UC Riverside
UC Riverside Previously Published Works

Title

Nonlinear structures, spectral features, and correlations in a nearly incompressible
hydrodynamic fluid

Permalink
https://escholarship.org/uc/item/2dx3g0wf
Journal

Physics of Fluids, 18(4)

ISSN
1070-6631

Authors

Shaikh, D
Zank, G P

Publication Date
2006-04-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/2dx3q0wf
https://escholarship.org
http://www.cdlib.org/

PHYSICS OF FLUIDS 18, 045105 (2006)

Nonlinear structures, spectral features, and correlations in a nearly

incompressible hydrodynamic fluid

Dastgeer Shaikh® and Gary P. Zank®”
Institute of Geophysics and Planetary Physics, University of California, Riverside, California 92521

(Received 7 July 2005; accepted 2 March 2006; published online 21 April 2006)

Turbulence simulations of a hydrodynamic fluid are performed to explore various nonlinear aspects
of a nearly incompressible (NI) fluid in a regime where temperature fluctuations dominate. The NI
model was developed primarily to understand weak compressive effects in interplanetary and
interstellar media. Nonlinear structures generated by turbulent relaxation are shown to exist in our
two-dimensional fluid simulations. Dynamically weak compressive effects are associated with
passively convected thermal fluctuations which enhance the rate of selective decay in decaying NI
turbulence. Turbulent relaxation leads to self-organization in thermally dominated NI velocity
fluctuations and predicts the formation of large-scale steady-state coherent structures via an inverse
cascade mechanism. In agreement with theoretical predictions, density fluctuations are slaved to the
incompressible velocity fluctuations and exhibit a Kolmogorov-type power law. Thermal and
density fluctuations are found to be anticorrelated in an adiabatic fluid. This suggests that a large
fraction of the high plasma-/ fluid departs from a thermal equilibrium. Furthermore, compressional
effects in nearly incompressible turbulence enhance decay rates significantly and lead to the
formation of coherent vortices on much faster time scales when compared with incompressible

turbulence. © 2006 American Institute of Physics. [DOI: 10.1063/1.2191878]

I. INTRODUCTION

Observations of interstellar scintillations at radio wave-
lengths reveal a Kolmogorov-type scaling of the electron
density spectrum with a spectral slope of —5/3 over many
decades in wavenumber spacel’2 (from an outer scale of a
few parsecs to scales of 200 km or less). These fluctuations
are detected with great sensitivity by very long baseline in-
terferometer (VLBI) phase scintillation measurements. In in-
terstellar plasma turbulence, the plasma density fluctuates
randomly in time and space. As the radio refractive index is
proportional to the plasma density, there will be correspond-
ing variations in the refractive index. That density irregulari-
ties exhibit a definite power-law spectrum is essentially a
characteristic of a fully developed isotropic and statistically
homogeneous incompressible fluid turbulence, described by
Ref. 3 for hydrodynamic and Ref. 4 for magnetohydrody-
namic fluids. In both scenarios, a fully developed isotropic
and statistically homogeneous incompressible fluid turbu-
lence possesses energy in the large scales which cascades
towards smaller scales through nonlinear interactions.® The
spectral transfer of the energy through an inertial range re-
gime continues until it is dissipated by collisional or some
other damping processes. This suggests that interstellar fluid
motions possess structures that are possibly related to turbu-
lence. The actual origin of interstellar turbulence remains
unresolved. Several hypotheses suggest mechanisms for how
the kinetic energy of large-scale interstellar fluid motions is
converted into turbulent energy. These, among many others,
include supernovae-induced turbulence, the Parker instabil-
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ity, and Kelvin-Helmholtz and other fluid instabilities. On the
other hand, sources of small-scale interstellar turbulence,
such as the observed electron density fluctuations, have been
attributed to the reflection of shock waves from molecular
clouds, energy cascades from large-scale turbulent eddies,
and others.

Turbulence, manifested by interstellar plasma fluid mo-
tions, therefore plays a major role in the evolution of the
interstellar medium (ISM) plasma density, velocity, magnetic
fields, and the pressure. Radio wave scintillation data indi-
cates that the rms fluctuations in the ISM and interplanetary
medium density, of possibly turbulent origin and exhibiting
Kolmogorov-type behavior, are only about 10% of the mean
density.5 This suggests that ISM density fluctuations are only
weakly compressible.

Although interstellar fluid motion is not fully incom-
pressible, it nevertheless exhibits a Kolmogorov power spec-
trum that is described by an incompressible fluid theory, sug-
gesting that the observed density fluctuations are related to
incompressible fluid models. For example, Montgomery et
al’ suggested that the density fluctuations in the solar wind
and interstellar medium might be “slaved” to the incom-
pressible magnetic field in the context of a MHD model. This
model describes fluctuations in the density to a first-order
accuracy only, and essentially ignores the dynamics due to
short-scale and high-frequency modes that could, in prin-
ciple, be critical to the compressible interstellar fluid and to
the ubiquitous k=3 spectra. On the other hand, Zank and
Matthaeus™’ predicted, within the context of a nearly incom-
pressible (NI) fluid model, that the solar wind and interstellar
medium density fluctuations might convect passively in the
field of background incompressible fluid motion and exhibit

© 2006 American Institute of Physics
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a k=33 spectrum. The NI fluid theory also includes the essen-
tial dynamics due to short-scale and high-frequency com-
pressive modes.

The theory of nearly incompressible fluids proposed by
Zank et al.®*! possesses weak compressional effects in the
fluid density fluctuations, unlike purely incompressible (IN)
hydrodynamics, which are included by first-order corrections
to the leading-order purely incompressible fluctuations in the
low turbulent Mach number hydrodynamic fluid equations.
The compressible density fluctuations are coupled through
thermal fluctuations which are passively advected by incom-
pressible velocity fields. The resulting equations, thus, com-
prise the familiar incompressible hydrodynamical (and
MHD) equations at leading order, together with a modified
set of compressible hydrodynamical equations.s’g"l7 The ini-
tial motivation for NI theory was, as described above, to
understand compressible effects such as density fluctuation
spectra in the solar wind and interstellar medium.' Recently,
we have integrated the equations of NI hydrodynamics nu-
merically to determine the density spectrum.lsf17 Rather re-
markably, we find that the two classes of NI hydrodynamic
description admit a k™3 (for the driven case) and a k= (for
decaying simulations) spectrum for the density fluctuations
and, moreover, the density spectrum follows the IN velocity
fluctuations spectrum. Interestingly enough, the spectral law
is a consequence of the passive convection of density fluc-
tuations in the field of background incompressible velocity
fluctuations,'” rather than a pseudosound correlation between
density fluctuations and incompressible pressure fluctuations
through the square of the sound speed.7 It therefore appears,
at least for the high plasma beta limit, that NI models can
explain the observed Kolmogorov-type density fluctuation
spectrum. Of perhaps equally compelling interest is how
“turbulence affects the structure and motions of nearly all
temperature and density regimes in the interstellar gas.”18
Since density and temperature are included self-consistently
within the NI models, we address this question directly in
this paper. Specifically, we investigate (1) spectral character-
istics of the NI model in a heat-fluctuation-dominated (HFD)
regime; (2) the formation of large-scale structure; and (3) the
relationship between density and temperature fluctuations.

The basic equations describing the HFD model and the
underlying physics are discussed in Sec. II. Section III pre-
sents our nonlinear simulation results showing the emer-
gence of nonlinearly saturated coherent vortices through the
turbulent relaxation of weakly compressible fluctuations. The
emergence of the saturated vortex structure observed in our
nonlinear fluid simulations can be understood using a
Larichev-Reznik technique.19 This analysis demonstrates
how nonlinear interactions are responsible for the generation
of a large-scale stationary vortex. The large-scale analytic
vortex solutions agree well with the numerical solutions.
Section IV contains spectral studies of the HFD model in
both decaying and driven cases that lead to a Kolmogorov-
type power spectrum. Finally, the underlying HFD model
exhibits fluctuations in density and temperature. These fluc-
tuations follow a certain relationship. We illustrate the
density-temperature correlations that result from our simula-
tions in Sec. V, showing that they are in agreement with the
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analytic predictions of the HFD model. Conclusions are
drawn in Sec. VL.

Il. THE HFD EQUATIONS

The NI model indicates two distinct approaches to com-
pressibility. This depends largely upon the relative magni-
tudes of the compressible pressure, the temperature, and the
density fluctuations. When all the perturbations are of equal
magnitude, a heat-fluctuation-modified (HFM) model
emerges for which the compressible fluctuations behave qua-
siadiabatically. On the other hand, when temperature fluctua-
tions dominate the pressure and density fluctuations, such a
description of the compressibility is referred to as a heat-
fluctuation-dominated ~ (HFD) model. The density-
temperature anticorrelation coefficient, predicted by HFD
hydrodynamics, was observed in a new class of solar wind
pressure-balanced structures, using Voyager 2 data."" This
analysis, based on the ordering of the temperature and the
density fluctuations, suggests that the solar wind may admit
two classes of NI fluid description, of which the thermally
dominated nearly incompressible fluid model is one. Al-
though the two classes describe different regimes, they admit
various correlations between fluctuating fluid quantities,
many of which have been tested successfully in the solar
wind, % although subtleties in interpretation still
remain.”** However, only recentlyls_17 has a detailed theo-
retical study of the spectral characteristics and relaxation
processes in HFM and HFD been undertaken, and we believe
that this will provide a better framework for placing certain
solar wind observations in a NI context.

The NI theorygf11 describes compressive effects in hy-
drodynamics as well as magnetofluids using a singular ex-
pansion technique within the framework of “nearly incom-
pressible” (NI) fluids. In particular, the set of
hydrodynamical fluid equations derived by Zank et al’
couples convective fluid motion with high-frequency acous-
tic fluctuations in which leading-order fluctuations represent
incompressible modes. The idea of using the incompressible
hydrodynamic equations as a source for the acoustic density
fluctuations dates back to a seminal paper by Lighthill.26 The
weakly perturbed compressive fluctuations about the incom-
pressible modes (denoted by superscript o) for velocity and
pressure variables are represented by U=U"+€eU;, p=1
+€(p”+p"), respectively. Here, € is a small parameter asso-
ciated with the turbulent fluid Mach number M| through the
relation ezzny, and M =uy/C,, vy is the ratio of the spe-
cific heats, u, is the characteristic speed of the turbulent
fluid, and C; is the acoustic speed associated with sound
waves, Cf=yp0/ po- The py and p, are typical amplitudes of
the fluid pressure and density fluctuations. The high-
frequency and short-wavelength component in this expan-
sion describes effects due to the compressibility of the fluid.
Due to a lack of uniqueness in the representation of the fluid
density and temperature fields, either of the choices p=1
+ep,, T=Ty+¢€T,, or p=1+€p,, T=Ty+€T, is consistent.
The first choice corresponds to a state where temperature
fluctuations dominate both the incompressible (p™) as well as
compressible pressures (p*) and is referred to as the HFD
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regime. On the other hand, the second choice in which all the
variables are of similar order represents the HFM regime.
The resulting equations, nonetheless, comprise the familiar
incompressible hydrodynamical and MHD equations at lead-
ing order, together with a modified set of compressible hy-
drodynamical equations.ig_17 The background incompress-
ible fluid, in both regimes, can be described by the usual
equations of incompressible hydrodynamics,

d
a—tU°°+U°°-VU°°=—Vp°°+/LV2U°°, (1)

V.-U”=0. (2)

Here, the superscript o indicates that the variables satisfy the
incompressible fluid equations, i.e., Egs. (1) and (2). The
parameter w is associated with viscous damping of small-
scale velocity fluctuations in the leading-order incompress-
ible fluid. The constant density of the incompressible fluid is
expressed through Eq. (2), while pressure satisfies the non-
linear Poisson equation,

V3 p® ==V (U”-VU”). (3)

The nonlinear fluid equations describing the dynamical
evolution of the compressible fluctuations in the HFD NI
hydrodynamical description (Refs. 8 and 9) contain the com-
pressible fluid velocity, Uy, the compressible density p;, and
the temperature 7, and satisfy

d
ﬂ_[Ul +Uw' VU] +U| . VUOc

1
=p1VpOC+VV2U1+<§+§>V(V'Ul), (4)

a {oe]
&_tp1+U -Vp+V-U; =0, (5)
17 1
_Tl + Uw . VT] = _Vles (6)
ot Pr

1 vy-1
V'U]Z_y V2T1. (7)

Pr vy

The above equations are normalized, and correspond to
their respective unnormalized variables as follows: U;/M;
=U,, ¥"?p1/po=p; ,pOCpTll(y”po):Y_"l. The time and space
coordinates are normalized by characteristic time and length
scales, respectively, LV =V and ugt/ L=t. The bars are absent
from all the normalized variables for the sake of conve-
nience. Here, Pr is the Prandtl number, C, is the specific heat
at constant volume, v and ¢ are the normalized viscosity.
Equations (1)—(7) describe the dynamical evolution of the
decaying NI system with no linear instabilities. It is notewor-
thy that, unlike the background IN velocity, the divergence
of the compressible velocity [i.e., Eq. (7)] is modified by
thermal conduction. The compressive velocity fluctuations in
Eq. (4) modify the effective dissipation and are themselves
generated explicitly through thermal fluctuations. The latter
are governed by the scalar temperature which is convected
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passively by IN velocity fluctuations. Thus, compressional
effects play a significant role in the relaxation mechanism
amidst complex nonlinear interactions, which we will ex-
plore further below.

Although the NI fluid model has been successful in elu-
cidating many nonlinear turbulent features of the solar wind
and interstellar medium, the basic nonlinear aspects of NI
hydrodynamics and MHD remain completely unexplored.
This paper, therefore, presents a fully self-consistent investi-
gation of thermally dominated NI hydrodynamic turbulence
which is applicable to high-8 interstellar plasmas (8 is the
ratio of thermal to magnetic pressure). NI MHD will be ex-
plored in a subsequent article. Our simulations indicate the
emergence of steady-state coherent structures in decaying NI
turbulence through a turbulent relaxation mechanism in
which selective decay (as defined by the ratio of enstrophy
and energy) rates are enhanced dramatically by compressive
effects. Turbulent relaxation is one of the most remarkable
features of hydrodynamic systems (Refs. 6, 27, and 28, and
references therein). As exhibited in numerous two-
dimensional decaying turbulence models, hydrodynamic
(and other) systems try to “self-organize” themselves into
coherent states. Such processes often lead to the formation of
large-scale coherent vortex structures, essentially through an
inverse cascade mechanism associated with at least one of
the quadratic invariants of the system. In this work we de-
scribe nonlinear structures that are generated by turbulent
relaxation processes in a two-dimensional nearly incom-
pressible (NI) hydrodynamics model. Unlike the pseudo-
sound approximation,7 thermally induced compressible den-
sity fluctuations are found to be anticorrelated with thermal
fluctuations, in agreement with the theoretical prediction of
Zank and Matthaeus®™ and as observed sometimes in Voy-
ager 2 data. This has also been suggested as an explanation
for the observed interstellar density spectrum.g’m’15 While the
weakly compressive small-scale velocity fluctuations relax
towards large-scale structures in a thermally dominated re-
gime, it is of interest to know what happens to the density
and the temperature fluctuations. Do they exhibit a
Kolmogorov-type turbulent spectra? We consider these im-
portant issues here. Additionally, we concentrate on the pos-
sible formation of large-scale nonlinear coherent structures
in the compressible interstellar fluid within a NI paradigm.

lll. NONLINEAR SIMULATIONS

The nonlinear evolution of Egs. (1)—(7) is investigated
using a 2/3 dealiased Fourier spectral code [our Heat Fluc-
tuation Dominated Hydro (HFD) code] with 2567 or 5122
Fourier modes in a two-dimensional box of size 157X 157
with periodic boundary conditions along the x and the y di-
rections. The time integration uses a second-order predictor-
corrector method. The HFD code is different from our NIH
code,””™" in which the thermal transport equation is not in-
cluded. The latter model was used recently to show that a
Kolmogorov-type power spectrum and anisotropy described
weak density fluctuations, and this has been advanced as an
explanation for related observations in the solar wind and the
interstellar medium."*'>'®?? All fluctuations in the simula-
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(b)

FIG. 1. (Color) Decaying turbulence in a NI fluid coupled to an IN fluid through nonlinear interactions. (a) Initial condition (r=0) specified on the x
component of NI velocity field shows random fluctuations in a two-dimensional box. (b), (c), and (d) show fields at t=5,15,40, respectively. Box size is
107 X 1077, kppin=0.2, kpa=17.06. Other constants are y=5/3, Pr=1000, u=1.e-3, é=1.e-5.

tions are initialized with a Gaussian random number genera-
tor to ensure that the Fourier modes are all spatially uncor-
related and randomly phased. The initially normalized
energy spectrum, peaked at k;,, is chosen to lie within the
wavenumber band k;, <k <k,./2. This is shown in Fig.
1(a) for the x component of the NI velocity field [i.e.,
u; (x,y)] in configuration space. During the evolution of the
simulations, the turbulence eventually decays through vortex
merging in which like-signed smaller length-scale fluctua-
tions merge to form relatively large-scale fluctuations. The
process continues until all merging has occurred to finally

form the largest scale coherent vortex dominated by the
minimum allowed k in the simulation. The formation of
large-scale structure through nonlinear interactions can be
attributed to an inverse cascade phenomenon. In this process,
small-scale turbulent fluctuations, in an inertial range Fourier
space, transfer their spectral energy primarily amongst neigh-
boring Fourier modes. While the energy cascade towards the
smaller scales in the simulations is terminated essentially by
viscous damping, which is efficient at the smaller scales, the
largest allowed scale is determined typically by the &, Fou-
rier mode. The inertial range turbulent cascades in such a
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FIG. 2. (Color) Coherent structure formation corresponding to the y com-
ponent of the NI fluid velocity.

manner that it then leads to the formation of large-scale
structures. Various stages in the simulations are shown in
Fig. 1, with the final stage being a large-scale (comparable to
computational box) coherent vortex. A similar configuration
for the y component of the NI fluid velocity [i.e., ulv(x, v)]is
shown in Fig. 2, when the turbulence has reached its satu-
rated state. The evolving relaxation of the turbulent fluid is
independent of spatial and temporal resolution as well as
higher turbulent Reynolds numbers. The latter (i.e., higher
Reynolds number) only slows the rate of relaxation, while
the qualitative physics remains more or less unaltered. The
passively convected temperature, the density, and the back-
ground incompressible velocity fluctuations, however, re-
main turbulent during the entire course of the simulation
time, and their evolution depends critically upon the magni-
tude of the Prandtl number, Pr. We shall return to this point
below.

Inspection of the kinetic energy (KE) as the NI and IN
fluids relax [shown in Fig. 3] reveals that the KE of the NI
fluid Ey=3%,]U,(k,7)|> (solid curve) decays more rapidly
than E;,=33,]U”(k,7)[? (the IN fluid, dashed curve). The
decay rate (dE,;/dt>dE;,/drt) is very large during an initial

10 T :

ni

10% .

E /E

10

time

FIG. 3. The ratio of kinetic energies of incompressible and weakly com-
pressible fluid, i.e., Eyy/Ey;. The ratio shows a finite value at long times.
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FIG. 4. Evolution of mean Fourier mode associated with selective decay
rates. Dashed and solid curves are k;,=\(,,/E;, and kni=\c"Qni/Eni rates for
IN and NI turbulence, respectively. Decay rates are stronger in NI turbu-
lence than in IN hydrodynamics.

phase in which almost all the KE of the NI turbulence is
dissipated, while there is only a small change in the KE of
the IN fluid. Correspondingly, the selective decay rate in NI

turbulence (VQ,;/E,;) is faster than that (VQ;,/E;,) in IN
turbulence, where Q;=13,|VXU,(k,7)|* and Q;,=33,|V
X U”(k,1)|? are, respectively, NI and IN turbulence vortici-
ties. This is shown in Fig. 4. It is to be noted that the energy
associated with nearly incompressible fluctuations decays
rapidly, but not to zero. Its magnitude is small but remains
finite as shown in Fig. 3. The strong dissipation is not only
associated with the damping term proportional to V?U, in
Eq. (4), but is also influenced by source terms associated
with the IN fluid. The decay rates for NI and IN turbulence,
nevertheless, imply that the characteristic time associated
with the decay of enstrophy is much shorter than that of
energy throughout the simulation. A comparison of the two
curves (dashed and solid lines) in Fig. 4 shows that compres-
sional effects in NI turbulence enhance decay rates signifi-
cantly and lead to the formation of coherent vortices on
much faster time scales when compared with IN turbulence.
Rapid decay rates observed here in low Mach number NI
turbulence are consistent with the perturbative expansion that
is used to obtain the high-frequency component, i.e., NI
modes, against the slow IN modes.® These fast-time-scale
compressional modes, dominated by thermal fluctuations, ac-
celerate nonlinear selective decay processes to consequently
generate coherent vortical structures on much faster time
scales (when compared with the background IN turbulence)
through turbulent relaxation.

An analytic understanding of the emergence of coherent
vortices observed in our fluid simulation can be achieved by
considering exact nonlinear wave solutions of the NI and IN
velocity fields, i.e., Egs. (1) and (4). The underlying mecha-
nism on which such an analysis is based is that the coherent
structures emerge from the nonlinear interaction processes to
eventually become stationary in space and time, thereby
forming long-lived stable entities.'” This is what we observe
in our simulations. We may first simplify Egs. (1) and (4) by
expressing the IN and NI velocities in terms of their respec-
tive fluxes, U”=2X V¢ and U;=Z X V¢p+ V. The represen-
tation of the two flux functions in this fashion is not an
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arbitrary choice, but is motivated by several factors. First,
the flux functions describing the potentials of IN and NI
fluids strictly obey the respective conditions of incompress-
ibility and weak compressibility. Second, the governing non-
linear equations describing the evolution of NI and IN veloc-
ity fluctuations can be transformed formally into the
respective vorticity equations, and finally, the nonlinear in-
teraction terms can be expressed in a Poisson bracket form to
yield the exact nonlinear solutions from the vorticity
equations.

We next use a flux representation of U” and U, in Eqgs.
(1)—(4) and take their curl. This yields, respectively, vorticity
equations for the incompressible and weakly compressible
flows. The NI vorticity equation then reads d,V>¢
+[#,V?]=0, and 9,V?>p+[p,V?>¢]=0 for the incompress-
ible fluid. Here, [A,B]=0,Ad,B—d,Bd,A is the Poisson
bracket describing nonlinear terms wherein the compressive
velocity potential is convected by the incompressible veloc-
ity potential. Small-scale viscous terms (ineffective on vortex
length scales) and gradients associated with the NI vorticity
terms (small compared to corresponding IN terms) in Eq. (4)
are omitted. This is also consistent with what we observed in
our simulations. In a moving (with velocity u) vortex frame,
the local coordinate transformation can be chosen as x
=x',y=y’—ut. In this moving frame, the time derivative in
the vorticity equations can be replaced by the convective
derivative such that d/dt=-ud/ dy. The NI vorticity equation
can then be written in terms of the Poisson bracket as [¢
—ux,V?]=0. This then readily yields V?=G(p-ux) due
to the vanishing property of the Poisson brackets {i.e., when
[A,B]=0 then B can be expressed as an arbitrary function of
A such that B=f(A)}. G is an arbitrary function of its argu-
ment and is continuous and differential within and outside
the region of vortex boundaries. For G linear, V>¢=a(¢
—ux). This is Bessel’s differential equation whose solutions
are Bessel functions. We thus obtain finite radius vortex so-
lutions in the form of Bessel functions,

p=AK,(r)y,

and

r>r, (8)

Y= é]l(ar)+€J1(ﬁr)+D vy, r<r,. 9)

Equations (8) and (9) are, respectively, outer and inner vor-
tex solutions where the potential ¢ was determined from the
IN vorticity equation. The continuity and the differentiability
of the NI velocity potential function allows one to connect
the outer (r>ry) and the inner (r<r;) nonlinear wave solu-
tions to form a continuous structure across the vortex bound-
ary. Here, J,K, are, respectively, a Bessel function of the
first kind and a modified Bessel function of the second kind,
x=rcos 6, y=rsin 6, r=\x’+y? O=tan"'y/x, and rq is the
radius of vortex. The constants A, B, C, D, «, and B can be
determined by matching the function ¢ and its derivatives
across the vortex radius ry. Note that the solutions, Egs. (8)
and (9), represent a dipole vortex whose radius is ry. To seek
a physical understanding of these structures and their rel-
evance to the numerical simulations, we compare them with

Phys. Fluids 18, 045105 (2006)
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FIG. 5. (Color online) Comparison of analytic and numerical results of the
vortex amplitude distribution in space. Shown is a 1D cut along the vorticity
distribution. Clearly, the analytic and numerical solutions show excellent
agreement.

each other. For this purpose, a 1D spatial distribution of the
vortex amplitude, computed from Egs. (8) and (9), is plotted
in Fig. 5 that shows a close agreement with the steady-state
large-scale vortex in the simulations. We find that the ampli-
tude of the vortices in the steady state matches very well. In
principle there may exist many classes of vortex solutions
depending upon the choice of the arbitrary function G (which
is linear for a class of vortex solution given above). We will
not however discuss other form of the vortex solution here,
as they are beyond the scope of the present work.

In brief, we find that the nonlinear structures in NI tur-
bulence, observed in our fluid simulations, are influenced by
the background IN turbulence and that they are generated by
nonlinear interaction processes.

IV. SPECTRAL FEATURES

Consider now the spectral features of the density and
temperature fluctuations in the HFD regime. In two-
dimensional turbulence, the background incompressible (hy-
drodynamic) fluid admits two invariants (constants of mo-
tion), namely the energy and the mean-squared vorticity (i.e.,
irrotational velocity field). The two invariants, under the ac-
tion of an external forcing, experience a simultaneous cas-
cade, thereby exhibiting a dual cascade that is commonly
observed in numerous 2D turbulence systems. In these pro-
cesses, the energy cascades towards longer length scales,
while the fluid vorticity transfers spectral power towards
shorter length scales. Usually a dual cascade is observed in a
driven turbulence simulation, i.e., one in which certain
modes are excited externally through random turbulent
forces in spectral space. The randomly excited Fourier
modes transfer the spectral energy by conserving the con-
stants of motion in k space. On the other hand, in freely
decaying turbulence, the energy contained in the large-scale
eddies is transferred to smaller scales, yielding a statistically
stationary inertial regime associated with the cascade of one
of the invariants. Decaying turbulence often leads to the for-
mation of coherent structures as the turbulence relaxes, thus
making the nonlinear interactions rather inefficient when
they are saturated. Theoretical turbulence models further
suggest that any physical quantity, convecting passively in
the field of the background turbulence velocity fluctuations,
tends to develop eventually a similar energy spectrum.28 This
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FIG. 6. Density power spectrum |p,|? is plotted as a function of k (along the
horizontal x axis) from a decaying NI hydrodynamics simulation. The in-
compressible velocity fluctuations (E,) follow a Kolmogorov spectrum
close to k=3 (with an error £0.08) in a forward (or enstrophy) cascade regime
of decaying turbulence. The density fluctuations are passively convected by
the incompressible velocity fluctuations and exhibit nearly the same spec-
trum. The intermediate curve represents the temperature spectrum.

characteristic behavior of the passive scalars provides useful
information about its evolution and has been used as a prime
diagnostic in our investigations since our NI model possesses
a passive, scalar-like density equation. We therefore follow
the spectrum of the density fluctuations together with the
background velocity in our nonlinear NI fluid simulations.
On the basis of the HFD model, we see that the weakly
compressible density spectrum in a 2D simulation follows
the IN wvelocity fluctuation spectrum and yields a
Kolmogorov-type k™3 spectrum in the decaying case [see
Fig. 6] and a k=3 spectrum in the driven case, shown in Fig.
7. While the temperature spectrum appears flatter in the de-
caying case, it is much steeper in driven turbulence. Al-
though turbulence in 2D and 3D possesses distinct spectral
features characterized essentially by the number of the invis-
cid quadratic invariants, our two-dimensional NI hydrody-
namics simulations offers a plausible approach to the under-
standing of the origin of ISM density spectrum.

Thus, in agreement with the NI prediction that a passive
scalar explanation emerges as a natural and self-consistent
description of the weakly compressible density fluctuation
spectrum in NI fluid theory, our NI fluid simulation results
demonstrate such characteristics in both the forward and the

Phys. Fluids 18, 045105 (2006)

0.5F

0.45

04

o] 10 ZOti.meSO 40 50 10 20 30 40 50

FIG. 8. Energy associated with temperature and density fluctuations in NI
turbulence are shown, respectively, in (a) and (b). Shown here are solid
(Pr=10%), dashed (Pr=10%), and dashed-dot (Pr=10%) curves. The decay
rates depends critically upon the Prandtl number Pr. The density and the
temperature fluctuations are clearly anticorrelated in agreement with the
prediction of Ref. 8.

inverse cascade regimes of HFD model. Our HFD results, in
combination with HFM simulations,15 demonstrate that the
density fluctuation spectrum in the weakly compressible hy-
drodynamic limit can be an omnidirectional Kolmogorov
power law and thus offer a possible explanation of the ob-
. . .. . 1
served density fluctuation spectrum in interstellar medium.

V. DENSITY TEMPERATURE CORRELATIONS

Dynamically finite compressional effects in the NI fluid
are induced through thermal fluctuations which depend upon
the Prandtl number. Thus, the passively convected thermal
transport and density fluctuations mutually influence each
other in a rather subtle manner, and both depend critically on
the Prandtl number [see Egs. (4)—(7)]. The dependence can
be determined by computing the energy associated with the
density and the temperature fluctuations for different values
of Pr [shown in Fig. 8]. Clearly, a larger Pr implies a smaller
thermal fluctuation dissipation rate [Fig. 8(a)]. Correspond-
ingly, the density fluctuations [shown in Fig. 8(b)] grow as
rapidly as thermal fluctuations dissipate. This relationship
thus suggests that density and thermal fluctuations are anti-
correlated in thermally driven NI hydrodynamics. This fur-
ther supports Zank and Matthaeus’ prediction,8

y-1
—P1=( )T]’
Y

that the density and the temperature fluctuations are anticor-
related at an order O(€), where € is an expansion parameter
associated with the turbulent Mach number. This relation-

(10)

2. k_S/ 3 FIG. 7. A driven turbulence NI hydrodynamic simula-
tion yields a Kolmogorov-type spectrum close to k™3
(with an error +0.1) in the inverse (or energy) cascade
regime for incompressible velocity fluctuations (left).
Turbulence is driven by a random forcing in space and
time. The compressible density fluctuations (right) fol-
low the incompressible velocity spectrum closely in the
inertial regime of turbulence. In the right panel, the
temperature spectrum is shown below the density spec-
trum. The horizontal x axis represents the modes k.

10 10° 10 10

10
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ship, i.e., Eq. (10), can also be derived directly from the
nearly incompressible f:quations9 and has been tested quali-
tatively for solar wind fluctuations observed by Voyager
2.2 Our simulation results also show such behavior
qualitatively.

VI. CONCLUSIONS

In summary, we have investigated NI hydrodynamics in
the heat-fluctuation-dominated regime. The NI theory was
developed primarily to understand the observed interstellar
medium (ISM) density fluctuations which exhibit a
Kolmogorov-type power spectrum (ie., k>3) in three
dimensions.

One of the important outcomes of the NI theorygf11 is
that the density fluctations in the ISM emerge as a result of
weak compressibility in the gas and are convected predomi-
nantly passively in the field of background incompressible
fluid flow. This hypothesis can be verified numerically by
investigating the density spectra which should be slaved to
the incompressible velocity spectra, as done in our earlier
paper,”” in the heat fluctuation modified (HEM) regime. In
this paper, we explore another regime of the NI theory that
corresponds to the heat fluctuation dominated (HFD) regime.
Such a regime has been observed in the solar wind and has
been suggested as an explanation for the observed interstellar
medium (ISM) density spectrum. Several important results
have emerged from our simulations. First, beginning with
arbitrary initial incompressible and NI data, the compressible
velocity fluctuations exhibit a Kolmogorov-type power spec-
tra and the density fluctuations exhibit a passive convection.
Second, the velocity fluctuations organize themselves into
coherent structures, eventually forming a single vortex. The
corresponding density and temperature fluctuations remained
turbulent (due to turbulent convective flow). We showed
theoretically that vortices emerge from nonlinear driving by
the incompressible turbulent velocity field. The third impor-
tant result is that the NI energy and selective decay rates are
higher than the IN case (as might be expected with the in-
clusion of nonlinear compressive modes), which leads to a
more rapid formation of coherent vortices for NI compo-
nents. Finally, the theoretical NI model in the HFD regime,
Eqgs. (4)—(7), predicts the existence of anticorrelated density
and temperature fluctuations. Our simulations demonstrate
this explicitly and we find that it is true for all the Prandtl
numbers simulated here. The HFD regime is distinct from
the pseudosound regime since, unlike the latter, density and
temperature behave as passive scalars. The pseudosound ap-
proach may be justified in a regime of NI hydrodynamics
where acoustic modes, predominantly due to pressure fluc-
tuations, are present.

Our analysis and the simulation of HFD hydrodynamics
in the high-B limit may have several important implications
for the ISM. These may be enumerated as follows:

(1) The most important result is the demonstration that den-
sity fluctuations couple advectively to the incompress-
ible velocity field in weakly compressible hydrodynamic
turbulence and can exhibit an omnidirectional Kolmog-
orov power law. Although the results presented in this
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paper correspond to two-dimensional turbulence in a
high plasma-beta limit, we expect a similar characteris-
tic behavior of the passive density field in 3D in that
compressible turbulence in three dimensions will be de-
scribed by a Kolmogorov-type power law for the density
fluctuations. Thus, low-frequency incompressible veloc-
ity fluctuations can drive high-frequency compressible
fluctuations, which, when fully developed, behave like a
driven passive scalar and consequently exhibit a
Kolmogorov-type spectrum. This, we suggest, may be
the origin of the ubiquitous k™* power-law density
spectrum observed in the diffuse ISM.

(2) Turbulent motions associated with a low Mach number,
subsonic, compressible ISM fluid may lead to the forma-
tion of large-scale coherent vortical flow fields through
an inverse cascade of energy in the decaying turbulence.
These quasiadiabatic compressible structures are driven
by purely incompressible fluid fluctuations that vary on
rapid time scales. Long-time-scale slowly varying ISM
flows emerge from the saturation of nonlinear interac-
tions, which hinder further spectral transfer of the en-
ergy in an inertial range ISM turbulence. The ISM den-
sity and the temperature fluctuations, on the other hand,
remain turbulent and convect passively.

(3) The density-temperature anticorrelations in our simula-
tions further suggest that a large fraction of the ISM
fluid is not in a thermodynamic equilibrium. This could
lead to thermal instabilities that are believed to be one
possible source of ISM turbulence.’’
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