial concern

within our department’s computer support staff the we would snare unwitting users.

People who did not know they were using the testbed, or people who simply were capa-

ble of forcing their machine to associate with the production network in the building. I

developed a capture portal solution to address these concerns.

A capture portal is a router that intercepts all web traffic and redirects to a

“login” page. They are customarily found on networks that charge users for access, like

coffee shop wireless networks. Because of their prevalent use a number of open source

solutions exist, however none were directly applicable to my needs.

There are two main differences between the testbed and more common capture

portal installations. First, the testbed nodes do not actually route traffic, they merely

bridge traffic to the campus network which enables campus networking staff to enforce

access restrictions. All the current solutions are designed with the assumption they

operate on the network’s router. Second, once a user was captured and agreed to use

the network, I wanted to ensure they were not captured again, even if they roamed to

a different AP. The existing capture portals are focused on topologies where all traffic,

regardless of which AP the client is associated with, pass through the same router. To
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solve these problems I heavily modified NoCatSplash, version 0.93pre2, as outlined

below.

Instead of using the standard linux iptables (routing firewall ruleset) I wrote

a ruleset that works with ebtables, linux’s bridge firewall ruleset. The general layout

of the rules places MAC addresses into three groups, authorized, unauthorized, and

limbo. By default all nodes are in limbo. A node moves from limbo to authorized

or unauthorized by accepting or declining to use the network when presented with a

splash page. However the ability to redirect traffic within the linux kernel still relies on

the routing ruleset. So all web requests from limbo clients are forced into the routing

system while all other frames are bridged normally. This is referred to as brouting.

To achieve the goal of mobility the splash page contents needed to be hosted

on a central server. This created a whole separate set of complexities. The routing

control for all client traffic is outside the control of the AP. In fact, the campus uses a

capture portal themselves (at the router level) to control network access. If a client is not

authenticated to the campus it will not be able to display the splash page for the testbed

network, which creates a chicken-and-egg problem.

Solving this problem required additional use of the brouter functionality. In

addition to capturing all web traffic for clients in limbo, the AP maintains a list of sites

the client is allowed to access via network address translation (NAT). When a web page

from one of those sites is requested, the frame gets promoted to the routing layer and

NATed. In addition, a specialty ebtables action was written to add the MAC address to a

NATed hosts list. This is required to correctly de-NAT response packets from the server.

To solve the second problem, roving client state, NoCatSplash was modified

to store and query client state from a central database. On the surface this change is

straightforward, however there is one complication, the node has no of of knowing

which clients will associate with it before the association takes place. Without knowing

which client are going to show up it is impossible to keep the first connection of a new

client out of limbo, which results in the connection being captured. To mitigate this

problem I developed a second ebtable action. This action reported the MAC address of
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all clients in limbo via a special device file. The first frame a client sends upon associ-

ating with an AP in our network is a DHCP request. The MAC address of the client is

reported when this DHCP request is seen. This, in turn, allows the NoCatSplash pro-

gram to perform a speculative lookup on the client and transition them into authorized

as appropriate. The lookup happens in parallel with the client’s DHCP exchange, and,

since it takes a very small amount of time, an authorized client’s first connection doesn’t

get mistakenly stuck in limbo.

The source for the modified NoCatSplash is in /projects/wireless-

aps/soekris/pebble/pebble-v36/apps/NoCatSplash-0.93pre2 and the source for the cus-

tom ebtable filters is in the kernel tree, /projects/wireless-aps/soekris/pebble/pebble-

v36/kernel-2.4.31-ucsd-soekris/linux-2.4.31-ucsd-soekris.

A.4.12 Initial configuring a new node

A number of settings need to be changed in order to add a new node to the

testbed. In order, the steps necessary to bring a new node online are as follows:

1. Set up a serial connection to the node with an initial console speed of 19200

2. power on the node

3. enter the BIOS by pressing ctrl-p when prompted

4. Download and install version 1.28 of the firmware via the following command

sequence:

(a) download -

(b) Initiate a xmodem send of firmware image from the serial client

(c) flashupdate

5. set ConSpeed=115200

6. set BootDrive=F0 80 81 00

7. reboot
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8. change console speed to 115200 on the serial client

9. enter the BIOS by pressing ctrl-p when prompted

10. let PXE boot start and record the MAC address of the ethernet interface

11. power off the node

12. add the MAC address to wireless.ucsdsys.net:/projects/wireless-aps/ap-

list/aplist.txt

13. run “sudo make” in /projects/wireless-aps/ap-list on wireless.ucsdsys.net

14. power on testbed node

15. boot the “install” image when presented with the PXE prompt

After the software installation is complete the node is ready to be added to the testbed.

A.5 Testbed Interconnect

In order for the testbed to be by the campus administrators approved it was

necessary to ensure all clients are subject to campus network access restrictions. The

easiest way to achieve this is to give the campus network administration control over

the client’s frames. This was accomplished by deploying two VLAN to each AP. The

first VLAN is a management network. The AP has an IP address on the management

network, and all command and control is performed thusly. To facilitate network booting

this network needs to be accessible before the kernel is loaded, therefore the frames on

the management VLAN are delivered untagged to the APs.

The second VLAN available to the APs is connected to network operations.

This VLAN is delivered over the same ethernet link as the management VLAN, how-

ever the frames are tagged according to the 802.1q standard. All traffic from clients

associated to the testbed APs is bridged directly to this VLAN, with the exception of

traffic destined for the testbed’s capture portal as described in section A.4.11. This gives
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the campus network administrators complete admission control over the wireless clients

connected to the testbed.

A.5.1 Switch Configuration

The switches in the testbed require a special configuration, and this section de-

tails what is necessary to configure them. Each node is on two different 802.1q VLANs,

a management VLAN and a wireless client VLAN. The management VLAN is deliv-

ered as the default (untagged) VLAN. This allows the nodes to obtain IP addresses via

DHCP and participate in network booting, among other features. The wireless client

VLAN is delivered using tagged frames.

The uplink is configured for three tagged VLANs, the management VLAN,

wireless client VLAN, and the systems VLAN. The two 1-gigabit ports are aggregated

using link aggregation control protocol (LACP) which both increases the available up-

link bandwidth to 2 gigabits and provides fault tolerance in the face of faultily wiring.

The HP switches used in the infrastructure support a variety of configuration

techniques including serial, telnet, http, and SNMP. The next series of instructions de-

tails how to set up a new switch, taking into account the order in which the options must

be set.

1. Connect to the serial port on the switch and power it on. Do not connect it to any

uplink links. The serial port auto detects the baud rate, just hit enter a few times

to get the login prompt. Initially there is no password on the switch.

2. Enter the menu configuration tool (“menu” option from command line). Within

this tool set the following options in order. The numbers immediately preceding

the option name indicate which menu items need to be selected to reach the ap-

propriate screen. For example, 2->1->NTP is interpreted as selecting item 2 in

the first menu, item 1 in 2’s submenu, and then the NTP option within the sub-

submenu.

(a) 2->1->NTP settings (method SNTP, mode unicast, server address
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132.239.1.6, time zone -490, daylight time rule : continental-US-and-

Canada)

(b) 2->8->Vlan Names

=> add 115 ”80211-client”

=> add 439 ”wireless-mgt”

=> add 441 ”systems”

(c) 2->8->Vlan Support (Primary Vlan => ”wireless-mgt”)

(d) 2->Port/Trunk Settings

=> make group ”Trk1” and type ”LACP” on ports 25 and 26

(e) 2->8->Vlan Port Assignment

=> Make ports 1-24 (default vlan: no, 80211-client: Tagged, wireless-mgt:

untagged, systems: no)

=> make Trk1 ( default vlan: no, 80211-client: tagged, wireless-

mgt:untagged, systems: tagged)

(f) 2->5->IP Settings

=> Disabled for all VLANs expect:

=> Manual for wireless-mgt with appropriate IP and netmask

=> gateway: 172.22.13.1 (leave IP routing disabled)

(g) 2->SNMP Community Names

=> Delete public

=> add wireless SNMP community (look at another switch for name; omit-

ted for security reasons)

3. Plug the switch into the uplink connection and then go back to the command line

configuration interface (i.e., leave the menu interface). Enter the command:

> configure web-management plaintext

4. Open up a web browser and browse to the switch’s IP address. In order, use the

following screens to set the options:
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(a) Security->SSL tab

=>create new SSL cert

=>enable SSL

5. Verify SSL is working by reconnecting to the switch with https instead of http

6. Switch back to the command line interface and issue the following directive:

> configure no web-management plaintext

7. Switch back to the browser’s SSL configuration session and perform the follow-

ing:

(a) Security->Device Passwords

set ”read-write access” username and password to the correct values for the

installation

8. Switch back to the menu configuration interface. This is done by running the

menu command from the command line interface. Change the following:

(a) 2->IP Authorized Managers

=> add 172.22.13.254/24

9. Reboot Switch

Switch configuration is now complete.

A.6 Wireless Control Machine

There is a control machine for the testbed in addition to the nodes. The control

machine is responsible for running all the necessary services, maintaining the master

node image, and for building packages that get deployed to the testbed nodes. The

control machine is a critical part of the testbed infrastructure, and failure of this machine

prevents the testbed from operating. This section discusses the important aspects of the

control machine.
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A.6.1 Connectivity

The control machine is allocated two different IP addresses on two different

virtual local area networks (VLANs). The first address is a private address on the VLAN

occupied only by the testbed nodes. This connection enables the control machine to use

direct broadcast protocols, such as DHCP, to coordinate the testbed nodes. The second

connection is to the public network at UCSD. This permits access from outside hosts

to services running on the control machine. The Linux kernel supports 802.1q VLAN

tagging, so it is possible to provide access to both VLANs with one physical network

cable. Example syntax for enabling VLANs in Linux is:

1. vconfig add eth0 439

2. vconfig set flag eth0.439 1 1

3. ifconfig eth0.439 up

A.6.2 Compilation

The library and header environment on the control machine is set up to closely

mimic the environment that runs on the testbed nodes. This allows programs to be linked

with dynamic libraries. The other alternative, static linking, results in executable sizes

on the order of 5 megabytes each. Since each node only has 64 megabytes of storage 5

megabyte executables would dramatically limit the usefulness of the nodes.

A.6.3 Services

The control machine provides a number of critical services for the testbed

nodes. One of the most important services is DHCP. Each machine in the testbed has a

separate DHCP entry, keyed by MAC address. This is important for two reasons. First, it

reduces the complexity of configuring the individual nodes. Secondly DHCP is required

to perform network booting through PXE. Network booting it used to install and update

the OS images on the testbed nodes.
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Trivial file transfer protocol (TFTP) support is also necessary to enable net-

work booting. Therefore the control machine also provides TFTP service to the testbed

subnet. Only the minimum files necessary for network booting are available via TFTP.

These files include the pxelinux bootloader and related configuration files.

The wireless control machine also provides DNS service. This is necessary

to handle the sometimes high amount of churn as new nodes are added and older ones

relocated. The campus DNS mechanisms are manual and therefore can’t be automated.

Both forward and reverse service is provided. The wireless control machine is the only

DNS server the testbed nodes know about.

The DNS and DHCP configuration files need to be updated every time there

is a change in the testbed composition. This process has been automated to reduce

human error and to speed up turnaround time. The makefile in /projects/wireless-aps/ap-

list recreates all the necessary configuration files after consulting the node installation

database. The database is discussed in section A.6.4.

Ganglia [The] is used to monitor the health of the testbed nodes. Its design

requires that a single server aggregate the statistics from the individual nodes. The

control machine is the obvious place to provide this service. As a result, the detailed

node status for the entire testbed is available in XML format from a TCP port on the

control machine.

The remaining services running on the control machine are primarily in sup-

port of ongoing research, as opposed to support of the testbed. Some of these services

include a web server and an outbound mail server. The exact composition of such ser-

vices varies over time as the specific experimental needs for a project evolve.

A.6.4 Node Installation Database

A number of the tools and scripts require accurate information about a par-

ticular node’s installation characteristics, including it’s MAC address and which switch

port it is connected to. In order to provide this information it is necessary to maintain

a database and update it when changes to the testbed have been made. The database is
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located at wireless.ucsdsys.net:/projects/wireless-aps/ap-list/aplist.txt, and is formated

as a comma separated text file. The first line of the file provides the name for each sub-

sequent field. Some of the available information includes MAC address of all wired and

wireless interfaces, IP address, node name, and the switch name and port. To enable

tools that run on a machine other than the control machine the current version of the

database is also available at http://wireless.ucsdsys.net/aplist/sysnet ap database.txt.

A.6.5 Other useful management tools

The control machine includes a set of scripts that help manage the power-

over-ethernet capabilities of the switches. These scripts are located in /projects/wireless-

aps/switch-management/bin and are called power on, power off, and power cycle. They

accept the name of the AP as the sole parameter and take the specified action. They work

by sending an appropriate SNMP request to the correct switch. The scripts look up the

correct switch and port for a given AP using the node database.

In addition to the PoE scripts there is a script that controls the default

startup sequence of a node . This script is named default boot, and is also located

in /projects/wireless-aps/switch-management/bin. The first argument is the name of a

pxelinux configuration file, which must already be present in the /tftp/pxelinux.cfg di-

rectory. The second argument is the name of an AP. The script arranges for the AP to

load the specified configuration file during the pxelinux phase of the boot chain. This

is typically used to change the default boot behavior from install to localboot (or vise

versa), however the configuration file is very expressive resulting in a wide range of

possible options.

The /projects/wireless-aps/ap-management/list aps.pl script returns the names

of all active APs. It does so by querying the ganglia data to determine the last time a

node reported statistics, and then displays all the nodes that have reported recently. This

is useful when developing automated experiment scripts that need to know which nodes

are available while, at the same time, allowing the set of nodes used in a experiment to

evolve over time.
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