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Cognition and Behavior
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Musical Rhythms in Perception and Imagination
S.A. Herff,1,2 C. Herff,3 A.J. Milne,2 G.D. Johnson,4 J.J. Shih,5 and D.J. Krusienski6

https://doi.org/10.1523/ENEURO.0413-19.2020
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South Wales, 2214, Australia, 3School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life
Sciences, Maastricht University, Maastricht, Limburg, 6229, Netherlands, 4Biomedical Engineering Program, Old
Dominion University, Norfolk, Virginia, VA 23529, United States, 5Department of Neurology, San Diego Health,
University of California, San Diego, California, CA 92121, United States, and 6Advanced Signal Processing in
Engineering and Neuroscience Lab, Virginia Commonwealth University, Richmond, Virginia, VA 23219, United States

Abstract

Rhythmic auditory stimuli are known to elicit matching activity patterns in neural populations. Furthermore, recent re-
search has established the particular importance of high-gamma brain activity in auditory processing by showing its
involvement in auditory phrase segmentation and envelope tracking. Here, we use electrocorticographic (ECoG) re-
cordings from eight human listeners to see whether periodicities in high-gamma activity track the periodicities in the
envelope of musical rhythms during rhythm perception and imagination. Rhythm imagination was elicited by instruct-
ing participants to imagine the rhythm to continue during pauses of several repetitions. To identify electrodes whose
periodicities in high-gamma activity track the periodicities in the musical rhythms, we compute the correlation be-
tween the autocorrelations (ACCs) of both the musical rhythms and the neural signals. A condition in which partici-
pants listened to white noise was used to establish a baseline. High-gamma autocorrelations in auditory areas in the
superior temporal gyrus and in frontal areas on both hemispheres significantly matched the autocorrelations of the
musical rhythms. Overall, numerous significant electrodes are observed on the right hemisphere. Of particular interest
is a large cluster of electrodes in the right prefrontal cortex that is active during both rhythm perception and imagina-
tion. This indicates conscious processing of the rhythms’ structure as opposed to mere auditory phenomena. The
autocorrelation approach clearly highlights that high-gamma activity measured from cortical electrodes tracks both
attended and imagined rhythms.

Key words: ECoG; high gamma; imagination; music perception; periodicity; rhythm

Significance Statement

The possibility to capture high-frequency brain activity, such as high gamma, with high spatial and temporal
resolution makes invasive brain recordings extremely valuable. We present new data from an invasive elec-
trocorticographic (ECoG) study with a comparably large sample size. Deploying a new periodicity-tagging
technique that extends the common frequency tagging, we found that high gamma in auditory areas tracks
periodicity. Furthermore, we use the periodic nature of musical-stimuli as a neural footprint and found that
high-gamma activity in the prefrontal cortex tracks periodicities of musical rhythms both during listening
and imagination. The neural mechanisms involved in imagination in particular are ill understood. The present
study provides evidence that the prefrontal cortex tracks periodicities in auditory stimuli during perception
and imagination, and highlights the usefulness of musical stimuli for studying neural processes.
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Introduction
Neural populations match their activity patterns in re-

sponse to repetitive, rhythmic auditory stimuli (Nozaradan
et al., 2011, 2012, 2015; Nozaradan, 2014). However, the
neural response to rhythmical stimuli is not exclusively
driven by exogenous stimulus properties, such as an audi-
tory stimulus, but is also shaped by endogenous top-down
mechanisms, such as attention and imagination (Nozaradan
et al., 2011). This suggests that neural activity in the context
of repetitive auditory stimuli is not only worth investigating
as a reactive process, triggered by external stimulation, but
may also shed light on complex cognitive functions like
imagination. The present analysis aims to further character-
ize neural activity in auditory perception and imagination,
specifically in high-gamma activity.

High Gamma
Recent medical advances have allowed music perception

research investigating neural responses to auditory rhythms
to venture beyond non-invasive EEGmethodologies to inva-
sive measurements such as the use of intracranial electro-
des in epilepsy patients. In an intracranial study, Nozaradan
et al. (2017) showed that a 0- to 30 Hz as well as a 30- to
100-Hz power band tracks the envelope of musical rhythms.
In the present study, we aim to further explore the involve-
ment of a different power band; high gamma.
Activity in the high-gamma band is much more localized

(Miller et al., 2007) and thought to resemble ensemble spik-
ing (Ray et al., 2008). Because of the small size of the gener-
ator area, frequencies above 70Hz become increasingly
unreliable to measure, let alone localize, using EEG. In elec-
trocorticography (ECoG), the electrodes are deployed di-
rectly on the cortex rather than on the scalp. This enables
accurate characterization of high gamma (or broadband
gamma, ;70–170Hz). This is important, as high gamma
can be linked to auditory attention, auditory perception, and
appears to mark auditory segment boundaries (Leuthardt et
al., 2011; Pei et al., 2011; Schalk and Leuthardt, 2011; Potes
et al., 2012; Sturm et al., 2014; for review, see Cervenka et
al., 2011). High-gamma activity can be used to decode
speech from the brain (Pasley et al., 2012; C. Herff et al.,
2015, 2019; Angrick et al., 2019a,b; Anumanchipalli et al.,
2019). When listening to music, high gamma averaged
across listeners correlates with the sound envelope of a mu-
sical piece in a data set with seven participants (Potes et al.,
2012). Using the same data set with an additional three par-
ticipants, Sturm et al. (2014) found a correlation between
high gamma and the music envelope in four out of 10 partic-
ipants. A recent study also suggests that high-gamma activ-
ity is not only involved in music listening but also music

imagination (Ding et al., 2019). In this study, participants
were asked to imagine the continuation of familiar musical
pieces. High-gamma activity significantly exceeded the
baseline that was measured before stimulus onset. Using
lagged correlations between high gamma and the music’s
envelope, the authors investigated the time course of the ac-
tivation of different brain regions.
In the present study, we aim to further investigate the

potential involvement of high gamma in music perception.
However, rather than exploring familiar musical pieces,
we focus on high gamma’s involvement in musical rhythm
perception as well as imagination. Here, we are less con-
cerned with the time courses of different brain regions’
activations, but rather aim to explore areas that capture
the underlying periodicities of the rhythmic signal.

Periodicity tagging
In the present study, we use autocorrelation repre-

sentations of musical rhythms and high-gamma brain
activity. This approach focuses on capturing and
comparing the periodicities observed in the autocorre-
lation of the musical rhythm with those observed in
high-gamma activity. This approach is inspired by,
and related to, the widely used frequency-tagging ap-
proach; however, instead of comparing frequency com-
ponents in the rhythmic envelope with frequency
components in neural responses, it compares their pe-
riodicities (Henry et al., 2017; Rajendran et al., 2017;
Lenc et al., 2018, 2019; Novembre and Iannetti, 2018;
Nozaradan et al., 2018; Rajendran and Schnupp, 2019).
For example, a rhythm might have many interonset in-
tervals (where the onsets are not necessarily consecu-
tive) of 500ms and only a few such interonset intervals
of 250ms. Neural responses stimulated by such
rhythms might, or might not, exhibit similar temporal
periodicities. Because an autocorrelation captures the
distribution of such periodicities in a signal, measuring
the correlation between the autocorrelation of a rhyth-
mic envelope and the autocorrelation of a neural re-
sponse allows us to quantify how similar their
periodicity distributions are. The correlation between
these two autocorrelations is abbreviated here with
ACC. Autocorrelations are invariant to phase, therefore
they are not affected if there is a temporal delay be-
tween the two signals. Furthermore, there are a variety
of different envelopes that can produce equivalent au-
tocorrelations: we see this as an advantage because it
is agnostic to the precise mechanism by which the peri-
odicity is “coded” by the neural envelope. Indeed, there
are various ways in which high-gamma activity could
code the stimulus, not only through envelope matching,
so a many-to-one matching is necessary when looking
for areas of interest that track periodicity of stimuli.
Here, we argue that if a high-gamma brain activity pat-
tern represents or tracks the underlying periodicity of
an acoustic signal, then it is most likely related to the
stimulus. In summary, we specifically investigate here
whether high-gamma activity during listening, as well
as imagination of repetitive auditory rhythms captures
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the rhythms’ periodicities using a periodicity tagging
approach.

Materials and Methods
Participants
ECoG data were recorded from eight patients (three fe-

male, five male, 22–42 years old) with pharmacoresistant
epilepsy undergoing localization of epileptogenic zones
and eloquent cortex before surgical resection. When
questioned, no patients reported hearing deficits or any
form of musical training. In all cases, a tumor was not the
source for the seizures and no lesions were indicated by
any electrode used for analysis. Patients participating in
this study gave written informed consent and the study
protocol was approved by the institutional review boards
of Old Dominion University and Mayo Clinic, Florida.
Patients were implanted with subdural electrode grids or
strips based purely on their clinical need. Electrode loca-
tions were verified by co-registering preoperative MRI
and postoperative computerized tomography scans. For
combined visualization, electrode locations were pro-
jected to common Talairach space. There can be a small
degree of positional error when projecting the individual
co-registered electrodes onto the generic brain model for
aggregation across participants. Electrode locations and
activations were rendered using NeuralAct (Kubanek and
Schalk, 2015). We recorded ECoG activity during rhythm
perception and imagination of a total of 437 (151 left
hemisphere, 286 right) subdural electrodes.

Stimuli
The majority of research investigating neural activity to

auditory rhythm stimuli use either complex speech or sim-
ple clicks, white noise, pure tones, or sine tones
(Nozaradan et al., 2017). To increase ecologically validity
for musical stimuli, we use kick-snare drum patterns.
Both the kick and the snare sound showed no spectral
peaks in the critical band (70–170 Hz). The kick’s funda-
mental spectral peak was at 63Hz, and the snare peaked

at 217Hz. However, as naturalistic sounds were used,
there was some energy present within the critical band.
Figure 1 shows the spectra of the kick and the snare
sound. Here, we analyze data of participants listening to
two different musical rhythms. Each rhythm consists of
eight pulses and four sounded events. The rhythms are
being presented at either 120 or 140 bpm. Table 1
presents a summary of all rhythms. Rhythm 2 is a synco-
pated rhythm, that is, listeners will perceive a downbeat
on the fifth element, despite there being no sounded
event. We included a syncopated rhythm, as syncopation
is typically considered to increase rhythmic complexity
(Fitch and Rosenfeld, 2007); this allows us to explore peri-
odicity tagging in a more complex rhythm. Furthermore, a
control was implemented by a condition that presented
white noise instead of a rhythm.

Procedure
Each participant passively listened to each rhythm in

condition-blocks of six repetitions in 120 bpm (12 s)
and eight repetitions in 140 bpm (13.7 s). After each
rhythm block, the rhythm dropped out (i.e., became si-
lent) for two repetitions in the 120-bpm condition (4 s)
and two repetitions during the 140-bpm condition (3.4
s), and participants were instructed to imagine the
rhythm to continue (imagining condition). After the
imagining condition, the rhythms became audible for
another two repetitions in both tempo conditions. Each
block appeared twice throughout the experiment. The
order of rhythm blocks was randomized. For the listen-
ing and imagining blocks, participants were instructed
not to tap along with the rhythm or to move, and

Table 1: Overview of the musical rhythms

Rhythm Sounded events Sequence
Unsyncopated 4 K x S x K x S x
Syncopated 4 K x S K x S x x

K represents a sounded kick; S represent a sounded snare, and x represent a
non-sounded element.

Figure 1. Spectra of the kick (right) and snare (left) sound.
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adherence to these instructions was confirmed for each
participant through investigator observation. For each
rhythm block, additional trials were performed that re-
quired the participant to tap the events of the rhythms
using their dominant hand. These intermingled tapping
trials as well as additional rhythm blocks using different
rhythms, were not included in the present analysis.
ECoG signals were simultaneously recorded throughout
the experiment.

ECoG data collection
Data from the electrode grids or strips (Ad-Tech

Medical Instrument Corporation, 1-cm spacing) were
bandpass filtered between 0.5 and 500Hz and recorded
using g.USB amplifiers (g.tec medical engineering) at a
sampling rate of 1200Hz. Data recording and stimulus

presentation were facilitated by BCI2000 (Schalk et al.,
2004). Electrode grids for all eight participants can be
seen in Figure 2.

Data analysis
Separately for each individual participant, electrode,

tempo (120 vs 140 bpm), audio condition (listening vs
imagine), and rhythm (unsyncopated: K x S x K x S x vs
syncopated: K x S K x S x x), we extracted the absolute
Hilbert envelope of high-gamma activity. We used elliptic
Infinite impulse response (IIR) low-pass and high-pass fil-
ters to bandpass filter the ECoG signals between 70 and
170Hz and applied an elliptic IIR notch filter to attenuate
the first harmonic of the 60-Hz line noise. The Hilbert
transform was then used to extract the envelope. We cal-
culated the circular autocorrelation over all repeated

Figure 2. Electrode grid locations for all eight participants.

Figure 3. Schematic representation of the data analysis. The left most panel depicts the original waveform of a musical rhythm. The
rhythm in this example is a “K x S x K x S x,” with K being the kick, S the snare, and x a pause. First, we extracted the envelope of
the continuously looped presentation of the rhythm, as shown in the middle top panel. The top right panel shows the autocorrelation
of the rhythm’s envelope. Note that the shown autocorrelation vector corresponds to the length of the original rhythm to emphasize
the relationship between waveform and autocorrelation. For the actual analysis, we used the whole autocorrelation vector over all
repeated presentations of the rhythm up to the Nyquist frequency. Simultaneously, we measured high-gamma activity from cortex
electrodes while participants are listening (or imagining) the rhythm. Similar to the musical rhythm, we extracted the envelope of the
high-gamma activity and calculated the autocorrelation. In a last step, we correlated the autocorrelation of high-gamma envelope
and musical rhythm envelope to obtain our dependent variable: ACC.
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presentations of the rhythm up to the Nyquist frequency.
This was done by taking the real component of an inverse
DFT of a pointwise multiplication of a DFT of the high-
gamma time series and its complex conjugate and then
dividing each element by the maximum element of the
vector. The same transformation was conducted on the
envelope of the musical rhythm’s waveform. High gamma
and musical rhythm autocorrelation were correlated with
one another to obtain the ACC. The resulting ACC be-
tween high-gamma brain activity and musical rhythms
were used to statistically assess whether high gamma
tracks musical rhythms. This process is schematically
represented in Figure 3. Visually, ACC can be described
as the correlation between the top and bottom right panels
in Figure 3. As a control, we extracted high-gamma activity,
envelope, and autocorrelation also for a condition where
participants were listening to white noise instead of the ac-
tual musical rhythms and calculated ACC.
We deployed a Bayesian mixed effect model to predict

the correlation between the autocorrelation of high
gamma and musical rhythms (ACC, scaled to mean=0,
SD=1) based on rhythm (unsyncopated vs syncopated),
and audio condition (listen vs imagine), and signal (white
noise vs rhythm). The model was provided with a random
effect for participant, electrode, tempo (120 vs 140 bpm),
and presentation (first vs second time a condition was
shown), resulting in the maximal random effect structure
as justified by the experimental design (Barr et al., 2013).
The models were implemented in the R-environment (R-
Core-Team, 2013) using the brms-package (Bürkner,
2017, 2018). The signal coefficient in combination with its
interaction terms allows us to inspect the evidence in
favor of whether high-gamma activity meaningfully tracks
musical rhythms, while controlling for brain activity that a
participant, at a given electrode location, would show
when listening to a length-matched white noise segment
instead of the actual musical rhythm. In other words, our

model is provided with the information of how high the
ACCs value between high gamma and musical rhythms
can be expected to be for every individual electrode and
participant, simply because of an auditory stimulus (here,
we use white noise as a control). The model predicts the
difference to this baseline, when participants are actually
listening or imagining the rhythms. The model was pro-
vided with a weakly informative prior Student’s t(3,0,1) and
ran on four chains with 1000 warm-ups and 10,000 itera-
tions each.

Results
In a first step, we explore whether high-gamma tracking

periodicities of the musical rhythms can be observed on a
broad spatial scale. For this, we deployed Bayesian
mixed effects models that compare ACCs obtained when
participants listened or imagined the rhythms to ACCs ob-
tained from the baseline. The baseline is the ACC be-
tween a musical rhythm and high gamma of a given
participant and electrode when listening to white noise.
Table 2 shows coefficient estimates (b ), 95% confidence

Table 2: Summary of evidence observed in each condition whether broad spatial high gamma tracks the periodicities of
musical rhythms more than baseline

Rhythm Audio condition b 95% CIb Evidence ratio
Unsyncopated Listen 0.1136 0.0827 to 0.1445 .9999p

Unsyncopated Imagine –0.0435 –0.0749 to –0.0125 0.0114
Syncopated Listen 0.0741 0.0432 to 0.1052 .9999p

Syncopated Imagine 0.1368 0.1049 to 0.1678 .9999p

We obtain strong evidence for broad spatial high-gamma tracking of the envelope of musical rhythms in the syncopated rhythms during listening and imagining,
as well as in the unsyncopated rhythm during listening. However, we do not observe evidence for whole-brain tracking of the unsyncopated rhythm during
imagination.
p effects that can be considered significant at a a = 0.05 level.

Table 3: Hypotheses performed on the model shown in Table 4

Rhythm Audio condition Hypothesis test
Unsyncopated Listen Rhythm . 0
Unsyncopated Imagine Rhythm 1 Rhythm:Imagined . 0
Syncopated Listen Rhythm 1 Rhythm:Syncopated . 0
Syncopated Imagine Rhythm 1 Rhythm:Syncopated 1 Rhythm:Imagined 1 Rhythm:Syncopated:Imagined . 0

The reference was placed at the white noise condition, unsyncopated, listening condition. Rhythm indicates that the actual rhythm rather than white noise was
heard. Unsyncopated and syncopated refer to the two different rhythms used. Imagined indicates that the rhythms were not played, and instead participants
were asked to imagine them.

Table 4: Model summary

Scaled ACC
Predictors Estimates CI (95%)
Intercept –0.67 –0.73 to –0.61
Rhythm 0.11 0.08 to 0.15
Syncopated 0.44 0.40 to 0.48
Imagined 0.82 0.78 to 0.85
Rhythm.Syncopated –0.04 –0.09 to 0.01
Rhythm.Imagined –0.16 –0.21 to –0.11
Syncopated.Imagined –0.00 –0.05 to 0.05
Rhythm.Syncopated.Imagined 0.22 0.15 to 0.29
N Electrode 518
Observations 16576
Marginal R2/conditional R2 0.216 / 0.629
s2 0.41
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intervals (CIs), as well as evidence ratios for the hypothe-
sis that there is elevated brain-wide high gamma tracks
the musical rhythm. For convenience, we denote with p

conditions that show “significant” tracking of periodicities

at an a = 0.05 level (evidence ratios. 19; see Milne and
Herff, 2020). The results of Table 2 are derived by per-
forming the hypothesis tests shown in Table 3 on the fit-
ted model shown in Table 4.

Figure 4. Number (first and second row) and magnitudes (third and fourth row) of electrodes that significantly track musical rhythms
in their high-gamma activity, pooled across participants and electrodes. Significance was defined by exceeding participant-wise
99% of the ACCs between musical rhythms and high gamma during the white-noise control condition. All conditions contain elec-
trodes that significantly track the musical rhythms. Normalized ACC values were obtained by subtracting the significance thresholds
from the observed ACCs. Error bars represent 95% CIs.

Table 5: Summary of evidence observed that normalized ACCs are higher during the second presentation compared with
the first presentation of each condition

Rhythm Tempo Audio condition b 95% CIb Evidence ratio
Unsyncopated 120 Listen 0.24 0.15 to 0.34 .9999p

Unsyncopated 120 Listen 0.20 0.11 to 0.30 .9999p

Unsyncopated 140 Imagine 0.32 0.23 to 0.42 .9999p

Unsyncopated 140 Imagine 0.28 0.18 to 0.37 .9999p

Syncopated 120 Listen 0.17 0.08 to 0.27 799p

Syncopated 120 Listen 0.12 0.03 to 0.22 65.56p

Syncopated 140 Imagine 0.14 0.05 to 0.24 136.93p

Syncopated 140 Imagine 0.21 0.06 to 0.30 3999p

We obtain strong evidence that normalized ACCs are higher in the second compared with the first presentation in all conditions.
p effects that can be considered significant at an a = 0.05 level.
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On a broad spatial scale, we observe strong evidence
(all evidence ratios. 9999) in favor of high-gamma auto-
correlations tracking the autocorrelations of the musical
rhythms in the syncopated rhythm during listening and
imagination, and in the unsyncopated rhythm during lis-
tening, but not imagination. When comparing the two
rhythms, the unsyncopated and the syncopated rhythms
show comparable ACCs in the listening condition (b =
0.04, EEb =0.03, 95% CIb = –0.004 to 0.83, evidence
ratio = 13.46). In the imagination condition, however, we
obtain strong evidence for higher ACCs in the syncopated
rhythm compared with the unsyncopated condition (b =

0.18, EEb =0.03, 95% CIb = 0.14 to 0.22, evidence ratio =
.9999p). Although we do not observe tracking on a broad
spatial scale in the unsyncopated imagination condition,
this does not imply that there are no electrodes for which
the high-gamma activity tracks the musical rhythms, as
can be seen in the electrode-wise results.
Figure 4 shows counts of the electrodes that signifi-

cantly track the musical rhythms’ periodicities, as well as
their normalized ACC. We calculated significance thresh-
olds for each participant and rhythm individually. For this,
we used the distribution of correlations between the ACC
of a musical rhythm and the ACC of high-gamma activity

Figure 5. Autocorrelations of the musical rhythm conditions and prefrontal example electrodes (blue-yellow, prefrontal cluster in
Fig. 6). The x-axis represents the sample (time). The autocorrelations of the listen condition look different to the autocorrelations of
the imagine condition, because there were more repetitions, thus samples, in the listen condition (six repetition at 120 bpm over 12
s; eight repetitions at 140 bpm over 13.7 s) before the audio dropped out, than there were samples in the silent imagine condition
(two repetitions in both tempi; 4 s at 120 bpm, 3.4 s at 140 bpm). There are electrodes in which high-gamma autocorrelations (blue)
significantly track the musical rhythms autocorrelations (red) in all conditions.
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while listening to length-matched white noise segments.
Correlations that exceed 99% of this distribution are
deemed significant. Normalized ACC values were ob-
tained by subtracting the ACC when listening to length-
matched white noise instead of listening or imagining the
musical rhythms. Each electrode in a given participant
was normalized by the white noise ACC of the same elec-
trode in that participant. As can be seen in Figure 4, each
condition contains electrodes in which high-gamma auto-
correlations track the autocorrelations of the respective
musical rhythms.
Figure 4 also suggests an increase in the number of sig-

nificant electrodes between first and second presentation
of each condition (i.e., higher bars in the second row com-
pared with the first). A Bayesian mixed model supports
this. The model predicts normalized ACC based on pre-
sentation number (first vs second), while controlling for
participant and electrode. The model reveals an increase
in normalized ACC in all conditions (all evidence
ratios.65p). This can be seen in Table 5.
To investigate the potential overlap between significant

electrodes in listening and imagination we used a Bayesian
mixed effects models predicting SignificanceDuringImagi-
nation (binary factor with 1=significant, 0 =not significant),
based on SignificanceDuringListening (and vice versa),
while controlling for rhythm, tempo, participant, presenta-
tion, and electrode. We observe very strong evidence that
SignificanceDuringListening predicts SignificanceDuring
Imagination (b = 1.83, EEb =0.25, 95% CIb = 1.43–2.24,
evidence ratio = .9999p) and vice versa (b = 2.51,
EEb =0.26, 95% CIb = 2.01–2.94, evidence ratio =
.9999p). This suggests high predictive information be-
tween the electrodes that are significant in listening and
those that are significant during imagination. Further insight
is provided in the topography section of the results.

To visualize the tracking, Figure 5 shows examples for
each condition. The red line shows the autocorrelation of
a given musical rhythm. The blue line shows the autocor-
relation of an example electrode.
This study is predominantly concerned with high

gamma; however, we performed the same analysis on the
beta band (12–30Hz) to see whether high-gamma activity
carries information that is not contained in other fre-
quency bands. We chose beta because it was suggested
by the reviewers and prior work suggests an involvement
of beta in neural processing of musical rhythms (Chang et
al., 2016). We observed strong evidence that there are
more electrodes that significantly correlate with the musical
rhythms’ autocorrelations using high gamma compared
with beta (b = 2.17, EEb =0.72, 95% CIb = 0.98–3.4, evi-
dence ratio=2799p). Furthermore, the increase in normal-
ized ACC between first and second presentation that is
observed in all conditions in high gamma is not observed in
beta in any condition (all evidence ratios, 5.78), with the
exception of the unsycopated rhythm at 140 bpm in the im-
agined condition (evidence ratio=799p). However, it is
worth mentioning that we also found some electrodes that
correlated with the musical rhythms’ autocorrelations in
the beta autocorrelations.

Topography
To localize the effect, we plotted all electrodes on a

joint brain map. Figure 6 shows heat maps of mean nor-
malized ACC for listening (Fig. 6, top) and imagining (Fig.
6, bottom) across all rhythms and tempi.

Discussion
The present study investigated the involvement of high

gamma in listening as well as imagining musical rhythms

Figure 6. A joint brain map for all participants across all conditions. Heat maps visualize mean normalized ACC across all rhythms
and tempo. Significant ACCs can be observed particularly in the frontal areas of the right hemisphere. These ACCs are also signifi-
cant during the imagine condition.
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using brain activity of eight participants measured
through invasive ECoG. Bayesian mixed effects models
provided compelling support that high-gamma activity
tracks the envelope of musical rhythms. Specifically, we
deployed an analytical approach that emphasizes the pe-
riodicity in musical rhythms by investigating correlations
between the autocorrelations of musical rhythms and the
autocorrelations of high-gamma brain activity. In all listen-
ing conditions the models support the conclusion that
high-gamma activity captures the periodicity in musical
rhythms. We observe the same in all but one condition:
when participants are imagining the rhythms, rather than
listening to them. Taken together, it appears that during
imagination, neural populations display similar high-
gamma activity that tracks the envelope of the imagined
stimulus, usually observed when acoustic stimuli are ac-
tually present. This may be preliminary support for the no-
tion that, on a neural level, imagination involves activity of
the reactive neural response associated with the presence
of the stimulus.
The present finding supports previous ECoG studies

that highlight the importance of high-gamma activity in
auditory processing (Leuthardt et al., 2011; Pei et al.,
2011; Schalk and Leuthardt, 2011; Pasley et al., 2012;
Potes et al., 2012; Sturm et al., 2014; Herff et al., 2015;
see Cervenka et al., 2011). Specifically, our results repli-
cate the findings that high gamma tracks music envelopes
(Sturm et al., 2014). Such replications are important, be-
cause ECoG studies operate with very small sample
sizes. Furthermore, we extend the finding to imagination,
and a periodicity tagging approach. The direct approach
of directly correlating high gamma with stimulus envelope
deployed by (Sturm et al., 2014) relies on relatively long
segments, clean data, and a phase locking. Furthermore,
correlating high gamma with the stimulus envelope can
only identify neural population that engage in envelope
matching. Yet, there are various ways in which high-
gamma activity could theoretically code the stimulus. The
present approach is able to identify neural populations
that engage in envelope matching as well as those that
match any form of distinct activity pattern to the periodici-
ties of the stimuli. As such, we put the present approach
forward as a useful tool to identify brain regions of inter-
est. The identified regions could then be further analyzed
to characterize the nature of the activity pattern that
tracks the periodicities of the stimuli. It is important to
note that the present approach correlates the two auto-
correlations with one another. It is possible that other
metrics of similarity, such as cosine similarity, Weissman
score, or shared mass, could work equally well or even
better. Future work could investigate the benefits of more
sophisticated similarity measures.
The unsyncopated and the syncopated rhythms show

comparable ACCs in the listening condition. This is worth
noting as the syncopated rhythm could be considered the
more complicated rhythm (Fitch and Rosenfeld, 2007).
The stronger tagging of the syncopated rhythm compared
with the unsyncopated rhythm in the imagination condi-
tion is unexpected. A possible explanation could be, that
the syncopated rhythm may be more interesting and

engaging for participants, having a “groove” that makes it
easier to entrain. A different explanation considering the
order in which the conditions were presented is provided
in the limitations section.
High-gamma activity showed a greater number of sig-

nificant electrodes compared with beta activity. High
gamma also shows a strong increase in normalized ACCs
between first and second presentation in all conditions.
This increase was only seen in one condition for beta (un-
syncopated, 140 bpm, imagined). The strong evidence for
an increase in normalized ACCs between first and second
presentation in high gamma, but not beta, may suggest
that some form of higher order auditory processing is in-
volvement in periodicity tagging in high gamma that im-
proves with increased exposure. A possible candidate
could be a prediction-based mechanism that shows
clearer activation patterns when familiar with a rhythm.
While high gamma showed more significant electrodes,
there were some electrodes that also showed significant
tagging of the musical rhythms’ periodicities in the beta
band. This is interesting because beta can be reliable cap-
tured in EEG, whereas high gamma cannot. A future study
could investigate whether periodicity tagging can be
shown using EEG and the ACCs in the beta band.

Topography
Electrodes with significant ACCs can be found in auditory

areas in the superior temporal gyrus and in frontal areas on
both hemispheres. Numerous significant electrodes are ob-
served on the right hemisphere which is in accordance with
previous findings (Thaut et al., 2014). However, due to the
better coverage of the right hemisphere compared with
the left hemisphere, we cannot draw conclusions about
hemispherical dominance (151 left hemisphere, 286 right
hemisphere). Of particular interest is the large cluster of
electrodes in the right prefrontal cortex that are active during
both rhythm perception and imagined perception, which in-
dicate conscious processing of the rhythm structure as op-
posed to mere auditory phenomena. This finding mirrors
research that also observed frontal high gamma when imag-
ining familiar music (Ding et al., 2019). The previous study
also found elevated high-gamma activation in the temporal
lobe during imagination. Here, we did not observe that high
gamma in the temporal lobe represents the periodicities of
the musical rhythms during imagination like the prefrontal
cortex does. However, this could simply be due to a differ-
ence in methodology. The previous study (Ding et al., 2019)
focused on areas that show elevated high-gamma activity
and/or areas where gamma activity tracks the music’s enve-
lope. The present study uses musical rhythms rather than
familiar music, and focuses on areas that track the rhythms’
periodicities, regardless of overall activity. However, any
area that closely tracks the audio envelope in the present
dataset would have been identified by our periodicity-tag-
ging approach, thus further research is required to elucidate
the role of the temporal lobe during imagination.

Limitations
An important limitation in the present design is that

what we and others (Ding et al., 2019) liberally term
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“imagination” is in fact an “imaginary continuation” of the
rhythms. In theory, such a continuation could be function-
ally distinct from unprompted imagination. In fact, it is
possible that if the imagination condition would have
lasted longer, then potentially the high-gamma represen-
tation of the rhythms’ periodicity may have diverged. This
is an empirical question for a future study. Despite using
stimuli that showed no spectral peaks in the critical band
(70–170 Hz), when using naturalistic drum sounds, it is im-
possible to avoid energy across the spectrum. It is there-
fore possible that that the neural patterns observed are
event related potentials, rather than ongoing neural activ-
ity. However, the prefrontal location, as well as activity
during imagination would require further thought to ex-
plain through event related potentials. Furthermore, the
unsyncopated imagination condition that did not show
brain-wide significant tracking of the rhythms periodicity
in high gamma urges caution interpretation of the present
results. This is, because the condition was the simpler
rhythm. If anything, we would have expected this condi-
tion to show the strongest effect. A possible explanation
lies in the fact that this condition was always tested first.
Potentially, participants were not yet familiar with the
imagination task to evoke a reliable effect. Some support
for this explanation can be gained from the increase in nor-
malized ACC as well as number of significant electrodes be-
tween first and second presentation of the conditions.
Furthermore, as common in invasive brain studies, we were
operating with small participant numbers, and despite our
best efforts of making the most of the data at hand, by de-
ploying a Bayesian framework, we simply may not have the
statistical power to compensate for all sources of random
variability.

Conclusion
Deploying an analytical approach that emphasizes the

periodicity in musical rhythms, we found that high-
gamma brain activity in auditory areas tracks periodicity
when listening to musical rhythms. Furthermore, we found
that high-gamma activity in the prefrontal cortex tracks
periodicity of musical rhythms both during listening and
imagination.
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