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 Abstract 

Making analogies is an important way for people to explain 

and understand new concepts. Though making analogies is 

natural for human beings, it is not a trivial task for a dia-

logue agent. Making analogies requires the agent to estab-

lish a correspondence between concepts in two different 

domains. In this work, we explore a data-driven approach 

for making analogies automatically. Our proposed approach 

works with data represented as a flat graphical structure, 

which can either be designed manually or extracted from In-

ternet data. For a given concept from the base domain, our 

analogy agent can automatically suggest a corresponding 

concept from the target domain, and a set of mappings be-

tween the relationships each concept has as supporting evi-

dence. We demonstrate the working of this algorithm by 

both reproducing a classical example of analogy inference 

and making analogies in new domains generated from 

DBPedia data. 

 

Keywords: creativity; analogy; intelligent agents 

 Introduction  

This work proposes a data-driven approach for dialogue 

agents to make analogies between concepts. Analogies 

describe the comparative relationships between two sets of 

concepts, i.e. concepts A and B are related in a similar way 

to how concepts C and D are related. Analogies are widely 

used in writings and dialogues for explaining new concepts 

or for making the narration more vivid and more interest-

ing. Typically, one set of concepts is more familiar to the 

audience than the other. Analogies can, therefore, help the 

audience understand concepts in unfamiliar domains.  

 Though making analogies is natural for human beings, it 

is not a trivial task for dialogue agents. There are at least 

two challenges associated with this task. One is how to 

find out and represent what people know about a domain. 

The other is the computational complexity of establishing 

mappings between two domains. Both challenges become 

more significant when the domains the agent tries to make 

analogies with are not defined explicitly.  For example, it is 

much harder to represent what people know about music 

genres than linear algebra. There is both more uncertainty 

and more information in the first case. In addition, there 

may be multiple good mappings between the concepts in 

the two domains. For example, one’s life can both be  

 

mapped to a tree or a road depending on the purpose of 

making the analogy. 

 Many cognitive theories have been proposed for ex-

plaining how people form analogies (Keane, 2012; Ku-

bose, Holyoak, & Hummel, 2002; Larkey & Love, 2003). 

Structure-Mapping Theory (SMT) is one of most influen-

tial theories for analogies and has been supported by a 

number of empirical studies using human subjects 

(Falkenhainer, Forbus, & Gentner, 1989; Gentner, 1983; 

Gentner & Smith, 2012). According to SMT, an analogical 

mapping is created by establishing a structural alignment 

of relationships between two sets of concepts (in two dif-

ferent domains). The closer the structural match is, the 

more optimal the inferred analogy will be. 

 One of the main challenges of implementing SMT is its 

computational complexity. Many researchers have pointed 

out that the computational time of establishing the mapping 

is intractable. Heuristics and alternative theories have been 

developed to form analogies and cut down the computa-

tional time. Holyoak and Thagard’s Multiconstraint Theory 

reduces analogy inference to a constraint satisfaction prob-

lem (1989). (Forbus & Oblinger, 1990; Grootswagers, 

2013; van Rooij, 2008; Wareham, Evans, & van Rooij, 

2011) have all worked on creating heuristics for speeding 

up the structural mapping process. 

 Another challenge comes from applying SMT or other 

similar theories to dialogue agents. They typically require a 

hierarchical relationship structure in the data. For example, 

the analogy between the solar system and the Rutherford 

model is a classic example used in computational models 

of analogy. Figure 1 is taken from (Falkenhainer, Forbus, 

and Gentner, 1989) for illustrating the solar system do-

main. For representing this domain, SMT prefers to know 

not only the relationships between the concepts, e.g. the 

planet revolves around the sun, the sun’s mass is greater 

than the planet’s mass, and the sun attracts the planet but 

also the relationships among relationships, i.e. the latter 

two relationships are the cause for the first one. When de-

signing virtual characters with automatically generated or 

crowd-sourced dialogue content, we often do not have such 

hierarchical information. The alternative is to design con-

tent solely by hand, which creates a huge authoring burden. 

This challenge is particularly significant when we study 
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analogy inference not only for understanding human cogni-

tion but also for procedurally generating dialogues for vir-

tual characters. 

Figure 1: Solar System  

 

In this work, we experiment with loosening up the con-

straints on input data and using a flat graphical structure 

for representing the agent’s knowledge, i.e. our proposed 

algorithm only needs to know the relationships between 

each pair of concepts. Instead of mapping the structures of 

the relationships, we seek to map the type of relationships 

from one domain to another. This algorithm is completely 

data driven; there is no manually designed mapping rule. 

Our algorithm generates comparable results with SMT 

when being applied to a classical analogy inference exam-

ple. We also demonstrate applying the algorithm to larger 

domains that were automatically generated by crawling 

data from DBpedia (Bizer, Lehmann, Kobilarov, Auer, 

Becker, Cyganiak, & Hellmann, 2009). 

The results from the analogy-making module will be in-

tegrated into an automated narrative agent we developed 

for making presentations using data gathered through 

crowdsourcing or from the Internet (Si, Battad, & Carlson, 

2016). The success of this project will contribute greatly to 

creating interesting dialogues and computational creativity. 

The analogy-making module is self-contained, and the de-

tails of the presentation agent are skipped in this paper. In 

the next sections, we will first describe our input data’s 

format and example domains. Then, we will present our 

analogy-making algorithm, and results generated by this 

algorithm, followed by discussions and future work. 

Example Domains and Knowledge Represen-

tation 

We want to use a knowledge representation that is both 

compatible with structured data, such as the results from 

querying DBpedia, and is intuitive enough for non-

technical authors to manually design and edit the 

knowledge base. We use a XML format that encodes 

knowledge as a directed graph. Each concept is represented 

as a node with a unique ID. The nodes are linked to each 

other by their relationships, and thus form a directed graph. 

We will demonstrate the application of our algorithm us-

ing two examples. The first one makes analogies between 

the solar System and the Rutherford model. This example 

has been discussed extensively by Gentner et al. (see 

(Falkenhainer, Forbus, & Gentner, 1989; Gentner, 1983) 

for more detailed descriptions of the example.) Figure 2 

shows the solar system represented as a knowledge graph 

in our system. Because we don’t use hierarchical relation-

ships in our data representation, the higher-level relation-

ships, such as “And” and “Cause” in Figure 1 are lost.  

However, the relationships between each pair of concepts, 

such as “Attracts” and “Revolve” are kept. We created a 

new relationship “More massive” for representing the 

sun’s mass is greater than the planet. Our representation 

does not use attributes and functions. For attributes, we 

converted them into a relationship the concept has with 

another concept, e.g. the sun has a relationship with a con-

cept called Yellow. Currently, we don’t have a correspond-

ing encoding for SMT’s concept of function in our system. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Solar System without Hierarchical Relationship 

Structure 

 

The first example only contains about a dozen concepts. 

For examining how well our algorithm scales up, we creat-

ed a second set of example domains which are much larg-

er. One domain is about music genres, and the other is 

about programming languages. In this work, we used Wik-

ipedia data as the base of knowledge. The two domains are 

generated by crawling for information from DBpedia using 

a tool we developed in the lab. The tool uses one or more  

DBpedia entries as the starting points and iteratively ex-

panding the graph by including neighbors of the entries 

that are already in the graph.  

Each entry in DBpedia is converted to a node in our 

knowledge graph and represents a unique concept. The 

type of link between them in DBpedia becomes the rela-

tionship link in our data. These domains are significantly 

larger than the ones in the first example. The music genres 

domain contains 999 nodes and 6418 relationships. The 

programming language domain contains 2589 nodes and 

9952 relationships. Figure 3 shows part of the data from 

the music domain. 
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Figure 3: Music Genre Data  

Proposed Approach 

In this work, our main objective is to provide a dialogue 

agent or a game character a tool for conducting richer and 

more interesting dialogues, or for making explanations for 

a new concept to the user. We hope to help create dia-

logues that are creative and innovative. Therefore, different 

from most existing work on analogy inference, we do not 

necessarily need to find the best analogy we can make giv-

en the two domains. Instead, we want to be able to make 

analogies that are interesting and explainable. Furthermore, 

the computation needs to complete in a reasonable amount 

of time. 

Our proposed algorithm follows the same philosophy as 

SMT in that we want to find mappings between concepts 

and relationships that are supported by mappings between 

other concepts and relationships. In other words, we want 

all of the mappings to be consistent with each other. Our 

algorithm seeks to achieve these goals while working with 

large and uniformly structured data.  

More specifically, instead of trying to map a relationship 

structure, we seek to map relationship types from one do-

main to another. These mappings are supported by the sim-

ilarities in the concepts being linked to, and the relation-

ships related to those concepts. Because our data is large 

and not manually designed, there may not be a single map-

ping that is better than all the alternatives. Instead, there 

may be multiple good candidates. Therefore, instead of 

looking for the best mapping for all possible hypotheses 

between the concepts and the relationships in the base and 

destination domains, we seek to find the best analogy we 

can make just about a single concept. 

Algorithms 1-4 contain the pseudo code for our pro-

posed algorithm. On a high level, it works in two steps: 1) 

computes a unique index for each concept and each rela-

tionship type. This index can be used for comparing the 

similarities between two concepts or two relationship 

types; 2) generates and evaluates the hypotheses of map-

ping a concept in the base domain to a concept in the target 

domain. 

 

Algorithm 1 Index_Relationship_Type (domain): 
loss, gain, same, diff, index = {} # empty dictionar-
ies 
# n: concept; r: relationship; d: destination concept 
of r 
for each n in domain do 

for each r, d of n do 
# compare n’s relationships with d’s relation-

ships 
loss[r] += n.relationship - d.relationship 
gain[r] += d.relationship - n.relationship 
same[r] += Common(n.relationship, d.relationship) 
diff[r] += Difference(n.relationship, 

d.relationship) 
end for  

end for 
for each r in domain do 

index[r] = (Jaccard_index(loss[r], gain[r]), 
Jaccard_index(loss[r], same[r]), 
Jaccard_index(loss[r], diff[r]),  
Jaccard_index(gain[r], same[r]), 
Jaccard_index(gain[r], diff[r]),  
Jaccard_index(same[r], diff[r]))  

end for 
return index 

 

 Algorithm 1 creates a vector of size 6 for describing 

each relationship type in a domain. Inspired by the struc-

tural mapping process in SMT, here we argue two relation-

ship types are similar if they are always used in similar 

contexts. Because we don’t have the relational structure for 

providing a context, we operationally defined the context 

as the origin and the destination concepts linked by the 

relationship, and we judge the similarity of these two con-

cepts by looking at the differences between the relation-

ships they have and what they share in common. For ex-

ample, for the relationship “Hotter than” in Figure 2, n is 

Sun and d is Planet. The loss set, in this case, equals to 

[“More massive”, “Is”]. It contains all the relationships the 

Sun has, but the Planet does not have. If “Hotter than” also 

links other concepts in the knowledge base, the loss set 

will be appended every time this relationship is used. The 

gain set contains all the relationships the destination con-

cept has, but the origin concept doesn’t. The same set con-

tains all the relationships the origin and the destination 

concepts have in common, and diff contains all the rela-

tionships that are either in loss or gain. Currently, we are 

only using the measurements that represent the results of 

basic set operations, i.e. complement, intersection, sym-

metric and difference. As part of our future work, we will 

be looking for other measurements that can help with dif-

ferentiating the relationship types. 

For each relationship type, Algorithm 1 aggregates the 

results from every time it is used in the domain. The sec-

ond for-loop converts the information in the four sets, i.e. 

loss, gain, same and diff into a one-dimensional vector by 

calculating the Jaccard indices between them. We used 

Jaccard index because it can provide a numerical meas-

urement of the similarities between two sets. 
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Algorithm 2 Get_Node_Index (n,rtype_index): 
# rtype_index: the relationship indexes computed by 
Algorithm 1 
# n: concept; r: relationship 
tmpv = (0,0,0,0,0,0) # a zero vector 
for each r of n do 

tmpv += rtype_index[r] 
end for  
return Normalize(tmpv) 

 
Based on the relationship indices computed by Algo-

rithm 1, Algorithm 2 returns an index for a concept. Simi-

larly, this index will be used for computing the difference 

between two concepts in the knowledge network. We used 

a simple heuristic here: a concept’s index is decided by the 

sum of the index values of all the relationships it has. This 

value is then normalized to a unit vector. 

Finally, Algorithm 3 generates and tests the matching 

hypotheses, and Algorithm 4 creates a one-to-one mapping 

between all the relationships a concept n has in the base 

domain to the relationships in the target domain. With this 

mapping, it is straightforward to find the concept in the 

target domain that has the most mapping relationships with 

n. 

For establishing the mapping, Algorithm 3 generates all 

the possible hypotheses of mapping the relationships and 

destinations (r1, d1) associated with n to another pair of 

relationship and destination (r2, d2) in the destination do-

main. For evaluating the quality of this mapping, Algo-

rithm 3 looks at both how different the two relationships 

(r1 and r2) are -- rdiff, and how different the two destina-

tions (d1 and d2) are -- ndiff. The difference here is given 

by the cosine similarity between the two vectors. These 

two difference values are combined. The smaller the over-

all difference is, the stronger the mapping is. The variable 

“hypotheses” contains the list of all the hypotheses and 

their strengths. 

 

Algorithm 3 Generate_Hypotheses(n, B, T): 
# B: base domain 
# T: destination domain 
hypotheses = [] # hypotheses for mapping 
rtype_index = Index_Relationship_Type(B, T) 
# index for source node 
svec = Get_Node_Index(n, rtype_index) 
for each node t in T do 

# index for candidate node 
cvec = Get_Node_Index(t, rtype_index) 
for each r2, d2 of t do 

for each r1, d1 of n do  
rdiff = Cosine_Similarity(rtype_index[r1], 

rtype_index[r2]) 
d1vec = Get_Node_Index(d1, rtype_index)   
diff1 = svec - d1vec 
d2vec = Get_Node_Index(d2, rtype_index)   
diff2 = cvec - d2vec 
ndiff = Cosine_Similarity(diff1, diff2) 
normalized_score = (rdiff + ndiff)/2 
hypotheses.Append(normalized_score,r1,d1,r2,d2) 

end for 
end for 

end for 
return hypotheses 

 

Similar to SMT, we want the mappings to be unambigu-

ous. We used a greedy algorithm to resolve the conflicts in 

the hypotheses. In case there are hypotheses for both map-

ping (r1, d1) to (r2, d2), and to (r3, d3) in the destination 

domain, we simply accept the best -- the mapping that has 

the highest score -- hypotheses first, and reject any subse-

quent mappings that intend to revise an existing one (Algo-

rithm 4). 

 

Algorithm 4 Map_Relationships(hypotheses): 

map = {} 
# sort the hypotheses based on normalized_score  
hypotheses.Sort_Descending() 
for each h in hypotheses do 

# ensure a one-to-one mapping 
if both h.r1 and h.r2 are not mapped then 

# map r1 in base to r2 in destination 
map[r1] = r2 

end if 
end for 
return map 

Example Results and Discussion 

The proposed algorithm has been applied to making analo-

gies in the two example scenarios described in the Exam-

ple Domains and Knowledge Representation section. 

The Solar System and the Rutherford Model 

For making analogies between the solar system and the 

Rutherford model, we obtained perfect results. Our algo-

rithm correctly generated the mapping between the Nucle-

us and the Sun, and between the Electron and the Planet. 

Our algorithm does not produce mapping relationship 

structure for supporting the analogy. Instead, it produces 

matching pairs of relationships and destination concepts. 

Tables 1 and 2 list the evidence for these two mappings. 

Table 1: Mappings between Nucleus and Sun 

Nucleus Sun 

(Attracts, Electron) (Attracts, Planet) 

(Distance, Electron) (Distance, Planet) 

(Has, Electric charge) (Has, Mass) 

(More massive than, Electron) (Hotter than, Planet) 

 

In Table 1, all the mappings except the last one are 

straightforward. We checked the intermediate results. The 

last mapping was an artifact. (Hotter than, Planet) and 

(More massive than, Planet) received the same score, and 

the system did not know how to break the tie. All the map-

pings in Table 2 are consistent with the original example. 

We are quite encouraged to get this result without the need 

of using data with hierarchical relationships. We believe 

the flat concept-relationship structure we designed in Fig-
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ure 2 is friendlier to both human designers and automated 

programs that convert data from other sources. 

 

Table 2: Mappings between Electron and Planet 

Electron Planet 

(Attracts, Nucleus) (Attracts, Sun) 

(Distance, Nucleus) (Distance, Sun) 

(Has, Electric charge) (Has, Mass) 

(Revolves around, Nucleus) (Revolves around, Sun) 

 

Music Genres and Programming Languages 

Making analogies between these two domains generated 

some interesting results, and inspired us with directions for 

future work. These domains are much larger than the solar 

system and the Rutherford model. In our evaluation, the 

typical running time is less than a second on a Lenovo 

T430 laptop. We will discuss two pieces of example results 

below. 

 

Table 3: Mapping Relationships between Punk rock and 

LPC 

Punk Rock LPC 

Music fusion genre Influenced 

Stylistic origin Influenced by 

Instrument Paradigm 

 

In the first example, the system mapped the music genre 

Punk Rock to the programming language LPC. Because of 

space limitation, in Table 3 we only list the matching rela-

tionship types the system provided for this analogy. Two of 

these mappings are quite reasonable. By mapping “Stylistic 

origin” to “Influenced by”, the system provided us support-

ing evidence such as “the stylistic origin of Punk Rock is 

Garage Rock, Glam Rock, and Surf Music, just like LPC is 

influenced by Lisp, Perl, and C.” By mapping “Music fu-

sion genre” to “Influenced”, the system provided corre-

sponding supporting evidence “Celtic Punk is a music fu-

sion genre of Punk Rock, just like LPC influenced Pike.” 

Intuitively, these two examples make sense. Music genres 

that are influenced by other music genres have their styles 

originating from those genres. The inverse works as well; 

if genre A is a music fusion genre for genre B, then A in-

fluenced B. The system was able to equate these relation 

types without any explicit help.  

The mapping from “Instrument” to “Paradigm” isn’t as a 

clear cut as the other mappings. The evidence provided is 

“the relationship between Punk rock and Bass guitar or 

Electric guitar is Instrument, just like the relationship be-

tween LPC and Procedural programming and Functional 

programming is Paradigm.” This assertion isn’t inherently 

wrong. However, to a human observer this mapping may 

not seem intuitive enough. 

Interestingly, we also asked the system to make an anal-

ogy about the programming language Python, and the sys-

tem responded with Hardcore Punk. Table 4 provides the 

matching relationships for this analogy. 

Most of the relationship mappings in Table 4 are reason-

able. For example, we can say “Python influenced F Sharp, 

Ruby, and Swift just like Black Metal, Thrash Metal, and 

Industrial Metal are derivatives of Hardcore Punk.”  

 

Table 4: Mapping Relationships between Python and 

Hardcore Punk 

Python Hardcore Punk 

Influenced Derivative 

Influenced by Stylistic origin 

Operating system Instrument 

Paradigm Format 

 

The most interesting part of this example is the assertion 

that Python is influenced by Perl in the same way as the 

stylistic origin of Hardcore Punk is Punk Rock (and hence 

Hardcore Punk is influenced by Punk Rock). This goes 

against the previous analogy of Punk Rock being compara-

ble to LPC, since Python is not influenced by LPC. We 

think this shows the weakness of our approach. Without 

the hierarchical relationship information which in fact pro-

vides a global structure of the data, our algorithm does not 

do a good job in creating analogies that are globally con-

sistent. However, the analogies are still locally consistent 

for a given topic because of Algorithm 4.  

Another thing to note is the difference in mapping be-

tween Instrument and Paradigm. In Table 3, “Instrument” 

is mapped to “Paradigm”, but in Table 4, “Instrument” is 

mapped to “Operating system.”  LPC does not have a rela-

tionship of the type “Operating system”, so no mapping 

could have been made. Table 4 indicates that “Instrument” 

is more analogous to “Operating system” than to “Para-

digm.”  As mentioned before, our system cannot enforce 

global consistency yet. Realistically, however, it’s hard to 

say which is truly correct in this case. A similar phenome-

non can be observed with “Influenced” and “Music fusion 

genre” in Table 3. This time in Table 4, “Influenced” is 

mapped to “Derivative” because the match is better, not 

because Hardcore Punk lacks that relation type. In Table 4, 

mappings from “Influenced” to “Music fusion genre” are 

ignored because a one-to-one mapping of relation types is 

enforced by the algorithm. Currently, one-to-one mappings 

must be enforced in order for coherent analogies to be 

made. However, there are cases when using many-to-one 

mappings is more suitable. This is especially true when 

using crowd-sourced data or data from the Internet where 

sometimes the only real difference in relationship type is 

semantics (e.g. “Instrument” / “Instruments”).  
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Future Work 

We have planned future work both in the direction of im-

proving our algorithms for finding better mappings and 

discovering more creative uses of the algorithms.  

First of all, we want to address the issue of the agent 

sometimes creating conflicted mappings between two pairs 

of concepts. When working with a large data set, exclu-

sively checking all the possible conflictions would be very 

time-consuming. Instead, we plan to develop a greedy so-

lution. When the agent needs to make a new analogy, it 

will assume all the relationship mappings it used to support 

its previous analogies are already true. This way, instead of 

asking two separate questions of “what is LPC like” and 

“what is Python like”, we are asking the system “If LPC is 

like Punk Rock, what Python would be like?” 

Secondly, we are looking for better ways for indexing 

the relationships and the concepts. Right now, the semantic 

information of the relationship types is rarely used. Algo-

rithm 1 only looks at whether they are different or not. We 

are considering using other semantic tools for helping us to 

get a direct measure of how close two relationship types 

are, and even how close two concept descriptions are. This 

would solve the aforementioned problem caused by the 

one-to-one mapping restriction. Another consideration in 

the indexing process is the fact that when dealing with hu-

man authored content, there is no guarantee that different 

contributors will use the same relation type in the same 

way. Such inconsistencies could throw off the results of 

Algorithm 1, leading to bad analogies. 

Thirdly, many benchmarks have been created for analo-

gy inference, such as (Holyoak & Thagard, 1989). Most of 

the benchmarks’ formats are compatible with SMT and the 

algorithms derived from it. We will be looking into ways 

of evaluating our algorithm using a standard benchmark.  

Finally, we believe this work has great potential of con-

tributing to creating rich and vivid virtual characters, inter-

esting and interactive stories, and computational creativity. 

We are interested in finding new and innovative applica-

tions of our proposed algorithms in addition to making 

analogies for a single concept. In particular, we are inter-

ested in exploring how these algorithms can be used in 

creating digital stories. As one of our next steps, we plan to 

experiment with using this algorithm to learn how a person 

tells a story or how a good story is constructed and then 

apply the learning results for telling new stories using data 

from a different domain.   

Acknowledgments 

This work was supported in part by the Cognitive and Im-

mersive Systems Laboratory -- a collaboration between the 

IBM Research and RPI in the IBM Cognitive Horizons 

Network. 

References 

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., 

Cyganiak, R., & Hellmann, S. (2009). DBpedia-A crys-

tallization point for the Web of Data. Web Semantics: 

science, services and agents on the world wide 

web, 7(3), 154-165. 

Falkenhainer, B., Forbus, K., & Gentner, D. (1989). The 

structure-mapping engine: Algorithm and examples. Ar-

tificial Intelligence, 41, 1–63. 

Forbus, K., & Oblinger, D. (1990). Making SME greedy 

and pragmatic. Proceedings of the 12th Annual Confer-

ence of the Cognitive Science Society (pp. 61–68). 

Gentner, D. (1983). Structure-mapping: A theoretical 

framework for analogy. Cognitive Science, 7 (2), 155–

170. 

Gentner, D., & Smith, L. (2012). Analogical reasoning. In 

V. Ramachandran (Ed.), Encyclopedia of human behav-

ior (2nd ed.) (pp. 130–136). Elsevier; Oxford, UK. 

Grootswagers, T. (2013). Having your cake and eating it 

too: Towards a fast and optimal method for analogy der-

ivation. Master dissertation, Radboud University, The 

Netherlands. 

Holyoak, K., & Thagard, P. (1989). Analogical mapping 

by constraint satisfaction. Cognitive Science, 13 (3), 

295–355.  

Kline, P. J. (1983). Computing the similarity of structured 

objects by means of a heuristic search for correspond-

ences. Doctoral dissertation, University of Michigan. 

Kubose, T. T., Holyoak, K. J., & Hummel, J. E. (2002). 

The role of textual coherence in incremental analogical 

mapping. Journal of memory and language, 47(3), 407-

435. 

Larkey, L. B., & Love, B. C. (2003). CAB: Connectionist 

analogy builder. Cognitive Science, 27(5), 781-794. 

Si, M., Battad, Z. & Carlson, C. (2016) Intertwined story-

lines with anchor points. Proceedings of the 9th Interna-

tional Conference on Interactive Digital Storytelling 

(ICIDS) (pp 247-257), Los Angeles, CA. 

van Rooij, I. (2008). The tractable cognition the-

sis. Cognitive science, 32(6), 939-984. 

Wareham, T., Evans, P., & van Rooij, I. (2011). What does 

(and doesn’t) make analogical problem solving easy? A 

complexity-theoretic perspective. The Journal of Prob-

lem Solving, 3 (2), 30–71. 

3160




