
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Performance and robustness of bio-inspired digital liquid state machines: A
case study of speech recognition

Yingyezhe Jin, Peng Li⁎

Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States

A R T I C L E I N F O

Communicated by Dr. Shen Jianbing Shen

Keywords:
Liquid state machine
Performance
Robustness
Speech recognition

A B S T R A C T

This paper presents a systematic performance and robustness study of bio-inspired digital liquid state machines
(LSMs) for the purpose of future hardware implementation. Our work focuses not only on the study of the
relation between a broad range of network parameters and performance, but also on the impact of process
variability and environmental noise on the bio-inspired LSMs from a circuit implementation perspective. In
order to shed light on the implementation of LSMs in digital CMOS technologies, we study the trade-offs
between hardware overhead (i.e. precision of synaptic weights and membrane voltage and size of the reservoir)
and performance. Assisted with theoretical analysis, we leverage the inherent redundancy of the targeted
spiking neural networks to achieve both high performance and low hardware cost for the application of speech
recognition. In addition, by modeling several types of catastrophic failure and random error, we show that the
LSMs are generally robust. Using three subsets of the TI46 speech corpus to benchmark, we elucidate that in
terms of isolated word recognition, the analyzed digital LSMs are very promising for future hardware
implementation because of their low overhead, good robustness, and high recognition performance.

1. Introduction

Spiking neural networks (SNNs) are the third generation of neural
networks. Compared to traditional sigmoidal perceptrons, SNNs pos-
sess increased computational power [29] and are biologically more
plausible because they model the communication of the temporal
information among biological neurons. Recent years have witnessed
an increased interest in the theoretical studies of SNNs including bio-
inspired learning algorithms [30,16,3,13,37,11] and network structure
[17,40]. SNNs closely resemble spiking behavior of biological neural
networks with intrinsic temporal information, making it a potentially
good model of computation for temporal tasks such as speech
recognition [46]. Works targeting practical implementation of SNNs
in hardware systems have also emerged [14,41,43,1]. Furthermore,
bio-inspired spiking neural networks are shown to have inherent error
resilience and fault tolerance [22], a very appealing characteristic for
VLSI implementation in highly scaled modern CMOS technologies, for
which device reliability and process variability are grand challenges.

Motivated by the anatomical and physiological structure of the
cerebral cortex that carries out diverse computational tasks [32], the
liquid state machine (LSM), which is more generally termed reservoir
computing [26], has been proposed and shown to provide powerful
computational capability for many applications [30,31,46,4]. The LSM

consists of a reservoir, a recurrent spiking neural network with fixed
but randomly chosen connections introduced to preprocess the ex-
ternal input signals, and a group of readout neurons performing
classification by further processing and extracting relevant features of
the input patterns from the reservoir. With recurrent connections in
the reservoir, the LSM can map the input into a high-dimensional
space by producing complex nonlinear dynamics in the reservoir,
which makes the subsequent classification easier. The decaying dy-
namic responses of the input signals in the reservoir serve as a
transient memory by which critical information about the inputs is
captured. As a result, the LSM is especially competitive for dealing with
temporal input patterns such as speech signals [12,46].

Compared with other standard methods for recognizing isolated
words such as HMM (Hidden Markov Model) [47], template [7] and
feature [33] based approaches, LSMs are not only more biologically
plausible and general purpose, but also have potential advantages in
error resilience when implemented in hardware. HMM-based ap-
proaches often use highly tuned acoustic and language models. In
contrast, LSMs can be trained merely based upon the statistics of the
data presented in the training data set. In addition, compared with
other biologically plausible methods such as LSTM neural nets [15],
LSMs are more hardware-friendly.

However, the existing works of LSMs either focus only on high-level
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computational principles [17,35] without a real-world application
background or on an application level without much theoretical
analysis ([43,46]). [39] studied the design and VLSI implementation
of the readout stage for LSMs based on perceptrons and the p-Delta
learning algorithm, which were less biologically inspired and only
applied to simple two-class recognition and rate-sum retrieval pro-
blems. Most importantly, little has been investigated for VLSI hard-
ware implementation of LSMs while considering the optimization and
trade-offs involving learning performance, hardware overhead, and
error resilience when using real-world challenging applications to
benchmark.

To this end, we provide here a systematic examination of perfor-
mance and robustness issues of LSMs, targeting specifically at speech
recognition and digital VLSI implementation. It has been shown
recently that digital liquid state machines with biologically plausible
training rules can achieve highly competitive performance for isolated
word recognition, outperforming several existing state-of-the-art tech-
niques [49]. In this paper, we perform a systematic design space
exploration of the LSMs proposed in [49] and show that it is possible to
attain good recognition performance while noticeably reducing design
complexity. More specifically, we show that recognition performance
can be traded off favorably for a potentially significant reduction in
reservoir sizes, synaptic weights and membrane voltage resolutions. It
shall be noted that these three key network design parameters have a
significant impact on the silicon area and power overhead of the VLSI
implementation. To shed a deeper light on how these design para-
meters influence the internal dynamics of the network and finally
recognition performance, we use several theoretical measures to
characterize the computational power of the LSM as a function of the
design parameters. We correlate these theoretical measures with the
corresponding real-life speech recognition performance by using the
widely adopted TI46 speech corpus [8] as a benchmark. Finally, to
evaluate the robustness of the hardware-based LSM, a key design
concern for VLSI implementation in modern CMOS technologies, we
model various manufacturing and noise induced failure and error
mechanisms and show the presented LSMs are in general tolerant to
failures and errors. While our study is conducted without referring to a
specific digital VLSI implementation, the presented findings are rather
general and can provide immediate guidance for designing highly
efficient and robust VLSI-based digital liquid state machines.

The rest of the paper is organized as follows: Section 2 provides a
brief background of the presented work including the experimental
setups. Section 3 introduces the adopted three theoretical measures for
estimating the computational power of the LSMs. In Section 4, the LSM
design space exploration is presented, and the achievable recognition
performance and theoretical measures of computing power as func-
tions of design parameters are shown. The robustness of the targeted
LSMs is discussed in Section 5. In Section 6, the performance study of
the LSM on two other datasets is presented to provide a more complete

understanding on the trade-offs between design cost and performance.
Finally, the key insights on network design and robustness obtained
from this study are summarized in Section 7.

2. Background

2.1. Speech recognition using the liquid state machine

The liquid state machine consists of a random recurrent neural
network (RNN), or a reservoir, and a tunable readout layer that is fed
by the reservoir. The sustained temporal dynamics activated by the
inputs allows the reservoir to memorize the past inputs, making it
possible for the readout layer to extract and process the context
information [26,30]. With the inherent advantages in temporal pattern
processing, the liquid state machine, and more broadly reservoir
computing, may be well suited for a number of classification tasks
such as speech recognition. Practically, the readout layer can be trained
into a linear classifier, which greatly simplifies the training task of
reservoir computing.

The LSM based speech recognition can be constructed as depicted
in Fig. 1 ([46,49]). Speech signals are first preprocessed by the Lyon
passive ear model [28] then encoded into spike trains by the BSA
algorithm ([44,46]), and fed into a group of randomly selected neurons
in the reservoir.

Input signals are processed in two steps. The first step takes place in
the reservoir, where an incoming spike train u(t) gets mixed and
mapped to the responses of the reservoir, represented by a higher
dimensional transient state, rendering complex patterns more likely to
be separable [6]. In the second step, the responses of the reservoir are
projected to the readout through plastic synapses. For each readout
neuron at time t, the net current it receives from the reservoir is given
by:

∑ ∑I t w f t w f u t( ) = · ( ) = · [( ( )],o
i

oi i
i

oi i
(1)

where fi(t) is the response of the ith neuron in the reservoir, and woi is
the synaptic weight between the ith reservoir neuron and the readout
neuron. The integrated net current over [0, T] is:
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As the integrated net current to each readout neuron is a linear
combination of integrated outputs coming from all reservoir neurons,
each readout neuron can be treated as a linear classifier of the
responses of the reservoir, which can be considered falling into a
feature space. Ideally, only reservoir responses produced by input
signals from the same class are expected to activate the correspondent
readout neuron. Therefore, conceptually in the feature space, the
hyperplane defined by all woi's separates these inputs from others.

Reservoir ReadoutInput

Spike 
Train 1

Spike 
Train 2
Spike 

Train 3

Spike 
Train 77

Filter 1 HWR AGC BSA

Filter 2 HWR AGC BSA

Filter 3 HWR AGC BSA

Filter 
77 HWR AGC BSA

Lyon passive ear 
model

Fig. 1. The LSM-based speech recognition system. 77 channels of spike trains preprocessed by the Lyon passive ear model and BSA algorithm are used as input to the reservoir. Then
the reservoir projects the input spikes by a nonlinear transformation to the readout for further processing. Finally, the readout is trained to classify different input signals by their
temporal responses in the reservoir.
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Finally, the task of speech recognition is a problem of solving all these
linear classification problems by tuning these synaptic weights between
the reservoir and readout layer. This can be achieved by applying a
learning algorithm.

2.2. Learning algorithm

Hebb's postulate, which claims that neurons fire together wire
together, was proposed and widely accepted ([18]). In particular, if the
firing activity of neuron i tends to excite/inhibit the firing activity of
neuron j, the synapse connected from i to j will be potientiated/
depressed. Based on this principle, a number of biologically plausible
learning algorithms can be used for training the readout layer of an
LSM. In the literature, temporal encoding has been adopted in several
learning rules, e.g. ReSuMe [37], I-Learning [11], tempotron [16] and
SPAN [34]. Firing rate encoding has also been adopted for developing
an abstract learning rule [3].

The focus of this paper is not to study a specific learning algorithm
under the context of LSMs, but to examine the performance and
robustness of LSMs when a typical biologically plausible learning rule
is adopted. In other words, the emphasis of this work is placed upon
the key dynamical and network characteristics of the liquid state
machine rather than a behavior of a given learning rule. For this
purpose, we have opted to use a hardware-friendly learning rule [49],
which is motivated by the abstract rule of [3]. We succinctly describe
the key features of this adopted rule below.

The adopted rule is based on the principle of Hebbian learning,
under which the goal of the learning process is to modulate the activity
of the readout neurons according to the desired level, and then tune the
weights of plastic synapses correspondingly. More precisely, when a
certain readout neuron is expected to fire actively, we drive its firing
activity to a high level, with the help of certain teacher signals that
implement supervised learning; while at the same time, we inhibit the
firing activities of other readout neurons.

To implement the adopted learning rule, we define the calcium
variables cr and cd to indicate the actual and desired firing activity of a
postsynaptic neuron, respectively. To distinguish highly active neurons
from inactive ones, a threshold cθ of the calcium variables is imposed -
if the calcium level is higher (lower) than the threshold, the neuron is
considered to be at a high (low) activity. The update of plastic synapses
only happens when a presynaptic neuron fires and the actual calcium
concentration cr of the postsynaptic neuron is higher (or lower) than
cθ:

⎧
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⎪⎪

⎩
⎪⎪
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−
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wherewij is the weight of the plastic synapse from neuron j to neuron i,
wΔ is the potentiation/depression granularity, and the parameter cΔ is

used for good generalization performance. Potentiation or depression
of synapses happens with the probability of p+ or p−, respectively. The
potentiation/depression of synapses is only activated when cr is in the
specific ranges specified by cθ and cΔ . This mechanism is used to avoid
saturation of the plastic weights. This learning process is visualized in
Fig. 2.

Teacher signals are introduced to the readout layer to implement
supervised learning. A teacher signal injects a large positive or negative
current to the corresponding neuron for the purpose of modulating its
real calcium concentration cr to the desired level of calcium concen-
tration cd. More specifically, when the samples from a certain input
speech class are presented, the readout neuron corresponding to this
class is expected to be highly active (i.e. cd is high). Therefore, its firing
activity and calcium concentration are both driven to a high level by the
teacher signals, whereas other readout neurons are supposed to be

inactive with a low cd. Consequently, these neurons are driven to the
highly inactive region where cr is low by their teacher signals. The
combined use of the learning rule (shown in Eq. (3)) and the teacher
signals potentiates or suppresses the plastic synapses in a way that
leads towards separation of different input classes.

2.3. Digitized simulation models

In terms of simulation of LSMs, we adopt the digitized leaky-
integrate-and-fire (LIF) model for neurons and second order response
model for synapses adopted from [49]. The dynamics of the membrane
voltage of a neuron can be described by the following equation:

V V
V

τ
I R I R= − + + ,m

n
m
n m

n

m
syn syn t t

−1
−1

(4)

where the superscript of V is the index of the time step, Vm and τm are
the membrane voltage and the time constant of its first-order
dynamics, respectively, Isyn models synaptic input current, It models
the input current from the teacher signal, and Rsyn and Rt model the
synaptic resistance and the input resistance associated with the teacher
signal. If the membrane voltage (Vm) of a neuron reaches or exceeds
the threshold voltage Vth, the neuron fires and its membrane voltage is
reset to the resting potential Vrest. There is an absolute refractory
period τrefrac associated with each spike, during which a fired neuron
cannot fire again.

The calcium level of a neuron is used to model its firing activity to
trigger the learning rule. The dynamics of the calcium level is modeled
as:

∑C C C
τ

δ= − + .n n
n

c i
T T

−1
−1

,n i
(5)

Here τc is the time constant of this first-order model, i is the index of
the spike emitted from this neuron, and δx y, is the Kronecker delta
whose value is 1 if x=y, and 0 otherwise. Ti is the time when the neuron
transmits its ith spike and Tn is the simulation time.

The synaptic current Isyn to each neuron is modeled as:

∑ ∑I W Syn T T D= · ( , + ),syn
i j

i
n

ij ij
(6)

where i and j are indices of the presynaptic neurons and the spikes,
respectively. Specifically, Wi represents the weight of the synapse that
connects to the ith presynaptic neuron. Tij is the firing time of the jth

spike emitted from the ith presynaptic neuron, and Dij is the
corresponding synaptic propagation delay. Syn (·) is the digitized

Fig. 2. Learning process of the LSM. Four regions in the diagram show how different
combinations of cd and cr of the postsynaptic neuron determine the synaptic plasticity
(cd and cr are only defined for readout neurons). The two arrows represent depression
and potentiation implemented by the teacher signals, driving the activity of a neuron to
the desired region (highly active or inactive), where the corresponding synaptic weights
are tuned. More precisely, potentiation of the corresponding synapses happens in the
desired region marked by “P” and depression happens in the desired region marked by
“D”.
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second-ordered dynamic response of a synapse to an incoming spike:
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τs1 and τs2 are two time constants of the model. S (·) is the unit step
function. The term

τ τ
1
−s s1 2

normalizes the response function such that

the integrated response of each spike is normalized to one.
The setup of the parameters in the neuron and synpatic model can

be found in Section 4.

2.4. Adopted speech benchmarks

In order to benchmark the performance of our LSMs for speech
recognition, three subsets of TI46 speech corpus ([8]) are used. The
speech samples in TI46 were collected in a low noise sound isolation
booth using an Electro-Voice RE-16 Dynamic Cardiod microphone at
12.5 kHz sample rate.1

The first benchmark is widely used in testing the performance of
reservoir computing based speech recognition ([32,46,45,12]). It
contains isolated word utterances of 5 different speakers. 10 different
utterances of each word from “zero” to “nine” are recorded for each
speaker. Thus, this benchmark contains 500 speech samples. This is
the main benchmark used to study the performance and robustness of
the LSMs in this paper. The second benchmark includes 1,000
utterances of isolated digits in the training set of the TI46 speech
corpus. This large subset contains speech samples from 10 speakers.
For each speaker in the subset, there are 10 recorded samples of each
spoken digit. The third subset contains 10 utterances of each English
letter from “A” to “Z”, which were recorded from a single speaker.
There are 260 samples in the third benchmark.

These speech samples are preprocessed by Lyon's ear model, which
consists of three prepassing stages: a band-pass filter bank, a half wave
rectifier with automatic gain control ([28]), and BSA, an algorithm
converting time domain input signals into spike trains ([44,46]). The
average input spike rates of different spoken digits in the first bench-
mark are illustrated in Table 1. Each reported rate is the average rate of
different recordings of the same digit. To visualize these speech
samples, we show several representative input spike trains of the
words “zero”, “three”, “six” and “nine” with the corresponding reservoir
responses in Fig. 3. The resolutions of synaptic weights and membrane
voltages in the reservoir are 10 bits and 16 bits, respectively. Other
detailed parameter settings can be found in Section 4.

It is worth noting that although the spike rates of input spikes
remain roughly the same for different utterances, it can be observed
from Fig. 3 that the reservoir is able to produce responses with
distinctive spatio-temporal characteristics in response to different
input speech samples. It can be expected that the mapping from the
space of input spikes to the higher-dimensional space of reservoir
responses contributes to differentiability across different speech
classes.

2.5. Network and training setup

The spiking network and training are set up according to [49]. As
illustrated in Fig. 1, the reservoir has a grid structure. 20% of neurons
in the reservoir are randomly chosen to be inhibitory while the rest are
excitatory. The connectivity in the reservoir is constructed randomly
under a distribution such that the wiring probability of any two
neurons (Ni and Nj) drops exponentially in the distance between them
([30]):

P N N k e i j( , ) = · ( ≠ ),connect i j

D N N

r
−

( , )i j2

2 (8)

where D N N( , )i j is the Euclidean distance between these two neurons, r
is chosen to control the exponential decay of the probability, and k is a
constant depending on the neuron type. The parameters are chosen
according to the values suggested by [49].

In the network, each input spike train generated in the preproces-
sing stage is sent to four randomly chosen reservoir neurons through
synapses with fixed weights randomly chosen to be Wmax or Wmin,
where Wmax and Wmin are maximum and minimum synaptic weights
used in the simulation, respectively. Reservoir neurons are fully
connected to each readout neuron by plastic synapses, whose weights
are randomly initialized between Wmax and Wmin. The plastic
synapses are trained by the adopted learning algorithm. The synaptic
weights in the reservoir are fixed according to the neuron type. The
detailed parameter settings of synaptic connections can be found in
Section 4.

To test the performance of the various LSM designs considered in
this paper, we adopt a 5-fold cross validation scheme to determine the
speech recognition rate. In this setup, all speech samples are randomly
divided into five groups. Based on these samples, a fixed LSM is trained
and tested for five times with different training and testing datasets.
For the ith (i = 1, 2, 3, 4, 5) time, the ith group is used for testing and
the remaining data for training. The recognition decision is made after
each testing speech sample is played. At this time, the readout neuron
that has fired most frequently is the winner and its associated class
label is deemed to be the classification decision of the LSM. Finally, the
five classification rates obtained in the testing stage are averaged as
final performance measure.

2.6. Performance of the base-line LSM

We set up a baseline LSM as a reference for the presented design
space exploration. There are 135 neurons in this baseline LSM and the
resolutions for membrane voltages and synaptic weights are set to be
16 bits and 10 bits, respectively. The detail of other parameter settings
will be discussed in Section 4. The best recognition rate of this LSM is
99.2% based upon the first benchmark described in Section 2.4.

3. Theoretical measures of computational performance

To gain insights into the LSM network dynamics and its relation to
learning performance, we adopt three theoretical measures of compu-
tational power to analyze the presented LSMs. First, we measure the
“fading memory” of the reservoir of a given LSM ([30,32]), character-
izing how well the reservoir “memorizes” temporal input patterns.
From a dynamic system point of view, we examine the operating
regime of an LSM and quantify its distance to the so-called edge
between order and chaos ([2]). Finally, from a task-oriented point of
view, we analyze the LSMs in terms of their separation property and
generalization capability ([24]).

3.1. Fading memory - how well the LSM can remember temporal
input patterns

First of all, we theoretically estimate how well the dynamics in the

Table 1
Average input spike rates for different words in the first benchmark. Each spike rate is
the average rate of different recordings of the same digit.

Digit 0 1 2 3 4 5 6 7 8 9

Spike rate (kHz) 9.0 7.0 8.5 7.7 7.2 8.2 7.5 7.5 5.7 7.6

1 More information of TI 46 is available from the Linguistic Data Consortium (https://
catalog.ldc.upenn.edu/LDC93S9).
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reservoir helps to “memorize” different input patterns by measuring its
fading memory2 (Fig. 4).

By observing the responses in the reservoir, we intuitively approx-
imate the fading memory. As proposed in [30], one way to empirically
measure fading memory is to count the number of firing neurons and
calculate the duration of firing activity in the reservoir after injecting
random temporal signals into the LSM. Long lasting and strong firing
activity is usually desirable because it implies the strong memory
capacity possessed by the reservoir.

3.2. Edge of chaos - whether or not the LSM operates on the
transition boundary

Second, we theoretically analyze an LSM from a dynamic system
point of view. Related studies ([21,23]) suggest that dynamic systems
operating near the phase transition between order and chaos (i.e. “edge
of chaos”) possess a good amount of computational power. To
determine the ordered and chaotic regimes for discrete dynamical
systems driven by online inputs, [2] proposed to track the evolution of
state difference resulting from two close initial states while the system
is driven by the same input. The state difference of a chaotic system is
highly amplified while that of an ordered system vanishes quickly. One
can quantitatively analyze the phase transition by Lyapunov exponents
([27]). We look for the exponent λ that is determined by

δ δ e δ T≈ · , → 1, Δ ≫ 1.T
λ T

Δ 0
Δ

0 (9)

Here δ0 represents the initial state difference at time 0 and δ TΔ is state
separation at time TΔ . As depicted in Fig. 5, λ > 0 suggests that the
system is chaotic while λ < 0 indicates an ordered system. The
dynamical system sits on the transition boundary if its λ is equal to
0. In our measurement, we define the state of the LSM as a binary
vector s t s t s t s t( ) = [ ( ), ( ),…, ( )]n1 2 , with si setting to one when the ith
reservoir neuron fires at time t. The Hamming distance between two
states is defined as the state difference.

3.3. Separation and generalization - how well the LSM performs for a
given task

Third, as illustrated in Fig. 6, we investigate the theoretical
computational power by quantitatively analyzing two essential proper-
ties, i.e. separation and generalization, of an LSM to characterize its
performance from an application perspective ([24]). Separation of the
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Fig. 3. (a)–(d) are the input spike trains of the utterances “zero”, “three”, “six” and “nine”, with the y-axis showing the indices of the input channels. (e) - (h) show the corresponding
neuron activities in the reservoir for the words “zero”, “three”, “six’ and “nine”, respectively. The y-axis represents the indices of the reservoir neurons.

Fig. 4. Fading memory of an LSM. The temporal input stream u(t) is transformed by the
reservoir into a high-dimensional signal y(t), which holds the information about the
recent history of the input u(t) ( t T t[ − , ]0 0 ).

Fig. 5. Edge of chaos of an LSM. With the same input u(t) and two initially close states
(s t( )1 and s t( )2 ), the difference between two states is recorded and measured as the

dynamics of the LSM evolves. The Lyapunov exponent λ theoretically reveals whether or
not the system is on the phase transition boundary.

2 see [30] for a detailed definition.
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reservoir reflects the kernel-quality of the neural circuit and general-
ization measures how well the reservoir can generalize a learned
function to new input streams.

As suggested in [24], the separation and generalization properties
of the reservoir are estimated by computing the rank of an n m× matrix
M, where n is the number of state variables of the reservoir, m is
number of inputs, and each column of M is the state vector x t( )u 0i under
the incoming input stream ui at a fixed time point t0. To measure
separation property in our case, randomly generated input streams are
used; while for approximating the generalization capability, applica-
tion-specific speech signals are used. According to [24], a large
difference between rS (the rank estimating the separation capability)
and rG (the rank representing the generalization capability) is usually a
good indicator of strong computational power with respect to the
specific task at hand.

4. Performance of LSMs and Its dependencies on key model/
design parameters

The performance of an LSM immediately depends on several
network design parameters and these parameters in turn greatly
determine the resulting hardware implementation cost. When it comes
to the application of speech recognition, one major design choice that
needs to be made is what level of precision should be maintained to
guarantee the good performance of LSMs when emulating the beha-
viors of neurons and synapses. This question is meaningful both from a
biological modeling and an engineering point of view. First, nervous
systems in nature exhibit trial-to-trial variability ([10]) in the present
of intrinsic noise, therefore it is not necessary to have extremely high
precision in modeling the dynamics of neurons and synapses. Second,
from an engineering perspective, it is critical to choose an appropriate
level of precision for the targeted application because excessive
precision leads to unnecessary increase in implementation overhead.

To achieve the above goal, we conduct behavior-level simulations to
study the performance of LSMs with a broad range of design
parameters. The considered parameters, including ones for the digi-
tized LIF neuron model, synaptic model, and learning rule, are
summarized in Tables 2–4. Some of the parameters have been adopted
from [49]. In Table 2, two extra parameters, Vmax and Vmin, are
imposed as the upper bound and lower bound upon the membrane
voltage Vm, for the purpose of discreteness. The same discreteness is
also applied to synaptic weights and calcium concentrations. In
Table 3, E and I indicate excitatory and inhibitory neurons, respec-
tively. E I→ denotes connections from excitatory presynaptic neurons
to inhibitory postsynaptic neurons. In Table 4, the strength of the
teacher signal It is set to be V

R
th
t

for potentiation, and − V
R

3
4

th
t

for

depression.
To attain the simulated recognition performance of each sample

point of the design parameter space, five randomly generated LSMs are
trained and tested for speech recognition. To optimize the perfor-
mance, we train the LSMs for multiple iterations. For each generated

LSM, the best recognition rate is computed after multiple training
iterations and we average five obtained best recognition rates of the
LSMs as the reported recognition rate. The standard deviation (SD) of
the five best recognition rates is measured to report variation of
recognition performance.

To comprehensively study the relation between a broad range of
parameters and performance, we investigate from three aspects:
resolution of the neuron model, resolution of the synaptic model and
size of the reservoir. As mentioned in Section 2.6, we use the base-line
LSM as the reference design (see Table 5 for the key parameter
settings) and apply the first adopted benchmark for conducting the
performance study. In addition to simulation, we also theoretically
characterize the computational power of the targeted LSMs under
various parameter settings.

Fig. 6. Generalization and separation of an LSM. When an LSM is trained with two
different inputs (u t( )1 and u t( )2 ), the outputs of the reservoir (y t( )1 and y t( )2 ) are expected

to be distinct because of the separation property. While tested with the input u t′ ( )1 which

belongs to the same class as u t( )1 , the output of the reservoir y t′ ( )1 should be similar to

y t( )1 because of good generalization.

Table 2
Parameters of the neuron model.

Parameter Value

Threshold voltage Vth 20 mV
Resting potential Vrest 0 mV
Time constant τm 32 ms
Time constant τc 64 ms
Refractory period τrefrac 2 ms

Upper bound of membrane voltage Vmax 32 mV
Lower bound of membrane voltage Vmin −32 mV
Granularity of membrane votlage δV Vmax Vmin

nmem bit
−

2 −
a

a nmem bit− : the resolution of the membrane voltage.

Table 3
Parameters of the synaptic model.

Parameter Value

type value
Fixed weights E E→ 3
in the reservoir E I→ 6

I E→ −2
I I→ −2

Upper bound of synaptic weights Wmax E I E I/ → / 8
Lower bound of synaptic weights Wmin E I E I/ → / −8
Time constant τs1 of the E E I→ / 4
second-order synaptic dynamics I E I→ / 8
Time constant τs2 of the E E I→ / 4
second-order synaptic dynamics I E I→ / 2
Synaptic propagation delay Dij 1
Synaptic resistance R R,syn t Ω1
Granularity of synaptic weights δW Wmax Wmin

nsyn bit
−

2 −
a

a nsyn bit− : the resolution of the synaptic weight.

Table 4
Parameters used in the learning rule.

Parameter Value

Granularity of calcium level δc 2ncal bit− −4a

Upper bound of calcium level cmax δc16 ×
Lower bound of calcium level cmin 0
Threshold of calcium level cθ δc5 ×
Generalization parameter cΔ δc3 ×
Teacher signal strength It Vth

Rt
or − Vth

Rt
3
4

Learning probability p p,+ −
nsyn bit

0.004

2 − −4

Potentiation/depression granularity WΔ δW

a ncal bit− : the resolution of the calcium level.
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4.1. Resolution of membrane voltage and calcium level

First of all, we examine how the precision of membrane voltage and
calcium level of the neurons can influence recognition performance.
While reservoir and readout neurons have different roles in the LSM,
we separately analyze these two types of neurons. The performance of
the LSM with different resolution settings is plotted in Figs. 7 and 8. As
mentioned in Section 4, each plotted point in Figs. 7 and 8 is the
averaged recognition rate of the five recognition rates obtained by
training and testing five randomly generated LSMs with different
random seeds for the generation of random connections inside the
reservoir. Each error bar in the figure represents the standard deviation
(SD) of the five recognition rates with its length being SD2 × .

The curve with circles in Fig. 7 shows the simulated recognition
rates of LSMs with a decreasing resolution of membrane voltage for
reservoir neurons while the other design parameters are fixed accord-
ing to Table 5. The simulation results suggest that the recognition
performance only degrades slightly when the precision of membrane
voltage for reservoir neurons is reduced down to 6 bits. This phenom-
enon may be understood by noticing that under a low membrane
voltage resolution, fixed and recurrent connections in the reservoir may
still be able to propagate the firing activities initialized by a few neurons
to create rich dynamics in the network. But the resolution cannot be too
low (e.g. below 3 bits or 4 bits) because the firing activity of the
reservoir will not reflect the critical information of speech samples well
under a very low resolution. Similarly, a low resolution for the
membrane voltage of readout neurons will not cause much perfor-
mance degradation. As shown in the curve marked with “x” in Fig. 7,
LSMs start to perform poorly only when the resolution drops below
3 bits, where the average recognition performance is about 40%. The
result suggests that the activation of the correct winning readout
neuron for a given input speech is not very sensitive to the bit

resolution used for the membrane voltage of readout neurons.
To have a more comprehensive study of performance sensitivity to

membrane voltage resolutions, we test the performance under different
combinations of resolution settings for the reservoir and readout
(shown in Fig. 8). The performance is not sensitive to wide range
variations of membrane voltage resolutions, particularly for the case of
the resolution of reservoir neurons.

The calcium level, used in the learning algorithm, is another
important parameter associated with readout neurons. The curve
denoted by triangles in Fig. 7 manifests that the recognition perfor-
mance degrades noticeably as the resolution of the calcium level is
lower than 10 bits. This suggests that the calcium concentration plays
an important role in learning and hence a fine resolution may be
needed to accurately tune the plastic synaptic weights of readout
neurons to achieve good performance. We also examine various
combinations of the calcium level threshold (cθ) and generalization
parameter (cΔ), which are two parameters of the learning rule (see
Table 4), to investigate their impacts on the performance. As shown in
Fig. 9, the choices of the two learning parameters within the considered
range have no significant impact on the performance.

In addition to the simulated recognition performance presented
above, we further use the three theoretical measures of computational
power mentioned before to characterize the performance impacts of the

Table 5
Key design parameters of the reference design.

Design Parameter Neuron Type Resolution /Value

Calcium Level Readouta 14 bits
Membrane Voltage Reservoir 16 bits

Readout 16 bits
Synaptic Weight Reservoir 10 bits

Readout 10 bits
Size of Reservoir N.A. 135 neurons

a Reservoir neurons do not have this variable because no weight adaption happens in
the reservoir.

Fig. 7. Performance of the LSMs drops as a function of the decreasing bit-resolutions of
the membrane voltage and calcium level.
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Fig. 8. Performance of the LSMs with different combinations of reservoir and readout
membrane voltage resolutions.
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Fig. 9. Performance of the LSMs with different combinations of parameters in the
learning rule.
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resolution of membrane voltage. As will be seen, these theoretical
measures provide largely consistent performance evaluations of the
LSMs while offering additional understanding of network dynamics
and associated computing power. Note that the three theoretical
measures aim at examining the computational power resulting from
the dynamics created in the reservoir, which focus on the following
analysis.

Fading Memory. To measure the fading memory, we inject 77
random temporal spike trains ending at 23 ms into the reservoir and
record the responses of the reservoir (i.e. the number of firing neurons
and the duration of the firing activities). The impacts of lowering
precision of reservoir neurons' membrane voltage on fading memory
are shown in Fig. 10. The results clearly suggest that the reservoir has
large fading memory even when the resolution of its membrane voltage
is reduced to 6 bits. The observation is in agreement with Fig. 7 and
once again implies that the implementation of reservoir neurons can be
simplified to lower hardware overhead without any significant degra-
dation of performance.

Edge-of-Chaos. Applying an approach similar to that is adopted in
[42], we introduce an infinitesimal initial state difference to character-
ize the operating regime of an LSM by using a pair of two slightly
different inputs. Two such input pairs are used in order to eliminate the
randomness introduced by the choice of specific inputs. For the first
input pair, the only difference between the two input spike trains
results from one missing spike at 24 ms from one spike train. For the
second input pair, the difference between two spike trains is due to one
missing spike at 42 ms from one of the input spike trains. The two
slight different inputs are only used to introduce an initial state
difference and after that a future state difference is used to compute
the Lyapunov exponent. By independently feeding the two different
inputs to an LSM, the resulting state difference δ tΔ is observed at a
future time point. To be specific, δ tΔ is measured at tΔ = 300 ms across
the two slightly different input streams, where tΔ is the elapsed time
from when the initial state difference occurs to the observation time
point. Then the Lyapunov exponent λ is determined by ([42])

⎛
⎝⎜

⎞
⎠⎟λ

t
δ
δ

= 1
Δ

ln ,t

ini

Δ

(10)

where δini is the initial state difference introduced by the two slight
different inputs.

Fig. 11 shows how the state separation temporally evolves due to a
small input difference for three LSMs with a descending membrane
voltage resolution. It is obvious that although the precision is reduced,

the state difference remains roughly at the same level. In other words,
the reservoir's membrane voltage resolution might not significantly
influence its dynamics, which is further confirmed by the calculated
Lyapunov exponent λ shown in Table 6.

As can be seen from Table 6, the Lyapunov exponents of the three
LSMs are relatively small and close to zero, indicating that they operate
in a region that is close to the transition boundary, which is consistent
to the corresponding good recognition performance. In addition, the
calculated Lyapunov exponents suggest that a low resolution of
membrane voltage may be sufficient for achieving good recognition
performance.

Separation and Generalization. We use the method for estimating
the separation and generalization capabilities mentioned in Section
3.3. After applying 500 randomly generated input streams and 500
application specific speech signals, we measure the ranks rG and rS
respectively of the matrix M at five fixed time points from 394 ms to
399 ms and report the maximum obtained ranks for estimation of
separation and generation. The rank difference ΔSG between rS and rG
is calculated as shown in Table 7. As shown in Table 7, interestingly, in
the range which is considered for the membrane voltage resolution of
the reservoir, lowering the resolution does not affect the computational

Fig. 10. Firing activities (fading memory) in the reservoir when the resolution of
membrane voltage for the reservoir is reduced. Three reservoirs with descending
resolutions are tested by injecting 77 random input spike trains that are all ended at
23 ms. A lowered resolution does not necessarily lead to reduced fading memory.

Fig. 11. State separation under different resolution settings for membrane voltage in the
reservoir. The temporal evolution of the Hamming distance between the two resulting
states xu(t) and xv(t) is shown. For the sub-figures on the left and right sides, the input u
differs from input v due to only one missing spike at time 24 ms and 42 ms, respectively.

Table 6
Lyapunov exponents of LSMs with various resolutions of reservoir neurons' membrane
voltage. The Lyapunov exponents λ1 and λ2 are measured under two different input pairs
for which the input difference is introduced by a missing spike at 24 ms and 42 ms,
respectively. The reported recognition rates of the LSMs under the three resolution
settings are 98.16%, 98.24% and 98.28%, respectively.

LSM Resolution λ1 λ2

1 16 bits 0.36 0.30
2 10 bits 0.32 0.28
3 6 bits 0.22 0.26

Table 7
Estimated separation and generalization capabilities of the LSM as a function of reservoir
neurons' membrane voltage resolutions. The reported recognition rates of the LSMs
under the three resolution settings are 98.16%, 98.24% and 98.28%, respectively.

LSM Resolution rS rG ΔSG

1 16 bits 135 101 34
2 10 bits 135 102 33
3 6 bits 135 99 36
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capability very much. The approximated computational ability recon-
firms that the good classification performance might be achieved given
the low resolution of the reservoir neurons’ membrane voltage.

4.2. Resolution of synaptic weights

Here we study how the resolution for synaptic weights affects the
overall performance. Since synapses within the reservoir have fixed
efficacy while synapses connected to the readout are plastic, we
consider them separately when changing the resolution.

First, we take a close look at the synapses in the reservoir. The curve
with circles in Fig. 12 shows the recognition rates of LSMs with
different resolutions of synaptic weights for the reservoir synapses
while the resolutions for other parameters are fixed according to
Table 5. Clearly, reducing the resolution of fixed synaptic weights has
little impact on performance. This observation may be understood by
recalling that no synaptic weight adaption takes place in the reservoir
and the main functionality of the reservoir is to create rich dynamics to
map the input to a higher dimensional space. As a result, low-
resolution or even binary synapses may be sufficient for the reservoir.

However, in terms of the plastic synapses between the reservoir and
the readout, fine resolution is desirable because synaptic weights with
high precision guarantee the accuracy of adjusting the location and
orientation of the hyperplane implemented by the linear readout. We
examine how the precision of plastic synaptic weights influences
performance experimentally. In the simulations, 10-bit synapses are
used in the reservoir. The performance degradation of LSMs with
different resolution settings for plastic synapses can be seen in Fig. 12.
We conclude that 8-bit resolution is needed for efficacy of plastic
synapses because further reduction will cause a fairly large perfor-
mance loss.

We vary the resolutions of fixed and plastic synaptic weights
together to obtain a complete picture of how synaptic weight resolu-
tions can affect performance. The simulation results shown in Fig. 13
reconfirm that the resolution of fixed synapses has a limited effect on
the performance while the plastic synapses do immediately affect the
overall recognition rates.

In the following, we use the three theoretical measures of computa-
tional power to correlate with the above simulated recognition perfor-
mance. The same experimental setup is used here as what is mentioned
in Section 4.1.

Fading Memory. After injecting 77 random spike trains into the
reservoir and counting the number of fired neurons and measuring the
duration of the response, we obtain the fading memory of the reservoir
shown in Fig. 14. As depicted in Fig. 14, the synaptic resolution in the

reservoir has limited influence on fading memory, which explains why
binary synapses can be used in the reservoir for reducing the complex-
ity of LSMs.

Edge-of-Chaos. Two slightly different input streams are injected
into the same reservoir and Fig. 15 shows how state divergence
temporally evolves due to a small input difference for three LSMs with
a descending resolution of the fixed reservoir synapses. By lowering the
precision of synaptic weights, we observe that the state difference
decreases slightly. The characteristics of the reservoir dynamics are
reflected by the Lyapunov exponents λ shown in Table 8.

The computed Lyapunov exponents in Table 8 are relatively small
and close to zero, suggesting that the corresponding dynamics of the all
three reservoirs are close to the “edge-of-chaos”, and thus good
performance can be achieved. And the Lyapunov exponent of the
LSM with binary reservoir synapses is even closer to zero, indicating
that its dynamics is closer to the transition boundary. In other words,
by reducing the resolution of synaptic weights, it may be possible for us
to move the dynamics of the reservoir from the chaotic region towards
the ordered region, and hence having the system operating at the
transition boundary.

Separation and Generalization. Randomly generated input streams
and application specific speech signals are applied to the reservoir
separately and we measure the ranks rS and rG respectively of the

Fig. 12. Performance of the LSMs degrades as a function of the reduced bit-resolutions
of the synaptic weights.
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Fig. 13. Performance of the LSMs with different combinations of resolutions of fixed
and plastic synaptic weights.

Fig. 14. Firing activity in the reservoir when the resolution of synaptic weights for fixed
synapses gets reduced. Similarly to the results shown in Fig. 10, reduction of synaptic
weights for the reservoir does not affect fading memory significantly.
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matrix M as mentioned in Section 3.3. As seen in Table 9, the rank
difference ΔSG almost remains the same when lowering the resolution
of the fixed synaptic weights, which suggests that low resolution does
not have a significant impact upon the computational capability. And
therefore, good recognition performance can be achieved under low
resolution of reservoir's synaptic weights.

In conclusion, low resolution of synaptic weights may be adequate
to attain good computational capability of the reservoir, and thus
guarantees good separation and generalization. In terms of the readout
layer, however, high resolution synapses are required. It is worth
mentioning that by applying a coarser synaptic resolution, we can
altogether lower the resolution of membrane voltage for the reservoir
and readout neurons. Finally in terms of neurons in both the reservoir
and readout, 6-bit resolution for membrane voltage and 10-bit resolu-
tion for calcium concentration are sufficient to guarantee good
performance.

4.3. Size of the reservoir

Another way to reduce the implementation cost is to cut down the

size of the reservoir. To examine this reduction's impact on perfor-
mance, we randomly remove a certain percentage of neurons from the
reservoir. The original reservoir contains 135 neurons. The percentage
of the removed neurons is varied from 1–90% and the resulting
recognition rates are plotted in Fig. 16. Here we use binary synapses
for the reservoir, 8-bit synaptic resolution for the readout, 6-bit
membrane voltage resolution for both reservoir and readout neurons,
and 10-bit calcium concentration resolution for the readout. In the
simulation, each time an LSM is trained and tested with randomly
chosen neurons being removed from the reservoir. The simulation
results suggest that it is possible to get reasonably high performance
without 30% of neurons but the performance begins to degrade
noticeably if more neurons get removed. In order to shed light in a
theoretical perspective, we again extract the three measures of compu-
tational power for these LSMs with the same experimental setup.

Fading Memory. 77 random spike trains are injected into the
reservoir for measuring fading memory. In terms of the reservoir size,
although fading memory is slightly weakened when squeezing the
reservoir, removing too many neurons yields a performance penalty
since fading memory will quickly die out or even vanish (shown in
Fig. 17), making the reservoir incapable of generating rich dynamics. In
this case, good performance can still be obtained given that 40 neurons
(30% of the original size) get removed from the reservoir because

Fig. 15. State separation under different resolutions for synaptic weights in the
reservoir. Similar to Fig. 11, the temporal evolution of the Hamming distance between
the two resulting states is shown. For the sub-figures on the left and right sides, the input
u differs from input v due to only one missing spike at time 24 ms and 42 ms,
respectively.

Table 8
Lyapunov exponents of LSMs with various resolutions of the fixed reservoir synapses.
The Lyapunov exponents λ1 and λ2 are measured under two different input pairs for
which the input difference is introduced by a missing spike at 24 ms and 42 ms,
respectively. The reported recognition rates of the LSMs under the three resolution
settings are 98.16%, 98.40% and 98.72%, respectively.

LSM Resolution λ1 λ2

1 10 bits 0.36 0.30
2 5 bits 0.38 0.36
3 1 bits 0.10 0.18

Table 9
Estimated separation and generalization capabilities of the LSM as a function of fixed
synaptic resolutions. The reported recognition rates of the LSMs under the three
resolution settings are 98.16%, 98.40% and 98.72%, respectively.

LSM Resolution rS rG ΔSG

1 10 bits 135 101 34
2 5 bits 135 102 33
3 1 bits 134 98 36

Fig. 16. Performance degrades as the percentage of removed reservoir neurons
increases.

Fig. 17. Firing activity in the reservoir when its size gets reduced. Compared to the
results shown in Figs. 10 and 14, the fading memory stays nearly the same after removing
30% neurons from the reservoir. Both the magnitude and duration of the responses are
largely reduced if more neurons are removed.
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fading memory is well preserved.
Edge-of-Chaos. Two slightly different input signals are injected into

the reservoir and Fig. 18 shows how state separation temporally
evolves due to a small input difference for three LSMs with descending
reservoir sizes. It is clear that by reducing the size of the reservoir, the
state difference gradually decreases; in other words, we might be able
to change the dynamics of the reservoir from the chaotic region to the
ordered region and phase transition happens around the point where
30% neurons get removed, which is further confirmed by the calculated
Lyapunov exponent λ shown in Table 10. The Lyapunov exponent of
the second LSM in the Table 10 is reasonably close to zero, indicating
that the dynamics at this point lies very close to the edge of chaos,
which theoretically explains why decent performance can be obtained
with this size. Furthermore, in this particular case, LSMs will not
function very well if the dynamics is in the ordered region.

Separation and Generalization. The ranks rS and rG of the matrix
M (see Section 3.3 for details) are obtained by feeding randomly
generated input streams and application specific speech signals into the
reservoir, respectively. As seen in Table 11, although the first LSM is
shown to possess powerful separation and generalization capabilities
and has very good performance, the second LSM, whose ΔSG is not the
largest, also achieves good recognition performance. This interesting
phenomenon can be understood by noting that multiple dynamic
regions can provide the LSM with good performance ([24]).
Nonetheless, further reduction beyond this point is reconfirmed to
cause performance degradation.

4.4. Summary

Finally, we summarize the relation between a broad range of key
network parameters and the recognition rates with different levels of

performance sensitivity in Table 12. Clearly, there exists a large design
space in which various network design parameters can be explored to
trade off between hardware overhead and performance. In particular,
our experimental study presented here demonstrates the possibility of
reducing the network complexity, hence implementation overhead,
without incurring any significant degradation of performance. For
instance, with the resolutions and the reservoir size getting reduced
to the suggested values in Table 12, the recognition rate can still reach
up to 98.16%.

The adopted theoretical measures of computational power are
normally consistent with the real-world performance. It is worth
mentioning that the correlation between the theoretical measures
and performance might not be straightforward sometimes, because it
is found that the LSM can have numerous dynamical regimes with rich
computational power for real-world applications.

5. Robustness of LSMs with respect to catastrophic failures
and random errors

The resilience of digital VLSI circuit has been one of the greatest
design challenges in the past decades due to the scaling of IC
manufacturing technologies and aggressive sizing of transistors.
Modern integrated circuits (both analog and digital) are susceptible
to a very wide range of failure mechanisms. Therefore, it is worthwhile
to examine the robustness of a given LSM when implementing it using
highly-scaled modern VLSI technologies for which process variations
(e.g. variations in transistors and interconnect parameters) and
manufacturing defects (e.g. stuck-at-0 and stuck-at-1 faults) may
introduce unavoidable parameter fluctuations, and cause various levels
of performance variation or even permanent failures ([25,36]). In
addition, modern VLSI chips are prone to errors in operation, which
may result from environmental effects (e.g. temperature variation and
random power supply noises) and soft errors (e.g. single-event upsets
due to cosmic rays and crosstalk noise), potentially causing transient
errors and rendering a VLSI-based LSM to fail in numerous ways
([5,20]).

Note that the above failure mechanisms may render rather different
types of failure behavior. Catastrophic manufacturing defects may
cause permanent failures of certain circuit blocks. Statistical manufac-
turing process variations may lead to increased circuit delay, hence
producing timing errors under certain inputs. While many different
inputs are applied to a given logic circuit block, the input dependency
of timing errors may be viewed as adding random errors to the output
of the circuit block. Environmental effects, in particular, power supply
noise can lead to timing failures and hence errors in digital circuits.
Since power supply noise has a significant random component, the
resulting errors may be modeled as random both temporally and in
terms of occurrence probability. Soft errors may lead to erroneous
computations of certain output bits and also have a strong random
component. These failures are highly process and design dependent
and an accurate failure analysis is feasible only for a given the design of
the targeted integrated circuit and the adopted manufacturing process.
Therefore, given the scope of this work, we only model these failure
mechanisms with certain abstraction and assess the general robustness
of the proposed LSM rather its particular hardware implementations.

Fig. 18. State separation for the reservoir with different sizes. Similar to Fig. 11, the
temporal evolution of the Hamming distance between the resulting states is shown. For
the sub-figures on the left and right sides, the input u differs from input v due to only one
missing spike at time 24 ms and 42 ms, respectively.

Table 10
Lyapunov exponents of LSMs with various reservoir sizes. The Lyapunov exponents λ1
and λ2 are measured under two different input pairs for which the input difference is
introduced by a missing spike at 24 ms and 42 ms, respectively. The reported recognition
rates of the LSMs under the three reservoir settings are 98.92%, 98.16%, and 92.24%,
respectively.

LSM Reservoir Size λ1 λ2

1 135 neurons 0.10 0.18
2 95 neurons −0.05 0.00
3 54 neurons −0.40 −0.32

Table 11
Estimated separation and generalization capabilities of the LSM as a function of the
reservoir size. The reported recognition rates of the LSMs under the three reservoir sizes
are 98.92%, 98.16%, and 92.24%, respectively.

LSM Reservoir Size rS rG ΔSG

1 135 neurons 135 98 37
2 95 neurons 95 69 26
3 54 neurons 54 36 18
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As mentioned above, the failures cited above have two main effects
in a digital circuit: 1) catastrophic failures that cause certain circuit
blocks to fail completely, and 2) random errors in terms of both
occurrence and magnitude. First of all, we model the first effect as
broken synapses and dead neurons. In the simulation, we assume
catastrophic failures may result in permanent malfunction of certain
synapses or neurons, that is, some of them fail to respond to the
coming spikes and become completely nonfuctional (Fig. 19). This
modeling approach effectively removes such broken synapses or dead
neurons from the network. To provide an insight about how LSMs
perform when subjected to random errors, we consider to introduce a
random error probability for key arithmetic blocks (i.e. adders, shifters
and comparators) in the network. Furthermore, once an error occurs, a
normal distribution is used to model the amount of error produced
relative to the correct value.

Similar to the experimental settings in Section 4, in this experi-
mental study, five LSMs are generated with random reservoir connec-
tions. For each LSM, we perform the 5-fold cross validation mentioned
in Section 2.5 to attain the recognition rate at each targeted failure/
error level. The five obtained recognition rates are averaged as the
reported rate and the corresponding standard deviation (shown as the
error bar with its length being SD2 × ) is plotted.

5.1. Catastrophic failures

To acquire a quantitative understanding of robustness, we model
the effect of catastrophic failures as causing the critical blocks (i.e.
synapses and neurons) of the LSM to be non-functional. In the
simulation, this effect is equivalent to removing a certain amount of
synapses or neurons from the network.

5.1.1. Broken synapses
After a certain number of broken synapses being deleted from the

LSMs, we measure the recognition rates at different levels of severity of
catastrophic failures and plot the results in Fig. 20. Note that even at a
fairly large failure level (such as 20%), the LSM can still achieve pretty
good performance (around 97%) under the cases where fixed or plastic
synapses are broken, respectively. It implies that LSMs are robust to
potential “broken synapses” caused by process variations and manu-
facturing defects. Furthermore, the classification performance is more
sensitive to failures of plastic synapses than those of fixed synapses.
This can be understood again by noting that the former play a key role
in classification conducted by the linear readout neurons. Therefore,

plastic synapses shall be implemented with more robust circuit-level
techniques.

5.1.2. Dead neurons
We show the recognition rates of the LSM with different percen-

tages of dead reservoir neurons in Fig. 20. As can be observed, the
recognition performance of the LSM is more sensitive to dead reservoir
neurons than broken reservoir synapses. A possible explanation for this
discrepancy is that reservoir neurons are fundamental processing/
computing elements in the network. Broken reservoir synapses may
not necessarily knock out any neurons from the reservoir while the
existence of dead neurons certainly does. Hence, necessary steps of
preventing a large number of neurons to fail are important for ensuring
good performance. However, thanks to intrinsic resilience and redun-
dancy presented in the LSM, the recognition rate is still about 96%
even with 20% of neurons stopping functioning.

5.1.3. Combination of broken synapses and dead neurons
Furthermore, we look at the compound effect of having simulta-

neous broken synapses and dead neurons in Fig. 20. With 5%
combined malfunction rate (5% of fixed and plastic synapses are
broken and 5% of reservoir neurons stop functioning), only about 1%
performance drop is observed. With 20% combined malfunction rate,
the performance can still reach up to 94%.

In conclusion, it is clear that the catastrophic failures do have some
impacts on performance. Although the examined failure rates are fairly
large, the learning performance does not degrade a lot, which reveals
the good robustness of this neuromorphic system.

5.2. Random errors

To perform this robustness study of the LSMs under random errors,
we perturb outputs of crucial arithmetic blocks (i.e. adders, shifters and

Table 12
Key network parameters and corresponding performance.

Design Specifications Type Suggested setting Range Best Performance Worst Performance Performance Sensitivity

Calcium Level Readout 10 bits 14 − 8 bits 99.16% 93.76% Low/ Medium
Membrane Voltage Reservoir 6 bits 16 − 4 bits 98.52% 97.2% Low

Readout 6 bits 16 − 4 bits 98.68% 98.12% Low
Synaptic Weight Reservoir 1 bit 10 − 1 bits 98.72% 98.08% Low

Readout 8 bits 10 − 4 bits 98.36% 89.4% High
Size of Reservoir N.A. 95 neurons 135 − 54 neurons 98.92% 92.24% Low/ Medium

Fig. 19. Modeling broken synapses and dead neurons in the LSM. (a): dead neurons;
(b): broken synapses.

Fig. 20. Performance degradation as a function of malfunction rates. The malfunction
rates are the percentages of broken synapses or dead neurons.
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comparators) with errors. We assume that the error probability for
each adder and shifter is 0.1 for simplicity. Once an error happens, a
normal distribution is used to model the amount of error introduced
relative to the correct value for adders and shifters. For each
comparator, we consider the probability of generating erroneous out-
put because a comparator only outputs “0” or “1”.

5.2.1. Error in adding operations
To consider a somewhat stressed error scenario, we assume all

adders used to implement the neurons and synapses in the LSM are
subjected to an error probability Perr of 10%. When an error occurs, a
normal distribution is used to model the magnitude of error as
described before. As the amount of injected error increases, we observe
a significant performance degradation in Fig. 21. For example, the LSM
largely fails when the amount of error is larger than 20%.

We further study how the network performance may depend on
adding errors occurring in parts of the LSM. As shown in Fig. 21, when
the reservoir is subjected to the error, the performance only degrades
by no more than 2% within the considered range. Hence, the recogni-
tion performance appears to be insensitive to errors in the reservoir. In
comparison, the performance is much more sensitive to errors in the
readout as performance drops down to 86% in the worse case. This
phenomenon may be understood by noting that additions are needed
for both simulating the neurodynamics of the readout neurons and
implementing the learning rule. The former ultimately determines the
firing activity of a reservoir neuron which is a basis for interpreting
recognition decision; while the latter is responsible for tuning the
plastic synaptic weights according to the firing activities in the
reservoir, playing a critical role in adjusting the corresponding
hyperplanes implemented by the linear readout neurons. However,
given that the LSM still performs well under a large amount of error
(e.g. 10%), a fairly noisy environment indeed, we do observe good
robustness of the network even with respect to errors in the readout.

5.2.2. Error in shifting operations
In this work, shifters are used to simplify multiplication and

division operations ([49]). Similar to modeling output errors in adders,
we introduce random errors to the outputs of the shifters in the LSM
with the error probability of 0.1 and the error amount modeled by a
normal distribution. The resulting performance as a function of the
amount of shifting error is shown in Fig. 22. As the shifters suffer from
more error, the performance degrades very gracefully. Even 20% of
error, the performance degradation is less than 2%. Thus we can
conclude that LSMs are insensitive to error from shifters. This
argument can be further supported by Fig. 22 where we separately
consider errors in the reservoir and readout. No significant perfor-

mance penalty can be seen. It is evident that the network performance
is less sensitive to errors in shifters compared with adders. This
interesting phenomenon may be understood by noting that multi-
plication or division is only used when calculating dynamics of neurons
and synapses while addition is not only responsible for the computa-
tion of dynamics, but also the update of plastic synaptic weights.

5.2.3. Error in comparison operations
The way to model random errors in comparators is slightly different

from the previous cases. Since comparators only output “0” or “1”, we
consider the probability of generating the erroneous outputs. As shown
in Fig. 23, the performances at three error probability levels (5%, 10%
and 20%) are measured. Since the worst performance penalty is nearly
90%, we conclude that error in comparators does affect the perfor-
mance. By further perturbing comparators in the reservoir and the
readout (Fig. 23), it appears that the performance is sensitive to errors
in both the reservoir and the readout. The reason might be that
comparison is involved in determining the firing activities of neurons
and the adaptation of plastic synaptic weights. Any error in comparison
might give rise to unpredictable behaviors of neurons and synapses.
For example, an error-prone comparator can render a neuron fire a
spike though its membrane voltage is less than the threshold. Similarly,
an error-prone comparator in a plastic synapse might mistakenly
initiate weight adaption with the learning rule being violated.
Therefore, the LSM can be very sensitive to errors in comparison.

Fig. 21. Performance degradation as a function of the amount of error in adders.

Fig. 22. Performance degrades gracefully with an ascending amount of shifting error.

Fig. 23. Performance drops dramatically with an increasing error probability. The
impact of comparing error from different parts of the LSM is shown.
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5.3. Summary

Table 13 summarizes two types of catastrophic failure and three
types of random error with their impacts on performance. In general,
the reservoir is much more insensitive to failure and error compared to
the readout, therefore the readout layer should be the main target of
fault and noise tolerance for hardware implementation. Furthermore,
error effects associated with comparators appear to have a high impact
on performance. Hence, the comparators may be designed with a high-
level of robustness. Besides, the recognition performance is sensitive to
addition error that happens in the readout, and thus the adders in the
readout should also be designed with a high-level of robustness. The
other arithmetic operations have been shown to be less critical for the
overall performance and hence a less robust implementation may be
explored to gain benefits in area and energy consumption. Generally
speaking, the studied LSMs appear to be robust to various types of
catastrophic failure and random error. This is very appealing and can
be leveraged for efficient hardware implementation while maintaining
a good level of robustness.

6. Performance study of LSM on other subsets of TI46

To provide a more complete understanding on the trade-offs
between design cost and performance, we introduce two additional
benchmarks, which are the second and third benchmark described in
Section 2.4, and three levels of implementation complexity with design
parameters shown in Table 14. The speech signals of the second and
third benchmark are preprocessed by the Lyon passive ear model ([28])
then encoded into 83 spike trains by the BSA algorithm ([44,46]), and
fed into a group of randomly selected neurons in the reservoir. And
other experimental settings are the same as described in Section 4. We
test the performance of the LSM on these two additional subsets of the
TI46 speech corpus, and the recognition rates of the LSMs on the three
different benchmarks adopted in this paper are depicted in Fig. 24. In
Table 14, the complexity level 3 is the original setting in [49] and the
complexity level 2 is the suggested setting of this paper (see Table 12).
It is clear from Fig. 24 that the recognition rate degrades pretty
gracefully as the design complexity decreases for all three benchmarks.
This suggests that within a reasonably wide range, performance and
design overhead can be rather nicely traded off with each other,

providing a rather good flexibility in achieving the overall design
objectives.

7. Discussion of other reservoir computing (RC) methods

We expect that the general characteristics (i.e., strong computation
capability, redundancy and robustness) of LSMs we found in this paper
may exist for a broad set of reservoir computing methods like Echo
State Networks (ESNs) ([19]). [45] reported that good performance
could be achieved over a broad range of network parameters for
different RC methods by using the reservoirs with different neural
models. It is found by [38] that a minimum complexity ESN could be
constructed to achieve good memory capability by reducing redun-
dancy of the reservoir. Redundancy in the synapses between a reservoir
and a readout of an ESN can also be reduced to facilitate the
generalization ability as reported in [9]. Noise resilience of the RC
methods is observed in [48] where additional noise is injected into
reservoir neurons to avoid over-fitting.

8. Conclusion

This paper presents a comprehensive performance and robustness
study of bio-inspired digital liquid state machines for speech recogni-
tion. By examining a broad range of key network design parameters
and using real-world meaningful benchmarks, we shed light on the
relationship between design parameters and performance. We show
that good performance can be maintained while reducing the resolu-
tions and reservoir size, both of which have immediate impacts on
hardware implementation overhead. To gain deep insights into the

Table 13
Typical types of failure and error with their impacts on performance.

Failure/ Error Type Range Worst case performance degradation Performance sensitivity

Catastrophic failures in reservoir Dead neurons 0% − 40% 5.48% Low/Medium
Broken synapses 0% − 40% 0.96% Low

Catastrophic failures in readout Broken synapses 0% − 40% 5.2% Low/Medium
Error in reservoir Error in adders 0% − 20% 1.52% Low

Error in shifters 0% − 20% 1.44% Low
Error in comparators 0% − 20% 79.94% High

Error in readout Error in adders 0% − 20% 5.88% Low/Medium
Error in shifters 0% − 20% 0.84% Low
Error in comparators 0% − 20% 87.68% High

Table 14
Design parameters of different levels of design complexity.

Design
Specifications

Type Complexity
Level 3

Complexity
Level 2

Complexity
Level 1

Calcium Level Readout 14 bits 10 bits 10 bits
Membrane

Voltage
Reservoir 16 bits 6 bits 6 bits
Readout 16 bits 6 bits 6 bits

Synaptic Weight Reservoir 10 bits 1 bit 1 bit
Readout 10 bits 8 bits 8 bits

Size of Reservoir N.A. 135 neurons 95 neurons 54 neurons

Fig. 24. Classification performance of the LSM on the three adopted benchmarks
decreases as a function of design complexity. A reasonably good performance can be
attained with reduced complexity.
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computational capability of LSMs, we adopt three theoretical measures
to illustrate the relation between performance and the design para-
meters and the results generally agree with the simulated performance.
By applying the theoretical measures, we also notice that multiple
regimes can provide the LSM with sufficiently rich dynamics for
separation of different input samples. To provide practical suggestions
for future hardware implementation, we study the impacts of failure
and error mechanisms introduced by process variations and environ-
mental effects upon the recognition performance, showing that LSMs
are fairly robust.

We have several main findings. First, in general, the implementa-
tion of the reservoir does not appear to be critical and require a high
level of precision and robustness as long as it is capable of creating rich
dynamics. One exception is the implementation of comparators which
directly impact the firing activities of the reservoir. On the contrary,
robust and accurate arithmetic units (comparators and adders espe-
cially) are desirable for the readout because they are critical parts of the
LSM. These insights are particularly useful in practice as they offer
insightful guidance for circuit implementation such that a good level of
performance and robustness may be maintained while avoiding
unnecessary overdesign.
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