
Lawrence Berkeley National Laboratory
LBL Publications

Title
Optimization of Asynchronous Communication Operations through Eager Notifications

Permalink
https://escholarship.org/uc/item/2dx664pv

Authors
Kamil, Amir
Bonachea, Dan

Publication Date
2021-11-19

DOI
10.1109/scws55283.2021.00014

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2dx664pv
https://escholarship.org
http://www.cdlib.org/

The 4th Annual Parallel Applications Workshop, Alternatives To MPI+X (PAW-ATM), 2021

Optimization of Asynchronous Communication
Operations through Eager Notifications

Amir Kamil1,2 Dan Bonachea1
1 Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

2 University of Michigan, Ann Arbor, MI 48109, USA
pagoda@lbl.gov

Abstract—UPC++ is a C++ library implementing the Asyn-
chronous Partitioned Global Address Space (APGAS) model.
We propose an enhancement to the completion mechanisms
of UPC++ used to synchronize communication operations that
is designed to reduce overhead for on-node operations. Our
enhancement permits eager delivery of completion notification
in cases where the data transfer semantics of an operation
happen to complete synchronously, for example due to the use of
shared-memory bypass. This semantic relaxation allows removing
significant overhead from the critical path of the implementation
in such cases. We evaluate our results on three different rep-
resentative systems using a combination of microbenchmarks
and five variations of the the HPCChallenge RandomAccess
benchmark implemented in UPC++ and run on a single node to
accentuate the impact of locality. We find that in RMA versions
of the benchmark written in a straightforward manner (without
manually optimizing for locality), the new eager notification mode
can provide up to a 25% speedup when synchronizing with
promises and up to a 13.5x speedup when synchronizing with
conjoined futures. We also evaluate our results using a graph
matching application written with UPC++ RMA communication,
where we measure overall speedups of as much as 11% in
single-node runs of the unmodified application code, due to our
transparent enhancements.

Index Terms—UPC++, GASNet-EX, PGAS, RMA, Atomics.

I. INTRODUCTION

The Partitioned Global Address Space (PGAS) model pro-
vides both excellent performance and productivity. The one-
sided data-movement model is a good semantic match to the
capabilities provided by modern network hardware, and a
single programming interface can be used for both distributed
and shared memory. However, the same operation may require
orders of magnitude more time to complete over distributed
memory compared to shared memory, so asynchrony is often
used to enable overlap of communication with computation
or other communication, hiding the higher latency of network
operations.

Asynchrony requires defining a progress model, specifying
when an asynchronous operation may complete and the re-
quirements on a program for ensuring that such operations
make forward progress. For an operation whose cost depends
on whether or not the initiating process has direct access
to a target memory location (e.g. a one-sided put via a
global pointer that may reference either on-node or off-node
memory), a progress model may specify that completion
must always be signaled asynchronously to the program.

This provides uniform semantics over both shared and dis-
tributed memory. On the other hand, it may impose significant
additional costs on operations that target on-node memory.
For applications where most asynchronous communication
operations are resolved on-node, or that happen to be run on
a single node, these costs may have a nontrivial adverse effect
on performance.

In this work, we examine the cost of delayed notifications in
UPC++, a C++11 library that provides an Asynchronous Par-
titioned Global Address Space (APGAS) model. The 2021.3.0
and earlier releases of the library require deferred notification
of all asynchronous operations, and we previously proposed
an extension for requesting eager notifications where possible
[10]. We implemented these extensions and associated op-
timizations for Remote-Memory Access (RMA) and atomic
operations. We compare shared-memory performance of sev-
eral benchmarks with this extension against the prior UPC++
implementation, demonstrating that early notifications can
indeed provide better performance than universally delaying
them.

II. BACKGROUND

UPC++ [4, 5, 9] is a C++ library that implements the
Asynchronous Partitioned Global Address Space (APGAS)
programming model, providing communication operations that
include Remote Procedure Call (RPC) and RMA. In this
model, the global address space is partitioned among the
processes, each of which has a private memory and a shared
memory segment; the global address space is the union of all
the shared segments. In UPC++, a global address is represented
by a global pointer, implemented as a class template over the
underlying object type. For example, the following1 allocates
an int object in the shared segment of the calling process:

g l o b a l p t r <i n t> g p t r = new <i n t > (3) ;

The return value of the allocation above is a global pointer,
but it is actually referring to an object in on-node memory.
This pointer can be downcast to obtain a raw C++ pointer:

i n t ∗ l p t r = g p t r . l o c a l () ;

This downcast is valid on all same-node processes, since the
implementation ensures they have direct access to the underly-
ing memory. The global_ptr template has an is_local

1For brevity, we elide upcxx:: namespace qualifiers in code examples.

c©2021 LBNL doi:10.25344/S42C71 1

https://doi.org/10.25344/S42C71

A. Kamil and D. Bonachea: Optimization of Asynchronous Communication Operations through Eager Notifications

method that returns whether or not the caller has direct access
to the memory.

A global pointer can be sent to another process, which can
use it to initiate asynchronous remote-memory operations:

g l o b a l p t r <i n t> g p t r = /∗ o b t a i n p o i n t e r ∗ / ;
f u t u r e <i n t> f u t = r g e t (g p t r) ;
f u t u r e <> done = f u t . t h e n ([=] (i n t v a l) {

re turn r p u t (v a l +1 , g p t r) ;
}) ;
done . w a i t () ;

By default, an asynchronous operation returns a future, which
encapsulates both the readiness state of the operation (whether
it has completed) and any values produced by the operation. In
the code above, the rget operation initiates a remote read of
the argument, returning a future representing the read value.
The code attaches a callback to that future to be executed
when it is ready, and the callback initiates a remote write
on the same global pointer. The rput call produces its own
value-less future, which is also passed on as the return value
of the callback. The code then does a wait on the resulting
future, which is only readied after the rget completes, the
callback runs, and the subsequent rput completes.

A. UPC++ Completions

While an asynchronous operation produces a future by
default that represents overall completion of the operation,
UPC++ actually provides a powerful completions mechanism
that enables a program to request other forms of notifications
as well as notification of different events. The latter include:

• source completion: for operations using a source buffer,
indicates when that buffer is available for reuse or recla-
mation by the initiator

• remote completion: for RMA put, a callback can be
scheduled to run on the target process after data arrival

• operation completion: when the overall operation has
completed from the perspective of the initiator

Notification options include futures, promises, and local pro-
cedure calls for source and operation completion, and remote
procedure calls for remote completion. A program may request
any combination of notifications for the events that are relevant
to a communication operation. The following is an example
of a bulk data put, which supports all three events:

s t a t i c bool done = f a l s e ;
p romise<> prom ;
i n t ∗ a r r a y = /∗ . . . ∗ / ;
g l o b a l p t r <i n t> g p t r = /∗ . . . ∗ / ;
s t d : : t u p l e<f u t u r e <>, f u t u r e <>> r e s u l t =

r p u t (a r r a y , g p t r , s i z e ,
s o u r c e c x : : a s f u t u r e () |
r emote cx : : a s r p c ([] () { done= t rue ; }) |
o p e r a t i o n c x : : a s f u t u r e () |
o p e r a t i o n c x : : a s p r o m i s e (prom)) ;

The code above requests a custom set of completions by
passing a completions object as the last argument to rput,
constructing the object as a composition of individual event/
action factory methods. Since two future notifications were

requested here, the rput call returns a tuple of two futures
representing the corresponding events. The first will be readied
when the source buffer is safe to reuse, and the second
when the operation as a whole is complete. In addition, the
code above specifies an RPC callback to run on the target
process after the data have been transferred, and it also
requests notification on the promise prom when the operation
completes.

In UPC++, a future is the consumer side of an asynchronous
result, while a promise is the producer side. Promises are
particularly efficient at keeping track of multiple asynchronous
operations, essentially acting as a counter. Here is an example:

promise<> p ;
g l o b a l p t r <i n t> gps [1 0] = /∗ . . . ∗ / ;
f o r (i n t i = 0 ; i < 1 0 ; ++ i)

r p u t (i , gps [i] , o p e r a t i o n c x : : a s p r o m i s e (p)) ;
p . f i n a l i z e () . w a i t () ;

The code creates one promise and registers ten rput oper-
ations on it. The finalize call closes registration on the
promise and returns a future, and the code waits on that future.
The future is readied after all ten operations have completed.

A similar outcome can be obtained by conjoining the
individual futures from multiple rput operations into a single
future:

f u t u r e <> f = m a k e f u t u r e () ;
f o r (i n t i = 0 ; i < 1 0 ; ++ i)

f = w h e n a l l (f , r p u t (i , gps [i])) ;
f . w a i t () ;

The when_all combinator takes any number of futures (or
non-future values), combining them into a single future that
represents the values and readiness of all the inputs. Figure 1
illustrates a portion of the dependency graph that results
from the code above, where each vertex represents a future
constructed at runtime. In the 2021.3.0 UPC++ release, each
such future corresponds to an implicitly constructed promise
cell that is dynamically allocated on the heap. In comparison,
the code that uses an explicit promise incurs only a single heap
allocation, corresponding to the explicitly constructed promise,
and fulfilling a dependency only involves decrementing a
counter rather than traversing a dependency graph2. As such,
the promise-based code is significantly more efficient, and the
results in Section IV bear this out.

B. Progress and Deferred Notification

Previous versions of UPC++ require that notifications be
deferred until the next call into the UPC++ progress engine
(e.g. a wait on a future) [9]. Consider the example code in
Listing 1. In this code, even if gptr happens to refer to on-
node memory and the data transfer is performed synchronously
before rput returns, the 2021.3.0 UPC++ implementation is
prohibited from returning a ready future from rput. Thus,

2 Although the two code snippets shown here are equivalent, UPC++
is implemented as a library and only discovers the unfolding dependency
graph at runtime. Automated transformation of user-specified completion/syn-
chronization mechanisms would require supporting model-specific compiler
analysis and is beyond the scope of this work.

2

A. Kamil and D. Bonachea: Optimization of Asynchronous Communication Operations through Eager Notifications

make_future() rput(0, gps[0])

when_all(...) rput(1, gps[1])

when_all(...) rput(2, gps[2])

when_all(...)

...

Fig. 1: Dependency graph resulting from conjoining futures.

g l o b a l p t r <i n t> g p t r = p r o d u c e r () ;
/ / g p t r may or may n o t be l o c a l
f u t u r e <> f = r p u t (4 2 , g p t r) ;
f u t u r e <> f2 =

f . t h e n ([] () { d o s o m e t h i n g d e p e n d e n t () ; }) ;
d o s o m e t h i n g o v e r l a p p a b l e () ;
f2 . w a i t () ;

Listing 1: Example Code

the programmer is assured that the subsequent callback will
not run synchronously during future<>::then(), but will
run during the wait call further down, regardless of whether
gptr points to something local or remote.

While this implementation restriction leads to consistent
behavior across local and remote accesses, it can incur signif-
icant overheads in the case of local access. In particular, the
implementation must perform a heap allocation of an internal
promise object corresponding to a non-ready future and add
it to an internal queue to be readied later by the progress
engine. If most accesses are local, these overheads encourage
the programmer to add manual locality checks to bypass the
asynchronous operation and its associated overheads when
possible (as described in the next section). This practice
negates one of the potential advantages of the PGAS model,
that of using the same code for both local and remote memory
access. Furthermore, manual bypass is not even possible in
the case of atomics, which must go through UPC++ and the
underlying GASNet-EX [8] communication layer to ensure
coherency correctness on systems that may offload incoming
atomic operations using the network hardware.

C. Manual Localization

For the use case of local RMA operations, overheads due to
deferred notification can be manually “bypassed” via manual
localization, where a global pointer is downcast to a raw
C++ pointer and accessed using normal C++ pointer deref-
erence operations. This entirely bypasses UPC++ machinery
for operations that are known to be most efficiently satisfiable
via synchronous load/store instructions on the cache-coherent
memory system (where they are also amenable to compiler
and architectural reordering optimizations).

g l o b a l p t r <i n t> g p t r = p r o d u c e r () ;
/ / g p t r may or may n o t be l o c a l
i f (g p t r . i s l o c a l ()) {
∗ (g p t r . l o c a l ()) = 4 2 ;
d o s o m e t h i n g d e p e n d e n t () ;
d o s o m e t h i n g o v e r l a p p a b l e () ;

} e l s e {
f u t u r e <> f = r p u t (4 2 , g p t r) ;
f u t u r e <> f2 = f . t h e n ([] {

d o s o m e t h i n g d e p e n d e n t () ;
}) ;
d o s o m e t h i n g o v e r l a p p a b l e () ;
f2 . w a i t ()

}

Listing 2: Manual Localization Example

If a global pointer is not statically known to point to directly
addressable memory, a program can dynamically check the
locality of a pointer before downcasting it. An example is
shown in Listing 2.

A significant drawback to manual localization is that it leads
to code bloat, making the code more difficult to maintain. In
particular, it suffers from the following:

1) It leads to unnecessary code duplication. Programmers
end up writing two or more versions of the code, one for
the case where a global-pointer input is local at runtime
and another for when it is remote, decreasing productivity
and maintainability. If there are N global-pointer inputs
with independent locality properties, this can expand to
2N versions of the code, which is not scalable.

2) The manual dynamic locality check is redundant with
one that is always performed inside RMA calls. The
programmer has manually incurred the cost of a branch
(or N branches) to decide to use an RMA call versus
downcast, but the RMA implementation already includes
a (now redundant) locality branch to choose the correct
protocol (downcast versus network communication). If
the majority of the accesses are dynamically remote, the
cost associated with these extra, redundant branches may
add up to significant performance degradation.

3

A. Kamil and D. Bonachea: Optimization of Asynchronous Communication Operations through Eager Notifications

III. MODIFICATIONS TO UPC++

We made several changes to the UPC++ implementation
to introduce and optimize eager notifications. These included
modifications to the completions infrastructure and associated
code within communication operations, introduction of new
value-less atomic operations, and optimization of future con-
joining.

A. Modifications to Completions

To enable eager notification of completion, we introduced
new factories for explicitly requesting deferred or eager noti-
fication of promises and futures:

o p e r a t i o n c x : : a s d e f e r f u t u r e ()
o p e r a t i o n c x : : a s e a g e r f u t u r e ()
o p e r a t i o n c x : : a s d e f e r p r o m i s e (promise<T . . . > &p)
o p e r a t i o n c x : : a s e a g e r p r o m i s e (promise<T . . . > &p)

and similarly for source_cx. The as_defer variants guar-
antee deferral of notifications, matching the legacy behavior
of UPC++ releases through 2021.3.0. The as_eager variants
allow for, but do not guarantee, eager notification when the
underlying data-movement operation completes synchronously
during initiation.

We also added a UPCXX_DEFER_COMPLETION macro
that controls whether the existing as_future and
as_promise factories request eager or deferred completion
notification. These factories result in eager notification by
default in our implementation, but the macro can be defined
to restore the legacy behavior of deferred notification3.

Modifications to the UPC++ source code were largely
confined to the completions logic. UPC++ makes heavy use of
template metaprogramming to represent and process comple-
tions. We implemented specializations to bypass the progress
queue when eager completion notification is both requested
and dynamically possible, arranging for a ready future to be
returned for notification via a future and eliding modifications
to the given promise for notification via a promise.

Because synchronous completion of data movement is a
dynamic property, some modifications to the implementation
of RMA and atomic operations were required. We obtained
this information through a combination of locality queries and
completion status of the underlying GASNet-EX operation.

B. New Overloads of Fetching Atomics

Communication operations may either produce a value
directly as part of an event notification, or they may only
have side effects such as writing to a memory location.
Value-containing futures and promises are ideal for chain-
ing callbacks and automatically managing the lifetime of
the underlying values. However, they are not convenient for
conjoining the result of multiple operations into a single future
or registering them on a single promise. In the case of futures,
conjoining futures that encapsulate values produces a future
with a different type. For example:

3 At the time of this writing, we are unaware of any real application
code whose correctness is sensitive to the subtle semantic difference between
deferred and eager completion, only contrived/pathological examples.

g l o b a l p t r <i n t> gps [1 0] = /∗ . . . ∗ / ;
f u t u r e <> f = m a k e f u t u r e () ;
f u t u r e <i n t> f0 = w h e n a l l (f , r g e t (gps [0])) ;
f u t u r e <i n t , i n t> f1 = w h e n a l l (f0 , r g e t (gps [1])) ;

Since the future type changes each time a new value-
containing future is conjoined with an existing future, the
idiom of conjoining futures in a loop shown in Section II-A
does not work. Promises pose a similar problem: a promise can
track any number of value-less operations, but it can only track
a single operation that produces a value. Thus, the example
of registering multiple communication operations on a single
promise as shown in Section II-A does not work when the
operations produce values.

Furthermore, we optimized the construction of ready value-
less futures (future<>) as part of this work. Since such a
future does not encapsulate a value, a common pre-allocated
promise cell with its state set as ready can be used when
constructing a ready value-less future. Thus, construction of
such a future now elides allocation of an internal promise cell.
Unfortunately, such an optimization cannot apply to ready
futures that do contain a value – the value must be stored
somewhere, and UPC++ uses a dynamically allocated internal
promise cell to do so.

To sidestep the issues above, we introduced new variants
of fetching atomic operations that write the fetched value to
memory rather than producing it as part of event notification.
In combination with eager notification, they enable fetching
atomic operations that complete synchronously to avoid the
overheads associated with allocating an internal promise cell
(when notification via a future is requested) or of modifying
the given promise (for notification via a promise).

C. Optimization of Future Conjoining

Additionally, we modified the implementation of
when_all to optimize future conjoining when input
futures are ready. We observed that if all the values come
from a single input future, and all other input futures
are already ready, then the result of conjoining them is
semantically equivalent to the former single future. The
following is an example:

f u t u r e <i n t , double> f u t 1 = /∗ . . . ∗ / ;
f u t u r e <> f u t 2 = /∗ . . . ∗ / , f u t 3 = /∗ . . . ∗ / ;
auto r e s u l t = w h e n a l l (f u t 1 , f u t 2 , f u t 3) ;

Here, fut2 and fut3 are value-less, and if they are ready
before the call to when_all, then they do not contribute to
the result in any way. Thus, the call to when_all can just
return a copy of fut1. This optimization also applies when
all input futures are value-less – if only one is non-ready,
then that one future is the only one that contributes to the
readiness of the result, so when_all can just return a copy
of it. Similarly, if all the input futures are value-less and ready,
when_all can return any one of them. These when_all
optimizations are primarily relevant to ready futures that result
from eager completions, but the programmer can also construct
ready futures, which are useful for some UPC++ idioms (such

4

A. Kamil and D. Bonachea: Optimization of Asynchronous Communication Operations through Eager Notifications

as the make_future call that forms the base case of the
conjoining example shown in Section II-A).

IV. EXPERIMENTAL RESULTS

To evaluate the impact of these optimizations, we compare
three versions of UPC++:

• 2021.3.0: the most recent official release as of this writing
• 2021.3.6 defer: a more recent snapshot, with several new

optimizations but still using deferred notifications
• 2021.3.6 eager: the same snapshot as 2021.3.6 defer, but

using eager notifications
Experiments were run on three representative architectures:

• Intel: dual-socket 20-core 2.40 GHz Intel Xeon Gold
6148 (Skylake) processors with 384GiB DDR4-2666
DRAM, located in the GPU partition of NERSC Cori [20]
and using the Intel 19.1.3.304 compiler

• IBM: dual-socket 22-core 3.07GHz IBM POWER9 pro-
cessors with 512GiB DDR4-2666 DRAM, located in
OLCF Summit [22] and using the GCC 10.2.0 compiler

• Marvell: dual-socket 32-core 2.20 GHz Marvell/Cavium
ThunderX2 CN9980 (ARMv8.1) processors with 256GiB
DDR4-2666 DRAM, located in OLCF Wombat [21] and
using the Clang 11.0.1 compiler

Experiments were run on a single node of each system to
model the case where most updates are to local memory. All of
these systems feature GPU accelerators and high-performance
network hardware; however our current study is focused on
the CPU overheads associated with CPU-mediated on-node
interprocess communication, hence these other components
were idle for our experiments. For microbenchmarks and the
GUPS benchmark, we used the SMP conduit on Intel. On IBM
and Marvell, we used the UDP conduit for its better integration
with the native job launcher; process-shared memory ensures
all communication takes place via shared memory (not UDP
sockets), with each process having direct access to the shared
segments of all the other processes. For the graph-matching
application, we used the MPI conduit to trivially satisfy
that application’s hybrid reliance on MPI collectives for data
initialization. As with UDP, all communication in the timed
region takes place using UPC++ RMA operations targeting on-
node shared memory. Each experimental result was obtained
by running twenty samples, taking the average of the top ten.
The exception is GUPS on IBM with 16 processes; due to
higher noise in this experiment, we ran 60 samples and took
the average of the top ten.

A. Microbenchmarks

To understand the effects of our optimizations in isola-
tion, we measured the performance of several communication
operations, consisting of either RMA or atomic transfers of
individual 64-bit pieces of data. We collected data using
notifications via futures; performance of promises is dependent
on how many operations are aggregated on a single promise,
obscuring the cost of a single operation.

Each experiment timed ten million operations, initiating and
then immediately waiting on an operation as in the following:

0

0.02

0.04

0.06

0.08

0.1

Put Get
(value)

Get
(non-value)

Add Fetch-add
(value)

Fetch-add
(non-value)

Intel (Skylake) Microbenchmarks
Microseconds/operation, lower is better

2021.3.0 2021.3.6 defer 2021.3.6 eager

Fig. 2: Microbenchmark results on Intel.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Put Get
(value)

Get
(non-value)

Add Fetch-add
(value)

Fetch-add
(non-value)

IBM (POWER9) Microbenchmarks
Microseconds/operation, lower is better

2021.3.0 2021.3.6 defer 2021.3.6 eager

Fig. 3: Microbenchmark results on IBM.

g l o b a l p t r <double> gp = /∗ . . . ∗ / ;
f o r (i n t i = 0 ; i < 10000000; ++ i)

r p u t (0 . , gp , o p e r a t i o n c x : : a s f u t u r e ())
. w a i t ()) ;

The total time over this loop was divided by the number of
operations to compute the average time per operation. This was
further averaged over the top ten samples, as described above.
Figures 2, 3, and 4 show the results on all three systems. Note
that since our work introduced non-value fetching atomics,
there is no measurement for that operation on the 2021.3.0
version as it did not exist.

The differences between the 2021.3.0 and 2021.3.6 defer
results are due to an optimization we made orthogonal to
whether notifications are deferred or eager, which was the
elimination of an additional heap allocation for an RMA
operation on directly addressable global pointers. Eager no-
tification provides significant further benefits on top of this
optimization. On Intel, improvements range from 46% speedup
for value-producing atomic fetch-and-add to 92% for puts.
IBM similarly shows speedups from 15% for value-producing

5

A. Kamil and D. Bonachea: Optimization of Asynchronous Communication Operations through Eager Notifications

0

0.05

0.1

0.15

0.2

Put Get
(value)

Get
(non-value)

Add Fetch-add
(value)

Fetch-add
(non-value)

Marvell (ThunderX2) Microbenchmarks
Microseconds/operation, lower is better

2021.3.0 2021.3.6 defer 2021.3.6 eager

Fig. 4: Microbenchmark results on Marvell.

atomics to 95% for puts, and Marvell from 52% for value-
producing atomics to 95% for puts.

In addition, our experiments showed that with eager com-
pletion, non-value-producing operations that complete syn-
chronously perform significantly better than their value-
producing counterparts. Improvements range from 66% for
atomic fetch-and-add on Marvell to about 90% for both
atomics and gets on IBM.

These results demonstrate the significantly reduced over-
head of eager notification for operations that complete syn-
chronously. These performance improvements for on-node
operations do not come at the cost of degraded performance
for off-node operations (which never complete synchronously
and thus always exhibit deferred completion). The code path
taken for off-node RMA operations has lengthened by exactly
one branch (a dynamic locality check) for deploying eager
completion of on-node operations, and the code path taken
for off-node atomic memory operations has not changed.
A microbenchmark study of off-node RMA performance
(omitted due to space limitations) on Intel using two nodes
communicating over an EDR InfiniBand network validates that
the cost of the additional branch does not have a statistically
significant impact on the latency of off-node RMA operations.

B. GUPS

GUPS is an implementation of the HPC Challenge Ran-
domAccess benchmark [1], and it performs randomized fine-
grained updates on a distributed table. There are several
UPC++ versions [6], but we focus on the RMA version that
uses unsynchronized one-sided operations (some lost updates
are permitted), and the AMO version that uses remote atomics.

The RMA version of the benchmark has two locality
optimizations:

• When the benchmark is run with processes that all
share physical memory on one node, it bypasses UPC++
entirely, using pure C++ to do the updates. We refer to
this as the raw C++ version. It represents an upper bound
on single-node performance of the benchmark.

0
50

100
150
200
250
300
350
400

Manual
localization

Pure RMA
w/promises

Pure RMA
w/futures

Atomics
w/promises

Atomics
w/futures

Intel (Skylake) GUPS, 16 Processes
Millions of updates/second, higher is better

2021.3.0 2021.3.6 defer 2021.3.6 eager Raw C++

Fig. 5: GUPS results on Intel with 16 processes.

• Otherwise, the benchmark checks each target global
pointer to determine whether it can be dereferenced
directly (without an RMA), downcasting it to a local
pointer if that is the case. We refer to this as manual
localization.

We tested both of these optimizations independently. In
addition, we examined four versions of the benchmark without
these manual optimizations:

• Pure RMA w/promises: directly invokes UPC++ RMA
on all global pointers, ignoring locality, using a promise
to track overall completion

• Pure RMA w/futures: directly invokes UPC++ RMA on
all global pointers, conjoining futures from each RMA
together to track overall completion

• Atomics w/promises: issues atomic update operations on
global pointers, with a promise to track completion

• Atomics w/futures: issues atomic update operations on
global pointers, conjoining futures to track completion

We ran experiments using 1, 2, 4, 8, and 16 processes. Due to
space constraints, we only report the results for 16 processes
in Figures 5, 6, and 7; results for other process counts show
the same trends as those illustrated here.

The differences between the 2021.3.0 and 2021.3.6 defer
results are due to two optimizations that are independent of
whether notifications are deferred or eager. The first is that on
the SMP conduit, it is always the case that a global pointer is
directly addressable, so the is_local check was optimized
to be constexpr and therefore compiled away. This effect
can be seen in the manual-localization variant on Intel, where
we used the SMP conduit. The second is the same allocation-
elimination optimization mentioned above in relation to the
microbenchmarks. This explains the difference between the
two library versions on the pure RMA w/promises variant.

When it comes to the difference between deferred and
eager completions, there is none for the manual-localization
variant, as it does not make any calls to RMA. The pure RMA
w/promises variant, however, shows a speedup of 15% on
Intel, 9% on IBM, and 25% on Marvell when using eager

6

A. Kamil and D. Bonachea: Optimization of Asynchronous Communication Operations through Eager Notifications

0
100
200
300
400
500
600
700
800

Manual
localization

Pure RMA
w/promises

Pure RMA
w/futures

Atomics
w/promises

Atomics
w/futures

IBM (POWER9) GUPS, 16 Processes
Millions of updates/second, higher is better

2021.3.0 2021.3.6 defer 2021.3.6 eager Raw C++

Fig. 6: GUPS results on IBM with 16 processes.

0

100

200

300

400

500

600

700

Manual
localization

Pure RMA
w/promises

Pure RMA
w/futures

Atomics
w/promises

Atomics
w/futures

Marvell (ThunderX2) GUPS, 16 Processes
Millions of updates/second, higher is better

2021.3.0 2021.3.6 defer 2021.3.6 eager Raw C++

Fig. 7: GUPS results on Marvell with 16 processes.

completion. On the other hand, atomics w/promises show
only a negligible speedup of 1-4%; the relatively higher cost
of atomic operations overshadow the overheads of deferring
completion notifications. The future-conjoining variants show
very large speedups for eager completion, as they eliminate
both allocation of underlying promises as well as construct-
ing and resolving large dependency graphs. For RMA, the
improvements range from 2.4x on Marvell to 13.5x on IBM,
and for atomics, from 1.5x on Intel to 7.1x on IBM. In fact, on
Intel and IBM, atomics with futures get very close to the per-
formance of atomics with promises under eager notification.
This large improvement in overheads for dynamically local
operations using future-based completion is the motivation for
this work and validates our approach.

Even with eager completions, we do not expect pure RMA
to match the performance of the manual localization or raw
C++ versions for this benchmark. One important reason relates
to the overheads associated with locality checks and global
pointer downcasting. The raw C++ version factors locality
checks, downcasting and all other UPC++ calls out of the
update loop, amortizing their cost over many updates; how-

ever this version only supports single-node runs and does
not generalize to distributed-memory execution. The manual
localization version supports both local and remote updates,
and it performs the local updates in one step that checks
for locality and then conditionally downcasts and updates the
table:

i f (d e s t . i s l o c a l ()) ∗ d e s t . l o c a l () ˆ= v a l u e ;

Conversely, the pure RMA versions launch a batch of RMA
gets, waits for their completion and then launch RMA puts of
the updated values. This multistep process notably incurs twice
as many global pointer downcast operations and sacrifices the
temporal locality between the read and write of each memory
location. Indeed, we see that pure RMA with promises and
eager completions does not match the performance of manual
localization on any system, but it comes within 25% on
IBM, 32% on Intel, and 36% on Marvell. We find that
eager completions enable one to maintain a single version of
the code that works on distributed memory but still delivers
reasonable performance for on-node accesses.

C. Graph Matching

A final set of experiments compares performance of a graph-
matching application across the three UPC++ versions. The
application is developed by members of the ExaGraph Co-
Design Center at Pacific Northwest National Lab and com-
putes a half-approximate maximum-weight matching over a
weighted graph. Their original MPI version of this application
is described in this paper [15]. The application authors have
also modified the code to use UPC++ communication for the
solve step, and they have previously reported that the UPC++
RMA version performs comparably to the best MPI version
(also using RMA) on up to 2048 processes of a Cray XC
(unpublished result). The UPC++ application code is available
online [12]. The application manually optimizes for target
memory locations on the same process; however, it does not
optimize targets on co-located processes, using UPC++ RMA
operations as it does for processes that are remote.

We collected results with 16 processes on Intel, using
four undirected input graphs from the SuiteSparse Matrix
Collection [11], and further information about these graphs
is available online [2]:

• Channel: The channel-500x100x100-b050 data set, with
approximately 4.8 million vertices and 43 million edges.

• Delaunay: The delaunay n21 data set, with approxi-
mately 2.1 million vertices and 6.3 million edges.

• Venturi: The venturiLevel3 data set, with approximately
4.0 million vertices and 8.1 million edges.

• Youtube: The com-Youtube data set, with approximately
1.1 million vertices and 3.0 million edges.

In addition, we tested with a randomly generated graph (la-
beled random) with 2.0 million vertices and approximately 12
million edges. The graph was generated by running the appli-
cation with 16 processes and passing -n 2000000 -p 15
as command-line arguments. The generated graph has edges
between vertices within a cutoff Euclidean distance. For each

7

A. Kamil and D. Bonachea: Optimization of Asynchronous Communication Operations through Eager Notifications

0

5

10

15

20

Channel Delaunay Random Venturi Youtube

Intel (Skylake) Graph Matching, 16 Processes
Seconds, lower is better

2021.3.0 2021.3.6 defer 2021.3.6 eager

Fig. 8: Graph-matching results on Intel with 16 processes.

100 such edges, the graph contains 15 additional edges be-
tween random vertices that are not close together. We modified
the code to save the graph to a file and used the same graph
across all runs.

Figure 8 shows the running time of the graph-matching
solve step for each input. The channel graph shows minimal
difference between the UPC++ variants, within experimental
noise. The venturi graph results in a small 2% improvement in
running time for eager completion compared to deferred, while
the random, delaunay, and youtube inputs demonstrated
more significant decreases of 5%, 6%, and 11%, respectively.

We attribute the differences in these results to the structure
of the input graphs. Most edges in the channel graph are
between nearby vertices, so that most updates are to memory
owned by the same process. Such updates are manually
optimized by the application, so there is little room for im-
provement. The venturi, random, and delaunay graphs have
somewhat less locality, while the youtube input has a highly
non-local structure. As a result, significantly more updates are
to co-located processes rather than to the same process, and
eager notification reduces the overhead of these updates. The
overall speedup to the graph-matching application imparted by
eager completion notification is of course limited, because the
eligible RMA operations we are optimizing comprise only a
(graph-dependent) fraction of the overall solve time.

V. RELATED WORK

Many HPC programming models offer explicitly asyn-
chronous communication operations, where the program-
mer is responsible for issuing a non-blocking operation
and later taking explicit action to synchronize its com-
pletion before the result is guaranteed to be ready for
consumption in subsequent operations. GASNet [7] subdi-
vides nonblocking operations into “explicit-handle” operations
(e.g., gasnet_put_nb()) whose initiation produces a per-
operation non-blocking event handle that is passed to a later
call to synchronize completion, and “implicit-handle” opera-
tions (e.g., gasnet_put_nbi()) whose initiation augments
an implicit set of operations that are synchronized as a group

during a later call. Unified Parallel C (UPC) [24] similarly
provides non-blocking RMA with explicit and implicit handles
(e.g., upc_memcpy_nb and upc_memcpy_nbi), as does
Titanium [16, 25]. Other systems whose non-blocking APIs
were influenced by GASNet such as Cray DMAPP [3] simi-
larly provide both implicit- and explicit-handle non-blocking
operations. DASH [13] provides explicitly asynchronous ar-
ray copies returning a dash::Future that serves as an
explicit handle. Similarly, Coarray C++ [17] provides non-
blocking coarray read/writes that return a cofuture serving
as an explicit handle. In all of these cases, explicit-handle
initiation calls are permitted to return a ready handle (e.g.,
GASNET_INVALID_HANDLE, UPC_COMPLETE_HANDLE)
to indicate the operation completed synchronously during
initiation.

Systems like OpenSHMEM [23], Global Arrays [18],
GASPI [14], and MPI one-sided RMA [19] offer implicit-
handle non-blocking RMA operations with fence-based syn-
chronization, where prior asynchronous operations (possibly
specific to a context, queue or window) are synchronized by
issuing a fence or flush call to ensure global completion. Some
MPI calls also offer explicit-handle non-blocking events via
MPI_Request objects, and initiation operations are permit-
ted to synchronously mark the returned MPI_Request as
complete.

Future-based completion in UPC++ is a generalization
of explicit handles, because UPC++ allows futures to be
chained and conjoined into DAG’s expressing asynchronous
dependencies between operations and tasks that are processed
dynamically as dependencies become satisfied. None of the
systems mentioned above currently offer the ability to schedule
programmer-provided callbacks for automatic execution upon
explicit-handle completion. As such, a semantic that eagerly
returns ready handles does not pose a comparable semantic
risk that a later callback-scheduling operation might unex-
pectedly execute the callback synchronously. We are currently
unaware of any other programming model that combines
explicit-handle nonblocking operations with completion call-
back scheduling in a manner analogous to UPC++.

VI. CONCLUSIONS

The PGAS model provides productivity and maintainability
benefits by enabling the same code to operate on both local and
remote memory. However, asynchronous PGAS systems need
to ensure that the mechanisms for asynchrony have minimal
impact on the performance of local operations. For UPC++,
we demonstrated that permitting asynchronous operations to
notify completion in an eager manner results in significantly
better performance for RMA operations using promises. Com-
bined with optimizations to the when_all future combinator,
eager notification produces a large improvement in runtime
for on-node RMA and atomic operations using futures, up
to a 95% speedup in microbenchmarks. These enhancements
provide up to a 13.5x speedup in single-node runs of the HPC-
Challenge RandomAccess benchmark, and an 11% speedup

8

A. Kamil and D. Bonachea: Optimization of Asynchronous Communication Operations through Eager Notifications

in overall solve time for a graph matching application using
UPC++ RMA.

Based on these results, we expect the next UPC++ release
will adopt eager notification as the default completion mode,
with the as_defer factories described in Section III-A as
fallbacks for rare cases when deferred notification semantics
are preferred. Ongoing future work involves additional opti-
mizations inside the implementation that should transparently
further reduce overheads associated with UPC++ operations
that can be satisfied on-node.

ACKNOWLEDGMENTS

The authors would like to kindly acknowledge Sayan Ghosh
for his implementation of the graph-matching application in
UPC++ and for providing assistance in selecting inputs and
running the application. We’d also like to acknowledge Paul
H. Hargrove for assistance in reviewing early drafts of the
paper and maintaining the UPC++ installations used at each
center.

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration.

This research used resources of the National Energy Re-
search Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] “HPC Challenge RandomAccess Benchmark,” https://icl.
utk.edu/projectsfiles/hpcc/RandomAccess/.

[2] “SuiteSparse Matrix Collection,” https://sparse.tamu.
edu/.

[3] “Using the GNI and DMAPP APIs,” Cray Inc., Technical
Report S-2446-5202, October 2014.

[4] J. Bachan, S. B. Baden, D. Bonachea, M. Grossman,
P. H. Hargrove, S. Hofmeyr, M. Jacquelin, A. Kamil, and
B. van Straalen, “UPC++ Programmer’s Guide, Revision
2020.10.0,” Lawrence Berkeley Natl. Lab, Tech. Rep.
LBNL-2001368, October 2020, doi:10.25344/S4HG6Q.

[5] J. Bachan, S. B. Baden, S. Hofmeyer, M. Jacquelin,
A. Kamil, D. Bonachea, P. H. Hargrove, and H. Ahmed,
“UPC++: A high-performance communication frame-
work for asynchronous computation,” in 33rd IEEE Inter-
national Parallel & Distributed Processing Symposium
(IPDPS’19), 2019, doi:10.25344/S4V88H.

[6] S. B. Baden and D. Bonachea, “HPC Challenge Ran-
domAccess in UPC++,” https://upcxx.lbl.gov/extras/src/
master/examples/gups/upcxx/.

[7] D. Bonachea, “GASNet specification, v1.1,” University
of California, Berkeley, Tech. Rep. UCB/CSD-02-1207,
October 2002, doi:10.25344/S4MW28.

[8] D. Bonachea and P. H. Hargrove, “GASNet-EX: A
High-Performance, Portable Communication Library for
Exascale,” in Proceedings of Languages and Compilers
for Parallel Computing (LCPC’18), ser. Lecture Notes in
Computer Science, vol. 11882. Springer International
Publishing, October 2018, doi:10.25344/S4QP4W.

[9] D. Bonachea and A. Kamil, “UPC++ v1.0 Specifica-
tion, Revision 2021.3.0,” Lawrence Berkeley Natl. Lab,
Tech. Rep. LBNL-2001388, March 2021, doi:10.25344/
S4K881.

[10] D. Bonachea, “UPC++ as eager Working Group Draft,
Revision 2020.6.2,” Lawrence Berkeley Natl. Lab,
Tech. Rep. LBNL-2001416, August 2021, doi:10.25344/
S4FK5R.

[11] T. A. Davis and Y. Hu, “The University of Florida sparse
matrix collection,” ACM Transactions on Mathematical
Software, vol. 38, p. 1, 2011, doi:10.1145/2049662.
2049663.

[12] ExaGraph Co-Design Center of the Department of
Energy Exascale Computing Project (ECP), “Half-
approximate Graph Matching in UPC++.” [Online].
Available: https://github.com/Exa-Graph/mel-upx

[13] K. Fürlinger, C. Glass, A. Knüpfer, J. Tao, D. Hünich,
K. Idrees, M. Maiterth, Y. Mhedheb, and H. Zhou,
“DASH: Data Structures and Algorithms with Support
for Hierarchical Locality,” in Euro-Par Parallel Pro-
cessing Workshops, 2014, doi:10.1007/978-3-319-14313-
2 46.

[14] GASPI Forum, “GASPI: Global Address Space Pro-
gramming Interface, Version 17.1,” February 2017, http:
//www.gaspi.de/.

[15] S. Ghosh, M. Halappanavar, A. Kalyanaraman, A. Khan,
and A. H. Gebremedhin, “Exploring MPI communication
models for graph applications using graph matching as
a case study,” in 2019 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2019, pp.
761–770, doi:10.1109/IPDPS.2019.00085.

[16] P. Hilfinger, D. Bonachea, K. Datta, D. Gay, S. Graham,
A. Kamil, B. Liblit, G. Pike, J. Su, and K. Yelick, “Tita-
nium language reference manual, version 2.20,” Univer-
sity of California, Berkeley, Tech Report UCB/EECS-
2005-15.1, August 2006, doi:10.25344/S4H59R.

[17] T. A. Johnson, “Coarray C++,” in Proceedings
of the 7th International Conference on PGAS
Programming Models, ser. PGAS’13, 2013, pp. 54–
66. [Online]. Available: https://www.research.ed.ac.uk/
portal/files/19680805/pgas2013proceedings.pdf

[18] M. Krishnan, B. Palmer, A. Vishnu, S. Krishnamoorthy,
J. Daily, and D. Chavarria, “Global Arrays User Man-
ual,” Pacific Northwest National Laboratory, Tech. Rep.
PNNL-13130, February 2012.

[19] MPI Forum, “MPI: A message-passing interface stan-
dard, version 3.0,” University of Tennessee, Knoxville,

9

https://icl.utk.edu/projectsfiles/hpcc/RandomAccess/
https://icl.utk.edu/projectsfiles/hpcc/RandomAccess/
https://sparse.tamu.edu/
https://sparse.tamu.edu/
https://doi.org/10.25344/S4HG6Q
https://doi.org/10.25344/S4V88H
https://upcxx.lbl.gov/extras/src/master/examples/gups/upcxx/
https://upcxx.lbl.gov/extras/src/master/examples/gups/upcxx/
https://doi.org/10.25344/S4MW28
https://doi.org/10.25344/S4QP4W
https://doi.org/10.25344/S4K881
https://doi.org/10.25344/S4K881
https://doi.org/10.25344/S4FK5R
https://doi.org/10.25344/S4FK5R
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://github.com/Exa-Graph/mel-upx
https://doi.org/10.1007/978-3-319-14313-2_46
https://doi.org/10.1007/978-3-319-14313-2_46
http://www.gaspi.de/
http://www.gaspi.de/
https://doi.org/10.1109/IPDPS.2019.00085
https://doi.org/10.25344/S4H59R
https://www.research.ed.ac.uk/portal/files/19680805/pgas2013proceedings.pdf
https://www.research.ed.ac.uk/portal/files/19680805/pgas2013proceedings.pdf

A. Kamil and D. Bonachea: Optimization of Asynchronous Communication Operations through Eager Notifications

Technical Report, September 21, 2012, https://www.
mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

[20] National Energy Research Scientific Computing Center
(NERSC). Cori GPU Nodes. Accessed 2021-07-22.
[Online]. Available: https://docs-dev.nersc.gov/cgpu/

[21] Oak Ridge National Laboratory Leadership Computing
Facility (ORNL/OLCF) . Wombat. Accessed 2021-07-22.
[Online]. Available: https://olcf.ornl.gov/olcf-resources/
compute-systems/wombat/

[22] Oak Ridge National Laboratory Leadership Computing
Facility (ORNL/OLCF). Summit. Accessed 2021-07-22.
[Online]. Available: https://olcf.ornl.gov/olcf-resources/
compute-systems/summit/

[23] Open Source Software Solutions, Inc. (OSSS), “OpenSH-
MEM Application Programming Interface, Version 1.5,”
June 2020, http://openshmem.org/.

[24] UPC Consortium, “UPC Language and Library Specifi-
cations, v1.3,” Lawrence Berkeley Natl. Lab, Tech. Rep.
LBNL-6623E, November 2013, doi:10.2172/1134233.

[25] K. Yelick, P. Hilfinger, S. Graham, D. Bonachea, J. Su,
A. Kamil, K. Datta, P. Colella, and T. Wen, “Parallel
languages and compilers: Perspective from the Titanium
experience,” The International Journal of High Perfor-
mance Computing Applications, vol. 21, no. 3, pp. 266–
290, 2007, doi:10.1177/1094342007078449.

10

https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://docs-dev.nersc.gov/cgpu/
https://olcf.ornl.gov/olcf-resources/compute-systems/wombat/
https://olcf.ornl.gov/olcf-resources/compute-systems/wombat/
https://olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://olcf.ornl.gov/olcf-resources/compute-systems/summit/
http://openshmem.org/
https://doi.org/10.2172/1134233
https://doi.org/10.1177/1094342007078449

	I Introduction
	II Background
	II-A UPC++ Completions
	II-B Progress and Deferred Notification
	II-C Manual Localization

	III Modifications to UPC++
	III-A Modifications to Completions
	III-B New Overloads of Fetching Atomics
	III-C Optimization of Future Conjoining

	IV Experimental Results
	IV-A Microbenchmarks
	IV-B GUPS
	IV-C Graph Matching

	V Related Work
	VI Conclusions
	Acknowledgments
	References

