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UNIVERSAL GRADINGS OF ORDERS

H. W. LENSTRA, JR. AND A. SILVERBERG

Abstract. An order is a commutative ring of which the additive group is a finitely generated
free abelian group, and a graded order is an order that is provided with a grading by some abelian
group. Examples are provided by group rings of finite abelian groups over rings of integers in
number fields. We generalize known properties of nilpotents, idempotents, and roots of unity in
such group rings to the case of graded orders. Our main result is that every reduced order has a
grading that is universal in a natural sense. Most of our proofs depend on the observation that
the additive group of any reduced order can in a natural way be equipped with a lattice structure.

1. Introduction

In the present paper we are interested in gradings of orders. All rings are supposed to be com-

mutative. A ring is reduced if it has no non-zero nilpotent elements, where an element x is called
nilpotent if xn = 0 for some n ∈ Z>0. By an order we mean a ring A of which the additive group
A+ is isomorphic to Zn for some n ∈ Z≥0.

Suppose A is a ring, and Γ is a multiplicatively written abelian group with identity element 1.
Then a Γ-grading of A is a system B = (Bγ)γ∈Γ of additive subgroups Bγ ⊂ A that satisfies:

(i) Bγ · Bγ′ ⊂ Bγγ′ for all γ, γ′ ∈ Γ, and
(ii) A =

⊕

γ∈ΓBγ in the sense that the additive group homomorphism
⊕

γ∈ΓBγ → A sending

(xγ)γ∈Γ to
∑

γ∈Γ xγ is bijective.

One of our main results concerns universal gradings. If f : Γ → ∆ is a homomorphism of abelian
groups, then each Γ-grading B = (Bγ)γ∈Γ of a ring A gives rise to a ∆-grading (

∑

γ∈f−1(δ) Bγ)δ∈∆

of A. This ∆-grading is denoted f∗B. By a universal grading of a ring A we mean a pair (Γ,B)
consisting of an abelian group Γ and a Γ-grading B of A with the property that for each abelian
group ∆ and each ∆-grading C of A there is a unique group homomorphism f : Γ → ∆ such that
C = f∗B. If a universal grading of A exists, then by a standard argument it is, in an obvious sense,
unique up to a unique isomorphism; and it exists if and only if the functor that assigns to an abelian
group ∆ the set of ∆-gradings of A is representable.

Many naturally occurring rings fail to have a universal grading (see Examples 7.3(i–iii)). Re-
markably, we have the following result.

Theorem 1.1. Every reduced order has a universal grading by some finite abelian group.

Theorem 1.1 has applications to isomorphism problems for commutative group rings [3]. For the
proof, see section 9.

It seems likely that our “archimedean” proof of Theorem 1.1 can be replaced by a p-adic one that
applies to algebras over more general base rings than Z. While our proof of Theorem 1.1 readily
implies that there is an algorithm that, when given a reduced order, computes its universal grading,
it is doubtful whether this can be done in polynomial time.

2010 Mathematics Subject Classification. 13A02.
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2 H. W. LENSTRA, JR. AND A. SILVERBERG

We also prove a result (Theorem 1.2) concerning nilpotents, idempotents, and roots of unity in
graded orders.

Let A be a ring. The set of nilpotent elements of A is an ideal of A, denoted
√
0 or

√
0A and

called the nilradical. We call x ∈ A an idempotent if x2 = x. We denote the set of idempotents by
Id(A), and we call A connected if #Id(A) = 2 or, equivalently, if one has Id(A) = {0, 1} and A 6= 0.
We call x ∈ A a root of unity if xn = 1 for some n ∈ Z>0. The set of roots of unity of A, which is a
subgroup of the group A∗ of units of A, is denoted by µ(A).

Let A be a ring and let (Bγ)γ∈Γ be a Γ-grading of A. Then the subgroup B1 of A is a subring
of A that contains the identity element of A (see Lemma 2.1). We shall call an additive subgroup
H ⊂ A homogeneous if for each (xγ)γ∈Γ ∈ ⊕

γ∈Γ Bγ one has that
∑

γ∈Γ xγ is in H if and only if

each xγ is in H (i.e., H =
⊕

γ∈Γ(H ∩ Bγ) via the bijection in (ii) above). This terminology will in
particular be applied to ideals and to subrings of A. An element of A is called homogeneous if it
belongs to

⋃

γ∈ΓBγ .

Theorem 1.2. Let Γ be an abelian group, and let A be an order with Γ-grading (Bγ)γ∈Γ. Then:

(i) the nilradical
√
0A is a homogeneous ideal of A;

(ii) Id(A) = Id(B1), and A is connected if and only if B1 is connected;

(iii) if B1 is connected, then each element of µ(A) is homogeneous.

The three parts of Theorem 1.2 are proved in Propositions 4.1, 5.9, and 6.2, respectively. Part
(iii) plays an important role in other recent work of the authors; see [2].

If B is an order and Γ is a finite abelian group, then a Γ-grading of the group ring B[Γ] is given
by (B · γ)γ∈Γ. The statements of Theorem 1.2 in this case are known and can be deduced from
results in [4] (Proposition 2 of [4] for (i), the Corollary to Proposition 3 for (ii), and the Corollary
to Proposition 10 for (iii)).

Our proofs depend on two techniques. The first, which is more or less standard, consists of
equipping a Γ-graded ring with an action by the dual of Γ, after a suitable cyclotomic base change;
here Γ is supposed to be finite. The second, which is of a less algebraic nature, depends on the
introduction of a natural lattice structure on any reduced order.

Acknowledgments. We thank Warren May for providing the references to [4].

2. Graded rings

In this section we give some lemmas that we will use to prove our main results.

Lemma 2.1. Suppose A is a ring, Γ is an abelian group, and (Bγ)γ∈Γ is a Γ-grading of A. Then:

(i) 1 ∈ B1,

(ii) B1 is a ring, and

(iii) each Bγ is a B1-module.

Proof. Write 1 = (1γ)γ∈Γ ∈ A. Take any δ ∈ Γ and α ∈ Bδ. Then α = 1 · α = (1γ)γ∈Γ · (αγ)γ∈Γ

where αδ = α and αγ = 0 for all γ 6= δ. Comparing δ-coordinates we have α = 11 · α, and likewise
α = α · 11. So 11 acts left and right as the identity on each Bδ, and hence on A. Thus, 1 = 11 ∈ B1,
proving (i). Parts (ii) and (iii) are straightforward. �

If Γ is an abelian group and k ∈ Z, let Γk = {γk : γ ∈ Γ}.

Lemma 2.2. Suppose Γ is an abelian group, B = (Bγ)γ∈Γ is a Γ-grading of a commutative ring A,
and the set S = {γ ∈ Γ : Bγ 6= 0} is finite. Then there are a finite abelian group ∆ and a ∆-grading

C = (Cδ)δ∈∆ of A such that
⋃

γ∈Γ Bγ =
⋃

δ∈∆ Cδ.
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Proof. We can and do replace Γ with 〈S〉. Since {1} =
⋂

N∈Z>0
ΓN , if s, t ∈ S with s 6= t then there

exists Ns,t ∈ Z>0 such that st−1 /∈ ΓNs,t . Let M = lcms,t∈S,s6=t{Ns,t}, let c : Γ → Γ/ΓM be the
canonical projection map, and let C = c∗B = (Cδ)δ∈Γ/ΓM . By construction, the restriction of c to

S is injective, and the desired result now follows with ∆ = Γ/ΓM . �

Lemma 2.3. Suppose A is a commutative ring, Γ is an abelian group, B = (Bγ)γ∈Γ is a Γ-grading
of A, and (Γ,B) is universal. Then Γ = 〈γ ∈ Γ : Bγ 6= 0〉.
Proof. Put ∆ = Γ/〈γ ∈ Γ : Bγ 6= 0〉, and let t, c : Γ → ∆ be the trivial and the canonical map,
respectively. Then t and c agree on each γ with Bγ 6= 0, so t∗B = c∗B, and by universality one gets
t = c so ∆ = {1}. �

Lemma 2.4. Suppose Γ is an abelian group, A is either a commutative Q-algebra with dimQA < ∞
or an order, and (Bγ)γ∈Γ is a Γ-grading of A. Then Bγ = 0 for all but finitely many γ ∈ Γ.

Proof. This holds since A =
⊕

γ∈ΓBγ , andA has finite Z-rank (if A is an order) or finite Q-dimension

(if A is a finite dimensional commutative Q-algebra). �

Suppose k ∈ Z>0. With Φk denoting the k-th cyclotomic polynomial and ζk = X+(Φk), we have

Z[ζk] = Z[X ]/(Φk) =
⊕ϕ(k)−1

i=0 Z · ζik, where ϕ is the Euler ϕ-function. Suppose A is a ring, Γ is an
abelian group, and (Bγ)γ∈Γ is a Γ-grading of A. Then Bγ [ζk] = Bγ ⊗Z Z[ζk] is a module over B1[ζk]
for all γ ∈ Γ, and A[ζk] = A⊗Z Z[ζk] =

⊕

γ∈Γ(Bγ [ζk]) is a Γ-graded ring that contains A. If Γ is a
finite group whose exponent divides k, we let

Γ̂k = Hom(Γ, 〈ζk〉),
a multiplicative group with #Γ̂k = #Γ.

Lemma 2.5. Suppose A is a ring, Γ is a finite abelian group, (Bγ)γ∈Γ is a Γ-grading of A, and

k is a positive integer divisible by the exponent of Γ. For χ ∈ Γ̂k, and α = (αγ)γ∈Γ ∈ A[ζk] with
αγ ∈ Bγ [ζk], define

χ ∗ α = (χ(γ) · αγ)γ∈Γ ∈ A[ζk].

This defines an action of Γ̂k on A[ζk] by ring automorphisms, and for all δ ∈ Γ and α = (αγ)γ∈Γ ∈
A[ζk] one has

∑

χ∈Γ̂k

χ ∗ (χ(δ)−1α) = #Γ · αδ ∈ Bδ[ζk] ⊂ A[ζk].

Proof. The proof is an easy exercise. The last statement follows from the fact that if δ ∈ Γ then
∑

χ∈Γ̂k
χ(δ) is #Γ if δ = 1, and otherwise is 0. �

3. Euclidean vector spaces, lattices, and orders

A Euclidean vector space is a finite dimensional R-vector space E equipped with a map 〈 , 〉 :
E × E → R, (x, y) 7→ 〈x, y〉 that is R-bilinear, symmetric, and positive definite.

Example 3.1. Suppose E is a finite dimensional R-vector space equipped with a map 〈 , 〉 :
E × E → R that is R-bilinear, symmetric, and positive semidefinite. Let

rad(E) = {x ∈ E : 〈x,E〉 = 0}.
Then rad(E) = {x ∈ E : 〈x, x〉 = 0}, and 〈 , 〉 makes E/rad(E) into a Euclidean vector space.

Example 3.2. Suppose E is a commutative R-algebra with dimR(E) < ∞. For all x, y ∈ E, let

〈x, y〉 =
∑

σ:E→C σ(x)σ(y), where σ ranges over all R-algebra homomorphisms from E to C. Then
rad(E) =

√
0E . (If x ∈

√
0E then σ(x) = 0 for all σ, so 〈x, y〉 = 0 for all y, so x ∈ rad(E). Conversely,

E/
√
0E is a product of fields, and these fields are R and C. Since the inner products on R and C

are positive definite, so is the inner product on E. Thus rad(E/
√
0E) = 0, so rad(E) ⊂ √

0E .)
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Recall that a lattice is a finitely generated free abelian group L equipped with a positive definite
symmetric R-bilinear function 〈 , 〉 : LR × LR → R, where LR = L⊗Z R.

Example 3.3. Suppose A is an order. Then E = AR is a finite dimensional R-vector space equipped
with an R-bilinear, symmetric, positive semidefinite inner product 〈 , 〉 : E ×E → R as in Example
3.2. Further, rad(E) =

√
0E = (

√
0A)R, and thus A/

√
0A has a natural lattice structure. (That

(
√
0A)R ⊂

√
0E is clear. For the reverse inclusion, A/

√
0A is a reduced order, so (A/

√
0A)Q is a

product of finitely many number fields, so is a product of finitely many separable extensions of Q.
It follows that (A/

√
0A)R = E/(

√
0A)R is a product of finitely many separable extensions of R, so

is reduced.)

Lemma 3.4. Suppose Γ is an abelian group, A is either a commutative Q-algebra with dimQA < ∞
or an order, (Bγ)γ∈Γ is a Γ-grading of A, and A has no non-zero homogeneous nilpotent elements.

Then:

(i) if δ ∈ Γ and δ has infinite order, then Bδ = 0;
(ii) the subgroup 〈γ ∈ Γ : Bγ 6= 0〉 is finite.

Proof. By Lemma 2.4, for all but finitely many γ ∈ Γ we have Bγ = 0. Suppose δ ∈ Γ has infinite
order. Then there exists N ∈ Z>0 such that BδN = 0. Suppose x ∈ Bδ. Then xN ∈ (Bδ)

N ⊂ BδN =
0, so x is homogeneous and nilpotent. By our assumption, x = 0, proving (i). Thus the abelian
group 〈γ ∈ Γ : Bγ 6= 0〉 is generated by finitely many elements of finite order, so this group is finite,
proving (ii). �

Corollary 3.5. Suppose Γ is an abelian group, A is a reduced order, and B = (Bγ)γ∈Γ is a Γ-grading
of A. Then:

(i) the subgroup 〈γ ∈ Γ : Bγ 6= 0〉 is finite;

(ii) if (Γ,B) is universal, then Γ is finite.

Proof. Since A is reduced, it has no non-zero nilpotent elements, so (i) follows from Lemma 3.4(ii).
Part (ii) now follows from (i) and Lemma 2.3. �

4. Nilpotent and separable elements

If R is a ring and m ∈ Z>0, we write R+[m] for the m-torsion in the additive group R.

Proposition 4.1. Suppose A is a ring, Γ is an abelian group, and (Bγ)γ∈Γ is a Γ-grading of A.

(i) If Γ is finite and α = (αγ)γ∈Γ ∈ √
0A, then #Γ · αδ ∈

√
0A for all δ ∈ Γ.

(ii) If Γ is finite and A+[#Γ] = 0, then
√
0A is a homogeneous ideal.

(iii) If A is an order, then
√
0A is a homogeneous ideal.

Proof. We first prove (i). Let k denote the exponent of the finite group Γ and let A′ = A[ζk]. We

have α ∈
√
0A ⊂

√
0A′ , and since

√
0A′ is an ideal we have χ(δ)−1α ∈

√
0A′ for all χ ∈ Γ̂k and

δ ∈ Γ. Since Γ̂k acts by ring automorphisms (Lemma 2.5), we have
∑

χ∈Γ̂k
χ ∗ (χ(δ)−1α) ∈ √

0A′ for

all δ ∈ Γ. By Lemma 2.5 we now have #Γ · αδ ∈
√
0A′ ∩ A =

√
0A for all δ ∈ Γ.

We next prove (ii). Clearly,
⊕

γ∈Γ(
√
0A ∩ Bγ) ⊂ √

0A. For the reverse inclusion, suppose

α = (αγ)γ∈Γ ∈
√
0A and δ ∈ Γ. By (i) we have (#Γ · αδ)

N = 0 for some N ∈ Z>0. But
(#Γ · αδ)

N = (#Γ)NαN
δ . If A+[#Γ] = 0, then αN

δ = 0, so αδ ∈ √
0A as desired.

For (iii), let I denote the ideal generated by the homogeneous nilpotent elements of A, i.e., I
is the largest homogeneous ideal of A contained in

√
0A. Then A/I has a Γ-grading (Cγ)γ∈Γ with

Cγ = Bγ/(
√
0A ∩Bγ), and A/I is an order with no non-zero homogeneous nilpotent elements. By

Lemma 3.4(ii), the subgroup 〈γ ∈ Γ : Cγ 6= 0〉 is finite; we can and do replace Γ with this finite
group. Since orders have no non-zero torsion, (iii) now follows from (ii). �
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The following example shows that the condition that A+[#Γ] = 0 cannot be dropped from
Proposition 4.1(ii).

Example 4.2. Suppose p is a prime number and Γ is any finite abelian group of order divisible
by p. Then A = Fp[Γ] =

⊕

γ∈Γ Fp · γ is a Γ-graded ring and (
∑

γ∈Γ γ)
2 = #Γ

∑

γ∈Γ γ = 0. So
∑

γ∈Γ γ ∈
√
0A, but the coordinates γ of

∑

γ∈Γ γ are units and thus are not nilpotent, so the ideal√
0A is not homogeneous.

We call a polynomial f ∈ Q[X ] separable if f is coprime to its derivative f ′. If E is a commutative
Q-algebra with dimQE < ∞, then α ∈ E is called separable if there exists a separable polynomial
f ∈ Q[X ] with f(α) = 0. We write Esep for the set of separable elements of E. Note that Esep is a
sub-Q-algebra of E (see for example Lemma 2.2 of [1]).

Proposition 4.3. If Γ is an abelian group and E =
⊕

γ∈ΓEγ is a Γ-graded commutative Q-algebra

with dimQE < ∞, then both Esep and
√
0E are homogeneous.

Proof. By Lemma 2.4 the set {γ ∈ Γ : Eγ 6= 0} is finite, and by Lemma 2.2 we may assume Γ is finite.
For

√
0E , see Proposition 4.1(ii). For Esep, the proof is the same. Namely, suppose α = (αγ)γ∈Γ ∈

Esep and let E′ = E ⊗Z Z[ζk] with k the exponent of Γ. Then χ(δ)−1 ∈ 〈ζk〉 ⊂ (E′)sep, and (E′)sep
is a ring that is stable under the ring automorphisms of E′. As in the proof of Proposition 4.1, we
obtain #Γ · αδ ∈ (E′)sep ∩ E = Esep for all δ ∈ Γ. Since (#Γ)−1 ∈ Q ⊂ Esep, we have αδ ∈ Esep for
all δ ∈ Γ, as desired. �

5. Idempotents in graded orders

Suppose L is a lattice. If z ∈ L, then a decomposition of z in L is a pair (x, y) ∈ L×L such that
z = x+ y and 〈x, y〉 ≥ 0. We say that such a decomposition is non-trivial if x 6= 0 and y 6= 0. Call z
indecomposable (in L) if the number of decompositions of z equals 2, or equivalently, if z 6= 0 and z
has no non-trivial decompositions.

Remark 5.1. If L is a lattice and z = x+ y with x, y, z ∈ L, then:

(i) 〈x, y〉 ≥ 0 ⇐⇒ 〈z, z〉 ≥ 〈x, x〉 + 〈y, y〉,
(ii) 〈x, y〉 = 0 ⇐⇒ 〈z, z〉 = 〈x, x〉 + 〈y, y〉.

Remarks 5.2. (i) If z is a shortest non-zero vector in a lattice L, then z is indecomposable.
(ii) If L is a lattice, then L is generated by its set of indecomposable elements.

If B and C are rings, we write Rhom(B,C) for the set of ring homomorphisms from B to C.
Recall that Id(A) denotes the set of idempotents of a ring A. Below we use the natural lattice
structure on a reduced order that was given in Example 3.3.

Lemma 5.3. If A is a reduced order and x ∈ A, then 〈x, x〉 ≥ #{σ ∈ Rhom(A,C) : σ(x) 6= 0}.
Proof. If σ(x) = 0 for all σ ∈ Rhom(A,C), then x = 0 (see for example Lemma 3.1 of [2]), and
the desired result holds. Assume that x 6= 0. Applying the arithmetic-geometric mean inequality to
obtain the first inequality below, and using that

∏

σ(x) 6=0 σ(x)σ(x) ∈ Z>0 for the second, we have

〈x, x〉 =
∑

σ∈Rhom(A,C)
σ(x)6=0

σ(x)σ(x) = #{σ : σ(x) 6= 0} ·
∑

σ(x) 6=0 σ(x)σ(x)

#{σ : σ(x) 6= 0}

≥ #{σ : σ(x) 6= 0} ·





∏

σ(x) 6=0

σ(x)σ(x)





1/#{σ:σ(x) 6=0}

≥ #{σ : σ(x) 6= 0}.

�
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Lemma 5.4. If A is a reduced order and e ∈ Id(A), then 〈e, 1− e〉 = 0.

Proof. Since e ∈ Id(A), for all σ ∈ Rhom(A,C) we have σ(e) ∈ {0, 1}, so σ(e)σ(1 − e) = 0. Thus,

〈e, 1− e〉 =
∑

σ∈Rhom(A,C) σ(e)σ(1 − e) = 0. �

Proposition 5.5. Suppose A is a reduced order. Then the map

F : Id(A) → {decompositions of 1 in A}
defined by e 7→ (e, 1− e) is a bijection, and its inverse sends a decomposition (x, y) of 1 to x.

Proof. We first show that the map F is well-defined. Suppose e ∈ Id(A). By Lemma 5.4 we have
〈e, 1− e〉 = 0. Thus (e, 1− e) is a decomposition of 1 in A, as desired.

The map F is clearly injective. To see that it is surjective, suppose (x, y) is a decomposition of 1
in A. By Lemma 5.3 we have 〈x, x〉 ≥ #{σ ∈ Rhom(A,C) : σ(x) 6= 0}, and the same with y in place
of x. Using that x+ y = 1 to obtain the third equality, it follows that

#Rhom(A,C) = rankZA = 〈1, 1〉 ≥ 〈x, x〉 + 〈y, y〉
≥ #{σ ∈ Rhom(A,C) : σ(x) 6= 0}+#{σ ∈ Rhom(A,C) : σ(y) 6= 0}

= #Rhom(A,C) + #{σ ∈ Rhom(A,C) : σ(x) 6= 0, σ(y) 6= 0}
= #Rhom(A,C) + #{σ ∈ Rhom(A,C) : σ(xy) 6= 0}.

Thus for all σ ∈ Rhom(A,C) we have σ(xy) = 0. So x(1 − x) = xy = 0. Thus, x ∈ Id(A) so F is
surjective. �

Corollary 5.6. Suppose A is a reduced order. Then A is connected if and only if 1 is indecomposable.

Lemma 5.7. Suppose A is a reduced order, Γ is a finite abelian group, and (Bγ)γ∈Γ is a Γ-grading
of A. Let k denote the exponent of the group Γ and let A′ = A⊗Z Z[ζk]. Then:

(i) A′ is reduced;

(ii) Rhom(A′,C) ∼= Rhom(A,C)× Rhom(Z[ζk],C);
(iii) for all α, β ∈ A ⊂ A′ we have 〈α, β〉A′ = ϕ(k)〈α, β〉A, where 〈 , 〉A′ and 〈 , 〉A are the

inner products of Example 3.3 for A′ and A, respectively.

Proof. Part (i) holds since A′
Q = AQ ⊗Q Q(ζk) is a separable algebra over Q (since AQ and Q(ζk)

are). Part (ii) is immediate. Part (iii) follows from (ii) since #Rhom(Z[ζk],C) = ϕ(k), so each
element of Rhom(A,C) has ϕ(k) extensions to A′. �

Proposition 5.8. Suppose A is a reduced order, Γ is an abelian group, (Bγ)γ∈Γ is a Γ-grading of

A, and 〈 , 〉 is the inner product of Example 3.3. Suppose γ, δ ∈ Γ and γ 6= δ. Then 〈Bγ , Bδ〉 = 0.

Proof. The conclusion is clear if Bγ = 0 or Bδ = 0. Thus, we can (and do) replace Γ by the subgroup
〈γ ∈ Γ : Bγ 6= 0〉, which is finite by Lemma 3.5(i).

Let k denote the exponent of the group Γ and embed A in A′ = A[ζk] =
⊕

γ∈Γ B
′
γ where

B′
γ = Bγ ⊗Z Z[ζk]. It suffices to show 〈B′

γ , B
′
δ〉A′ = 0. Let α ∈ B′

γ and β ∈ B′
δ. Choose χ ∈ Γ̂k such

that χ(γ) 6= χ(δ). Since χ acts on A′ by a ring automorphism (Lemma 2.5) we have

〈α, β〉A′ = 〈χ ∗ (α), χ ∗ (β)〉A′ = 〈χ(γ)α, χ(δ)β〉A′ = 〈α, χ(γ)−1χ(δ)β〉A′ .

Thus,

(5.8.1) 〈B′
γ , (1− χ(γ)−1χ(δ))B′

δ〉A′ = 0.

We have χ(γ)−1χ(δ) ∈ 〈ζk〉 r {1}. Thus, 1 − χ(γ)−1χ(δ) divides
∏k−1

i=1 (1 − ζik) = k in Z[ζk]. By
(5.8.1) we now have 0 = 〈B′

γ , kB
′
δ〉A′ = k〈B′

γ , B
′
δ〉A′ . Thus, 〈B′

γ , B
′
δ〉A′ = 0. �
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Proposition 5.9. Suppose A is an order, Γ is an abelian group, and (Bγ)γ∈Γ is a Γ-grading of A.
Then Id(A) = Id(B1), and A is connected if and only if B1 is connected.

Proof. The inclusion Id(B1) ⊂ Id(A) is clear. For the reverse inclusion, take e = (eγ)γ∈Γ ∈ Id(A).
We first assume A is reduced. By Lemma 2.1(i) we have (1− e)γ = −eγ if γ 6= 1, and (1− e)1 =

1− e1. By Lemma 5.4 and Proposition 5.8 we have

0 = 〈e, 1− e〉 =
∑

γ∈Γ

〈eγ , (1 − e)γ〉 = 〈e1, 1− e1〉 −
∑

γ 6=1

〈eγ , eγ〉 ≤ 〈e1, 1− e1〉,

so (e1, 1− e1) is a decomposition of 1. Now Proposition 5.5 and Lemma 5.4 give 〈e1, 1− e1〉 = 0 so
0 =

∑

γ 6=1〈eγ , eγ〉, and all eγ with γ 6= 1 are 0. Hence e ∈ B1.

For the general case, the natural maps Id(A) → Id(A/
√
0A) and Id(B1) → Id(B1/

√
0B1) are

bijections (this follows, for example, from Theorem 1.5 of [1]). By the reduced case, the natural
map Id(B1/

√
0B1) → Id(A/

√
0A) is a bijection. It follows that the inclusion Id(B1) →֒ Id(A) is a

bijection. In particular, A is connected if and only if B1 is connected. �

6. Roots of unity in graded orders

Lemma 6.1. If A is a reduced order, Γ is an abelian group, (Bγ)γ∈Γ is a Γ-grading of A, and α ∈ A
is indecomposable, then there exists δ ∈ Γ such that α ∈ Bδ.

Proof. Pick δ ∈ Γ with αδ 6= 0. Then α = αδ+(α−αδ), and we have αδ ∈ Bδ and α−αδ ∈ ⊕

γ 6=δ Bγ ,

so 〈αδ, α− αδ〉 = 0 by Proposition 5.8. Since (αδ, α− αδ) cannot be a non-trivial decomposition of
the indecomposable element α, we have α− αδ = 0 as desired. �

Proposition 6.2. If A is an order, Γ is an abelian group, (Bγ)γ∈Γ is a Γ-grading of A, and B1 is

connected, then µ(A) ⊂ ⋃

γ∈ΓBγ .

Proof. Proposition 5.9 shows that A is connected. Take ζ = (ζγ)γ∈Γ ∈ µ(A).
First suppose A is reduced. Then 1 is indecomposable in A by Corollary 5.6. The map x 7→ ζx

is a lattice automorphism of A. Hence ζ is also indecomposable in A. By Lemma 6.1, there exists
δ ∈ Γ such that ζ ∈ Bδ, as desired.

For the general case, applying Proposition 4.3 to E = AQ shows that ζγ ∈ Esep for all γ ∈ Γ.
Also, ζ mod

√
0A ∈ A/

√
0A =

⊕

γ∈Γ Bγ/(
√
0A ∩ Bγ) is a root of unity, so by the reduced case

there is a unique δ ∈ Γ such that (ζ mod
√
0A)δ is a root of unity and for all γ 6= δ we have

0 = (ζ mod
√
0A)γ = ζγ mod (

√
0A ∩Bγ). Thus for all γ 6= δ we have ζγ ∈ √

0E ∩ Esep = {0}. �

7. Universal gradings—lemmas and examples

The results in this section follow in a straightforward way from the definitions, and are left as
exercises.

Lemma 7.1. Suppose A is a ring and Γ is an abelian group.

(i) Suppose B = (Bγ)γ∈Γ is a Γ-grading of A, suppose ∆ is an abelian group, suppose f : Γ → ∆
is a group homomorphism, and let f∗(B) = (

∑

γ∈f−1(δ) Bγ)δ∈∆. Then f∗(B) is a ∆-grading

of A.
(ii) The map Γ 7→ {Γ-gradings of A} is a covariant functor from the category of abelian groups

to the category of sets.

An abelian group H is called indecomposable if H 6= 1 and whenever H = H1 ⊕H2 with abelian
groups H1 and H2 then H1 = 1 or H2 = 1.

Lemma 7.2. Suppose A is a ring.
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(i) If (Γ1, (Bγ)γ∈Γ1) and (Γ2, (Cγ)γ∈Γ2) are universal gradings of A, then there is a unique

group isomorphism σ : Γ1 → Γ2 such that for all γ ∈ Γ1 we have Bγ = Cσ(γ).

(ii) If (Γ, (Aγ)γ∈Γ) is a universal grading of A, and (Cδ)δ∈∆ is a ∆-grading of A, then for each

δ ∈ ∆ for which Cδ is an indecomposable abelian group there exists γ ∈ Γ with Cδ = Aγ .

Examples 7.3. We leave verifications of the below statements as an exercise. A hint is to use
Lemma 7.2(ii).

(i) The cyclotomic field Q(ζ8) has a Z/4Z-grading
⊕3

j=0 Q · ζj8 and a (Z/2Z× Z/2Z)-grading

Q⊕Qi⊕Q
√
2⊕Qi

√
2 and has no universal grading.

(ii) The field Q( 3
√
2, ζ3) has three different Z/6Z-gradings in which all pieces have dimension

one over Q, and has no universal grading.
(iii) A Z/2Z-grading of F56 is F53 ⊕ F53 ·

√
2, a Z/3Z-grading of F56 is F52 ⊕ F52 · ζ9 ⊕ F52 · ζ92 ,

but F56 has no universal grading.
(iv) The ring Z[X ]/(X2) = Z[ε] has a universal grading by an infinite cyclic group Γ = 〈c〉,

with Z[ε]1 = Z, and Z[ε]c = Zε, and Z[ε]γ = 0 for all γ ∈ Γ r {1, c}. This also gives
a Z/nZ-grading on the ring for every n ∈ Z>1. This non-reduced graded order has no
universal grading by a finite abelian group.

(v) If 0 6= d ∈ Z, then the Z/2Z-grading Z⊕
√
dZ is the universal grading on Z[

√
d]. If A is an

order of rank 2 and odd discriminant, then the grading by the trivial group is the universal
grading on A.

(vi) The ring Z[ 3
√
2, ζ3] has a universal grading

⊕2
j=0 Z[ζ3]

3
√
2
j
by a cyclic group of order 3.

(vii) The ring Z[X,Y ]/(X,Y )2 = Z[ε, η], with ε = X mod (X,Y )2 and η = Y mod (X,Y )2, has
no universal grading. If Γ is any group, and σ and tau are non-identity distinct elements
of Γ, then one grading is given by B1 = Z, Bσ = Zε, Bτ = Zη and another by B1 = Z,
Bσ = Z(ε+ η), Bτ = Z(ε+ 2η).

8. S-decompositions of lattices

We give a result on S-decompositions of lattices that we will use in §9 to prove Theorem 1.1.
If L is a lattice and S is a set, then an S-decomposition of L is a system (Ls)s∈S of subgroups of

L such that:

(i) if s, t ∈ S and s 6= t, then 〈Ls, Lt〉 = 0, and
(ii)

∑

s∈S Ls = L.

This implies that L =
⊕

s∈S Ls, in the sense that the map
⊕

s∈S Ls → L, (αs)s∈S 7→ ∑

s∈S αs is
bijective.

An S-decomposition (Ls)s∈S of a lattice L is universal if for every set T and every T -decomposition
(Mt)t∈T of L, there is a unique map f : S → T such that for all t ∈ T we have Mt =

∑

s∈f−1(t) Ls.

Theorem 8.1. Every lattice has a unique universal S-decomposition for some finite set S, and for

that universal S-decomposition all Ls are non-zero.

Theorem 8.1 is classical and due to Eichler, and can be easily proved using the proof of Theorem
6.4 on p. 27 of [5].

9. Proof of Theorem 1.1

We now prove Theorem 1.1. Since A is a reduced order, it has a lattice structure with

〈x, y〉 =
∑

σ∈Rhom(A,C)

σ(x)σ(y)

as in Example 3.3. By Theorem 8.1 the lattice A has a universal S-decomposition A =
⊕

s∈S Ls for
some finite set S, and each Ls is non-zero. Let Γ be the abelian group with generating set S and
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relations s1 ·s2 = s3 whenever there are x ∈ Ls1 and y ∈ Ls2 such that when we write xy =
∑

s∈S zs
with zs ∈ Ls we have zs3 6= 0. This produces a group Γ equipped with a map h : S → Γ, s 7→ s,
and we obtain a Γ-decomposition (Bγ)γ∈Γ of A with Bγ =

∑

s∈h−1(γ) Ls. If s1 ∈ h−1(γ1) and

s2 ∈ h−1(γ2) with γ1, γ2 ∈ Γ, then

Ls1 · Ls2 ⊂
∑

u∈S,u=s1s2

Lu ⊂
∑

u∈h−1(γ1γ2)

Lu = Bγ1γ2 .

Thus Bγ1Bγ2 ⊂ Bγ1γ2 , so the Γ-decomposition B = (Bγ)γ∈Γ is a Γ-grading.
Since each Ls is non-zero, we have that Bγ 6= 0 for all γ ∈ h(S), so Γ ⊃ 〈γ ∈ Γ : Bγ 6= 0〉 ⊃

〈h(S)〉 ⊃ Γ. It now follows from Lemma 3.5(i) that Γ is finite.
To show the Γ-grading B is universal, let C = (Cδ)δ∈∆ be a ∆-grading of A, with ∆ an abelian

group. By Proposition 5.8, we have that C is a ∆-decomposition of the lattice A, so there is a
unique map g : S → ∆ such that for all δ ∈ ∆ we have Cδ =

∑

s∈g−1(δ) Ls. If s1s2 = u is one of the

relations for the group Γ, then for some x ∈ Ls1 ⊂ Cg(s1) and y ∈ Ls2 ⊂ Cg(s2) we have a product xy
with Lu-coordinate non-zero, so with Cg(u)-coordinate non-zero. But Cg(s1)Cg(s2) ⊂ Cg(s1)g(s2) so
g(u) = g(s1)g(s2). So there is a unique group homomorphism f : Γ → ∆ such that f ◦ h = g. This

implies that f∗B = C, so the map f 7→ f∗B is surjective. To show it is injective, suppose f̃ : Γ → ∆
is a group homomorphism such that f̃∗B = C. By the uniqueness of f we have f ◦ h = f̃ ◦ h. Since
Γ = 〈h(S)〉 it follows that f = f̃ , so the map f 7→ f∗B is injective.
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