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Abstract 

Recent theoretical research has argued that multiple 
psychological theories of categorization are mathematically 
identical to inference in probabilistic graphical models (a 
framework developed in statistics and computer science). 
These results imply that the major extant psychological 
theories can all be represented mathematically as special cases 
of inference in (subclasses of) chain graphs, a particular type 
of probabilistic graphical models. These formal results 
suggest that people should be capable of learning significantly 
more complicated category structures than can be expressed 
in the standard psychological theories. In this paper, we 
present an experiment in which people apparently failed to 
learn the complex category, though a significant group of 
participants seemed to have learned something about the 
contrast category. Although inferences to cognitive failure are 
notoriously problematic, these results suggest that the hyper-
general theory useful for the mathematical equivalencies does 
not accurately describe human categorization. 

Introduction 
Much of the experimental research on category learning has 
aimed to distinguish between various theories by presenting 
people with categories that can be learned according to one 
theory, but not another. After some learning period with the 
categories, experimental participants are tested to determine 
how closely their category representations match the true 
category structure. In contrast, there has been relatively little 
experimental research investigating the limits of category 
learning: specifically, whether there are categories that can 
be learned (in principle) by some statistical procedure, but 
not by people. Most research on the limits of category 
learning has focused on constraints from other cognitive 
systems (e.g., memory bounds). In contrast, this paper is a 
preliminary attempt to ask whether some category structures 
are sufficiently complex (in a statistical sense) that people 
are unable to learn them, even though they are sufficiently 
structured that they are (in principle) learnable. 

We first describe a set of theoretical and mathematical 
results that connect psychological theories of categorization 
with inference to model structure in the computational 
framework of probabilistic graphical models. Those formal 
results suggest that people might be able to learn categories 
with a (previously unstudied) complex statistical structure. 
We thus conducted a category learning experiment using 
this statistical structure, and found suggestive evidence that 
people were in fact unable to learn this category.  

Theoretical Background 
This section outlines the mathematical/theoretical results 
that motivate the experiment reported later in the paper. The 
central claim of this section is that most psychological 
models of categorization can be represented as inference in 
various types of probabilistic graphical models. Due to 
space constraints, this exposition is necessarily at a high 
level. The precise formulations of the frameworks, theories, 
and equivalencies can all be found in the cited works. 

Probabilistic Graphical Models 
At a high level, probabilistic graphical models use a graph 
to encode independencies in a probability distribution. This 
compact encoding of the independence relations can then be 
used to dramatically speed up inference, learning, and 
prediction. The two most common types of graphical 
models are Bayesian networks and Markov random fields. 

Bayes nets (e.g., Pearl, 1988, 2000; Spirtes, Glymour, & 
Scheines, 1993) represent a probability distribution using a 
directed acyclic graph (where the variables are nodes in the 
graph). For example, A  B  C encodes the independence 
pattern in which A and C are unconditionally independent, 
but no other pairs are independent (conditionally or 
unconditionally). Bayes nets are widely used to model 
causal relationships, and have more recently been used to 
model people’s psychological representations of causal 
structure (Gopnik, Glymour, Sobel, Schulz, Kushnir, & 
Danks, 2004; Griffiths & Tenenbaum, 2005; Lagnado & 
Sloman, 2004; Tenenbaum & Griffiths, 2001; Waldmann & 
Martignon, 1998).  

Markov random fields (Lauritzen, 1996) represent the 
independence structure of a probability distribution using an 
undirected graph. For example, A ⎯ B ⎯ C implies that “A 
independent of C given B” is the only independence in the 
probability distribution. Markov random fields have 
frequently been used to model spatially correlated data (e.g., 
image data). They have not been widely used to model 
cognitive phenomena, in part because the edges do not have 
an obvious interpretation (in contrast with Bayes nets).  

In general, we focus on probability distributions that can 
be perfectly represented by some graphical model: that is, 
cases in which the graphical model (whether Bayes net or 
Markov random field) predicts all and only the 
independencies that are found in the probability distribution. 
The set of probability distributions that can be perfectly 
represented by a Bayes net only overlaps with the set of 
those that can be perfectly represented by a Markov random 
field. That is, there are probability distributions that can 
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only be perfectly represented in one of the two formalisms 
(but also some that can be perfectly represented by both).  

Finally, chain graphs (Lauritzen & Richardson, 2002; 
Lauritzen & Wermuth, 1989) provide a unifying framework 
for Bayes nets and Markov random fields, which are the two 
most common types of graphical models. Specifically, chain 
graphs can contain both directed and undirected edges in the 
same graph, and so can perfectly represent a richer set of 
probability distributions. 

Standard Accounts of Categorization 
Four significant (classes of) psychological theories of 
categorization are: exemplar-based, decision bound, 
prototype-based, and casual model theories. Exemplar-
based models (Kruschke, 1992; Medin & Schaffer, 1978; 
Nosofsky, 1984, 1986) represent a category by a set of 
exemplar instances, where each exemplar must previously 
have been observed to be a member of the category. To 
categorize some novel instance, one first computes the 
“similarity” of the instance to each possible category. This 
similarity is the weighted average distance in “similarity 
space” between the novel instance and each exemplar in the 
category. The similarities for each category are then 
integrated into a probabilistic response using the Shepard-
Luce rule (Luce, 1963; Shepard, 1957). 

Decision bound models (Ashby & Townsend, 1986) 
represent categories as regions of “feature space,” and 
categorization decisions are made by determining the region 
in feature space in which some instance most likely resides 
(given some model of perceptual noise). From a 
mathematical point-of-view, decision bound models are 
closely connected to exemplar-based models. Ashby and 
Maddox (1993) extensively explored the formal connections 
between exemplar-based categorization models and decision 
bound models in general recognition theory. In general, they 
found that there are strong equivalencies between these 
model-types, and so for space reasons, we do not explore 
decision bound models more closely in the remainder of this 
paper. 

Prototype-based models (Minda & Smith, 2001, 2002) 
represent a category by a prototypical instance (i.e., a 
specific point in the relevant feature space). Standard 
prototype models are formally similar to exemplar-based 
models with only one exemplar, though the prototypical 
instance does not have to be observed. Probabilistic 
categorization responses are then generated using the 
Shepard-Luce rule. These models typically contain only 
first-order (observed) features, and so have no interaction 
terms. In order to capture the intuition that the prototype can 
encode (in some sense) a “summary” of the observed data, 
prototype models can also contain second-order features: 
variables whose value is entirely determined by two first-
order features (as in Rehder, 2003a; Rehder, 2003b). 

Finally, causal model theory (Rehder, 2003a, 2003b; 
Rehder & Hastie, 2004) holds that some categories are 
defined by causal structure: individuals are members of the 
same category just when their observable features are 
generated by the same underlying causal structure. 
Formally, causal structures are represented using Bayes 
nets, and the similarity (of a novel instance to a category) is 

equal to the probability of the category’s causal structure 
generating a case with the given features. 

Categorization Theories and Graphical Models 
Consider the problem of “categorization” from the graphical 
models point of view. In particular, suppose that we have 
some set of categories that are described by probability 
distributions, where each can be perfectly represented by a 
suitable probabilistic graphical model. Given these models 
and some novel case, we can straightforwardly determine 
(using Bayesian updating) the probability that the novel case 
was drawn from each of the probability distributions. That 
is, for each graphical model G under consideration, we can 
compute P(G | X) for the instance X. At least superficially, 
these conditional probabilities resemble the predictions of 
the various categorization theories (which all have the form 
‘P(Say “A” | X)’). 

Danks (2004) proves that the resemblance is more than 
superficial. The psychological theories of categorization are 
each mathematically equivalent to computing P(G | X), 
where G is restricted to be a particular type of graphical 
model. Differences among (the graphical model versions of) 
the different psychological theories arise because the 
possibility space is restricted in different ways. The 
relationship between categories in psychological theories 
and graphical model classes can be summarized as:  
• Exemplar-based categories are equivalent to (a subclass 

of) Bayes nets with the structure shown in Figure 1; 
• Prototype-based categories are equivalent to (a subclass 

of) Markov random fields; and 
• Causal model categories are equivalent to Bayes nets 

with arbitrary structure. 
 

F2 

F1 

Fm 

U 
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Figure 1: Bayes net structure for exemplar categories 
 

Danks (in press) explores some methodological and 
theoretical implications of these mathematical equivalencies 
(e.g., enabling connections with causal learning research, or 
explaining recent experimental results). Our focus here is on 
one particular possibility raised in that chapter. Since 
categories in the psychological theories correspond to 
special cases of chain graphs, perhaps all psychological 
categorization is simply Bayesian categorization on various 
chain graphs. That is, the extant psychological theories 
might simply be particularly salient special cases of 
categorization that arise because Bayes nets and Markov 
random fields are the simplest types of chain graphs.  

If this suggestion is correct, then people should be capable 
of learning categories that are perfectly representable only 
by a full-fledged chain graph (but not a Bayes net or 
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Markov random field). These probability distributions are 
quite complex, and so learning such a category should be 
challenging. 

Experiment 
The experiment reported here had a very simple central 
question: Can people learn a category whose distribution 
(over features) can be represented by a chain graph, but not 
a Bayes net or Markov random field? 

Experimental Design 
Consider the chain graph: F1  F3 ⎯ F4  F2. This chain 
graph implies: F1 and F2 are unconditionally independent; 
F1 and F4 are independent conditional on {F3, F2}; and F2 
and F3 are independent conditional on {F4, F1}. Probability 
distributions with these independencies cannot be perfectly 
represented by any Bayes net or Markov random field. That 
is, any graphical model with only directed edges, or with 
only undirected edges, will necessarily imply strictly more 
or strictly fewer independencies than actually obtain in this 
probability distribution. This chain graph is the simplest one 
that cannot be perfectly represented by a Bayes net or a 
Markov random field.  

The formal equivalencies between the psychological 
theories of categorization and inference in probabilistic 
graphical models enable us to conclude immediately that 
any probability distribution perfectly representable by this 
chain graph cannot be perfectly represented by a prototype 
or causal model learner. The distribution could be learned 
by exemplar-based category learning, but only by encoding 
all of the exemplars (twelve in this experiment). A category 
based on this probability distribution thus provides a critical 
test case: none of the current psychological theories of 
categorization predict that people will easily learn this 
category, and only the exemplar theories predict that 
anything at all could be learned. At the same time, since the 
distribution can be perfectly represented with the chain 
graph, it is (in principle) learnable. 

The distribution in the Target column of Table 1 can only 
be perfectly represented by this chain graph, and so serves 
as the target category for our learning experiment. For our 
contrast class, we use a multiplicative prototype category in 
which the central prototype is F1 = F2 = 1, and F3, F4 are 
irrelevant. F1 and F2 have equal weights in the category, 
and so cases with only one of the two features occurs half as 
frequently as the prototypical cases; cases without either 
feature are one-fourth as frequent. The case distribution for 
the contrast category is also provided in Table 1. 

Four of the cases listed in Table 1⎯those with F3 = F4 = 
1⎯were not shown to participants, and thus provide an 
instrument for measuring category generalization. For 
completeness, we have provided the implied counts for 
those four cases using numbers in double brackets. 

In deterministic learning scenarios, high performance can 
result simply by memorization of salient or common 
exemplars, and not from any understanding of the category 
structure. Therefore, we deliberately used a probabilistic 
categorization task because we wanted to know whether 
people could learn the underlying distribution. Because the 

task was probabilistic, perfect performance was not 
possible. Optimal performance⎯i.e., correctly choosing the 
more likely category for each case⎯results in 66.67% 
correct classification (on average). 

 
Table 1: Experimental case distribution 

 
F1 F2 F3 F4 Target Contrast 
0 0 0 0 4 1 
0 0 0 1 2 1 
0 0 1 0 2 1 
0 0 1 1 0 [[1]] 0 [[1]] 
0 1 0 0 2 2 
0 1 0 1 4 2 
0 1 1 0 1 2 
0 1 1 1 0 [[2]] 0 [[2]] 
1 0 0 0 2 2 
1 0 0 1 1 2 
1 0 1 0 4 2 
1 0 1 1 0 [[2]] 0 [[2]] 
1 1 0 0 1 4 
1 1 0 1 2 4 
1 1 1 0 2 4 
1 1 1 1 0 [[4]] 0 [[4]] 

Participants and Materials 
Eighty-eight Carnegie Mellon students were compensated 
$10 for participation in a group of experiments containing 
this one. The full set of experiments took approximately 45 
minutes to complete.  

The experiment was done on computers. Participants were 
placed in the role of biologists classifying two novel species 
of insects. To help them learn how to categorize, they were 
presented with a sequence of “already classified” insects. 
For each case in the learning sequence, participants were 
presented with an image of the four-featured insect and 
asked to classify it as a “Marbock” or “Wermer.” After 
categorizing the insect, participants were given feedback 
about the actual insect name, as well as whether their 
answer was correct. 

Participants were told that the learning phase would last 
until they were “sufficiently good at classifying these bugs.” 
Due to the difficulty of the learning task, however, we did 
not actually use a specific performance criterion. Instead, 
we simply presented every participant with two complete 
sets (108 total cases). Within each block of 54 cases, the 
cases were presented in a randomized order. 

After completing the learning phase, participants were 
presented with all sixteen possible insects (randomized 
order) and asked “how likely is it that this bug is a 
[TARGET]?” where ‘TARGET’ was replaced by the chain 
graph category name. Participants provided a 0-100 rating 
using a slider movable only in increments of five (i.e., the 
rating was functionally on a 0-20 scale). The lower and 
upper ends of the rating scale were respectively labeled 
“Cannot be a [TARGET]” and “Definitely a [TARGET].” 

We have found in other experiments that participants can 
successfully learn other categories using the same interface 
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and functionally similar images (Zhu & Danks, in prep). 
Thus, there is no a priori reason to think that the interface 
impedes category learning (to any significant degree). 

Results and Discussion 
One measure of successful category learning is performance 
in the learning phase prediction task. Since we randomized 
the presentation order within each 54-case block, we cannot 
directly compare performance in smaller intervals (since the 
optimal performance might differ across individuals). A 
histogram of percent correct responses in the second half of 
the learning phase is given in Figure 2. 
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Figure 2: Histogram of second half learning rates 
 
This performance distribution is not significantly different 
from normal (p > .70; Shapiro-Wilk test), and the mean is 
not significantly different from 0.5 (p > .70; one-sample t-
test). Thus, we have prima facie evidence that participants 
did not (in general) learn the categories: their performance 
in the second half of the learning phase is not statistically 
distinguishable from what one would expect from chance 
performance in a population of this size. 

The sixteen likelihood ratings also provide information 
about learning performance: specifically, did any of the 
participants learn (something like) the correct category 
structures? The mean ratings (error bars indicate 95% 
confidence intervals), as well as the correct likelihood for 
observed cases, are shown in Figure 3.  

There are 120 pairwise comparisons of ratings, and so we 
applied the Benjamini & Yekutieli (2001) false discovery 
rate correction (henceforth, BY-FDR) to the two-sample 
paired t-test p-values. After applying this correction, there 
was only one significant difference in ratings: 1010 vs. 1111 
(p < .05). This analysis of the ratings for the full population 
thus supports the previous analysis: people do not seem to 
have learned the categories in this experiment. 
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Figure 3: Mean ratings for all participants 

 
At a more fine-grained level, however, the data present a 
subtler picture. If the performance distribution in the 
learning phase is due primarily to chance, then we would 
expect to find statistically similar ratings from participants 
with (i) above-chance performance, and (ii) below-chance 
performance. In the same spirit, if any individuals actually 
did learn something about the category structures, then we 
would expect that this knowledge would translate into 
above-chance performance. Thus, if any significant learning 
occurred, then the above-chance performers should exhibit a 
better understanding of the category structures. 

To test for increased understanding, we split the 
participant population into two groups: (i) those with 
second-half learning phase performance ≥ 0.5 (N = 45); and 
(ii) those with performance < 0.5 (N = 43). This split was 
based on learning phase performance, and so we cannot 
perform any meaningful analyses on differences in 
performance.  

The mean group ratings are shown in Figure 4. On the 
surface, these groups are not particularly different: None of 
the likelihood ratings are significantly different (two-sample 
t-tests with BY-FDR correction). 
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Figure 4: Mean ratings for subgroups 

 
However, although the ratings in the two groups are similar, 
there is an important difference between them: the ratings of 
the low-performing group are much more tightly clustered 
around 50 than the high-performing group’s ratings. The 
standard deviation for the low-performing group’s mean 
ratings is only 3.74, and none of the likelihood ratings are 
different from one another (after BY-FDR).  

In contrast, the high-performers seemed to draw important 
(and accurate) distinctions among some of the cases. The 
standard deviation for the high-performers’ mean ratings is 
9.63, and there are 21 pairwise significant differences in the 
high-performers’ ratings (after BY-FDR).1  

Interestingly, all of the significant differences involve a 
11** case (principally 1111 and 1101) being judged much 
less likely than a non-11** case to be in the target category. 
That is, it seems that the high-performers were not learning 
the structure of the target category, but rather something 
about the contrast category structure: namely, that 11** 
cases (i.e., the prototypical cases for the contrast category) 
were highly likely to be in the contrast category, and so 
received much lower likelihood ratings for the target 
category. The ratings for the 1111 case are particularly 
interesting, since it never appeared in the learning phase. 
Moreover, according to the “true” distributions, 1111 was 

                                                 
1 Ordered by BY-FDR corrected p-value, the significantly different 
pairs were: p < .01: {0000, 0011, 0110} vs. 1111, 0000 vs. 1101; p 
< .02: {1010, 1011, 1000, 0001, 0010} vs. 1111, {0011, 1000} vs. 
1101; p < .05: 0111 vs. 1111, {0001, 1001, 1011, 1010, 0010, 
0101, 0110, 0111} vs. 1101, 1000 vs. 1100. 

equally likely to be in either the target or contrast category. 
However, if one learned only the contrast prototype, then 
1111 should receive a low rating. Thus, we argue that these 
ratings are better explained by the hypothesis that 
participants understood only some of the contrast category 
structure, than by the hypothesis that they correctly learned 
(some of) both category structures. 

Conclusions 
It is notoriously difficult to determine cognitive limits, since 
there are typically many different reasons why participants 
might have failed at some task. We thus must be careful 
about drawing any particularly strong conclusions from this 
one experiment. Nevertheless, by a variety of measures, it 
seems that participants did not learn much about the target 
(chain graph) category. Learning performance was not 
statistically distinguishable from chance responses, and the 
only significant differences in test phase ratings (for only 
one sub-group) seem to be due to an understanding of the 
contrast category structure, not the target category structure. 

There are at least three obvious alternative explanations 
for the apparent failure of participants to learn the target 
category. First, participants might not have had sufficient 
experience with the categories. That is, perhaps performance 
would improve substantially given more observations. Pilot 
experimental results do not suggest a substantial increase in 
performance over time, but more investigation is needed. 

Second, the two categories used in this experiment might 
be overly similar. If there were more contrast between the 
categories (i.e., if they were more separable), then people’s 
performance and understanding might significantly increase. 
This concern is particularly salient given the significant 
dependence of target category learning on the structure of 
the contrast category (Goldstone, 1996). 

Third, the measures used here might not have accurately 
revealed people’s category learning. The “high performers” 
were identified using mean correct responses over the last 
54 cases, so people who learned quite late in the sequence 
could have been excluded. Use of a fixed presentation order 
could enable us to determine more accurately the subset of 
individuals who actually learned the target (and contrast) 
categories. Alternately, in the test phase rating collection, 
we could ask about only crucial cases, rather than all cases. 

Given these alternatives, the most definitive evidence that 
people are unable to learn categories with these complex 
statistical structures would be a series of experiments using 
categories that are progressively more difficult to learn (in 
theory). In particular, the categories would vary along the 
dimension of: complexity of a graphical model that 
perfectly represents the underlying probability distribution. 
By tracking the changes in participant performance, we 
could potentially determine something about the learnability 
of various classes of probability distributions. There are, of 
course, many studies testing progressively harder 
categories⎯perhaps most famously the canonical study of 
Shepard, Hovland, & Jenkins (1961)⎯but none of those 
studies vary the category complexity along the dimension 
proposed here. We are currently developing an appropriate 
series of categories (from the graphical models perspective), 
and we hope that experiments using those categories will 
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help us to understand better the nature of the limits on the 
category structures that can be learned. 
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