
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
A Data Driven Approach for Making Analogies

Permalink
https://escholarship.org/uc/item/2dx8b228

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 39(0)

Authors
Si, Mei
Carlson, Craig

Publication Date
2017

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2dx8b228
https://escholarship.org
http://www.cdlib.org/

A Data Driven Approach for Making Analogies

Mei Si (sim@rpi.edu)
Department of Cognitive Science, Rensselaer Polytechnic Institute

Troy, NY 12180 USA

Craig Carlson (carlsc2@rpi.edu)
Department of Computer Science, Rensselaer Polytechnic Institute

Troy, NY 12180 USA

 Abstract

Making analogies is an important way for people to explain

and understand new concepts. Though making analogies is

natural for human beings, it is not a trivial task for a dia-

logue agent. Making analogies requires the agent to estab-

lish a correspondence between concepts in two different

domains. In this work, we explore a data-driven approach

for making analogies automatically. Our proposed approach

works with data represented as a flat graphical structure,

which can either be designed manually or extracted from In-

ternet data. For a given concept from the base domain, our

analogy agent can automatically suggest a corresponding

concept from the target domain, and a set of mappings be-

tween the relationships each concept has as supporting evi-

dence. We demonstrate the working of this algorithm by

both reproducing a classical example of analogy inference

and making analogies in new domains generated from

DBPedia data.

Keywords: creativity; analogy; intelligent agents

 Introduction

This work proposes a data-driven approach for dialogue

agents to make analogies between concepts. Analogies

describe the comparative relationships between two sets of

concepts, i.e. concepts A and B are related in a similar way

to how concepts C and D are related. Analogies are widely

used in writings and dialogues for explaining new concepts

or for making the narration more vivid and more interest-

ing. Typically, one set of concepts is more familiar to the

audience than the other. Analogies can, therefore, help the

audience understand concepts in unfamiliar domains.

 Though making analogies is natural for human beings, it

is not a trivial task for dialogue agents. There are at least

two challenges associated with this task. One is how to

find out and represent what people know about a domain.

The other is the computational complexity of establishing

mappings between two domains. Both challenges become

more significant when the domains the agent tries to make

analogies with are not defined explicitly. For example, it is

much harder to represent what people know about music

genres than linear algebra. There is both more uncertainty

and more information in the first case. In addition, there

may be multiple good mappings between the concepts in

the two domains. For example, one’s life can both be

mapped to a tree or a road depending on the purpose of

making the analogy.

 Many cognitive theories have been proposed for ex-

plaining how people form analogies (Keane, 2012; Ku-

bose, Holyoak, & Hummel, 2002; Larkey & Love, 2003).

Structure-Mapping Theory (SMT) is one of most influen-

tial theories for analogies and has been supported by a

number of empirical studies using human subjects

(Falkenhainer, Forbus, & Gentner, 1989; Gentner, 1983;

Gentner & Smith, 2012). According to SMT, an analogical

mapping is created by establishing a structural alignment

of relationships between two sets of concepts (in two dif-

ferent domains). The closer the structural match is, the

more optimal the inferred analogy will be.

 One of the main challenges of implementing SMT is its

computational complexity. Many researchers have pointed

out that the computational time of establishing the mapping

is intractable. Heuristics and alternative theories have been

developed to form analogies and cut down the computa-

tional time. Holyoak and Thagard’s Multiconstraint Theory

reduces analogy inference to a constraint satisfaction prob-

lem (1989). (Forbus & Oblinger, 1990; Grootswagers,

2013; van Rooij, 2008; Wareham, Evans, & van Rooij,

2011) have all worked on creating heuristics for speeding

up the structural mapping process.

 Another challenge comes from applying SMT or other

similar theories to dialogue agents. They typically require a

hierarchical relationship structure in the data. For example,

the analogy between the solar system and the Rutherford

model is a classic example used in computational models

of analogy. Figure 1 is taken from (Falkenhainer, Forbus,

and Gentner, 1989) for illustrating the solar system do-

main. For representing this domain, SMT prefers to know

not only the relationships between the concepts, e.g. the

planet revolves around the sun, the sun’s mass is greater

than the planet’s mass, and the sun attracts the planet but

also the relationships among relationships, i.e. the latter

two relationships are the cause for the first one. When de-

signing virtual characters with automatically generated or

crowd-sourced dialogue content, we often do not have such

hierarchical information. The alternative is to design con-

tent solely by hand, which creates a huge authoring burden.

This challenge is particularly significant when we study

3155

analogy inference not only for understanding human cogni-

tion but also for procedurally generating dialogues for vir-

tual characters.

Figure 1: Solar System

In this work, we experiment with loosening up the con-

straints on input data and using a flat graphical structure

for representing the agent’s knowledge, i.e. our proposed

algorithm only needs to know the relationships between

each pair of concepts. Instead of mapping the structures of

the relationships, we seek to map the type of relationships

from one domain to another. This algorithm is completely

data driven; there is no manually designed mapping rule.

Our algorithm generates comparable results with SMT

when being applied to a classical analogy inference exam-

ple. We also demonstrate applying the algorithm to larger

domains that were automatically generated by crawling

data from DBpedia (Bizer, Lehmann, Kobilarov, Auer,

Becker, Cyganiak, & Hellmann, 2009).

The results from the analogy-making module will be in-

tegrated into an automated narrative agent we developed

for making presentations using data gathered through

crowdsourcing or from the Internet (Si, Battad, & Carlson,

2016). The success of this project will contribute greatly to

creating interesting dialogues and computational creativity.

The analogy-making module is self-contained, and the de-

tails of the presentation agent are skipped in this paper. In

the next sections, we will first describe our input data’s

format and example domains. Then, we will present our

analogy-making algorithm, and results generated by this

algorithm, followed by discussions and future work.

Example Domains and Knowledge Represen-

tation

We want to use a knowledge representation that is both

compatible with structured data, such as the results from

querying DBpedia, and is intuitive enough for non-

technical authors to manually design and edit the

knowledge base. We use a XML format that encodes

knowledge as a directed graph. Each concept is represented

as a node with a unique ID. The nodes are linked to each

other by their relationships, and thus form a directed graph.

We will demonstrate the application of our algorithm us-

ing two examples. The first one makes analogies between

the solar System and the Rutherford model. This example

has been discussed extensively by Gentner et al. (see

(Falkenhainer, Forbus, & Gentner, 1989; Gentner, 1983)

for more detailed descriptions of the example.) Figure 2

shows the solar system represented as a knowledge graph

in our system. Because we don’t use hierarchical relation-

ships in our data representation, the higher-level relation-

ships, such as “And” and “Cause” in Figure 1 are lost.

However, the relationships between each pair of concepts,

such as “Attracts” and “Revolve” are kept. We created a

new relationship “More massive” for representing the

sun’s mass is greater than the planet. Our representation

does not use attributes and functions. For attributes, we

converted them into a relationship the concept has with

another concept, e.g. the sun has a relationship with a con-

cept called Yellow. Currently, we don’t have a correspond-

ing encoding for SMT’s concept of function in our system.

Figure 2: Solar System without Hierarchical Relationship

Structure

The first example only contains about a dozen concepts.

For examining how well our algorithm scales up, we creat-

ed a second set of example domains which are much larg-

er. One domain is about music genres, and the other is

about programming languages. In this work, we used Wik-

ipedia data as the base of knowledge. The two domains are

generated by crawling for information from DBpedia using

a tool we developed in the lab. The tool uses one or more

DBpedia entries as the starting points and iteratively ex-

panding the graph by including neighbors of the entries

that are already in the graph.

Each entry in DBpedia is converted to a node in our

knowledge graph and represents a unique concept. The

type of link between them in DBpedia becomes the rela-

tionship link in our data. These domains are significantly

larger than the ones in the first example. The music genres

domain contains 999 nodes and 6418 relationships. The

programming language domain contains 2589 nodes and

9952 relationships. Figure 3 shows part of the data from

the music domain.

3156

Figure 3: Music Genre Data

Proposed Approach

In this work, our main objective is to provide a dialogue

agent or a game character a tool for conducting richer and

more interesting dialogues, or for making explanations for

a new concept to the user. We hope to help create dia-

logues that are creative and innovative. Therefore, different

from most existing work on analogy inference, we do not

necessarily need to find the best analogy we can make giv-

en the two domains. Instead, we want to be able to make

analogies that are interesting and explainable. Furthermore,

the computation needs to complete in a reasonable amount

of time.

Our proposed algorithm follows the same philosophy as

SMT in that we want to find mappings between concepts

and relationships that are supported by mappings between

other concepts and relationships. In other words, we want

all of the mappings to be consistent with each other. Our

algorithm seeks to achieve these goals while working with

large and uniformly structured data.

More specifically, instead of trying to map a relationship

structure, we seek to map relationship types from one do-

main to another. These mappings are supported by the sim-

ilarities in the concepts being linked to, and the relation-

ships related to those concepts. Because our data is large

and not manually designed, there may not be a single map-

ping that is better than all the alternatives. Instead, there

may be multiple good candidates. Therefore, instead of

looking for the best mapping for all possible hypotheses

between the concepts and the relationships in the base and

destination domains, we seek to find the best analogy we

can make just about a single concept.

Algorithms 1-4 contain the pseudo code for our pro-

posed algorithm. On a high level, it works in two steps: 1)

computes a unique index for each concept and each rela-

tionship type. This index can be used for comparing the

similarities between two concepts or two relationship

types; 2) generates and evaluates the hypotheses of map-

ping a concept in the base domain to a concept in the target

domain.

Algorithm 1 Index_Relationship_Type (domain):
loss, gain, same, diff, index = {} # empty dictionar-
ies
n: concept; r: relationship; d: destination concept
of r
for each n in domain do

for each r, d of n do
compare n’s relationships with d’s relation-

ships
loss[r] += n.relationship - d.relationship
gain[r] += d.relationship - n.relationship
same[r] += Common(n.relationship, d.relationship)
diff[r] += Difference(n.relationship,

d.relationship)
end for

end for
for each r in domain do

index[r] = (Jaccard_index(loss[r], gain[r]),
Jaccard_index(loss[r], same[r]),
Jaccard_index(loss[r], diff[r]),
Jaccard_index(gain[r], same[r]),
Jaccard_index(gain[r], diff[r]),
Jaccard_index(same[r], diff[r]))

end for
return index

 Algorithm 1 creates a vector of size 6 for describing

each relationship type in a domain. Inspired by the struc-

tural mapping process in SMT, here we argue two relation-

ship types are similar if they are always used in similar

contexts. Because we don’t have the relational structure for

providing a context, we operationally defined the context

as the origin and the destination concepts linked by the

relationship, and we judge the similarity of these two con-

cepts by looking at the differences between the relation-

ships they have and what they share in common. For ex-

ample, for the relationship “Hotter than” in Figure 2, n is

Sun and d is Planet. The loss set, in this case, equals to

[“More massive”, “Is”]. It contains all the relationships the

Sun has, but the Planet does not have. If “Hotter than” also

links other concepts in the knowledge base, the loss set

will be appended every time this relationship is used. The

gain set contains all the relationships the destination con-

cept has, but the origin concept doesn’t. The same set con-

tains all the relationships the origin and the destination

concepts have in common, and diff contains all the rela-

tionships that are either in loss or gain. Currently, we are

only using the measurements that represent the results of

basic set operations, i.e. complement, intersection, sym-

metric and difference. As part of our future work, we will

be looking for other measurements that can help with dif-

ferentiating the relationship types.

For each relationship type, Algorithm 1 aggregates the

results from every time it is used in the domain. The sec-

ond for-loop converts the information in the four sets, i.e.

loss, gain, same and diff into a one-dimensional vector by

calculating the Jaccard indices between them. We used

Jaccard index because it can provide a numerical meas-

urement of the similarities between two sets.

3157

Algorithm 2 Get_Node_Index (n,rtype_index):
rtype_index: the relationship indexes computed by
Algorithm 1
n: concept; r: relationship
tmpv = (0,0,0,0,0,0) # a zero vector
for each r of n do

tmpv += rtype_index[r]
end for
return Normalize(tmpv)

Based on the relationship indices computed by Algo-

rithm 1, Algorithm 2 returns an index for a concept. Simi-

larly, this index will be used for computing the difference

between two concepts in the knowledge network. We used

a simple heuristic here: a concept’s index is decided by the

sum of the index values of all the relationships it has. This

value is then normalized to a unit vector.

Finally, Algorithm 3 generates and tests the matching

hypotheses, and Algorithm 4 creates a one-to-one mapping

between all the relationships a concept n has in the base

domain to the relationships in the target domain. With this

mapping, it is straightforward to find the concept in the

target domain that has the most mapping relationships with

n.

For establishing the mapping, Algorithm 3 generates all

the possible hypotheses of mapping the relationships and

destinations (r1, d1) associated with n to another pair of

relationship and destination (r2, d2) in the destination do-

main. For evaluating the quality of this mapping, Algo-

rithm 3 looks at both how different the two relationships

(r1 and r2) are -- rdiff, and how different the two destina-

tions (d1 and d2) are -- ndiff. The difference here is given

by the cosine similarity between the two vectors. These

two difference values are combined. The smaller the over-

all difference is, the stronger the mapping is. The variable

“hypotheses” contains the list of all the hypotheses and

their strengths.

Algorithm 3 Generate_Hypotheses(n, B, T):
B: base domain
T: destination domain
hypotheses = [] # hypotheses for mapping
rtype_index = Index_Relationship_Type(B, T)
index for source node
svec = Get_Node_Index(n, rtype_index)
for each node t in T do

index for candidate node
cvec = Get_Node_Index(t, rtype_index)
for each r2, d2 of t do

for each r1, d1 of n do
rdiff = Cosine_Similarity(rtype_index[r1],

rtype_index[r2])
d1vec = Get_Node_Index(d1, rtype_index)
diff1 = svec - d1vec
d2vec = Get_Node_Index(d2, rtype_index)
diff2 = cvec - d2vec
ndiff = Cosine_Similarity(diff1, diff2)
normalized_score = (rdiff + ndiff)/2
hypotheses.Append(normalized_score,r1,d1,r2,d2)

end for
end for

end for
return hypotheses

Similar to SMT, we want the mappings to be unambigu-

ous. We used a greedy algorithm to resolve the conflicts in

the hypotheses. In case there are hypotheses for both map-

ping (r1, d1) to (r2, d2), and to (r3, d3) in the destination

domain, we simply accept the best -- the mapping that has

the highest score -- hypotheses first, and reject any subse-

quent mappings that intend to revise an existing one (Algo-

rithm 4).

Algorithm 4 Map_Relationships(hypotheses):

map = {}
sort the hypotheses based on normalized_score
hypotheses.Sort_Descending()
for each h in hypotheses do

ensure a one-to-one mapping
if both h.r1 and h.r2 are not mapped then

map r1 in base to r2 in destination
map[r1] = r2

end if
end for
return map

Example Results and Discussion

The proposed algorithm has been applied to making analo-

gies in the two example scenarios described in the Exam-

ple Domains and Knowledge Representation section.

The Solar System and the Rutherford Model

For making analogies between the solar system and the

Rutherford model, we obtained perfect results. Our algo-

rithm correctly generated the mapping between the Nucle-

us and the Sun, and between the Electron and the Planet.

Our algorithm does not produce mapping relationship

structure for supporting the analogy. Instead, it produces

matching pairs of relationships and destination concepts.

Tables 1 and 2 list the evidence for these two mappings.

Table 1: Mappings between Nucleus and Sun

Nucleus Sun

(Attracts, Electron) (Attracts, Planet)

(Distance, Electron) (Distance, Planet)

(Has, Electric charge) (Has, Mass)

(More massive than, Electron) (Hotter than, Planet)

In Table 1, all the mappings except the last one are

straightforward. We checked the intermediate results. The

last mapping was an artifact. (Hotter than, Planet) and

(More massive than, Planet) received the same score, and

the system did not know how to break the tie. All the map-

pings in Table 2 are consistent with the original example.

We are quite encouraged to get this result without the need

of using data with hierarchical relationships. We believe

the flat concept-relationship structure we designed in Fig-

3158

ure 2 is friendlier to both human designers and automated

programs that convert data from other sources.

Table 2: Mappings between Electron and Planet

Electron Planet

(Attracts, Nucleus) (Attracts, Sun)

(Distance, Nucleus) (Distance, Sun)

(Has, Electric charge) (Has, Mass)

(Revolves around, Nucleus) (Revolves around, Sun)

Music Genres and Programming Languages

Making analogies between these two domains generated

some interesting results, and inspired us with directions for

future work. These domains are much larger than the solar

system and the Rutherford model. In our evaluation, the

typical running time is less than a second on a Lenovo

T430 laptop. We will discuss two pieces of example results

below.

Table 3: Mapping Relationships between Punk rock and

LPC

Punk Rock LPC

Music fusion genre Influenced

Stylistic origin Influenced by

Instrument Paradigm

In the first example, the system mapped the music genre

Punk Rock to the programming language LPC. Because of

space limitation, in Table 3 we only list the matching rela-

tionship types the system provided for this analogy. Two of

these mappings are quite reasonable. By mapping “Stylistic

origin” to “Influenced by”, the system provided us support-

ing evidence such as “the stylistic origin of Punk Rock is

Garage Rock, Glam Rock, and Surf Music, just like LPC is

influenced by Lisp, Perl, and C.” By mapping “Music fu-

sion genre” to “Influenced”, the system provided corre-

sponding supporting evidence “Celtic Punk is a music fu-

sion genre of Punk Rock, just like LPC influenced Pike.”

Intuitively, these two examples make sense. Music genres

that are influenced by other music genres have their styles

originating from those genres. The inverse works as well;

if genre A is a music fusion genre for genre B, then A in-

fluenced B. The system was able to equate these relation

types without any explicit help.

The mapping from “Instrument” to “Paradigm” isn’t as a

clear cut as the other mappings. The evidence provided is

“the relationship between Punk rock and Bass guitar or

Electric guitar is Instrument, just like the relationship be-

tween LPC and Procedural programming and Functional

programming is Paradigm.” This assertion isn’t inherently

wrong. However, to a human observer this mapping may

not seem intuitive enough.

Interestingly, we also asked the system to make an anal-

ogy about the programming language Python, and the sys-

tem responded with Hardcore Punk. Table 4 provides the

matching relationships for this analogy.

Most of the relationship mappings in Table 4 are reason-

able. For example, we can say “Python influenced F Sharp,

Ruby, and Swift just like Black Metal, Thrash Metal, and

Industrial Metal are derivatives of Hardcore Punk.”

Table 4: Mapping Relationships between Python and

Hardcore Punk

Python Hardcore Punk

Influenced Derivative

Influenced by Stylistic origin

Operating system Instrument

Paradigm Format

The most interesting part of this example is the assertion

that Python is influenced by Perl in the same way as the

stylistic origin of Hardcore Punk is Punk Rock (and hence

Hardcore Punk is influenced by Punk Rock). This goes

against the previous analogy of Punk Rock being compara-

ble to LPC, since Python is not influenced by LPC. We

think this shows the weakness of our approach. Without

the hierarchical relationship information which in fact pro-

vides a global structure of the data, our algorithm does not

do a good job in creating analogies that are globally con-

sistent. However, the analogies are still locally consistent

for a given topic because of Algorithm 4.

Another thing to note is the difference in mapping be-

tween Instrument and Paradigm. In Table 3, “Instrument”

is mapped to “Paradigm”, but in Table 4, “Instrument” is

mapped to “Operating system.” LPC does not have a rela-

tionship of the type “Operating system”, so no mapping

could have been made. Table 4 indicates that “Instrument”

is more analogous to “Operating system” than to “Para-

digm.” As mentioned before, our system cannot enforce

global consistency yet. Realistically, however, it’s hard to

say which is truly correct in this case. A similar phenome-

non can be observed with “Influenced” and “Music fusion

genre” in Table 3. This time in Table 4, “Influenced” is

mapped to “Derivative” because the match is better, not

because Hardcore Punk lacks that relation type. In Table 4,

mappings from “Influenced” to “Music fusion genre” are

ignored because a one-to-one mapping of relation types is

enforced by the algorithm. Currently, one-to-one mappings

must be enforced in order for coherent analogies to be

made. However, there are cases when using many-to-one

mappings is more suitable. This is especially true when

using crowd-sourced data or data from the Internet where

sometimes the only real difference in relationship type is

semantics (e.g. “Instrument” / “Instruments”).

3159

Future Work

We have planned future work both in the direction of im-

proving our algorithms for finding better mappings and

discovering more creative uses of the algorithms.

First of all, we want to address the issue of the agent

sometimes creating conflicted mappings between two pairs

of concepts. When working with a large data set, exclu-

sively checking all the possible conflictions would be very

time-consuming. Instead, we plan to develop a greedy so-

lution. When the agent needs to make a new analogy, it

will assume all the relationship mappings it used to support

its previous analogies are already true. This way, instead of

asking two separate questions of “what is LPC like” and

“what is Python like”, we are asking the system “If LPC is

like Punk Rock, what Python would be like?”

Secondly, we are looking for better ways for indexing

the relationships and the concepts. Right now, the semantic

information of the relationship types is rarely used. Algo-

rithm 1 only looks at whether they are different or not. We

are considering using other semantic tools for helping us to

get a direct measure of how close two relationship types

are, and even how close two concept descriptions are. This

would solve the aforementioned problem caused by the

one-to-one mapping restriction. Another consideration in

the indexing process is the fact that when dealing with hu-

man authored content, there is no guarantee that different

contributors will use the same relation type in the same

way. Such inconsistencies could throw off the results of

Algorithm 1, leading to bad analogies.

Thirdly, many benchmarks have been created for analo-

gy inference, such as (Holyoak & Thagard, 1989). Most of

the benchmarks’ formats are compatible with SMT and the

algorithms derived from it. We will be looking into ways

of evaluating our algorithm using a standard benchmark.

Finally, we believe this work has great potential of con-

tributing to creating rich and vivid virtual characters, inter-

esting and interactive stories, and computational creativity.

We are interested in finding new and innovative applica-

tions of our proposed algorithms in addition to making

analogies for a single concept. In particular, we are inter-

ested in exploring how these algorithms can be used in

creating digital stories. As one of our next steps, we plan to

experiment with using this algorithm to learn how a person

tells a story or how a good story is constructed and then

apply the learning results for telling new stories using data

from a different domain.

Acknowledgments

This work was supported in part by the Cognitive and Im-

mersive Systems Laboratory -- a collaboration between the

IBM Research and RPI in the IBM Cognitive Horizons

Network.

References

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C.,

Cyganiak, R., & Hellmann, S. (2009). DBpedia-A crys-

tallization point for the Web of Data. Web Semantics:

science, services and agents on the world wide

web, 7(3), 154-165.

Falkenhainer, B., Forbus, K., & Gentner, D. (1989). The

structure-mapping engine: Algorithm and examples. Ar-

tificial Intelligence, 41, 1–63.

Forbus, K., & Oblinger, D. (1990). Making SME greedy

and pragmatic. Proceedings of the 12th Annual Confer-

ence of the Cognitive Science Society (pp. 61–68).

Gentner, D. (1983). Structure-mapping: A theoretical

framework for analogy. Cognitive Science, 7 (2), 155–

170.

Gentner, D., & Smith, L. (2012). Analogical reasoning. In

V. Ramachandran (Ed.), Encyclopedia of human behav-

ior (2nd ed.) (pp. 130–136). Elsevier; Oxford, UK.

Grootswagers, T. (2013). Having your cake and eating it

too: Towards a fast and optimal method for analogy der-

ivation. Master dissertation, Radboud University, The

Netherlands.

Holyoak, K., & Thagard, P. (1989). Analogical mapping

by constraint satisfaction. Cognitive Science, 13 (3),

295–355.

Kline, P. J. (1983). Computing the similarity of structured

objects by means of a heuristic search for correspond-

ences. Doctoral dissertation, University of Michigan.

Kubose, T. T., Holyoak, K. J., & Hummel, J. E. (2002).

The role of textual coherence in incremental analogical

mapping. Journal of memory and language, 47(3), 407-

435.

Larkey, L. B., & Love, B. C. (2003). CAB: Connectionist

analogy builder. Cognitive Science, 27(5), 781-794.

Si, M., Battad, Z. & Carlson, C. (2016) Intertwined story-

lines with anchor points. Proceedings of the 9th Interna-

tional Conference on Interactive Digital Storytelling

(ICIDS) (pp 247-257), Los Angeles, CA.

van Rooij, I. (2008). The tractable cognition the-

sis. Cognitive science, 32(6), 939-984.

Wareham, T., Evans, P., & van Rooij, I. (2011). What does

(and doesn’t) make analogical problem solving easy? A

complexity-theoretic perspective. The Journal of Prob-

lem Solving, 3 (2), 30–71.

3160

