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Abstract

Combat-related mild traumatic brain injury (cmTBI) is a leading cause of sustained

physical, cognitive, emotional, and behavioral disabilities in Veterans and active-duty

military personnel. Accurate diagnosis of cmTBI is challenging since the symptom

spectrum is broad and conventional neuroimaging techniques are insensitive to the

underlying neuropathology. The present study developed a novel deep-learning neu-

ral network method, 3D-MEGNET, and applied it to resting-state magnetoencepha-

lography (rs-MEG) source-magnitude imaging data from 59 symptomatic cmTBI

individuals and 42 combat-deployed healthy controls (HCs). Analytic models of indi-

vidual frequency bands and all bands together were tested. The All-frequency model,

which combined delta-theta (1–7 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma

(30–80 Hz) frequency bands, outperformed models based on individual bands. The

optimized 3D-MEGNET method distinguished cmTBI individuals from HCs with

excellent sensitivity (99.9 ± 0.38%) and specificity (98.9 ± 1.54%). Receiver-operator-

characteristic curve analysis showed that diagnostic accuracy was 0.99. The gamma

and delta-theta band models outperformed alpha and beta band models. Among

cmTBI individuals, but not controls, hyper delta-theta and gamma-band activity cor-

related with lower performance on neuropsychological tests, whereas hypo alpha

and beta-band activity also correlated with lower neuropsychological test perfor-

mance. This study provides an integrated framework for condensing large source-

imaging variable sets into optimal combinations of regions and frequencies with high

diagnostic accuracy and cognitive relevance in cmTBI. The all-frequency model

offered more discriminative power than each frequency-band model alone. This
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approach offers an effective path for optimal characterization of behaviorally rele-

vant neuroimaging features in neurological and psychiatric disorders.
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1 | INTRODUCTION

Combat-related mild traumatic brain injury (cmTBI) mainly due to blast

exposure is a leading cause of sustained physical, cognitive, emotional,

and behavioral deficits in Veterans and active-duty military personnel.

Eighty-nine percent of blast-related head injuries experienced in Iraq and

Afghanistan conflicts were mild TBIs (mTBI; MacGregor, Dougherty, &

Galarneau, 2011). Although mild head injuries frequently resolve within

days post-injury (Bigler, 2008), post-concussive symptoms (PCS) persist

for 3 months or longer in 7.5–40% of Veterans (Cooper et al., 2015;

Morissette et al., 2011; Schneiderman, Braver, & Kang, 2008; Terrio

et al., 2009). Persistent PCS in cmTBI typically are related to problems in

attention, working memory, and executive functioning (McInnes, Friesen,

MacKenzie, Westwood, & Boe, 2017), yet these injuries frequently go

undiagnosed and untreated despite their adverse effect on quality of life.

Conventional magnetic resonance imaging (MRI) and computed tomog-

raphy (CT) are typically insensitive to physiological alterations caused by

mild and some moderate TBIs (Bigler & Orrison, 2004; Johnston, Ptito,

Chankowsky, & Chen, 2001; Kirkwood, Yeates, & Wilson, 2006), even in

individuals with persistent PCS and cognitive deficits. This underscores

the need for neuroimaging measures that are sensitive to mild brain inju-

ries and can serve as biomarkers for evaluating interventions aimed at

improving functional capacity.

Although the pathophysiology of blast mTBI is not completely

understood, diffuse axonal injury (DAI) is known to play a major role

in brain dysfunction (Garman et al., 2011), producing an imbalance in

excitatory/inhibitory neural activity after mTBI. It is widely assumed

that white matter tracts are primarily vulnerable to DAI, which causes

cortical network disconnection (see reviews [Asken, DeKosky,

Clugston, Jaffee, & Bauer, 2018; Hannawi & Stevens, 2016]). As such,

diffusion tensor imaging (DTI) techniques are commonly used to eval-

uate axonal injury in TBI. However, DTI has limited sensitivity in dis-

tinguishing individual patients with mTBI from healthy controls (HCs)

(Davenport, Lim, Armstrong, & Sponheim, 2012; Mac Donald

et al., 2011; Shenton et al., 2012), rendering clinical applications chal-

lenging at this time for measurements solely dependent on detecting

white-matter pathology (Asken et al., 2018; Douglas et al., 2015).

The possibility that other pathologies underlying mTBI are at play

was recently suggested by an animal study showing that DAI substan-

tially alters the integrity of gray matter (GM) (Vascak, Jin, Jacobs, &

Povlishock, 2018). In this regard, magnetoencephalography (MEG)

source imaging can detect subtle pathology that often goes

undetected in individuals with mTBI when using structural neuroimag-

ing techniques (Huang et al., 2012; Huang et al., 2014; Robb Swan

et al., 2015). MEG directly measures the magnetic signal due to neuro-

nal activation in GM with high spatial localization accuracy (2–3 mm

in cortex; Leahy, Mosher, Spencer, Huang, & Lewine, 1998) and high

temporal resolution (< 1 ms), which translates into excellent frequency

specificity at different frequency bands (Hamalainen, Hari, Ilmoniemi,

Knuutila, & Lounasmaa, 1993). Regional resting state (rs-MEG) slow-

wave (delta band 1–4 Hz, extending to theta band 5–7 Hz) markers

are highly sensitive (�85% sensitivity) in distinguishing chronic and

sub-acute mTBI patients with persistent PCS on a single-subject basis

from neurologically intact individuals (Huang et al., 2012; Huang,

Nichols, et al., 2014; Lewine et al., 2007; Lewine, Davis, Sloan,

Kodituwakku, & Orrison Jr., 1999; Robb Swan et al., 2015). Abnormal

slow-waves have also been reported in a cohort consisting of acute,

sub-acute, and chronic mTBI subjects (Kaltiainen, Helle, Liljeström,

Renvall, & Forss, 2018). We recently discovered that rs-MEG gamma-

band (30–80 Hz) markers showed striking hyperactivity in cmTBI, pos-

sibly due to injury of GABA-ergic parvalbumin-positive (PV+) inter-

neurons (Huang et al., 2020). In addition, task evoked (te-MEG)

recordings during working memory detected abnormal alpha, beta,

and gamma signals throughout the brain in individuals with cmTBI,

which correlated with poorer cognitive functioning (Huang

et al., 2019). However, the vast number of aberrant markers of
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neuronal dysfunction throughout the brain poses a significant chal-

lenge for clinical applications. In this regard, analytic approaches are

needed to discover optimal combinations of aberrant features across

different frequency bands that best distinguish cmTBI and also predict

neurobehavioral deficits.

Machine learning is a data-driven approach that optimally inte-

grates high-dimensional features in large datasets. It has been used to

classify mTBI and HC subjects based on rs-MEG phase-

synchronization analyses of functional connectivity. For example,

Vakorin and colleagues applied a support vector machine (SVM) classi-

fier to rs-MEG source-based measures of simple functional connectiv-

ity, reporting that reduced delta and gamma connectivity together

with increased alpha-band connectivity distinguished civilian mTBI

patients from HCs with 88% accuracy (Vakorin et al., 2016).

Dimitriadis and colleagues applied an extreme learning machine classi-

fier to rs-MEG sensor-based functional connectivity measures derived

from graph theory to measure the overall efficiency of information

transfer across the brain and at local levels. They reported that alpha-

band local efficiency distinguished civilian mTBI patients from HCs

with 100% accuracy (Dimitriadis, Zouridakis, Rezaie, Babajani-

Feremi, & Papanicolaou, 2015). These studies illustrate the great

potential of machine learning approaches for uncovering optimal com-

binations of discriminating features, which can streamline the inter-

pretation of analyses from high-dimensional data. Despite the very

good to excellent classification accuracies reported in these studies,

however, functional connectivity metrics do not always easily pinpoint

the injured brain regions due to the involvement of multiple regions in

functional connectivity analysis and the many interconnecting path-

ways that connect these regions.

To our knowledge, machine learning has not been used to investi-

gate rs-MEG optimal features of regional activity across different fre-

quency bands that distinguish cmTBI from HC in participants with

similar combat experiences. The main goal of the present study was

to develop a deep-learning (DL) neural-network algorithm, called 3D-

MEGNET, that could classify cmTBI and HC participants with at least

95% accuracy (sensitivity and specificity). Machine learning is a branch

of artificial intelligence that includes methods, or algorithms, for auto-

matically creating models from data. Unlike a system that performs a

task by following explicit rules, a machine learning system learns from

experience. DL is a subset of machine learning algorithms that use

artificial neural network (ANN). DL performs the learning by adjusting

the weights of the artificial neurons that are distributed within a large

number of “hidden” layers to identify features from the data. Hidden

layers come between the input and output layers. Each layer is made

up of artificial neurons, often with some activation functions. DL

approach has been the most promising for high-dimensional structural

medical imaging processing and classification (Eo et al., 2018;

Hammernik et al., 2018; Hyun, Kim, Lee, Lee, & Seo, 2018; Jun

et al., 2019; Kwon, Kim, & Park, 2017; Yang et al., 2018).

We investigated the performances of 3D-MEGNET when model-

ing individual frequency bands and all bands combined (i.e., all-Band

model) to determine if regional changes in one or more frequency

bands optimally distinguished cmTBI and HCs. The classification

accuracies of DL based 3D-MEGNET were also compared with those

of SVM, a more a traditional machine learning approach. We also eval-

uated the behavioral significance of regional rs-MEG features or clas-

sifiers by correlating them with measures of cognitive function.

Our focus was the performance of 3D-MEGNET with Fast-

VESTAL as the MEG source magnitude imaging method (Huang

et al., 2014; Huang et al., 2020) used in the input layer. However, for

comparison, performance of 3D-MEGNET with Beamformer as the

source analysis approach for the input layer was also evaluated.

Beamformer is a popular spatial filter approach that assumes source

time-courses are uncorrelated (Barnes & Hillebrand, 2003; Gross

et al., 2001; Gross & Ioannides, 1999; Hillebrand & Barnes, 2003; Rob-

inson & Vrba, 1999; Sekihara, Nagarajan, Poeppel, Marantz, &

Miyashita, 2001; Van Veen, van Drongelen, Yuchtman, & Suzuki, 1997).

2 | MATERIAL AND METHODS

2.1 | Research participants

All study participants were 101 male U.S. active-duty military service

members or Operation Enduring Freedom / Operation Iraqi Freedom

Veterans. Table 1 details demographic characteristics of the partici-

pants. The cmTBI group included 59 participants who met the inclu-

sion criteria for a history of combat-related mTBI with chronic

sequelae and persistent PCS, and the age-matched HC group included

42 individuals with combat experience but without self-reported

combat-related head injury. Table S.1 lists additional characteristics of

research participants that include the length of time since injury and

injury type information for the participants with cmTBI. The cmTBI

diagnoses were based on Veterans Affairs and Department of

Defense diagnostic criteria (The Management of Concussion/mTBI

Working Group, 2009): (a) loss of consciousness <30 min or transient

confusion, disorientation, or impaired consciousness immediately after

the combat-related trauma; (b) post-traumatic amnesia <24 hr; and

(c) an initial Glasgow Coma Scale (Teasdale & Jennett, 1974) between

13 and 15 if available. Since the Glasgow Coma assessment was not

accessible for most individuals who received their injury in theater,

volunteers missing the Glasgow Coma Scale assessment, but who met

other diagnostic criteria, were also enrolled. The research study clini-

cal interview also assessed 21 enduring PCS (Table 1), modified

slightly from the Head Injury Symptom Checklist (McLean, Dikmen,

Temkin, Wyler, & Gale, 1984); requirement for inclusion in cmTBI was

three or more PCS (McLean et al., 1984). The diagnosis of cmTBI or

HC was corroborated using medical records, and research clinical

interviews that assessed the nature of patients' injuries. The

Supporting Information details exclusion criteria and procedures to

prevent medication-related confounds to rs-MEG exam.

Among the 101 research participants, 95 (including 55 cmTBI and

40 HC) were used to study the sensitivity and specificity of the 3D-

MEGNET DL approach for group classification. The remaining six

“out-of-sample” participants (four cmTBI and two HC) were used to

validate the performance accuracy of the DL rs-MEG approach.

HUANG ET AL. 1989



2.2 | Neuropsychological exams

The neuropsychological assessment (Table 1) focused on tests of

executive functions from the Delis-Kaplan Executive Function System

(D-KEFS; Delis, Kaplan, & Kramer, 2001), and visuospatial processing

and psychomotor speed from the Wechsler Adult Intelligence Scale-

Third Edition (WAIS-III; Wechsler, 1997; Wechsler, 2008), which are

sensitive to cognitive decline in mTBI (Robb Swan et al., 2015). The

neurocognitive correlation analyses presented herein focused on the

following subset of measures from a larger battery that was adminis-

tered, namely those showing significant correlations with MEG mea-

sures in mTBI and/or control groups in previous studies (Huang

et al., 2019; Huang et al., 2020; Robb Swan et al., 2015). The D-KEFS

Number-Letter Switching subtest of the Trail Making Test measures

cognitive flexibility. Subtests of the D-KEFS Verbal Fluency Test

require participants to generate, as quickly as possible, words begin-

ning with specific letters (Letter Fluency subtest) and words in specific

semantic categories while shifting between categories (Category

Switching subtest). Letter Fluency tests phonemic processing, which

is sensitive to language difficulties, whereas Category Switching tests

cognitive flexibility during semantic processing. The WAIS-III Digit

Symbol Coding subtest utilizes a number of cognitive processes and is

primarily used as a measure of visuospatial processing and psychomo-

tor speed (Wechsler, 2008). The WAIS-III Processing Speed Index is a

composite standard score derived from the Symbol Search and Digit

Symbol Coding subscales.

2.3 | MEG data acquisition and signal pre-
processing

Resting-state MEG data were collected at the UCSD MEG Center

using the VectorView™ whole-head MEG system (Elekta-Neuromag,

Helsinki, Finland) with 306 MEG channels. Participants sat inside a

TABLE 1 Demographic
characteristics, neuropsychological
scores, and symptoms in the healthy
control and cmTBI groups

HC (n = 42) cmTBI (n = 59)

SignificanceMean SD Mean SD

Age 32.00 8.53 29.86 6.31 n.s.

aYears of education 13.71 2.00 12.98 1.41 bn.s.

D-KEFS

Number-letter sequencing 11.05 2.00 10.17 2.31 p = .044

Letter fluency 11.14 3.66 10.09 2.82 n.s.

Category fluency 11.90 3.45 11.39 2.86 n.s.

Category switching 11.55 2.43 11.01 2.93 n.s.

WAIS

Digit symbol coding 10.50 2.70 9.77 2.94 n.s.

Processing speed index 105.43 16.29 102.95 14.53 n.s.

Symptoms
HC
(%)

cmTBI
(%) Symptoms

HC
(%)

cmTBI
(%)

Headaches 12.0 60.0 Lack of spontaneity 0.0 1.8

Dizziness 9.5 41.8 Affective lability 2.4 29.1

Fatigue 14.3 45.5 Depression 12.0 25.5

Memory difficulty 14.3 78.2 Trouble concentrating 19.1 27.3

Irritability 19.1 67.3 Bothered by noise 4.8 23.6

Anxiety 19.1 50.9 Bothered by light 14.3 14.6

Trouble with sleep 16.7 69.1 Coordination/balance

problems

11.9 21.8

Hearing difficulties 16.7 50.9 Motor difficulty 0.0 0.0

Blurred vision, other visual

difficulties

2.4 16.4 Difficulty with speech 2.4 7.3

Personality changes 2.4 27.3 Numbness/tingling 11.9 10.9

Apathy 0.0 18.2

Note: D-KEFS refers to the Delis-Kaplan Executive Function System. WAIS refers to the Wechsler Adult

Intelligence Scale-Third Edition. Neuropsychological measures are scaled scores (mean = 10, SD = 3),

except for The WAIS Processing Speed Index, which is a standard score.
aYears of education: High school = 12; AA = 14; bachelor's = 16; master's = 18; JD = 19; MD, DO, or

ND = 20; PhD = 21; MD–PhD = 25.
bMann–Whitney U test.
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multi-layer magnetically shielded room (Cohen, Schlapfer, Ahlfors,

Hamalainen, & Halgren, 2002). MEG recordings were divided into two

5-min blocks where the participant was instructed to keep his/her

eyes closed and empty his/her mind. Data were sampled at 1000 Hz

and run through a high-pass filter with a 0.1 Hz cut-off, and a low-

pass filter with a 330 Hz cut-off. Micro eye blinks and eye movements

were monitored using two pairs of bipolar electrodes, and heart sig-

nals were monitored with another pair of bipolar electrodes.

Substantial efforts were taken to help ensure that participants

were alert during the rs-MEG recordings. Prior to MEG sessions, partic-

ipants completed a questionnaire about the number of hours they slept

the previous night, how rested they felt, and if there was any reason

that they might not be attentive and perform to the best of their abili-

ties (e.g., headache, pain). Sessions alternated between eyes-closed and

eyes-open conditions, and eye blinking and movement were monitored.

During MEG recording, participants were viewed on camera and tech-

nicians continuously monitored alpha band oscillations, which are con-

sistently associated with tonic alertness (Oken, Salinsky, & Elsas, 2006).

The Supporting Information describes the pre-processing steps

for rs-MEG and structural MRI data. None of the cmTBI or HC partici-

pants had observable deficits on structural MRI as assessed by a

board-certified neuroradiologist (Dr. R. R. Lee).

2.4 | MEG source magnitude imaging using Fast-
VESTAL

Voxel-wise MEG source magnitude images were obtained using our

high-resolution Fast-VESTAL MEG source magnitude imaging method

(Huang et al., 2020; Huang, Huang, et al., 2014). This approach requires

the sensor waveform covariance matrix. The artifact-free, eyes-closed,

resting-state MEG sensor-waveform datasets were divided into 2.5 s

sections. The data in each section were first DC-corrected and then run

through one of the following band-pass filters for delta-theta (1–7 Hz),

alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) bands. Notch

filter at 60 Hz was applied to remove the power line signals.

Waveforms from all 306 sensors were used in the analysis. Sensor-

waveform covariance matrices were calculated in the time domain for

individual sections after the band-pass filtering, in the same way as in

our previous studies to preserve the phase information (Huang

et al., 2017; Huang, Huang, et al., 2014). Then the final sensor-waveform

covariance matrix was obtained by averaging the covariance matrices

across individual sections for the concatenated 10-min resting-state data

that combined the two 5-min blocks. From the covariance matrix,

whole-brain MEG source magnitude images for each frequency band

were obtained for each participant using the Fast-VESTAL procedure

(Huang et al., 2016; Huang et al., 2020; Huang, Huang, et al., 2014).

2.5 | 3D-MEGNET DL neural network for
classification

Figure 1 diagrams the DL network based on 3D-MEGNET. In 95 par-

ticipants and for each frequency-band model, voxel-wise whole brain

rs-MEG source images obtained from Fast-VESTAL were first spatially

registered to the MNI-152 (Grabner et al., 2006) brain-atlas template

using FLIRT, an affine transformation program from FSL software

(www.fmrib.ox.ac.uk/fsl/; Smith et al., 2004; Woolrich et al., 2009).

Spatial convolution and Max-pooling using functional regions of

interest (ROI): Once in MNI-152 space, the rs-MEG source imaging

data from all frequency bands were first run through a spatial convo-

lution layer. This convolution operation convolved the imaging data

with a 3D Gaussian kernel with 5.0 mm full width half maximum

(FWHM) to further reduce the inter-subject variability in anatomy.

Then, a Max-pooling procedure was applied to the spatially convolved

rs-MEG source imaging data. In this procedure, the MEG source imag-

ing voxels were grouped into 184 GM functional ROI variables using

the FCONN parcellation with similar sizes (Shen, Tokoglu,

Papademetris, & Constable, 2013). In each functional ROI, the maxi-

mum activity was obtained across all voxels within such an ROI. After

regressing out age and education variables, 184 ROI features for each

frequency band were obtained. Additional details are provided in the

Supporting Information.

The spatial convolution and Max-pooling procedure based on

functional ROI played important roles in feature selection and dimen-

sion reduction, which is similar to the steps in 3D Convolutional Neu-

ral Networks (3D-CNN) for imaging processing (e.g., [Ji, Xu, Yang, &

Yu, 2013]), except for two main differences. The first main difference

is spatial convolution uses only the Gaussian kernel in 3D-MEGNET,

without any spatial-gradient based convolutional filters. The second

main difference is that the Max-pooling is based on functional ROI in

3D-MEGNET, rather than on Euclidean distance in 3D-CNN. These

differences are discussed below.

Only one convolutional filter with Gaussian smoothing kernel was

used in 3D-MEGNET. This is one main difference between 3D-

MEGNET and the typical CNN approaches that use a large number of

spatial gradient-based convolutional filters for processing structural

images (Eo et al., 2018; Hammernik et al., 2018; Hyun et al., 2018;

Jun et al., 2019; Kwon et al., 2017; Yang et al., 2018). Specifically, the

built-in CNN filters from TensorFlow were not used in the present

study. The gradient based convolutional filters are good for detecting

edges and shapes in images, and they usually require a large number

(e.g., thousands) of samples to train. However, rs-MEG source magni-

tude images only contain “hot spots” without edge, shape, and other

features. The single layer of convolutional filter with a Gaussian

smoothing kernel in 3D-MEGNET, in combination with our Max-

pooling layer (see below) using 184 functional ROIs, effectively

achieved the goal of dimension reduction using a smaller number of

samples to train.

The Max-pooling procedure based on functional ROIs (Shen

et al., 2013) was used in 3D-MEGNET, instead of the geometric Max-

pooling procedure based on Euclidean distance in typical CNN

(Eo et al., 2018; Hammernik et al., 2018; Hyun et al., 2018; Jun

et al., 2019; Kwon et al., 2017; Yang et al., 2018). It is common that

functionally distinct regions are next to each other with small Euclid-

ean distance. The functional ROI based Max-pooling has the advan-

tage of taking into consideration the boundaries of functionally

distinct regions.
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Recursive feature elimination (RFE) based on SVM (Lu et al., 2016;

Muller & Guido, 2016; Wang, Xiao, & Wu, 2019) was used to obtain

the optimal ROI features from the Max-pooling ROI variables across

all frequency bands. The source activity from the subset of ROI vari-

ables after the RFE were reshaped into a 1-dimensial Flatten Layer for

classifications (Figure 1). All elements in the Flatten Layer were fully

connected to two hidden Dense ReLU Layers. Each layer contained

artificial neurons (i.e., nodes) that were connected to all the nodes in

the preceding layer, with the rectified linear unit (ReLU) activation

function. These two “hidden” ReLU layers combined all the features

learned by the previous layers across the rs-MEG ROI source images

to optimize the weights of the features for classification. The third

fully connected dense layer containing nodes with Softmax activation

function led to the final classification the MEG source images. The

output classes as shown in Figure 1 were the cmTBI and HC groups.

More details of the 3D-MEGNET setting were provided in Supporting

Information.

The performances of 3D-MEGNET were examined for each indi-

vidual frequency band, by changing the rs-MEG source imaging data

in the Input Layer from the combined all frequency bands data to that

from each frequency band. The rest of the network design remained

the same.

2.6 | 3D-MEGNET procedure and parameters
setting

In the present study, 85 (89.5%) individuals were randomly selected

for a training data set, and the remaining 10 individuals (10.5%)

formed the testing set. Such setting is somewhat different from the

typical DL settings of 80–20% splitting ratio between the training and

testing data sets (Muller & Guido, 2016). The main reason of our

choice of splitting ratio was the moderate number of individuals in the

present study (see Section 4).

RFE based on SVM (Lu et al., 2016; Muller & Guido, 2016; Wang

et al., 2019) was used to obtain the optimal ROI features from the

Max-pooling ROI variables across all frequency bands. Initially, all

K variables present in our ROI dataset were included in training the

network model. Then, the performance of the RFE-SVM model was

calculated. Next, we computed the performance of the model after

eliminating each variable (K times). Specifically, we dropped one ROI

variable every time and trained the model on the remaining K-1 vari-

ables. The ROI variable whose removal had produced the smallest

(or no) change in the performance of the model was dropped. This

process was repeated until no ROI variable could be eliminated. The

source activity from the subset of ROI variables after the RFE were

reshaped into a 1-dimensial Flatten Layer for classifications

(Figure 1).

All elements in the Flatten Layer were fully connected to a Dense

Layer with 2,048 artificial neurons (i.e., nodes) for the all-band model

or 4,096 nodes for individual frequency band models. A fully con-

nected dense layer contained nodes that were connected to all the

neurons in the preceding layer. Batch normalization was used in this

layer. Using the rectified linear unit (ReLU) activation function, artifi-

cial neurons in the Dense ReLU Layer nonlinearly transformed the acti-

vations to speed up the network training and reduce the sensitivity to

network initialization. A dropout rate of 0.15 was used in this hidden

layer to prevent overfitting. Then, the outputs were fed to the second

ReLU Dense Layer with 64 nodes. These two “hidden” ReLU layers

combined all the features learned by the previous layers across the rs-

MEG ROI source images to optimize the weights of the features for

classification.

F IGURE 1 3D-MEGNET deep-learning diagram. The input images include rs-MEG source imaging volumes in standard MNI-152 space across
different frequency bands and participants. The rs-MEG source images are first convolved with a Gaussian kernel. Next, the maximum values
from individual functional ROIs are pooled to form the Pooling Layer. The elements in the Pooling Later are subject to Recursive Feature
Elimination and then reshaped into the Flatten Layer. During the classification section, two fully connected Dense Layers with ReLU activation
function are added. One of these layers is then fully connected with the Dense Output Layer in which SoftMax activation function is used to
classify the individuals into either Control or mTBI groups
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The third fully connected dense layer led to the final classification

the MEG source images. This Dense Softmax Output Layer used

softmax activation function to normalize the output of the second

fully connected Dense ReLU Layer. The output of the Softmax Layer

consisted of positive numbers that sum to one, which was be used as

classification probabilities to assign the individuals to one of the

mutually exclusive classes and compute the loss. The output classes in

Figure 1 are the cmTBI and HC groups.

2.7 | Sensitivity and specificity of 3D-MEGNET for
classification

The pipeline for studying training and testing accuracies of the 3D-

MEGNET was as follows. First, the rs-MEG data from 95 participants

in the two groups (55 cmTBI and 40 HC) were randomly split into a

training set of 85 individuals (89.5%) and a testing set of 10 individuals

(10.5%). The training set was then used to train the 3D-MEGNET

model, and the training accuracy was examined. To control for label

imbalance, the number of subjects in any group (bmTBI or HC) was at

least 30% in each testing set. After the network was trained, the test-

ing data set, which did not overlap with the training set, was used to

independently assess the testing accuracy of the network. The testing

accuracies were divided into: (a) Sensitivity = TP / P, where TP is the

true positive (i.e., correctly identified mTBI subjects) and P is number

of real mTBI subjects in the data; and (b) Specificity = TN/N, where TN

is the true negative (i.e., correctly identified HC subjects) and N is the

number of real HC subjects in the data. To examine the robustness of

the performances of 3D-MEGNET, the procedures in Figure 1 were

repeated for 1,000 different combinations of the 85–10 splits.

The 95 participants were randomly split to 85 in-training datasets

for training 3D-MEGNET, and then the trained network was applied

to the remaining 10 subjects' in-testing datasets to assess classifica-

tion accuracies in each iteration. This process was repeated 1,000

times, with each iteration using a different combination of the 85–10

split, such that each participant had the chance of being randomly par-

titioned into the testing dataset �100 times (i.e., 10% × 1,000),

thereby forming a pool of �100 samples of training results per partici-

pant. To assess the sensitivity, Monte-Carlo analyses were performed

for the 55 cmTBI participants by randomly sampling each individual's

pool of �100 training results, which contained categorical classifica-

tions into a group and probability estimates for group membership.

The Monte-Carlo procedure was repeated 1,000 times to reliably cal-

culate classification accuracy or sensitivity for the cmTBI group. The

same process was then carried out for the 40 HC participants to cal-

culate specificity.

2.8 | Training 3D-MEGNET

The network was trained with Adam (Kingma & Ba, 2017) as the opti-

mizer with a fixed learning rate of α = 0.001, β1 = 0.9, β2 = 0.999.

Adam is computationally efficient with less memory demand

compared to other optimizers (e.g., stochastic gradient optimization).

The number of training iterations, in each of which all training data

goes through once, is called an epoch. The 3D-MEGNET was trained

for 100 epochs with a batch size the same as the size of the training

data set (i.e., 85). Categorical cross-entropy was used as the loss func-

tion. The final model was trained when the epoch number reached

100 or when there was no improvement in training loss for five con-

secutive epochs, whichever was less. The hardware and software set-

tings are listed in Supporting Information.

2.9 | ROIs that contributed to the 3D-MEGNET
classifications

Additional analyses were conducted for features that were chosen by

the RFE-SVM process in the Flatten Layer of 3D-MEGNET. Post hoc

ANOVAs tested for statistically significant group differences in the rs-

MEG magnitude of each of these ROIs for a specific frequency band.

Pearson correlations analyses also tested for relationships between

rs-MEG activity in each ROI and neuropsychological test perfor-

mances separately for each group of participants.

2.10 | 3D-MEGNET versus SVM, Fast-VESTAL
versus Beamformer

To evaluate the performance of DL based 3D-MEGNET over more a

traditional machine learning approach, we examined the classification

accuracy of the SVM approach. In the SVM approach, the two hidden

layers in the diagrams of Figure 1 were replaced with the SVM, and

the rest of the diagrams remained the same. Here, the comparisons

were between two different machine learning approaches (i.e., SVM

vs. 3D-MEGNET), based on the same Fast-VESTAL source magnitude

data input from the 55 cmTBI and 40 HC participants.

In addition, we examined the performances of 3D-MEGNET using

the source imaging data from the Beamformer source analysis as the

input data, rather than using Fast-VESTAL source magnitude images

as the input. Here, the machine learning structure did not change

(i.e., 3D-MEGNET), and the comparisons were between two different

source imaging approaches for the input layer (i.e., Beamformer

vs. Fast-VESTAL) in the same 55 cmTBI and 40 HC participants. Spe-

cifically, the Fast-VESTAL input data were replaced by those from the

Beamformer source analysis approach, and the rest of the diagrams in

Figure 1 remained essentially the same (see Section S.1.5 in

Supporting Information for details).

2.11 | Further validation of using Out-of-Sample
data sets

The performance of 3D-MEGNET and SVM algorithms was further

validated using rs-MEG data from six “out-of-sample” participants

(four cmTBI and two HC). In these analyses, the rs-MEG data from the
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95 participants were used to train the machine-learning algorithms

using Fast-VESTAL source magnitude images as the input. Then the

output from this trained algorithm was tested on the six out-of-

sample participants for classification accuracy.

3 | RESULTS

3.1 | Classification accuracies and ROC analyses of
3D-MEGNET

The classification accuracies of 3D-MEGNET in the testing sets are

shown in upper panel of Table 2 and Figure 2a,b, for each model.

Fast-VESTAL source magnitude imaging data were used as the input

layer. Using the diagnostic classification outcome measure (cmTBI

vs. HC), the all-band model had excellent classification accuracies for

both groups for sensitivity (99.92%) and specificity (98.95%). Classifi-

cation accuracies for the all-band model were markedly better than

for models using individual frequency bands (Mann–Whitney U test:

p < .0001). Figure 2a graphs the classification accuracies of the indi-

vidual frequency band models for Fast-VESTAL input, showing that

the rank order of performance from high-to-low in both cmTBI and

HC groups was gamma > delta-theta > alpha � beta.

The receiver operating curve (ROC) analyses evaluated the overall

accuracy of models by analyzing the area under the curve (AUC) for

the sensitivity and specificity distributions. Figure 2b shows the ROC

curves for all Fast-VESTAL input models. All curves markedly out-

performed the naive / nondiscretionary classifier (diagonal dashed

line). However, the all-band model (green curve) showed nearly per-

fect performance with both high sensitivity and high specificity. At

the level of 0.8 True Positive Rate (sensitivity), the performance order

for the False Positive Rate from low to high (lower is better) was all-

band < gamma < delta-theta < alpha � beta. The AUC (Table 2) for all

models was greater than 80%, with near perfect performance for the

all-band model at 99.99%, followed by gamma > delta-

theta > alpha � beta. Table S.2 details the number of PCS symptoms

for each individual participant and the probability of correctly

classifying individual participants into their diagnostic group for each

of the rs-MEG models.

By comparison, when Beamformer input was used as the source

imaging approach, classification accuracies for each frequency band

(i.e., sensitivity and specificity) were significantly lower than those

corresponding to models using Fast-VESTAL input (Section S.2 of the

Supporting Information; Figure S1 and Table S5).

3.2 | Classification accuracies and ROC analyses of
SVM for Fast-VESTAL input

Next we compared the performance of DL-based 3D-MEGNET over

the more traditional SVM learning approach. The lower panel of

Table 2 and Figure 2c,d show the classification accuracies of SVM

models in the testing sets. The SVM approach used the same Fast-

VESTAL source magnitude data input from the same 55 cmTBI and

40 HC participants. As in the DL-based 3D-MEGNET, classification

accuracies with SVM for the all-band model (i.e., sensitivity at 90.04%,

specificity at 89.88%, Figure 2c) were significantly higher than for

models using individual frequency bands (Mann–Whitney U test:

p < .0001). However, for each frequency band, the classification accu-

racies (i.e., sensitivity and specificity values) with SVM were signifi-

cantly lower than those corresponding ones with 3D-MEGNET

(Mann–Whitney U test: p < .0001).

Figure 2d shows the ROC curves for all models using SVM with

Fast-VESTAL input. All curves markedly outperformed the naive /

nondiscretionary classifier (diagonal dashed line). However, each of

these ROC curves underperformed the corresponding one for 3D-

MEGNET (Figure 2b).

3.3 | ROIs contributing to All-Band classifications

The spatial distribution of brain regions that contributed to the diag-

nostic classification in the all-band model is displayed in Figure 3

(upper panel) for each frequency band. The numbers of contributing

TABLE 2 Upper panel: In 3D-MEGNET analysis of Fast-VESTAL data input, the categorical classification accuracies (sensitivity and
specificity) and the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve in testing data sets for different frequency-
band models. Lower Panel: The corresponding values in SVM analysis of Fast-VESTAL data input

DL Fast-VESTAL All bands (%) δ-θ band (%) α band (%) β band (%) γ band (%)

55 mTBI (sensitivity) 99.92 ± 0.38 89.99 ± 2.34 85.56 ± 2.77 85.48 ± 2.42 93.17 ± 2.28

40 HC (specificity) 98.95 ± 1.54 84.00 ± 3.62 79.39 ± 3.17 78.34 ± 3.63 84.40 ± 3.54

AUC of ROC (%) 99.99 93.54 88.77 87.26 94.35

95% CI for AUC 99.90, 100.00 91.77, 95.18 86.59, 90.95 85.00, 89.59 92.64, 96.14

SVM fast-VESTAL All bands (%) δ-θ band (%) α band (%) β band (%) γ band (%)

55 mTBI (sensitivity) 90.04 ± 2.17 84.37 ± 2.59 77.45 ± 3.08 77.93 ± 3.28 84.51 ± 2.73

40 HC (specificity) 89.88 ± 2.54 75.89 ± 4.04 68.51 ± 4.84 66.39 ± 4.46 74.54 ± 4.44

AUC of ROC (%) 95.54 90.02 82.77 76.21 89.56

95% CI for AUC 90.68, 97.09 86.86, 92.05 79.00, 86.14 72.41, 80.55 86.55, 92.41

Note: The All-band Model (bold values) was the main focus of this study.
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classifiers were 28 (delta-theta), 29 (alpha), 27 (beta), and 23 (gamma),

respectively. The total number of contributing classifiers was 107 from

83 independent ROIs, with some regions identified by multiple bands.

Post hoc ANOVAs were performed to explore if 3D-MEGNET mainly

included ROIs that showed significant group differences based on uni-

variate analyses. As these analyses were exploratory, p values were

uncorrected for multiple comparisons. The results revealed regions for

which activity significantly increased (red), decreased (blue), or showed

no difference (green) in the cmTBI relative to the HC group. Some

ROIs that contributed to the all-band classification model showed sig-

nificantly increased delta-theta (7.5%) and gamma band (13%) activity

in the cmTBI group. Several regions also showed significantly increased

or decreased alpha (12%) and beta (6.5%) activity in the cmTBI group.

However, across frequency bands, activity in the majority of ROI clas-

sifiers (61%) did not differ between the groups. Table S.1 lists anatomic

regions of the ROIs that contributed to the all-band model.

3.4 | Correlations between rs-MEG activity and
cognition

Figure 4 displays scatter plots of representative correlations between

classifiers and performances on neuropsychological tests of executive

functioning, separately for each group. In Figure 3, arrows highlight

the anatomy of each classifier shown on scatter plots in Figure 4. The

normality of the neuropsychological variables was checked using the

Shapiro–Wilk and Shapiro–Francia normality test. All neuropsycholog-

ical variables passed the normality test, except Number-Letter

Sequencing. Thus, non-parametric Spearman correlations were used

in the analyses that involved Number-Letter Sequencing. For all the

other analyses, Pearson correlations were used. Correlations were

unadjusted for familywise error rates, as they were exploratory. As

such, they should be interpreted cautiously. We first investigated

neurocognitive associations for classifiers that showed significant

group differences in rs-MEG activity (Figure 4, first two columns).

Then neurocognitive correlations were evaluated for classifiers that

did not show significant group differences in rs-MEG activity

(Figure 4, third column). Significant correlations between other classi-

fiers and executive functioning are detailed in Table S.3. With only a

few exceptions, most neurocognitive associations were significant in

the cmTBI group, but not in the HC group. Classifiers that correlated

with executive functioning were largely in the frontal cortex (Figure 4;

Table S.3).

For regions showing abnormal delta-theta hypoactivity in the

cmTBI group (Figure 4, first row), right dorsolateral prefrontal cortex

(DLPFC, Figure 3a) and left ventral medial precentral cortex

F IGURE 2 Upper panel: Classification results from the five 3D MEGNET models with Fast-VESTAL input. (a): 3D-MEGNET's Percent
accuracy in testing data sets in mTBI and control groups, plotted for all frequency bands combined (i.e., all-band model, green bars), and for

individual frequency bands separately. The inverted “U” shapes indicate the all-band model was statistically more accurate than each of the
individual frequency band models at p < .0001 (Mann–Whitney U test). (b): Operating characteristic (ROC) curves for all frequency bands
combined (i.e., all-band model, green curve), and for individual frequency bands separately. The True Positive Rate (i.e., Sensitivity on y-axis) was
plotted as the function of False Positive Rate (i.e., 1—Specificity on x-axis). The dashed line represents a naive / non-discretionary classifier.
Probabilistic Classification data were used to calculate the ROC curves. Lower panel: Corresponding classification results for SVM models with
Fast-VESTAL input. (c) Percent accuracy in testing data sets for the SVM approach. (d) ROC curves for the SVM approach
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(vmPrecentral, Figure 3b) activity respectively correlated negatively

with Category Fluency and Number-Letter Sequencing scores only in

the cmTBI group (Figure 4a,b). Although delta-theta activity in the

right fusiform gyrus did not differ between the groups (Figure 3c), it

negatively correlated with Number-Letter Sequencing scores in only

the cmTBI group (Figure 4c). Increased delta-theta band activity in the

above regions predicted worse cognitive functioning.

For regions showing abnormal alpha hypoactivity in cmTBI

(Figure 4, second row), right dorsal anterior cingulate cortex (dACC,

Figure 3d) and right ventromedial prefrontal cortex (VMPFC,

Figure 3e) activity respectively correlated positively with Category

Switching and Number-Letter Sequencing scores only in the cmTBI

group (Figure 4d,e). Although there were no group differences in left

putamen alpha activity (Figure 3f), it positively correlated with Digit

Symbol Coding scores in both groups (Figure 4f). Alpha band

decreases in the above regions predicted worse cognitive functioning.

As for regions showing abnormal beta hypoactivity in the cmTBI

group (Figure 4, third row), left VMPFC (Figure 3g) and right rostral

anterior cingulate (rACC, Figure 3h) beta activity respectively corre-

lated positively with Letter Fluency and Processing Speed scores only

in the cmTBI group (Figure 4g,h). Despite an absence of group differ-

ences in left precuneus beta activity (Figure 3i), it positively correlated

with Category Fluency scores in the cmTBI, but not in the HC group

(Figure 4i). Beta band decreases in the above regions predicted worse

cognitive functioning.

For regions showing abnormal gamma hyperactivity in the cmTBI

group (Figure 4, fourth row), left frontal pole (FP, Figure 3j) and left

ventrolateral prefrontal cortex (VLPFC, Figure 3k) activity respectively

correlated negatively with Letter Fluency Digit Symbol Coding scores

only in the cmTBI group (Figure 4j,k). Although the groups did not dif-

fer in right posterior superior frontal gyrus (pSFG, Figure 3l) gamma

activity, it negatively correlated with Category Switching scores in

both groups (Figure 4l). Increased gamma band activity in these

regions was associated with worse cognitive functioning.

3.5 | Validation results on the “Out-of-Sample”
data sets

To further validate the performance of 3D-MEGNET and SVM algo-

rithms, rs-MEG Fast-VESTAL source magnitude imaging data from six

out-of-sample participants (four cmTBI and two HC) were used as

testing data, after the machine-learning algorithms were trained using

the 95 participant cohort. The results show that 3D-MEGNET (all-

F IGURE 3 Classifiers for the all-band model with Fast-VESTAL input. For the all-band model, the ROIs that contributed to the mTBI-HC
classification. Red: the ROIs contributing to the classification that also showed significant increases (p < .05) in rs-MEG activity in mTBI than HC;
Blue: the ROIs contributing to the classification that also showed significant decreases in rs-MEG activity in mTBI than HC; Green: the ROIs
contributing to the classification but did not show significant group differences in rs-MEG activity. (a)–(l): locations of representative ROIs are
indicated as yellow arrows. The scatter plots of these ROIs are presented in Figure 4
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band model) accurately classified all 6 “out-of-sample” participants,

whereas SVM correctly classified five out of the six participants with

one cmTBI participant misclassified as a HC.

4 | DISCUSSION

The DL 3D-MEGNET algorithm demonstrated excellent sensitivity

(>99%), specificity (>98%), and overall accuracy (>99%) in identifying

optimal rs-MEG source imaging features that distinguished Veterans

and active-duty service members with diagnosed cmTBI from those

without based on Veterans Affairs and Department of Defense diag-

nostic criteria. The DL 3D-MEGNET algorithm also outperformed the

more traditional SVM machine-learning approach. Furthermore, within

3D-MEGNET, the input layer using the Fast-VESTAL source magni-

tude imaging approach outperformed the Beamformer source analysis

approach. Modeling of all regional frequency bands together also ren-

dered significantly superior classifications relative to models that

included only a single frequency band. This finding underscores the

diversity in abnormal regional oscillatory frequencies in cmTBI. We

also discovered that optimal classifiers in the all-band model were

from brain regions that did and did not show group differences in

activity. The latter finding likely relates to the diversity of brain inju-

ries that individuals sustain, some of which do not characterize the

cmTBI participants as a group, but bolster the discrimination of indi-

vidual participants from HCs. For both types of classifiers, regional

activity was cognitively relevant, with hyperactivity from delta-theta

and gamma bands and hypoactivity from alpha and beta bands corre-

lating with poorer executive functioning and visuospatial processing/

psychomotor speed, typically only in cmTBI individuals. However,

these neurocognitive associations require validation in future studies

of larger samples of cmTBI cohorts.

F IGURE 4 Correlations
between 3D-MEGNET classifiers
and neuropsychological test
performances with Fast-VESTAL
input. First two columns: scatter
plots from representative ROIs
with significant group differences
in rs-MEG activity that also
showed significant correlations

with neuropsychological exams in
the mTBI (red stars), but not in
HC (blue circles) groups. Third
column: ROIs without significant
group differences in rs-MEG
activity that showed significant
correlations with
neuropsychological exams in
mTBI. In (f) and (l), but not (c) or
(i), rs-MEG in HC also showed
significant correlations with
neuropsychological exams. The
first, second, third, and fourth
rows show associations between
delta-theta, alpha, beta, and
gamma activity, respectively, and
cognitive performances. In (b), (c),
and (e), Spearman correlations
were used. The locations of the
ROIs are indicated by yellow
arrows in Figure 3
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4.1 | Source amplitude imaging for diagnostic
classification

3D-MEGNET modeling of source amplitude images directly revealed

specific brain regions that contribute to mTBI classification, identify-

ing features for which activity did and did not differ significantly

between groups in univariate analyses. This finding highlights the

power of 3D-MEGNET, particularly for diagnostic classification of

conditions in which there are considerable individual differences in

underlying pathology. Our approach substantially differs from

machine learning methods based on rs-MEG functional connectivity,

which have been used with very good success in classifying mTBI

(Dimitriadis et al., 2015; Vakorin et al., 2016) and mild cognitive

impairment (Dimitriadis et al., 2018; Yang, Bornot, Wong-Lin, &

Prasad, 2019). Functional connectivity is a powerful tool and well

suited for characterizing pathology at the level of coordinated net-

works. However, the interpretation of abnormal functional connectiv-

ity can be challenging in terms of pinpointing the source(s) of injury,

which may lie in only one of two identified regions, both regions,

and/or direct and indirect pathway(s) connecting the regions. Future

DL studies that combine abnormalities from source magnitude and

functional connectivity measures may advance a more complete

understanding of regional and network features that optimally charac-

terize neuronal pathology in cmTBI.

Source imaging based classification also differs from the sensor

based approach (Dimitriadis et al., 2015), wherein the sensor wave-

form cannot be directly linked with specific brain regions, since one

MEG sensor can receive signals from multiple brain regions and sig-

nals from any brain region can be detected by multiple MEG sensors.

Although our study and Vakorin and colleagues (28) both used MEG

source imaging, 3D-MEGNET modeling in our study used high resolu-

tion Fast-VESTAL (Huang, Huang, et al., 2014), which is highly accu-

rate in recovering source time-course activity (Huang, Huang,

et al., 2014). This differs from Beamformer source imaging (Vakorin

et al., 2016), which can lead to signal leakage due to its assumption

that brain activity is uncorrelated (Huang, Huang, et al., 2014). This is

likely the reason that the Beamformer models in the present study

underperformed those for Fast-VESTAL (Table 2 and Figure 2), since

we believe the correlated source activity may also contribute to the

group classifications between cmTBI and HC cohorts. Despite these

differences, it is clear from our study and others that rs-MEG exhibits

high sensitivity and specificity in detecting mild brain injuries

(Dimitriadis et al., 2015; Huang et al., 2012; Huang, Nichols,

et al., 2014; Vakorin et al., 2016). Moving forward, it will be critical to

determine the degree to which classifiers from different DL algorithms

can reliably distinguish different cohorts of patients with mTBI or

cmTBI from HC.

4.2 | Challenges of combat-related mTBI

Compared with the classification of non-combat civilian mTBI and HC

subjects (Dimitriadis et al., 2015; Vakorin et al., 2016), differentiating

cmTBI from HC individuals with similar combat experiences is more

challenging. This is because cmTBI and HC combatants have both

experienced exposure to high levels of stress and potential exposure

to blasts. Deployment-related head injury exposures and symptoms

are typically available only through self-reports, which are prone to

the vagaries of memory (Alosco et al., 2016). Moreover, PCS symp-

toms are non-specific and overlap with diagnostic criteria of other

medical conditions, increasing the challenge in making accurate, uni-

versally agreed upon cmTBI diagnoses (Radigan, McGlinchey,

Milberg, & Fortier, 2018). Active duty and Veteran participants

referred to this study were assigned to a diagnostic category, either

cmTBI or HC, based on the current gold standard, Veterans Affairs

and Department of Defense diagnostic criteria defined as head injury

exposure accompanied by altered mental state, post-trauma amnesia

or loss of consciousness, and the reporting of at least three current

PCS (The Management of Concussion/mTBI Working Group, 2009).

Despite the challenges inherent in cmTBI diagnosis, we showed for

the first time that 3D-MEGNET DL applied to rs-MEG source magni-

tude imaging can distinguish cmTBI individuals from combat-deployed

HCs with excellent sensitivity and specificity.

4.3 | Diffusion axonal injury in gray matter,
mechanisms of Delta-theta and gamma activity

DAI plays a major role in mTBI. Traditionally and intuitively, it is

assumed that white-matter tracts and brain regions sensitive to tissue

shearing are primarily vulnerable to DAI, which produces cortical net-

work disconnection (see reviews in [Asken et al., 2018; Hannawi &

Stevens, 2016]). Yet even sophisticated diffusion-based MRI tech-

niques for detecting white-matter abnormalities in mTBI are not suffi-

ciently sensitive for meaningful clinical applications (Asken

et al., 2018; Douglas et al., 2015). Moreover, recent animal studies

challenge this view by showing that GM is at least and potentially

more vulnerable to DAI (see references in (Vascak et al., 2018) and

discussion below). As such, rs-MEG may play a particularly important

role in revealing regional gray-matter vulnerabilities in cmTBI, beyond

the traditional focuses on white-matter tracts and regions sensitive to

shearing injury.

Interestingly, gamma and delta-theta band activity were better

classifiers than alpha or beta bands, when modeled individually.

Abnormal increases in gamma and delta-theta activity are consistent

with previous rs-MEG studies of mTBI. For example, aberrantly

increased rs-MEG slow-wave markers are sensitive in distinguishing

mTBI patients with persistent PCS from neurologically intact individ-

uals (Huang et al., 2012; Huang, Nichols, et al., 2014; Lewine

et al., 1999; Lewine et al., 2007; Robb Swan et al., 2015). Neurophysi-

ological studies in animals have established a solid connection

between pathological delta-wave (1–4 Hz) generation in GM and inju-

ries. Polymorphic delta-waves produced by physical lesions in cats

were localized to the GM of cortex overlying the lesion (Ball, Gloor, &

Schaul, 1977; Gloor, Ball, & Schaul, 1977). Abnormal delta-waves can

also be induced by the administration of atropine (Schaul, Gloor, Ball, &
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Gotman, 1978), a competitive antagonist of acetylcholine (ACh) recep-

tors that can block and/or limit ACh. These experiments concluded

that cortical deafferentation was a key factor in abnormal delta-wave

production, owing to blockages/limitations in the cholinergic pathway

(Schaul, 1998). Delta wave generation may be a protective mechanism

that isolates injured regions from the rest of the brain for neural

healing (Naviaux, 2019). Delta wave activity is a normal feature of

deep (“slow-wave”) sleep in which parasympathetic autonomic tone is

high and associated with metabolic patterns that underpin healing and

repair in both the CNS and periphery (Javaheri & Redline, 2012; Naji,

Krishnan, McDevitt, Bazhenov, & Mednick, 2019; Xie et al., 2013;

Yüzgeç, Prsa, Zimmermann, & Huber, 2018). In the periphery, slow-

wave sleep is required for normal protective and restorative decreases

in blood pressure and the sleep-associated increase in healthy heart

rate variability (Boudreau, Yeh, Dumont, & Boivin, 2013; Javaheri &

Redline, 2012). In genetic forms of mitochondrial disease that prefer-

entially affect neuronal function like Alpers syndrome, CNS healing

efforts are also associated with increased delta wave activity that per-

sists during wakefulness (Naviaux et al., 1999).

Increased gamma band activity in the cmTBI cohort is consistent

with our recent report of striking rs-MEG gamma-band hyperactivity

in mTBI (Huang et al., 2020), which we suggested may be a conse-

quence of injury to GABA-ergic parvalbumin-positive (PV+) interneu-

rons. Specifically, DAI plays a major role in brain dysfunction in mTBI

because it produces an imbalance in excitatory/inhibitory neural activ-

ity. In GM, DAI is also directly associated with injuries to GABA-ergic

inhibitory interneurons, specifically the parvalbumin-positive (PV+)

interneurons (Vascak et al., 2018). DAI in GM is perisomatic, near the

soma of the PV+ interneurons (Vascak et al., 2018), or with a degrada-

tion of the perineuronal net (PNN), a specialized extracellular struc-

ture enwrapping cortical PV+ inhibitory interneurons (Hsieh

et al., 2017). Fast-spiking (FS) PV+ inhibitory interneurons are the

most common type of GABA-ergic cells that express the calcium-

binding protein PV+ and receive N-methyl-D-aspartate (NMDA)-

dependent excitatory input from pyramidal cells (Carlén et al., 2012).

FS-PV+ interneurons regulate the activity of neural networks through

GABA-ergic inhibition of local excitatory neurons, and synchronous

activity of FS-PV+ interneurons generates gamma oscillations

(30–80 Hz; Carlén et al., 2012). Dysfunction or injury to PV+ inter-

neurons in animals causes disinhibition in the neural network, which

upregulates spontaneous gamma activity (and maybe beta), owing to a

lack of inhibition to pyramidal and other excitatory neurons (Carlén

et al., 2012; Cho et al., 2015; Kalemaki, Konstantoudaki, Tivodar,

Sidiropoulou, & Karagogeos, 2018). Our results are compatible with

GABA-ergic inhibitory mechanisms of brain injury, since MEG is pri-

marily sensitive to neuronal signals from GM.

4.4 | Classifiers correlate with cognitive
functioning

Our results further demonstrated the cognitive relevance of some

diagnostic features of cmTBI. Although mean test performance was

within the normal range for both groups, the striking associations with

activity within different frequency bands illustrates the power of

MEG to elucidate relatively subtle changes in cognitive functioning.

Delta-theta and gamma band hyperactivity in cmTBI group was asso-

ciated with worse cognition, whereas alpha and beta band hypo-

activity was associated with worse cognition. For classifiers that did

not show group differences in rs-MEG activity, similar neurocognitive

associations were also found across the frequency bands, mainly

within the cmTBI group, with a few exceptions. This finding empha-

sizes the cognitive relevance of these classifiers, which may be sensi-

tive to brain injuries in cmTBI participants with injuries that are less

characteristic of the entire cmTBI cohort. Neurocognitive associations

were overwhelmingly found only in the cmTBI, which suggests that

they were injury related, rather than characteristic of normal cognitive

activity. In addition, cognitively relevant classifiers were mostly found

for frontal cortical regions (Figure 4; Table S.3), consistent with the

emphasis of our neuropsychological test battery on executive

functions.

Increased delta-theta and gamma band activity was associated

with poorer cognitive flexibility (Number-Letter Sequencing), execu-

tive control (Category and Letter Fluency), and visuospatial

processing/psychomotor speed (Digit Symbol Coding). Classifiers in

these frequency bands were dominant in the lateral frontal cortex

(e.g., DLPFC, FP, VLPFC, pSFG), but also found in medial prefrontal

cortex (vmPrecentral), areas that govern higher-order cognitive and

motor functions (Bludau et al., 2014; Fuster, 2015; Koechlin, 2011;

Owen, 2000; Owen, McMillan, Laird, & Bullmore, 2005). Both delta-

theta and gamma hyperactivity in the frontal cortex may signify a

stronger engagement of cognitive-control processes (Gillis &

Hampstead, 2015; McAllister et al., 1999; Medaglia et al., 2012; Per-

lstein et al., 2004; Phillips, Parry, Mandalis, & Lah, 2017; Scheibel

et al., 2003; Turner, McIntosh, & Levine, 2011), especially in individ-

uals who exhibit signs of executive dysfunction. An exception was the

association between poorer Number-Letter Sequencing and elevated

fusiform delta-theta activity, which is compatible with its role in

processing higher-order visual information (Weiner & Zilles, 2016).

In contrast, decreased alpha and beta band activity was associ-

ated with poorer cognitive flexibility, executive control, and visuospa-

tial processing/psychomotor speed. Classifiers in these frequency

bands were notable in medial frontal areas (dACC, rACC, VMPFC),

which modulate many cognitive functions. For example, dACC and

rACC are routinely engaged during error detection, conflict monitor-

ing, attention, and emotional processing (Bush, Luu, & Posner, 2000;

Nieuwenhuis, Ridderinkhof, Blom, Band, & Kok, 2001; Pardo, Pardo,

Janer, & Raichle, 1990; Weissman, Gopalakrishnan, Hazlett, &

Woldorff, 2005), although rostral and dorsal divisions may be more or

less involved depending on cognitive (Bush et al., 2002; Polli

et al., 2005; Taylor et al., 2006) or emotional (Bush et al., 2000)

processing demands. The VMPFC also controls higher-level processes

involved in decision making, emotion regulation, and cognitive flexibil-

ity (Kim, Johnson, Cilles, & Gold, 2011) (see review in [Hiser &

Koenigs, 2018]). Hypo-activity in this region is also common in indi-

viduals who suffer post-traumatic stress disorder (PTSD) (Huang

HUANG ET AL. 1999



et al., 2014; Hughes & Shin, 2011; Rauch, Shin, & Phelps, 2006;

Rauch, Shin, Whalen, & Pitman, 1998), and is a key component in an

influential neurocircuitry model of PTSD (Hughes & Shin, 2011; Rauch

et al., 2006). Altogether, across frequency bands, cognitively relevant

classifiers were primarily located in the frontal cortex, in alignment

with their relationships to executive functions and visuospatial

processing and psychomotor speed.

4.5 | Sample size, and training-to-test ratio

In the present study, the training-to-test ratio in our data sets was

85–10 (or 89.5–10.5%). Such setting is somewhat different from the

typical DL settings of 80–20% splitting ratio between the training and

testing data sets (Muller & Guido, 2016). The rationale for our splitting

ratio was the moderate number of individuals in the present study

cohort. Although a sample of 95 individuals is considered “large” from
neuroimaging point of view, it is much smaller than the number of

samples used in typical DL classification approaches. The typical 80%

- 20% splitting ratios, sometimes referred as the Pareto rule, is usually

associated with thousands of samples in DL. In preliminary analyses,

we had found the DL network coefficients became unstable, with

reduced classification accuracy, when the number of individuals in the

training data set was less than 80, and this phenomenon was indepen-

dent of the splitting ratio. In contrast, the 85–10 (actual) or

(89.5–10.5% proportion) splitting ratio provided a good balance of a

stable training data set and accuracy prediction in the testing data set.

4.6 | Limitations and conclusions

To our knowledge this is the first study to demonstrate that a DL neu-

ral network application (3D-MEGNET) to rs-MEG source magnitude

imaging data produces excellent classification of Veterans and active-

duty service members with and without cmTBI. The all-frequency

band model in 3D-MEGNET using Fast-VESTAL source analysis signif-

icantly outperformed the individual frequency band models, unde-

rscoring the multifaceted nature of combat-related neuronal injuries.

Thus, mTBI is better characterized by considering all frequencies,

rather than limiting approaches to single bands. In addition, the DL-

based 3D-MEGNET outperformed the more traditional SVM

machine-learning approach, and 3D-MEGNET models using Fast-

VESTAL source analysis also significantly outperformed those using

Beamformer source analysis. Importantly, across all frequency bands

some classifiers were cognitively relevant, particularly in the cmTBI

group, suggesting that they were sensitive to declines in executive

functioning and visuospatial processing/psychomotor speed. One limi-

tation was that an intelligence quotient was not available for many

participants, which could confound the interpretation of some

neurocognitive associations. Future studies in civilian mTBI may

include HC data from open access databases like OMEGA (https://

www.mcgill.ca/bic/resources/omega) which is not applicable to the

present study due to lack of active-duty service members or Veterans

with matched combat experience to our cmTBI participants in these

databases. In addition, with the increased interest in conducting multi-

site clinical trials, future studies are needed that systematically investi-

gate the effects of differences in sensor and noise signatures across

different MEG sites, systems, and manufactures on machine-learning

based classification algorithms. These signatures are due to substantial

differences in sensor configurations, noise signatures, and noise-

reduction software packages that are used across different MEG sites.

Insight into the potential effects of these nuisance variables on classi-

fication could aid in refining imaging software/protocols and machine-

learning algorithms. It will also be essential to evaluate the generaliz-

ability of classification algorithm accuracy to different mTBI cohorts,

who may or may not differ in demographic or clinical features

(e.g., etiology, co-morbidities). In this regard, studies are also required

to evaluate the diagnostic accuracy of the obtained classifiers in dis-

tinguishing different cmTBI and HC cohorts. This may entail refine-

ment of DL algorithms along with testing different features of rs-

MEG, to identify the most stable classifiers of mTBI or cmTBI condi-

tions. If successful, the 3D MEGNET approach could also be extended

to the prediction of recovery from PCS using longitudinal study

designs or to classification of other clinical conditions that can be

challenging to diagnose such as PTSD, which was recently explored

using rs-MEG functional connectivity measures and an SVM machine-

learning approach (Zhang, Richardson, & Dunkley, 2020).
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