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ABSTRACT 

 

Development of Renewable and Recyclable Epoxy Thermosets  

Based on Lignin Derived Phenols 

 

by 

 

Shou Zhao 

 

Epoxy thermoset represents one of the most versatile thermosetting materials that has been 

used as coatings, adhesives, electronic materials and structural composites. However, by far 

more than 90% of the epoxy cross−linked polymers involve the use of petroleum−based 

bisphenol A (BPA). Lignin is an abundant, low−cost and renewable source that can provide 

building blocks for epoxy thermosets. Lignin−derived monomers, oligomers and bulk lignin 

were modified through methods including demethylation, phenolation and condensation to 

make renewable BPA analogs. Glycidylation of these analogs followed by cross−linking 

process yielded renewable thermosets with marked thermomechanical properties that could 

replace or supplement the BPA−based counterparts. While most of the traditional epoxy 

thermosets cannot be reprocessed after cross−linking, incorporating reversible bonds into the 

backbone of thermosets can achieve stress relaxation and reversible depolymerization through 

cross−link exchange and bonds cleavage−reformation. This affords malleability, weldability 

and recyclability to the renewable thermosets. 
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Chapter 1  

Introduction 

 

1.1 Motivation 

Epoxy thermoset represents one of the most versatile thermosetting materials that has been 

used as coatings, adhesives, electronic materials and structural composites. By far, more than 

90% of epoxy cross−linked polymers involve the use of bisphenol A (BPA). However, 

considering the foreseeable depletion of fossil fuel, it is advantageous to replace 

petroleum−derived chemicals (e.g., BPA) with sustainable and environmentally friendly 

building blocks. Lignin has been widely viewed as a promising renewable material because it 

is abundant, low−cost and the sole large−volume aromatic feedstock. It is especially reasonable 

to use lignin−derived chemicals to synthesize thermosetting materials, as the aromatic structure 

provides good thermal and mechanical performance. Thus, one motivation of this thesis is to 

synthesize renewable lignin−based epoxy thermosets and investigate their potential to replace 

or supplement BPA−based materials. Meanwhile, epoxy thermosets are highly cross−linked 

networks that are most infusible and insoluble, which makes them nondegradable and 

nonrecyclable. Thus, another motivation of this thesis is to eliminate the inertness of renewable 

thermosets by incorporating reversible bonds into the networks to make covalent adaptable 

networks (CANs). Malleability, processability and recyclability of obtained materials are 

evaluated.  

1.2 Epoxy Chemistry 

   Since it was first discovered in 1909 by Prileschajew,1 epoxy thermosets have been rapidly 

evolved and applied in various applications requiring superior strength, excellent adhesion, 



2 

 

 

good chemical resistance, and excellent performance at elevated temperatures (Figure 1.1). 

According to a recent report, the global epoxy market accounted for USD 7.54 billion in 2015 

and is expected to increase to USD 11.22 billion by 2021.2 Epoxy thermosets are generally 

prepared by contacting at least one epoxy prepolymer and at least one hardener to form a 

cross−linked polymer with the aid of heat or other action of energy. Epoxy prepolymer is 

referred to as a low−molecular−weight molecule containing more than one epoxide group. The 

most popular epoxy prepolymers are those prepared from the reaction of BPA and 

epichlorohydrin, in the presence of a base. The structure of the major product, bisphenol A 

diglycidyl ether (DGEBA or BADGE) and its condensed forms, depends on the stoichiometry 

of the reactants (Figure 1.2 and 1.3a). Other common commercial epoxy prepolymers include 

bisphenol F diglycidyl ether (DGEBF) and epoxidized novolac oligomer (Figure 1.3b and 1.3c).  

 

Figure 1.1 Properties and applications of epoxy thermosets. 
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Figure 1.2 Mechanism of O−glycidylation of phenolic compounds. 

 

 

Figure 1.3 Main commercial phenolic epoxy prepolymers. 

Properties of epoxy thermoset depend on the selection of appropriate epoxy precursors, 

curing agents, reagent stoichiometry and the addition of organic or inorganic fillers and 

components. These factors determine the components and cross−link density of the network, 

which affect the thermomechanical properties (e.g., glass transition temperature, modulus, 

strength and onset degradation temperature etc.) of epoxy thermosets. Curing chemistry of an 

epoxy prepolymer with an amine hardener is illustrated in Figure 1.4. When one epoxy is 

reacted with one −NH group of the amine, one hydroxyl group is generated simultaneously. 
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Initial epoxy−amine reaction builds linear molecular weight, which gives low viscosity 

increase. The next step in the curing process is the cross−linking of the chains with each other. 

For this to occur, amine hardener should have more than two reactive −NH groups. The 

cross−linking of larger molecules causes a rapid increase of the observed viscosity. Steric 

hindrance can lead to incomplete curing, which can be remedied by means of post−cure or the 

use of plasticizers. Except amine, other curing agents including polyfunctional acids, 

anhydrides, phenols, alcohols and thiols can also be used for various applications.  

 

Figure 1.4 Curing reactions between epoxy prepolymer and amine hardener. 

1.3 Lignin−Based Epoxy Thermosets 

Lignin constitutes one of the three major components of lignocellulosic biomass, of which 

the other two components include cellulose and hemicellulose. Lignin is a three−dimensional 

amorphous polymer comprising methoxylated phenylpropane structures. It fills the spaces 
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between cellulose and hemicellulose in plant cell walls and behaves as a resin that keeps the 

lignocellulose matrix together. Figure 1.5 demonstrates a schematic representation of lignin in 

biomass. There are three types of monolignols (p−coumaryl alcohol, coniferyl alcohol and 

sinapyl alcohol) making up the lignin backbone (Figure 1.6), which form p−hydroxyphenyl 

(H), guaiacyl (G) and syringyl (S), with varying number of methoxy groups.3, 4 These 

monolignols are connected by linkages like β−O−4, β−5, 4−O−5, 5−5, β−1, dibenzodioxocin 

and β−β, of which the β−O−4 linkage is dominant, comprising more than 50% of the lignin 

linkage structures. To prepare lignin−derived epoxy thermosets, the following starting phenolic 

compounds are usually employed: 1) lignin−derived phenol monomers (LDPMs), 2) partially 

depolymerized lignin (PDL) and 3) bulk lignin.  

 

Figure 1.5 Schematic representation of lignin structure in lignocellulosic material. Adapted 

from Weckhuysen et al.5  
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Figure 1.6 Three monolignols building blocks of lignin. 

1.3.1 LDPM−Based Epoxy Thermosets. 

Recent catalytic depolymerization techniques can convert lignin to various value−added 

phenolic monomers including phenols and aldehydes. Because of their straightforward 

structure, LDPMs are often used as phenolic precursors to make epoxy thermosets with 

predictable properties. Since cross−linkable epoxy monomers require at least two epoxides per 

molecule, special efforts have been taken to increase the number of functional hydroxyl groups 

through (1) conversion of other reactive groups like methoxy, double bond, or aldehyde to 

hydroxyl groups.6−10 For example, vanillin is an industrially available, non−toxic and 

lignin−derived building block. On the one hand, oxidation of vanillin leads to vanillic acid or 

methoxyhydroquinone resulting from decarboxylation under alkaline conditions. On the other 

hand, reduction of vanillin results in vanillyl alcohol. All these modified compounds possess 

two functional hydroxyl groups, which makes them feasible to make epoxy prepolymers. 

Diglycidyl ethers of vanillin derivatives were formulated to make epoxy thermosets, which 

possess comparable properties to their BPA−based counterparts.6, 8 (2) Coupling repeated 

LDPMs using bridging reagents. 11−20 For example, guaiacol novolac and wood−tar creosote 

novolac were synthesized by reacting lignin−derived guaiacol and creosote with formaldehyde, 

respectively.11 Synthesized novolac oligomers have improved hydroxyl groups, which can be 

used to cure the sorbitol polyglycidyl ether. The obtained thermosets exhibited comparable 
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properties to phenol novolac based materials. 

1.3.2 PDL−Based Epoxy Thermosets. 

Compared to the production of LDPM that is often associated with intensive energy 

consumption as well as several separation and purification steps, partially depolymerized lignin 

is more cost−effective. Unlike LDPMs, PDL already have multiple functional hydroxyl groups, 

which requires no additional modification processing to increase hydroxyl groups. van de Pas 

and Torr recently reported a partially deconstructed native softwood lignin using mild 

hydrogenolysis.21 Mild hydrogenolysis selectively cleaves the β−O−4 and α−O−4 ether 

linkages, while stabilizes the lignin fragments against repolymerization through catalytic 

reduction. The treated product contained a mixture of phenolic monomers, dimers and 

oligomers. Glycidylation of the mixture with epichlorohydrin yielded an epoxy prepolymer 

that can lead to thermosets with marked properties. In another study, Sasaki et al. reported a 

partially depolymerized lignin extracted from steam−exploded bamboo.22 Steam explosion has 

recently been widely applied to lignocellulosic materials.23, 24 During steam explosion, 

lignocellulosic matrix is exposed to pressurized steam, prior to a rapid pressure reduction. This 

treatment typically leads to substantial breakdown of the lignocellulosic structure and 

depolymerization of the lignin components. After several solvent−extraction processes, the 

depolymerized lignin exhibited potential to replace petroleum−based BPA for making 

thermosets. PDL is also available for making epoxy hardener. According to Zhang et al.,25 Kraft 

lignin was partially depolymerized through base catalyzed depolymerization in supercritical 

methanol. The PDL was then converted to polyfunctional carboxylic acid by treating with 

succinic anhydride. By reacting the lignin−based acid with DGEBA, they claimed that lignin 
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could serve as a feedstock in the preparation of curing agent and be used for epoxy applications. 

1.3.3 Bulk Lignin−Based Epoxy Thermosets. 

Compared to LDPM and PDL, bulk lignin is more abundant and cheaper. It is reported 

that the total availability of technical grade lignin in the biosphere exceeds 300 billion tons,26 

while its price is 20 times cheaper than phenol.27 Thus, it would be advantageous to replace 

BPA with lignin as prepolymers for thermosets. However, only 2% of lignin is being used for 

value−added products,3 which is limited by its low reactivity and incompatibility with 

polymeric compounds. By far, methods of incorporating bulk lignin into epoxy thermosets can 

be summarized into three categories:28 (1) using lignin derivatives as fillers to directly blend 

into general epoxy thermosets; (2) modifying lignin by direct epoxidation; and (3) modifying 

lignin derivatives to improve its reactivity, followed by epoxidation. Most of reported lignin 

and epoxidized lignin are infusible solids, which cannot be directly cured by hardeners and at 

least one epoxy co−prepolymer needs to be introduced for making thermosets.29−32 Thus, lignin 

should be modified to increase its reactivity and compatibility before glycidylation. 

Glycidylation of pre−modified lignin could produce simultaneously solid and liquid phase 

epoxy prepolymers.33 For example, Hofmann et al. prepared epoxy prepolymers using 

hydroxyalkyl lignin derivatives.34 Hydroxyalkylation was conducted by reacting lignin first 

with propylene oxide and then with ethylene oxide. Glycidylation of hydroxyalkylated lignin 

produced an epoxy prepolymer mixture, while the curable liquid prepolymer had to be 

collected after several fractionation processes. By making a methylolated lignin, Mansouri et 

al. synthesized solid and liquid phase of epoxidized lignin simultaneously.35 Even though the 

liquid phase could be separated by filtration, its epoxy content only accounted for < 20% in the 
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mixture. By far, there has been no report on the preparation of exclusive liquid bulk−lignin 

containing epoxy prepolymer. In their liquid phase, lignin−containing epoxy prepolymers 

would find much wider applications compared to their solid phase counterparts.  

1.4 Covalent Adaptable Networks (CANs) 

 

Figure 1.7 Covalent adaptable networks, new polymers that combine the advantages of 

thermosets and thermoplastics. 

Synthetic polymer materials are generally classified into two categories: thermosets and 

thermoplastics. Thermosets are composed of small molecules that are covalently linked to each 

other. Thus, thermoset can also be viewed as a single molecule that has infinite molecular 

weight. The highly cross−linked structure renders thermoset excellent mechanical and thermal 

properties. However, because of these covalent bonds, thermosets are most intractable and 

cannot be remolded, reprocessed or recycled after cross−linking. By comparison, 

thermoplastics are composed of polymer chains that are connected by weak intermolecular 

forces. The lack of cross−links in thermoplastics significantly alter the characteristics and 

behavior as compared to thermosets. Thermoplastic materials may have a glass transition 
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and/or a crystalline transition. When temperature is above these transitions, the materials can 

undergo a macroscopic flow that permanently changes the equilibrium shape of the material 

when the molecular structure keeps intact. Thus, thermoplastics can often be reprocessed and 

recycled.  

 

Figure 1.8 Mechanisms of the associative CANs and dissociative CANs. Adapted from 

Bowman and Kloxin.36 

To combine the advantages of thermosets and thermoplastics, the concept of covalent 

adaptable networks (CANs) has recently been proposed (Figure 1.7). By introducing dynamic 

covalent bonds into thermoset backbones or cross−linking points, CANs could retain the 

stiffness and strength, while also exhibit stress relaxation, malleability and recyclability 

through bond breakage and reformation.36−39 CANs can be divided into two categories: 

associative CANs and dissociative CANs (Figure 1.8). For associative CANs, bonds exchange 

within the polymer network. An active species undergoes an exchange reaction that leads to 

bond exchange and formation of a new active species, which can then undergo additional 

exchange reactions. One example of associative CANs is the work of Leibler et al. (Figure 

1.9).40 First, DGEBA was reacted with polyfunctional carboxylic acid to achieve an epoxy 

thermoset cross−linked by ester bonds. Then the free hydroxyl group of another chain reacted 

with the ester bond with the help of a metal catalyst to undergo transesterification reaction. 
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When the rate of this reaction was fast enough (at elevated temperature), the thermoset was a 

viscoelastic liquid that could be reprocessed.  

 

Figure 1.9 Associative CANs that is achieved by metal−catalyzed transesterification reactions. 

Adapted from Leilber et al.40 

    As for dissociative CANs, reversible polymerization takes place. When a stimulus is 

applied, the covalent bonds break. When the stimulus is removed, the covalent bond reform. 

During the bond breaking−reformation process, the thermoset can be decomposed or reshaped. 

One example of dissociative CANs is thermoset connected by Diels–Alder reaction.41 The 

difference between the two CANs is, for associative CANs, the number of cross−links is 

constant, while for dissociative CANs this number changes.39 Dynamic covalent motifs, 

including Diels−Alder (DA) cycloaddition,41, 42 ester bonds,40, 43, 44 imine bonds,45−48 hindered 

urea bonds,49, 50 Ru−catalyzed olefin metathesis,51, 52 boronic ester linkages,53 disulfide 

exchange,54−56 trans−amination of vinyl urethanes57 and silicon−oxygen bond exchange58 have 

been recently utilized for thermoset syntheses, which substantially expands the applications of 

CANs. Among these bonds, it is noteworthy that imine bonds exhibit both associative and 

dissociative behaviors, which can afford CANs with interesting properties.  
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1.5 Scope and Outline of This Thesis 

The objective of this thesis is to develop novel sustainable and recyclable thermosetting 

materials. To achieve this objective, several chemical modifications of lignin−derived 

compounds were conducted to increase their functional hydroxyl groups, improve their 

compatibility with polymeric materials and incorporate reversible bonds into polymer networks. 

Synthesized polyfunctional phenols were glycidylated to epoxy prepolymers and cured with 

appropriate hardeners to make thermosets. Thermal and mechanical properties of these 

thermosets were subsequently characterized to determine their potential for replacing or 

supplementing the conventional BPA−based counterparts 

In Chapter 2, using dihydroeugenol (DHE) as the same phenol precursor, it is found that 

different modification methods (e.g., o−demethylation and phenol–formaldehyde reactions) 

yield polyphenol precursors with different molecular weight, orientation and number of 

functional groups, whose improvement increases the cross−link density of resulting epoxy 

networks. Cross−linking densities of cured networks were calculated using rubber elasticity 

theory from dynamic mechanical analysis (DMA). Networks with higher cross−link density 

are found to exhibit greater mechanical and thermal performance as measured by DMA and 

thermogravimetric analysis. Above results provide insights in designing high−performance 

thermosets. As inspired by these results, Chapter 3 demonstrates universal synthetic routes to 

lignin−based epoxy thermosets with tunable thermomechanical properties, which require no 

need to separate pure compounds from the lignin−based bio−oil mixture. 

In Chapter 4, a series of fully renewable triphenylmethane−type polyphenols (TPs) are 

synthesized from lignin−derived aldehydes (4−hydroxybenzaldehyde, vanillin, and 
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syringaldehyde) and para−substituted guaiacols (methylguaiacol and propylguaiacol) in the 

first section. By converting guaiacols to catechols through o−demethylation, yields of TPs are 

remarkably increased. Compared to conventional bisphenolic compounds, the TP−based 

thermosets have significantly improved thermomechanical properties due to the rigid 

triphenylmethane framework, high functionality, and high cross−link density.  

Lignin is characterized by methoxy substitution of its aromatic rings. As a result, 

lignin−based thermosets often have methoxy groups, which could affect thermomechanical 

properties of the resulting thermosets. Thus, Chapter 5 investigates the impacts of methoxy 

substituents on the properties of thermosets, while TP structure allows for a way to manipulate 

the number of methoxy substituents by using different starting aldehydes and 

para−unsubstituted phenols. Methoxy groups have different impacts on the mechanical, 

thermal and yield of the resulting thermosets. The different effects of methoxy substitution can 

guide the selection and/or modification (e.g. deoxygenation) of lignin−derived monomers for 

making epoxy polymers with desirable properties. 

In Chapter 6, bulk lignin, instead of lignin−derived phenolic monomers, is incorporated 

into thermosets. An approach to lignin−based epoxy networks from both organosolv lignin and 

lignin−derived phenol (DHE) are developed using successive chemical modifications 

including demethylation, phenolation, and phenol−formaldehyde reaction. Compared to a 

conventional synthesis route in which lignin was epoxidized prior to blending with 

comonomers, the proposed approach can yield thermosets with improved cross−link density, 

α−relaxation temperature, storage modulus in a glassy region and increased thermal stability.  

While the Chapter 6 describes an attractive way to make lignin−incorporated thermoset, 
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it suffers from low lignin content and the use of unfavorable chemicals including formaldehyde 

and hydrobromic acid. In Chapter 7, we describe greener chemistry for functionalizing bulk 

lignin. Bio−based salicyl alcohol (SA) is used to condense with phenolated lignin (PL) before 

glycidylation. It is found that SA has higher affinity for PL, while lignin content in starting 

polyphenol can approach 27 wt %, which is two times higher than the earlier approach. SA 

bears both hydroxymethyl group and reactive phenolic para/ortho sites. Thus, it could 

simultaneously react with the para/ortho sites of phenolics in PL and undergo 

self−condensation without the need for coupling agents like formaldehyde.  

Finally, by embedding imine bonds into epoxy cross−linked networks as intermolecular 

linkages, we describe in Chapter 8 a novel epoxy thermoset that exhibits controlled degradation, 

recyclability, malleability and weldability, which require no additional ingredient such as 

catalyst or additional monomer, or complicated processing. The described recyclable thermoset 

makes use of lignin−derived monomers like vanillin.  
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Chapter 2 

Renewable Epoxy Thermosets from Lignin−Derived Phenol 

Monomers (LDPMs): Effect of Cross−link Density 

 

ABSTRACT: Three modification methods, which either improved molecular weight, 

orientation or the number of functional groups, were employed to increase the cross−link 

density of biobased epoxy networks based on 2−methoxy−4−propylphenol (or dihydroeugenol, 

DHE). The modifications were realized through o−demethylation and phenol−formaldehyde 

reactions. Structures of DHE−based monomers and cured networks were characterized by 

NMR and FTIR spectroscopy. Cross−link densities of cured networks were calculated using 

rubber elasticity theory from dynamic mechanical analysis (DMA). Networks with higher 

cross−link density were found to exhibit greater mechanical and thermal performance as 

measured by DMA and thermogravimetric analysis (TGA). GEDHEO−NOVO, an epoxy 

monomer featuring all three modification processes, exhibited significant improvements in 

cross−link density (0.39 to 9.77 mol/dm3), α−relaxation temperature (Tα, 40 to 139 °C) and 

statistic heat−resistant index temperature (Ts, 125 to 153 °C) compared to the unmodified 

DHEO−based networks.  
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This section is partially adapted from: Shou Zhao and Mahdi M. Abu−Omar, 

Biomacromolecules, 2015, 16 (7), 2025–2031, and Shou Zhao and Mahdi M. Abu−Omar, ACS 

Sustain. Chem. Eng. 2016, 4 (11), 6082−6089. 

 

2.1 Introduction  

The use of lignin−derived phenols to replace aromatics derived from petroleum for 

making thermoset materials has attracted increasing attention over the last decade.1,2 The merit 

of this replacement is often attributed to the sustainability of lignin over nonrenewable 

chemicals. Furthermore, the aromatic nature of lignin provides for high performance 

thermosets with desirable mechanical properties and thermal stability.3  

To obtain lignin−based thermosets, two strategies have been employed. The first focuses 

on integrating functionalized bulk lignin with other natural or synthetic monomers to achieve 

copolymers or blends. For example, carboxylic acid−functionalized lignin obtained by reacting 

alkali lignin with acid anhydride acts as a curing agent for epoxy networks.4 The use of bulk 
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lignin without deconstruction into its phenolic components has certain economic advantages. 

However, limitations of this strategy have become evident. The reactivity of lignin is low 

because the majority of its phenolic hydroxyl groups are etherified and all para as well as some 

ortho positions of the phenolic rings are occupied.5 Also cross−link density of the resulting 

thermosets is often compromised because of the steric hindrance introduced by bulk lignin.6,7  

Because of the above−mentioned limitations associated with the use of bulk lignin, use of 

well characterized lignin−derived monomers for thermosets design is most appealing and has 

received extensive attention. Thermosets including epoxy resins, polybenzoxazines, vinyl ester 

resins and cyanate ester resins developed from lignin−derived building blocks like eugenol,8,9 

vanillin,10,11 guaiacol12 and creosol13 have been recently reported. Improved reactivity of 

lignin−derived monomers rather than bulk lignin provides thermosets which exhibit more 

satisfactory mechanical and thermal properties. Moreover, reactivity of lignin−derived 

monomers can be further increased through molecular reaction design such as demethylation,14 

methacrylation15 or bridging monomers into oligomers through formaldehyde chemistry.16 

From the viewpoint of “structure determines property,” even if slightly varying 

monomer’s chemical structure, e.g. ortho−, meta− and para−substituted bisphenols, the 

obtained polymers exhibit markedly different properties.17 Even though significant work has 

been done on lignin−based thermosets,1,2,18 differences in properties caused by various 

structural designs have not been explored systematically. In fact, if lignin−derived molecules 

can be shown to undergo reasonable structural design to achieve optimal properties, their 

sustainability and viability would become more meaningful. Previous laboratory experiments19 

and molecular modeling20 studies have identified cross−link density as a key structural 
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parameter that determines thermomechanical properties of thermosets. To investigate the 

effects of cross−link density on fully cured thermosets from the same precursor, we employed 

the following methods: (1) variation of monomer molecular weight,21 (2) alteration in number 

of functional groups on monomer22 and (3) adjustment of chain orientation.23,24  

In a recent report we described a bimetallic Zn/Pd/C catalytic system to convert lignin in 

intact lignocellulosic biomass directly into two methoxyphenol products.25 One of the major 

products, 2−methoxy−4−propylphenol (or dihydroeugenol, DHE), exhibited potential as a 

building block for epoxy networks (Figure 2.1, Route 1),26 in which DHE was o−demethylated 

to yield propylcatechol (DHEO), and subsequently glycidylated to epoxy monomer 

(glycidylated ether of DHEO, GEDHEO). Route 1 creates two hydroxyl groups per DHE 

molecule to make it a viable epoxy monomer. However, its properties are impaired due to the 

appearance of benzodioxane byproducts and decrease in extension caused by the ortho 

hydroxyls and three carbon propyl tail.  

       

Figure 2.1 Modifications of DHE−based epoxy networks through: improving molecular weight 
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and adjusting orientation of functional group from DHE to DHE−Dimer in Route (2); 

increasing number of functional group from DHE−Dimer to DHEO−Dimer via 

o−demethylation in Route (3); and increasing molecular weight from DHEO to DHEO−NOVO 

via phenol−formaldehyde reaction in Route (4). Benzodioxane derivatives produced during the 

glycidylation of DHEO, DHEO−Dimer and DHEO−NOVO are not shown. 

In this study, with the aim to improve the performance of the epoxy networks obtained 

from Route 1, three modified DHE−based epoxy networks with enhanced cross−link density 

were prepared by varying (a) the molecular weight and orientation of functional group by 

dimerization of DHE (DHE−Dimer) via Route 2; (b) the number of functional hydroxyl groups 

by demethylation (DHEO−Dimer) in Route 3; and (c) the molecular weight through 

phenol−formaldehyde reaction (DHEO−NOVO) in Route 4. The proposed DHE−based epoxy 

networks provide insight into thermoset syntheses using lignin−derived monomers, the 

majority of which possess similar structural characteristics with DHE. More importantly, this 

study highlights how the thermomechanical properties of epoxy networks can be improved 

through varying the cross−link density from the same precursor.  

2.2 Results and Discussion 

2.2.1 Characterization of DHE−Based Polyphenols and Epoxy Monomers 

1H NMR spectroscopy.  

Structures of DHE−derived polyphenols are illustrated in Figure 2.2. The resonance peak 

at δ 3.9 is assigned to −OCH3 proton of DHE (Figure 2.2, panel a). After DHE was 

demethylated in aqueous HBr, DHEO (Figure 2.2, panel b) exhibits no peak at δ 3.9 while two 

hydroxyl peaks are apparent at δ 5.3 and 5.4, indicating complete removal of methoxy group. 
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In another route, DHE−based polyphenol is achieved by dimerization of DHE through 

formaldehyde chemistry. Previous study reported Brønsted acid catalyzed formaldehyde 

coupling occurred exclusively at the position meta to the hydroxyl group with a selectivity of 

97%.27 The obtained bisphenol, DHE−Dimer, exhibits a methylene linkage at δ 3.8 (Figure 2.2, 

panel c). DHE−Dimer is further demethylated to DHEO−Dimer in HBr solution. Figure 2.2, 

panel d shows the disappearance of DHE−Dimer methoxy groups at δ 3.9 and doubling of the 

integration of hydroxyl groups at δ 5.7. NMR spectra of DHEO−NOVO (Figure 2.2, panel e), 

which is achieved through the DHEO−formaldehyde reaction, reveals a methylene linkage in 

the region of δ 3.5−4.1. The integration ratio of H4/H2 in Figure 2.2, panel e is around 0.57, 

indicating the novolac oligomer contains mainly dimers and trimers, which is consistent with 

a reported novolac product from wood−tar creosote.16  
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Figure 2.2 1H NMR spectra of (a) DHE, (b) DHE o−demethylated product (DHEO), (c) 

DHE−Dimer, (d) DHEO−Dimer and (e) DHEO−NOVO. 

NMR spectra of glycidyl ethers of polyphenols are demonstrated in Figure 2.3. 

Glycidylation of DHEO with epichlorohydrin results in two products GEDHEO and 

benzodioxane with a molar ratio of ca. 2:1. GEDHEO exhibits epoxy protons H6a, H6b and 

H5 at δ 2.75, 2.88 and 3.37, while benzodioxane shows characteristic protons H4a, H5 and H4b 

at δ 3.99, 4.07 and 4.23 (Figure 2.3, panel a). Figure 2.3, panel b reveals glycidylation of 

DHE−Dimer lead to only one product (GEDHE−Dimer) with characteristic epoxy protons H8a, 

H8b and H7 at δ 2.6, 2.8 and 3.3, respectively. As for the spectra of GEDHEO−Dimer (Figure 

2.3, panel c) and GEDHEO−NOVO (Figure 2.3, panel d), it is difficult to assign each peak 
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because DHEO−NOVO have different methylene linkage positions, while the intramolecular 

cyclization between two adjacent hydroxyls (benzodioxane products) could occur in both. Thus, 

NMR patterns of GEDHEO and GEDHE−Dimer in Figure 2.3, panels a and b are tentatively 

used to define the regions of characteristic epoxy (δ 2.6−3.0 and δ 3.2−3.5) and benzodioxane 

(δ 3.7−4.4) protons. Figure 2.3, panels c and d depict that there are peaks showing up in both 

regions, which indicates DHEO−Dimer and DHEO−NOVO are epoxidized.  

 

Figure 2.3 1H NMR spectra of glycidylation products of DHE−based polyphenols. (a) 

GEDHEO, (b) GEDHE−Dimer, (c) GEDHEO−Dimer and (d) GEDHEO−NOVO. Regions of 

characteristic epoxy (δ 2.6−3.0 and δ 3.2−3.5) and benzodioxane protons (δ 3.7−4.4) are 

highlighted. Benzodioxane derivatives of (c) and (d) are not shown in the figure. 

FTIR spectroscopy.  

The structures of polyphenols and corresponding epoxy monomers are further supported 

by FTIR analysis. Figure S2.1, panel A reveals characteristic absorption bands of DHEO, 
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DHE−Dimer, DHEO−Dimer and DHEO−NOVO appear at around 3355 cm−1 (O−H stretching), 

2864 cm−1, 2936 cm−1 and 2960 cm−1 (alkyl C−H stretch), and 1604 cm−1, 1516 cm−1, and 1445 

cm−1 (aromatic C−C bond). After glycidylation of polyphenols with epichlorohydrin, an epoxy 

ring band at 912 cm−1 and a C−O−C ether linkage at 1028 cm−1 are observed (Figure 2.4). 

Meanwhile, OH bands of the glycidyl ethers decrease, indicating the hydroxyl groups are 

consumed in the glycidylation process. The FTIR results are consistent with the 1H NMR 

analysis confirming formation of the epoxy ring. This conclusion is further supported by the 

FTIR spectra of the cured epoxy networks in Figure S2.1, panel B. When epoxy monomers are 

cured with DETA, epoxy peaks are opened while hydroxyl groups are generated concurrently. 

This process is reflected by the IR results, in which the epoxy band at 912 cm−1 of all cured 

networks disappear while the intensity of OH bands at around 3355 cm−1 increases.   

 

Figure 2.4 FTIR spectra of GEDHEO, (b) GEDHE−Dimer, (c) GEDHEO−Dimer and (d) 

GEDHEO−NOVO. FTIR bands corresponding to 912 cm−1 are attributed to epoxy groups.  

2.2.2 Determination of Cross−link Density Using Rubber Elasticity Theory 

Table 2.1. Dynamic mechanical properties and cross−link density (νe) of DHE−based epoxy 

networks. Tα is α−relaxation temperature and E30’ is the storage modulus at 30 °C. 
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Cross−link density (νe) is one of the major factors that determines the performance of an 

epoxy thermoset.28 Table 2.1 reveals the cross−link density follows the order: DHEO < 

DHE−Dimer < DHEO−Dimer < DHEO−NOVO, which could be attributed to the variations of 

molecular weight, orientation and number of epoxy groups. The cross−link density of 

DHE−Dimer based network (1.39 mol/dm3) is more than 3.5 times higher than that of DHEO 

(0.39 mol/dm3). This evident improvement can be attributed to the following three reasons: (1) 

Molecular weight is increased. Increasing the molecular weight (e.g., dimerization) can provide 

higher cross−link density because the bonds between the iterative units are considered as 

apriori cross−links.21 (2) The benzodioxane byproduct is avoided. As can be seen from the 

NMR spectra in Figure 2.3, DHEO−based epoxy monomer (panel a) contains around 20 mol% 

of benzodioxane byproducts that are not curable and would occupy certain free volume that 

impairs the cross−link density of the network, while there is no byproduct observed for the 

GEDHE−Dimer (panel b). (3) Orientation of functional group becomes more stretched from 

DHEO to DHE−Dimer. Figure S2.2 lists the simulated 3−D models of GEDHEO and 

GEDHE−Dimer. The two epoxy groups of GEDHEO are in ortho positions, which could form 

closed looping with DETA and limit the direction of network development. By comparison, 

GEDHE−Dimer has more stretched configuration of epoxy groups that can promote cross−link 

density.29  

Epoxy networks 

from 

Tα 

(°C) 

E30’ 

(MPa) 

E’ at Tα+30 °C 

(MPa) 

νe 

(mol/dm3) 

GEDHEO 40 159 1.13 0.39 

GEDHE−Dimer 70 551 4.31 1.39 

GEDHEO−Dimer 84 1441 10.56 3.28 

GEDHEO−NOVO 139 1703 35.91 9.77 

 1 
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Figure 2.5 Storage modulus values of DHE−based epoxy networks as a function of temperature. 

Increasing the number of functional groups is also able to improve cross−link density.30 

When methoxys of DHE−Dimer are demethylated to yield additional two hydroxyls per 

molecule, the obtained DHEO−Dimer based network exhibits further enhanced cross−link 

density of 3.28 mol/dm3. It is evident that GEDHEO−Dimer is a dimer of GEDHEO, however, 

the cross−link density of GEDHEO−Dimer is around 8 times to that of GEDHEO, which also 

highlights the role of molecular weight. In fact, both DHEO and DHEO−Dimer would give 

rise to certain amounts of benzodioxane derivatives, but the negative influence of benzodioxane 

on cross−link density is reduced when molecular weight goes up. This is evident from the fact 

that DHEO−based benzodioxane is not curable while as for the epoxy mixture from 

DHEO−Dimer, even if the benzodioxane occurs in one benzene ring, another ring is still 

available for cross−link. The effect of molecular weight on cross−link density is further 

supported when DHEO−NOVO based network is scrutinized. As stated above, 

DHEO−formaldehyde reaction produces DHEO−NOVO as oligomers with average molecular 

weight between dimer and trimer. Even though the increase of molecular weight from 

DHEO−Dimer to DHEO−NOVO is not significant (less than 50% increase), DHEO−NOVO 
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based network exhibits significant improvement in cross−link density (from 3.28 to 9.77 

mol/dm3, around 200% increase). 

Cross−link density can also be reflected from the α−relaxation temperature (Tα) because 

increased covalent cross−links restricts the mobility of polymer segments, which leads to 

higher Tα.
28,31 Table 2.1 and Figure 2.5 reveal Tα of the biobased networks follows the order: 

DHEO (40 °C) < DHE−Dimer (70 °C) < DHEO−Dimer (84 °C) < DHEO−NOVO (139 °C), 

which is in accordance with the cross−link density. The increment in Tα is significant after the 

modification like increasing molecular weight, adjusting orientation and improving epoxy 

groups. Moreover, Tα of DHEO−NOVO based network is 139 °C, which is slightly higher than 

the 137 °C of traditional DGEBA/DETA epoxy resins.32 This finding highlights renewable 

DHE−based epoxy network has the potential to replace petroleum−based resins in terms of Tα. 

The storage modulus at 30 °C (E30’) of DHEO−NOVO based network (1703 MPa, Table 2.2) 

is lower than that of the DGEBA/DETA resin (3600 MPa),32 which could be attributed to the 

structural disadvantages of DHEO with ortho epoxide and three carbon propyl tail, and the 

appearance of benzodioxane in the epoxy mixtures. Temperature dependence of the storage 

modulus of other cured DHE−based networks are also shown in Figure 2.5 and enhanced 

storage modulus is attributed to the increased cross−link density.  
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2.2.3 Effect of Modification Strategies on Curing Behaviors 

 

Figure 2.6 DSC temperature scans of heat release during nonisothermal cures of different 

DHE−based epoxy monomers/DETA curing systems at 10 °C/min. 

Figure 2.6 and Table 2.2 demonstrate peak temperatures of epoxy/amine systems follow 

the trend: GEDHE−Dimer (91.7 °C) > GEDHEO (84.2 °C) > GEDHEO−Dimer (82.1 °C) > 

GEDHEO−NOVO (72.9 °C). The shift of DSC exothermic peak to lower temperature indicates 

increased overall activity of epoxy groups, which is derived from catalytic effects or favorable 

configuration.33 GEDHE−Dimer has the highest peak temperature, which could be caused by 

the phenomenon that no catalytic benzodioxane byproduct is observed for GEDHE−Dimer 

from the NMR spectra in Figure 2.3, panel b. As for GEDHEO, GEDHEO−Dimer and 

GEDHEO−NOVO, certain amounts of benzodioxane with hydroxyls that can catalyze the 

curing reactions in these mixtures, resulting in decreased peak temperatures compared to 

GEDHE−Dimer. Meanwhile, the activation energy (Ea) decreases from DHEO to 

DHEO−NOVO, which may be attributed to improved configuration of the modified monomers.  

Table 2.2. DSC curing data for DHE−based epoxy monomers/DETA systems exhibiting onset 

curing temperature (Ti), peak curing temperature (Tp) and activation energy (Ea). 
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2.2.4 Effect of Cross−link Density on Thermal Stability 

 

Figure 2.7 Thermogravimetric analysis thermograms of DHE−based epoxy networks as a 

function of temperature. 

Figure 2.7 demonstrates all epoxy networks show a one−step degradation profile, which 

is attributed to the decomposition of cross−linked polymer network.34 Thermal stability of the 

networks improves with increased cross−link density. This is reflected in the change of onset 

degradation temperature (expressed as Td5, temperature at 5% weight loss) from 193 °C of 

GEDHEO based networks to 235, 245 and 297 °C of networks from DHE−Dimer, 

DHEO−Dimer and DHEO−NOVO, respectively. This phenomenon is explained by that 

polymer chains in highly−cross−linked networks are more constrained, leading to lower 

mobility during thermal expansion.20 Meanwhile, the more tortuous pathway in the 

highly−cross−linked network postpones the decomposed products to diffuse out and heat to 

Sample Ti 

(°C) 

Tp 

(°C) 

Ea 

(kJ/mol) 

GEDHEO 34.5 84.1 54.9 

GEDHE−Dimer 51.4 91.7 45.9 

GEDHEO−Dimer 42.7 82.1 44.0 

GEDHEO−NOVO 39.6 72.9 41.9 

 1 
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flow into the underlying materials. The statistic heat−resistant index temperature (Ts),
35,36 

which is calculated based on Td5 and Td30 (temperature at 30% weight loss), is characteristic of 

the thermal stability of cured resins. As can be seen in Table 2.3, Ts and Td50 (temperature at 

50% weight loss) increase from DHEO to DHEO−NOVO based networks, supporting the 

positive role of cross−link density on thermal stability. Besides, Char500 (char formed at 500 °C) 

of modified networks is also observed to be higher than the DHEO−based resin.  

Table 2.3. Thermogravimetric data of Td5, Td30, Td50 (temperature at 5%, 30% and 50% weight 

loss), Ts (statistic heat−resistant index temperature) and Char500 (char residue at 500 °C) of 

DHE−based epoxy networks.  

 

2.2.5 Effect of Cross−link Density on the Overall Performance of DHE−Based Epoxy 

Networks 

To describe more clearly the role of molecular weight, orientation and number of 

functional groups on cross−link density, and further investigate the influence of cross−link 

density on the overall performance, Tα, E30’, Ts and ΔH of DHE−based epoxy networks are 

compared in Figure 2.8. Highlighted (in yellow) areas corresponding to cross−link densities of 

0.39, 1.39, 3.28 and 9.77 mol/dm3 represent the performances (Tα, E30’, Ts and ΔH) of networks 

from DHEO, DHE−Dimer, DHEO−Dimer and DHEO−NOVO, respectively. Dotted boxes (A, 

B and C) between the highlighted areas reflect related modification methods.  

Epoxy networks 

from 

Td5 

(°C) 

Td30 

(°C) 

Td50 

(°C) 

Ts 

(°C) 

Char500  

(%) 

GEDHEO 193 296 321 125 3.3 

GEDHE−Dimer 235 334 351 144 10.9 

GEDHEO−Dimer 245 338 361 147 10.6 

GEDHEO−NOVO 297 331 362 153 10.1 

 1 
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Figure 2.8 Performances (Tα, E30’, Ts and ΔH) of DHE−based epoxy networks as a function of 

cross−link density as modified through adjusting molecular weight, orientation and number of 

epoxy group. Highlighted areas correspond to the performances of DHE−based networks while 

dotted boxes between the highlighted areas reflect related modification methods. 

Figure 2.8 reveals mechanical and thermal performances of DHE−based networks 

improve with increased cross−link density. It is important to note that performances increase 

proportionally with cross−link density, except a relatively higher slope in box (A) which is 

attributed to the role of molecular weight and orientation. The improvement in molecular 

weight and orientation can be easily realized by reacting DHE and aqueous HBr at ambient 

temperature and it is an effective way to increase cross−link density (around 256% increase 

and 57% increase in ΔH), mechanical (75% and 247% increase in Tα and E30’) and thermal (15% 

increase in Ts) properties as demonstrated in Figure 2.8. As stated above, for DHE−Dimer, the 

methylene bonds between two DHE molecules are considered as apriori cross−links. In 
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another word, by making DHE−Dimer, 50% of DHE molecules has already been linked even 

before the curing reaction. Moreover, the advantages of DHE−Dimer especially evident in the 

case of DHE−based monomer, because the undesired benzodioxane byproduct in GEDHEO is 

avoided and the obtained GEDHE−Dimer is more stretched.  

The number of epoxy groups increases from GEDHE−Dimer to GEDHEO−Dimer. This 

modification, even though brings about certain amount of benzodioxane derivatives, still 

provides evident improvement for the networks as seen in Figure 2.8, box (B). For example, 

the cross−link density exhibits a 136% increase compared to the DHE−Dimer counterparts. 

The effect of dimerization reaction can also be evident when DHEO and DHEO−Dimer based 

networks are compared. As depicted in Figure 2.8, the dimerization of DHEO to DHEO−Dimer 

essentially consists of improvements of molecular weight, orientation and number of functional 

group. All these improvements contribute to the significant increase (741%) of cross−link 

density from DHEO to DHEO−Dimer based networks.  

DHEO−NOVO based network is also featured with continuous improvements of 

molecular weight, orientation and number of functional group. After the phenol−formaldehyde 

oligomerization reaction, the molecular weight of DHEO−NOVO (average molecular weight 

between dimer and trimer) is slightly higher than DHEO−Dimer as mentioned above. The 

effect of molecular weight increase from DHEO−Dimer to DHEO−NOVO based networks can 

be estimated through the comparison in Figure 2.8, box (C). A 198% increase in cross−link 

density from DHEO−Dimer to DHEO−NOVO is observed. This might imply that a slight 

increase in the molecular weight can evidently promote cross−link density. Overall, it can be 

concluded that performance parameters of DHE−based epoxy networks improve with 
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increased cross−link density. Oligomerization of DHEO can create simultaneous modifications 

of molecular weight, orientation and number of functional groups, which lead to the highest 

performance parameters among all investigated networks.  

2.3 Conclusions 

Renewable biobased epoxy networks become more relevant if the mechanical and thermal 

properties are improved. DHE, a renewable building block monomer derived from lignin, has 

unfavorable structural characteristics if used without modification. However, modifications of 

DHE−based epoxy monomers through improving (1) molecular weight, (2) orientation and (3) 

number of epoxy groups via dimerization and oligomerization reactions are found to increase 

the cross−link density of cured thermosets, while enhanced cross−link density improves 

thermal and mechanical properties. Oligomerization of DHEO is an effective way of improving 

performances due to its simultaneous modifications of molecular weight, orientation and 

number of functional groups. The modified renewable DHE−based epoxy networks exhibit 

sufficiently desirable performance parameters to potentially replace petroleum−based 

thermosets.  

2.4 Experimental Section 

General. 2−methoxy−4−propylphenol, epichlorohydrin, 48% aqueous hydrobromic acid, 

tetrabutylammonium bromide and diethylenetriamine (DETA) were purchased from Aldrich 

Chemical Co. Formaldehyde solution (37%) was obtained from Macron Fine Chemicals. All 

chemicals were used without further purification.  

2.4.1 Preparation of Polyphenols from DHE. 

2.4.1.1 O–demethylation of DHE to Make Propylcatechol (DHEO). 
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2–methoxy–4–propylphenol (16.6 g, 0.1 mol) was added to 83 g 48% aqueous 

hydrobromic acid. The reaction mixture was magnetically stirred at 115 °C for 19 h, cooled to 

ambient temperature, saturated with NaCl and extracted 3 times with diethyl ether. The organic 

layer was dried over MgSO4 and concentrated using rotary evaporation. The obtained DHE o–

demethylated product (DHEO) (yield = 94%) was used as a dihydroxyl starting compound for 

epoxy monomer synthesis.  

2.4.1.2 Synthesis of 6, 6'−methylenebis (2−methoxy−4−propylphenol) (DHE−Dimer). 

DHE (3.32 g, 0.02 mol), 37% formaldehyde solution (0.81 g, 0.01 mol), 48% hydrobromic 

acid (15 mL) and H2O (8 mL) were stirred at room temperature for 24 h. Viscous oil was formed 

in the upper layer, while the lower aqueous layer was carefully removed. The oil product was 

washed with water 3 times and dried under vacuum overnight to yield DHE−Dimer as a viscous 

oil (2.86 g, 83% yield). 1H NMR (CDCl3, 400 MHz) δ: 6.72 (s, 2H), 6.53 (s, 2H), 5.50 (s, 2H), 

3.88 (s, 6H), 3.83 (s, 2H), 2.53 (t, 4H, J =7.6 Hz), 1.62 (sex, 4H, J =7.3 Hz), 1.01 (t, 6H, J =7.6 

Hz). 13C NMR (CDCl3, 400 MHz) δ: 144.7, 143.4, 132.3, 131.4, 119.2, 115.9, 55.9, 34.8, 34.1, 

24.2, 14.1.  

2.4.1.3 Synthesis of 6, 6'−methylenebis (4−propylbenzene−1, 2−diol) (DHEO−Dimer). 

DHEO−Dimer was prepared through o−demethylation of DHE−Dimer. In detail, 

DHE−Dimer (3.44 g, 0.01 mol) was added to 12 mL 48% aqueous hydrobromic acid. The 

reaction mixture was refluxed at 120 °C for 20 h, cooled to ambient temperature, saturated with 

NaCl and extracted 3 times with diethyl ether. The organic layer was dried over MgSO4 and 

concentrated using rotary evaporation to obtain DHEO−Dimer as a viscous oil (2.54 g, 80% 

yield). 1H NMR (CDCl3, 400 MHz) δ: 6.68 (m, 4H), 5.69 (s, 4H), 3.81 (m, 2H), 2.44 (t, 4H, J 
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=6.6 Hz), 1.52 (sex, 4H, J =7.1 Hz), 0.89 (t, 6H, J =7.1 Hz). 13C NMR (CDCl3, 400 MHz) δ: 

143.2, 141.1, 138.4, 135.9, 121.9, 115.2, 37.3, 37.2, 24.5, 13.7.  

2.4.1.4 Synthesis of DHEO Novolac Oligomer (DHEO−NOVO). 

DHEO (1.52 g, 0.01 mol), 37% formaldehyde solution (0.81 g, 0.01 mol), concentrated 

hydrochloric acid (4 mg) and H2O (8 mL) were mixed and refluxed at 100 °C for 6 h. Water 

and hydrogen chloride were then evaporated under reduced pressure at 80 °C. The unreacted 

DHEO was removed by washing with toluene 3 times and evaporating the toluene at 40 °C 

under vacuum overnight to yield DHEO−NOVO as a viscous oil (1.46 g, 89% yield, based on 

an assumption that the novolac with an infinite molecular weight was obtained).  

2.4.2 Preparation of Glycidylated Ether of DHEO, DHE−Dimer (GEDHE−Dimer), 

DHEO−Dimer (GEDHEO−Dimer) and DHEO−NOVO (GEDHEO−NOVO). 

GEDHE−Dimer was prepared by reaction of DHE−Dimer (1.72 g, 0.005 mol) and 

epichlorohydrin (17 g, 0.18 mol). Tetrabutylammonium bromide (0.16 g) was used as a phase 

transfer catalyst. The mixture was heated at 60 °C for 3 h and followed by a dropwise addition 

of 0.8 g of 50% w/w NaOH solution. The reaction was kept for another 3 h and the mixture 

was washed with acetone, filtered to remove salt and concentrated with a rotary evaporator. 

GEDHEO, GEDHEO−Dimer and GEDHEO−NOVO were obtained according to the same 

procedure as GEDHE−Dimer.  

2.4.3 Formation of DHE−Based Epoxy Networks. 

DHE−based epoxy monomers, i.e., GEDHEO, GEDHE−Dimer, GEDHEO−Dimer and 

GEDHEO−NOVO were respectively introduced to diethylenetriamine (DETA) with 

stoichiometric ratio of epoxy vs. −NH for curing. The mixtures were stirred for 10 min, 
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degassed under vacuum to remove entrapped air and poured into molds for curing according 

to the profile: 55 °C for 2 h, 75 °C for 2 h and 95 °C for 2 h. 

2.4.4 Analysis methods. 

The structural evolution from DHE to final cured epoxy was examined using 1H NMR 

and FTIR. The NMR spectra were performed on a Bruker Avance ARX–400 spectrometer 

using deuterated chloroform as solvent. FTIR analyses were conducted using a Thermo–

Nicolet Nexus 470 FTIR Spectrometer equipped with an ultra–high–performance, versatile 

Attenuated Total Reflectance (ATR) sampling accessory. The spectra were scanned over a 

wavenumber range of 400–4000 cm−1 with a resolution of 4 cm−1. 

Curing profiles and catalytic curing behaviors were determined using a differential 

scanning calorimetry (Perkin Elmer Jade DSC 4000) under dry nitrogen atmosphere. Samples 

of 5–10 mg were placed in sealed aluminum pans for all DSC runs.  

Dynamic mechanical properties were characterized using a DMA 2980 (TA Instruments). 

Rectangular specimens with dimensions of 30 mm length, 10 mm width and 2 mm thickness 

were measured in a single–cantilever mode. The measurements were conducted from 25 °C to 

100 °C at a heating rate of 3.00 °C/min and a frequency of 1 Hz. Cross−link densities (νe) for 

cured DHE−based networks were calculated from the equilibrium storage modulus in the 

rubber region over the α−relaxation temperature (Tα) according to the rubber elasticity theory 

in Equation 1,29−31 

 𝑣𝑒 = 𝐸′/(𝛷𝑅𝑇)     (1) 

where E’ is the storage modulus at Tα+30 °C. ϕ is the front factor (approximated to 1 in the 

Flory theory30,32), while R and T are the gas constant and absolute temperature at Tα+30 °C, 
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respectively.  

Thermal stability studies were carried out on a TGA Q500 (TA Instruments) under a 

nitrogen flow of 40 mL/min. Samples (15–20 mg) were placed in a platinum pan and scanned 

from 30 to 500 °C at a ramp rate of 20 °C/min. The statistic heat−resistant index temperature 

(Ts) is calculated based on Td5 and Td30 (temperature at 5% and 30% weight loss) in Equation 2:  

 5 30 50.49 0.6( )s d d dT T T T= + −
      (2) 
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Chapter 3 

Universal Modifications of LDPMs to Make Epoxy Thermosets 

 

ABSTRACT: The development of thermosets from lignin−derived phenol monomers (LDPMs) 

is often impeded by deficiency in hydroxyl functional groups and the need for complex 

separations. Three modifications are described herein, which improve greatly the feasibility of 

LDP−based thermosets: 1) o−demethylation of methoxy substituents, 2) oligomerization of 

guaiacol derivatives, and 3) oligomerization of catechol derivatives. A synthetic lignin−based 

bio−oil containing featured LDPMs is used to confirm the feasibility of the described 

approaches. Structural evolution from bio−oil to epoxy thermosets is followed by 

high−performance liquid chromatography, nuclear magnetic resonance and Fourier transform 

infrared spectroscopic characterizations. The described modifications (deployed individually 

or collectively) provide universal routes to LDPMs−based epoxy thermosets. Meanwhile, the 

resulting thermosets exhibit markedly wide range of glass transition temperature (55−116 °C) 

and glassy modulus (364−3553 MPa), making them suitable for various applications.  
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3.1 Introduction 

Epoxy thermosets are highly versatile polymers that are used in adhesives, composites, 

electronics and coatings. By far, petroleum−based bisphenol A (BPA) is still the most 

extensively used epoxy thermoset precursor because its aromatic structure provides a polymer 

matrix with high rigidity and thermal stability.1 However, renewable resources have recently 

gained increasing interest in polymer applications.2,3 Among these, lignin is considered as the 

most reasonable feedstock for thermoset synthesis, as it is the sole large−volume sustainable 

source composed of an aromatic skeleton.4 The rapid development of lignin depolymerization 

and valorization has augmented the feasibility of lignin−based polymers.5  

Valorization of lignin through pyrolysis, oxidation, hydroprocessing, and catalytic 

approaches yields a bio−oil mixture of lignin−derived phenol monomers (LDPMs).6−12 

Conversion of LDPMs to thermoset materials is limited by deficiency of functional hydroxyl 

groups and the need for pure monomer, which would require expensive separations of a 

complex mixture.13,14 On one hand, LDPMs generally possess a structural characteristic of 

phenol substituted by inert methoxy at ortho sites and alkyl groups at para sites (structures 

resembling creosol).15 Such structures makes LDPMs especially difficult to be directly 

employed as epoxy thermoset precursor, as cross−linkable precursor must have at least two 

functional OH groups per molecule. On the other hand, most lignin−based polymers reported 

in literature involve the use of high−purity individual LDPMs.16−18 Furthermore, modifications 

that work for one type of monomer do not necessarily apply to LDPM mixtures. For example, 

vanillin has been widely studied as a renewable building block.19 Most modifications of 

vanillin involve: 1) converting the aldehyde group to carboxylic acid or alcohol via oxidation 
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or reduction,20,21 or 2) dimerization through acetalization22 and amine/aldehyde reactions.23 

While these approaches uniformly functionalize vanillin at the para aldehyde group, most 

LDPMs are more inert as their para site is substituted by unreactive alkyl group. The 

appearance of these unreactive species in bio−oil evidently dilutes the content of modifiable 

sites. Besides, because of the structural similarity of LDPMs, sophisticated separation 

processes are often needed to isolate monomers, and such processes are energy intensive.24 

In this study, the feasibility of lignin−based bio−oil as epoxy thermoset precursor is 

developed. A synthetic bio−oil mixture proposed by Wool et al. is used to simulate LDP 

mixtures.25 According to Wool et al., this bio−oil mimic was adopted from the aromatic 

products of pyrolysis of Kraft pine lignin (Indulin AT) at 400 °C for 7.5 min in a nitrogen 

atmosphere.26 Composition of this bio−oil mimic is representative as the selected phenolic 

compounds account for ~ 84 wt % of pyrolysis products. From the aspect of structure, most of 

these compounds are creosol derivatives, which is consistent with the characteristic structure 

of LDPMs mentioned above. For LDPMs that possess reactive para site like aldehyde and 

unsaturated bonds, they can be readily converted to alkyl group (characteristic structure), or 

hydroxyl or carboxylic acid (functional groups) through reduction/oxidation in preliminary 

treatments of the bio−oil mixture. Three chemical modifications of LDPMs (Scheme 3.1) are 

described: 1) o−demethylation of the methoxy group. This is the most straightforward approach 

that yields catechol derivatives with two OHs. 2) Oligomerization through the ortho and/or 

para site. As LDPMs in bio−oil have unoccupied phenolic ortho and/or para sites. Thus, 

phenol−formaldehyde reaction can be used to make oligomers with increased molecular weight 

and number of hydroxyl groups. 3) Oligomerization of demethylated bio−oil (catechol 
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derivatives, enhanced content of para site compared to 2). Compared to guaiacols, catechol 

derivatives have enhanced number of para and ortho site for oligomerization. These newly 

formed sites, especially the para site, improve the reactivity of LDPMs that could yield 

oligomers with high molecular weights.18 While the proposed modifications are especially 

suitable for guaiacyl−derived phenols (which are most abundant in LDPMs), they also apply 

to phenols derived from p−hydroxyphenyl and syringyl units of lignin, which makes these 

modifications universal to all lignin types. The proposed phenol precursors are then converted 

to the corresponding glycidyl ethers and cured to epoxy thermosets. Compared to epoxy 

materials based on petroleum− or lignin−derived pure monomers, this work provides a 

synthetic route to renewable materials that are environmentally and economically attractive.  

 

Scheme 3.1. Chemical composition of (a) lignin−based bio−oil mimic, (b) o−demethylated 

bio−oil (DE−BIO), and derived novolac oligomers (c) NO−BIO and (d) NO−DE−BIO.  
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3.2 Results and Discussion 

3.2.1 Structure of Demethylated Phenolics and Glycidyl Ethers 

O−demethylation of lignin−based bio−oil yields catechol derivatives with two hydroxyls, 

which makes them suitable as epoxy thermoset precursors. To confirm the resulting structure, 

proton NMR spectra of individual starting guaiacols (guaiacol, 4−methylguaiacol, 

4−ethylguaiacol and 4−propylguaiacol), obtained catechols and corresponding glycidyl ethers 

are shown in Figures S3.1−S3.5. NMR spectra of guaiacols show the −OCH3 group at around 

δ 3.8 ppm (panel a). After o−demethylation reaction, the peak for −OCH3 group vanished while 

OH peaks became evident at δ 4.9−6.1 ppm, which suggested complete o−demethylation (panel 

b). Glycidylation of catechols with epichlorohydrin yielded two products (panel c). Protons of 

the desired methyloxirane product were observed at δ 2.78 (H1a), 2.89 (H1b) and 3.36 (H2). 

Because the adjacent OHs could form intramolecular ring with epichlorohydrin, protons of 

benzodioxane byproduct were also observed at δ 3.95 (H3a), 4.03 (H2), and 4.25 (H3b).  

After confirming the structure of individual compounds, components in bio−oil mixture 

were identified through HPLC analysis. Figure S3.6, panel a, illustrates the components in 

starting bio−oil. After o−demethylation, Figure S3.6, panel b, shows all starting guaiacols are 

demethylated to the corresponding catechols. The measured molar ratio of catechols is similar 

with theoretical values, which confirms the composition of DE−BIO (Table 3.1). Products of 

glycidylation of DE−BIO are listed in Figure S3.6, panel c. In accordance with the NMR results, 

both methyloxirane and benzodioxane products are observed, with an approximate molar ratio 

of 60:40, respectively.  
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Table 3.1. Molar ratio of compounds in bio−oil before and after o−demethylation. 

a As initially prepared. b After demethylation. 

Oligomers of bio−oil and DE−BIO were prepared through the phenol−formaldehyde 

condensation reaction. NMR spectra of NO−BIO and NO−DE−BIO are illustrated in Figure 

S3.7, panels a and b. Compared to the starting monomers, NO−BIO and NO−DE−BIO exhibit 

new peaks at 3.4−4.2 ppm, which is attributed to the methylene linkage. Other characteristic 

peaks observed are at 0.8−2.6 ppm (aliphatic protons), 5.8−7.3 ppm (aromatic protons) and 

7.7−9.1 ppm (aromatic OH). When NO−BIO and NO−DE−BIO are converted to glycidyl 

ethers (Figure S3.7, panels c and d), peaks of aromatic OH disappear, while new peaks are 

observed at 2.6−2.9 ppm and 3.2−3.4 ppm for methyloxirane and 3.7−4.4 for benzodioxane 

derivatives.  

Structures of DE−BIO, NO−BIO and NO−DE−BIO are further confirmed by IR. Figure 

3.1, panels a, d, and g exhibit characteristic absorption bands of DE−BIO, NO−BIO and 

NO−DE−BIO at 3064−3595 cm−1 (O−H stretching), 2871, 2942 and 2965 cm−1 (alkyl C−H 

stretch) and 1608, 1510 and 1437 cm−1 (aromatic C−C bond). When polyphenols are converted 

to glycidyl ethers, the broad hydroxyl band diminishes significantly, while a C−O−C ether 

Phenolic  

compound 

Prepareda  

 (mol %) 

Theoreticalb 

 (mol %) 

Measuredb 

 (mol %) 

Phenol 2 2 2 

Guaiacol 29 0 0 

Methylguaiacol 25 0 0 

Ethylguaiacol 11 0 0 

Propylguaiacol 7 0 0 

Catechol 14 47 41 

Methylcatechol 12 33 34 

Ethylcatechol 0 11 12 

Propylcatechol 0 7 11 
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linkage at around 1028 cm−1 and an oxirane band at 912 cm−1 appear (Figure 3.1, panels b, e 

and h). This is in accordance with the NMR results confirming the formation of epoxide group. 

When epoxy monomers are reacted with DETA, epoxy groups are opened by the NH− group 

while OH groups are formed concurrently. This process is confirmed by the IR spectra of cured 

networks (Figure 3.1, panels c, f and i), in which the oxirane band at 912 cm−1 decreases while 

the OH band grows.  

   

 

Figure 3.1 FTIR spectra of lignin−based polyphenols (a, d and g), their glycidylation products 

(b, e and h) and cured epoxy networks (c, f and i). 
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3.2.2 Differential Scanning Calorimetry Analysis 

Table 3.2. DSC curing data for epoxy monomer/DETA systems exhibiting peak curing 

temperature (Tp), enthalpy of reaction (ΔH) and activation energy (Ea). 

Epoxy 

monomer 

Tp 

(°C) 

ΔH 

(kJ/ee) 

Ea 

(kJ/mol) 

GE−DE−BIO 77 93 50 

GE−NO−BIO 80 95 54 

GE−NO−DE−BIO 69 96 43 

Table 3.2 and Figure 3.2 illustrate peak temperatures of epoxy/amine curing system, which 

follow the order: GE−NO−DE−BIO (69 °C) < GE−DE−BIO (77 °C) < GE−NO−BIO (80 °C). 

The shift of exothermic peak to lower temperature suggests improved reactivity of epoxy 

groups, which could be associated with a catalytic effect. As mentioned above, glycidylation 

of catechol yields certain amount of benzodioxane byproduct. The hydroxyl group of 

benzodioxane could catalyze the epoxy/amine reaction,4 which explains the lower peak 

temperature of GE−NO−DE−BIO and GE−DE−BIO. By comparison, since NO−BIO was 

prepared from non−demethylated bio−oil, there are large portion of guaiacol derivatives 

existing in NO−BIO. Glycidylation of guaiacol with epichlorohydrin does not yield 

benzodioxane byproduct, which explains the highest peak temperature of GE−NO−BIO curing 

system. Activation energy (Ea) of these systems exhibits the same trend as peak temperature, 

which confirms the catalytic effect of benzodioxane. Enthalpy (ΔH) values of all curing 

systems fall in the range of 93 to 96 kJ/ee, which is consistent with the typical value of 90−100 

kJ/ee for epoxy/amine reactions.  



52 

 

 

 

Figure 3.2 DSC temperature scans of heat release during nonisothermal cures of different epoxy 

monomers/DETA curing systems at 10 °C/min. 

3.2.3 Dynamic Mechanical Analysis 

Cross−link density (νe) is one of the fundamental parameters that determines the 

mechanical performance of epoxy thermosets.32 νe is often related to the glass transition 

temperature (Tg), as improved covalent cross−links restrict the mobility of polymer chain 

segments, leading to higher Tg. Figure 3.3 reveals Tα (α−relaxation temperature, peak 

temperature of tan delta curve, also related to Tg) of epoxy networks that follow the order: 

EN−DE−BIO (55 °C) < EN−NO−BIO (90 °C) < EN−NO−DE−BIO (116 °C). Starting with the 

same bio−oil, DE−BIO and NO−BIO were obtained from respective demethylation and 

oligomerization. Oligomerization of bio−oil results in greater increment in Tα, which can be 

rationalized as follows. Compared to catechol monomers in DE−BIO, increased molecular 

weight of NO−BIO confers higher cross−link density since the covalent bonds between 

oligomer iterative units have already been linked before curing.28 On the other hand, catechol 

derivatives in DE−BIO have hydroxyls in adjacent positions. This configuration often restricts 

the branching of networks and generates close loop with curing agent. By comparison, 

NO−BIO contains majority of iterative guaiacol units connecting by methylene linkages at 
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ortho sites. Methylene linkages can effectively enhance the space between OH groups, which 

improve the branching and cross−links. It is noteworthy that the number of hydroxyl groups 

can also affect the cross−links.29 However, although catechol units have higher number of 

hydroxyls than guaiacol units, around 40 mol% of catechols end up being benzodioxane 

derivatives when reacted with epichlorohydrin (see HPLC results), making epoxy contents 

(EEW) of GE−DE−BIO and GE−NO−BIO roughly the same.  

 

Figure 3.3 DMA curves of epoxy networks derived from lignin−based bio−oil after various 

chemical modifications. Temperature at the maximum in tan δ curve is taken as Tα (related to 

glass transition). 

Compared to individual modification, when bio−oil was modified successively with 

o−demethylation and oligomerization, the resulting network EN−NO−DE−BIO exhibits the 

highest Tα. This increment is related to molecular weight and orientation of epoxy monomers. 

It is known that aromatic para sites have higher reactivity over ortho sites towards the 

phenol−formaldehyde reaction. For lignin−based guaiacols, the phenolic para site is often 

substituted by alkyl group. Thus, oligomerization of guaiacol derivatives (NO−BIO approach) 
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mainly occurs at the ortho site of iterative units. This ortho−specific coupling reduces the 

molecular weight of oligomers due to steric. By comparison, when guaiacol derivatives were 

demethylated to the corresponding catechols, a para site corresponding to the newly−formed 

hydroxyl is generated. As reported by previous studies, this para site can improve the reactivity 

and thus yield NO−DE−BIO with higher molecular weight.18 Meanwhile, coupling at the para 

site makes hydroxyls have more stretched orientation compared to ortho−linked guaiacol 

derivatives in NO−BIO. Improved orientation further increases the cross−link density of the 

resulting network.30,31 

Besides Tα, cross−link density of epoxy networks can also be reflected by the storage 

modulus and equilibrium modulus in the rubber region. As seen in Figure 3.3, storage modulus 

follows the order: EN−DE−BIO < EN−NO−BIO < EN−NO−DE−BIO in the temperature range 

of 30 to 180 °C (spanning both glassy and equilibrium regions), which is consistent with Tα. 

Since EN−DE−BIO, EN−NO−BIO and EN−NO−DE−BIO have the same monomers (they are 

derived from the same starting bio−oil), the network with higher cross−link density generally 

possesses enhanced modulus.32,33 It is noteworthy that the glassy modulus E30’ (storage 

modulus at 30 °C) of EN−NO−BIO and EN−NO−DE−BIO are 2.10 and 3.55 GPa, while their 

Tα are 90 and 116 °C, respectively. To compare the mechanical properties of these networks 

with BPA–based materials, diglycidyl ether of BPA (DGEBA) and DETA were cured using 

the same curing profile. E30’ and Tα of DGEBA/DETA network were found to be 2.04 GPa and 

100 °C, which are comparable to the networks prepared in this work. This phenomenon 

demonstrates that lignin−based epoxy networks have noticeable rigidity and strength that can 

compete with BPA−based materials. By comparison, EN−DE−BIO exhibits more 
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elastomer−like properties (Tα of 55 °C and E30’ of 364 MPa). This significant difference makes 

lignin−based thermosets with tunable mechanical properties, which widens their applications.  

Mechanical performance of networks prepared from demethylated individual monomers 

(i.e., catechol, methylcatechol and propylcatechol) were also characterized and summarized in 

Figure 3.4. Generally, networks prepared from demethylated individual monomers exhibit 

similar properties to those from the bio−oil mixture such as EN−DE−BIO (Tα of 40−62 °C vs. 

55 °C, and E30’ of 158−371 MPa vs. 364 MPa). Meanwhile, mechanical performance decreases 

as the alkyl chain of catechols increases: EN−P−CAT < EN−M−CAT < EN−CAT. This is 

attributed to the steric effect of the alkyl side chain, which creates certain amount of void 

volume and impedes the epoxy/amine cross−link reaction. 

  

Figure 3.4 Mechanical properties of lignin−derived epoxy networks. Tα is α−relaxation 

temperature and E30’ is the glassy storage modulus at 30 °C. 
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3.2.4 Thermogravimetric Analysis 

 

Figure 3.5 Thermogravimetric analysis thermograms of lignin−derived epoxy networks. 

Table 3.3. Thermogravimetric data of Td5, Td30, Td50 (temperature at 5%, 30% and 50% weight 

loss), Ts (statistic heat−resistant index temperature) and Char500 (char residue at 500 °C) of 

lignin−derived epoxy networks.  

Epoxy 

networks 

Td5 

(°C) 

Td30 

(°C) 

Td50 

(°C) 

Ts 

(°C) 

Char500  

(%) 

EN−DE−BIO 181 299 326 123 13 

EN−NO−BIO 251 318 361 142 28 

EN−NO−DE−BIO 264 326 392 147 31 

EN−P−CAT 193 295 321 124 3 

EN−M−CAT 184 309 330 127 11 

EN−CAT 195 310 333 129 13 

Figure 3.5 reveals degradation curves of lignin−derived epoxy networks. Figure 3.5 and 

Table 3.3 demonstrate thermal stability increases with enhanced cross−link density (i.e., 

EN−DE−BIO < EN−NO−BIO < EN−NO−DE−BIO). This is reflected from the shift of onset 

degradation temperature (defined as Td5, temperature at 5% weight loss) from EN−DE−BIO 

(181 °C) to EN−NO−BIO (251 °C) and EN−NO−DE−BIO (264 °C). This trend can be 

attributed to the more constrained structure of networks with higher cross−link density, which 

results in lower chain mobility during thermal expansion. Meanwhile, mass exchange is more 
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likely to be postponed in the tortuous pathway of high−cross−linked networks. Td30, Td50 

(temperature at 30% and 50% weight loss), and Ts (statistic heat−resistant index temperature) 

demonstrate the same trend with Td5, which confirms the role of cross−link density. Table 3.3 

also illustrates thermal parameters of networks prepared from individual monomers 

(EN−P−CAT, EN−M−CAT and EN−CAT). These networks exhibit similar performance to 

EN−DE−BIO, which is in accordance with the mechanical properties. When the temperature 

reaches 500 °C, the majority of polymer mass has been burned out, with 3−31% weight of char 

formed.  

3.3 Conclusions 

Lignin−derived phenols typically possess unfavorable structural characteristics if they are 

employed directly as epoxy thermoset precursors. Modifications of LDP mixtures through 

o−demethylation and/or oligomerization have proved their universality and feasibility in 

making lignin−based epoxy thermosets. O−demethylation and oligomerization, while 

employed individually or collectively, can yield polyphenols with different molecular weights, 

number of functional hydroxyl groups (−OH) and hydroxyl orientations, whose enhancement 

results in increased cross−link density, and thus improved mechanical and thermal performance 

of obtained thermosets. Simple o−demethylation provides thermoset with elastomer−like 

properties (low modulus and Tg), while oligomerization of o−demethylated LDP mixtures lead 

to rigid thermoset that is comparable to BPA−based analogs. The tunable properties of 

renewable lignin−based thermosets may widen their applications. Meanwhile, utilization of 

LDP mixtures minimizes the number of sepatation steps, making the proposed approaches 

environmetnally and economically attractive.  
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3.4 Experimental Section 

General. Phenol (PhOH), guaiacol (GUA), 4−methylguaiacol (M−GUA), 4−ethylguaiacol 

(E−GUA), 4−propylguaiacol (P−GUA), catechol (CAT), 4−methylcatechol (M−CAT), 48% 

aqueous hydrobromic acid, epichlorohydrin, tetrabutylammonium bromide, diglycidyl ether of 

bisphenol A (DGEBA) and diethylenetriamine (DETA) were purchased from Aldrich 

Chemical Co. Formaldehyde solution (37%) was obtained from Macron Fine Chemicals. All 

chemicals were used as received without further purification. Composition of phenolics in 

bio−oil mimic is given in Scheme 3.1. According to Wool et al., this composition represented 

~ 84 wt% of phenolic compounds derived from pyrolysis of Kraft pine lignin (Indulin AT) at 

400 °C for 7.5 min in a nitrogen atmosphere.  

3.4.1 Preparation of Demethylated Bio−Oil (DE−BIO). 

Bio−oil (5.0 g, 38.2 mmol of phenolic compounds) was added to 30 g of 48% aqueous 

hydrobromic acid. The reaction mixture was vigorously stirred and refluxed at 120 °C for 24 

h, cooled to ambient temperature, saturated with NaCl, and extracted 3 times with ethyl acetate. 

The organic layer was dried with MgSO4 and concentrated using rotary evaporation to yield 

demethylated bio−oil as a brownish oil (94% yield based on mass). Individual compounds, i.e., 

guaiacol, 4−methylguaiacol, 4−ethylguaiacol and 4−propylguaiacol were demethylated to 

corresponding catechols using the same method as bio−oil. Retention time of obtained 

catechols was recorded by HPLC, and HPLC analysis of bio−oil and DE−BIO confirmed the 

consistency of molar ratio of compounds before and after demethylation (Table 3.1). 

3.4.2 Preparation of Novolac Oligomers of Bio−Oil (NO−BIO) and DE−BIO (NO−DE−BIO). 

Bio−oil (2.0 g, 15.3 mmol of phenolic compounds), 37% formaldehyde solution (1.24 g, 
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15.3 mol), concentrated hydrochloric acid (6 mg) and H2O (10 mL) were added to a 50 mL 

round−bottomed flask, and the solution was refluxed at 100 °C for 6 h. Water and hydrogen 

chloride were then evaporated under reduced pressure at 80 °C. Unreacted compounds were 

removed by washing with toluene 3 times. Removing the toluene under vacuum overnight 

yielded NO−BIO as a brownish solid (89% yield based on mass). NO−DE−BIO (91% yield) 

was prepared from DE−BIO and formaldehyde using the same procedure as that described for 

NO−BIO. 

3.4.3 Preparation of Glycidyl Ethers of DE−BIO, NO−BIO and NO−DE−BIO.  

Glycidyl ether of DE−BIO (GE−DE−BIO) was prepared by reaction of DE−BIO (2.0 g, 

16.5 mmol) and epichlorohydrin (20 g, 213.3 mmol). Tetrabutylammonium bromide (0.25 g, 

0.8 mmol) was used as a phase transfer catalyst. The mixture was heated at 75 °C for 3 h and 

followed by a dropwise addition of 6 g of 20% w/w NaOH solution. The reaction was kept for 

another 2.0 h, and the mixture was washed with acetone, filtered to remove formed NaCl and 

concentrated with a rotary evaporator to yield GE−DE−BIO as a brownish oil (2.97 g). Other 

glycidyl ethers (GE−NO−BIO and GE−NO−DE−BIO) were prepared using the same method 

as GE−DE−BIO, with similar yields. Epoxy equivalent weight (EEW) was determined to be 

198, 206 and 195 g/eq. for GE−DE−BIO, GE−NO−BIO and GE−NO−DE−BIO, respectively, 

by the HCl/acetone titration method. 

3.4.4 Formation of Epoxy Networks. 

Bio−oil based epoxy monomers, i.e., GE−DE−BIO, GE−NO−BIO and GE−NO−DE−BIO, 

were respectively mixed with diethylenetriamine (DETA) with stoichiometric ratio of epoxy 

vs. −NH for curing. The mixtures were stirred for 10 min, degassed under vacuum to remove 
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entrapped air and poured into silicone molds for curing with the profile: 65 °C for 8 h, 90 °C 

for 2 h and 120 °C for 2 h. Cured epoxy networks were expressed as EN−DE−BIO, 

EN−NO−BIO and EN−NO−DE−BIO, respectively. Epoxy networks based on pure monomers, 

i.e., propylcatechol, methylcatechol and catechol, were also prepared for comparison and 

expressed as EN−P−CAT, EN−M−CAT and EN−CAT, respectively. 

3.4.5 Analysis Methods. 

Analysis methods are similar to Chapter 2. 
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Chapter 4 

Synthesis of Triphenol−Based Epoxy Thermoset from 

para−Substituted LDPMs 

 

ABSTRACT: A series of renewable triphenylmethane−type polyphenols (TPs) were 

synthesized from lignin derived para−substituted guaiacols (methylguaiacol and 

propylguaiacol) and aldehydes (4−hydroxybenzaldehyde, vanillin and syringaldehyde). By 

converting guaiacols to catechols through o−demethylation, the newly−formed phenolic para 

site remarkably improved the reactivity as reflected by conversion of TPs. Optimized reagent 

molar ratios were: aldehyde/catechol (1:4) and aldehyde/H2SO4 (1:3). A typical TP 

(VAN−M−CAT) was converted to glycidyl ether (GE−VAN−M−CAT) to examine its 

feasibility as precursor to epoxy thermosets. The resulting network exhibited excellent glassy 

modulus (12.3 GPa), glass transition temperature (167 °C) and thermal stability, which were 

attributed to the rigid triphenylmethane framework, high functionality (n = 5) and high 

cross−link density. A fully biobased epoxy comonomer (VAN−LIN−EPO), which was prepared 

by esterification of VAN−M−CAT with linoleic acid followed by epoxidation could tune the 

material properties.  
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This section is partially adapted from: Shou Zhao and Mahdi M. Abu−Omar, Macromolecules 

2017, 50 (9), 3573−3581 

 

4.1 Introduction 

Polyphenols are important precursors to polymers like epoxy thermosets. As development 

of renewable materials has become increasingly important, partially− or fully−biobased 

polyphenols have been prepared with the purpose to replace or supplement petroleum−based 

bisphenol A (BPA).1−3 Polyphenols are generally produced by condensation of phenol with 

ketone or aldehyde in the presence of an acid.4 Using this approach, several biobased 

polyphenols have recently been reported: 1) diphenolic acid based on cellulose−derived 

levulinic acid;5 2) bisphenol obtained from cellulose−based 2,3−pentanedione;6 3) bisphenol 

based on lignin−derived creosol7 and 4) triphenol prepared from lignin−based vanillin and 

guaiacol.8  

For phenol−aldehyde condensation, the phenolic para position is the preferred coupling 

site due to its higher reactivity over the ortho site.9,10 However, lignin−derived phenols are 

often characterized as para site occupied by alkyl groups, while partial ortho sites are 

substituted by methoxy groups,11,12 which makes them especially difficult to couple to 
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aldehydes. Because of this obstruction, either para−available phenols like guaiacol8 or 

ortho−specified coupling catalysts like zinc acetate7 has been used as alternative 

methodologies, even though these approaches are frequently associated with limitations such 

as insufficient phenol candidates and limited orientation and stretch of functional hydroxyls 

obtained via ortho coupling.13 

To increase the applications of lignin based phenols, creating a para site on 

para−substituted phenol could be a more universal and straightforward methodology. This 

improvement can be realized through o−demethylation of ortho methoxy, a characteristic group 

of lignin−derived phenols.14,15 As illustrated in Scheme 4.1, o−demethylation of typical 

lignin−based guaiacols leads to new para and ortho sites. These newly−formed sites, especially 

the para site, could enhance reactivity. Meanwhile, demethylation also increases the number 

of functional OH groups. TPs with higher OH content have the potential to further improve the 

cross−link density and mechanical properties of subsequently formed polymers.13,16,17  

Recent development in catalytic lignin depolymerization techniques is capable of 

converting bulk lignin into various smaller aromatic molecules including aldehydes, e.g. 

4−hydroxybenzaldehyde (HBA), vanillin (VAN) and syringaldehyde (SYA)18,19 and guaiacols 

such as 4−methylguaiacol (M−GUA) and 4−propylguaiacol (P−GUA).20,21 Condensation 

between aromatic aldehyde and phenol yields triphenylmethane−type phenol (TP). TP−based 

materials are supposed to be highly rigid due to the triphenylmethane framework and highly 

functional (n = 5). To tune the rigidity, vegetable oils with flexible carbon chains may represent 

a renewable modifier.22,23 Especially, unsaturated fatty acids (e.g. linoleic acid, LA) are often 

used as plasticizer or copolymer adjusting the rigidity of thermoplastics.24,25 The integration of 
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lignin−based TPs and unsaturated fatty acids would yield renewable polymers with tunable 

mechanical properties.  

In this study, we first describe the effective synthesis of fully−renewable polyphenols from 

the above−mentioned aldehydes and para−substituted guaiacols. By creating a para site on 

para−substituted guaiacols through o−demethylation, reactivity of the afforded catechols 

significantly improves. The proposed TPs have unique molecular architecture, three aromatic 

rings and five functional OH groups. To explore their potential as precursors to epoxy resin, a 

typical TP (VAN−M−CAT, prepared from condensation of vanillin and methylcatechol) is then 

reacted with epichlorohydrin to produce glycidyl ether prepolymer (GE−VAN−M−CAT). 

VAN−M−CAT was selected since it was easily separated from the reaction mixture, while it 

had relatively high yield (88 %) among all TPs. Meanwhile, VAN−M−CAT is reacted with 

chlorinated linoleic acid via esterification followed by epoxidation to make an epoxy 

comonomer (VAN−LIN−EPO), which acts as a plasticizer that tunes the rigidity of the resulting 

thermosets. The mixture of GE−VAN−M−CAT and VAN−LIN−EPO with different mass ratios 

is cured with a hardener (diethylenetriamine, DETA) to make epoxy networks. Thermal and 

mechanical performances of biobased thermosets are characterized to evaluate their potential 

for replacing BPA−based counterparts.  
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Scheme 4.1. Synthesis route of fully−renewable triphenylmethane−type polyphenols from 

lignin−derived aldehydes and para−substituted guaiacols. Condensation reactions between 

aldehydes and guaiacols give conversions below 5%. O−demethylation of guaiacols to 

corresponding catechols significantly improve the reactivity. The conversions of 

methylcatechol (M−CAT) based TPs are more than 90%, while propylcatechol (P−CAT) based 

TPs are more than 45%. Reaction condition: molar ratio of aldehyde: phenol=1:4, aldehyde: 

H2SO4 =1:3, room temperature for 2 d. Absolute ethanol is used as solvent. Conversions and 

isolated yields of different lignin−based TPs are listed in Table 4.2. 

4.2 Results and Discussion 

4.2.1 Synthesis of Renewable TPs under Optimized Conditions 

Molar ratios of aldehyde/phenol and aldehyde/H2SO4 are capable of affecting the yield of 

TPs. To obtain optimal conditions, reaction between vanillin and methylcatechol was studied 

as an example due to the facile isolation and purification of the product VAN−M−CAT. Isolated 

yields of VAN−M−CAT under various synthesis conditions are listed in Table 4.1. Effect of 
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vanillin/methylcatechol molar ratio was studied first. For entry 1, condensation of one 

equivalent vanillin with two equivalents of methylcatechol gave a yield of 72%. Increasing 

methylcatechol/vanillin ratio to 3:1 (entry 2) readily improved isolated yield to 83%. As the 

ratio raises to 4:1, the yield increased further to 88% (entry 3). The effect of catalyst amount 

was then investigated (entries 3, 4 and 5). The amount of H2SO4 was insufficient when equal 

mole of H2SO4 and vanillin were used (entry 4, 75% isolated yield). After increasing the 

H2SO4/vanillin ratio to 3:1 (entry 3), the yield increased to 88%. It is noteworthy that the yields 

of entry 5 (89%) and entry 3 are similar, even though the H2SO4/vanillin ratio is increased to 

5:1. Thus, H2SO4/vanillin ratio of 3:1 is effective at catalyzing the coupling reaction and 

considered optimal.  

Amount of solvent ethanol was also found to impact product yields (compare entries 3 and 

6). In entry 3, to fully dissolve 1 equivalent vanillin and 4 equivalents methylcatechol, the 

weight ratio of ethanol/vanillin had to be at least 3. For production of VAN−M−CAT, using the 

least amount of solvent is advantageous since it minimizes the product dissolved in solvent and 

facilitates isolation of product. This was confirmed when weight ratio of ethanol/vanillin 

increased to 6 in entry 6. Even though increasing solvent could facilitate mixing of reactants, 

the yield in entry 6 (83%) was still slightly lower than that in entry 3. Therefore, overall 

evaluation of the above−mentioned conditions revealed entry 3 as the optimal synthesis 

condition (molar ratio of vanillin/M−CAT = 1:4, vanillin/H2SO4 = 1:3), which produced high 

isolated yield while consuming relatively less H2SO4 and ethanol.  

Table 4.1. Effect of stoichiometric ratio of reactants, amount of catalyst and solvent on the 

isolated yield of VAN−M−CAT. 
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Entry Vanillin/ 

M−CATa 

Vanillin/ 

H2SO4
a 

Vanillin/ 

EtOHb 

Isolated 

yield (%) 

1 1:2 1:3 1:3 72 

2 1:3 1:3 1:3 83 

3 1:4 1:3 1:3 88 

4 1:4 1:1 1:3 75 

5 1:4 1:5 1:3 89 

6 1:4 1:3 1:6 83 

a Molar ratio; b Weight ratio. Condensation was conducted at room temperature for 2 d.  

The optimized condition was subsequently used for condensation of other lignin−based 

aldehydes and phenols. Initially, direct condensation of aldehydes (HBA, VAN or SYA) with 

para−substituted guaiacols (M−GUA or P−GUA) was studied using HPLC to measure the 

conversion. However, it turned out that conversions of all reactions were negligible (< 5%). In 

an effort to increase the conversion, reaction time was increased up to 7 days, but with no 

enhancement in conversion. As ortho site of M−GUA and P−GUA is the only available position 

for condensation, low reactivity due to steric effect of the ortho sites significantly decreased 

the reactivity of guaiacols. To increase the reactivity, M−GUA and P−GUA were demethylated 

to the corresponding catechols (M−CAT and P−CAT).  

Compared to the negligible conversions of para−substituted guaiacols, Table 4.2 shows 

significant increase in conversion and yield when the corresponding catechols are used. For 

example, TPs based on M−CAT have conversions in the range of 90−97%, with isolated yields 

of 71−88%. By comparison, P−CAT based TPs have lower conversion (45−50%) and isolated 

yields (33−42%), which might be attributed to the greater steric effect of the propyl group. 

Structure of aldehydes also has impact on conversion. Generally, conversion follows the order: 

HBA > VAN > SYA. As the number of electron−donating (methoxy) groups increases from 
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HBA to SYA, the electrophilicity decreases, which reduces their reactivity in electrophilic 

substitution reactions.  

Table 4.2. Conversions and isolated yields of TPs derived from lignin−based aldehydes and 

catechols. Reaction condition: molar ratio of aldehyde: phenol = 1:4, aldehyde: H2SO4 = 1:3, 

room temperature for 2 d. Absolute ethanol is used as solvent.  

Entry Aldehyde Catechol Polyphenol Conversion 

(%) 

Isolated yield 

 (%) 

1 HBA M−CAT HBA−M−CAT 97 84 

2 HBA P−CAT HBA−P−CAT 50 42 

3 VAN M−CAT VAN−M−CAT 95 88 

4 VAN P−CAT VAN−P−CAT 48 35 

5 SYA M−CAT SYA−M−CAT 90 71 

6 SYA P−CAT SYA−P−CAT 45 33 

 

4.2.2 Structure of TPs 

Proton and carbon NMR spectra of VAN−M−CAT are shown in Figure 4.1. The proton 

peak at 5.39 ppm corresponds to the triphenyl methyl group, which indicates successful 

coupling of vanillin with methylcatechol. Aromatic protons are found at 6.74, 6.69, 6.65, 6.42 

and 6.23 ppm. The methoxy group is observed at 3.69 ppm while the methyl peak at 2.00 ppm. 

As for the carbon NMR, the methoxy, triphenyl methyl and methyl groups are observed at 

56.13, 49.70 and 18.80 ppm, respectively. The characteristic triphenyl methyl peak is also 

observed for other lignin−based TPs (as depicted in Figure S4.3−S4.7), which confirms the 

formation of triphenylmethane framework. The structure of M−CAT and P−CAT based TPs are 

also confirmed by IR and mass spectra in Figure S4.8−S4.14. 
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Figure 4.1 Proton (A) and carbon (B) NMR spectra of VAN−M−CAT. Solvent: acetone−d6. 

X−ray structure of VAN−M−CAT is also measured to confirm the structure and determine 

the coupling site. It is observed in Figure 4.2 that vanillin couples exclusively at the para sites 

of both methylcatechol molecules. This can be explained by higher reactivity of the para site. 

Meanwhile, the para site has less steric hindrance compared to ortho sites when subjected to 

condensation. The high reactivity of phenolic para position highlights the role of demethylation, 

which could be an effective way of modifying lignin−derived phenols, especially for those with 

para substituted and ortho occupied by methoxy group. Besides, the stretched orientation of 

functional hydroxyls of TPs is also advantageous for making polymers with desirable 

properties.  

(A) 

(B) 
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Figure 4.2 X−ray structure of VAN−M−CAT. Crystal was obtained from the slow evaporation 

of an ether solution at room temperature. 

4.2.3 Epoxy Monomers from VAN−M−CAT and Fatty Acid 

 

Scheme 4.2. Glycidylation of VAN−M−CAT with epichlorohydrin. Three major products with 

mono−epoxy substituted (GE−VAN−M−CAT−1), tri−epoxy substituted (GEVAN−M−CAT−3) 

and penta−epoxy substituted (GEVAN−M−CAT−5) were isolated using a preparative HPLC 

and their molar ratio was measured to be 14: 55: 31 using an analytical HPLC spectra.  

   

Figure 4.3 FTIR spectra of (A) VAN−M−CAT and its epoxidized product GE−VAN−M−CAT, 
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and (B) VAN−LIN and its epoxidized product VAN−LIN−EPO.  

Glycidylation of VAN−M−CAT with epichlorohydrin yields three products with different 

substitution of oxirane groups (Scheme 4.2). Proton, carbon, HMQC NMR spectra and mass 

spectra of each product are illustrated in Figure S4.15−S4.21. Formation of epoxy groups is 

also confirmed using IR spectra. As seen in Figure 4.3, panel A, after VAN−M−CAT is 

glycidylated to GE−VAN−M−CAT, its broad hydroxyl band at 3401 cm−1 decreases 

significantly, and it is accompanied by the presence of an epoxy ring band at 912 cm−1 and a 

C−O−C ether linkage at 1027 cm−1. The catechol groups of VAN−M−CAT make it inevitable 

to cause side reactions like intramolecular cyclization between two adjacent oxiranes. 

Benzodioxane derivative can occur in either one or both catechols to form mono−epoxy 

substituted (GE−VAN−M−CAT−1) or tri−epoxy substituted (GE−VAN−M−CAT−3) products. 

From the viewpoint of functionality, the appearance of benzodioxane derivative is unfavorable 

since it is unreactive with amine hardener/cross−linker and is likely to create dangling chain 

ends that impair cross−link of the resulting polymers.28 However, if the penta−epoxy 

substituted (GE−VAN−M−CAT−5) is the only glycidylation product, the formed network 

could be highly brittle due to the high rigidity and functionality (related to cross−link density) 

of VAN−M−CAT.29 Therefore, from the viewpoint of processing and application, the presence 

of certain amount of benzodioxane byproducts is favorable since it helps adjust the rigidity of 

cured networks. As the major product, tri−epoxy substituted product (55%) could effectively 

reduce the rigidity while still keep cross−linked within the network. Meanwhile, hydroxyl 

groups of benzodioxane can also catalyze the reaction between monomer and cross−linker.30,31  
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Figure 4.4 Structure of fully biobased epoxy prepolymer VAN−LIN−EPO, which is 

synthesized via esterification between VAN−M−CAT and linoleic acid, and followed by 

epoxidation. 

Introduction of flexible components is another way of adjusting rigidity. By esterifying 

VAN−M−CAT and linoleic acid, followed by epoxidation, a fully biobased epoxy monomer 

with rigid core and flexible branches was synthesized (VAN−LIN−EPO) as shown in Figure 

4.4. Figure 4.5, panel A exhibits the NMR spectra of linoleic acid. The peak at δ 5.4 corresponds 

to C=C double bonds, while peaks at δ 0.9−2.8 are related to the saturated part of the carbon 

chain. After linoleic acid is esterified with VAN−M−CAT to yield VAN−M−CAT−LIN 

(VAN−LIN), characteristic peaks of both linoleic acid and VAN−M−CAT (δ 6.5−6.9, aromatic 

H; δ 5.5, Ar3−CH; δ 3.7, −OCH3 and δ 2.0, −CH3) are evident (Figure 4.5, panel B). To produce 

epoxy comonomer, VAN−LIN is epoxidized using peracetic acid to yield VAN−LIN−EPO. As 

seen in Figure 4.5, panel C, the double bond peak of VAN−LIN−EPO disappears while a new 

epoxy peak at δ 2.9 appears. As for the FTIR spectra of VAN−LIN in Figure 4.3, panel B, it 

reveals a C=C stretching vibration band at 3008 cm−1 and an ester bond at 1764 cm−1. When 

VAN−LIN is epoxidized with peracetic acid, the C=C band is gone while a new epoxy band at 



75 

 

 

912 cm−1 appears. 

 

Figure 4.5 Proton NMR structure of (A) linoleic acid, (B) VAN−LIN, product of esterification 

between VAN−M−CAT and linoleoyl chloride and (C) epoxidized VAN−LIN 

(VAN−LIN−EPO). Solvent: CDCl3. 

4.2.4 Dynamic Mechanical Analysis 

Cross−link density (νe) is a key parameter that determines performance of epoxy 

thermosets.32 νe can be reflected from α−relaxation temperature (Tα, related to glass transition 

temperature) since increased covalent cross−links restricts the mobility of polymer segments, 

which leads to higher Tα. Inset of Figure 4.6 illustrates Tα of VAN100LIN0 (167 °C), 

VAN75LIN25 (111 °C) and VAN50LIN50 (82 °C), which gradually decreases as portion of 

VAN−LIN−EPO increases from 0 to 50 wt%. Even though GE−VAN−M−CAT mixture and 

VAN−LIN−EPO are calculated to have similar epoxy equivalent value (531 and 539 mmol 

epoxy/100 g, respectively), the flexible nature of VAN−LIN−EPO remarkably decreases 

cross−link density of the resulting polymer. On one hand, the saturated component of the 
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carbon side chain introduces void volume and yields a network that deforms more readily.33 

On the other hand, closed looping could be formed by the hardener and epoxies of 

VAN−LIN−EPO in adjacent carbon chains, which limits the direction of the resulting network. 

The plasticizer role of VAN−LIN−EPO can also be reflected through height of tan δ, which is 

the ratio of loss to storage modulus. As seen in Figure 4.6, height of tan δ decreases from 

VAN50LIN50 to VAN100LIN0, suggesting lower segmental mobility and fewer relaxing species 

in VAN100LIN0.
34,35  

 

Figure 4.6 DMA curve of epoxy networks with different weight ratio of GE−VAN−M−CAT 

and VAN−LIN−EPO as a function of temperature. VAN75LIN25, for example, represents epoxy 

network with 75 wt% GE−VAN−M−CAT and 25 wt% VAN−LIN−EPO in prepolymer mixture. 

Temperature at the maximum in tan δ curve is taken as Tα (related to glass transition). 

Storage modulus (E’) values are also presented in Figure 4.6. Without addition of 

VAN−LIN−EPO, VAN100LIN0 exhibits a high glassy E’ of 12.3 GPa, which could be attributed 

to the high rigidity and functionality of GE−VAN−M−CAT mixture. Addition of flexible 

VAN−LIN−EPO comonomer effectively decreases the modulus, as E’ of VAN75LIN25 and 
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VAN50LIN50 decreases to 6.2 GPa and 3.2 GPa, respectively. This confirms the plasticizer 

nature of VAN−LIN−EPO. It is noteworthy that Tα and E’ of BPA diglycidyl ether 

(DGEBA)/DETA network were reported to be 137 °C and 3.6 GPa,36 which is lower than that 

of GE−VAN−M−CAT/DETA. This finding highlights renewable TP based epoxy networks 

possess marked mechanical performance to replace or supplement petroleum−based 

thermosets.  

4.2.5 Thermogravimetric analysis 

 

Figure 4.7 Thermogravimetric analysis thermograms of epoxy networks with different weight 

ratio of GE−VAN−M−CAT and VAN−LIN−EPO. VAN75LIN25, for example, represents epoxy 

network with 75 wt% GE−VAN−M−CAT and 25 wt% VAN−LIN−EPO in the prepolymer 

mixture. 

Figure 4.7 exhibits a one−step degradation profile for all epoxy networks. Thermal 

stability of cured thermosets increases with cross−link density. This can be reflected from the 

shift of onset degradation temperature (expressed as Td5, temperature at 5% weight loss) from 

220 °C of VAN50LIN50 to 245 and 269 °C of VAN75LIN25 and VAN100LIN0. As cross−link 
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density increases, polymer chains become more constrained, which causes lower molecular 

mobility during thermal expansion. Meanwhile, the tortuous pathway in highly−cross−linked 

network postpones mass exchange. Statistic heat−resistant index temperature (Ts), which is 

calculated using Td5 and Td30 (temperature at 30% weight loss), reflects the thermal stability of 

cured networks.37 Table 4.3 illustrates Ts increases slightly from VAN50LIN50 (136 °C) to 

VAN75LIN25 (140 °C) and VAN100LIN0 (146 °C), verifying the role of cross−link density on 

thermal stability. Besides, Char600 (char formed at 600 °C) of networks is also observed to 

increase from VAN50LIN50 to VAN100LIN0. 

Table 4.3. Thermogravimetric data of Td5, Td30 (temperature at 5% and 30% weight loss), Ts 

(statistic heat−resistant index temperature) and Char600 (char residue at 600 °C) of epoxy 

networks with different ratio of GE−VAN−M−CAT and VAN−LIN−EPO. 

Epoxy 

networks 

Td5 

(°C) 

Td30 

(°C) 

Ts 

(°C) 

Char600  

(%) 

VAN50LIN50  220 317 136 14.0 

VAN75LIN25  245 313 140 14.9 

VAN100LIN0  269 318 146 17.3 

 

4.3 Conclusions 

Synthetic routes to renewable triphenylmethane−type polyphenols were demonstrated, 

widening the applications of typical lignin−based para−substituted guaiacols. 

O−demethylation of para−substituted guaiacols to give the corresponding catechols was key 

in providing new and highly reactive para sites, which effectively improves the reactivity for 

aldehyde coupling. Under optimized conditions, M−CAT and P−CAT based TPs are obtained 

in high to moderate yields in the range 71−88% and 33−42%, respectively. Steric effect and 

electron−donating group influence the conversions and yields of TPs. The proposed TPs have 
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rigid triphenylmethane framework and high functionality (n = 5). These advantageous 

structural properties make renewable TPs excellent precursors to epoxy thermosets. As an 

example, VAN−M−CAT based network exhibits excellent glassy modulus (12.3 GPa) and 

glass transition temperature (167 °C), which is attributed to the high cross−link density of the 

obtained network. To adjust the brittleness of above−mentioned network, a fully biobased 

plasticizer and copolymer based on linoleic acid (VAN−LIN−EPO) was employed and found 

to effectively tune the storage modulus. With the advantages of moderate to high yields, 

excellent mechanical and thermal parameters, and tunable properties, the proposed renewable 

TP−based epoxy thermosets exhibit sufficient potential to replace or supplement 

petroleum−based materials. 

4.4 Experimental Section 

General. 4−hydroxybenzaldehyde, vanillin, syringaldehyde, 4−methylguaiacol, 

4−propylguaiacol, 4−methylcatechol, 48% aqueous hydrobromic acid, epichlorohydrin, 

tetrabutylammonium bromide, diethylenetriamine (DETA), peracetic acid (32 wt% in dilute 

acetic acid), linoleic acid and oxalyl chloride were purchased from Aldrich Chemical Co. 

Ethanol (200 proof) was purchased from Decon Labs, Inc. Sulfuric acid (98%) was obtained 

from Fisher Scientific. All chemicals were used as received without further purification. 

4.4.1 O−demethylation of 4−methylguaiacol and 4−propylguaiacol. 

Lignin−based phenols were o−demethylated as previously reported.14 Briefly, 

4−propylguaiacol (P−GUA, 16.6 g, 0.1 mol) was added to 83 g of 48% aqueous hydrobromic 

acid. The reaction mixture was magnetically stirred at 120 °C for 20 h, cooled to ambient 

temperature, saturated with NaCl, and extracted three times with diethyl ether. The organic 



80 

 

 

layer was dried over MgSO4 and concentrated using rotary evaporation to yield P−GUA 

derived catechol (P−CAT) as a yellow oil (94% yield). M−GUA demethylated product 

(M−CAT) was prepared using the same method with 92% yield. Proton NMR spectra of 

M−GUA, M−CAT, P−GUA and P−CAT are shown in Figure S4.1 and S4.2.  

4.4.2 Synthesis of Lignin Based Triphenylmethane−Type Phenols (TP). 

M−CAT based TPs. 

Vanillin (VAN, 1.05 g, 7 mmol) and M−CAT (3.47 g, 28 mmol) were dissolved in 3 mL 

absolute ethanol. To this solution, 2.0 g of concentrated sulfuric acid, dissolved in 1.5 mL of 

absolute ethanol, were slowly added while stirred. An ice bath was used to control the 

temperature below 10 °C. After the addition of sulfuric acid, the temperature was increased to 

room temperature. The system was gently stirred for 2 days under room temperature. Then, 

100 mL of H2O and 15 mL of diethyl ether was successively added to precipitate flakes. The 

precipitate was then collected through filtration, washed with water three times and dried at 

65 °C under vacuum for 2 days to obtain the TP product (VAN−M−CAT) as a white powder 

(2.35 g, 88% isolated yield).      

1H NMR (acetone−d6, 400 MHz) δ: 7.64 (s, 2H, Ar−OH), 7.39 (s, 2H, Ar−OH), 6.74 (d, J 

= 8.1, 1H, Ar−H), 6.69 (s, 1H, Ar−H), 6.65 (s, 2H, Ar−H), 6.42 (d, J = 7.8, 1H, Ar−H), 6.23 (s, 

2H, Ar−H), 5.39 (s, 1H, Ar3−CH), 3.69 (s, 3H, −OCH3), 2.00 (s, 6H, −CH3). 
13C NMR 

(acetone−d6, 400 MHz) δ: 148.09, 145.54, 143.71, 143.08, 136.21, 135.08, 128.24, 122.76, 

118.18, 117.24, 115.31, 113.98, 56.13 (−OCH3), 49.70 (Ar3−CH), 18.80 (−CH3). [C22H22O6 − 

H+]: 381.4. 

SYA−M−CAT was obtained from M−CAT and syringaldehyde (SYA) using the 
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above−mentioned method (2.05 g, 71% isolated yield).  

1H NMR (acetone−d6, 400 MHz) δ: 7.65 (s, 2H, Ar−OH), 7.40 (s, 2H, Ar−OH), 7.08 (s, 

1H, Ar−OH), 6.63 (s, 2H, Ar−H), 6.33 (s, 2H, Ar−H), 6.23 (s, 2H, Ar−H), 5.37 (s, 1H, Ar3−CH), 

3.67 (s, 6H, −OCH3), 2.00 (s, 6H, −CH3). 
13C NMR (acetone−d6, 400 MHz) δ: 148.45, 143.75, 

143.09, 135.30, 135.06, 134.93, 128.25, 118.15, 117.16, 108.10, 56.54 (−OCH3), 50.03 

(Ar3−CH), 18.76 (−CH3). [C23H24O7 − H+]: 411.4 

For HBA−M−CAT that is derived from 4−hydroxybenzaldehyde (HBA) and M−CAT, only 

isolation method is different from the above. In detail, after the reaction was complete, 100 mL 

H2O was poured into the mixture prior to the addition of 20 mL diethyl ether to extract the 

product. The ethereal extract was dried with MgSO4 and the solvent allowed to evaporate 

slowly to yield colorless crystals, which were subsequently washed with cold ether and dried 

at 65 °C under vacuum for 2 days to yield a white powder (2.07 g, 84% isolated yield). 

1H NMR (acetone−d6, 400 MHz) δ: 7.58 (s, 5H, Ar−OH), 6.84 (d, J = 8.4, 2H, Ar−H), 6.75 

(d, J = 8.4, 2H, Ar−H), 6.64 (s, 2H, Ar−H), 6.20 (s, 2H, Ar−H), 5.38 (s, 1H, Ar3−CH), 1.99 (s, 

6H, −CH3). 
13C NMR (acetone−d6, 400 MHz) δ: 156.32, 143.68, 143.10, 135.34, 135.53, 

135.15, 131.27, 128.17, 120.93, 118.18, 117.27, 116.85, 115.89, 115.72, 49.24 (Ar3−CH), 

18.74 (−CH3). [C21H20O5 − H+]: 351.4 

P−CAT based TPs. 

P−CAT based TPs (HBA−P−CAT, VAN−P−CAT and SYA−P−CAT) were prepared using 

the same reaction conditions as VAN−M−CAT. The desired TPs were separated from unreacted 

phenols and aldehydes using silica gel chromatography (hexane/ethyl acetate, 3:1 to 1:1) to 

give: 
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HBA−P−CAT, orange solid, 1.20 g, 42% isolated yield. 1H NMR (acetone−d6, 400 MHz) 

δ: 7.53 (s, 4H, Ar−OH), 6.81 (d, J = 8.2, 2H, Ar−H), 6.73 (d, J = 8.1, 2H, Ar−H), 6.66 (s, 2H, 

Ar−H), 6.22 (s, 2H, Ar−H), 5.57 (s, 1H, Ar3−CH), 2.35 (t. J =7.2, 4H, −CH2−), 1.47 (dt, J = 

15.0, 7.4, 4H, −CH2−), 0.85 (t, J = 7.2, 6H, −CH3). 
13C NMR (acetone−d6, 400 MHz) δ: 156.27, 

143.82, 143.04, 136.82, 134.81, 132.66, 131.07, 117.79, 117.34, 115.68, 47.99 (Ar3−CH), 

34.85 (−CH2−), 24.84 (−CH2−), 14.45 (−CH3). [C25H28O5 − H+]: 407.4 

VAN−P−CAT, orange solid, 1.07 g, 35% isolated yield. 1H NMR (acetone−d6, 400 MHz) 

δ: 7.66 (s, 2H, Ar−OH), 7.39 (s, 1H, Ar−OH), 7.37 (s, 2H, Ar−OH), 6.72 (d, J = 8.0, 1H, Ar−H), 

6.66 (s, 2H, Ar−H), 6.63 (s, 1H, Ar−H), 6.41 (d, J = 7.2, 1H, Ar−H), 6.24 (s, 2H, Ar−H), 5.58 

(s, 1H, Ar3−CH), 3.68 (s, 3H, −OCH3), 2.36 (t, J = 7.2, 4H, −CH2−), 1.48 (dt, J = 15.0, 7.4, 4H, 

−CH2−), 0.85 (t, J = 7.2, 6H, −CH3). 
13C NMR (acetone−d6, 400 MHz) δ: 148.06, 145.54, 

143.85, 143.02, 137.48, 134.75, 132.71, 122.78, 117.52, 117.27, 115.33, 113.85, 107.64, 56.16 

(−OCH3), 48.44 (Ar3−CH), 34.85 (−CH2−), 24.78 (−CH2−), 14.47 (−CH3). [C26H30O6 − H+]: 

437.4 

SYA−P−CAT, orange solid, 1.08 g, 33% isolated yield. 1H NMR (acetone−d6, 400 MHz) 

δ: 7.68 (s, 2H, Ar−OH), 7.36 (s, 2H, Ar−OH), 7.05 (s, 1H, Ar−OH), 6.66 (d, J = 1.8, 2H, Ar−H), 

6.28 (dd, J = 15.7, 1.8, 4H, Ar−H), 5.57 (s, 1H, Ar3−CH), 3.66 (s, 6H, −OCH3), 2.36 (t, J = 7.2, 

4H, −CH2−), 1.45 (dt, J = 15.0, 7.4, 4H, −CH2−), 0.85 (t, J = 7.2, 6H, −CH3). 
13C NMR 

(acetone−d6, 400 MHz) δ: 148.45, 143.89, 143.01, 136.58, 135.11, 134.64, 132.76, 117.68, 

117.48, 108.11, 56.58 (−OCH3), 48.81 (Ar3−CH), 34.85 (−CH2−), 24.75 (−CH2−), 14.48 

(−CH3). [C27H32O7 − H+]: 467.6 

4.4.3 Preparation of Glycidylated Ether of VAN−M−CAT (GE−VAN−M−CAT).  
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GE−VAN−M−CAT was prepared by reaction of VAN−M−CAT (2 g, 5.2 mmol) and 

epichlorohydrin (30 g, 320 mmol). Tetrabutylammonium bromide (0.84 g, 2.6 mmol) was used 

as a phase transfer catalyst. The mixture was heated at 95 °C for 1 h and followed by a dropwise 

addition of 10 g of 20% w/w NaOH solution. The reaction was kept for another 3 h and the 

mixture was washed with water, extracted with ethyl acetate and concentrated with a rotary 

evaporator to yield GE−VAN−M−CAT as a viscous oil (2.8 g). The catechol−like structure of 

VAN−M−CAT is likely to produce benzodioxane derivatives during glycidylation (Scheme 

4.2). Using a preparative scale HPLC, three major glycidylated products, i.e., mono−epoxy 

substituted (GE−VAN−M−CAT−1), tri−epoxy substituted (GE−VAN−M−CAT−3) and 

penta−epoxy substituted (GE−VAN−M−CAT−5) were isolated. Structure of the major 

glycidylated products were measured by NMR and mass spectra. An analytical HPLC was used 

to detect peaks of each epoxidized product and determine their molar ratio in the mixture to be 

GE−VAN−M−CAT−1: GE−VAN−M−CAT−3: GE−VAN−M−CAT−5 = 14: 55: 31. Epoxy 

equivalent value of GE−VAN−M−CAT mixture was determined to be 495 mmol epoxy/100 g 

by the HCl/acetone chemical titration method. This is in accordance with the calculated value 

(531 mmol epoxy/100 g) using the above ratio. 

GE−VAN−M−CAT−1, yellow oil, 14 mol % in epoxidized product mixture. 1H NMR 

(CDCl3, 400 MHz) δ: 6.27−6.80 (7H, Ar−H), 5.37 (1H, f), 4.13−4.28 (5H, c’, g’, h), 3.94−4.10 

(3H, c, g), 3.82−3.87 (4H, i, i’), 3.76 (3H, d), 3.37 (1H, b), 2.89 (1H, a), 2.73 (1H, a’), 2.03 

(6H, e). 13C NMR (CDCl3, 400 MHz) δ: 113.58−140.51 (Ar−C), 73.31 (h), 70.07 (c), 65.07 (g), 

61.74 (i), 55.89 (d), 50.14 (f), 48.99 (b), 44.99 (a), 18.66 (e). [C31H34O9 + Na+]: 573.  

GE−VAN−M−CAT−3, brown oil, 55 mol % in epoxidized product mixture. 1H NMR 
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(CDCl3, 400 MHz) δ: 6.23−6.80 (7H, Ar−H), 5.37 (1H, f), 4.18−4.25 (5H, c’, g’, h), 3.92−4.07 

(4H, c, g), 3.78−3.82 (2H, i, i’), 3.74 (3H, d), 3.22−3.37 (3H, b), 2.61−2.88 (6H, a, a’), 

1.99−2.03 (6H, e). 13C NMR (CDCl3, 400 MHz) δ: 113.40−149.39 (Ar−C), 73.29 (h), 70.08 

(c), 65.18 (g), 61.74 (i), 55.84 (d), 50.12 (f), 49.09 (b), 44.66 (a), 18.93 (e). [C34H38O10 + Na+]: 

629.  

GE−VAN−M−CAT−5, brown oil, 31 mol % in epoxidized product mixture. 1H NMR 

(CDCl3, 400 MHz) δ: 6.32−6.80 (7H, Ar−H), 5.40 (1H, f), 4.09−4.25 (5H, c’), 3.88−4.99 (5H, 

c), 3.74 (3H, d), 3.22−3.36 (5H, b), 2.60−2.87 (10H, a, a’), 2.03 (6H, e). 13C NMR (CDCl3, 

400 MHz) δ: 113.29−146.78 (Ar−C), 70.28 (c), 55.77 (d), 50.23 (b), 49.20 (f), 45.26 (a), 18.89 

(e). [C37H42O11 + Na+]: 686. 

4.4.4 Esterification of VAN−M−CAT with Linoleic Acid and Epoxidation.  

Linoleic acid was first converted to linoleoyl chloride (LC) to increase its reactivity.26 To 

a solution of linoleic acid (4.2 g, 15 mmol) dissolved in 35 mL dry dichloromethane was added 

slowly 4.23g (33.3 mmol) of oxalyl chloride at 0 °C. The temperature was then raised to room 

temperature and stirred for 4 h. The reaction mixture was concentrated with rotary evaporator 

to yield LC as a yellowish oil (4.13 g, 92% isolated yield).  

Esterification between VAN−M−CAT and LC was then performed by a solvent−free and 

catalyst−free condition as established by a previous study.27 In detail, VAN−M−CAT (1 g, 2.6 

mmol) and LC (8.97 g, 30 mmol) was introduced in a 50 mL reactor with a nitrogen−gas 

bubbling system and an outlet connected to a wash bottle holding a NaOH solution. The 

mixture was then stirred and heated at 130 °C for 15 h under a continuous nitrogen stream. The 

obtained esterified product, VAN−M−CAT−LIN, was washed using cold ethanol to remove the 
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excess acid chloride and further purified by a silica column using an eluent of hexane/ethyl 

acetate (10:1) to yield 2.79 g, 63% isolated yield.  

VAN−M−CAT−LIN was then epoxidized using peracetic acid to make epoxy comonomer. 

1.5 g (0.88 mmol, 8.8 mmol of double bond) of VAN−M−CAT−LIN was dissolved in 25 mL 

dichloromethane in a 50 mL round−bottomed flask. To this flask was added dropwise peracetic 

acid (4.2 g, 17.6 mmol). The reaction mixture was stirred at room temperature overnight, 

washed 3 times with brine and extracted with ethyl acetate. The ethyl acetate was removed 

using a rotary evaporator to yield epoxidized VAN−M−CAT−LIN (VAN−M−CAT−LIN−EPO) 

as a yellowish oil (1.4 g, 86% isolated yield). 

4.4.5 Formation of Biobased Epoxy Networks. 

Three epoxy monomer mixtures with weight ratio GE−VAN−M−CAT to 

VAN−M−CAT−LIN−EPO of 100:0, 75:25 and 50:50 are respectively mixed with 

diethylenetriamine (DETA) with stoichiometric ratio of epoxy vs. −NH for curing. The 

mixtures were stirred for 10 min, degassed under vacuum to remove entrapped air and poured 

into molds for curing. Given GE−VAN−M−CAT was highly reactive with DETA, the mixtures 

were cured at room temperature for 8 h, followed by 60 °C for 4 h and 80 °C for 4 h. The 

obtained cured epoxy thermosets, denoted as VAN100LIN0, VAN75LIN25 and VAN50LIN50, 

were subjected to mechanical and thermal analyses.   

4.4.6 Analysis Methods. 

Conversions of phenol−aldehyde condensation reaction were measured by 

high−performance liquid chromatography (HPLC, Agilent 1260 Infinity Quaternary), with a 

Zorbax Eclipse XDB−C18 Column (250 x 74.6mm). ESI−MS analyses in negative mode were 
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performed using a 7 Tesla Thermo Scientific LQIT/FT−ICR mass spectrometer. Waters Delta 

Prep 4000 HPLC was used to separate and collect each of the glycidylated products of 

VAN−M−CAT in 50 mg scale.  

Crystal of VAN−M−CAT was obtained from slow evaporation of an ether solution at room 

temperature. Single crystals were mounted on Mitegen microloop mounts using a trace of 

mineral oil and cooled in−situ to 100(2) K for data collection on a Nonius KappaCCD 

diffractometer equipped with a graphite crystal, incident beam monochromator using Mo K 

radiation ( = 0.71073 Å). Data were collected using the Nonius Collect software and 

processed using HKL3000 and corrected for absorption and scaled using Scalepack. 

Other analysis methods are similar to Chapter 2. 
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Chapter 5 

Impacts of Methoxy Substituents on Properties of Lignin−Derived 

Epoxy Thermosets 

 

ABSTRACT: Because lignin−derived compounds often have methoxy groups, a series of TPs 

with various number of methoxy group substituents (n= 0−6) were synthesized using 

para−unsubstituted lignin−derived phenols (guaiacol and 2,6−dimethoxyphenol) and 

aldehydes (4−hydroxybenzaldehyde, vanillin and syringaldehyde). Increasing the content of 

methoxy groups resulted in decreased glass transition temperature (132 to 118 °C) and glassy 

modulus (2.6 to 2.2 GPa). Thermal stability of high−methoxy−content thermosets was reduced 

due to electron−donating effects and higher oxygen content. Conversions and isolated yields 

of TPs significantly decreased as number of methoxy substituents increased, which markedly 

determined the feasibility of TPs as precursors to polymers. Evaluation of impacts of methoxy 

substitution provides insights in the selection of lignin−derived monomers. 

 

This section is partially adapted from: Shou Zhao, Xiangning Huang, Andrew J. Whelton, and 

Mahdi M. Abu−Omar, to be submitted. 
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5.1 Introduction 

Epoxy thermosets have been extensively used as coatings, adhesives, electronic materials 

and structural composites because of their excellent thermal and mechanical performance. The 

most popular epoxy monomers are derived from bisphenol A (BPA), which accounts for more 

than 90 % of epoxy cross−linked polymers.1 The suitability of BPA comes from its aromatic 

structure, which confers good mechanical and thermal properties on the resulting epoxy 

thermosets. However, as the development of renewable materials has received increased 

attention, numerous biomass derived molecules have been utilized to replace or supplement the 

petroleum−based BPA.2−23 Among these feedstocks, lignin is the most promising candidate for 

making epoxy thermosets, since it is the sole large−volume sustainable source composed of an 

aromatic skeleton.24, 25 

Recent catalytic depolymerization techniques can convert lignin to various value−added 

phenolic monomers including phenols and aldehydes.26−31 Lignin−derived phenol monomers 

(LDPMs) have been extensively studied as BPA alternatives. Since cross−linkable epoxy 

monomers require at least two epoxides per molecule, special efforts have been taken to 

increase the number of functional hydroxyl groups of LDPMs through (1) conversion of other 

reactive groups like methoxy, double bond, or aldehyde to hydroxyl groups,32−37 and (2) 

coupling repeated LDPMs using bridging reagents.38−48 Despite the abundance of LDPMs and 

their coupling methods, lignin−derived aldehyde monomers (LDAMs) are often neglected as 

renewable bridging reagents (akin to acetone in the preparation of BPA). A few examples 

include the work of Foyer et al., in which a synthesis route of formaldehyde−free resol resin 

based on vanillin was reported.49, 50 However, because alkaline catalyst preferentially 
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deprotonated the hydroxyl of vanillin over phenols in resol synthesis, the hydroxyl group of 

vanillin had to be protected prior to polymerization. Moreover, it is important to develop 

building blocks that can yield polymer with tunable properties permitting wider applications. 

For example, with the aid of an acid, LDAMs can condense with phenols at the para and/or 

ortho position to yield triphenols (TPs). The TP architecture improves the rigidity compared to 

conventional bisphenolic systems, while adjusting the number of functional hydroxyl could 

tune the cross−link density and therefore mechanical properties of the resulting networks.51 

Furthermore, functionalizing the hydroxyl groups to epoxy, olefin, or cyanate ester results in 

different types of materials.    

Apart from the aromatic nature, lignin is characterized by methoxy substitution of its 

aromatic rings. There are three types of monolignols (para−coumaryl alcohol, coniferyl alcohol 

and sinapyl alcohol) existing in the lignin backbone, which form p−hydroxyphenyl (H), 

guaiacyl (G) and syringyl (S), with varying number of methoxy groups.52,53 Methoxy 

substitution plays an important role in determining the physiochemical properties of lignin. For 

example, lignin with high methoxy groups (e.g., hardwood lignin) generally is less thermally 

stable and produces less char compared to the low methoxys counterparts (e.g., softwood lignin) 

during lignin pyrolysis.54,55 Meanwhile, several experimental and theoretical studies have 

pointed out oxygen−carbon bond dissociation enthalpy was substantially decreased when ortho 

or para methoxy substituent was situated on the phenethyl phenyl ether model compounds for 

the dominant β−O−4 linkages.56−58 Inspired by these studies, we set out to investigate the 

impact of methoxy substituents on the performance of lignin−derived polymers. Hernandez et 

al. recently reported a bio−based epoxy resin using bis−guaiacol (BG), which was synthesized 
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from vanillyl alcohol and guaiacol.59 To investigate the impact of methoxy groups, BG−based 

resin was compared to bisphenol F (BPF) based counterpart. It was found that methoxy groups 

could lower the glass transition temperature (Tg) and thermal stability of the resulting resins. 

Harvey et al. reported similar results when making cyanate ester resins with lignin−based 

bis−creosol, while the significant decrease in thermal stability was attributed to the electron 

donating effect of methoxy.60 While these studies provided important information on the impact 

of methoxy substitution, the following information is still missing: 1) The above studies only 

focused on guaiacyl type (e.g. guaiacol, one methoxy group substituted at ortho position of 

phenol), neglecting another important syringyl type that is abundant in hardwood lignin (e.g. 

2,6−dimethoxyphenol, DMP, which bears two methoxys at ortho sites). The additional 

methoxy of DMP would affect the electron donating effect and symmetry of obtained 

polyphenols and merits investigation. 2) Literature studies thus far have compared bisphenols 

with only 0 vs. 2 methoxys. With the aid of triphenol architecture proposed in this work, 

triphenols with 0−6 methoxys can be achieved, which magnifies the effects of methoxy. 3) 

Guidance on the selection of lignin (e.g., low S vs. high S) as phenol sources for larger scale 

manufacturing would be of interest. Apart from the thermomechanical properties of thermosets, 

the feasibility and processability of thermoset precursors (e.g. bisphenol or triphenol) should 

also be considered. Effect of methoxy on properties of these precursors, including conversion, 

difficulty in isolation, yield and melting point needs to be discerned, especially when methoxy 

number reaches higher levels of 3−6 per molecule.     

In the present work we report: 1) synthesis of fully lignin−derived TPs. The synthesis of 

TPs employs lignin−derived aromatic aldehydes as bridging reagents, which avoids the 
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carcinogenic and highly volatile molecules like formaldehyde and acetone. Meanwhile, TP 

architecture confers thermosets with improved rigidity compared to conventional bisphenolic 

systems; and 2) the impact of methoxy groups on performance of TP−based thermosets. TP 

structure allows for a way to manipulate the number of methoxy substituents. By controlling 

the starting LDAMs, i.e., 4−hydroxybenzaldehyde (HBA), vanillin (VAN), syringaldehyde 

(SYA), and LDPMs, i.e., phenol (PhOH), guaiacol (GUA) and 2,6−dimethoxyphenol (DMP), 

TPs with 0 to 6 methoxy substituents can be prepared. Selected TPs were converted to glycidyl 

ethers and cured to explore their feasibility as precursors to make renewable epoxy resins 

(Figure 5.1).  

 

Figure 5.1 Synthesis route of epoxy networks from lignin−derived aldehydes and phenols. 
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5.2 Results and Discussion 

5.2.1 Structure of TPs and Glycidyl Ethers 

Triphenylmethane architecture provides an approach of manipulating the number of 

methoxy substituents by employing different starting aldehydes and phenols. To confirm the 

structure, proton and carbon NMR spectra of M0 to M6 are shown in Figure S5.1−S5.9. The 

proton peak at ~ 5.3 ppm corresponds to the triphenylmethyl group, which indicates successful 

condensation of aldehyde and phenol. The characteristic methoxy groups are observed at ~ 3.7 

ppm, while aromatic protons are found in the range of 6.3−6.9 ppm. For the carbon NMR, the 

triphenylmethyl and methoxy groups are observed in the range 50.6−55.7 ppm. While the para 

position of phenol is the main site for aldehyde coupling, it is noteworthy that certain amount 

of ortho or meta coupled byproducts are also observed in the proton spectra, with molar ratio 

below 8 % of the product mixture. The dominant para−coupled products were previously 

observed, which was related to their higher reactivity and less steric hindrance of their para 

site.59 Proton NMR spectra of the corresponding glycidyl ethers (GEM0 to GEM6) are given in 

Figure S5.10−S5.18. Compared to TPs, new characteristic peaks are identified at 3.91−4.19 

ppm (−CH2−, b and b’), 3.35 ppm (−CH−, c) and 2.61−2.87 ppm (−CH2− in epoxy ring, d and 

d’), which are indicative of formation of epoxy groups.  
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Figure 5.2 List of TPs with different number of methoxy groups. TPs are abbreviated as Mn, 

while n indicates the number of methoxy groups. The starting aldehyde and phenol for each TP 

are also listed in parentheses. 

Because of the structural similarity of TPs, only one crystal structure (M6, prepared from 

syringaldehyde and dimethoxyphenol) was collected to confirm the structure and determine the 

main coupling sites. Figure 5.3 reveals syringaldehyde couples exclusively at the para sites of 

both dimethoxyphenol. Coupling at para sites provides TPs with stretched orientation of 

hydroxyl groups (Figure 5.3). Together with its rigid architecture and high number of hydroxyl 

groups (n= 3), TP−based polymers are supposed to exhibit satisfactory mechanical properties.  
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Figure 5.3 Crystal structure of M6. Crystal was collected from the slow evaporation of an ethyl 

acetate solution at room temperature.  

Structure of TPs is further confirmed by IR spectra in Figures S5.19−S5.27. Starting 

aldehydes (HBA, VAN and SYA) have an aldehyde peak around 1672 cm−1. After they are 

condensed with phenols, the aldehyde group becomes triphenylmethyl group. This is consistent 

with the IR spectra of TPs in which the aldehyde peak disappears (Figure S5.19−S5.27, panel 

a). Other characteristic bands comprise 3058−3586 cm−1 (O−H stretching), and 1608, 1510 and 

1437 cm−1 (aromatic C−C bond). When TPs are converted to glycidyl ethers, the broad 

hydroxyl band diminishes significantly, while a new epoxy ring band at 912 cm−1 emerges 

(Figure S5.19−S5.27, panel b). This is consistent with the NMR analysis confirming the 

formation of epoxy ring. This conclusion is further supported by the IR spectrum of the cured 

thermosets in Figure S5.19−S5.27, panel c. When epoxy monomers are cured with DETA, 

epoxy groups are opened by amine while hydroxyl groups are created concurrently. This 

process is reflected by the IR results, in which the epoxy band at 912 cm−1 disappears while 

the OH band around 3355 cm−1 increases. The absence of epoxy bond is indicative of 

significant conversion of epoxy groups in our investigated networks. Meanwhile, high 

reactivity of epoxy/DETA system is confirmed by two cycles of heating−cooling using DSC 

analysis (Figure S5.28), as supported by the lack of exotherm on the second heating. 

5.2.2 Effect of Methoxy Substituents on Yields of TPs 

To study the conversion of TPs, aldehyde and phenol were reacted under the following 

conditions: molar ratio of aldehyde: phenol = 1:4, aldehyde: H2SO4 = 1:3, absolute ethanol was 

used as solvent and the mixture was stirred at 65 °C for 2 days. Conversions were calculated 
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based on integrals of aldehyde and triphenylmethyl peaks in the proton spectra. Table 5.1 lists 

the conversion of TPs prepared from different aldehydes and phenols. Generally, conversion 

decreases with increased number of methoxy groups (from 82.5% for M0 to 35.2% for M6). 

Comparisons between starting aldehydes and phenols reveal reactivity of aldehydes (HBA > 

VAN > SYA) and phenols (PhOH > GUA > DMP) decreases with increased number of methoxy 

substituents (Table 5.1). The negative effects of methoxy group on conversion could be 

attributed to: 1) steric effect of methoxy decreases the reactivity of aldehydes and phenols, and 

2) as the number of electron−donating groups (methoxy) increases, the electrophilicity 

decreases, which reduces their reactivity in electrophilic substitution reactions.  

Table 5.1. Conversion (%) of TPs Prepared from Lignin−Derived Aldehydes and Phenols with 

Different Number of Methoxy Groups a  

Aldehyde 

Phenol 

HBA 

(0)  

VAN 

(1) 

SYA 

(2) 

 PhOH (0) b  83 c 72 64 

GUA (1) 81 68 64 

DMP (2) 49 42 35 

a Reaction conditions: molar ratio of aldehyde: phenol = 1:4, aldehyde: H2SO4 = 1:3, 65 °C for 

2 days. Absolute ethanol is used as solvent. b Numbers (in parentheses) next to starting 

aldehydes or phenols indicate the number of methoxy groups situated on these reagents. c 

Numbers in the table means conversion (%) of TPs prepared from different aldehydes and 

phenols. For example, 83% is the conversion of TP synthesized from HBA and PhOH.  

Compared to conversion, methoxy groups have even greater negative impact on isolated 

yields. For TPs (M0 to M4) that were prepared from aldehydes (HBA, VAN and SYA) and 

phenols (PhOH and GUA), satisfactory isolated yields of 46−69% were achieved. However, 
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when 2,6−dimethoxyphenol (DMP) was reacted with aldehydes, only 18%, 7% and 5% 

isolated yields were obtained for M4’, M5 and M6, respectively. Low isolated yields of 

DMP−based TPs could be attributed to two reasons. On one hand, conversions of these TPs 

are relatively low (35.2−48.8%). On the other hand, the aldehyde/phenol reaction can be 

divided to two steps: in the first step, aldehyde reacts with phenol to yield a diphenylmethyl 

alcohol derivative intermediate. In the second step, methyl alcohol group of the intermediate 

couples to another phenol to form the triphenylmethane product. However, because of the steric 

hindrance of the intermediate and especially the lower reactivity of DMP, the second step could 

occur very slowly. As a result, the reaction mixtures contain certain amount of dimer 

intermediate (proton NMR spectrum of the intermediate exhibits no triphenylmethyl peak at 

5.3 ppm). These undesired intermediates exhibit similar polarity with TP products and impair 

the yields of flash column purification. The low yield of DMP−based TPs makes them 

unreasonable for preparing renewable polymer materials.  

5.2.3 Effect of Methoxy Substituents on Melting Point 

Melting points of TPs with various number of methoxys are listed in Table 5.2. The highest 

melting point is found to be 241 °C (M0), while the lowest is 125 °C (M3). This obvious 

difference highlights the role of methoxy. Melting points of TPs from different aldehydes 

follows the order: HBA > SYA > VAN, while phenols follow the order: PhOH > DMP > GUA 

(Table 5.2). The lower melting points of TPs prepared from di−methoxy substituents (SYA and 

DMP) than corresponding non−methoxy compounds (HBA and PhOH) could be explained by 

the electron donating effect of methoxy. As for the mono−methoxy derivatives (VAN and GUA) 

that exhibit the lowest TP melting points, influence of methoxy may be reflected by its impact 
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on the symmetry of TP units. Symmetric TPs like M0, M2’, M4’ and M6 exhibit melting points 

above 190 °C. By comparison, when asymmetric units VAN and GUA (only one methoxy at 

ortho site) are incorporated, melting points of TPs significantly decrease. Especially, M3 with 

three asymmetric guaiacol units shows the lowest melting point (125 °C) among all TPs. 

Moreover, impact of unit symmetry can be highlighted when TPs with same number of 

methoxy group are compared. For example, melting point of M2’ (SYA−PhOH, 191 °C) is 

27 °C higher than M2 (HBA−GUA, 164 °C), while M4’ (HBA−DMP, 204 °C) is 131 °C higher 

than M4 (SYA−GUA, 73 °C).  

Table 5.2. Melting Point (°C) of TPs with Different Number of Methoxy Groups a 

Aldehyde 

Phenol 

HBA 

(0) 

VAN 

(1) 

SYA 

(2) 

 PhOH (0) b  241 c 188 191 

GUA (1) 164 125 146 

DMP (2) 204 133 190 

a Melting points were measured using a capillary melting point apparatus (MEL−TEMP) with 

a heating rate of 5 °C/min. b Numbers (in parentheses) next to starting aldehydes or phenols 

indicate the number of methoxy groups situated on these reagents. c Numbers in the table mean 

melting points (°C) of TPs prepared from corresponding aldehydes and phenols. For example, 

241 °C is the melting point of TP synthesized from HBA and PhOH. 

5.2.4 Effect of Methoxy on Properties of TP−Based Epoxy Thermosets 

Differential Scanning Calorimetry Analysis. 

Effect of methoxy group on curing behavior is studied via DSC tests. Table 5.3 exhibits 

enthalpy (ΔH) values of all curing systems fall in the range (91.5 to 96.4 kJ/ee), which is in 

accordance with the typical value of 90−100 kJ/ee for epoxy/amine reactions. Table 5.3 
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demonstrates peak curing temperatures are not significantly different for studied monomers: 

GEM0 (81 °C), GEM2’ (80 °C), GEM2 (78 °C) and GEM4 (77 °C), which indicates methoxy 

group has no impact on the epoxy/amine curing process. This could be attributed to the inert 

nature of methoxy, which cannot catalyze the epoxy/amine reaction.62 Degrees of cure were 

determined through two cycles of curing. As demonstrated in Figure S5.28, all epoxy 

monomers are most cured as supported by the lack of exotherm on the second heating.  

Table 5.3. DSC Curing Data for Epoxy/DETA Systems Exhibiting Onset Curing Temperature 

(Ti), Peak Curing Temperature (Tp) and Enthalpy of Reaction (ΔH). 

 

 

 

 

 

Dynamic Mechanical Analysis.  

Figure 5.4 and Table 5.4 illustrates Tα (α−relaxation temperature, related to Tg) of 

thermosets decreases gradually with increased contents of methoxy group, i.e., ENM0 (132 °C) > 

ENM2’ (125 °C) > ENM2 (120 °C) > ENM4 (118 °C). Similar negative effects of methoxy on 

mechanical performance was also reported for cyanate ester resins.60 Even though some 

methoxys could form hydrogen bonds with hydroxyls that improves the network constraint, 

increased void volume created by methoxy groups seems to play a more important role that 

decreases the Tα. Storage modulus (E’) curves of TP−based thermosets are also exhibited in 

Figure 5.4 and Table 5.4. Similar with Tα, increasing the content of methoxy generally leads to 

sample Ti 

(°C) 

Tp 

(°C) 

ΔH  

(kJ/ee) 

Theoretic 

EEW (g/eq.) 

Measured 

EEW (g/eq.) 

GEM0 47 81 96 154   160 

GEM2 43 78 94  174   179 

GEM2’ 45 80 95  174   181 

GEM4 44 77 92  194   199 
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reduced modulus from ENM0 to ENM4. It is noteworthy that glassy modulus (E30’, storage 

modulus at 30 °C) values are in the range of 2.2 to 2.6 GPa. To compare the mechanical 

performance of TP−based polymers with BPA–based materials, diglycidyl ether of BPA 

(DGEBA) and diethylenetriamine were cured using the same profiles with TP−based networks. 

The E30’ and Tα of DGEBA/DETA system (ENBPA) were measured to be 2.0 GPa and 103 °C 

(Figure 5.4 and Table 5.4), which is lower than TP−based thermosets. This result could be 

explained by the more rigid structure and higher functionality of TPs over BPA. Moreover, this 

result highlights TP−based epoxy networks possess marked mechanical performance that can 

replace or supplement BPA−based analogues.  

Table 5.4. Thermomechanical Data of Tα, E30’ (Glassy Modulus), Td5, Td30 (Temperature at 5% 

and 30% Weight Loss), Ts (Statistic Heat−Resistant Index Temperature) and Char600 (Char 

Residue at 600 °C) of Epoxy Networks Derived from TPs and BPA.  

sample Tα 

(°C) 

E30’ 

(MPa) 

Td5  

(°C) 

Td30  

(°C) 

Ts 

 (°C) 

Char600  

(%) 

ENM0 132 2745 257 341 151 20 

ENM2 125 2598 206 321 135 17 

ENM2’ 120 2249 218 324 138 18 

ENM4 118 2477 184 296 123 14 

ENBPA 100 2042 305 371 169 8 
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Figure 5.4 DMA curve of epoxy networks derived from TPs with different number of methoxy 

groups. Temperature at the maximum in tan δ curve is taken as Tα (related to Tg). 

Thermogravimetric Analysis. 

Figure 5.5 reveals a one−step degradation curve for all TP−based epoxy networks. Figure 

5.5 and Table 5.4 illustrate thermal stability of cured networks decreases with increased content 

of methoxy (i.e., ENM0 > ENM2’ > ENM2 > ENM4). This is reflected from the significant shift 

of onset degradation temperature (defined as Td5, temperature at 5% weight loss) from ENM0 

(257 °C) to ENM2’ (218 °C), ENM2 (206 °C) and ENM4 (184 °C), respectively. The effects of 

methoxy could be attributed to its electron donation ability.60 Meanwhile, as methoxy groups 

increase, content of oxygen within the polymers increases, which accelerates the thermal 

decomposition. Td30 (temperature at 30% weight loss) of cured samples reveal the same trend 

with Td5, which confirms the effects of methoxy. Besides, for M2 and M2’ that have similar 

methoxy contents, they exhibit close values of Td5, Td30 and Ts (statistic heat−resistant index 

temperature). This further supports the relationship between methoxy substituents number and 

thermal performance of epoxy networks. As for the BPA−based network, it exhibits higher 
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thermal stability than TP−based thermosets when temperature is relatively low, as reflected by 

Td5 (305 °C), Td30 (371 °C) and Ts (169 °C). This could be attributed to the triphenylmethane 

architecture of TP that is easily oxidized, as well as the electron donating effects of methoxy 

groups. When temperature reaches 330 °C, ENBPA exhibits a fast degradation behavior and 

only 8 wt % char was left when the temperature reaches 600 °C. As for the TP−based networks, 

they start to exhibit higher stability over ENBPA above 391 °C, with 17−23 wt % char formed 

at 600 °C.  

 

Figure 5.5 Thermogravimetric analysis thermograms of epoxy networks derived from TPs with 

different number of methoxy groups.  

5.3 Conclusions 

Preparation of renewable TPs with 0−6 methoxy substituents is described. While the rigid 

architecture and improved number of hydroxyl of the TP backbone afford epoxy networks with 

marked properties, the dangling methoxy groups are found to have different levels of impacts 

on the resulting networks. Because of its chemical inertness, the methoxy group has no impact 

on the curing process (curing temperature and enthalpy). By comparison, increasing methoxy 

content results in a decrease in mechanical properties (Tα decreases from 132 to 118 °C, and 
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glassy modulus decreases from 2.6 to 2.2 GPa). The greater impact of methoxy substitution is 

related to thermal performance, in which onset degradation temperature decreases significantly 

from 257 °C for ENM0 (no methoxy substituents) to 184 °C for ENM4 (four methoxy 

substituents). The greatest impact is on the conversion and especially isolated yields of TPs, 

which determines the feasibility of using these monomers in the manufacture of renewable 

polymers. The different impacts of methoxy substitution can guide the selection and/or 

modification (e.g. deoxygenation) of lignin−derived monomers for making epoxy polymers 

with desirable properies. 

5.4 Experimental Section 

General. 4−Hydroxybenzaldehyde, vanillin, syringaldehyde, phenol, guaiacol, 

2,6−dimethoxyphenol, epichlorohydrin, tetrabutylammonium bromide, diethylenetriamine 

(DETA) and diglycidyl ether of bisphenol A (DGEBA) were purchased from Aldrich Chemical 

Co. Ethanol (200 proof) was purchased from Decon Labs, Inc. Sulfuric acid (98%) was 

obtained from Fisher Scientific. All chemicals were used as received without further 

purification. 

5.4.1 General Procedure for TPs (M0 to M6). 

4−Hydroxybenzaldehyde (2.44 g, 20 mmol) and phenol (7.52 g, 80 mmol) were dissolved 

in 30 mL absolute ethanol. To this solution, 5.7 g of concentrated sulfuric acid, dissolved in 5 

mL of absolute ethanol, were dropwise added while stirred. An ice bath was used to control the 

temperature below 10 °C. After the addition of sulfuric acid, the temperature was increased to 

65 °C and the mixture was gently stirred for 2 days. Then, 100 mL of brine was poured into the 

mixture prior to the addition of 3 × 20 mL of ethyl acetate to extract the product. The extract 
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was dried with MgSO4 and concentrated using a rotary evaporator. Purification of the product 

using silica gel chromatography (hexane/ethyl acetate, 3:1 to 1:1) gave M0 as an orange solid 

(4.26 g, 69% isolated yield). 1H NMR (acetone−d6, 400 MHz) δ: 6.91 (d, J = 8.4, 6H, Ar−H), 

6.73 (d, J = 8.4, 6H, Ar−H), 5.30 (s, 1H, Ar3−CH). 13C NMR (acetone−d6, 400 MHz) δ: 155.4, 

135.9, 130.0, 114.7, 54.26 (Ar3−CH). Other TPs (M1 to M6) were prepared using the same 

methods as M0. Their structures are listed in Figure 5.2. 

M1, orange solid (3.93 g, 61 % isolated yield). 1H NMR (acetone−d6, 400 MHz) δ: 6.93 

(d, J = 5.6, 4H, Ar−H), 6.74−6.71 (m, 6H, Ar−H), 6.51 (dd, J = 5.4, 1.2, 1H, Ar−H), 5.31 (s, 

1H, Ar3−CH), 3.71 (s, 3H, −OCH3). 
13C NMR (acetone−d6, 400 MHz) δ: 155.5, 147.1, 144.7, 

136.5, 135.9, 130.0, 121.6, 114.8, 114.4, 112.7, 55.24 (−OCH3), 54.67 (Ar3−CH).  

M2, orange solid (3.66 g, 52% isolated yield). 1H NMR (acetone−d6, 400 MHz) δ: 6.93 

(dd, J = 15.3, 8.5, 2H, Ar−H), 6.73 (t, J = 7.8, 6H, Ar−H), 6.53 (dd, J = 8.1, 1.7, 2H, Ar−H), 

5.32 (s, 1H, Ar3−CH), 3.71 (s, 6H, −OCH3). 
13C NMR (acetone−d6, 400 MHz) δ: 155.5, 147.1, 

144.7, 136.4, 135.8, 130.0, 121.6, 114.7, 114.4, 112.7, 55.25 (−OCH3), 55.05 (Ar3−CH). 

M2’, orange solid (4.51 g, 64% isolated yield). 1H NMR (acetone−d6, 400 MHz) δ: 6.94 

(d, J = 8.5, 4H, Ar−H), 6.73 (d, J = 8.5, 4H, Ar−H), 6.38 (s, 2H, Ar−H), 5.32 (s, 1H, Ar3−CH), 

3.71 (s, 6H, −OCH3). 
13C NMR (acetone−d6, 400 MHz) δ: 151.2, 143.2, 132.5, 131.4, 129.9, 

125.7, 110.4, 102.5, 51.34 (−OCH3), 50.68 (Ar3−CH). 

M3, orange solid (3.90 g, 51% isolated yield). 1H NMR (acetone−d6, 400 MHz) δ: 

6.77−6.71 (m, 6H, Ar−H), 6.54 (m, J = 8.1, 1.7, 3H, Ar−H), 5.32 (s, 1H, Ar3−CH), 3.71 (s, 9H, 

−OCH3). 
13C NMR (acetone−d6, 400 MHz) δ: 147.1, 144.7, 136.4, 121.6, 114.4, 112.7, 55.44 

(Ar3−CH), 55.29 (−OCH3). 
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M4, orange solid (3.79 g, 46% isolated yield). 1H NMR (acetone−d6, 400 MHz) δ: 6.78 – 

6.69 (m, 4H, Ar−H), 6.56 (dd, J = 5.4, 1.1, 2H, Ar−H), 6.43 (s, 2H, Ar−H), 5.32 (s, 1H, 

Ar3−CH), 3.71 (s, 6H, −OCH3), 3.69 (s, 6H, −OCH3). 
13C NMR (acetone−d6, 400 MHz) δ: 

147.4, 146.9, 144.7, 136.2, 135.5, 121.6, 114.3, 112.7, 106.9, 55.76 (Ar3−CH), 55.67 (−OCH3), 

55.28 (−OCH3). 

M4’, orange solid (1.74 g, 18% isolated yield). 1H NMR (acetone−d6, 400 MHz) δ: 6.95 

(d, J = 8.4, 2H, Ar−H), 6.74 (d, J = 8.4, 2H, Ar−H), 6.43 (s, 4H, Ar−H), 5.32 (s, 1H, Ar3−CH), 

3.71 (s, 12H, −OCH3). 
13C NMR (acetone−d6, 400 MHz) δ: 151.2, 143.2, 131.3, 130.9, 129.9, 

125.7, 110.4, 102.5, 51.38 (−OCH3 and Ar3−CH). 

M5, orange solid (0.62 g, 7% isolated yield). 1H NMR (acetone−d6, 400 MHz) δ: 6.77 (d, 

J = 1.2, 1H, Ar−H), 6.72 (dd, J = 5.3, 2.7, 1H, Ar−H), 6.57 (dd, J = 5.4, 1.2, 1H, Ar−H), 6.45 

(s, 4H, Ar−H), 5.32 (s, 1H, Ar3−CH), 3.72 (s, 3H, −OCH3), 3.70 (s, 12H, −OCH3). 
13C NMR 

(acetone−d6, 400 MHz) δ: 143.1, 131.7, 130.8, 129.9, 117.2, 110.0, 108.3, 102.5, 51.71 

(−OCH3), 51.33 (−OCH3), 50.93 (Ar3−CH). 

M6, orange solid (0.47 g, 5% isolated yield). 1H NMR (acetone−d6, 400 MHz) δ: 6.46 (s, 

6H, Ar−H), 5.32 (s, 1H, Ar3−CH), 3.71 (s, 18H, −OCH3). 
13C NMR (acetone−d6, 400 MHz) δ: 

147.5, 135.1, 106.8, 56.40 (Ar3−CH), 55.72(−OCH3). 

5.4.2 General Procedure for Glycidyl Ethers of TPs (GEM0 to GEM6). 

GEM0 was prepared by reaction of M0 (2.92 g, 10 mmol) and epichlorohydrin (30 g, 320 

mmol). Tetrabutylammonium bromide (0.34 g, 1.1 mmol) was used as a phase transfer catalyst. 

The mixture was heated at 85 °C for 3 h and followed by a dropwise addition of 6 g of 20% 

w/w NaOH solution. The reaction was kept for another 1.5 h, and the mixture was washed with 
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acetone, filtrated to remove formed NaCl and concentrated with a rotary evaporator to yield 

GEM0 as a yellowish oil (4.33 g, 94% isolated yield). 1H NMR (CDCl3, 600 MHz) δ: 6.96−6.82 

(12H, Ar−H), 5.37 (1H, a), 4.15−3.91 (6H, b + b’), 3.32 (3H, c), 2.87−2.71 (6H, d + d’). Other 

glycidyl ethers (GEM1 to GEM6) were prepared using the same method with 87−96% yields 

of glycidylation. Epoxy equivalent weights (EEW) of obtained epoxy monomers were 

determined to be 162−218 g/eq. using the HCl/acetone titration method.61 

GEM1, yellowish oil, 94 % isolated yield. 1H NMR (CDCl3, 600 MHz) δ: 6.96−6.58 (11H, 

Ar−H), 5.36 (1H, a), 4.17−3.91 (6H, b + b’), 3.71 (3H, e), 3.35 (3H, c), 2.88−2.71 (6H, d + d’). 

GEM2, yellowish oil, 91 % isolated yield. 1H NMR (CDCl3, 600 MHz) δ: 6.99−6.54 (10H, 

Ar−H), 5.36 (1H, a), 4.18−3.91 (6H, b + b’), 3.73 (6H, e), 3.35 (3H, c), 2.86−2.71 (6H, d + d’). 

GEM2’, yellowish oil, 96 % isolated yield. 1H NMR (CDCl3, 600 MHz) δ: 6.98−6.28 (10H, 

Ar−H), 5.33 (1H, a), 4.18−3.97 (6H, b + b’), 3.73 (6H, e), 3.31 (3H, c), 2.86−2.61 (6H, d + d’). 

GEM3, white solid, 87 % isolated yield (melting point 115 °C). 1H NMR (CDCl3, 600 MHz) δ: 

6.85−6.54 (9H, Ar−H), 5.34 (1H, a), 4.18−3.99 (6H, b + b’), 3.73 (9H, e), 3.36 (3H, c), 

2.86−2.71 (6H, d + d’). GEM4, yellowish oil, 89 % isolated yield. 1H NMR (CDCl3, 600 MHz) 

δ: 6.81−6.28 (8H, Ar−H), 5.33 (1H, a), 4.18−3.96 (6H, b + b’), 3.73 (9H, e), 3.69 (9H, f), 3.36 

(3H, c), 2.87−2.61 (6H, d + d’). GEM4’, yellowish oil, 91 % isolated yield. 1H NMR (CDCl3, 

600 MHz) δ: 6.99−6.28 (8H, Ar−H), 5.33 (1H, a), 4.28−3.96 (6H, b + b’), 3.73 (12H, e), 3.32 

(3H, c), 2.88−2.61 (6H, d + d’). GEM5, yellowish oil, 89 % isolated yield. 1H NMR (CDCl3, 

600 MHz) δ: 6.81−6.28 (7H, Ar−H), 5.31 (1H, a), 4.19−3.96 (6H, b + b’), 3.73 (3H, e), 3.66 

(12H, f), 3.35 (3H, c), 2.87−2.61 (6H, d + d’). GEM6, yellowish oil, 87 % isolated yield. 1H 

NMR (CDCl3, 600 MHz) δ: 6.29 (6H, Ar−H), 5.31 (1H, a), 4.16−3.96 (6H, b + b’), 3.73 (18H, 
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e), 3.36 (3H, c), 2.77−2.61 (6H, d + d’). 

5.4.3 Formation of Epoxy Networks. 

Four epoxy monomers (GEM0, GEM2, GEM2’ and GEM4) with 0−4 methoxy groups were 

used to make epoxy networks. GEM6 was not used because of the low isolated yield of M6 

(5%), which makes it unreasonable for preparing renewable materials. The monomers were 

respectively mixed with diethylenetriamine (DETA) with 1:1 molar ratio of epoxy vs. −NH for 

curing. The mixtures were stirred for 10 min, degassed under vacuum to remove entrapped air 

and poured into silicone molds for curing with the profile: 65 °C for 8 h, 90 °C for 2 h and 

120 °C for 2 h. Cured epoxy networks were expressed as ENM0, ENM2, ENM2’ and ENM4, 

respectively. Degree of cure were monitored using Fourier transform infrared (FTIR). 

Conventional BPA−based epoxy network (ENBPA) was prepared from DGEBA and DETA 

using the same method with TP−based materials. 

5.4.4 Analysis Methods. 

Analysis methods are similar to Chapter 2. 
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Chapter 6 

Synthesis of Lignin Incorporated Thermosets through Successive 

Lignin Modification Using LDPMs 

 

ABSTRACT: An approach to lignin−based epoxy networks from both organosolv lignin and 

lignin derived phenol monomer (DHE) are developed using multiple chemical modifications 

including demethylation, phenolation and phenol−formaldehyde reaction. Structures of lignin 

incorporated novolac polyphenols (LINPs) and epoxy networks (LINENs) were characterized 

using proton nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. Compared to 

a common synthesis route in which lignin was epoxidized prior to blend with comonomers 

(LBEN), LINEN derivatives exhibited improved cross−link density (νe), α−relaxation 

temperature (Tα) and storage modulus in glassy region (Eg’) as obtained from dynamic 

mechanical analysis (DMA), and increased thermal stability measured by thermogravimetric 

analysis (TGA).  

 

This section is partially adapted from: Shou Zhao and Mahdi M. Abu−Omar, ACS Sustain. 

Chem. Eng. 2017, 5 (6), 5059−5066. 
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6.1 Introduction 

Epoxy resins are among the versatile thermoset materials because of their excellent 

thermal and mechanical properties.1 More than 90 % of epoxy cross−linked polymers are 

derived from bisphenol A (BPA).2 However, there is a growing demand to develop renewable 

aromatic compounds to replace the petroleum−based BPA. Lignin represents an attractive 

source for large−volume renewable feedstock of aromatics.3 With structural modifications, 

lignin can be transformed to have synthetic value for making epoxy resin.4 

Several lignin−based epoxy networks have already been developed based on either lignin 

derived phenols (LDPMs, e.g. eugenol,5 dihydroeugenol6, 7 and vanillin8−10) or direct use of 

bulk lignin.11−13 LDPMs are preferred because they are reactive, can be easily modified, and 

give predictable properties in their product resins. However, LDPMs need to be isolated from 

lignin biomass through chemical transformations such as catalytic reduction, oxidation and 

cracking processes, which are energy intensive and require separation and purification steps.14 

In contrast, bulk lignin is low−cost and abundant. Its total availability in the biosphere exceeds 

300 billion tons and annually increases by 20 billion tons,15 while its price is 20 times cheaper 

than phenol.16 However, only 2 % of technical grade lignin is being utilized for value−added 

products.17 Lignin is incompatible with polymeric compounds and its incorporation often leads 

to deterioration in the material’s mechanical properties.18, 19 The combination of lignin and 

LDPMs provides both economic and practical benefits.  

Chemical modifications can improve the compatibility of lignin by increasing 

intermolecular covalent bonds. A common modification method is direct epoxidation of lignin 

prior to blending with LDP−based epoxy comonomers.20, 21 The epoxy group of lignin can be 

https://purdue0-my.sharepoint.com/personal/zhao410_purdue_edu/Documents/Manuscript/Thesis/001-Chapter%207.docx#_ENREF_20
https://purdue0-my.sharepoint.com/personal/zhao410_purdue_edu/Documents/Manuscript/Thesis/001-Chapter%207.docx#_ENREF_21
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cured with other components. However, steric hindrance and poor dispersion of modified lignin 

impair covalent cross−link.12, 20 Another chemical modification is to make covalent links prior 

to epoxidation and curing. For example, LDPMs can be grafted onto lignin through phenolation, 

substituting lignin aliphatic hydroxyl by ortho/para−bound LDPMs. The grafted LDPMs do 

not only improve lignin’s compatibility, they also introduce additional sites (ortho and para), 

which can be used in building up cross−linked networks. 

In this study, organosolv lignin and LDPMs are deployed through chemical modifications 

as illustrated in Figure 6.1. First, lignin’s aromatic methoxy groups are deprotected,21 followed 

by addition of deprotected dihydroeugenol (DHEO), which can be obtained from catalytic 

depolymerization of lignin (CDL).22 As depicted in Figure 6.1, deprotected lignin (DL) is 

reacted with excess amount of DHEO under acid catalysis to yield phenolated lignin (PL). 

Formaldehyde solution is subsequently added to make a deprotected lignin incorporated 

novolac polyphenol (DLINP). The latter is reacted with epichlorohydrin to yield epoxy 

monomer that can be cured with diethylenetriamine (DETA) to make deprotected lignin 

incorporated novolac epoxy network (DLINEN). A comparison between the proposed 

synthesis routes with direct epoxidation of lignin (or deprotected lignin, DL) followed by 

blending with epoxidized DHEO novolac oligomer (DLBEN) is presented in Figure 6.2. 
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Figure 10 Synthesis route of deprotected lignin incorporated novolac epoxy network 

(DLINEN). Lignin is chemically modified through demethylation, phenolation and 

phenol−formaldehyde reactions to yield deprotected lignin incorporate novolac polyphenol 

(DLINP). DLINP is then epoxidized and cured with diethylenetriamine to make DLINEN. The 

modifying phenol (DHEO) is obtained via o−demethylation of DHE, a molecule that can be 

yielded through catalytic decomposition of lignocellulosic biomass. The aromatic ortho/para 

sites obtained via chemical modifications are highlighted. Benzodioxane derivatives produced 

during the glycidylation of DLINP are not shown. 
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Figure 6.211 Synthesis route of deprotected lignin blended epoxy network (DLBEN), in which 

DL is epoxidized prior to blend with epoxidized DHEO−NOVO for curing. Benzodioxane 

derivatives produced during the glycidylation of DL and DHEO−NOVO are not shown. 

6.2 Results and Discussion 

6.2.1 Characterization of Modified Lignin 

6.2.1.1 Deprotection of Lignin through Lewis−Acid−Catalyzed Modification 

 

Figure 6.3 1H NMR spectra of (a) lignin, (b) acetylated lignin, (c) demethylated lignin (DL) 

and (d) acetylated DL. Solvent: DMSO−d6. 
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1H NMR spectra of lignin and DL are illustrated in Figure 6.3 (panels a and c, respectively). 

The resonance peaks at δ 6.0−7.8 are assigned to aromatic protons while δ 3.0−4.2 are 

attributed to methoxy groups. Since the NMR peak of hydroxyl is easily affected by hydrogen 

bonding, acetylation reaction between lignin/DL and acetic anhydride are conducted to 

determine the hydroxyl content. By calculating the increased integrals of acetoxy groups at δ 

1.5−2.4 (Figure 6.3, panel a vs. b), and comparing it to the internal standard of 

pentafluorobenzaldehyde at δ 10.14, the hydroxyl content of lignin is found to be 4.32 mmol/g. 

This value is comparable to previously reported values.23 By comparison, after demethylation 

the hydroxyl concentration of DL increased to 5.69 mmol/g (Figure 6.3, panel c vs. d). The 32% 

increase in hydroxyl content is consistent with a previous report in which aqueous HBr was 

used for demethylation of softwood lignin.21  

6.2.1.2 Lignin−Based Polyphenols through Phenolation and Phenol−Formaldehyde Reaction 

1H NMR spectra of DHEO−NOVO in Figure 6.4, panel a exhibits an intramolecular 

methylene linkage in the region of δ 3.5−4.6. The integration ratio of Hd/Hb is around 0.57, 

indicating the novolac oligomer contains mainly dimer and trimer. This is in agreement with 

the novolac product of wood−tar creosote,24 which has similar structure with DHEO. Using Hb 

as an internal standard, the integration ratio of Hd/Hb of LINP−5 (Figure 6.4, panel b) increased 

compared to DHEO−NOVO. Considering the lignin methoxy group also lies in the Hd region, 

it points to the integration of lignin with DHEO novolac oligomer. Similarly, other lignin 

incorporated polyphenols (DLINP−5, LINP−12 and DLINP−12) also exhibit increased Hd/Hb 

ratios as seen in Figures S7.1−S7.3.  
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Figure 6.4 1H NMR spectra of polyphenols (a) DHEO−NOVO and (b) LINP−5, and their 

glycidylation products (c) GEDHEO−NOVO and (d) GELINP−5.  

The structures of DHEO−NOVO and LINP−5 were also examined using IR. Figure 6.5, 

panel a reveals characteristic absorption bands of DHEO−NOVO appear at around 3383 cm−1 

(O−H stretching), 2864 cm−1, 2936 cm−1 and 2960 cm−1 (alkyl C−H stretch), and 1604 cm−1, 

1502 cm−1, and 1445 cm−1 (aromatic C−C bond). The IR patterns of LINP−5 in Figure 6.5, 

panel b and DLINP−5, LINP−12 and DLINP−12 in Figure S6.1−S6.3 are also similar to 

DHEO−NOVO.  

 

Figure 6.5 FTIR spectra of (a) DHEO−NOVO, GEDHEO−NOVO and cured 
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GEDHEO−NOVO, and (b) LINP−5, GELINP−5 and cured GELINP−5. 

6.2.1.3 Glycidyl Ether of Lignin−Based Polyphenols 

Figure 6.4, panel c is the NMR spectrum of glycidyl ether of DHEO−NOVO 

(GEDHEO−NOVO). The epoxy peaks are difficult to assign since they overlap with the 

novolac methylene bonds as well as the benzodioxane formed by intramolecular cyclization of 

catechol−like DHEO with epichlorohydrin. By comparison to the spectrum of DHEO−NOVO 

in Figure 6.4, panel a, as well as to our previous study on glycidylation of DHEO,6 the 

characteristic protons of epoxy and benzodioxane are assigned in the regions of δ 2.6−2.9, δ 

3.1−3.4 and δ 3.7−4.4.  

The formation of epoxy groups is further supported by IR analysis. As seen in Figure 6.5, 

panel a, GEDHEO−NOVO exhibits an epoxy ring band at 912 cm−1 and a C−O−C ether linkage 

at 1028 cm−1. GELINP−5, GEDLINP−5, GELINP−12 and GEDLINP−12 reveal similar NMR 

and IR pattern as GEDHEO−NOVO (Figure 6.4 panel d, Figure 6.5 panel b and Figures 

S6.4−S6.6). This conclusion is further supported by the IR spectra of cured GEDHEO−NOVO 

and GELINP−5 (Figure 6.5 and Figure S6.7−S6.8), in which the epoxy band at 912 cm−1 

disappears. IR spectra of GEL and GEDL are depicted in Figure 6.6. Compared to lignin and 

DL, GEL and GEDL exhibit new peaks at 912 cm−1, which indicates epoxidation of lignin.  
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Figure 6.6 FTIR spectra of (a) lignin and glycidyl ether of lignin (GEL), and (b) demethylated 

lignin (DL) and glycidyl ether of DL (GEDL). 

6.2.2 Effects of Lignin on Cross−link Density 

Table 6.1 reports the cross−link densities of LINENs and LBENs. Lignin loading, 

demethylation and preparation approach (LINEN vs LBEN) are found to influence the 

cross−link density. Compared to the neat network (solely derived from GEDHEO−NOVO), 

the introduction of lignin is observed to decrease the cross−link density of all networks. The 

negative impact of lignin could be attributed to its reactivity and incompatibility. Besides, the 

steric hindrance of lignin restricts the development of cross−links. The role of lignin loading is 

further supported in the cases of LBENs, LINENs and DLINENs, as the network with 5 wt % 

lignin loading exhibits higher cross−link density than its 12 wt % counterpart.  
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Table 6.1. Dynamic mechanical properties and cross−link density (νe) of LBENs and LINENs. 

Tα is α−relaxation temperature and Eg’ is the storage modulus at glassy region.  

Sample Tα 

(°C) 

Eg’  

(MPa) 

E’ at Tα+30°C 

(MPa) 

νe 

(10−3 mol/cm3) 

Neata 139 1669 36 9.77 

LBEN−5 133 1009 23 6.32 

LBEN−12 134 866 21 5.76 

DLBEN−5 132 1260 24 6.61 

DLBEN−12 135 1142 30 8.21 

LINEN−5 130 1128 28 7.75 

LINEN−12 136 908 23 6.28 

DLINEN−5 141 1420 35 9.45 

DLINEN−12 137 1335 32 8.72 

a “Neat” represents the epoxy network prepared from GEDHEO−NOVO and DETA, with no 

addition of organosolv lignin. 

Unlike lignin loading, demethylation of lignin exhibits a positive role on the cross−link 

density. Table 6.1 shows epoxy networks from DL (DLBEN−5, DLBEN−12, DLINEN−5 and 

DLINEN−12) uniformly possess higher cross−link density than the corresponding protected 

(methoxy containing) LBEN−5, LBEN−12, LINEN−5 and LINEN−12. Improved cross−link 

density of DL−based polymers is explained as follows: (1) deprotection increases the number 

of functionality by turning unreactive methoxy groups into functional hydroxyl groups; (2) 

deprotection produces more ortho and para positions for link with DHEO via novolac 

chemistry; (3) acid treatment of lignin causes the cleavage of lignin intermolecular bonds, 

which decreases the molecular weight.25 As a result, steric hindrance of the lignin substrate is 

reduced.  

Cross−link density of lignin−based epoxy resins is dependent on the nature of chemical 

modification. Table 6.1 shows LINENs exhibit improved cross−link density when compared 

to the corresponding LBENs. Within the LBENs, GEL links with GEDHEO−NOVO and DETA 
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mainly via the epoxy groups. However, these linkages are often compromised by the poor 

reactivity of lignin because of sterics. Moreover, GEL (in the solid state) needs to be blended 

into oily GEDHEO−NOVO before curing. Compatibility issues of lignin and comonomer 

means the existence of even small amount of insoluble material defects in the network can give 

rise to negative effects on cross−link and hence mechanical properties.26, 27 By comparison, the 

most obvious merits of the LINEN approach are the improved solubility through phenolation 

and phenol−formaldehyde reactions. Meanwhile, increased solubility of modified lignin results 

in a better degree of glycidylation than direct epoxidation of lignin. The homogenous oily 

mixture of GELINPs exhibits better compatibility with curing agents, which is also beneficial 

for cross−linking. The improved uniformity of LINEN is demonstrated pictorially in Figure 

6.7, which compares LBEN−5 and LINEN−5 with neat polymer without lignin addition. 

Compared to the homogenous texture of LINEN−5 and neat polymer, LBEN−5 exhibits lignin 

particles “suspended” in the polymer.  

 

Figure 6.7 Image of LBEN−5, LINEN−5 and neat network. Neat network represents the epoxy 

network prepared from GEDHEO−NOVO and DETA, with no addition of organosolv lignin. 

The α−relaxation temperature (Tα, related to glass transition) is often related to cross−link 

density. Increased cross−links restrict the mobility of the polymer, resulting in higher Tα.
28, 29 

As illustrated in Table 6.1 and Figure 6.8, LINENs and LBENs show a slight Tα decrease 



125 

 

 

(130−137 °C, except the 141 °C of DLINEN−5) as compared to the neat polymer (139 °C). 

Despite the negative effect of lignin, it is worth noting that all lignin−based polymers have Tα > 

130 °C. Since Tα of traditional DGEBA/DETA epoxy resin is 137 °C,30 LINENs and LBENs 

synthesized herein highlight the potential to replace petroleum−based thermosets. Storage 

modulus in the glassy region (Eg’) of neat polymer, LBENs and LINENs are reported in Table 

6.1 and Figure 6.8. The results suggest lignin introduction compromises the storage modulus 

but the lignin deprotection (removal of aromatic methoxy groups) and LINEN approach result 

in improvements and closer behavior to neat thermoset polymers. 

 

Figure 6.8 Storage modulus values of (a) LBENs and (b) LINENs as a function of temperature. 

Insets show the storage modulus of LBENs and LINENs at rubbery region. “Neat” represents 

the epoxy network prepared from GEDHEO−NOVO and DETA, with no addition of 

organosolv lignin. 

The effects of lignin on curing are further investigated through DSC analysis. Figure 6.9 

and Table 6.2 show the total enthalpy (ΔH) of lignin−loaded systems is relatively lower than 

the neat polymer (449 J/g). The exotherm peak shows no obvious change compared to the neat 

system (70.6−75.4 °C versus 72.6 °C). This phenomenon indicates the addition of lignin does 

not have significant effect on the activation energy of the curing processes.31, 32 
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Figure 6.9 DSC curves of heat release during nonisothermal curing of (a) LBENs and (b) 

LINENs at 10 °C/min. “Neat” represents the epoxy network prepared from GEDHEO−NOVO 

and DETA, with no addition of organosolv lignin. 

Table 6.2. DSC data for LBENs and LINENs exhibiting onset curing temperature (Ti), peak 

curing temperature (Tp) and enthalpy of reaction (ΔH). 

Sample Ti 

(°C) 

Tp 

(°C) 

ΔH 

(J/g) 

Neata 37.5 72.6 449 

LBEN−5 32.6 71.2 284 

LBEN−12 26.8 70.6 247 

DLBEN−5 34.7 73.5 433 

DLBEN−12 31.8 74.7 298 

LINEN−5 35.1 71.6 438 

LINEN−12 30.9 70.9 316 

DLINEN−5 39.6 72.7 484 

DLINEN−12 36.7 75.4 380 

 

a “Neat” represents the epoxy network prepared from GEDHEO−NOVO and DETA, with no 

addition of organosolv lignin. 
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6.2.3 Effects of Lignin on Thermal Properties 

 

Figure 6.10 Thermogravimetric analysis thermograms of (a) LBENs and (b) LINENs as a 

function of temperature. “Neat” represents the epoxy network prepared from 

GEDHEO−NOVO and DETA, with no addition of organosolv lignin. 

Figure 6.10 demonstrates all lignin−modified polymers show a two−step degradation 

profile in the range of 250−425 °C and 425−650 °C. The first degradation is associated with 

the breaking of aliphatic chains while the second broad mass loss is the rupture of aromatic 

carbon−carbon bonds.33 By comparison, the neat polymer exhibits a one−step degradation. It 

is clear from Figure 6.10 and Table 6.3 that the neat polymer possesses higher thermal stability 

than the lignin−loaded thermosets, as reflected from the onset degradation temperature 

(expressed as Td5, temperature at 5% weight loss) of neat (297 °C) and other networks 

(256−287 °C). As the temperature is increased to > 325 °C, the lignin−loaded polymers start 

to show higher thermal stability than the neat polymer as indicated by the Td50 (temperature at 

50% weight loss) and Char500 (char formed at 500 °C). The improved thermal stability 

(especially at relatively high temperature) of lignin−based networks have been previously 

reported,34 which could be attributed to the lignin matrix that serves as a thermal barrier 

preventing the degraded compounds to diffuse out and heat to flow into the underlying 
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materials. All samples are decomposed with a negligible amount of residue (1.0−2.3 %) above 

650 °C.  

Table 6.3. Thermogravimetric data of Td5, Td50 (temperature at 5% and 50% weight loss), and 

Char500 and Char650 (char residue at 500 and 650 °C) of LBENs and LINENs.  

Sample Td5 

(°C) 

Td50 

(°C) 

Char500  

(%) 

Char650  

(%) 

Neata 297 362 10.1 1.0 

LBEN−5 282 380 26.2 1.4 

LBEN−12 279 377 23.9 1.3 

DLBEN−5 282 383 25.0 1.7 

DLBEN−12 287 379 23.4 1.6 

LINEN−5 273 391 26.7 2.3 

LINEN−12 256 389 31.8 2.0 

DLINEN−5 277 395 27.4 2.1 

DLINEN−12 274 373 24.8 1.3 

a “Neat” represents the epoxy network prepared from GEDHEO−NOVO and DETA, with no 

addition of organosolv lignin. 

6.3 Conclusions 

Renewable epoxy thermosets were synthesized by incorporation of lignin with LDPMs 

(lignin derived phenol monomers). Materials with a maximum lignin loading of 12 wt % in 

starting phenols were prepared by successive deprotection of aromatic methoxy groups, 

phenolation, and phenol−formaldehyde reactions. The obtained DLINENs (deprotected lignin 

incorporated novolac epoxy network) exhibited thermal and mechanical properties comparable 

to the neat polymer prepared exclusively with LDPMs and without inclusion of bulk lignin. 

Overall, DLINENs showed improved performance when compared to LBENs (lignin blended 

epoxy network), which can be rationalized on the basis of enhanced reactivity, compatibility 

and covalent linkage of lignin in the networks formed with deprotected groups. The DLINEN 

approach represents a promising route for making sustainable materials to replace 
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BPA−derived materials. Further work on increasing lignin content in polymer materials is 

ongoing.  

6.4 Experimental Section 

General. Organosolv lignin was provided by Archer Daniels Midland Co. Lignin was used 

after washing 5 times with 2 M HCl solution to remove water−soluble impurities and ash. The 

resulting solid was washed with water and dried under vacuum overnight. DHEO was prepared 

through demethylation of DHE as described previously.6 DHE, epichlorohydrin, 48% aqueous 

hydrobromic acid, tetrabutylammonium bromide, pentafluorobenzaldehyde and 

diethylenetriamine (DETA) were purchased from Aldrich Chemical Co. Formaldehyde 

solution (37%) and pyridine were obtained from Macron Fine Chemicals. All chemicals were 

used without further purification. 

6.4.1 Synthesis of Lignin Incorporated Novolac Polyphenols (LINP) 

6.4.1.1 Preparation of Deprotected Lignin (DL) 

Demethylation of lignin was conducted according to a previous study.21 In brief, 5 g lignin 

was dissolved in 20 mL of DMF prior to addition of 48% HBr solution (25 g). The reaction 

mixture was stirred at 120 °C for 20 h, cooled to ambient temperature and added dropwise into 

2.5 L of HCl solution (2 M). Precipitate was formed immediately and the mixture was 

vigorously stirred for 4 h before centrifugation at 10,000 rpm for 15 min. The obtained solid 

was washed with water and diethyl ether, and dried under vacuum overnight to yield 3.56 g of 

DL as dark powder. 

6.4.1.2 One−Pot Synthesis of Phenolated Lignin (PL) and Condensation with DHEO via 

Phenol−Formaldehyde Reaction to make LINP 
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    Phenolation of lignin was performed by dissolving 0.6 g lignin in 4.4 g DHEO to obtain 

a lignin loading of 12 wt %. This is considered the maximum loading, determined by the 

solubility of lignin in DHEO. The homogenous mixtures were stirred at 110 °C for 30 min 

catalyzed by 6.7 wt % H2SO4, an optimized condition for phenolation as reported previously.23 

Since the content of OH groups in lignin was measured to be 4.32 mmol/g, the amount of 

DHEO (28.9 mmol) used in phenolation was in excess. 2.34 g (28.9 mmol) of 37% 

formaldehyde solution and 20 mL H2O was introduced to make LINP at 100 °C. The resulting 

mixture was washed with toluene 3 times to remove unreacted DHEO. Toluene was isolated 

from the mixture through a separatory funnel and solvent removed under vacuum to yield lignin 

incorporated novolac polyphenol (LINP−12) as a homogeneous viscous oil (4.6 g, 78% yield, 

based on total mass input including lignin, DHEO and formaldehyde). LINP with lignin loading 

of 5 wt % (LINP−5) was synthesized following the same procedure. 

6.4.2 Synthesis of DHEO Novolac Oligomer (DHEO−NOVO) 

DHEO (1.52 g, 0.01 mol), 37% formaldehyde solution (0.81 g, 0.01 mol), hydrochloric 

acid (4 mg) and H2O (8 mL) were refluxed at 100 °C for 6 h. Water and hydrogenchloride were 

evaporated under reduced pressure at 80 °C. The unreacted DHEO was removed by washing 

with toluene 3 times and toluene removal at 40 °C under vacuum yielded DHEO−NOVO as a 

viscous oil (1.46 g, 89% yield, based on an assumption that the novolac with an infinite 

molecular weight was obtained). 

6.4.3 Preparation of Glycidyl Ether of Lignin−Based Polyphenols 

6.4.3.1 Glycidyl Ether of Lignin (GEL) and Demethylated Lignin (GEDL) 

GEL was prepared by dissolving 3.0 g lignin in 15 mL of DMF, followed by addition of 
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32.0 g epichlorohydrin and 0.28 g of tetrabutylammonium bromide as a phase transfer catalyst. 

The mixture was heated at 70 °C for 3 h. 3.2 g of 50% w/w NaOH solution was added dropwise. 

The reaction was kept for an additional 3 h at 70 °C, cooled to ambient temperature and added 

to 1 L H2O. GEL precipitated immediately. Isolation was accomplished via centrifugation at 

10,000 rpm for 15 min. The isolated solid was washed twice with water and dried under vacuum 

to afford 1.76 g of GEL as a black powder. Glycidyl ether of deprotected lignin (GEDL) was 

prepared following the same procedure.  

6.4.3.2 Glycidyl Ether of DHEO−NOVO (GEDHEO−NOVO), LINP (GELINP) and DLINP 

(GEDLINP) 

GEDHEO−NOVO was prepared by reaction of DHEO−NOVO (1.72 g) and 

epichlorohydrin (17 g). Excess epichlorohydrin was used as solvent and could reduce the 

viscosity and hydrolyzable chlorine content in epoxy monomers. Tetrabutylammonium 

bromide (0.16 g) was used as a phase transfer catalyst. The mixture was heated at 60 °C for 3 

h. 1.8 g of 50% w/w NaOH solution was added dropwise. The reaction was kept for an 

additional 3 h. The reaction mixture was washed with acetone and filtered to remove salt. The 

mixture was concentrated under vacuum to yield 2.56 g of GEDHEO−NOVO as a viscous oil. 

Compared to the LBEN/DLBEN approach in which DMF had to be used to dissolve lignin for 

glycidylation (GEL/GEDL), LINEN/DLINEN approach was more advantageous since LINP 

and DLINP could be easily dissolved in epichlorohydrin. Thus, unreacted epichlorohydrin can 

be easily collected and purified by distillation and reused. Glycidyl ether of LINP (GELINP−5 

and GELINP−12) and DLINP (GEDLINP−5 and GEDLINP−12) were obtained according to 

the same procedure.  
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6.4.4 Formation of Lignin−Based Epoxy Networks 

GELINP−5, GELINP−12, GEDLINP−5 and GEDLINP−12 were respectively introduced 

to diethylenetriamine (DETA) with stoichiometric ratio of epoxy vs. −NH groups for curing. 

The mixtures were stirred for 10 min, degassed under vacuum to remove entrapped air and 

poured into molds for curing according to the profile: 55 °C for 2 h, 75 °C for 2 h and 95 °C 

for 2 h. The obtained cured lignin incorporated novolac epoxy thermosets were expressed as 

LINEN−5, LINEN−12, DLINEN−5 and DLINEN−12, respectively.  

Epoxy thermoset polymers were also prepared through blending epoxidized lignin (GEL 

or GEDL) into comonomer (GEDHEO−NOVO) to yield lignin loading of 5 and 12 wt %. The 

mixtures were cured with DETA according to the above procedure to yield lignin blended 

epoxy networks (LBEN−5, LBEN−12, DLBEN−5 and DLBEN−12). 

6.4.5 Analysis methods 

The structural evolution from lignin to lignin−based epoxy monomers was followed by 

1H NMR spectroscopy (Bruker Avance ARX−400 spectrometer) using deuterated chloroform 

or DMSO as solvent. To determine the content of hydroxyl in lignin and DL, acetylation was 

performed by dissolving 200 mg of lignin or DL in 4 mL of pyridine to form a homogenous 

solution. 4 mL of acetic anhydride was added and the solution stirred at room temperature for 

48 h. The resulting mixture was added dropwise to cold water, followed by centrifuging at 

10000 rpm for 15 min to isolate acetylated lignin. The isolated solid was washed with water 

and dried overnight under vacuum. 1H NMR spectra of lignin samples (25 mg) were recorded 

in 0.7 mL DMSO−d6 containing 10 μL of pentafluorobenzaldehyde as an internal standard.  

Other analysis methods are similar to Chapter 2. 
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Chapter 7 

Formaldehyde−Free Method for Incorporating Lignin into Epoxy 

Thermosets 

 

ABSTRACT: A series of liquid and curable lignin−containing epoxy prepolymers were 

prepared for making renewable epoxy thermosets. First, lignin was modified to phenolated 

lignin (PL) in a solvent−free reaction. PL was subsequently co−oligomerized with salicyl 

alcohol (SA) in water without the use of formaldehyde to obtain fully bio−based polyphenols 

(PL−SA). Unlike most of previous works, glycidylation of lignin−based polyphenols yielded 

exclusively liquid epoxy prepolymers, with no solid phase produced. The liquid epoxy 

prepolymers were curable with common hardeners to generate homogenous thermosets, which 

required no epoxy co−prepolymer. The structural evolution from starting monomers to epoxy 

thermosets was followed by nuclear magnetic resonance and Fourier transform infrared 

spectroscopy. Compared to a common synthesis route in which lignin was glycidylated prior 

to being blended with epoxy co−prepolymers, the proposed approach conferred networks with 

increased glass transition temperature, storage modulus and cross−link density as measured by 

dynamic mechanical analysis. Moreover, bio−based thermosets exhibited comparable or 

superior mechanical properties to conventional BPA−based counterpart. By producing 

liquid−phase lignin−containing epoxy prepolymers, this study provides a method for 

incorporating lignin in epoxy thermosets without the need for additional epoxy 

co−prepolymers.  
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This section is partially adapted from: Shou Zhao, Xiangning Huang, Andrew J. Whelton, and 

Mahdi M. Abu−Omar, to be submitted. 

 

7.1 Introduction 

Recent years have witnessed rapid development of materials made from renewable 

sources.1−5 Lignin has been widely viewed as a promising renewable starting material because 

it is abundant, low−cost and the sole large−volume aromatic feedstock.6 It is especially 

reasonable to use lignin−derived chemicals to synthesize thermosetting materials, as the 

aromatic structure provides good thermal and mechanical performance.7, 8 Because of the 

relatively straightforward structure, lignin−derived phenol monomer (LDPM) and partially 

depolymerized lignin (PDL) are often utilized to make thermosets like epoxy.8−23 However, 

LDPM and PDL need to be depolymerized from lignin through chemical transformations 

including oxidation, catalytic reduction and cracking processes etc., which are associated with 

intensive energy consumption as well as several separation and purification steps.24 By 

comparison, bulk lignin is abundant and cheap. It is reported that the total availability of 

technical grade lignin in the biosphere exceeds 300 billion tons,25 while its price is 20 times 
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cheaper than phenol.26 Thus, it would be advantageous to replace petroleum−based phenolics 

(e.g., bisphenol A, BPA) with lignin as prepolymers for thermosets. However, only 2% of lignin 

is being used for value−added products,27
 which is limited by its low reactivity and 

incompatibility with polymeric compounds.  

Epoxy thermoset is one of the most versatile thermosetting materials that has been utilized 

in coatings, composites, adhesives and electrical/electronic laminates etc. By far, methods of 

incorporating bulk lignin into epoxy thermosets can be summarized into three categories28: (1) 

using lignin derivatives as fillers to directly blend into general epoxy thermosets; (2) modifying 

lignin by direct epoxidation; and (3) modifying lignin derivatives to improve its reactivity, 

followed by epoxidation. It is noteworthy that epoxy prepolymers (or glycidyl ethers) should 

be liquid at ambient or elevated temperature for sufficient contacting and reacting with curing 

agents to form a homogenous cross−linked network. For example, epoxy resins used for 

encapsulation and potting must melt and flow rather freely to ensure complete filling of the 

voids prior to cross−linking. Solvents are not preferably used in most instances due to the 

difficulty of solvent removal before curing.29 However, most of reported epoxidized lignin are 

infusible solids, which cannot be directly cured by hardeners and at least one epoxy 

co−prepolymer needs to be introduced.30−34 Glycidylation of pre−modified lignin could 

produce simultaneously solid and liquid phase epoxy prepolymers.35 However, the liquid phase 

is often in a small portion and needs to be separated from the mixture sophistically. For example, 

Hofmann et al. prepared epoxy prepolymers using hydroxyalkyl lignin derivatives.36 

Hydroxyalkylation of lignin was conducted by reacting lignin with propylene oxide to improve 

the solubility and then with ethylene oxide to transform secondary hydroxyls into primary 
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hydroxyls. Glycidylation of hydroxyalkylated lignin with epichlorohydrin yielded an epoxy 

prepolymer mixture, while the curable liquid prepolymer had to be collected after several 

sophisticated solvent fractionation treatments. By reacting methylolated lignin with 

epichlorohydrin, Mansouri et al. synthesized solid and liquid phase of epoxidized lignin 

simultaneously.37 Even though the liquid phase could be separated by filtration, its epoxy 

content only accounted for < 20% in the mixture. Huo et al. modified lignin with 

cardanol−based oligomer and then glycidylated with epichlorohydrin to obtain a viscous 

liquid.38 However, only curing kinetics of epoxy−anhydride reactions were reported, while 

neither the structure of epoxy prepolymer nor the property of obtained thermosets was 

characterized. By successive demethylation, phenolation, phenol−formaldehyde reaction and 

glycidylation of organosolv lignin, we reported the synthesis of a liquid lignin−containing 

epoxy prepolymer.39 However, lignin content in starting polyphenol could not exceed 12 wt % 

due to compatibility issue, while the synthesis process involved unfavorable reagents including 

hydrobromic acid and formaldehyde.   

Phenolation has been reported as an effective lignin modification method.34, 40−42 

Acid−catalyzed incorporation of the ortho or para−phenyl substituent to the α−hydroxyl of 

lignin increased the reactive phenolic hydroxyl and ortho/para sites, while the molecular 

weight of lignin was simultaneously decreased by acid−catalyzed cleavage of the lignin 

backbone.40 Direct glycidylation of phenolated lignin (PL) barely produces liquid epoxy 

prepolymer with decent yield,43 however, the increased content of phenolic ortho/para sites in 

PL enhances its reactivity for phenol−formaldehyde condensation to produce a novolac 

oligomer, which is a common precursor for liquid epoxy prepolymers.29 As inspired by these 



140 

 

 

phenomenon, we reported herein a route to synthesize liquid lignin−containing epoxy 

prepolymers (Figure 7.1). First, lignin was phenolated by catechol, a renewable building block 

that is available from lignin through demethylation of lignin−derived guaiacol or by lignin 

pyrolysis.44−47 Compared to phenol, catechol is more reactive for phenolation and has increased 

number of hydroxyl group and phenolic para/ortho site for condensation.14 Second, phenolated 

lignin was condensed with salicyl alcohol (SA, a renewable compound that can be derived from 

willow bark)48 to yield lignin−incorporated novolac oligomers (PL−SA), with PL content could 

reach up to 40 wt %. As SA bears both hydroxymethyl group and reactive phenolic para/ortho 

sites, it could simultaneously react with the para/ortho sites of phenolics in PL and undergo 

self−condensation without the need for coupling agents like formaldehyde. PL−SA was then 

glycidylated with epichlorohydrin to generate exclusively liquid epoxy prepolymers with no 

solid prepolymer obtained. These epoxy prepolymers were curable by diethylenetriamine 

(DETA) to yield homogenous lignin−incorporated epoxy networks (LIEN). In their liquid 

phase, lignin−containing epoxy prepolymers would find much wider applications compared to 

their solid phase counterparts.  
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Figure 7.1 Synthesis route of lignin−incorporated epoxy network (LIEN). Lignin is modified 

through phenolation and formaldehyde−free oligomerization to yield lignin−incorporated 

polyphenol. Benzodioxane derivatives produced by glycidylation of catechols are not shown 

for clarity. 

 

Figure 7.2 Synthesis route of lignin−blended epoxy network (LBEN), which is used to compare 

with the proposed LIEN route in Figure 7.1. Lignin is glycidylated prior to being blended with 

glycidyl ether of SA self−condensed oligomer for curing. 

7.2 Results and Discussion  

7.2.1 Structure of Lignin−Incorporated Polyphenols and Their Glycidyl Ethers 

Figure 7.3 shows the 1H NMR spectra of lignin, phenolated lignin, PL0SA100 and 

PL−incorporated oligomers (PL10SA90, PL20SA80, PL30SA70 and PL40SA60). Figure 7.3 panel a 

exhibits integral ratio of aromatic (6.0−7.3 ppm) vs. aliphatic (3.5−4.1 ppm) protons of lignin 

is 0.34. When lignin is modified with catechol to make PL, this ratio increases to 1.43 (Figure 

7.3 panel b). As there is no catechol residue detected in PL, the enhanced aromatic content 

indicates the substitution of lignin aliphatic hydroxyls by catechols. Figure 7.3 panel c exhibits 
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the spectrum of PL0SA100 (oligomer from self−condensation of salicyl alcohol). The peak at 

3.8 ppm corresponds to the methylene bridge between repeating phenolic units. Integral ratio 

of aromatic vs. aliphatic protons of PL0SA100 is 1.7, which is lower than the corresponding ratio 

of 2 for salicyl alcohol monomer. This indicates the formation of oligomers connected by 

methylene linkages at the phenolic para/ortho site. For PL−incorporated polyphenols, the 

aromatic and aliphatic integrals decrease with increasing percentages of PL from PL10SA90 to 

PL40SA60 (Figure 7.3, panel d−g). This is attributed to the lower integrals of PL in aromatic 

(3.24) and aliphatic (2.26) compared to those of PL0SA100 (8.58 and 5.02, respectively). 

Moreover, Figure 7.4 reveals the integrals of aromatic and aliphatic regions decrease linearly 

with PL percentage. This relationship confirms the integration of PL with SA−based oligomers. 

Glycidyl ethers of PL0SA100 and PL−incorporated polyphenols are shown in Figure 7.5. 

Compared to polyphenols, glycidyl ethers exhibit new epoxy peaks at 2.67 and 2.88 ppm 

(−CH2− in oxirane), 3.22 ppm (−CH− in oxirane) and 3.54 and 3.64 ppm (−O−CH2−).  
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Figure 7.3 1H NMR spectrum of (a) lignin, (b) phenolated lignin, (c) PL0SA100 (oligomer from 

self−condensation of SA) and PL−incorporated polyphenols: (d) PL10SA90 (e) PL20SA80 (f) 

PL30SA70 and (g) PL40SA60. Solvent: DMSO−d6 for lignin and acetone−d6 for other 

polyphenols. 

 

Figure 7.4 Correlations between PL contents and NMR integrals of aromatic and aliphatic 

regions of different polyphenols. Integrals of aromatic and aliphatic regions were obtained from 

the 1H NMR spectra in Figure 7.3, in which integrals of internal standard 

(pentafluorobenzaldehyde) were set as 1.  

IR analyses were also conducted to confirm the structure. Figure 7.6, panel a and d 

illustrate the characteristic absorption bands of PL0SA100 and PL40SA60 appear at around 3318 

cm−1 (O−H stretching), 2857−3005 cm−1 (alkyl C−H stretch) and 1602, 1504 and 1457 cm−1 

(aromatic C−C bond). After polyphenols were reacted with epichlorohydrin, the afforded 

glycidyl ethers exhibit significantly decreased hydroxyl band and newly−formed C−O−C ether 

band at 1028 cm−1 and epoxy band at 912 cm−1, which confirms the formation of epoxy groups 
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(Figure 7.6, panels b and e). When these glycidyl ethers were cured with diethylenetriamine, 

the active amine protons opened epoxies while hydroxyls were created at the same time. As 

seen in Figure 7.6, panel c and f, cured samples exhibit no epoxy band at 912 cm−1, while the 

broad hydroxyl band increases. Other lignin−incorporated polyphenols, their glycidyl ethers 

and cured networks are shown in Figure S7.1−S7.3, which exhibit similar pattern to Figure 7.6.  

 

Figure 7.5 1H NMR spectra of glycidyl ethers of SA−based oligomers with different contents 

of PL. Solvent: CDCl3.  

 

Figure 7.6 FTIR spectra of PL0SA100 (a) and PL40SA60 (d), their glycidyl ethers (b and e) and 
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cured epoxy networks (c and f). 

7.2.2 Effect of Lignin on Curing Behavior 

The effect of lignin on curing behavior was studied via DSC analysis. Table 7.1 exhibits 

enthalpy (ΔH) values gradually decreased as lignin content increased. This trend was expected 

because PL−incorporated polyphenols have relatively more complicated structure, lower 

reactivity and possibly yield non−curable benzodioxane byproduct caused by the catechol 

moiety.12, 39 Thus, PL−incorporated epoxy prepolymers could have less epoxy content and 

release lower heat compared to neat sample (GE−PL0SA100). Table 7.1 demonstrates peak 

curing temperatures of lignin−incorporated samples (GE−PL10SA90 to GE−PL40SA60) exhibit 

no obvious change compared to GE−PL0SA100 (72.7−74.9 °C versus 75.6 °C). Meanwhile, 

epoxy prepolymer prepared from the LBEN route (GE−BL−GEL20SA80) exhibits similar peak 

temperature of 73.4 °C. These observations indicate lignin does not have an impact on the 

curing process, which is consistent with previous studies.39 Extent of curing was determined 

using two cycles of heating/cooling. As shown in Figure S7.4−S7.9, all epoxy prepolymers 

were most cured as reflected by the lack of exotherm on the second heating.  

Table 7.1. DSC curing data for epoxy/amine systems exhibiting onset curing temperature (Ti), 

peak curing temperature (Tp) and enthalpy of reaction (ΔH). 

 

 

 

 

entry epoxy   

prepolymer 

Ti  

(°C) 

Tp  

(°C) 

ΔH 

(J/g) 

1 GE−PL0SA100 42.7 75.6 449 

2 GE−PL10SA90 39.4 74.9 464 

3 GE−PL20SA80 34.9 72.7 445 

4 GE−PL30SA70 36.1 73.9 432 

5 GE−PL40SA60 36.0 74.1 420 

6 GE−BL−GEL20SA80 39.2 73.4 431 
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7.2.3 Effect of Lignin on Mechanical Properties 

Table 7.2, Figure 7.7 and Figure S7.10 illustrate α−relaxation temperature (Tα, related to 

glass transition temperature) and storage modulus of biobased epoxy networks. Lignin loading 

is found to affect the mechanical performance. Compared to the neat network (EN−PL0SA100, 

exclusively prepared from GE−PL0SA100 and DETA, Tα =114 °C), lignin incorporation 

diminished the glass transition temperatures of all networks (96.0−112 °C). This could be 

related to the relatively lower reactivity and incompatibility of lignin. Meanwhile, steric 

hindrance of lignin limits the development of polymer networks. Impacts of lignin are 

especially evident when higher contents of PL are incorporated, as Tα decreases gradually from 

EN−PL0SA100 to EN−PL40SA60 (entry 1−5). 

Table 7.2. α−Relaxation temperature (Tα), glassy storage modulus at 30 °C (E30’) and 

cross−link density (νe) of epoxy networks prepared from LIEN and LBEN approaches. 

BPA−based epoxy network (EN−BPA) was also prepared using the same curing profile as other 

networks for comparison.  

 

entry epoxy 

networks 

Tα 

(°C) 

E30’ 

(MPa) 

E’ at Tα + 30 °C 

(MPa) 

νe 

(10−3 mol/cm3) 

1 EN−PL0SA100 114 2151 50 16.0  

2 EN−PL10SA90 112 2146 38 11.1  

3 EN−PL20SA80 106 2118 52 15.4  

4 EN−PL30SA70 106 2024 68 19.9  

5 EN−PL40SA60 106 1843 28 8.2  

6 EN−BL−GEL20SA80 96 1828 18 5.4  

7 EN−BPA 100 2042 48 14.4  
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Figure 7.7 Storage modulus of epoxy networks as a function of temperature. 

The synthesis route also impacts thermoset properties. As shown in Table 7.2 and Figure 

7.7, Tα and E30’ of EN−BL−GEL20SA80 (LBEN route) are 96.0 °C and 1828 MPa respectively, 

which are lower than the LIEN−derived networks. As illustrated in Figure 7.2, linkages 

between GEL and GE−PL0SA100 in LBEN are mainly realized via connecting with the amine 

hardener. However, these linkages are often compromised by the poor reactivity of lignin. 

Besides, compatibility between GEL (in solid state) and GE−PL0SA100 (in oily state) is low 

and the mixture was heterogeneous after blending. The poor compatibility causes insoluble 

defects within the network, which result in decrease in cross−link. As seen in Table 7.2, 

cross−link density (νe) of the LIEN samples is in the range of 8.2−19.9 × 10−3 mol/cm3, which 

is much higher than the EN−BL−GEL20SA80 (5.4 × 10−3 mol/cm3). This phenomenon 

highlights the merits of the LIEN approach: (1) as sulfuric acid was used in the phenolation 

and condensation process, the backbone of lignin was cleaved and the compatibility of lignin 

with polymeric compounds improved. Meanwhile, intermolecular hydrogen bonds, van der 

Waals interactions between polymer chains, and π−π stacking of aromatic groups of lignin were 
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reduced during the modifications, which prevented lignin from aggregating.49 (2) covalent 

cross−links between lignin and SA−based oligomers have been established through 

condensation before curing, (3) improved solubility of lignin−incorporated polyphenols, which 

leads to improved degree of glycidylation than direct epoxidation of lignin, and (4) the afforded 

epoxy prepolymers are homogenous liquid, which shows improved compatibility with amine 

hardener. The enhanced uniformity of LIEN is depicted pictorially in Figure 7.8, pictures of 

EN−BL−GEL5SA95, EN−PL5SA95, and EN−PL0SA100 (neat sample with no lignin addition). 

Reduced amount of lignin (5 wt %) was employed to illustrate clearly the interactions of lignin 

with the polymer network. Compared to the homogenous texture of EN−PL5SA95 and 

EN−PL0SA100, it is easy to see lignin particles unevenly dispersed in EN−BL−GEL5SA95. 

Traditional DGEBA/DETA epoxy network was also prepared using the same curing profile. 

Table 7.2 compares Tα, E30’ and νe of biobased epoxy networks with the BPA−based 

counterpart. It is found that LIEN−derived polymers have Tα, modulus and cross−link density 

that are comparable or superior to the BPA−based materials (Tα of 100 °C, E30’ of 2042 MPa 

and νe of 14.4 × 10−3 mol/cm3). This highlights the potential of replacing or supplementing 

petroleum−based thermosets with lignin−containing materials. 

 

Figure 7.8 Image of epoxy networks prepared using (a) LBEN and (b) LIEN approaches (5 wt % 
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of GEL or PL in epoxy prepolymers were employed for clear illustration). (c) Neat network 

represents EN−PL0SA100, with no addition of organosolv lignin. 

7.2.4 Effect of Lignin on Thermal Stability 

Figure 7.9 demonstrates thermal degradation of neat and lignin−loaded thermosets in the 

range of 40 to 600 °C. It is observed from Figure 7.9 and Table 7.3 that thermal stability of 

lignin−loaded samples is clearly higher than the neat networks, which is suggested by the onset 

degradation temperature (expressed as Td5, temperature at 5% weight loss) of lignin−loaded 

ones (191−239 °C) and neat sample (136 °C). Meanwhile, Td30 (temperature at 30% weight 

loss) exhibits the same trend with Td5. The improved thermal properties of lignin−loaded 

thermosets are consistent with previous studies,50 which is explained by the lignin matrix that 

acts as a thermal barrier hindering mass exchange. To highlight the barrier role of phenolated 

lignin, thermal analysis of PL was also conducted and it revealed high stability as indicated by 

Td5 (245 °C), Td30 (363 °C) and Char600 (46%). The way lignin incorporates into network does 

not have impact on thermal performance, as EN−BL−GEL20SA80 has comparable thermal 

parameters with thermosets prepared from LIEN. As for the BPA−based network, it exhibits 

the highest thermal stability when temperature is relatively low, as reflected by Td5 (305 °C) 

and Td30 (371 °C). However, when temperature reaches 330 °C, EN−BPA exhibits a fast 

degradation behavior and only 8 wt % char was left when the temperature reaches 600 °C. As 

for the lignin−loaded samples, they start to exhibit higher stability over EN−BPA above 374 °C, 

with 23−39 wt % char formed at 600 °C.  

Table 7.3. Thermogravimetric data of Td5, Td30 (temperature at 5% and 30% weight loss), and 

Char600 (char residue at 600 °C) of epoxy networks and phenolated lignin.  
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Figure 7.9 Thermogravimetric analysis thermograms of epoxy networks as a function of 

temperature.  

7.2.5 Content of Lignin and Biomass in Thermosets 

Table 7.4 lists the weight percentages of lignin, PL and biomass in polyphenols, epoxy 

prepolymers and thermosets. Considering lignin, catechol and salicyl alcohol are all available 

from renewable sources as stated above, the starting polyphenol precursors are fully bio−based. 

As calculated above, lignin content in PL was ca. 68 wt %. Thus, lignin content in polyphenol 

could be up to 27 wt %. When polyphenols are glycidylated to epoxy prepolymers, the biomass 

content is reduced to the range of 71−77 wt %, while the rest is occupied by the glycidyl ether 

entry epoxy 

networks 

Td5  

(°C) 

Td30  

(°C) 

Char600  

(%) 

1 EN−PL0SA100 136 297 28 

2 EN−PL10SA90 191 322 23 

3 EN−PL20SA80 192 301 23 

4 EN−PL30SA70 239 348 34 

5 EN−PL40SA60 213 315 29 

6 EN−BL−GEL20SA80 216 325 39 

7 PL 245 363 46 

8 EN−BPA 305 371 8 
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groups. These values are consistent with the weight ratio (75 wt %) of 

2−methoxy−4−propylphenol (a typical lignin building block) in its glycidylated form. Since 

reacting with epichlorohydrin is the most commonly method to convert phenol into its glycidyl 

ether, it is inevitable to dilute the biomass content in the epoxy prepolymers. It is noteworthy 

that lignin content could reach up to 21 wt % in the homogenous liquid epoxy prepolymer, with 

no solid phase formed. To our knowledge, this is the highest value and most efficient approach 

that has ever been reported for a liquid lignin−containing epoxy prepolymer. For the cured 

epoxy thermosets, the content of biomass decreases slightly to 65−69 wt %, while lignin 

content is up to 19 wt %. This decrease in biomass content depends on the properties of 

hardeners and is inevitable unless renewable hardeners like succinic anhydride are employed.  
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Table 7.4. Weight percentage of bulk lignin, PL and biomass in polyphenols, epoxy 

prepolymers and thermosets. 

a content of lignin in PL was calculated to be ca. 68 wt % as demonstrated in experimental 

section. 

b Considering lignin, catechol and salicyl alcohol are all available from bio−based sources, 

biomass contents in polyphenol for all samples are 100 wt %.  

c Weight ratio of biomass in epoxy prepolymer (B/EP) is in the range of 71−77 wt %. This ratio 

is calculated by experiments, for example, 1 g of polyphenol (PL40SA60) reacts with 

epichlorohydrin to yield 1.3 g of GE−PL40SA60. Thus, weight ratio of PL40SA60 in epoxy 

prepolymer GE−PL40SA60 is calculated to be 1/1.3 = 0.77. Contents of lignin and PL in epoxy 

prepolymer are calculated by multiplying their contents in polyphenol with corresponding 

B/EP ratios.  

d Weight ratio of biomass in thermoset (B/T) is in the range of 65−69 wt %. This ratio is 

calculated by, for example, 1 g of epoxy prepolymer (GE−PL40SA60, EEW=178 g/eq.) is 

cured with 0.12 g of DETA (1:1 ratio of epoxy/−NH) to yield 1.12 g of thermoset. Thus, 

weight ratio of PL40SA60 in thermoset EN−PL40SA60 is calculated to be 0.77×1/1.12 = 0.69. 

Contents of lignin and PL in thermoset are calculated by multiplying their contents in 

samples polyphenol  epoxy prepolymer  thermoset 

 lignina 

(wt %) 

PL 

(wt %) 

biomassb  

 (wt %) 

 lignin 

(wt %) 

PL 

(wt %) 

biomassc  

(wt %) 

 Lignin 

(wt %) 

PL 

(wt %) 

biomassd  

(wt %) 

EN−PL0SA100 0 0 100  0 0 71  0 0 65 

EN−PL10SA90 7 10 100  5 7 72  4 6 66 

EN−PL20SA80 14 20 100  10 15 73  9 14 66 

EN−PL30SA70 20 30 100  16 23 75  14 21 67 

EN−PL40SA60 27 40 100  21 31 77  19 28 69 
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polyphenol with corresponding B/T ratios.    

7.3 Conclusions 

A series of liquid and curable lignin−containing epoxy prepolymers were prepared. 

Compared to previous lignin−containing prepolymers that are mainly infusible solids, the 

prepared liquid epoxy prepolymer can yield homogenous thermoset without the need for 

additional epoxy co−prepolymer. The prepared thermosets have high content of biomass, and 

they exhibit mechanical properties that are comparable or superior to conventional BPA−based 

counterpart. Meanwhile, these networks are prepared using several green approaches: 

solvent−free synthesis of PL; formaldehyde−free preparation of oligomers using water as 

solvent; one−pot synthesis of epoxy prepolymers; and use of high boiling point sulfuric acid 

as catalyst. Without lignin formed as the low−reactivity solid phase epoxy prepolymer, the 

proposed approach represents a promising route for making lignin−containing thermosets with 

multiple purposes.  

7.4 Experimental Section 

General. Organosolv lignin was provided by Archer Daniels Midland Co. Lignin was used 

after washing five times with 2 M HCl solution to remove water−soluble impurities and ash. 

The resulting solid was washed with water and dried under vacuum overnight. The hydroxyl 

content of the lignin was measured to be 4.32 mmol/g as previously reported.39 Catechol, salicyl 

alcohol (2−hydroxybenzyl alcohol), epichlorohydrin, tetrabutylammonium bromide, 

diethylenetriamine (DETA), diglycidyl ether of bisphenol A (DGEBA) and 

pentafluorobenzaldehyde were purchased from Aldrich Chemical Co. Sulfuric acid (98%) was 

obtained from Fisher Scientific. All chemicals were used as received without further 



154 

 

 

purification. Glycidyl ethers of lignin (GEL) was prepared according to a previous method.39 

7.4.1 Preparation of Phenolated Lignin. 

Catechol (7.0 g) was heated at 115 °C in a 100 mL round bottomed flask until melting. 

Then, 3.50 g organosolv lignin and 0.70 g sulfuric acid were subsequently added and a 

homogenous mixture was obtained. Weight ratio of reagents (catechol/lignin =2, with 6.7 wt % 

of catalyst) was consistent with previous study, which could produce phenolated lignin with 

optimal degree of phenolation.40 The mixture was stirred at 110 °C for 2 h, cooled to room 

temperature and 100 mL H2O was added. Phenolated lignin precipitated immediately. The 

precipitate was collected via filtration and washed with H2O several times with the help of 

sonication until no catechol residue was detected as indicated by high−performance liquid 

chromatography (HPLC). Drying the solid under vacuum afforded PL as a black powder (4.28 

g, 83% yield based on a lignin in which hydroxyl groups were completely substituted by 

catechol). Yield of PL was in accordance with previous study.40 Lignin content in PL was 

calculated based on lignin’s hydroxyl content (4.32 mmol/g, sum of aliphatic and aromatic 

hydroxyls). Assuming all hydroxyl groups were substituted by catechol, lignin content in PL 

was ca. 68 wt %. However, considering the aromatic hydroxyls are not reactive with catechol 

and the aliphatic hydroxyls may not be completely substituted, lignin content in PL should be 

higher than 68 wt %.  

7.4.2 One−Pot Preparation of Glycidyl Ethers.  

7.4.2.1 Preparation of Oligomers from PL and Salicyl Alcohol. 

Oligomers with various PL weight ratios (10, 20, 30 and 40 wt %) were synthesized using 

a formaldehyde−free method and water was employed as solvent. PL10SA90, a phenolic 
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oligomer containing 10 wt % of PL and 90 wt % of salicyl alcohol, was prepared as follows: 

salicyl alcohol (2.0 g, 16.1 mmol) was dissolved in 20 mL H2O at 100 °C in a 100 mL round 

bottomed flask. To this mixture was added 0.22 g phenolated lignin, and the powder was 

dispersed through stirring using a magnetic stirring bar. A mixture of sulfuric acid (1.6 mL) and 

H2O (10 mL) was dropwise added to the flask. The mixture was stirred at 110 °C for 30 min. 

During the period, it was observed that dark viscous oil was gradually formed and accumulated 

on the magnetic bar. When the reaction was complete, the mixture was cooled to room 

temperature and the dark oil became solid. The acidic solution was discarded, and the afforded 

solid was washed with H2O several times to remove H2SO4 residue.  

7.4.2.2 Preparation of Glycidyl Ethers.  

In the same flask, 30 g epichlorohydrin was introduced to react with PL10SA90 to make 

the glycidyl ether (GE−PL10SA90). Excess epichlorohydrin was used as solvent to reduce the 

viscosity and hydrolyzable chlorine content in epoxy prepolymers.51 Small amount of leftover 

water in the flask did not influence the glycidylation reaction. 0.21 g tetrabutylammonium 

bromide was used as a phase transfer catalyst. The mixture was heated at 85 °C for 3 h, and 

cooled to room temperature prior to the dropwise addition of 5 g 20% w/w KOH solution. The 

reaction was then heated to 85 °C and kept for 2 h. When the reaction was complete, the mixture 

was washed with 30 mL acetone, filtrated to remove KCl, dried with Na2SO4 and concentrated 

with a rotary evaporator to yield GE−PL10SA90 as a dark oil (3.06 g).  

To measure the yield of polyphenol, in a separate reaction, the oligomer product PL10SA90 

was scratched from the stirring bar and dried overnight in an oven at 60 °C to give the 

polyphenol product of 2.11 g, 95% yield based on mass. Other oligomers with various PL 
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contents (0, 20, 30 and 40 wt %) and their glycidyl ethers (denoted as GE−PL0SA100, 

GE−PL20SA80, GE−PL30SA70 and GE−PL40SA60, respectively) were synthesized using the 

same method as GE−PL10SA90, with comparable yields. Epoxy equivalent weight (EEW) was 

determined to be 178−207 g/eq., using the HCl/acetone titration method.52 

7.4.3 Formation of Epoxy Networks. 

Glycidyl ethers with different weight ratios of PL (GE−PL0SA100 to GE−PL40SA60) were 

respectively mixed with diethylenetriamine with 1:1 molar ratio of epoxy vs. −NH for curing. 

The mixtures were stirred for 10 min, degassed under vacuum to remove entrapped air and 

poured into silicone molds for curing with the profile: 65 °C for 12 h, 90 °C for 2 h and 120 °C 

for 2 h. Cured lignin−incorporated epoxy networks were expressed as EN−PL0SA100, 

EN−PL10SA90, EN−PL20SA80, EN−PL30SA70, and EN−PL40SA60, respectively. Meanwhile, by 

blending GEL into GE−PL0SA100 co−prepolymer to form 20 wt % GEL in the mixture (LBEN 

approach, Figure 7.2), an epoxy network EN−BL−GEL20SA80 was also prepared according to 

the above curing profile and used for comparison.  

7.4.4 Analysis Methods. 

Analysis methods are similar to Chapter 2. 
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Chapter 8 

Synthesis of Recyclable Epoxy Thermosets 

 

ABSTRACT: A process for synthesizing degradable and recyclable epoxy thermosets is 

presented. The process comprises the synthesis of bisphenol connected by imine bonds, 

glycidylation of phenols and formation of thermoset. The novel epoxy thermosets possessed 

comparable properties to ordinary epoxy thermoset (e.g., bisphenol A, BPA, based materials), 

but when treated by a stimulus like acid and/or temperature, exhibited reprocessiblity. 

Recycling the thermosets involved breakage and reformation of imine bonds; reshaping and 

repairing the thermosets were realized through imine exchange reaction. All the described 

processes required no catalyst or press molding. 

 

8.1 Introduction 

Epoxy thermoset is one of the most versatile thermosetting materials owing to its 

outstanding mechanical strength, chemical and thermal resistance and excellent insulation. 

However, because of its irreversible covalent cross−links, epoxy thermoset is mostly infusible 

and insoluble, and cannot be reprocessed or recycled after molding. Recently, increasing efforts 

have been paid to eliminate the “inertness” of thermosets by incorporating dynamic covalent 

bonds into the networks. The formed covalent adaptable networks, or CANs, while still 

covalently cross−linked, can achieve stress relaxation and reversible depolymerization through 

cross−link exchange and cleavage−reformation.1−4 Although the abundance of dynamic 

covalent motifs, epoxy cross−linked CANs were only achieved by the reversible nature of 
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ester5−9, Diels−Alder (DA)10−16 and disulfide bonds.17−26 For example, Leibler et al. developed 

a malleable thermoset by epoxy−carboxylic acid reaction, while the malleability was realized 

through metal−catalyzed reversible transesterification at elevated temperature.5 Zhang et al. 

synthesized an epoxy−amine cross−linked thermoset embedded with DA bonds.11 The 

thermoset could be converted to soluble polymers with the aid of sonication and repolymerized 

via DA reaction. Odriozola et al. used diglycidyl ether of bisphenol A (DGEBA) to react with 

a disulfide−containing amine hardener for making fiber−reinforced polymer composites, while 

the recyclability of composites was derived from the exchangeable disulfide bonds.19 However, 

these studies uniformly suffered issues including: need of hot press molding in reprocessing, 

requirement of expensive metal catalysts, need of additional monomers or special treatments 

(e.g., sonication), synthetic difficulty and availability of commodity raw materials. Moreover, 

bisphenol A (BPA) is still preferably selected as thermoset precursor, although it has long been 

viewed as a non−sustainable chemical.  

CANs are broadly classified into two groups, the dynamic structure of which is obtained 

either kinetically by bond exchange (associative) or through equilibrium shifts leading to 

reversible depolymerization (dissociative).2,3 Among the known dynamic bonds, imine bond is 

unique since it possesses both associative (imine−amine exchange and imine metathesis) and 

dissociative (imine hydrolysis and reformation) properties that occur under mild conditions. 

By embedding imine bonds into epoxy cross−linked networks as intermolecular linkages, we 

herein report a novel epoxy thermoset that exhibits decomposability, recyclability, malleability 

and weldability without requiring additional ingredients such as catalyst or additional monomer, 

or complicated processing like press heating. The recyclable thermoset is amenable to 
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monomers derived from renewable sources (e.g., vanillin, VAN, a lignin−derived compound).27 

8.2 Results and Discussion 

8.2.1 Structural Characterization 

Synthetic route of the epoxy network is shown in Figure 8.1, panel A. Imine−embedded 

bisphenol (VAN−AP) was readily prepared by reacting VAN with aminophenol (AP) in water 

at room temperature (95% isolated yield). While VAN−AP possesses structure like the 

conventional BPA, the attachment of aryl groups to both nitrogen and carbon atoms of imine 

bonds is a critical structural characteristic that leads to the complete reaction of aromatic 

aldehyde and amine,28 which improves the efficiency at the stage of monomer synthesis and 

polymer recycling. Structure of VAN−AP was characterized by NMR spectroscopy. As seen in 

Figure S8.1, the proton peak at 8.4 ppm and carbon peak at 153 ppm correspond to the imine 

group, indicating the coupling of aldehyde and amine. VAN−AP was then reacted with 

epichlorohydrin to obtain a glycidyl ether (GE−VAN−AP), which exhibited new epoxy proton 

peaks at 2.7 and 2.9 ppm (−CH2− in oxirane), 3.3 ppm (−CH− in oxirane), and 4.0 and 4.2 ppm 

(−O−CH2−) in Figure S8.2. No aldehyde peak was observed for GE−VAN−AP, suggesting 

imine was stable during the glycidylation process. IR spectra were collected to confirm the 

structure. IR spectrum of VAN−AP exhibited the characteristic absorption bands of imine at 

1630 cm−1 (Figure S8.3). GE−VAN−AP exhibited new oxirane band at 912 cm−1, while the 

OH bond at 3265 cm−1 decreased significantly, which confirmed the formation of epoxy group. 

When epoxy groups were reacted with amine hardener to form the epoxy network 

(EN−VAN−AP), the active amine protons opened the epoxides while hydroxyls were created 

at the same time. This process was reflected by the IR spectrum of EN−VAN−AP (Figure S8.3), 
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which exhibited no epoxy band at 912 cm−1, while the broad hydroxyl band increased compared 

to GE−VAN−AP. 

 

Figure 8.1 Synthesis and properties of EN−VAN−AP. Synthesis of EN−VAN−AP (A); Tensile 

(B) and thermal (C) properties of EN−VAN−AP and EN−BPA, and solvent resistance of 

EN−VAN−AP (D). 

8.2.2 Properties of Original Thermoset 

EN−VAN−AP was prepared by reacting GE−VAN−AP with a commercially available 

polyamine (Jeffamine D−400, MW= 430) at 120 °C for 24 h. The resulting thermoset exhibited 

breaking strength and elongation of 46 MPa and 4%. These properties were comparable to 

BPA−based thermoset (EN−BPA, prepared using the same cross−linking conditions as 

EN−VAN−AP) (Figure 8.1, panel B), which was attributed to the structural similarity between 

VAN−AP and BPA. Meanwhile, it suggested the incorporation of dynamic imine bonds did not 

impair the mechanical properties of epoxy cross−linked thermoset. By comparison, onset 
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degradation temperature of EN−VAN−AP was lower than EN−BPA (271 °C vs 350 °C, Figure 

8.1, panel C), which was attributed to the increased dissociating tendency of imine bonds at 

elevated temperature. In addition, EN−VAN−AP exhibited good resistance to various solvents 

including benzene, toluene, THF, ethanol, DMF, DMSO and water. EN−VAN−AP exhibited 

mainly swelling behavior, with limited portion dissolved (< 15 wt %, Figure 8.1, panel D). 

Overall, VAN−AP−derived epoxy thermoset exhibits properties in line with the conventional 

BPA based counterpart when the same hardener and curing conditions are employed, which 

suggests VAN−AP could be a suitable thermoset precursor for a range of applications.   

8.2.3 Degradation and Recycling of EN−VAN−AP 

By acid−aided hydrolysis of the imine linkages, we then demonstrated EN−VAN−AP 

could be transformed into smaller and soluble oligomers using proper degradation conditions. 

EN−VAN−AP was cut into pieces (ca. 4 mm L × 3 mm W × 2 mm T) and immersed (no stirring 

was applied) in 1.5 mL solvent with various hydrochloric acid concentrations and temperature 

for two days (Figure S8.4). At room temperature or 65 °C with no HCl added, EN−VAN−AP 

exhibited good resistance to solvents as mentioned above. Concentrated HCl acid was selected 

to depolymerize the thermosets. This selection was based on its strong acidity, compatibility 

with hydrophilic solvents and low boiling point that can be readily removed along with solvent 

during the drying process. At low HCl concentration (0.17 mol/L), limited portion (< 6 wt %) 

of EN−VAN−AP was dissolved in toluene and benzene. This was related to the limited 

compatibility of HCl solution with toluene and benzene, as reflected by the uneven corrosion 

on thermoset surface (Figure S8.4). The aggregation of depolymerized thermoset residue in 

toluene and benzene further confirmed the poor compatibility of decomposed thermoset in 
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these solvents (Figure S8.4). By comparison, THF, ethanol, DMF, DMSO and water exhibited 

homogenous solution of the decomposed residue. Especially, 100% EN−VAN−AP was 

dissolved in water at room temperature with HCl concentration as low as 0.17 mol/L, which 

was significantly higher than other solvents. This could be attributed to the specific sensitivity 

of imine bonds to water. Increasing the temperature to 65 °C and maintaining the same HCl 

concentration (0.17 mol/L) accelerated the dissociation of thermosets, which resulted in 100 

wt % dissolution of EN−VAN−AP in water and DMSO, 79 wt % in DMF, 40 wt % in ethanol, 

14 wt % in THF and ~ 7 wt % in toluene and benzene after 2 days. This phenomenon indicated 

that EN−VAN−AP could be readily decomposed when treated by hydrophilic solvents under 

mild conditions. The affinity of thermoset to solvents followed the order: water > DMSO > 

DMF > ethanol > THF > benzene ≈ toluene (Figure 8.2, panel B), which was consistent with 

the polarity of these solvents. Compared to the degradation of conventional epoxy thermosets 

that involves harsh conditions like high temperature and strong acid/base,29−33 the facile 

decomposability and solubility of EN−VAN−AP in slightly acidified hydrophilic solvents, 

especially water, highlights its environmental importance. Meanwhile, it may provide a facile 

method to recycle the fillers (e.g., carbon fiber) from EN−VAN−AP based composites. 

Moreover, this unique decomposability could distinguish EN−VAN−AP from other types of 

thermosets or thermoplastics, which facilitates the isolation and recycling of plastics.   
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Figure 8.2 Depolymerization and recycling of EN−VAN−AP through dissociative mechanism. 

NMR spectra of solid and depolymerized samples (A); Depolymerization of EN−VAN−AP in 

different solvents and temperature (B); Dissociative mechanism (C); Recycling approaches (D); 

Tensile (E) and thermal (F) properties of original and recycled EN−VAN−AP. 

While the original EN−VAN−AP was formed through epoxy−amine reaction, formation 

of the recycled thermoset was realized via aldehyde−amine reaction. The recycling process 

occurred in two steps: drying the oligomer solution to remove most of the solvent and HCl, and 

re−cross−linking the oligomers at elevated temperature to recover the thermoset. Solvent used 

for thermoset degradation was found to be a major factor that determined the efficiency and 

properties of the recycled thermoset. Optimal solvent should have properties including: 1) high 

solubility for thermoset, 2) reasonable boiling point that can be readily removed, and 3) 

properties of recycled thermoset should be comparable to original thermoset. Because of their 

relatively lower solubility for EN−VAN−AP, toluene, benzene, THF and ethanol might not be 

optimal as compared to DMF, DMSO and water, which exhibited sufficient solubility under 

mild conditions. From the aspect of solvent removal, DMSO might be problematic due to its 
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high boiling point (189 °C). In a preliminary experiment, it took more than three times longer 

for DMSO to be mostly removed under vacuum from polymer solution than when DMF or 

water was used as solvent. The use of DMSO increased separation difficulty, while the presence 

of DMSO residue in recycled thermoset might lead to decreased cross−link density, and 

possibly compromised mechanical and thermal properties. As for water, the thermoset 

recovered from water solution exhibited significantly poor water resistance. It deformed 

quickly when immersed in water at room temperature, even though no acid was added (Figure 

S8.5). This could be related to the high affinity of HCl to water, which made HCl difficult to 

be completely removed from the polymer mixture. The trapped trace amount of HCl could still 

lead to significant deformation of recycled thermoset when exposed to water. By comparison, 

DMF exhibited the highest suitability among studied solvents for recycling, since it 

demonstrated sufficient solubility and reasonable boiling point, while the properties of recycled 

thermoset were retained. The recycling process and properties of recycled thermoset are 

illustrated next.  

Using the EN−VAN−AP/DMF weight ratio of 1:10, HCl concentration of 0.25 mol/L and 

stirring, EN−VAN−AP could be fully dissolved within 1 h at 65 °C. The solution was dried by 

two steps: 1) the mixture was heated at 80 °C and dried by an air flow to get rid of ca. 60% 

volume, and 2) the mixture was slowly dried under vacuum at room temperature overnight to 

remove most of volatile components, leaving the depolymerized EN−VAN−AP as a viscous 

gel. It should be noted that after the acid−aided depolymerization, the DMF solution contained 

a mixture of oligomer chains with terminal aldehyde and/or amine groups (structural 

illustration in Figure 8.2, panel D). During the drying processes, as HCl was gradually 
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evaporated, the rate of imine formation increased, and the molecular weight of polymer chains 

continuously increased. At the end of the drying processes, the formed polymer gel was heated 

at 120 °C for 24 h to promote solvent residue evaporation, facilitate the aldehyde−amine 

reaction and recreate the polymer network. Depolymerization and reformation of 

EN−VAN−AP were confirmed by the NMR spectra of original, depolymerized and recycled 

samples in Figure 8.2, panel A and Figure S8.6−S8.8. As the imine linkages within the original 

EN−VAN−AP were intact, no aldehyde peak was observed from the solid−state carbon 

spectrum (imine peak was overlapped with aromatic peaks at 160 ppm). By comparison, 

depolymerizing the thermoset in acidified DMSO−d6 revealed the aldehyde group at 9.8 ppm, 

indicating the cleavage of imine bond. After re−cross−linking, the aldehyde group of recycled 

thermoset disappeared again, suggesting reformation of network was realized through 

aldehyde−amine reaction. IR spectrum of recycled thermoset also revealed no aldehyde group, 

suggesting the aldehyde−amine reaction was complete (Figure S8.9). Moreover, IR spectra of 

original and recycled thermosets exhibited the same pattern (Figure S8.9), which indicated 

recycled thermoset retained similar chemical structure to original thermoset. Tensile and 

thermal properties of the recycled thermoset exhibited no major decrease as compared to 

original samples (Figure 8.2, panel E and F). The dissociative mechanism (bond cleavage and 

reformation) of imine bond conferred epoxy thermoset with facile degradation and recycling 

methods, which required no press heating or catalyst. By comparison, high temperature, press 

molding and catalyst are often required to convert the rigid networks into viscoelastic liquids 

when recycling the associative CANs. 
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8.2.4 Malleability and Weldability 

By utilizing the associative mechanisms of imine bonds, we then demonstrated 

EN−VAN−AP was malleable. The malleability came from the imine exchange reactions at 

elevated temperature, which has been well proved by model compound study and 

imine−containing thermosets. According to Zhang et al.,34 imine exchange in network was 

primarily catalyzed by residual unreacted primary amino groups via an associative approach. 

Considering the high rigidity and Tg of EN−VAN−AP, molar ratio of epoxy: −NH2 was set as 

2: 1.05 when curing to facilitate the imine exchange reactions. A stress relaxation experiment 

of EN−VAN−AP was carried out. The measurements were conducted at different temperatures 

in the range from 30 to 60 °C. Thermoset with thickness of 0.22 mm was heated to the test 

temperature. After the temperature was equilibrated for 5 min, a 1 % strain step was applied, 

and the stress was recorded over time. A constant normal force of 5 N was applied to maintain 

a good contact of the sample with the parallel plate. As seen in Figure 8.3, panel A, 

EN−VAN−AP was observed to dissipate almost all stress within 50 s at 60°C, while no catalyst 

was needed.  



171 

 

 

  

Figure 8.3 Malleability and weldability of EN−VAN−AP through associative mechanism. 

Stress relaxation test of EN−VAN−AP (A); Malleability of EN−VAN−AP (B); Weldability of 

EN−VAN−AP (C) and mechanical properties of original and welded samples (D). 

The shape transformation of thermoset is another evidence supporting the stress relaxation 

of thermoset at elevated temperature. An EN−VAN−AP strip with dimensions of 125 mm L × 

12.5 mm W × 2.2 mm T was used for illustration. By heating the strip at 120 °C for 2 min, the 

rigid thermoset was converted into a viscoelastic state. At this time, the strip was twisted into 

a helical fusilli−like shape (Figure 8.3, panel B). When the thermoset was cooled to room 

temperature, the helical fusilli−like shape was retained. Applying a new force and heat could 

recover the thermoset back to its original flat shape. Conventional permanently cross−linked 

epoxy thermoset, however, cannot exhibit stress relaxation at elevated temperature and is prone 

to fracture when additional force is applied.  

By utilizing the imine exchange reactions occurred at the interfaces of overlapped 
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thermoset pieces, EN−VAN−AP was also weldable and repairable. To prove this, a rectangular 

EN−VAN−AP film (50 mm L × 25 mm W × 0.4 mm T) was cut into two pieces. The two pieces 

were overlapped by ca. 3.2 mm on a Teflon sheet and preheated at 100 °C for 60 s. During the 

preheating period, a ca. 10 N force was applied to the overlapping area to facilitate the welding. 

It was observed that the two pieces started to attach to each other. The film was then transferred 

to an oven and heated at 120 °C for 4 h for welding, which required no additional pressure or 

amine monomer. After the welding process, a dog−bone shaped sample was punched out, while 

the overlapped area was left in the middle of the sample (Figure 8.3, panel C). The welded 

sample, which possessed same dimensions with original samples (prepared using the same 

punch), was subjected to tensile test. As seen in Figure 8.3, panel C, the welded sample always 

fractured at a different place rather than the overlapped area, suggesting the overlapped area 

was not the weakest part of the sample. Meanwhile, tensile strength and elongation at break of 

welded sample were 46 MPa and 4.4%, respectively, which were comparable to the original 

sample (Figure 8.3, panel D).  

8.2.5 Water Sensitivity 

Lastly, we demonstrated that water resistance of imine−containing thermoset may be 

impacted by the concentration of imine bond and cross−link density of the thermoset. 

Previously reported imine−containing thermosets were mainly prepared through direct 

condensation between poly−functionalized aldehydes and aliphatic polyamines34−39. In these 

networks, imine bonds acted as the cross−linking sites. However, because of the 

water−sensitive nature of imine bonds, strength of thermosets was reported to decrease when 

exposed to water.35 In contrast to previous approaches, we embedded imine bonds in the 



173 

 

 

backbone of diglycidyl ethers, while cross−linking was realized through epoxy−amine 

reactions. This approach increases the cross−link density (epoxy reacts with −NH2 in 2:1 ratio, 

while aldehyde reacts with −NH2 in 1:1 ratio) while decreases the content of imine bonds within 

the network, both of which improve the water resistance of imine−containing thermosets.  

 

Figure 8.4 Impacts of imine content and cross−link density on water sensitivity of thermosets. 

To explore the impacts of cross−link density and content of imine bonds on the water 

resistance of thermoset, three precursors (DGEBA, GE−VAN and terephthaldehyde) with 

various epoxy and aldehyde groups were compared to GE−VAN−AP. All precursors were 

reacted with polyamines to obtain thermosets containing various contents of imine bonds. Since 

aromatic motif could increase the strength of thermoset, weight ratio of aromatic ring in each 

thermoset was kept similar by adjusting the molecular weight of polyamines (MW = 230 or 

400). All thermosets were cured at 120 °C for 1 to 3 days for complete conversions of epoxy 

or aldehyde groups as confirmed by IR spectra. Figure S8.10 demonstrates the experimental 

setup for testing the water sensitivity of thermosets. As seen in Figure 8.4, it took only 3 and 

18 min for EN−TPA and EN−VAN to lose most of their strength when immersed in water at 

room temperature. By comparison, EN−VAN−AP exhibited significantly improved water 
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resistance, as it took more than 220 min to get the same deformation. As for the conventional 

BPA−based thermoset (EN−BPA), it exhibited the highest water resistance, as most of its 

strength was retained even after immersing in water for 24 h.  

Because of the complexity of cross−linked network, a representative polymer segment 

from each of the four thermosets was illustrated in Figure 8.4 for comparison. The segments 

were simplified to contain one molecule of precursor and two molecules of amine hardener 

chains that reacted at each side of the precursor. Covalent (formed through epoxy−amine 

reactions) and reversible bonds (formed by aldehyde−amine reactions) within the segments 

were highlighted. The aromatic content in each segment was similar (1 aromatic ring per 

segmental molecular weight of ca. 600). However, the content of reversible imine bonds varied 

significantly among segments. It was observed that water resistance of thermosets decreased 

as imine content increased. EN−BPA has no reversible bond, and its permanently cross−linked 

network makes it the most resistant to water. EN−VAN−AP has one imine bond per segmental 

MW of ca. 1215. Although imine bonds were “protected” by adjacent phenyl groups and other 

covalent cross−links, water molecules could still gradually penetrate the network by 

hydrolyzing the imine bond and eventually softened the thermoset. When it comes to EN−VAN 

and EN−TPA, the imine content is doubled and quadrupled compared to EN−VAN−AP, 

respectively. These increments result in the deformation of thermosets in much shorter time of 

exposure. While reduced imine content postponed the deformation of network, increased 

cross−link density, in a similar way, helped decrease the exposure of imine bond to water 

molecules. It should be noted that, epoxy reacts with amine (−NH2) in 2: 1 molar ratio, while 

aldehyde reacts with amine (−NH2) in 1:1 molar ratio. Thus, as illustrated in Figure 8.4, 
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precursors of EN−BPA and EN−VAN−AP can develop in four directions, while TPA−based 

polymer is basically linear. Possessing lower imine content while still highly cross−linked, 

EN−VAN−AP exhibits improved water resistance over the straightforward aldehyde−amine 

cross−linked thermosets. 

8.3 Conclusions 

In summary, we report a novel epoxy thermoset that exhibits decomposability, 

recyclability, malleability and weldability without requiring additional ingredients such as 

catalyst or additional monomer, or complicated processes like press heating. Through breaking 

and reforming the imine bonds, the epoxy thermosets can be: 1) decomposed and solubilized 

in organic or aqueous solutions under mild conditions, and 2) reformed from the solutions with 

the original thermal and mechanical properties retained. Through imine exchange reaction, the 

epoxy thermosets at sufficient temperature can be: 1) reshaped through bond exchange within 

polymer networks, and 2) welded through bond exchange at the interface of overlapping 

thermoset pieces.  

8.4 Experimental Section 

General. Vanillin (VAN), 4−aminophenol (AP), epichlorohydrin, tetrabutylammonium 

bromide, diethylenetriamine (DETA), diglycidyl ether of bisphenol A (DGEBA), 

terephthaldehyde, Jeffamine (poly(propylene glycol) bis(2−aminopropyl ether)) (molecular 

weight of 230 or 430) were purchased from Aldrich Chemical Co. Concentrated hydrochloric 

acid (37%) was obtained from Fisher Scientific. All chemicals were used as received without 

further purification. 

8.4.1 Synthesis of VAN−AP. 
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A mixture of vanillin (6.08 g, 40 mmol) and 4−aminophenol (4.36 g, 40 mmol) was stirred 

in water (125 mL) at room temperature for 4 h. The afforded powder was collected by filtration, 

washed with water and dried in a desiccator to give VAN−AP as a yellowish powder (9.23 g, 

95% yield). 

8.4.2 Synthesis of GE−VAN−AP. 

Glycidyl ether of VAN−AP (GE−VAN−AP) was prepared by reacting VAN−AP (2.43 g, 

10 mmol) with epichlorohydrin (25 g, 266 mmol). Tetrabutylammonium bromide (0.26 g, 0.85 

mmol) was used as a phase transfer catalyst. The mixture was heated at 85 °C for 3 h and 

followed by a dropwise addition of 5 g of 20% w/w NaOH solution. The reaction was kept for 

another 2 h, and the mixture was washed with acetone, filtrated to remove formed NaCl and 

concentrated with a rotary evaporator to yield GE−VAN−AP as a yellowish solid (3.49 g, 94% 

isolated yield). 

8.4.3 Formation of Polymer Networks. 

GE−VAN−AP was first melt at 100 °C. Then, Jeffamine 430 with 1:1 molar ratio of epoxy 

vs. −NH was dropwise added. The mixture was vigorously stirred at 100 °C for 3 min, degassed 

under vacuum to remove trapped air, poured into silicone mold and cured at 60 °C for 4 h and 

120 °C for 20 h. The obtained brownish epoxy network was denoted as EN−VAN−AP.  

8.4.4 Remolding Methods. 

1.5 g cured thermoset was cut into pieces (ca. 12.5 mm × 5mm) and placed in a 20 mL 

glass vial. To this vial was added successively 15 mL DMF and 12 drops of concentrated HCl. 

The mixture was then heated up at 60 °C and stirred. Thermoset samples were found to dissolve 

gradually and a homogenous solution was obtained after 1 h. DMF and HCl in the homogenous 



177 

 

 

solution were slowly evaporated when stirred at 60 °C with the aid of an air flow. When thin 

polymer film started to form on the surface of solution (at this point, ca. 8 mL solution was 

left), the solution was transferred to a glass plate. The mixture was then placed in a vacuum 

desiccator to remove the leftover DMF and HCl. After 16 h, the mixture was put in an oven at 

120 °C for 24 h to obtain the remolded thermoset.  

8.4.5 Analysis Methods. 

Tensile testing was performed on 0.5 mm thick dog bone−shaped specimens according to 

the ASTM D638 standard, on a custom−built setup on a vertical TwinRail positioning table 

(Lintech, CA) with a 100−lb load cell.  

Other analysis methods are similar to Chapter 2. 
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Chapter 9 

Summary and Future Work 

The objective of this research project is to develop high−performance lignin−based epoxy 

thermosets. Lignin−derived phenol monomers and bulk lignin are successfully converted to 

BPA analogs for thermoset syntheses. For lignin−derived phenol monomers, different 

modification methods can yield multifunctional phenols with different (1) molecular weight, 

(2) orientation and (3) number of hydroxyl groups via dimerization and oligomerization 

reactions. By using different modification strategies, cross−link density and thermomechanical 

properties of obtained thermosets can be tuned.  

According to the above findings, a fully lignin−based triphenol (VAN−M−CAT) is 

developed, which has rigid framework, high functionality (n = 5) and stretched hydroxyl groups. 

These advantageous structural properties make VAN−M−CAT excellent precursor to epoxy 

thermosets. As an example, VAN−M−CAT based network exhibits excellent glassy modulus 

(12.3 GPa) and glass transition temperature (167 °C). By adjusting the number of methoxy 

substituents, impacts of methoxy group on properties of thermosets are also investigated. 

Especially, increasing the content of methoxy significantly decreases the yield of starting 

phenols and thermal properties of thermosets. This conclusion can guide the selection and/or 

modification (e.g. deoxygenation) of lignin−derived monomers for making epoxy polymers 

with desirable properties. For further work, an interesting study includes finding out an 

approach that could tune the rigidity and modulus of the rigid TP−based thermosets. This could 

be achieved by adjusting the content of non−curable benzodioxane byproducts in the mixture.  

To incorporate bulk lignin into thermosets, an approach that involves successive 
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demethylation, phenolation and phenol−formaldehyde reactions is proposed. Overall, 

DLINENs (deprotected lignin incorporated novolac epoxy networks) show improved 

performance when compared to LBENs (lignin blended epoxy network), which can be 

rationalized on the basis of enhanced reactivity, compatibility and covalent linkage of lignin in 

the networks. To avoid the use of formaldehyde, a modified approach is also proposed, which 

involves the self−condensation of salicyl alcohol. The modified approach also increases the 

content of lignin in thermoset (up to 20 wt%), which significantly widens the application of 

bulk lignin. It would be interesting to further increase the content of bulk lignin in thermoset. 

This could be achieved by using lignin with lower molecular weight, or using partially 

depolymerized lignin that has less complicated structure.  

Lastly, a novel epoxy thermoset that exhibits decomposability, recyclability, malleability 

and weldability is proposed. Reprocessiblity of the thermoset requires no additional ingredient 

such as catalyst or additional monomer, or complicated processes like press heating when 

recycled. Through breaking and reforming the imine bonds (dissociative mechanism), the 

epoxy thermosets can be decomposed and solubilized in organic or aqueous solutions under 

mild conditions, and reformed from the solutions while original thermal and mechanical 

properties are retained. Through imine exchange reaction (associative mechanism), the epoxy 

thermosets at sufficient temperature can be reshaped and welded. Keeping the malleability and 

recyclability in mind, potential further study should be focused on increasing the biomass 

content of the thermosets.  
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Appendix 1 for Chapter 2 

 

 

 

 

Figure S2.1. FTIR spectra of (A) DHE−based polyphenols and (B) cured DHE−based networks 

after curing 2 h at 55 °C, 2 h at 75 °C and 2 h at 95 °C using DETA as a hardener.  

 

Figure S2.2. 3−D models of GEDHEO and GEDHE−Dimer. The models were generated by 

ChemBio3D Ultra 14.0.  
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Figure S2.3. Heat release during nonisothermal cures via DSC of different DHE−based epoxy 

monomers/DETA systems. Degrees of cure were determined through two cycles of heating. 

Samples were firstly heated from 0 to 200 °C at 10 °C/min, cooled to 0 °C, and reheated to 

200 °C at 10 °C/min. All samples were completely cured as supported by the lack of exotherm 

on the second heating. 
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Appendix 2 for Chapter 3 

 

 

Figure S3.1. Proton NMR spectra of glycidyl ether of phenol. Solvent: CDCl3. 

 

 

Figure S3.2. Proton NMR spectra of (a) guaiacol, (b) catechol and (c) glycidylation products. 

Solvent: CDCl3.   

 

 

(a) 

(b) 

(c) 
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Figure S3.3. Proton NMR spectra of (a) M−GUA, (b) M−CAT and (c) glycidylation products. 

Solvent: CDCl3.   
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Figure S3.4. Proton NMR spectra of (a) E−GUA, (b) E−CAT and (c) glycidylation products. 

Solvent: CDCl3.   
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Figure S3.5. Proton NMR spectra of (a) P−GUA, (b) P−CAT and (c) glycidylation products. 

Solvent: CDCl3.   
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Figure S3.6. HPLC spectra of (a) bio−oil mixture, (b) demethylated bio−oil (DE−BIO) and (c) 

glycidylation products of DE−BIO. 
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Figure S3.7. Proton NMR spectra of (a) NO−BIO, (b) NO−DE−BIO and glycidylation products 

(c) GE−NO−BIO and (d) GE−NO−DE−BIO. Solvent: CDCl3.   
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Appendix 3 for Chapter 4 

 

 

 

Figure S4.1. Proton NMR spectra of (A) M−GUA and (B) M−CAT. Solvent: CDCl3. 

 

Figure S4.2. Proton NMR spectra of (A) P−GUA and (B) P−CAT. Solvent: CDCl3. 
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Figure S4.3. Proton (A) and carbon (B) NMR spectra of HBA−M−CAT. Solvent: acetone−d6. 
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Figure S4.4. Proton (A) and carbon (B) NMR spectra of SYA−M−CAT. Solvent: acetone−d6. 
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Figure S4.5. Proton (A) and carbon (B) NMR spectra of HBA−P−CAT. Solvent: acetone−d6. 
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Figure S4.6. Proton (A) and carbon (B) NMR spectra of VAN−P−CAT. Solvent: acetone−d6. 
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Figure S4.7. Proton (A) and carbon (B) NMR spectra of SYA−P−CAT. Solvent: acetone−d6. 
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Figure S4.8. FTIR spectra of (A) M−CAT based and (B) P−CAT based TPs.  

 

Vanillin has an aldehyde peak showing up at 1672 cm−1.1 After it is coupled with 

methylcatechol, the aldehyde group is converted to triphenyl methyl group. This is consistent 

with IR spectrum of VAN−M−CAT, in which the aldehyde peak disappears. Other 

characteristic absorption bands include 3052−3610 cm−1 (O−H stretching), 2972, 2927 and 

2871 cm−1 (alkyl C−H stretch), 1606, 1508 and 1427 cm−1 (aromatic C−C bond), and 1288 and 

1035 cm−1 (asymmetric and symmetric stretching of the C−O−C ether linkage). FTIR pattern 

of other TPs are similar with VAN−M−CAT. 

Reference: Zhang L., Zhu Y., Li D., Wang M., Chen H., Wu J. RSC Adv., 2015, 5, 96879−96887. 
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Figure S4.9. HPLC (A) and mass spectra (B) of HBA−M−CAT.  
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Figure S4.10. HPLC (A) and mass spectra (B) of VAN−M−CAT.  
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Figure S4.11. HPLC (A) and mass spectra (B) of SYA−M−CAT.  
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Figure S4.12. HPLC (A) and mass spectra (B) of HBA−P−CAT.  
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Figure S4.13. HPLC (A) and mass spectra (B) of VAN−P−CAT.  
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Figure S4.14. HPLC (A) and mass spectra (B) of SYA−P−CAT.  
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Figure S4.15. Proton (A) and carbon (B) NMR spectra of mono−epoxy substituted product 

GE−VAN−M−CAT−1. Solvent: CDCl3. 
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 Figure S4.16. HMQC spectra of mono−epoxy substituted product GE−VAN−M−CAT−1. 

Solvent: CDCl3. 

 

 

 

 

 

 

 

 

 

 

 



205 

 

 

 
 

 

 

Figure S4.17. Proton (A) and carbon (B) NMR spectra of tri−epoxy substituted product  

GE−VAN−M−CAT−3. Solvent: CDCl3. 
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Figure S4.18. HMQC spectra of tri−epoxy substituted product GE−VAN−M−CAT−3.  

Solvent: CDCl3. 
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Figure S4.19. Proton (A) and carbon (B) NMR spectra of penta−epoxy substituted product  

GE−VAN−M−CAT−5. Solvent: CDCl3. 
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Figure S4.20. HMQC spectra of penta−epoxy substituted product GE−VAN−M−CAT−5.  

Solvent: CDCl3. 
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Figure S4.21. Mass spectra of VAN−M−CAT epoxidized products: (A) mono−epoxy 

substituted GE−VAN−M−CAT−1, (B) tri−epoxy substituted GE−VAN−M−CAT−3 and (C) 

penta−epoxy substituted GE−VAN−M−CAT−5.  
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Figure S4.22. FTIR spectra of VAN50LIN50, VAN75LIN25 and VAN100LIN0. Epoxy peak at 912 

cm−1 disappears after curing, which indicates significant amount of epoxy groups are reacted 

during the crosslinking process.  
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Appendix 4 for Chapter 5 

 

 

 

 

Figure S5.1. Proton (A) and carbon (B) NMR spectra of M0. Solvent: acetone−d6. 
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Figure S5.2. Proton (A) and carbon (B) NMR spectra of M1. Solvent: acetone−d6. 
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Figure S5.3. Proton (A) and carbon (B) NMR spectra of M2. Solvent: acetone−d6. 

 

 

 

 

 

 

 

 

(B) 

(A) 



214 

 

 

  

 

Figure S5.4. Proton (A) and carbon (B) NMR spectra of M2’. Solvent: acetone−d6. 
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Figure S5.5. Proton (A) and carbon (B) NMR spectra of M3. Solvent: acetone−d6. 
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Figure S5.6. Proton (A) and carbon (B) NMR spectra of M4. Solvent: acetone−d6. 
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Figure S5.7. Proton (A) and carbon (B) NMR spectra of M4’. Solvent: acetone−d6. 
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Figure S5.8. Proton (A) and carbon (B) NMR spectra of M5. Solvent: acetone−d6. 
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Figure S5.9. Proton (A) and carbon (B) NMR spectra of M6. Solvent: acetone−d6. 
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Figure S5.10. Proton NMR spectra of GEM0. Solvent: CDCl3. 

 

 

Figure S5.11. Proton NMR spectra of GEM1. Solvent: CDCl3. 

 

 

Figure S5.12. Proton NMR spectra of GEM2. Solvent: CDCl3. 
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Figure S5.13. Proton NMR spectra of GEM2’. Solvent: CDCl3. 

 

 

Figure S5.14. Proton NMR spectra of GEM3. Solvent: CDCl3. 

 

 

Figure S5.15. Proton NMR spectra of GEM4. Solvent: CDCl3. 

 



222 

 

 

 

Figure S5.16. Proton NMR spectra of GEM4’. Solvent: CDCl3. 

 

 

Figure S5.17. Proton NMR spectra of GEM5. Solvent: CDCl3. 

 

 

Figure S5.18. Proton NMR spectra of GEM6. Solvent: CDCl3. 
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Figure S5.19. FTIR spectra of M0, GEM0 and ENM0. 

  

Figure S5.20. FTIR spectra of M1 and GEM1. 

 

Figure S5.21. FTIR spectra of M2, GEM2 and ENM2. 
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Figure S5.22. FTIR spectra of M2’, GEM2’ and ENM2’. 

 

Figure S5.23. FTIR spectra of M3 and GEM3. 

 

 

Figure S5.24. FTIR spectra of M4, GEM4 and ENM4. 
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Figure S5.25. FTIR spectra of M4’ and GEM4’. 

 

Figure S5.26. FTIR spectra of M5 and GEM5. 

 

 

Figure S5.27. FTIR spectra of M6 and GEM6. 
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Figure S5.28. Heat release during nonisothermal cures via DSC of epoxy/DETA systems. 

Degrees of cure were determined through two cycles of heating. Samples were firstly heated 

from 10 to 200 °C at 10 °C/min, cooled to 10 °C, and reheated to 200 °C at 10 °C/min. All 

samples were completely cured as supported by the lack of exotherm on the second heating. 
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Appendix 5 for Chapter 6 

 

 

Figure S6.1. 1H NMR and IR spectra of DLINP−5. Solvent: DMSO−d6. 

 

   

Figure S6.2. 1H NMR and IR spectra of LINP−12. Solvent: DMSO−d6. 
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Figure S6.3. 1H NMR and IR spectra of DLINP−12. Solvent: DMSO−d6. 

 

 

Figure S6.4. 1H NMR and IR spectra of GEDLINP−5. Solvent: DMSO−d6. 

 

 

Figure S6.5. 1H NMR and IR spectra of GELINP−12. Solvent: DMSO−d6. 
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Figure S6.6. 1H NMR and IR spectra of GEDLINP−12. Solvent: DMSO−d6. 

 

 

 
Figure S6.7. IR spectra of cured networks of DLINEN−5, LINEN−12 and DLINEN−12. 
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Figure S6.8. FTIR spectra of cured networks of LBEN−5, DLBEN−5, LBEN−12 and 

DLBEN−12. 
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Appendix 6 for Chapter 7 

 

 

Figure S7.1. FTIR spectra of PL10SA90, its glycidyl ethers (GE−PL10SA90) and cured epoxy 

networks (EN−PL10SA90). 

 

 

Figure S7.2. FTIR spectra of PL20SA80, its glycidyl ethers (GE−PL20SA80) and cured epoxy 

networks (EN−PL20SA80). 
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Figure S7.3. FTIR spectra of PL30SA70, its glycidyl ethers (GE−PL30SA70) and cured epoxy 

networks (EN−PL30SA70). 

 

Figure S7.4. Heat release during nonisothermal cures via DSC of GE−PL0SA100/DETA systems. 

Degrees of cure were determined through two cycles of heating. Samples were firstly heated 

from 10 to 200 °C at 10 °C/min, cooled to 10 °C, and reheated to 200 °C at 10 °C/min. All 

samples were completely cured as supported by the lack of exotherm on the second heating. 
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Figure S7.5. Heat release during nonisothermal cures via DSC of GE−PL10SA90/DETA systems. 

Heating and cooling rates are same with Figure S7.4.  

 

Figure S7.6. Heat release during nonisothermal cures via DSC of GE−PL20SA80/DETA systems. 

Heating and cooling rates are same with Figure S7.4.  
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Figure S7.7. Heat release during nonisothermal cures via DSC of GE−PL30SA70/DETA systems. 

Heating and cooling rates are same with Figure S7.4.  

 

Figure S7.8. Heat release during nonisothermal cures via DSC of GE−PL40SA60/DETA systems. 

Heating and cooling rates are same with Figure S7.4.  
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Figure S7.9. Heat release during nonisothermal cures via DSC of GE−BL−GEL20SA80/DETA 

systems. Heating and cooling rates are same with Figure S7.4.  

 

 

Figure S7.10. DMA tan delta curve of epoxy networks. 
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Appendix 7 for Chapter 8 

 

 

 

Figure S8.1. (A) Proton and (B) carbon NMR spectra of VAN−AP. Solvent: acetone−d6. 
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Figure S8.2. (A) Proton and (B) carbon NMR spectra of GE−VAN−AP. Solvent: CDCl3. 
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Figure S8.3. IR spectra of (A) VAN−AP and (B) GE−VAN−AP. 

 

 

 

Figure S8.4. Degradation of EN−VAN−AP in different solvents. 
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Figure S8.5. EN−VAN−AP recycled from water solution exhibited poor water resistance. 

Recycled thermoset deformed rapidly in water under room temperature. 
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Figure S8.6. Solid−state carbon NMR spectrum of original EN−VAN−AP.  

 

  

Figure S8.7. Solid−state carbon NMR spectrum of recycled EN−VAN−AP.  

 



241 

 

 

 

 

Figure S8.8. Proton and carbon NMR spectra of depolymerized EN−VAN−AP (solvent: 

DSMO−d6). To collect the NMR spectra, 0.2 g of EN−VAN−AP was depolymerized in 2 mL 

of DMSO−d6 with the aid of HCl acid (0.25 mol/L in solution). Aldehyde group was observed 

at 9.8 ppm for proton NMR and 192 ppm for carbon NMR. The presence of free aldehyde 

groups indicated the depolymerization of EN−VAN−AP was realized by acid−catalyzed 

breakage of the imine bonds.  
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Figure S8.9. IR spectra of (A) original and (B) recycled EN−VAN−AP. 

 

 

 

Figure S8.10. Experimental setup for testing water resistance of thermosets. (a) The light plastic 

part in the cap of a 20 mL vial was cut by a razor at the tip. The thermoset sample was inserted 

and fixed through the notch. (b) The light plastic part was put back in the cap. (c) Side view of 

(b). (d) The cap could be screwed up, while thermoset sample was still attached. (e) The vial 

was filled with water. (f) The water−filled vial was turned to a position where the attached 

thermoset lied horizontally. The position of the vial was fixed and time for thermoset to obtain 

certain deformation was recorded. All samples were cut into same shape with same thickness. 

Samples were dried at 120 °C for 24 h before immersing into water.  




