
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Accurate temperature sensing and efficient dynamic thermal management in MPSoCs

Permalink
https://escholarship.org/uc/item/2dx8s10z

Author
Sharifi, Shervin

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2dx8s10z
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Accurate Temperature Sensing and Efficient Dynamic Thermal
Management in MPSoCs

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Shervin Sharifi

Committee in charge:

Professor Tajana Simunic Rosing, Chair
Professor Chung-Kuan Cheng
Professor Tara Javidi
Professor Ryan Kastner
Professor Joseph Pasquale

2011

Copyright

Shervin Sharifi, 2011

All rights reserved.

The dissertation of Shervin Sharifi is approved, and it is

acceptable in quality and form for publication on micro-

film and electronically:

Chair

University of California, San Diego

2011

iii

DEDICATION

To those who have dedicated their lives to me, Mom and Dad.

And to my dearest Avisha.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgments . x

Vita . xii

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Thesis Contributions . 8

Chapter 2 Direct temperature sensing . 12
2.1 Introduction . 12
2.2 Related Work . 14
2.3 Analytical Model for Upper Bound of On-Chip Temper-

ature Differences . 16
2.4 Thermal Sensor Placement 21
2.5 Experimental Results . 23

2.5.1 Maximum Temperature Difference Model 23
2.5.2 Sensor Placement 26

2.6 Conclusion . 29

Chapter 3 Indirect Temperature Sensing 33
3.1 Introduction . 33
3.2 Related Work . 34
3.3 Components of Indirect Temperature Sensing 36

3.3.1 KF-based Temperature Estimation 37
3.3.2 Reducing Computational Complexity 40
3.3.3 Detecting Sensor Failure and Degradation 42

3.4 Experimental results . 45
3.4.1 Indirect temperature sensing 46
3.4.2 Detecting sensor failure and degradation 51

3.5 Conclusion . 53

v

Chapter 4 Tempo Temperature Prediction 57
4.1 Introduction . 57
4.2 Related work . 58
4.3 Temperature Prediction 60

4.3.1 Theoretical Analysis of Tempo 66
4.4 Experimental results . 71
4.5 Conclusion . 74

Chapter 5 PROMETHEUS Framework for Temperature-aware Schedul-
ing on Heterogeneous MPSoCs 76
5.1 Introduction . 76
5.2 Related work . 78
5.3 PROMETHEUS Scheduling Framework 80

5.3.1 Power state assignment in TempoMP 82
5.3.2 Power state assignment in TemPrompt 87
5.3.3 Runtime task assignment to the cores 89

5.4 Experimental results . 90
5.5 Conclusion . 95

Chapter 6 Conclusion and Future Work 97
6.1 Thesis Summary . 98

6.1.1 Analytical Model for Upper Bound on On-chip
Spatial Thermal Gradients 98

6.1.2 Accurate Direct Temperature Sensing 99
6.1.3 Accurate Indirect Temperature Sensing 100
6.1.4 Tempo Temperature Prediction 100
6.1.5 PROMETHEUS Framework for Temperature-aware

Scheduling in Heterogeneous MPSoCs 101
6.2 Future Research Directions 102

6.2.1 Thermal Management in Heterogeneous MPSoCs
with Special Purpose Cores 102

6.2.2 Thermal Management in Many-core MPSoCs . . . 103

Appendix A Compact Thermal Modeling 105
A.1 Electrical Representation of Heat Transfer 105
A.2 Extracting the Parameters of the Thermal Network . . . 107

Bibliography . 110

vi

LIST OF FIGURES

Figure 1.1: Scaling of (a) Transistor integration capacity (2) Frequency,
Vdd and power [12] . 2

Figure 1.2: Distibution of (a) power density vs. (b) temperature across a
chip [67] . 3

Figure 2.1: Contour map of maximum temperature difference to a point of
interest . 16

Figure 2.2: Algorithm for calculating the upper bounds 20
Figure 2.3: Layout of SoC2 . 24
Figure 2.4: Temperature difference between points a and b 25
Figure 2.5: Generating the maximum temperature difference by construct-

ing the proper power trace . 26
Figure 2.6: Temperature difference in the example of figure 2.5 27
Figure 2.7: Using observability area vs. circular range 28

Figure 3.1: Proposed technique. (a) Offline setup (b) Run time temperature
estimation by KF . 39

Figure 3.2: Comparison of sensor, actual and estimated temperatures . . . 52
Figure 3.3: Run time of the technique on (a) XScale R© (b) SPARC R© . . . 54
Figure 3.4: SPRT technique to detect sensor degradation 55

Figure 4.1: (a) Temperature of the core (b) Breakdown of temperature into
components of equation (4.7) (c) Temperature of corresponding
nodes in thermal interface material, heat spreader and heat sink,
all relative to ambient . 62

Figure 4.2: Gershgorin discs of matrix Γts in complex plane for (a) a high
end package and (b) an embedded-type package 68

Figure 4.3: Characteristics of the MPSoC 72
Figure 4.4: Comparison of Tempo and BLP predictor [10] 73

Figure 5.1: Scheduling system in PROMETHEUS 80
Figure 5.2: Offline stage of TempoMP . 82
Figure 5.3: A very simple example describing use of multi-parametric pro-

gramming in power state assignment 84
Figure 5.4: Comparison of Maximum Temperature 91
Figure 5.5: Average lateness (seconds) . 92
Figure 5.6: Throughput (million instructions executed per second) 93
Figure 5.7: Average power consumption . 93
Figure 5.8: Average energy per billion instructions executed 95
Figure 5.9: Average Energy Lateness Product (ELP) 95

vii

Figure A.1: An example of a chip and package, together with their corre-
sponding thermal RC network 108

viii

LIST OF TABLES

Table 1.1: Examples of different classes of thermal management techniques 3

Table 2.1: Errors in temperature difference simulations (oC) 28
Table 2.2: Number of sensors needed by our technique and range-based

methods . 29
Table 2.3: Error statistics for limited number of sensors 30
Table 2.4: Error statistics for different time steps 31

Table 3.1: Effect of number of matched moments on temperature estimation
Error . 48

Table 3.2: Effects of sensor degradation and failure 49

Table A.1: Duality between Thermal and Electrical Quantities 107

ix

ACKNOWLEDGMENTS

The work presented in this thesis would not have been possible without the

help and support of wonderful people that I have had the privilege of interacting

with during my years at UC San Diego.

First and foremost, I would like to thank my advisor, Professor Tajana

Simunic Rosing for her guidance, support and the many lessons I have learned from

her. I especially thank her for her understanding, support and patience during the

difficult times I had. Without her help, I would not have been able to overcome

many technical and non-technical challenges. In addition, I really appreciate the

supportive and friendly environment she has created in our research group.

I really appreciate the effort and the time my thesis committee members,

Professor Chung-Kuan Cheng, Professor Tara Javidi, Professor Ryan Kastner and

Professor Joseph Pasquale have taken to review my manuscript and conduct my

defense.

I have also been very lucky to have wonderful colleagues and friends in our

department and in our research group. I wish to thank them all for providing a

friendly and joyful environment and for their valuable comments and discussions.

Special thanks to Raid Ayoub, Yen-Kuan Wu, Ayse Coskun, Gaurav Dhiman,

Edoardo Regini, Priti Aghera, Nima Nikzad, Bryan Kim, Yashar Asgarieh, Richard

Strong, Aruna Ravinagarajan, Jamie Bradley Steck and Giacomo Marchetti. I had

the privilege to collaborate with Raid Ayoub, Ayse Coskun, Dilip Krishnaswamy

and Chun-Chen Liu.

I have been very fortunate to have a wonderful group of friends in San

Diego. I sincerely thank them for their friendship, support and being my family

when I was far from my own family. I would like to especially thank Kambiz

Samadi, Amirali Shayan, Ahsan Samiee, Kiarash Kiantaj, Hamed Movahedpour,

Ehsan Ardestanizadeh, Haleh Azartash, Behrokh Farzad and Setareh Setayesh

among the others. We have shared many memorable moments which I will never

forget.

My utmost and deepest gratitude, affection and love belong to my family,

especially my parents for their unconditional and endless love and support. I am

x

greatly indebted to my older brother, Babak. He is the best brother one could

ever ask for. I also truly appreciate the one-of-a-kind kindness and care of my

sister, Negar, who has always been there for me. They have contributed in many

ways to the person I am today. I would like to thank the other half of my family,

especially my parents in law, for their support and giving me the most wonderful

gift of my life, Avisha. I’m very lucky to have wonderful sisters and brothers-in-

law, Ana, Newsha, Arshia and Mehdi whose sincere supports and prayers have

encouraged me in this journey. I feel blessed to have such a family. Most of all,

I wish to express my deepest and most sincere love and gratitude to my dearest

Avisha, who has made my life sweeter than I could have ever imagined with her

love, understanding and patience. As my other half, she has made me complete.

This thesis is dedicated to her and my parents.

Chapter 2 in part, is a reprint of the material as it appears in Proceedings of

the Great Lakes Symposium on VLSI, 2008. Sharifi, S. and Rosing, T. S. and IEEE

Transactions in Computer Aided Design of Integrated Circuits and Systems, 2010.

Sharifi, S. and Rosing, T.S. The dissertation author was the primary investigator

and author of these papers.

Chapter 3 in part, is a reprint of the material as it appears in International

Symposium on Quality Electronic Design, 2008. Sharifi, S. Liu, C. and Rosing,

T. S. and IEEE Transactions in Computer Aided Design of Integrated Circuits

and Systems, 2010. Sharifi, S. and Rosing, T.S. The dissertation author was the

primary investigator and author of these papers.

Chapters 4 and 5 in part, are reprints of the material accepted for publica-

tion at Design, Automation and Test in Europe (DATE) 2012. Sharifi, S. Ayoub,

R. and Rosing, T.S. and and the material under submission at IEEE Transactions

in Computer Aided Design of Integrated Circuits and Systems. Sharifi, S. Krish-

naswamy, D. and Rosing, T.S. The dissertation author was the primary investigator

and author of these papers.

xi

VITA

2000 B.S. in Computer Engineering, Sharif University of Technol-
ogy, Tehran, Iran

2003 M.S. in Computer Engineering, University of Tehran, Tehran,
Iran

2011 Ph.D. in Computer Science (Computer Engineering), Univer-
sity of California, San Diego

PUBLICATIONS

Shervin Sharifi, Raid Ayoub, Tajana Simunic Rosing, “TempoMP: Integrated Pre-
diction and Management of Temperature in Heterogeneous MPSoCs”, To appear
in the proceedings of Design, Automation and Test in Europe (DATE), 2012.

Yen-Kuan Wu, Shervin Sharifi, Tajana Simunic Rosing, “Distributed Thermal
Management for Embedded Heterogeneous MPSoCs with Dedicated Hardware Ac-
celerators”, IEEE International Conference on Computer Design (ICCD), 2011.

Shervin Sharifi, Yen-Kuan Wu, Tajana Simunic Rosing, “Temperature-aware Sch-
eduling for Embedded Heterogeneous MPSoCs with Special Purpose IP Cores”,
IEEE International Workshop on Energy and Thermal Management of Embedded
Computing (ETMEC), 2011.

Shervin Sharifi, Tajana Simunic Rosing, “Accurate Direct and Indirect On-Chip
Temperature Sensing for Efficient Dynamic Thermal Management”, IEEE Trans-
actions on Computer Aided Design of Integrated Circuits and Systems. Vol. 29,
No. 10, October 2010.

Shervin Sharifi, Tajana Simunic Rosing, “Package-Aware Scheduling of Embedded
Workloads for Temperature and Energy Management on Heterogeneous MPSoCs”,
IEEE International Conference on Computer Design (ICCD), 2010.

Raid Ayoub, Shervin Sharifi, Tajana Simunic Rosing, “Cooling Aware Proactive
Workload Scheduling in Multi-Machine Systems”, Design, Automation and Test
in Europe (DATE), 2010.

Shervin Sharifi, Ayse Kivilcim Coskun, Tajana Simunic Rosing, “Dynamic Energy
and Thermal Management in Heterogeneous Embedded Multiprocessor SoCs”,
Asia and South Pacific Design Automation Conference, 2010.

Mohammad Hosseinabady, Shervin Sharifi, Fabrizio Lombardi, Zainalabedin Nav-
abi, “A Selective Trigger Scan Architecture for VLSI Testing”, IEEE Transactions
on Computers, Vol. 57, No. 3, March 2008.

xii

Shervin Sharifi, Tajana Simunic Rosing, “An Analytical Model for the Upper
Bound on Temperature Differences on a Chip”, Great Lakes Symposium on VLSI,
2008.

Shervin Sharifi, ChunChen Liu, Tajana Simunic Rosing, “Accurate Temperature
Estimation for Efficient Thermal Management”, International Symposium on Qual-
ity Electronic Design, 2008.

Reza Barzin, Satoru Fukushima, William Howden, Shervin Sharifi, ”Superfit Com-
binational Elusive Bug Detection”, IEEE International Computer Software and
Applications Conference, 2008.

Shervin Sharifi, Javid Jaffari, Mohammad Hosseinabady, Ali Afzali-Kusha, Zainal-
abedin Navabi, “Scan-Based Structure with Reduced Static and Dynamic Power
Consumption”, Journal of Low Power Electronics, Vol. 2, No. 3, December 2006.

Shervin Sharifi, Javid Jaffari, Mohammad Hosseinabady, Ali Afzali-Kusha, Zainal-
abedin Navabi, “Simultaneous Reduction of Dynamic and Static Power in Scan
Structures”, Design, Automation and Test in Europe (DATE), 2005.

Safar Hatami, Shervin Sharifi, Hossein Ahmadi, Mahmoud Kamarei, “Real-Time
Image Compression based on Wavelet Vector Quantization, Algorithm and VLSI
Architecture”, IEEE International Sympium on Circuits and Systems (ISCAS),
2005.

Safar Hatami, Shervin Sharifi, Mahmoud Kamarei, Hossein Ahmadi, “Hardware
implementation of 2D Discrete Wavelet Transform by using Non-separable Lifting
Scheme”, International Workshop on Systems, Signals and Image Processing, 2005.

Safar Hatami, Shervin Sharifi, Mahmoud Kamarei, Hossein Ahmadi, Ahdiyeh
Delfan Abazari, “Non-Separable 2-D and 3-D Discrete Wavelet Transform for Im-
age and Video Processing Using Lifting Scheme”, International Workshop on Sys-
tems, Signals and Image Processing, 2005.

Shervin Sharifi, Mohammad Hosseinabady, Pedram Riahi, Zainalabedin Navabi,
“Reducing Test Power, Time and Data Volume in SoC Testing Using Selective
Trigger Scan Architecture”, IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT), 2003.

Mohammad Hosseinabady, Shervin Sharifi, Zainalabedin Navabi, “A Novel Part-
ition-based technique for Reducing Power, Time and Data Volume in SoC Testing”,
IEEE Workshop on RTL and High Level Testing, 2003.

Shervin Sharifi, Mohammad Hosseinabady, Zainalabedin Navabi, “Selective Trig-
ger Scan Architecture for Reducing Power, Time and Data Volume in SoC Testing”,
International Conference on Very Large Scale Integration, 2003.

xiii

Mohammad-Reza Kakoee, Shervin Sharifi, Zainalabedin Navabi, “Generic Synthe-
sis of Digital Designs”, International Symposium on Telecommunications, 2003.

Masoud Hashempour, Shervin Sharifi, Maziar Gudarzi, Shaahin Hessabi, “Rapid
Design Space Exploration of DSP Applications Using Programmable SoC Devices:
A Case Study”, IEEE International ASIC/SoC Conference, 2002.

xiv

ABSTRACT OF THE DISSERTATION

Accurate Temperature Sensing and Efficient Dynamic Thermal
Management in MPSoCs

by

Shervin Sharifi

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2011

Professor Tajana Simunic Rosing, Chair

Constant increase in performance demands, more aggressive technology

scaling and higher transistor integration capacity result in continuously increasing

power density and temperature in multi-processor System-on-Chip (SoC) devices.

Dynamic thermal management (DTM) techniques try to avoid thermal violations

by enabling the chip to control its temperature at runtime. To do this, accurate

runtime temperature information is necessary, which is typically obtained from on-

die thermal sensors. Sensor accuracy can be significantly affected by factors such

as sensor degradation and failure, limitations on the number of sensors and their

placement, dynamic change of hotspot locations, etc. To improve the accuracy of

temperature sensing, which directly affects the efficiency of DTM, two techniques

xv

are proposed. Accurate direct temperature sensing is a design time technique for

optimum allocation and placement of on-chip thermal sensors. It targets the in-

accuracies due to sensor placement and can reduce the number of thermal sensors

by 16% on average. Accurate indirect temperature sensing is a runtime technique

which targets the sources of inaccuracy which cannot be addressed at design time.

Based on inaccurate readings from a few noisy sensors, this method accurately es-

timates the temperature at any location on the die. It also reduces mean absolute

error and standard deviation of the errors by up to an order of magnitude.

DTM efficiency can be improved by predicting changes in temperature and

proactively controlling them, which reduces DTM’s response time and performance

overhead. We propose a temperature prediction technique called Tempo to accu-

rately evaluate the thermal impact of DTM actions. Compared to previous tem-

perature prediction techniques, Tempo can reduce the maximum prediction error

by up to an order of magnitude.

Heterogeneous MPSoCs which integrate various types of cores are particu-

larly at a disadvantage from a thermal perspective, due to the inherent imbalance

in power density distribution. We present PROMETHEUS, a thermal management

framework which systematically performs proactive temperature-aware scheduling

for heterogeneous (and homogeneous) MPSoCs. PROMETHEUS framework pro-

vides two alternative temperature - aware scheduling techniques: TempoMP which

uses online optimization for optimal power state assignment to the cores, and a

more scalable technique TemPrompt, which is based on a heuristics and has a lower

overhead.

xvi

Chapter 1

Introduction

MPSoCs are increasingly used to build complex systems for applications

such as networking, communications, digital signal processing (DSP) and multi-

media. Currently, the majority of modern processors, even in the mobile space,

integrate multiple processors on a single chip. Qualcomm’s Snapdragon [63] and

Texas Instruments’ OMAP [78] are examples of embedded MPSoCs. Some MP-

SoCs, including the above examples, are heterogeneous and integrate cores of var-

ious types on the same die.

In modern VLSI systems, technology scaling and transistor integration ca-

pacity have constantly increased with each new generation of processors [12]. As

shown in Figure 1.1(a), the integration capacity doubles every two years. Fre-

quency and power consumption also increase in an exponential manner as shown

in Figure 1.1(b). Due to continuous scaling of technology and increasing integration

density, power density significantly increases for each new generation. According

to the International Technology Roadmap for Semiconductors (ITRS) estimates,

the power density of high performance microprocessors is expected to increase from

50W/cm2 at 100nm technology to 100W/cm2 at 14nm technology and could be up

to 500W/cm2 for 3 dimensional (3D) stacked integrated circuits (ICs) [2].

These higher power densities cause higher temperatures and larger tem-

perature variations which in turn lead to degraded reliability and shorter lifetime,

increased leakage power, lower performance, timing issues and higher cost. Accord-

ing to [61], more than 50% of all integrated circuit failures are related to thermal

1

2

(a) (b)

Figure 1.1: Scaling of (a) Transistor integration capacity (2) Frequency, Vdd

and power [12]

issues. Gate delay and interconnect resistance increase with temperature, result-

ing in thermal induced timing and performance issues [68, 9]. Also, leakage power

increases almost exponentially with temperature [52]. As a result, controlling the

temperature has become one of the main concerns in the electronic system design.

In order to efficiently control temperature, thermal considerations need to be taken

into account at all stages of design, manufacturing and test of the new generations

of VLSI systems [61, 32].

Techniques used to control temperature in the electronic systems are in gen-

eral called thermal management techniques. Temperature and power density can

be reduced by reducing the power. However, it should be noted that power-aware

design techniques do not necessarily resolve thermal issues since they usually focus

on energy efficiency and battery life rather than controlling operating temperature.

Figure 1.2 illustrates the fact that while temperature on a chip is correlated with

the power density of the heat sources, it also significantly depends on their relative

spatial placement. As the figure shows, the location with the highest temperature

is not necessarily the one with the highest power density. In other words, control-

ling the power at one location does not necessarily resolve its thermal issues and

power control is not enough to prevent temperature problems.

Table 1.1 provides a broad classification of thermal management techniques

3

Figure 1.2: Distibution of (a) power density vs. (b) temperature across a chip

[67]

Table 1.1: Examples of different classes of thermal management techniques

Classes of

Thermal Management Off-chip On-chip

Techniques

Design time Use of better Temperature-aware

approaches packaging material floorplanning

Run time Dynamic control Temperature-aware

approaches of fan speed scheduling

4

and one example of each class. As this table shows, thermal management can

be applied on or off-chip. Most off-chip techniques work by improving removal of

generated heat from the chip, such as by using more complex and advanced cooling

techniques. On the other hand, chip-level thermal management techniques usually

try to control the temperature by reducing the density of the heat generated by

using power control techniques or creating a more balanced distribution of heat

generation.

Although off-chip techniques can be very effective, they are usually much

more expensive compared to the on chip ones. The ability of the package to remove

heat is defined by the junction to ambient thermal resistance (θja), expressed as:

θja = (Tchip − Tambient)/Pchip

where Tchip is the on-die junction temperature, Tambient is the ambient (outside

package) temperature, and Pchip is the maximum power consumption of the chip

[76]. Given the maximum power consumption and ambient temperature, the max-

imum allowable θja can be determined by knowing the maximum allowable on-die

temperature. Maximum junction temperatures in modern integrated circuits is

around 100◦C. As Pchip rises, θja must decrease which means packaging technology

must improve to meet the heat dissipation demands. Reduction of thermal junc-

tion resistance requires advanced cooling techniques such as larger, more powerful

fans, liquid cooling, etc. [76]. In high performance processors, cooling solutions

cost $1-3 or more per watt of heat dissipated [74]. Due to the high packaging

costs, managing the temperature can allow savings of around hundred dollars for

high-end, high power processors [81]. Moreover, in some systems such as mobile

embedded systems, using more advanced packaging and cooling is not practical

due to cost and space limitations. In such systems, using on-chip thermal man-

agement techniques is indispensable. Therefore, on-chip techniques are typically

more cost efficient compared to the off-chip ones and might be the only choice for

some systems.

Thermal management techniques can be classified into design time or run

time techniques. At design time, several thermal-related parameters of the system

can be optimized to prevent the potential thermal issues. Different temperature-

5

aware capabilities are also being added to the EDA (Electronic Design Automa-

tion) tools in order to do temperature-related analysis and optimization during

the design process. As shown in the table, thermal aware floorplanning is one

example of these design time techniques which can reduce processor temperature

with minimal performance impact [17, 66].

In contrast, dynamic thermal management (DTM) techniques control the

temperature of the chip at run time. The goal is to achieve the highest chip per-

formance under a peak temperature limit through adapting the chip’s run time

behavior when temperatures approach critical levels. Without any run-time ther-

mal management, the packaging and cooling must be designed for worst-case power

dissipation which rarely occurs in practice. Designing for worst case is prohibitively

expensive. By enabling DTM, packaging and cooling can be designed for power

densities exhibited by typical applications, and in the case of thermal emergencies,

the chip can dynamically control its temperature. If applications cause the pro-

cessor to run too hot, the thermal emergency is detected and run time responses

are activated to reduce the thermal stress while trying to minimize any associated

performance loss. This provides worst-case protection and eliminates the need for

expensive packaging and cooling, which makes thermal management essential in

modern systems.

To keep the temperature within safe limits, dynamic thermal management

techniques generally try to lower or redistribute the heat generation. DTM mech-

anisms used to do this include migrating activities to other resources on the chip,

adjusting the operating parameters of the cores such as voltage and frequency, or

stopping the processor’s execution completely. All of these actions incur some de-

grees of performance overhead. Meeting the thermal requirements, while minimiz-

ing the performance overhead caused by these mechanisms is the main objectives

of DTM techniques.

Effective temperature control needs accurate run time temperature infor-

mation. The first step in DTM is to capture the variations in the temperature in

order to trigger the DTM mechanisms when required. The accuracy of run time

temperature information is very important since it directly affects the performance

6

of CPU and also the effectiveness of DTM in keeping the temperature within lim-

its [74]. Lower or higher temperature estimates cause late or early activation of

DTM techniques. Late activation of DTM can result in degraded reliability since

the temperature may exceed the designated thresholds. On the other hand, early

activation of DTM can have a significant impact on performance [58].

On-chip thermal sensors are the most popular means of obtaining tem-

perature information required for thermal management. However, they can be

inaccurate due to a variety of factors including sensor placement, process varia-

tion, degradation of sensors, power variations, etc. Often, the sensors cannot be

placed exactly at the location they are supposed to monitor. One reason is that

hot spot areas on the die are usually also areas where silicon real estate is at pre-

mium. Moreover, limitations such as routing may not allow placement of sensors

at specific locations. Thus, there can be a significant disparity between sensor

readings and the actual temperature at the location of interest [65]. According

to [65], there can be temperature differences about 10oC between the sensor and

the hotspot. Adding more sensors on the die can partially resolve this problem to

some extent, but thermal sensors are costly in terms of hardware, calibration, test,

etc.

Design time techniques such as efficient sensor allocation and placement

algorithms can increase the accuracy of temperature monitoring while reducing the

number and cost of sensors. However, there are other sources of inaccuracy which

cannot be addressed at design time. Some of these inaccuracy sources are sensor

degradation, process variation, power variations, etc. Other than these factors,

the location of hotspots can dynamically change under different workloads. These

problems pose several challenges to efficient dynamic management of temperature.

DTM mechanisms can be used reactively or proactively. When used in a

reactive manner, the mechanism is engaged after a thermal emergency happens.

In contrast, proactive techniques are designed to avoid the occurrence of thermal

emergencies. By proactively avoiding thermal emergencies, these techniques may

completely prevent thermal violations. Even if a thermal emergency happens, it

will be less severe and may be resolved by less aggressive techniques with lower

7

performance overhead. On the other hand, due to the nature of reactive techniques,

they have limited time to respond since they are activated when the emergency

has already happened. As a result, to resolve the issues as soon as possible, they

need to take more aggressive measures which typically result in higher performance

impact.

Proactive thermal management techniques typically rely on temperature

predictors in order to estimate the future temperature of the functional units or

cores to be able to make more intelligent thermal management decisions. Existing

temperature predictors use general signal analysis and prediction techniques and

depend only on the temperature history. Therefore, they are not able to accurately

evaluate the effect of potential temperature changes which might happen due to

future scheduling decisions. Some other predictors need costly run time adapta-

tions. These issues limit their efficiency and effectiveness in predictive decision

making for temperature aware scheduling.

Once temperature information can be monitored accurately and future tem-

perature changes can predicted, an effective DTM framework needs intelligent poli-

cies to efficiently utilize the available DTM mechanisms. Scheduling is one of the

mechanisms which can be used for DTM. The way workload is scheduled on an

MPSoC not only impacts the performance, but also has a significant effect on the

distribution of power and temperature on the MPSoC. Therefore, it has been ex-

tensively used as an effective knob for dynamic thermal management in MPSoCs.

In general, task scheduling under thermal constraints is an NP-hard problem [86].

Compared to the single CPU processors, multiple instances of similar pro-

cessing resources are available on MPSoCs. This creates further opportunities for

thermal management by allowing distribution of activities and heat as necessary.

Nevertheless, it significantly complicates the thermal management process by in-

creasing the size of the solution space. The complexity of the problem is even

worse considering the fact that temperature of any particular point on the die

strongly depends on recent temperature and workload history. This complexity

is usually overcome by simplifying assumptions and heuristics which compromise

the optimality of the solution. The problem is even more complicated for the case

8

of heterogeneous MPSoCs which integrate more complex cores along with a larger

number of simpler cores on the same die in order to provide both single thread

performance and parallelism.

In comparison to their homogeneous counterparts, these MPSoCs can achi-

eve significant power and performance advantages [41, 42] if scheduling can take

advantage of the heterogeneity by assigning workload to the cores based on their

characteristics. Many thermal management techniques have been proposed for

homogeneous MPSoCs. However, to the best of our knowledge, heterogeneous

MPSoCs have not been studied much from the thermal perspective before.

1.1 Thesis Contributions

The contributions presented in this dissertation can be divided into two

main categories. The first category includes techniques for accurate temperature

sensing while the techniques in the second category address efficient management

of temperature in heterogeneous MPSoCs. The approaches presented here try to

apply analytical and formal methods toward thermal management as opposed to

the ad-hoc and heuristic methods.

To improve the accuracy of temperature sensing, we propose two techniques.

The first one, called accurate direct temperature sensing is a design time technique

for optimum allocation and placement of on-chip thermal sensors. The other tech-

nique, accurate indirect temperature sensing is a run time technique which targets

the sources of inaccuracy which cannot be addressed at design time. Based on

inaccurate readings from a few noisy sensors, it can estimate the temperature at

any location on the die .

For efficient dynamic thermal management of heterogeneous MPSoCs, we

propose a framework called PROMETHEUS. This framework is based on our

novel temperature prediction technique called Tempo. PROMETHEUS provides

two proactive temperature-aware scheduling techniques for heterogeneous MPSoCs

which use Tempo to evaluate the thermal impact of scheduling decisions.

Here we outline the summary of our primary contributions presented in this

9

dissertation:

Analytical model for upper bound on spatial thermal gradients:

We introduce an analytical model for upper bound on temperature difference be-

tween any two points on a die. It eliminates the need for simulation overhead to

find the maximum temperature differences. It is also able to identify the conditions

under which maximum temperature variations might happen, which is useful in

generating test data for thermal stress tests and for augmenting benchmarks. As

its input it gets the thermal characteristics of the chip and package, and power

characteristics of the functional units. Given this information, it finds a close up-

per bound on temperature difference between any two arbitrary locations on the

die. This model is useful in thermal gradient analysis and in applications such as

reliability modeling, performance mismatch and clock skew analysis, and thermal

sensor placement among other applications. Our experiments show that when us-

ing simulations, maximum temperature difference underestimations can be as high

as 9oC.

Accurate direct temperature sensing: We propose a design time tech-

nique called accurate direct temperature sensing which finds the optimum allocation

and placement of thermal sensors. It is able to find the minimum number and loca-

tion of sensors required to monitor a set of locations of interest. To do this, it takes

as input the thermal characteristics of the chip and the package, the power charac-

teristics of the functional units, the locations of interest and the desired accuracy

for monitoring each location. This technique is based on the analytical model we

introduced earlier. Unlike previous sensor allocation and placement techniques,

our technique is workload independent and guaranties the accuracy required for

monitoring the points of interest. As compared to previously proposed methods,

we can reduce the number of sensors needed by 16% on average while guaranteeing

the specified sensor accuracy.

Accurate indirect temperature sensing: We propose a run time tech-

nique for accurate temperature estimation which we refer to as accurate indirect

temperature sensing technique. It is able to accurately estimate the temperature

at arbitrary locations on the die based on the noisy temperature readings from a

10

limited number of sensors located further away from the locations of interest. Ac-

curate indirect temperature sensing technique requires the thermal characteristics

of the die and the package, and power characteristics of the cores in advance. It

also needs the locations of available sensors and the locations of interest. At run

time, based on the power estimates from the cores and noisy readings from the

available thermal sensors, it can accurately estimate the temperature at arbitrary

locations of interest on the die where no close by physical sensors are available. A

method is also proposed for early detection of new sensor degradations or failures

which might happen during the lifetime of the system. This method is used to

trigger the calibration of indirect temperature sensing and addressing these new

inaccuracies in the technique. Our experimental results show that it is able to

reduce the standard deviation and maximum value of temperature estimation er-

rors by an order of magnitude. To the best of our knowledge, Accurate indirect

temperature sensing is the first technique of this kind.

Tempo temperature prediction: We propose an accurate temperature

prediction technique called Tempo. Given current temperature and just one sample

of the previous temperature of the cores, Tempo can accurately predict at runtime

what the future temperature of the cores would be for given potential scheduling

decisions. It needs the power characteristics of the cores and thermal characteristics

of the chip and package in advance, but does not need a training phase or run time

adaptation. Tempo can be used to evaluate the thermal effects of alternative

thermal management decisions to choose the best out of all potential options.

Compared to previous state of the art temperature prediction techniques, Tempo

can reduce the maximum prediction error by up to an order of magnitude.

PROMETHEUS framework for proactive thermal management

of heterogeneous MPSoCs : We propose a framework for proactive temper-

ature aware scheduling which is called PROMETHEUS. It does not impose any

restrictions on size, number and characteristics of the concurrent tasks in the work-

load which makes it applicable to various classes of workloads. This framework

proposes two proactive temperature aware scheduling techniques called TempoMP

and TemPrompt. The ability of these techniques in considering individual perfor-

11

mance, power and thermal characteristics of the cores in a systematic way makes

them applicable to both heterogeneous and homogeneous MPSoCs. Compared to

state of the art temperature aware scheduling techniques, our techniques provide

better performance, power and energy efficiency while they guarantee meeting a

maximum temperature threshold.

Chapter 2 in part, is a reprint of the material as it appears in Proceedings of

the Great Lakes Symposium on VLSI, 2008. Sharifi, S. and Rosing, T. S. and IEEE

Transactions in Computer Aided Design of Integrated Circuits and Systems, 2010.

Sharifi, S. and Rosing, T.S. The dissertation author was the primary investigator

and author of these papers.

Chapter 3 in part, is a reprint of the material as it appears in International

Symposium on Quality Electronic Design, 2008. Sharifi, S. Liu, C. and Rosing,

T. S. and IEEE Transactions in Computer Aided Design of Integrated Circuits

and Systems, 2010. Sharifi, S. and Rosing, T.S. The dissertation author was the

primary investigator and author of these papers.

Chapters 4 and 5 in part, are reprints of the material accepted for publica-

tion at Design, Automation and Test in Europe (DATE) 2012. Sharifi, S. Ayoub,

R. and Rosing, T.S. and and the material under submission at IEEE Transactions

in Computer Aided Design of Integrated Circuits and Systems. Sharifi, S. Krish-

naswamy, D. and Rosing, T.S. The dissertation author was the primary investigator

and author of these papers.

Chapter 2

Direct temperature sensing

2.1 Introduction

One of the most important aspects of DTM is to capture the run time

variations in the temperature caused by the changes in power consumption due to

workload changes. This is necessary for accurate and timely response to thermal

emergencies. Accuracy of thermal measurements directly affects the efficiency of

thermal management as well as the performance of the CPU [74]. Temperature

estimates lower (or higher) than the actual temperature may cause late (or early)

activation of DTM. Late activation of DTM can result in degraded reliability since

the temperature may exceed the designated thresholds. Early activation can have

a significant impact on performance, especially in the case of response mechanisms

with high invocation time and overhead.

On-chip thermal sensors are the most popular means of obtaining run time

temperature information required for dynamic thermal management. Different

numbers of sensors are deployed on various modern processors. Cell processor

with 9 cores contains 11 thermal sensors [62] and Dunnington Xeon processor with

6 cores contains two thermal sensors per core [43]. An analog on-chip thermal

sensor usually consists of a temperature-sensing diode, a calibrated reference cur-

rent source, and a current comparator. Components other than the thermal diode

(e.g. current source) must be placed as far as possible from the hotspot due to

their temperature sensitivity. Moreover, the sensed temperature values must be

12

13

routed to where they are used. Routing overheads are associated with these can

significantly contribute to the overall cost [50].

One of the major problems in direct use of on-chip temperature sensors

is the sensor imprecision and noise [58, 65]. There are several factors that cause

inaccuracy of temperature measurements. The sensor placement error is one of

the most important sources of inaccuracy in values obtained from thermal sen-

sors. Typically sensors can not be placed right at the locations they are supposed

to monitor, since hotspots usually happen at high performance and high density

areas where silicon is at a premium. This causes a disparity between the actual

temperature at the location of interest and the sensor. Increasing the number of

sensors can resolve this issue, but the cost of adding a large number of sensors is

prohibitive. Moreover, even without considering the cost of sensors, various other

limitations such as the need for more channels for routing and I/O may not allow

placement of thermal sensors right on the locations of interest.

The technique introduced in this dissertation is a design time technique

which addresses the problem of efficient placement of on-chip temperature sensors

on the die while guaranteeing the desired accuracy at each location of interest.

It finds the minimum number of sensors and their locations to cover a number

of locations of interest with a maximum acceptable sensor placement error. This

technique is based on our analytical model for finding the upper bound of on-chip

temperature differences. Our experimental results show that our sensor placement

algorithm results in an average of 16% reduction in number of sensors compared

to the previous techniques at no cost.

The next section describes the related work. Section 2.3 explains the details

of our analytical model for upper bound on temperature difference that is then used

in Section 2.4 for the proposed sensor placement method. Experimental results are

provided in Section 2.5 and Section 2.6 concludes the chapter.

14

2.2 Related Work

Different techniques have been proposed for efficient placement of on-chip

thermal sensors. These techniques are usually based on identification of the hot-

spots and placing the minimum number of sensors such that they appropriately

cover these hotspots. A sensor placement method is proposed in [46] which is

based on the concept of range around a hotspot. This is the maximum distance

from the hotspot within which a sensor can be placed while still maintaining the

intended accuracy. This technique estimates the maximum temperature difference

between a heat source and its surrounding locations based on their distance. The

model is based on the assumption that the temperature decays exponentially with

this distance from a hotspot. A maximum distance from the hotspot is calculated

where temperature difference of all of the points within this distance to the hotspot

is less than a maximum acceptable temperature error. Sensors are placed within

this distance from the hotspot in order to maintain a desired level of accuracy.

Selection of activity factor parameter is not easy and also depends on the applica-

tion. Therefore the results will not be exact and a pessimistic estimation must be

used to guarantee the maximum error. Moreover, when calculating the maximum

temperature difference to a hotspot, the result depends only on the distance from

the hotspot. In other words, it implies that for all of the points at equal distance

from the hotspot, the maximum temperature difference to the hotspot is the same,

which is not correct. This can be due to the effect of the location and power con-

sumptions of other power sources on the temperature around a hotspot. Figure

2.1 shows the contour map of maximum temperature difference relative to a point

of interest in a multi-processor SoC which is used in our experiments and consists

of 6 XScale R©cores [1]. This figure clearly shows that the maximum temperature

differences around the region of interest are not the same for equidistant points

from the hotspot.

In [55], the authors introduce a systematic technique for thermal sensor

allocation and placement in microprocessors. This technique identifies an optimal

physical location for each sensor such that the sensor’s attraction towards steep

thermal gradient is maximized. However, this approach does not consider the

15

accuracy of the sensors and does not guarantee the maximum error in the thermal

sensor readings.

To the best of our knowledge, no technique has been previously proposed

to estimate the temperature difference between various locations on the die. The

technique proposed in [46] is a special case of this problem and proposes a model

for estimating the temperature at distance d from a heat source. Here, we propose

an analytical model for estimating an upper bound for the maximum temperature

difference between any two points on the die. Usually in order to estimate the

maximum temperature differences and variations, extensive simulations are per-

formed. The upper bound provided by our model is not application dependent and

does not involve extensive simulations. Other than sensor placement, the proposed

model can be used in analyzing the worst case temperature variations on the chip

such as analysis of reliability and performance mismatch. Spatial and temporal

temperature variations happen as a result of functional and structural differences

and differences between computational activities across the chip and also workload

variations during the time. Temperature variations as high as 50oC across the die

in a modern microprocessor are reported in [61]. These variations impact reliability

and performance of the systems. It is shown in [44] that at moderate tempera-

tures, spatial and temporal temperature gradients determine the device reliability;

and to achieve satisfactory reliability, resolving the thermal hotspots alone is not

adequate. In [20], a comprehensive framework is proposed for analyzing the effects

of temperature and temperature variations on reliability of multi-core systems.

Temperature variations may also cause performance mismatch which can lead to

performance or functional failures. For example, since wire resistances scale with

temperature, difference between temperatures of two regions of the die cause dif-

ference between resistances at those two regions which may result in timing issues

in interconnects and clock skew problems in clock networks. This makes temper-

ature variations an important factor in clock tree design and optimization [15].

Such issues make analysis of temperature variations and gradients an important

issue. Our model which is presented in the subsequent section is a useful tool for

analyzing maximum temperature variations across the die.

16

0.75

0.50

0.25

0 0.25 0.5

Width (0.5 mm)

Height

(0.75 mm)

Figure 2.1: Contour map of maximum temperature difference to a point of

interest

2.3 Analytical Model for Upper Bound of On-

Chip Temperature Differences

Finding the maximum temperature difference between various locations on

the die is an important step during the thermal analysis and design as it enables

better placement of temperature sensors and helps in evaluation of reliability issues.

The maximum temperature difference under potential workloads can be found by

extensive simulations, which would incur significant overhead. For systems whose

operation depends on interaction with other systems, even the same workload can

result in completely different behavior, thus introducing an even higher overhead

for temperature estimation. In contrast, our method provides an upper bound

with insignificant overhead.

Our techniques here are based on the same thermal model as used in

HotSpot. The thermal network generated by the Hotspot model includes thermal

resistors and capacitors. Temperature can be modeled at the level of a functional

17

block, or the die can be divided into regular grid cells (Figure 2.1) to obtain more

fine grained estimates. Given the layout and the thermal characteristics of a chip,

it is divided into a grid of r rows and c columns as shown in Figure 2.1. The proper

size of the grid cells and the number of rows and columns of the grid can be de-

termined by the method proposed in [32]. Our technique works at the granularity

of grid cell, therefore when we talk about different locations or points of interest;

we actually refer to the corresponding grid cell.

The algorithm starts with the evaluation of the effect each power source has

on the temperature differences. This can be done by simulation or with analyt-

ical methods. Following this step, the maximum temperature difference between

pairs of locations is calculated by exploiting the Linear Time-Invariant (LTI) char-

acteristics of the system. Since the thermal resistors and capacitors are linear

components, the thermal network can be considered a linear time-invariant dy-

namic system. We exploit the LTI characteristics of this system as a basis for

calculating an upper bound for the temperature difference. First, we explain it on

a simple case of a single input and single output system, and then extend to the

thermal networks with multiple inputs and outputs. If we define the power input

to the thermal circuit as p(t), the impulse response of the system as h(t), then the

temperature output of the system f(t) can be represented as:

f(t) = h(t) ∗ p(t) =

∫ t

0

h(τ) p(t−τ) dτ (2.1)

We assume that minimum and maximum power consumed at each func-

tional unit, pMin and pMax, are known, and that the power consumed at a func-

tional unit is always positive:

0 ≤ pMin ≤ p(t− τ) ≤ pMax (2.2)

H+ and H− are the sets of intervals where the impulse response h(t) takes

non-negative and negative values respectively. Therefore, the temperature output

of the system can be represented as:

18

f(t) =

∫ t

0

h(τ)p(t− τ) dτ =

∫
H+

|h(τ)| p(t− τ) dτ −
∫
H−

|h(τ)| p(t− τ) dτ

(2.3)

Based on equation (2), we know that:

pMin

∫
H+

|h(τ)| dτ ≤
∫
H+

|h(τ)| p(t− τ) dτ ≤ pMax

∫
H+

|h(τ)| dτ

pMin

∫
H−

|h(τ)| dτ ≤
∫
H−

|h(τ)| p(t− τ) dτ ≤ pMax

∫
H−

|h(τ)| dτ

(2.4)

Equation (4) enables us to then derive the bounds on the value of the

output f of a single input single output system based on its impulse response. If

we assume the bounds to be fMin and fMax (fMin ≤ f(t) ≤ fMax), they could

be calculated as shown below:

fMin = pMin

∫
H+

|h(τ)| dτ − pMax

∫
H−

|h(τ)| dτ =

pMin

∫
H+

h(τ) dτ + pMax

∫
H−

h(τ) dτ

fMax = pMax

∫
H+

|h(τ)| dτ − pMin

∫
H−

|h(τ)| dτ =

pMax

∫
H+

h(τ) dτ + pMin

∫
H−

h(τ) dτ

(2.5)

We represent a system with m power sources as p1(t), . . . , pm(t), where for

each power source maximum and minimum input values are defined as pMax
i , pMin

i .

19

Assuming hi(t) is the response of the single output to the impulse on input i, the

LTI characteristics of the system imply:

f(t) =
m∑
i=1

fi(t) =
m∑
i=1

hi(t) ∗ pi(t)

Therefore, the minimum and maximum values of the function are:

fMin =
m∑
i=1

fMin
i

fMax =
m∑
i=1

fMax
i

Equation (7) holds for all outputs of the system. The temperature difference

between grid cells a and b is represented by Td(a, b). Its impulse response to input

i, h(a,b),i(t), can be calculated as:

h(a,b),i(t) = ha,i(t)− hb,i(t)

where ha,i(t), hb,i(t) are impulse responses of temperature at grid cells a and

b respectively. Calculation of Td(a, b)
Min and Td(a, b)

Max for each output requires

only the knowledge of pMax
i , pMin

i and h(a,b),i(t) as can be seen from equation (5).

The impulse response characteristics of the chip, h(a,b),i(t) can be calculated by

simulation or by analytical methods.

The process of finding maximum temperature differences is shown in Figure

2.2. Initialization step needs to be done just once, and then its results can be used

for the upper bound calculation. To find hj,i(t) during initialization, a step input

is applied to power source i while setting all other power sources to 0. Then the

step response at grid cell of interest j is used to calculate the impulse response

by differentiation. hj,i(t) can also be calculated by analytical methods of linear

systems theory.

After initialization, upper bound is calculated for each pair of interest. First

the impulse response of temperature difference between the two points caused by

power source i is calculated (h(t) = ha,i(t) − hb,i(t)). Then based on this impulse

response, TMin
d and TMax

d are calculated using equations (5) and (7).

20

1. Initialization

for all grid cells of interest,

Find hj,i(t) (By simulation-based or analytical methods)

2. Upper bound calculation

for each pair of grid cells of interest (a,b)

Find f Min and f Max using impulse responses initialized in

step 1

Figure 2.2: Algorithm for calculating the upper bounds

The calculations can be done only for the pairs of grid cells which are of

interest, after completing the simulations for the initialization step (which are done

just once). For example, we can use this algorithm to find maximum temperature

difference between hotspot a and the set of potential sensor locations around that

hotspot L ={l1, l2, . . . , lk}. In this case the grid cell pairs of interest are (a, l1),

. . . , (a, lk). As explained before, many constraints, such as routing, can limit the

number of potential sensor locations around a hotspot.

The model can also be used to generate the power trace which results in the

maximum temperature difference between any two points. Using equation (5) to

maximize the value of f(t) at t0, we know that p(t0 − τ) must take the maximum

value at the intervals of τ whereh(τ) ≥ 0. For example if h(τ) is non-negative on

interval t1<τ <t2, p(t) must take its maximum value on interval t0− t2<t<t0− t1.

Similarly it can be shown that for the intervals of τ where h(τ)<0, p(t0 − τ)

must take its minimum value. These rules allow us to generate the power trace

p(t) which leads to the maximum temperature difference between two arbitrary

points. Doing this for all power sources enables us to detect the configurations and

scenarios which lead to maximum temperature variations between different points

on the die. This information can also be helpful in augmenting the benchmarks

21

and generating test data for the stress tests.

In the next section, we propose an efficient thermal sensor placement tech-

nique which uses our analytical model to minimize the number of thermal sensors

while keeping the sensor placement error within acceptable limits.

2.4 Thermal Sensor Placement

The objective of our sensor placement technique is to find the minimum

number of sensors and their locations such that the temperature reading errors

for each point of interest is within the required accuracy. As shown in Figure 2.1,

the chip is divided into a grid. Whenever we specify a point on the die, we are

refering to the corresponding grid cell at that location. Let’s suppose Q ={q1, q2,

. . . , qn} and E ={e1, e2, . . . , en} are the set of n points of interests and the set

of corresponding desired accuracies for these points respectively. We also define a

set of potential sensor points L ={l1, l2, . . . , lk} which consists of all of the grid

cells around the hotspots where a temperature sensor can be placed. This set is

usually determined by other design considerations such as availability of space for

locating the sensor, etc. Also, usually sensors could not be placed inside on-chip

memory blocks, routing and IO.

The objective is to find the minimum set of sensors (and their locations)

S ={s 1, s2, . . . , sk} such that for each qi there exists a sj for which

T (qi)− T (sj) < ei

S must be a subset of L.

We introduced the concept of observability area earlier which is defined

as the area around a point of interest a within which the maximum temperature

difference is always less than the maximum tolerable error. Therefore, if a sensor

is placed in the observability area of a point of interest, the sensor placement error

would be less than the maximum tolerable error. The observable set of a point of

interest a is the set of grid cells in L which completely fall in its observable area.

We can define observable set of point of interest qj as

22

Oj =
{
li | abs(Tmax

d (qj, li)) < ej , abs(T
min
d (qj, li)) < ej

}
(2.6)

The inputs to the sensor placement technique are sets Q,E and L mentioned

above. In the first step, the observability set of each qj is calculated using equation

(2.6) and our analytical model. Then we find the optimum number of sensors and

their locations such that there is at least one sensor in the observable set of each

point of interest. This guarantees that the accuracy requirements are satisfied

since any sensor placed on a grid cell in the observable set of a point of interest

can sense temperature with the required accuracy. This problem is equivalent

to the minimum hitting set problem which has been proven to be NP-complete.

If xa =1 when the sensor is placed at grid cell a, and xa =0 otherwise, then the

sensor minimization problem can be formulated as an integer linear program (ILP)

as follows:

minimize
∑
a∈L

xa

subject to
∑
a∈Oj

xa ≥ 1 i = 1, ..., n

xa ∈ {0, 1} ∀a ∈ L
S = {li|xli = 1}

Minimizing
∑
xa (for a ∈ L) minimizes the total number of sensors while

constraint
∑
xa ≥1 (for a ∈ Oj) guaranties that there will be at least one sensor

in observable set of hotspot j. For each grid with xa =1, a sensor is placed in the

corresponding grid cell. To solve the ILP problem, we use lp solve [3] which is

based on the revised simplex and branch-and-bound methods.

Our proposed sensor placement technique minimizes the cost of sensors

while maintaining the desired accuracy. However, our technique may not always

be able to place enough sensors in the right locations due to design constraints,

and even those sensors that are placed may degrade or fail during the lifetime of

the system. These issues call for techniques to compensate for the lack of sensing

hardware. Next section presents our accurate indirect temperature sensing tech-

nique which is able to estimate the temperature at locations not directly covered

by sensors.

23

2.5 Experimental Results

For our experiments we use two different multi-processor SoCs:

• SoC1 consisting of 6 XScale R© cores implemented in 90nm process [1] whose

layout is shown in Figure 2.1

• SoC2 consisting of two SPARC cores and 4 XScale R© cores implemented in

65nm process whose layout is shown in 2.3.

A set of programs from the automotive/industrial, network and telecommunica-

tions categories of MiBench [28] are selected and run on datasets provided by [24].

Moreover, we have also used a set of programs from Mediabench [45] benchmark

suite and run them on SPARC cores.

Pareto distribution is used [73] to introduce idle intervals between the

MiBench tasks. A timeout-based dynamic power management policy is applied

in order to determine the active and low power states which each core experiences

during running these workloads. Power values for XScale R© are measured on a

real system and scaled for the target process. Power values for Alpha cores are

calculated using Wattch power estimator [13] integrated with M5 simulator [11].

HotSpot 3.0 [4] grid mode is used for thermal simulations. Each processor is as-

sumed to have its own L2 cache. Parameters used for package are: convection

capacitance 140.4J/K, convection resistance 0.1K/W , spreader thickness 10−3m,

and initial temperature of 333oK.

Here we present the experimental results on our analytical model for upper

bound on on-chip temperature differences and our sensor placement algorithm.

2.5.1 Maximum Temperature Difference Model

Our proposed model analytically calculates the upper bound on tempera-

ture differences on the die eliminating the high overhead of extensive simulations.

Very specific combinations of conditions may be required to achieve the maximum

temperature difference on the die. Such specific conditions may not be created

by the benchmarks, but may happen during the actual operation of the system.

24

SPARC

SPARC

L2

XScale

XScale

XScale

XScale

Figure 2.3: Layout of SoC2

Our model can generate a set of input power traces which create such a maximum

temperature difference scenario.

Figure 2.4 through Figure 2.6 provide an example of this for SoC1. Figure

2.4 shows a simulation slice in which the temperature difference between points a

and b has reached its highest value. The dotted line shows the maximum tempera-

ture difference estimated by our model which is clearly higher than the benchmark

results. Figure 2.5 shows the situation in which the actual temperature difference

found by our method exceeds the maximum temperature difference reported by

simulations using standard benchmarks. The first row shows h(a,b),i(t) which is the

response of the temperature difference between a and b to the impulse applied at

input i.

h(a,b),i(t) is calculated by differentiating the response of the temperature

difference to the step input i (since it is in discrete time, this is done by differencing

the consecutive samples of step response). To keep the example easy to follow, we

considered only three power sources of SoC1 and the rest are turned off. The

power traces generating the maximum temperature differences are calculated as

explained in section 2.3. Applying each of these traces leads to the corresponding

temperature differences shown in the third row. The overall maximum temperature

25

0 2 4 6 8 10
-2

-1

0

1

2

3

4

T
e
m

p
e
r a

tu
r e

D
if
fe

r e
n
c
e

s

Co

Figure 2.4: Temperature difference between points a and b

difference due to all power sources occurs at time 0.9s (time unit 900) as shown in

Figure 2.6.

As shown in this example, the maximum temperature differences can be

much larger than what is observed under standard benchmarks. Therefore, when

we need to know the maximum temperature differences on the die, running bench-

marks may not be enough and models such as ours are needed to get accurate data.

The difference between simulations and the model in this particular example is not

large because of the low power consumption of XScale R© cores and the fact that

for simplicity we looked at only 3 cores with observation points in proximity of

each other.

The error can be much larger in high end processors with higher powered

devices. Table 2.1 shows that errors as high as 9oC occur in estimates of temper-

ature differences when relying only on simulations. Even using combinations of

different benchmarks does not resolve the problem. Such errors can cause signifi-

cant functional and reliability issues. For example, if the maximum temperature

difference between a sensor and a hotspot is underestimated, it may cause late

activation of DTM which can result in serious reliability problems.

The simulation overhead of our method is insignificant. As explained in

Section 2.3, this method involves simulating one step input for each power source in

the worst case compared to simulating the whole set of benchmarks when standard

26

Power Source 1 Power Source 2 Power Source 3

h(a,b),i(t)

0 2000 4000 6000 8000 10000
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0 2000 4000 6000 8000 10000
-20

-15

-10

-5

0

5
x 10

-4

0 2000 4000 6000 8000 10000
-0.01

0

0.01

0.02

0.03

0.04

Power Traces

Leading to Maximum

Temperature Difference
0 2000 4000 6000 8000 10000

-0.5

0

0.5

1

1.5

pMax

pMin

0 2000 4000 6000 8000 10000
-0.5

0

0.5

1

1.5

pMax

pMin

0 2000 4000 6000 8000 10000
-0.5

0

0.5

1

1.5

pMax

pMin

Temperature Difference
due to generated traces

0 2000 4000 6000 8000 10000
-2

-1.5

-1

-0.5

0

0.5

0 2000 4000 6000 8000 10000
-0.4

-0.2

0

0.2

0.4

0.6

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

 10-4s

Figure 2.5: Generating the maximum temperature difference by constructing

the proper power trace

simulation is used. If linear systems analytical methods are used to calculate the

step response, then there will be no simulation overhead.

2.5.2 Sensor Placement

The sensor placement method we developed uses our analytical model for

maximum on-die temperature differences. The experimental results show that it

reduces the number of required sensors as compared to previous work.

Previous techniques such as [46] and [54] depend on calculation of the range

of the hotspot which is the maximum distance r from the hotspot that a sensor can

be placed while still maintaining the intended accuracy. This range has a circular

form and is centered at the point of interest which limits the accuracy and the

efficiency of such techniques. Some points which meet the accuracy requirements

might be missed, as demonstrated on SoC with 6 XScale R© cores shown in Figure

2.7. The two X’s represent the points of interest to be monitored. The observability

areas of the points of interest are shown by solid lines. Circular ranges of the

hotspots are shown by dotted circles. Our sensor placement technique considers

the observability area of a point of interest instead of its circular range as the

27

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5

10-4 s

ΔT

X

Figure 2.6: Temperature difference in the example of figure 2.5

potential location of a sensor. Therefore it can identify the point marked by * at

the overlapping part of the observability areas to place a single sensor to monitor

both points of interest. When using the circular ranges, this sensor location would

not be identified since the ranges do not overlap; and therefore two separate sensors

would be required. We evaluate our sensor placement algorithm for different values

for the desired accuracies and compared it with techniques that uses circular ranges

[46] . In [46] , only the sensor placement model is proposed and actual results

on sensor placement are not provided. Moreover, the activity factor parameter

(fa) which is one of the important parameters in the proposed model in that work

depends on the workload and the paper does not explain in enough details that how

this parameter is calculated. Due to these reasons, we were not able to reproduce

the actual sensor placement results of this work for comparison. Therefore, in order

to be fair, we assumed the best results which this model could achieve. We found

the largest possible circular range this model could have found. Then we used the

outcomes of this model in our sensor placement algorithm. In other words, we

are comparing our techniques to the best possible results the other model could

achieve under the best conditions.

Table 2.2 shows the number of sensors required to monitor 8 locations of

28

Table 2.1: Errors in temperature difference simulations (oC)

Positive Negative

Benchmarks Mean Std.

Dev.

Max. Mean Std.

Dev.

Max.

MiBench (Automotive) 1.09 0.78 4.34 1.01 0.72 3.77

MiBench (Network) 6.89 2.60 9.39 6.96 0.55 9.55

MiBench (Telecomm.) 6.02 2.53 9.16 6.36 2.47 9.29

MiBench (Mixed) 1.15 1.15 8.05 0.59 0.55 7.08

MediaBench (Mixed) 3.13 2.68 8.36 2.75 2.27 7.41

Figure 2.7: Using observability area vs. circular range

29

Table 2.2: Number of sensors needed by our technique and range-based methods

SOC1

Accuracy (oC) 1 2 3 4 5 6 7

Our technique 7 7 6 5 5 5 4

Circular range [21] 7 7 7 7 6 6 6

SOC2

Accuracy (oC) 1 2 3 4 5 6 7

Our technique 8 8 7 6 6 5 5

Circular range [21] 8 8 8 7 7 6 6

interest on SoC1 and 8 locations on SOC2 for specified maximum tolerable error

between the temperature sensor and the actual temperature at the point of interest

(Accuracy in Table 2.2).

As these tables show, our sensor placement technique is able to reduce

the number of sensors needed more aggressively with lower desired accuracy than

previous work [46] .

It should be mentioned that increasing the number and locations contain-

ing the points of interest will improve the efficiency of our technique. Our sensor

placement technique minimizes the number of sensors by sharing a sensor among

multiple points of interest. This technique takes advantage of the overlapping ob-

servability regions of the locations of interest in order to find the possible sharing

of a sensor among various locations of interest. Increasing the number of the loca-

tions of interest increases the chances that observability regions of these locations

overlap, so more sensors could be shared among various points of interests. This

would help reduce the number of sensors.

2.6 Conclusion

Having a good estimate of maximum temperature variations across die is

necessary for a number of applications such as placement of thermal sensors and

30

Table 2.3: Error statistics for limited number of sensors

SOC1

Temperature Measure-

ment

Error (oC)

Temperature Estimation

Error (oC)

Sensor

No.

Mean Absolute

Error

Std.

Dev.

Mean Absolute

Error

Std.

Dev.

2 3.74 4.72 0.77 1.28

3 3.72 4.60 0.76 1.27

4 4.41 5.50 0.75 1.27

5 3.29 3.94 0.76 1.27

SOC2

Temperature Measure-

ment

Error (oC)

Temperature Estimation

Error (oC)

Sensor

No.

Mean Absolute

Error

Std.

Dev.

Mean Absolute

Error

Std.

Dev.

2 5.61 6.02 1.26 2.35

3 4.17 6.41 1.35 2.26

5 4.34 5.76 1.12 1. 50

7 5.03 6.60 0.85 1.23

31

Table 2.4: Error statistics for different time steps

SoC1

Sensor Measurement

Errors (oC)

Indirect Temperature

Sensing Errors (oC)

Step

Size

(10−4s)

Mean

Absolute

Error

Std.

Dev.

DTM

Slowdown

Mean

Absolute

Error

Std.

Dev.

DTM

Slowdown

128 2.91 4.04 40% 0.13 0.25 6%

512 3.09 4.33 41% 0.49 0.89 24%

1028 4.29 4.27 44% 0.97 1.24 28%

2056 3.89 5.08 43% 1.74 1.39 38%

SoC2

Sensor Measurement

Errors (oC)

Indirect Temperature

Sensing Errors (oC)

Step

Size

(10−4s)

Mean

Absolute

Error

Std.

Dev.

DTM

Slowdown

Mean

Absolute

Error

Std.

Dev.

DTM

Slowdown

128 3.94 4.75 55% 0.54 0.62 9%

512 3.66 4.82 52% 1. 12 1.64 22%

1028 4.04 4.38 49% 1.77 2.15 34%

2056 3.87 4.51 51% 2.66 3.34 46%

32

analysis of reliability and thermal-induced clock skew and performance mismatch.

Normally extensive simulations are used in order to determine these variations, thus

incurring significant overhead. The method proposed here removes the simulation

overhead by providing a model for accurate estimation of maximum temperature

differences over various points across the die. It also identifies the conditions under

which the maximum temperature differences and variations occur. This aspect of

the model is helpful for generation of test data for stress tests and augmenting

the benchmarks to check when maximum temperature differences occur in real life

situations. Our experiments show that when using simulations, maximum tem-

perature difference underestimation error can be as high as 9oC. Based on this

analytical model, a novel design time technique for allocation and placement of

thermal sensors is proposed which is able to guarantee a maximum sensor place-

ment error. As compared to previously proposed methods, this technique can

reduce the number of sensors needed by 16% on average while guaranteeing the

specified sensor accuracy.

Chapter 2 in part, is a reprint of the material as it appears in Proceedings of

the Great Lakes Symposium on VLSI, 2008. Sharifi, S. and Rosing, T. S. and IEEE

Transactions in Computer Aided Design of Integrated Circuits and Systems, 2010.

Sharifi, S. and Rosing, T.S. The dissertation author was the primary investigator

and author of these papers.

Chapter 3

Indirect Temperature Sensing

3.1 Introduction

Previous chapter explained our design time technique for addressing in-

accuracies due to sensor placement error. However, there are factors affecting

the accuracy of sensors which cannot be addressed at design time. Variations in

process parameters introduced during manufacturing can result in sensor reading

inaccuracies (e.g. threshold voltage variation on the die) [65]. Errors are also in-

troduced in the process of analog to digital conversion due to quantization, and

due to limitations of design and technology. Changes in power supply voltage can

affect sensor readings. Finally, the statistical characteristics of sensor inaccuracy

change during the lifetime of the chip [83].

Recent work reports thermal sensor accuracy of around 1oC [50], however,

this is achievable only through accurate calibration [64]. Many microprocessors

use un-calibrated thermal sensors [64]. This is mainly due to the high cost and

overhead associated with the thermal sensor calibration, particularly in the systems

featuring multiple sensors. The calibration is usually done at test time and thus

incurs overhead in design and test cost and silicon area [65]. It requires pre-heating

and testing the sensors to detect various errors. Once these errors and sources of

inaccuracy are known, the sensing unit is calibrated using A/D (analog to digital)

converters and look-up tables.

Even well calibrated sensors are not capable of accurately reporting the

33

34

actual hot spot temperature on the die due to their location. Various sources of

noise such as process variation and power variation further increase the inaccuracy

of thermal sensors. Even when the average sensor error is low, the sensor might

deliver single readings that are quite different from the actual temperature. If the

readings from the sensors are directly used with complete trust, such variations

may cause problems such as performance degradation due to early activation of

DTM, or reliability degradation due to its late activation.

This chapter introduces indirect temperature sensing, a run time technique

to address issues such as unavailability of enough sensors, degradation or failure

of existing sensors and dynamic change of hotspot locations. Our technique ac-

curately estimates the temperature at different locations on the die using noisy

readings obtained from a few available sensors and power estimates of functional

units. It also complements our design time technique by allowing a trade-off be-

tween hardware cost and computation cost. Now we can use fewer sensors at the

cost of slightly increased computation at run time. Due to its low overhead it can

be used for temperature aware scheduling and other online thermal management

techniques. Indirect temperature sensing can be activated as needed rather than

continuously; for example when the temperature at a unit on the chip is approach-

ing a threshold. In this way it provides an easy trade off between accuracy and

overhead. Finally, it can adapt to changes in measurement noise characteristics,

which is very important since mean time to failure of thermal sensors is shorter

than that of assets they are supposed to protect. Our indirect temperature sensing

technique also shows an order of magnitude reduction in the standard deviation

and maximum value of temperature estimation error relative to measured temper-

ature values.

3.2 Related Work

One of the most widely used models for temperature estimation at micro-

architectural level is HotSpot [32], which is based on building a multilayer thermal

RC network of the given chip. The differential equations used to describe the heat

35

flow have a form similar to that of electrical current. This duality is the basis for

the micro-architectural level thermal model of HotSpot which was proposed in [74]

and further described in [33] and [32]. For more details on this model, please refer

to appendix A.

Temperature modeling techniques such as HotSpot incur too high computa-

tion cost during run time. In [48], a technique is proposed which performs run time

thermal simulation based on the observation that the average power consumption

of architecture level modules in microprocessors is the major contributor to the

variations in the temperature. Therefore piecewise constant average power inputs

can be used to speed up the thermal analysis. Techniques such as those introduced

in [48] need to continually perform temperature estimation, thus causing significant

overhead. In addition, since these on-chip temperature estimation techniques are

not combined with thermal sensor measurements, the estimates can easily deviate

from the actual values. Due to these issues, temperature information for dynamic

thermal management is usually obtained from thermal sensors at run time.

In [88], the authors address the problem of estimating the accurate sensor

temperatures given noisy sensor readings. This work focuses on steady state tem-

perature and doesn’t consider transient temperature changes, which is necessary

for dynamic thermal management techniques. Temperature is assumed to depend

only on the current power consumption of the functional blocks and dependence

of current temperature on previous temperature is ignored. In [16], the authors

present a thermal characterization approach which reconstructs the thermal map

of the die based on limited sensor measurements using spectral Fourier analysis

techniques. This approach is able to reconstruct the thermal map using limited

sensor data, but the effect of inaccurate and noisy sensors is not considered. The

information about the thermal map is extracted only based on the thermal sensor

readings and thermal dynamics of the chip. Power consumption of different cores

are not exploited. None of the previously published techniques provide any re-

sults on their execution times to show practicality of these techniques for thermal

estimation at run time.

The next section describes the details of our indirect temperature sensing

36

technique.

3.3 Components of Indirect Temperature Sens-

ing

There are multiple sources of errors which cannot be effectively addressed at

design time; sensors fail over time, their output is subject to noise, and even if the

system did not have sensor failures and noise, the location of hotspots dynamically

changes under different workloads. To address such run time issues, we propose

indirect temperature sensing based on Kalman filtering which can accurately es-

timate the temperature at various locations on the die using inaccurate readings

obtained from a limited number of noisy sensors. Our technique consists of a set of

off-line setup steps shown in Figure 3.1.a., followed by run-time procedure shown

in Figure 3.1.b.

The setup phase (Figure 3.1.a.) starts by creation of chip’s equivalent

thermal RC network using models described in [74, 33]. The linear dynamic system

generated in this way is usually too large and too complex for an on chip software

implementation. Model order reduction is used to generate a much smaller yet

accurate system. Calibration is performed by applying KF to the reduced order

model of the system. The calibration ends when the KF reaches its steady state.

The resulting steady state KF is used during the normal operation to actually

perform the temperature estimation (Figure 3.1.b.).

The KF estimates the temperature in a predict-correct manner based on

inaccurate information of temperature and power consumption. Time update

equations project forward in time with the current temperatures and the error

covariance estimates to obtain a priori estimates for the measurement step. The

measurement update equations incorporate the new measurements into the a priori

estimate to obtain an improved a posteriori estimate of the temperature. Details

of the technique are explained in the next subsection.

37

3.3.1 KF-based Temperature Estimation

Temperature values at different locations on the die depend on various

factors, such as power consumptions of functional units, layout of the chip and

the package characteristics. Analysis and estimation of temperature requires a

thermal model which represents the relation between these factors and the resulting

temperature. We use the same thermal RC network model as described in the

appendix A.

The lumped values of thermal R and Cs represent the heat flow among units

and from each unit to the thermal package. We model the temperature at grid

cell level [32] which enables more accurate and fine grained temperature estimates.

An analytical method is proposed in [32] to determine the proper size of a grid

cell. The thermal network is represented in state space form with the grid cell

temperatures as states and the power consumption as inputs to this system. The

outputs of this state space model are the temperatures at the sensor locations

which can be observed by sensor readings (S(t)). We define Ct and Gt as thermal

capacitance and thermal conductance matrices, D as the input selection matrix

which identifies the effect of power consumptions at current time steps on the

temperature at next time step and F as the output matrix which identifies the

sensor grid cells at which temperatures are observable. u is the vector of power

consumption values for different components on the die and T is the vector of

temperature values at different grid cells. The units for temperature and power

are centigrade degree and Watt.

As explained in the appendix A, the system is described by equation (A.2).

Based on this equation, the system with the thermal sensors can be represented

as:

d
dt
T (t) = −C−1

t GtT (t) + C−1
t Du(t)

S(t) = FT (t)
(3.1)

Since sensor measurements can be inaccurate and exact power consumption

of each functional unit at run time is not available, we use Kalman filter (KF) for

temperature estimation. The KF uses a form of feedback control to estimate a

38

process in a predict-correct manner with time and measurement update phases.

Time update equations project forward in time the current state of the system and

the error covariance estimates to obtain a priori estimates for the measurement

step. The measurement update equations incorporate the new measurements into

the a priori estimate to obtain an improved a posteriori estimate.

We use Kalman filtering to both estimate the temperature and to filter out

any thermal sensor noise. In order to apply the KF to our model, we convert

the continuous time differential equations in (3.1) to corresponding discrete time

equations in (3.2). Here H, J and F are the state matrix, input matrix and output

matrix of the system respectively. Furthermore, at time n, T[n], u[n] and S[n] are

the state vector representing temperatures at different grid cells, input vector of

functional block power consumption and output vector of temperatures at sensor

locations respectively.

T [n+ 1] = H T [n] + J u[n]

S[n] = F T [n]
(3.2)

Accurate estimation of power consumptions of each component at each

time step is not practical in run time. On the other hand, [48] shows that most of

the energy in the power traces is concentrated in the DC component. The trend

of temperature variations is determined by the average power over a period of

time. This is especially true for power traces with very large DC components and

smaller high frequency harmonics [48]. Based on this fact, we use the average power

consumption of each component as an estimation of the actual power consumption

at that time.

Introduction of noise due to inaccuracies of modeling the process, w[n], and

the measurement noise, v[n], enables us to rewrite the system formulation as:

T [n+ 1] = H T [n] + J u[n] + Gw[n]

Sv[n] = F T [n] + v[n]
(3.3)

The time-update equations for our system are given below. Here Ť[n|n-1]

represents the estimate of T [n] given the past measurements up to Sv[n-1], Ť[n|n]

39

Model Order Reduction

Thermal Model

Reduced Order

Thermal Model

Kalman Filter Generation

Kalman Filter

Calibration

Steady State Kalman Filter

Kalman Filter

Time Update
Measurement

Update

Accurate

Temperature Estimates

Inaccurate

Temperature

Information

Inaccurate

Power

Estimates

(a) (b)

Figure 3.1: Proposed technique. (a) Offline setup (b) Run time temperature

estimation by KF

40

is the updated estimate based on the last measurement Sv[n] and P is the error

covariance matrix.

T̆ [n+ 1|n] = H T̆ [n|n] + J u[n]

P [n+ 1|n] = HP [n|n]HT + GQ[n]GT
(3.4)

Given the current estimate Ť[n|n], the time update predicts the state value

at the next sample n+1 (one step ahead). Then the measurement update adjusts

this prediction based on the new measurement Sv[n+1]. The measurement update

equations for this system are:

T̆ [n|n] = T̆ [n|n− 1] +M [n](Sv[n]− FT̆ [n|n− 1])

M [n] = P [n|n− 1]F T (R[n] + FP [n|n− 1]F T)−1

P [n|n] = (I −M [n]F)P [n|n− 1]

(3.5)

M is called Kalman gain or innovation gain. It is chosen to minimize

the steady state covariance of the estimation error given the noise covariance

Q =E(w[n]w[n]T) and R =E(v[n]v[n]T). Computational complexity of the KF

is O(k3) due to the matrix inversion in calculating Kalman gain M [n],wherekis the

size of the dynamic model. The next subsection describes the methods we exploit

in order to speed up the run time computation.

3.3.2 Reducing Computational Complexity

We introduce two techniques that significantly reduce the computational

complexity of our model. One of the techniques reduces the size of the model used

in KF, while the other reduces the number of computations required for KF.

Steady State Kalman Filtering

The time scale at which the sensor noise characteristics change is much

larger than the time scale at which we study the system (months or years compared

to seconds). Thus we assume the system and noise covariances are time-invariant.

41

As a result, we can use steady state KF in which it is not necessary to compute the

estimation error covariance or Kalman gain in real time [72]. The steady state KF

reduces the computational overhead from O(k3) to O(k2) while still providing good

accuracy [72]. A calibration step is needed prior to run-time operation in order to

get the KF to steady state. Running the KF during the calibration step makes

gain and covariance matrices converge to constant values. In our experiments, we

show that use of steady state KF reduces the computational complexity to several

orders of magnitude without significant effect on accuracy.

Model Order Reduction

The model order reduction enables us to find a low-dimensional but accurate

approximation of the thermal network which preserves the input-output behavior

to a desired extent. We use a projection based implicit moment matching method

(PRIMA) [59] which is used to find a mapping from the high-dimensional space of

the given state-space model to a lower dimensional space. In this technique, Krylov

subspace vectors are used instead of moments. For a square matrix A of dimension

N and a vector b, the subspace spanned by the vectors [b, Ab, . . . , Aq−1b] is called

a Krylov subspace of dimension m generated by {A, b} and is denoted by Kr(A,

b, q).

With thermal capacitance and conductance matrices represented by Ct and

Gt respectively, the circuit formulation shown in equation (A.2) can be represented

in this form:

sCtT = −GtT +Du (3.6)

The reduced order model is generated using congruence transformation,

where Cr = V T
q CtVq, Gr = V T

q GtVq, Dr = V T
q D,Xr = V T

q X:

sCrT = −GrT +Dru (3.7)

The projection matrix Vq ={V 1, V2, . . . , V q} is obtained by Arnoldi process

such that

42

Span{V1, V2, ..., Vq} = Kr{−G−1
t Ct, DU} =

Span{DU,−G−1
t CtDU, ..., (−G−1

t Ct)
q−1DU}

(3.8)

and

vTi vj = 0 for all i 6= j

vTi vi = 1 for all i

This approach matches moments up to order q. The larger the number of

matched moments, the closer is the behavior of the reduced order model to the

original system, but at the cost of higher processing time. Because of the moment-

matching properties of Krylov-subspaces, the reduced transfer function will agree

with the original up to the first q derivatives on an expansion around some chosen

point in the complex plane (usually s =0). In addition, due to the congruence

transformation, the reduced model inherits the structure of the original model,

which means the passivity is preserved. Interested reader can refer to [59] for a

detailed discussion of the technique.

There are other model order reduction techniques which are designed for

linear circuits with multiple sources. For example, EKS [82] can match higher

moments compared to PRIMA in multiple-input multiple-output systems, but im-

poses limitations on the inputs and, more importantly, incurs higher computational

overhead. Our experimental results show that PRIMA works well for our appli-

cations since our network consists of only simple linear elements (Rs and Cs).

Moreover, the topology of the network is such that it operates as a low pass fil-

ter which eliminates the high frequencies of the inputs. Therefore PRIMA with a

few moments around frequency s =0 provides sufficient accuracy and acceptable

overhead compared to RHS-model order reduction methods like EKS [82]. The

effectiveness of PRIMA is shown in Table 3.1.

3.3.3 Detecting Sensor Failure and Degradation

As explained in the previous sub-sections, one of the techniques we use for

real time realization of the technique is the use of steady state Kalman filters.

43

Steady state Kalman filter is optimal when assuming stationary noise. The fact

that the noise characteristics of the thermal sensors do not change rapidly, makes

steady state Kalman filter applicable in our problem. Sensor degradations or fail-

ures which cause these changes usually happen at the order of months. While

steady state Kalman filtering works well for the stationary noise characteristics, it

is not guarantied to work well under non-stationary noise. Therefore the changes

in the characteristics of the sensor noise affect the accuracy of indirect tempera-

ture sensing. Here we address this problem by proposing a technique to detect

the variations in the characteristics of sensor noise in order to detect the sensor

degradation or failure before they affect the accuracy of the technique. Then these

variations are addressed by adapting the indirect temperature sensing to these

variations.

The steady state Kalman filter is completely dependent on the character-

istics of the noise. Therefore, a Kalman filter generated for a certain set of noise

characteristics might not work well for a different set. When a change is detected,

the calibration phase of the technique is performed again and a new steady state

Kalman filter is generated based on the current noise characteristics. In order to

detect these variations, we use a hypothesis test called sequential probability ratio

test (SPRT) which is specifically designed for sequentially collected data. It allows

us to detect the variations in the statistical characteristics of the estimation error.

An alternative would be setting thresholds on mean of the errors, but this can

detect the variations only after they have happened. SPRT is able to detect the

abrupt changes as threshold-based techniques, but it is also able to detect slow

gradual variations which evolve over a long period of time [39]. It has been shown

in [23] that a hypothesis test based on the SPRT is optimal in the sense that for

given false and missed alarm probabilities α and β, it results in the lowest possible

false or missed alarms. As stated before, α and β are the probabilities of false

positives and false negatives respectively.

SPRT is based on a pair of hypotheses, H0 and H1 which are null hypothesis

and alternative hypothesis respectively. The null hypothesis (H0) states that the

estimation errors are drawn from a distribution with mean zero and standard

44

deviation of σ. The alternate hypothesis states that the estimation errors are

drawn from a distribution with mean µ and standard deviation of σ. In other

words, H0 assumes no change in the characteristics of the noise, while H1 implies

variations in these characteristics. The decision between these two hypotheses is

based on the cumulative sum of the log-likelihood ratio (Λi):

Si+1 = Si + log Λi (3.9)

H1 is accepted if Si ≥ b, H0 is accepted if Si ≤ a, otherwise the monitoring

continues, where a and b are chosen as:

a = log(
β

1− α
)

and

b = log(
1− β
α

)

where α is the false alarm probability, which is the probability of accepting

H1 when H0 is true, and β is the missed alarm probability, which is the probability

of accepting H0 when H1is true. α and β are decided in advance by the user.

Likelihood ratio is the ratio of the maximum probability of a result under

two different hypotheses. In other words, likelihood ratio can be calculated as the

maximum probability of H0 (the estimation errors are drawn from a distribution

with mean zero and standard deviation of σ) to H1 (estimation errors are drawn

from a distribution with mean µ and standard deviation of σ) given the current

observations.

Λn =
Pr(ε1, ..., εn|H1)

Pr(ε1, ..., εn|H0)
(3.10)

when n is the number of observations and

Pr(ε1, . . . , εn|H0) and Pr(ε1, . . . , εn|H1) are the probability of observing

sequence ε1, . . . , εn under H0 and H1 respectively.

Assuming independent observations, we can write:

45

Λn =

n∏
i=1

Pr(εi|H1)

n∏
i=1

Pr(εi|H0)
=

n∏
i=1

Pr(εi|H1)

Pr(εi|H0)

and

log Λn =
n∑
i=1

log
Pr(εi|H1)

Pr(εi|H0)

When operating at run time mode, the technique monitors the temperature

estimation error ε (difference between the estimated and observed temperature).

With every new observation, equation (3.10) is calculated and the new log likeli-

hood ratio is compared against the thresholds aand b. If the new log likelihood

ratio exceeds b, SPRT reports degradation, while if the likelihood ratio gets under

a, SPRT assumes the sensor is working fine. The changes are detected before they

are large enough to affect the indirect temperature sensing results. Due to ex-

tremely low rate of sampling required in this technique (due to the extremely slow

changes in the noise characteristics), we are not concerned about the overhead

of the technique, but for estimation errors which are normally distributed, [39]

proposes a compact expression with very low computational overhead. As stated

previously, the probabilities α and β are defined by the user. When a decision is

made about the H0 or H1, the technique starts at n =1 with current observation.

For our experiments we used α =0.01 , β =0.0001 and sampling interval of 1

minute.

In the next section we verify the proposed technique for indirect tempera-

ture sensing and also detection of sensor failure and degradation.

3.4 Experimental results

Our experimental setup for the indirect temperature sensing method and

the technique for detection of sensor degradation and failure is the same as the

setup explained in section 2.5.

46

3.4.1 Indirect temperature sensing

Unlike design time techniques discussed above, our method for accurate

indirect temperature sensing addresses run time issues such as limited number

of available sensors, their degradation or failure, dynamic changes in location of

hotspots, etc. Indirect temperature sensing requires an off line setup step which

has been implemented in Matlab, while the run time part of the algorithm is imple-

mented in C++ on XScale or SPARC processors. Temperature values are obtained

by running HotSpot [13] in grid mode with XScale power measurements as inputs.

The temperature values of the grid cell containing the sensors are observable, while

the temperature at other grid cells are assumed to not be observable and must be

estimated using our technique. For our experiments, we used a 18×12 grid for

SoC1 and a 20×20 grid for SoC2.

One of the advantages of using PRIMA model order reduction technique for

indirect sensing is that the size of reduced model depends only on the number of

power sources and the number of matched moments, not the number of grid cells.

Therefore, increasing the granularity of the grid in order to increase the accuracy

does not result in higher computational overhead.

To find the appropriate number and size of the grid cells, the analytical

method presented in [32] is used .

No specific sensor technology is assumed in this work. The readings from

the temperature sensors are used as starting temperature values for our model.

Gaussian noise has been superimposed on the actual temperature values to model

the inaccuracies of real thermal sensors. Processes generating noise are assumed

to be stationary between off-line calibrations.

Figure 3.2 shows that the estimated temperature values closely follow the

actual temperature at the location of interest on SoC1. Accurate estimates of the

temperature are important to prevent early or late activation of DTM techniques

due to sensor noise and errors. Indirect temperature sensing is very accurate in

estimating temperature at locations far away from a limited number of sensors

available on the die as shown in Table 2.3. It should be noted that the quality of

estimation using Kalman filter depends on many factors such as workload charac-

47

teristics, number and location of the sensors and the characteristics of noise. For

example, having more sensors located closer to the locations of interest would result

in better estimation. For our application, as our experiments in Table 2.3 show,

even with a very few sensors, our technique is able to estimate the temperature

with reasonable accuracy.

For SoC1, we estimate the temperature at 6 locations of interest using only

2, 3, 4 and 5 sensors. For SoC2, we estimate the temperature at 8 locations of

interest using 2, 3, 5 and 7 sensors. Each sensor is equidistant to the hotspots

it must cover. In order to reduce the inaccuracies due to step size and model

reduction, the step size is chosen to be 10ms and 3 moments are matched. The

mean absolute error and its standard deviation are reduced by up to an order of

magnitude.

Another important parameter affecting both accuracy and computational

requirements of our technique is the time step at which temperature sensors are

read and KF is applied. Table 2.4 shows statistics of measurement and estimation

errors for different sizes of time steps used on SoC1 and SoC2. The basic time step

is chosen at 10−4s and multiplied by powers of 2. For this experiment, in order to

reduce the inaccuracies due to sensor model order reduction, three moments are

matched. One sensor monitors each location of interest, but this sensor is placed

at an arbitrary location around the hotspot to show that the technique does not

depend on the relative position of the sensor and the location of interest. Step size

between 10ms and 100ms provide reasonable accuracy.

Table 3.2 also shows the effect of the indirect temperature sensing technique

on the performance impact of dynamic thermal management techniques. It com-

pares the relative slowdown of a DTM technique when it is driven by temperature

values read directly from the sensors and temperature estimates of our indirect

temperature sensing. The DTM technique used here is a threshold based DTM

technique which reduces the voltage/frequency of a core when its temperature

exceeds the threshold of 75oC.

Slowdown is compared by looking at the number of instructions executed

per second at high utilizations. As this table shows, our indirect temperature

48

Table 3.1: Effect of number of matched moments on temperature estimation

Error

SoC1

Sensor No. of

Matched

Moments

Model

Size

Mean

Absolute

Error

Std.

Dev.

Measurement Error (oC) - - 3.38 4.82

Estimation Error (oC)

1 6 0.88 1.24

2 12 0.75 1.05

3 18 0.68 0.90

4 24 0.48 0.88

SoC2

Sensor No. of

Matched

Moments

Model

Size

Mean

Absolute

Error

Std.

Dev.

Measurement Error (oC) - - 5.64 6.60

Estimation Error (oC)

1 7 1.78 2.28

2 14 1.53 1.79

3 21 1.24 1.67

4 28 0.69 0.92

49

Table 3.2: Effects of sensor degradation and failure

SoC1

Estimation Error DTM

Slow-

down

Detection

time

by

SPRT

Sensor Degradation

Type

Mean

Absolute

Error

Std.

Dev

Gradual mean change

(2oC/Year)

0.59 0.61 19% ˜15 Weeks

Gradual mean change

(1oC/Year)

0.53 0.67 24% ˜8 Weeks

Bias (1oC) 1.15 1.60 40% ˜1.5 Hours

Bias (0.5oC) 0.85 1.10 26% ˜2 Hours

Stuck to constant value 1.47 2.63 54% <1 Hour

SoC2

Estimation Error DTM

Slow-

down

Detection

time

by

SPRT

Sensor Degradation

Type

Mean

Absolute

Error

Std.

Dev

Gradual mean change

(2oC/Year)

1.35 1.55 25% ˜17 Weeks

Gradual mean change

(1oC/Year)

1.33 1.45 24% ˜10 Weeks

Bias (1oC) 1.86 2.54 36% ˜2 Hours

Bias (0.5oC) 1.79 2.35 35% ˜3 Hours

Stuck to constant value 2.89 3.47 48% <1 Hour

50

sensing technique can reduce the slowdown due to DTM by more than 6X. This

is due to the fact that more accurate temperature estimates reduce the number of

false positives in triggering the DTM technique which reduces the slowdown due

to DTM.

This figure also shows that since larger step sizes reduce the accuracy of the

indirect temperature sensing, the reduction in DTM slowdown caused by indirect

sensing reduces as step sizes get larger.

Table 3.1 shows how matching different number of moments affects the

accuracy of our technique. The step size is set at 50ms. Size of the reduced model

is the number of functional units times the number of matched moments. For

SoC1 example, since there are 6 power consuming functional units, matching 4, 3,

2 and 1 moments reduces the model size to 24, 18, 12 and 6 respectively. As it is

shown in the table, after matching the second moment, further moment matching

does not significantly improve accuracy. Matching two or three moments provides

sufficient accuracy for most applications. As explained in the previous sections, an

important step toward online realization of indirect temperature sensing is using

steady state Kalman filtering.

We next analyze the overhead of our indirect temperature estimation tech-

nique. During the calibration process, i.e. before the KF reaches its steady state,

we use general KF. Since calibration can be performed offline, the overhead of the

general KF does not affect performance. The number of calibration steps, in our

case less than 100, depends on the thermal network and noise characteristics. The

run time overhead is shown in Figure 3.3. The cost of using regular KF is compared

with the steady state KF used by online portion of our indirect temperature sens-

ing technique. As can be seen in Figure 3.3, the performance overhead of steady

state KF is significantly lower. This difference grows for larger models. Using

model order reduction and steady state KF allow performing indirect temperature

sensing even on XScale R© on which floating point instructions have to be emulated

due to the lack of floating point units.The run time overhead on XScale R© can be

further reduced by using a fixed point implementation, or running the technique

on a processor that has a floating point unit. The reduction in overhead due to use

51

of floating point unit is clearly shown in Figure 3.3(b) where the execution times

are reported on a SPARC processor. As the figure shows, for the MPSoCs used in

our experiments, the run time overheads are in the order of 100us.

3.4.2 Detecting sensor failure and degradation

Here we show how using a steady state Kalman filter while the noise charac-

teristics are not stationary can affect the accuracy of the results. To prevent such

inaccuracies, we use a sequential hypothesis test called SPRT which was described

in the previous sections. This allows us to detect the meaningful changes in the

sensor noise characteristics before they affect the accuracy of the technique.

Figure 3.4 shows how SPRT technique detects the meaningful changes in

the estimation errors due to the changes in the characteristics of the noise and

triggers adaptation of the technique to address the new changes.

Thermal sensors are usually based on temperature sensitive diodes, and

according to [38], the most common faults in diodes are open, short and degrada-

tion. Open and short failures in the diode cause constant sensor readings which

according to test community, we call it stuck at fault. We tried stuck at faults with

various values around the average expected sensor reading. Using this technique,

all of these failures were detected in less than one hour.

Another common fault in these diodes is degradation which means the devi-

ation of parameters from the expected values. In order to emulate subtle incipient

sensor degradations, we apply a gradual change in the average of the error which

changes this average by a couple of degrees in a year. α and β values are set to 0.01

and 0.0001 respectively. This will result in a threshold of 100 for the likelihood

ratio. The y axis shows the likelihood ratio (Λi) and the threshold for deciding

about the degradation.

As shown in the figure, the likelihood ratio has passed the threshold at

about two months. This triggers an alarm showing degradation of the sensor and

the indirect sensing is signaled to adapt itself to this change and address this

degradation by regenerating the steady state Kalman filter.

We assume different cases of sensor degradation or failure by adding some

52

Noisy Temperature

Readings of Sensor

Actual Temperature at

the Location of Interest

Estimated Temperature at

the Location of Interest

Actual Temperature

at Sensor Location

Figure 3.2: Comparison of sensor, actual and estimated temperatures

53

error to the sensed temperature.

These error types include an error signal whose mean changes gradually and

very slowly from 0 to 1 or 2oC in a year. Another error introduced is a constant

bias (0.5oC and 1oC) in the sensor readings. Another type of failure considered is

stuck at error which means reading the same value from the sensor irrespective of

the actual temperature.

Table 2.4 shows how such sensor degradations will affect the estimation error

and DTM slowdown before these sensor degradations are detected and addressed

by regenerating the steady state KF. It also shows the time it takes to detect

these degradations. As in the example shown in Figure 3.4, the sampling time of

the sensor degradation technique is 1 minute and α and β values are set to 0.01

and 0.01. As the table shows, for the gradual changes in the error characteristics,

the error is detected early before it affects the accuracy of the technique. For

example, for a gradual mean change of 1oC/Year, the error is detected after about

two months before it can cause significant DTM slowdown. For more significant

and abrupt changes, such as bias values or stuck at errors which cause significant

effect on DTM, the technique is able to detect the error in a matter of hours or

so. This quick detection of more severe degradations minimizes the effect of these

inaccuracies on the DTM slowdown. Another important point to note is that

these detection times can be reduced with more frequent sampling. The cost will

be more frequent computations for SPRT which usually are not significant since

the technique can be implemented by accessing lookup tables. Using equation

(24) in general cases implies two lookups in the look up table, one division, one

logarithm operation and one addition. For the normally distributed observations,

[29] suggest a compact expression which can be implemented by just two additions

for each sample.

3.5 Conclusion

In this section, a method is proposed for accurate software estimation of

temperature at different locations on the chip based on the inaccurate values ob-

54

Steady State Kalman FilterRegular Kalman Filter

4 6 8 10 12 14 16 18 20 22 24 26 28 30

4 6 8 10 12 14 16 18 20 22 24 26 28 30

(a) Runtime on XScale

(b) Runtime on SPARC

0.01

0.1

1

10

100

1

10

100

1000

10000

100000

1000000

ms

ms

Model size

Model size

Figure 3.3: Run time of the technique on (a) XScale R© (b) SPARC R©

55

Likelihood
Ratio

Weeks

Figure 3.4: SPRT technique to detect sensor degradation

tained from a few on-chip temperature sensors. Most importantly, our technique

can be used efficiently to estimate the temperatures at the locations of interest

where no physical sensor is available. One important advantage of this method

is that it can be activated only when the temperature is approaching a limit to

provide more accurate estimates. Kalman Filter is used for state estimation and

to eliminate the noise of on-chip temperature sensors. In order to reduce the

complexity, a model order reduction technique is applied. To further improve the

efficiency, steady state KF is used that is calibrated off-line. Our temperature

estimation technique incurs very low run-time overhead in orders of hundreds of

microseconds which is needed in OS level schedulers that run in millisecond time

scales. Although this technique addresses sources of inaccuracy at runtime, new

sensor degradation and failure can still introduce inaccuracy in the results. To

prevent this, a method is proposed for early detection of sensor degradation and

failure which triggers the calibration of indirect temperature sensing. The exper-

imental results show that using indirect temperature sensing, the mean absolute

56

error and the standard deviation of the error are minimized about an order of

magnitude as compared to information obtained from direct reading of sensors.

Chapter 3 in part, is a reprint of the material as it appears in International

Symposium on Quality Electronic Design, 2008. Sharifi, S. Liu, C. and Rosing,

T. S. and IEEE Transactions in Computer Aided Design of Integrated Circuits

and Systems, 2010. Sharifi, S. and Rosing, T.S. The dissertation author was the

primary investigator and author of these papers.

Chapter 4

Tempo Temperature Prediction

4.1 Introduction

A large number of thermal management techniques proposed in the past

have been reactive in the sense that they take action when temperature of a unit

rises above a given threshold. This might cause significant performance loss and

reliability issues [75]. Therefore, proactive temperature management techniques

have been proposed which try to predict and prevent thermal emergencies before

they happen. Even if a thermal emergency happens, it may be less severe and

can be resolved by less aggressive techniques with lower performance overhead.

Proactive thermal management techniques typically rely on temperature predictors

in order to estimate the future temperature of the functional units or cores to be

able to make more intelligent thermal management decisions.

In this chapter, we propose a temperature prediction method which can

be used to evaluate the thermal impact of the selecting among a set of power

states. This technique, which is called Tempo, has various advantages over previ-

ous temperature predictors First, it does not need any kind of runtime adaptation

to assure accurate prediction. Moreover, because most previous temperature pre-

diction methods rely on general signal analysis and estimation techniques, they do

not do well with varying temperature trends due to changes in the power state of a

core. They need to wait until the thermal effect of the power state change appears

in the temperature so that the predictor can detect the new trend. Therefore,

57

58

they are not able to evaluate the thermal impact of future power state changes

before they happen. In contrast, Tempo predicts the temperature based on the

characteristics of the thermal model and is able to predict temperature of any set

of future power states before they are applied to the system. This capability en-

ables accurate upfront evaluation of future thermal impact of potential power state

changes caused by scheduling decisions in an MPSoC. Moreover, methods relying

on signal estimation techniques typically treat temperatures of different cores as

independent signals. Therefore, in the cases where mutual thermal effects of the

cores are significant, inaccuracies in the estimates might be significant.

This chapter describes details of Tempo predictor, while the next chapter

explains how we use Tempo in our framework for proactive thermal management

of heterogeneous MPSoCs.

4.2 Related work

Several temperature predictors have been proposed to be used for proac-

tive thermal management techniques. In [19] a predictive temperature balancing

technique based on autoregressive moving average (ARMA) modeling has been

proposed for general purpose systems. In order to avoid inaccuracy, the changes in

the workload and temperature dynamics are detected using a sequential probabil-

ity ratio test (SPRT) so that the ARMA model can be updated in a timely fashion.

In systems with highly dynamic workloads, continuously performing SPRT-based

detection and updating the ARMA model incurs overhead.

In [40], a temperature prediction technique for chip multiprocessors is pro-

posed which assumes future temperature of a cores as the linear extrapolation of

its previous temperature readings. Although this predictor does not need any kind

of runtime adaptation, because it implicitly assumes that the gradient of temper-

ature stays the same for the whole prediction interval, it may result in inaccurate

estimates as it does not consider power state changes.

In [10] a proactive dynamic thermal management is introduced for chip

multiprocessors based on the band-limited property of temperature frequency spec-

59

trum. Although this method does not need any adaptation either, it is not able

to accurately predict temperature changes due to power changes before they actu-

ally happen. This technique predicts the temperature by observing the previous

samples and projecting them into future assuming the trend does not change.

Therefore, when the power state of a core changes, this technique needs to ob-

serve at least a few samples before being able to estimate the future temperature.

Thus it cannot be used to evaluate potential thermal impact of alternative future

scheduling decisions.

Previous temperature prediction techniques either need costly runtime adap-

tation (e.g. [19]) or are not able to accurately predict the thermal impact of tran-

sition to new power states before before the power change happens (e.g. [10]).

The general signal analysis and prediction approaches used in these techniques are

more suitable for the cases where the underlying physical model of the system is

not well known. Being oblivious to this knowledge of the system, the advantages

of these techniques are limited when the underlying model of the system is known

because they are not getting the full benefit of this valuable information at hand.

In contrast to previous work, we introduce Tempo, a novel temperature

prediction technique which allows accurate evaluation of future thermal impact

of potential scheduling decisions without having to measure their effect on tem-

perature after applying them. In contrast to previous techniques, our prediction

method takes advantage of the knowledge of the dynamics of the system which

is provided by the thermal model. Unlike previous techniques, Tempo can ac-

curately predict what the future temperature of the cores can be for any future

power states of the cores without the need to apply them and wait to see their

effect on temperature. Therefore, it can be used to evaluate the thermal effects of

alternative decisions for thermal management to choose the best out of potential

options. Moreover, our proposed model does not need any runtime adaptation and

also is fully linear.

Tempo can be used within model predictive control techniques as well.

Thermal management techniques using model predictive control such as [84] typi-

cally assume the temperature at all of the nodes of the thermal network are observ-

60

able by thermal sensors, which is not true for majority of designs because thermal

sensors are not placed in thermal interface material and heat sink. Instead, Tempo

can be used in such cases in order to avoid such assumptions, especially because

it is completely linear so there is no need for non-linear optimization techniques.

It can also be easily integrated with multi-parametric optimization techniques, as

we have used in TempoMP which is explained later. Tempo can also be used with

phase detection and prediction techniques such as [35], [36] which are able to mon-

itor and predict power consumption of the cores. Although availability of power

estimates increases prediction accuracy of Tempo, even when there are no accu-

rate values of future core power consumptions, Tempo is able to estimate future

temperature based on only previous temperature information.

4.3 Temperature Prediction

In this section, we first explain the basic ideas behind our Tempo tempera-

ture predictor and then we describe how Tempo can take into account the leakage

and its temperature dependence. The objective of our prediction method is to

accurately predict future temperature of the cores based on the available temper-

ature and power information. More specifically, we estimate the temperature of

the cores at the end of the scheduling tick (k+ 1) based on the temperature of the

cores at the beginning of scheduling tick k+ 1 and the one before that (k). Tempo

takes into account the power state changes between scheduling ticks k + 1 and k

as well.

Our work is based on compact thermal model of the chip [32] which is

described in detail in Appendix A. It leverages the well-known duality of thermal

and electrical phenomena. The heat flow among the functional units is modeled

using a corresponding network of thermal capacitances and resistances as shown

in Figure A.1. The dynamics of the temperature and the relation between the

temperature, power consumption of the cores and thermal characteristics of the

system is described as:

61

Ct
d

dt
T (t) = −GtT (t) + P (t) (4.1)

where the vectors and matrices are defined as:

T Temperature at all the nodes of the thermal network

P Power consumptions of the nodes of thermal network

Gt Thermal conductance matrix

Ct Thermal capacitance matrix

Assuming the number of the cores to be n and the number of nodes in the

thermal RC network to be m, P and T are vectors of length m both and Gt and

Ct are matrices of size m×m both.

Given the temperature at all the nodes of the thermal network, estimating

the future temperature based on the power is not difficult. However, usually this

is not the case. At runtime, temperature is usually obtained via thermal sensors

within the silicon layer. If each core does not have its own sensor, the technique

in [70] can be used to estimate the core temperatures using the available sensors.

However, thermal sensors cannot be placed within internal layers (thermal interface

material, heat spreader, etc.), so the available temperature information is limited

to the temperature of the cores. This lack of thermal information of internal

nodes makes it challenging to predict or evaluate temperature at runtime. The

temperature of the internal nodes can be obtained by simulating the thermal model

at runtime, which is not computationally practical. Moreover, without feedback

from the thermal sensors, the results may deviate dramatically from the actual

values.

In our formulation, to reflect this lack of thermal information of the in-

ternal nodes, we break the vector of temperature values (T) into two sub-vectors.

Sub-vector To represents the temperatures observable by thermal sensors (core tem-

peratures), while Tu represents the internal nodes of the thermal network whose

temperatures are unobservable (as shown in Figure A.1). The size of these vectors

are n and m− n respectively.

The analytical solution to the non-homogeneous system of differential equa-

62

0 50 100 150 200
0

10

20

30

40

20 40 60 80 100 120 140 160 180 200
25

30

35

40

45

50

55

20 40 60 80 100 120 140 160 180 200
30

32

34

36

38

40

(°C)

(°C)

(°C)

(x 10ms)

(x 10ms)

(x 10ms)

(a) Core Temperature

(b) Components Fo, Fu and Fp

(c) Temperature of internal nodes

Thermal

Interface

Material

Heat

Spreader

Heat

Sink

Fp

Fu

Fo

Figure 4.1: (a) Temperature of the core (b) Breakdown of temperature into

components of equation (4.7) (c) Temperature of corresponding nodes in thermal

interface material, heat spreader and heat sink, all relative to ambient

tions in equation (4.1) can be calculated as:

T (t) = e−Γ(t−t0)T (t0) +

∫ t

t0

e−Γ(t−τ)C−1
t P (τ) dτ (4.2)

where T (t0) is the starting temperature at time t0 and

Γ = C−1
t Gt (4.3)

Discretizing the equation (4.2) for a scheduling tick of ts, the temperature

at consequent scheduling ticks can be described as:

63

[
To[k + 1]

Tu[k + 1]

]
= Ψ

[
To[k]

Tu[k]

]
+ Φ

[
P [k + 1]

Pu[k + 1]

]
(4.4)

where

Ψ = e−Γts ,Φ = Γ−1(I − e−Γts)C−1
t (4.5)

The first term in equation (4.4) is the contribution of initial conditions and the

second term is the contribution of power consumption during this scheduling tick.

We divide the matrices Ψ and Φ into sub-matrices as shown here:

Ψ =


Ψoo Ψuo

Ψou Ψuu

 ,Φ =


Φoo Φuo

Φou Φuu

 (4.6)

where sizes of the matrices Ψoo, Ψuo, Ψou and Ψuu are n × n, n ×m − n,

m − n × n and m − n ×m − n respectively. Each matrix Ψxy shows the effect of

initial temperature of set x of nodes on the current temperature of the set y. For

example, Ψuo models the effect of initial temperature of unobservable(u) nodes on

the current temperature of observable(o) nodes. Similarly, each matrix Φxy shows

the effect of current power of the set x of nodes on the current temperature of the

set y.

The internal nodes do not consume any power (Pu[k + 1] = 0), so:

To[k + 1] = ΨooTo[k]︸ ︷︷ ︸
Fo

+ ΨuoTu[k]︸ ︷︷ ︸
Fu

+ ΦooP [k + 1]︸ ︷︷ ︸
Fp

(4.7)

where the first and second terms (Fo and Fu) are respectively the contributions of

initial temperature of the observable and unobservable nodes on the temperature

at the next scheduling tick. The third term (Fp) is the contribution of the power

consumption of the cores during the incoming scheduling tick. At each scheduling

tick, the term Fo can be calculated based on the current temperature of the cores

which are observable by thermal sensors. The term Fp also can be calculated given

the current power consumption of the cores. But due to lack of knowledge about

the temperature of unobservable nodes (Tu[k]), term Fu is unknown. This term

64

represents the contribution of initial temperature of the unobservable nodes of the

thermal network (internal nodes) on the temperature at the next scheduling tick.

Because Fu is not known at runtime, equation (4.7) is not enough to calculate

future temperature of the cores.

We show that fast changes in the temperature are produced by components

Fo and Fp while component Fu does not change quickly. We find the upper bound

on the rate of change of Fu. Figure 4.1 shows an example of breakdown of the

temperature of a SPARC core in floorplan of Figure 4.3 into three components of

the equation (4.7). It should be noted that while the core temperature shown in

part (a) of the figure is the sum of the components in Figure 4.1(b). All values are

relative to the ambient temperature (40◦C in this case). As can be seen in this fig-

ure, although the core temperature changes significantly, the term Fu changes very

slowly. The quick change of temperature between two scheduling ticks is mainly

due to changes on the other two terms (Fo and Fp) as shown in the figure. Figure

4.1(c) shows the temperature of the corresponding internal nodes. It should be

noted that as this figures shows, although some of the unobservable internal nodes

might change quickly (e.g. thermal interface material), the changes of term Fu are

very slow. Later in this section we will explain the reason for this phenomenon in

detail.

Due to the limited rate of change on Fu, we assume that this term remains

constant between two consecutive scheduling ticks:

Fu[k + 1] ≈ Fu[k] (4.8)

Temperature evaluation equation for the previous scheduling tick is then:

To[k] = ΨITo[k − 1] + ΨIITu[k − 1] + ΦIP [k] (4.9)

Based on equation (4.8), ΨIITu[k] ' ΨIITu[k − 1]. T, the temperature

prediction by Tempo is then calculated as:

T[k + 1] = (Ψoo + I)To[k]−ΨooTo[k − 1] + Φoo(P [k + 1]− P [k]) (4.10)

We use equation (4.10) to predict the temperature at the beginning of scheduling

tick k + 1 based on the temperature of the cores at the beginning of scheduling

65

tick k and their power state during this scheduling tick. We also define Tempo’s

thermal state of a core, T[k+1] in equation (4.11) as the predicted temperature at

the beginning of scheduling tick k+ 1 if the power state of the cores do not change

in scheduling tick k.

T[k + 1] = (Ψoo + I)To[k]−ΨooTo[k − 1] (4.11)

As equation (4.11) shows, T[k+ 1] can be calculated based on the previous

and current core temperatures. Later we use Tempo’s thermal state within our

scheduling techniques. Based on equation (4.11) we rewrite the equation (4.10) as:

T[k + 1] = T[k + 1] + Φoo(P [k + 1]− P [k]) (4.12)

The second term on the right hand side reflects the effect of power changes on the

temperature of the cores.

Now we describe how we incorporate the leakage power and its temperature

dependence into Tempo prediction. We use the linear approximation of the leakage

as suggested in [49] with an approximate estimation error of up to 5%. Using this

model, the leakage power of a core can be estimated as sum of a constant term

and a term linearly dependent on the cores temperature:

Pleak(t) = LT (t) +Q (4.13)

where L is a diagonal matrix containing the coefficients for the linear terms and Q

is a vector of constant terms for different cores. It should be noted that elements

of L and Q which correspond to the nodes in any layer other than silicon are

zero because these nodes do not consume any power, including leakage power.

Therefore, the equation (4.1) is transformed to:

Ct
d

dt
T (t) = −(Gt − L)T (t) + (Pdynamic(t) +Q) (4.14)

The next steps would be similar to deriving equations (4.2) to (4.12) based on

equation (4.1). Predicted temperature considering leakage is:

T[k + 1] =
(
(Ψ′oo + I)To[k]−Ψ′ooTo[k − 1]

)
+

Φ′oo(Pdyn[k + 1]− Pdyn[k])
(4.15)

66

where Ψ = e−C
−1
t (Gt−L)ts , Φ = ((Gt − L)−1Ct)(I − e−C

−1
t (Gt−L)ts)C−1

t .

Before describing how we leverage Tempo in our scheduling framework,

which is explained in Section 5.3, in the following subsection we show why Tempo

is an accurate predictor and provide a theoretical upper bound on the prediction

accuracy of Tempo.

4.3.1 Theoretical Analysis of Tempo

Tempo is based on the premise that the changes on component Fu of tem-

perature are very slow, or Fu[k + 1] ≈ Fu[k]. This phenomenon can be explained

by the structure of the thermal RC circuit and thermal characteristics of the chips.

To simplify the explanation, we assume that the length and width of heat spreader

and heat sink exactly match those of the silicon (and thermal interface material).

As shown in Figure A.1, each node in the thermal network is connected to

its neighbor nodes in the same layer through lateral thermal conductances and to

the corresponding nodes in the top and bottom layers through vertical thermal

resistances. If the nodes at the bottom and top of node i are respectively repre-

sented by bottom(i) and top(i) and the set of lateral neighbors of the node i are

represented by LN(i), then thermal conductance matrix Gt could be described as:

Gt(i, j) =


i = j

∑
l∈LN(k)

g(i, l) + g(i, top(i)) + g(i, bottom(i))

i 6= j −g(i, j)

(4.16)

where g(i, j) is the conductance and capacitance between nodes i and j in the

thermal circuit. Capacitance matrix Ct is also defined as:

Ct(i, j) =

{
i 6= j 0

i = j c(i)
(4.17)

where c(i) is the thermal capacitance of node i. As can be seen, matrix Gt is

symmetric and diagonally dominant, and matrix Ct is diagonal. Based on equations

67

(4.16) and (4.17):

Γ(i, i) = c(i)−1

 ∑
l∈LN(k)

g(i, l) + g(i, top(i)) + g(i, bottom(i))

 (4.18)

Considering matrix Γts, its eigendecomposition is:

Γts = V ΛV −1 (4.19)

where V is a square matrix whose jth colum is the jth eigenvector (vj) of Γts

and the Λ is a diagonal matrix whose diagonal elements are the corresponding

eigenvalues of matrix Γts; in other words: Λ(j, j) = λj. From equations (4.5) and

(4.19), we have:

Ψ = e−Γts = V e−ΛV −1 = V XV −1 (4.20)

Since Λ is diagonal, X is also a diagonal matrix with diagonal elements:

X(j, j) = e−λj (4.21)

According to Gershgorin’s circle theorem [26], the eigenvalues of matrix Γts lie

within a set of discs called Gershgorin discs. Gerschgorin disc i is centered at

Γ(i, i)ts with radius ρ(i). ρ(i) is defined as ρ(i) = min(ρR(i), ρC(i)) where

ρR(i) =
∑

j 6=i |Γ(i, j)ts| ρC(i) =
∑

j 6=i |Γ(j, i)ts| (4.22)

For diagonally dominant matrices, usually the eigenvalues tend to be closer

to the centers of the discs. For example, in the extreme case of a diagonal matrix,

the eigenvalues fall right onto the center of Gershgorin discs. Using equations (4.18)

and (4.22), Gershgorin discs and the location of the eigenvalues can be estimated

directly based on the chip and package parameters without the need to calculate

the exact eigenvalues.

For an MPSoC composed of a 3×3 grid of cores of size 1 × 1mm each,

Figure 4.2 shows the eigenvalues and Gershgorin discs of matrix Γts corresponding

to the nodes in thermal interface material, heat spreader and heat sink for two

different types of packages. The first one is the default package in Hotspot [4]

which is a high end package with thermal interface material thickness of 0.02mm,

68

0 10 20 30 40 50 60 70 80 90 100
−30

−20

−10

0

10

20

30

Eigenvalues and discs corresponding to
Heat Spreader nodes

Eigenvalues and discs corresponding to
Thermal Interface Material nodes

Eigenvalues corresponding to
Heat Sink nodes

(a) A high end package

0 50 100 150 200 250 300 350
−100

−80

−60

−40

−20

0

20

40

60

80

100

Eigenvalues and discs corresponding to
Thermal Interface Material nodes

Eigenvalues corresponding to
Heat Sink nodes

Eigenvalues and discs corresponding to
Heat Spreader nodes

(b) An embedded-type package

Figure 4.2: Gershgorin discs of matrix Γts in complex plane for (a) a high end

package and (b) an embedded-type package

heat spreader thickness of 1mm, heat sink thickness of 6.9mm and convection

resistance of 0.1K/W . The other one resembles a lower end and less expensive

package which can be found in embedded type devices. It has the same thermal

interface material thickness, but with heat spreader thickness of 0.1mm, heat sink

thickness of 1mm and convection resistance of 5.0K/W .

In both cases, the eigenvalues of matrix Γts corresponding to heat sink

(shown in Figure 4.2) are very close to zero and their corresponding Gershgorin

discs are too small to be seen in the figure. In both types of packages, the eigen-

values corresponding to the thermal interface material and heat spreader are much

larger compared to those of heat sink, although the heat spreader eigenvalues are

very different in these two cases. As a result, in matrix Ψ, according to equation

(4.21) the eigenvalues corresponding to heat spreader and thermal interface mate-

69

rial are negligible compared to the ones of the heat sink. Therefore, the effect of

the temperature of these nodes on component Fu is negligible relative to the ef-

fect of the heat sink. Consequently, although the temperature of thermal interface

material and heat spreader can change quickly and significantly, the effect of these

changes on the component Fu is negligible. In contrast, the temperature of heat

sink which is the dominant component of Fu changes very slowly. Its changes are

negligible in the milliseconds range. Therefore, Fu’s changes between two consec-

utive scheduling ticks can be neglected.

Upper bound of Tempo’s prediction error: The analytical bound on

Tempo’s prediction error is found based on the characteristics of the thermal RC

network and the power characteristics of the cores. The thermal network described

by equation (4.1) is a linear time invariant (LTI) system since thermal resistances

and capacitances are linear components. Equation (4.7) represents accurate tem-

perature for the next scheduling tick while equation (4.10) is Tempo’s estimate

of the temperature at the next scheduling tick. Temperature prediction error is

the difference between these two values. Our goal is to find an upper bound on E

defined below:

E = T[k + 1]− To[k + 1] = Ψuo(Tu[k]− Tu[k − 1]) (4.23)

The term (Tu[k] − Tu[k − 1]) is the difference between value of T̂ at times

kts and (k − 1)ts where ts is the length of the scheduling interval. The differ-

ence between temperature of the nodes of thermal network at times t0 and t1 is

∆T (t0, t1) = T (t1)−T (t0) which can be calculated based on the equation (4.2) as:

∆T (t1, t0) = −(I − e−Γ(t1−t0))T (t0) +

∫ t1

t0

e−Γ(t1−τ)ΛP (τ) dτ (4.24)

∆T is contributed by two components which we call ∆Ti and ∆Tp which are defined

as:

∆Ti(t1, t0) = −(I − e−Γ(t1−t0))T (t0), (4.25)

∆Tp(t1, t0) =

∫ t1

t0

e−Γ(t1−τ)ΛP (τ) dτ. (4.26)

70

These two components are completely independent because ∆Ti depends

only on the initial temperature at the scheduling interval while ∆Tp only depends

on the power consumption in that scheduling interval. The first component, ∆Ti,

depends on the initial temperature of the thermal RC network and has a negative

contribution to the ∆T . Intuitively, if no power is applied to a system with an

initial temperature higher than ambient, its temperature will decrease gradually.

The higher the initial temperature is, the larger the decrease. On the other hand,

the second component, ∆Tp, is always non-negative and has a positive or zero

contribution to the ∆T because the power consumption of a core is always non-

negative. If the system’s initial temperature is equal to ambient temperature and

the system is running, its temperature will increase. Because of the negative

contribution of ∆Ti and non-negative contribution of ∆Tp, in order to maximize

the positive value of ∆T , we should maximize ∆Tp while minimizing the absolute

value of ∆Ti which can be done independently.

The only variable part of equation (4.26) is P . Therefore, in order to max-

imize ∆Tp, we should maximize P : P = Pmax. At the same time we should

minimize the absolute value of ∆Ti. The lower the initial temperature is, the

lower absolute value of ∆Ti will be. The minimum value of T (t0) will result in the

minimum absolute value of ∆Ti. We can set the lowest value of initial temperature

to ambient temperature. Similarly, to maximize the value of ∆T in negative direc-

tion, we should minimize ∆Tp while maximizing the absolute value of ∆Ti. ∆Tp

can be minimized by setting the power to the minimum (P = Pmin) and ∆Ti can

be maximized by using the maximum possible initial temperature T (t0). In this

way, we have the upper bound on the absolute value of the temperature difference

between the two consecutive scheduling ticks. Then, given equation (4.23), the

upper bound on the absolute value of Tempo’s prediction error can be found. In

our experiments, the maximum error observed is less than 0.5◦C.

71

4.4 Experimental results

The cores used in our experiments are a low-power in-order architecture

similar to the SPARC cores in UltraSPARC T1 [47], and very low power cores

designed for embedded systems, similar to Intel’s XScale [34]. Power, performance,

and area characteristics of the cores are shown in Figure 4.3. We assume that the

MPSoC is implemented in 65 nm technology. The areas of the cores are derived

from published photos of the dies after subtracting the area occupied by I/O pads,

interconnection wires, interface units, L2 cache, and control logic as in [41], and

scaled to 65nm. Each L2 cache has 1MB size, 2 banks, 64-byte lines, and is

4-way associative. Using CACTI [31], the area and power consumption of the

caches at 65nm are estimated as 14mm2 and 1.7W, respectively. The cache power

consumption value includes leakage.

For performance and power data, the M5 Simulator [11] is used with Wattch

[13] power model updated with 65nm model parameters. The in-order pipelines of

SPARC and Xscale are modeled by modifying M5’s execution engine. We assume

the same three voltage settings for the XScale and SPARC cores. For XScale, we

use the existing available frequency levels (as reported in [34]), and for SPARC

we set the default frequency to 1.2GHz (as reported in [47]), and scale frequency

using the 95% and 85% settings as in [36]. The overhead of switching to a new

voltage/frequency is set to 50µs. These power values are then utilized in the

temperature simulations. We compute the leakage power of CPU cores based on

structure areas and temperature. We compute temperature dependence using the

model introduced in [30] with the same constants mentioned in the paper for 65nm.

For power overhead during frequency scaling, we use the power of the higher power

state. The overhead of migration of the tasks between the cores is assumed to be

10µs [27].

We use HotSpot Version 4.2 [4] for thermal modeling with a sampling inter-

val of 100µs to ensure sufficient accuracy. In many embedded systems such as cell

phones there is no heat sink or spreader. To model this within HotSpot, we set the

spreader thickness to be very thin- 0.1mm. The heat sink is replaced by a package

72

XSCALE

XSCALE

L2SPARC

Thermal Parameters

Die Thickness 0.5 mm

Convection Resistance 7 °K/W

Convection Capacitance 100 J/°K

(a) Floorplan of MPSoC (b) Thermal parameters

Processor XScale-like SPARC-like

Issue width 1 2
Area (mm2) 1.4 5

Frequency
Settings
(MHz)

1.2 V
1.18 V
1.06 V

624
416
208

1200
1140
1000

Average
Dynamic

Power (W)

1.2 V
1.18 V
1.06 V

0.34
0.32
0.28

2.40
2.10
1.90

(c) Characteristics of the cores

Figure 4.3: Characteristics of the MPSoC

with thermal parameters shown in Figure 4.3(b) which are within the ranges sug-

gested by [37] and [53]. The parameters used in HotSpot are summarized in Figure

4.3(b). It should be noted that this is only one example, while our techniques are

general and apply to a wide range of systems with various characteristics.

The workloads in our experiments consist of integer benchmarks provided

in MiBench benchmark suite [29] which include automotive/industrial, network

and telecommunications applications. Other than datasets provided in MiBench

suite, we use datasets provided by [25]. To evaluate our technique under various

conditions, we create moderate to intensive workloads consisting of varying num-

ber of tasks from MiBench suite. Instances of each task are generated regularly at

every arrival period. We set deadline (d) and (τ) of the tasks to twice the execution

time of that task at the slowest frequency on the slowest core (XScale). This way

73

0 1000 2000 3000 4000 5000 6000
70

75

80

85

90

(ms)

(°C)

0 1000 2000 3000 4000 5000 6000
0

1

2

3

(ms)

(W)

(a) Temperature

(b) Dynamic Power

Actual
Temperature

BLP
Prediction

Tempo
Prediction

Figure 4.4: Comparison of Tempo and BLP predictor [10]

the tasks can meet their deadlines irrespective of the core type they are assigned

to. First we compare Tempo with a state of the art temperature predictor called

Band-Limited Predictor (BLP) [10]. It utilizes the band limited nature of tem-

perature frequency spectrum to predict the temperature trend. Similar to Tempo,

the coefficients used in calculations of BLP are also calculated at design time. No

training phase is required. We use the same parameters used as in [10], namely

α = 0.135, m = 3 and N = 3.

Figure 4.4(a) shows the actual temperature of a core on a MPSoC along

with the prediction results of Tempo and BLP, while Figure 4.4(b) shows the trace

of dynamic power applied to the same core. The sharp changes in the dynamic

power are caused by power state changes happening at scheduling ticks which

are 10 ms apart. This is a slice of a longer trace of execution of the MiBench

benchmarks so the cores have high initial temperatures.

As shown in the figure, as long as the temperature and power changes are

smooth, both predictors do well. However, BLP fails when the power state of

the core changes significantly. For example, in Figure 4.4(a), right after the first

power state change at around 190ms, BLP underestimates the temperature. This

is because BLP relies exclusively on the temperature history and trend. Therefore,

74

even if the new power state is known, BLP cannot predict the temperature before

the new power state is applied and has impacted the temperature trend. Moreover,

as the figure shows, even after the first sample of temperature signal is observed

after the change in temperature trend, BLP significantly overestimates the tem-

perature. However, Tempo accurately predicts the future temperature given the

next power state of the cores. As shown in this figure, the maximum prediction er-

ror of BLP can be over 5◦C, while in our experiments, the maximum temperature

prediction is always less than 0.5◦C - an order of magnitude difference. BLP and

any other predictors which depend only on temperature trend cannot accurately

evaluate the thermal effects of scheduling decisions and power state changes. In

contrast, Tempo can be efficiently used to evaluate alternative decisions regard-

ing scheduling and power state changes. The results of our temperature aware

scheduling techniques in the next section further illustrate the efficiency of Tempo.

4.5 Conclusion

In this chapter, Tempo, a novel temperature prediction method is intro-

duced. Previous temperature prediction techniques mainly depend on general sig-

nal analysis and prediction techniques and predict the future temperature only

based on the temperature history. Unlike those techniques, Tempo takes advan-

tage of the knowledge of the physical characteristics of the thermal system of the

chip. Using this knowledge, it accurately takes into account the potential thermal

effects of any power state changes. This capability allows Tempo to reduce the

maximum temperature prediction up to an order of magnitude compared to pre-

vious state of the art predictors. Moreover, Tempo makes it possible to evaluate

the thermal safety of potential scheduling decisions before applying them to the

system. This is a very useful capability for proactive temperature aware schedul-

ing. The next chapter describes how we integrate Tempo at the heart of a dynamic

thermal management framework, called PROMETHEUS.

Chapters 4 in part, is a reprint of the material accepted for publication at

75

Design, Automation and Test in Europe (DATE) 2012. Sharifi, S. Ayoub, S. and

Rosing, T.S. and and the material under submission at IEEE Transactions in Com-

puter Aided Design of Integrated Circuits and Systems. Sharifi, S. Krishnaswamy,

D. and Rosing, T.S. The dissertation author was the primary investigator and

author of these papers.

Chapter 5

PROMETHEUS Framework for

Temperature-aware Scheduling on

Heterogeneous MPSoCs

5.1 Introduction

Power density and temperature are continuously increasing due to scal-

ing of device dimensions and higher power consumptions in modern processors.

This results in system reliability degradation, leakage power increase, performance

degradation and higher cooling and packaging costs. According to [61], more than

50% of all integrated circuit failures are related to thermal issues. Temperature has

become one of the major factors in design, manufacturing and test of modern pro-

cessor systems. One of the approaches taken to alleviate thermal issues in modern

processors has been introduction of multi-core processors which achieves similar

throughput with lower power density. Many of these Multi-Processor System-on-

Chip (MPSoC) systems integrate cores of various types on the same die.

Heterogeneous MPSoCs provide trade-offs regarding performance, power

and temperature by allowing customization of performance and power character-

istics of the chip to match the requirements of the workload [41], [42]. They are

used in a broad range of applications from cell phones (Qualcomms Snapdragon

76

77

platform) to wireless base stations (Mindspeeds Transcede 4000 processors for 4G

wireless base stations). Temperature is of particular concern in heterogeneous

MPSoCs due to the inherent imbalance in heat generation patterns across the die.

They are used in many embedded systems which experience a wider range of envi-

ronmental conditions than typically seen in data centers and offices. One example

is the case of wireless base stations deployed outdoors in harsh environmental con-

ditions with ambient temperatures even exceeding 80◦C [77]. Electronic systems

in automotive applications must operate at ambient temperatures which might

exceed 125◦C [60]. Cell phones also must be able to operate under a wide range

of ambient temperatures e.g. Alaska in winter vs. Sahara in summer, without the

benefit of more sophisticated packaging due to cost and space considerations. For

such systems, on-chip thermal and power management techniques are key.

In this chapter we propose a framework called PROMETHEUS to address

dynamic thermal management (DTM) of heterogeneous MPSoCs running embed-

ded workloads. Our methodology allows systematic thermal management of MP-

SoCs considering individual performance, power and temperature characteristics

of each core. Although we focus on the more complex case of heterogeneous cores,

our technique is also applicable to homogeneous MPSoCs. Embedded systems of-

ten run known sets of workloads which can be pre-characterized in terms of power

and performance. Given this information, the performance requirements of the

workloads are estimated at runtime and used to find the optimal power states of

the cores on an MPSoC which can provide the required performance under thermal

limits.

PROMETHEUS framework provides two temperature aware scheduling

techniques which proactively avoid power states leading to future thermal emer-

gencies while matching the provided performance to the workload requirements.

The first scheduling technique, TempoMP, integrates Tempo with an online multi-

parametric optimization method. They are used in tandem to deliver locally op-

timal dynamic thermal management decisions to meet thermal constraints while

minimizing power and maximizing performance. Our second scheduling technique,

TemPrompt, uses Tempo as a part of a heuristic algorithm which provides compa-

78

rable efficiency at lower overhead.

The next section describes the related work, while the rest of the chapter

explains details of the PROMETHEUS framework and the scheduling techniques.

5.2 Related work

Many temperature aware scheduling techniques have been proposed in re-

cent years for single core processors and MPSoCs. Availability of multiple instances

of similar processing resources on MPSoCs creates further opportunities for ther-

mal management compared to single core processors by allowing distribution of

activity and heat as necessary. But this also significantly complicates the thermal

management process by increasing the size of the solution space. The solution

space becomes huge due to the multitude of possibilities regarding assignment of

frequencies and tasks to the cores and deciding about when to start the available

tasks. The problem is even more complicated by the fact that temperature of any

particular point on the die is a strong function of recent temperature and work-

load history. In general, task scheduling under thermal constraints is an NP-hard

problem [87].

Several thermal management techniques for homogeneous MPSoCs have

been proposed in previous research. In general purpose and high performance

systems, where there is no a priori knowledge of the workload, the techniques

are typically based on heuristics. Heat-and-Run [27] performs temperature-aware

thread migration for multicore multi-threaded systems In [22], several combinations

of thread migration, DVFS and clock gating are studied in thermal management

of a homogeneous MPSoC. In [18], a probabilistic approach is taken where the

scheduler changes the probability of assigning a task to a core based on the core’s

temperature history.

Some recent work leverages control theory and optimization to manage

thermal issues in homogeneous MPSoCs. In [56], convex optimization is used to

control the frequency of the cores on a homogeneous MPSoC to guaranty that

thermal constraints are met. In [85], a linear quadratic regulator is used to solve

79

the frequency assignment problem for thermal balancing. To achieve a smooth

control and to minimize performance loss and thermal fluctuations in an MPSoC,

[84] proposes a technique based on model predictive control.

Unlike general purpose processing, the type and characteristics of the work-

loads such as execution time are often known in advance in embedded domain.

Although this extra information is helpful in devising better thermal management

solutions, the complexity of the problem makes it practically infeasible to find the

optimal solution. To manage this complexity and make the problem tractable,

various techniques in this domain have used different simplifying assumptions to

develop heuristics. In contrast to general purpose domain, in embedded domain the

goal is not merely maximizing the throughput and each task might have individual

performance requirements such as deadlines

In [21], the problem of scheduling a task graph on a homogeneous MPSoC

to minimize the hotspots and balance the temperature distribution is formulated

as Integer Linear Programming (ILP). The technique is based on heuristics such

as minimizing the overlap between the tasks running on neighbor cores. In [14], an

assignment and scheduling technique for hard real time applications on MPSoCs

is proposed which uses a mixed-integer linear programming formulation to min-

imize peak temperature under hard real-time constraints and task dependencies.

This technique is limited to tasks with large execution times and works based on

a steady-state thermal model. It performs global optimization to minimize the

temperature of a set of known tasks. The complexity of this approach increases

exponentially with the number of tasks and number of cores and as authors have

mentioned, this formulation is not practical for large problem instances. A heuris-

tic approach is also presented for large problems which does not consider a thermal

model and works based on the mobility of the tasks.

Relatively little work has focused on heterogeneous embedded MPSoCs.

The work in [69] proposes an algorithm for energy and temperature aware schedul-

ing of embedded workloads on heterogeneous MPSoCs where the scheduler operates

in two modes based on the utilization of MPSoC. The workload is observed and

its performance requirements are estimated. Then, based on the utilization of the

80

Sensor

Readings

Power State

Assignments

to the Cores

Workload
Power State

Decision

Module

Performance

Requirements

Calculating

Assignment

of Tasks

to Cores

Task to Core

Assignments

Scheduler

Figure 5.1: Scheduling system in PROMETHEUS

processor it is decided if the scheduler should work in energy saving or thermal

management mode.

In this section, we propose PROMETHEUS framework for proactive man-

agement of temperature in heterogeneous MPSoCs by systematically selecting

power state of the cores and task assignments. PROMETHEUS provides two

scheduling techniques, TempoMP and TemPrompt which both are based on our

temperature prediction technique, Tempo. In contrast to previous predictors,

Tempo allows accurate evaluation of future thermal impacts of potential schedul-

ing decisions without having to apply them to the system. Moreover, it is fully

linear and does not need any runtime adaptation.

TempoMP incorporates Tempo temperature prediction with multi-param-

etric optimization to choose the optimal alternative among possible power states

of the cores and task assignments which does not violate thermal requirements.

The other technique, TemPrompt uses Tempo within a heuristic algorithm which

provides comparable efficiency to TempoMP, but at a lower overhead.

5.3 PROMETHEUS Scheduling Framework

In this section, we describe PROMETHEUS, our proposed framework for

proactive temperature aware scheduling. Our approach imposes no restrictions on

the distributions of the size and the number of concurrent tasks in the workload

which makes it applicable to various classes of workloads. It also systematically

considers individual performance, power and thermal characteristics of the cores

81

so it can be applied to heterogeneous MPSoCs as well as homogeneous ones. Us-

ing Tempo, the thermal impact of alternative scheduling decisions are evaluated

in advance and scheduling decisions which might result in thermal emergencies

are avoided. Therefore, PROMETHEUS guaranties that the maximum temper-

ature threshold will be met. Here, we present an overview of PROMETHEUS ’s

scheduling system followed by the details of two individual proactive scheduling

techniques.

Figure 5.1 shows an overall view of our framework and its operation. Em-

bedded workloads running on the system are pre-characterized in terms of exe-

cution time and power. Using pre-characterization information, the performance

requirement estimation module can estimate the execution time of the tasks at

different power states and for each core type to determine a set of power states on

which tasks will be able to meet the performance requirements. At each schedul-

ing tick, temperature predictor module calculates Tempo’s thermal state, T[k + 1],

which is the estimated temperature at next scheduling tick if the current power

states of the cores do not change. Given the outputs of the temperature prediction

and performance requirement estimation modules, power state decision module de-

termines a set of thermally safe power states which are able to provide performance

as close as possible to the workload’s requirements. The output of this module is

used to set the core power states and also in the task assignment decision module.

Once the power states are determined by the power state decision module, task

assignment decision module decides how the tasks should be assigned to the cores

based on their performance requirements.

The two scheduling techniques provided in this framework, TempoMP and

TemPrompt differ only in their power state decision modules. The first technique,

TempoMP, determines the safe power states based on an optimization stage which

is performed offline and its results are stored for runtime use. Although the opti-

mization technique can provide locally optimal power state decisions, storing and

fetching the optimization results incurs overhead. To avoid this overhead, we pro-

pose another scheduling technique called TemPrompt which uses a heuristic for

its power state decision module. The next sub-sections describes the details of

82

Multi-parametric

Optimization

Framework

Critical

Regions

Thermal model of

the MPSoC

Power/Performance

Characteristics

of the Cores

Figure 5.2: Offline stage of TempoMP

TempoMP and TemPrompt scheduling techniques.

5.3.1 Power state assignment in TempoMP

At each scheduling tick, temperature information received from the sensors

and scheduling state provided by the scheduler are used in order to determine the

new core power states and task assignments. In TempoMP, power state module

determines the best power state for the cores by referring to the results of offline

optimization stage.

Optimization is formulated based on the power and performance character-

istics of the cores and the thermal model of the MPSoC as shown in Figure 5.2.

The selection of locally optimal power states and task assignment are done based

on a multi-parametric optimization framework which incorporates our temperature

prediction methods.

Multi-parametric programming is a class of optimization problems in which

given an objective function, a set of constraints, and a set of parameters, the

optimal solution is obtained as an explicit function of the parameters. It is a

very powerful approach for analyzing the effect of variations and uncertainty in

optimization problems where objective function is to be minimized or maximized

subject to a set of constraints, and a set of parameters which may vary within given

bounds. In such optimization problems, multi-parametric programming obtains

the objective function and optimization parameters as functions of the varying

parameters. It also provides the regions in the solution space where these functions

are valid. These regions are called critical regions. Multi-parametric optimization

approach splits the optimization process into offline and online stages. Using multi-

83

parametric programming, the optimization problem is solved offline and the set of

critical regions and parametric solutions are provided as output. No optimization

needs to be done at runtime. Only a limited number of operations need to be

performed at runtime in order to find the critical regions corresponding to the

current solution.

We use this technique as a basis for our online optimization. Our goal is to

choose what power states the cores should be set to in order to meet the perfor-

mance requirements of the workload and thermal constraints. Therefore, decision

variables are power states of the cores while performance requirements and the

thermal state of the MPSoC are the varying parameters in this optimization prob-

lem. Without this optimization, various combinations of power states would have

to be tried to find the thermally safe power settings which meet the performance

requirements of the workload.

Figure 5.3 shows a simple illustrative example of using multi-parametric

programming in power state assignment for a single core case. This core has one

sleep state and three discrete voltage/frequency settings: fhigh, fmedium and flow.

The goal is to set the core to the optimal frequency which is equal to or greater

than the minimum frequency required to meet performance requirements of the

workload (fmin), but does not cause the temperature to exceed the threshold. fmin

is one of the varying parameters in the optimization and its value is estimated

at runtime given the workload. Another parameter obtained at runtime in this

decision is Tempo’s thermal state of the core, T[k + 1], which is the estimated

temperature of the core at the next scheduling tick assuming the power state does

not change. T[k + 1] reflects the current trend of the temperature of the cores.

This set of parameters define the solution space as shown in Figure 5.3.

The Y axis represents fmin, while the X axis represents T[k+ 1]. The space of the

solutions consists of all possible combinations for T[k+1] and fmin which is divided

into four regions. Based on the given input parameters, the corresponding region

is identified and the corresponding solution is chosen. Each region corresponds

to one frequency setting which minimizes the power while providing at least the

minimum required frequency. In the example of Figure 5.3, each region is labeled

84

fmin

(GHz)

(°C)

fhigh

fmedium

flow

off or sleep

Figure 5.3: A very simple example describing use of multi-parametric

programming in power state assignment

by the frequency corresponding to that region.

At very low T[k + 1], even the highest frequency is thermally safe. There-

fore, even if the frequency requirement (fmin) is high, it can be satisfied. This

corresponds to the green area of Figure 5.3. When T[k + 1] is very high, none of

the active states are thermally safe, therefore the core should be put to sleep (e.g.

when T[k+1] > 86◦C). This corresponds to the white region on the right side of the

figure. At T[k+1] values between these two extremes, the core can be set to one of

its active power states. As an example, parameters T[k+ 1] = 80◦C and minimum

frequency requirement of 1.1 GHz fall into the yellow region which corresponds

to the medium voltage/frequency setting of the core. Using multi-parametric pro-

gramming, we generate such functions which allow us to find optimum power states

for each combination of parameters.

We formulate an optimization problem using Tempo prediction model with

the goal of finding the locally optimal power states of the cores. Thermal states

of the cores and performance requirements of the workload are given to the op-

timization framework as inputs, while the output of the optimization process is

a set of power states for the cores that are thermally safe and are able to pro-

vide the performance requirements of the workload at the minimum power cost.

The optimization formulation uses Tempo to evaluate thermal safety of the poten-

tial power states. The decision variables in this optimization are power states in

the next scheduling tick which are represented by the vector α[k + 1] (in bold in

85

equation (5.1)). The optimization problem is formulated as:

minimize
α

Ptotal(α[k+ 1],T[k + 1])

subject to T(α[k+ 1], α[k],T[k + 1]) ≺ TTh

∀Ω, v : λΩ,v ≥ σΩ,v.

(5.1)

where we use ≺ as element-wise less than operator and T[k + 1] is the thermal

state defined by Tempo. The objective of this optimization is to minimize the total

power (Ptotal) of the cores under the thermal limits. Ptotal is the sum of dynamic

and leakage power of the cores. Leakage component of Ptotal is calculated using

equations (4.13) and (4.14). Details of the optimization objective and constraint

formulation are provided below.

The optimization parameters are performance requirements and the tem-

perature of the cores. If core n is set to power state v, then αn,v is 1, and 0

otherwise:

αn,v =

{
1 if core n is set to power state v

0 otherwise
(5.2)

Optimization chooses α[k+ 1] values such that the total power is minimized under

the thermal constraints while meeting performance requirements. We denote the

number of cores of type Ω which are set to power state v as λΩ,v, where

λΩ,v =
∑
ω∈Ω

αω,v (5.3)

The minimum number of cores of type Ω that have to run at a given power state

v to meet performance requirements of the workload is denoted as σΩ,v. This is

determined at runtime based on the performance requirements of the tasks using

information such as deadlines or required throughput. For each core, if we assume

core of type k has v active power states and one sleep state, the power consumption

of core n which is of core type k can be written as

P [n] = αn,1 · Pk,1 + ...+ αn,v · Pk,v + αn,sleep · Pk,sleep (5.4)

where Pk,v is the power consumed at power state v at a core of type k.

86

The first constraint enforces the predicted temperature at the next schedul-

ing tick to be lower than the maximum threshold, while the second set of con-

straints require the power states chosen by optimization to provide at least the

performance required by the workload. Instead of solving the optimization problem

at each scheduling tick, we use an approach based on multi-parametric program-

ming [57]. Optimization parameters σ, α[k] and T[k + 1] partition the parameter

space into separate regions called critical regions. Each possible combination of σ,

α[k] and T[k + 1] corresponds to one and only one of these critical regions which

represents the optimum power states of the cores for that specific combination.

The region basically specifies the validity range of that set of power states such

that temperatures of all the cores are below the threshold temperature and the

total power is minimized. The actual values for the optimization parameters are

found at runtime. Given the parameter values, the corresponding region is found

which represents the appropriate set of power states for the cores. The set of op-

timal solutions (α[k + 1]) is obtained as an explicit function of the parameters (σ,

α[k] and T[k + 1]). To get the optimum results at runtime, the power state deci-

sion module does not need to do any optimization online. It only needs a limited

number of operations to be performed at runtime to find the regions representing

the α[k + 1] values corresponding to the current value of σ, α[k] and T[k + 1].

Temperature of the cores at the next scheduling tick depends on decision

variable α[k + 1] and optimization variables α[k], T[k + 1]. Larger number of

optimization parameters results in much larger solution space. In order to reduce

the number of optimization variables, equation (4.10) is transformed to:

T[k + 1] = ΦooP [k + 1]︸ ︷︷ ︸
Fp

+ (T[k + 1]− ΦooP [k])︸ ︷︷ ︸
Fr

(5.5)

It can be seen that at each scheduling tick, the only unknown component

is Fp and the remaining component, Fr, is known. Therefore, at each scheduling

tick, Fr can be calculated based on the observable temperature and current power

states, and is used as the optimization parameter instead of α[k] and T[k+1]. This

significantly reduces the size of the parameter space.

Fr along with performance requirements σΩ,v are used by the power state

87

decision module to find the corresponding critical region which represents the set

of optimal power states of the cores for the given parameters. After the power

states are set, the last step of TempoMP is assigning tasks to the cores. The next

subsection discusses how task assignment is done.

Offline optimization phase is performed in Matlab [51]. The multi-param-

etric programming framework is implemented in YALMIP [8] toolbox in Matlab

which relies on Multi-Parametric Toolbox (MPT) [6]. Optimization results are

saved in the scheduling decision module to be accessed during the online phase of

our algorithm. The critical regions are stored in the form of the coefficients of the

linear inequalities describing them. Memory required for the critical regions of the

MPSoC of Figure 4.3 is less than 500KB.

5.3.2 Power state assignment in TemPrompt

Although TempoMP is able to choose locally optimal power states, the re-

sults of the offline optimization must be stored and retrieved at runtime. This

overhead can be high for many core systems. In order to address this issue, we

propose an alternative scheduling technique, TemPrompt, whose power state as-

signment is based on a heuristic. Algorithm 1 outlines the power state assignment

algorithm of TemPrompt.

The algorithm assigns power state to the core types in the decreasing order

of performance (line 1). At each stage, P[k + 1] contains the power of potential

power states of the cores which at the beginning is initialized to the power at

the previous scheduling tick (P [k]). At each stage of the algorithm, F keeps the

performance requirements which are not still met. If a core type has not been able

to meet all of its performance requirements, the remaining elements are kept in F

so that they are addressed by the next core type (line 8).

Tempo thermal state of the core, Ti[k + 1], is the potential temperature of

core i at the end of the next scheduling tick if the power states of the cores do not

change. The effect of changes in the power states of the cores are reflected by com-

ponent Φoo(P [k+ 1]−P [k]) as shown in equation (4.12). Cores with lower Tempo

thermal state are expected to have lower temperature in the future scheduling tick

88

Algorithm 1 Power state assignment in TemPrompt

1: I ⇐ types of cores in decreasing performance order

2: P [k], P[k + 1] ⇐ Current power of the cores

3: F ⇐ ∅
4: while (Not all cores are assigned frequencies) do

5: Ω ⇐ the next type in I

6: CΩ ⇐ set of cores of type Ω in increasing order of Ti[k + 1]

7: σΩ ⇐ performance requirements of core type Ω

8: F ⇐ F ∪ σΩ

9: while (CΩ and F are not empty) do

10: i ⇐ the next core in CΩ

11: freq ⇐ the highest power state required from F

12: vsafe ⇐ the highest power state for which T[k + 1] ≺ TTh
(T[k + 1] = T[k + 1] + ΦI(P[k + 1]− P [k]))

13: assign min(freq, vsafe) to i

14: update P[k + 1] with the potential power of core i

15: remove f from F and i from CΩ

16: end while

17: end while

89

and can be assigned to higher power states compared to the other cores. Therefore,

the algorithm checks the instances of each type of cores in the increasing order of

Ti[k + 1].

The algorithm determines freq, the highest power state that the current

workload requires from the core type being checked (line 11). Then it finds vsafe,

the highest thermally safe power state of the core given the current thermal state

and power settings (line 12). Core i is set to the minimum of freq and vsafe to

provide just enough performance for the workload and not to exceed the temper-

ature threshold. Then the power values are updated and then the next core is

checked. If there is no core of this type left, then a new core type is examined (line

5). The algorithm finishes if the performance requirements are met or every core

is assigned a power state.

5.3.3 Runtime task assignment to the cores

Performance estimation module can determine power state at which each

task needs to be run to be able to meet its performance requirements (deadline,

throughput, etc.). Given this information from the performance estimation mod-

ule and the output of power state decision module, the task assignment module

tries to assign the tasks to the cores such that the tasks with higher performance

requirements are assigned to the cores providing higher performance. Algorithm 2

explains how this is done at each scheduling tick in a deadline based system. This

module works identically for both TempoMP and TemPrompt.

The algorithm checks the available tasks in the system starting with ones

in the decreasing order of performance requirement (line 2). In a deadline based

system, the task with the highest performance requirement is the one with the ear-

liest deadline. At each step, the task j with the highest performance requirement

is chosen (line 7). Then, the core i which has the highest performance (at the

highest power state) is chosen (line 8). Then task j is assigned to core i (line 9)

and this is repeated until no core or no task is left. The algorithm always finishes

because at each iteration it assigns a task to an available core and finishes when no

core or no task is left. The algorithm always finishes, because at every iteration,

90

Algorithm 2 Task to core assignment

1: C ⇐ currently available cores

2: J⇐ current tasks in the system in the decreasing order of performance requirements

3: while (C and J are not empty) do

4: Ω ⇐ the highest performance type of cores in C

5: CΩ ⇐ set of cores of type Ω in C

6: while CΩ is not empty do

7: j ⇐ the first task in J

8: i ⇐ the core at the highest power (and performance) state in CΩ

9: assign task j to core i

10: remove j from J and i from CΩ

11: end while

12: remove CΩ from C

13: end while

it assigns a power state to one unassigned core and finishes when no unassigned

core is left (the maximum number of iterations is the larger of the number of the

cores and the tasks).

5.4 Experimental results

The experimental methodology used in this chapter is the same as that of

the previous chapter. For details of the experimental methodology, please refer to

section 4.4.

We compare the scheduling techniques of PROMETHEUS, TempoMP and

TemPrompt, with three other state of the art temperature-aware scheduling tech-

niques. The maximum safe temperature is assumed to be 90◦C which must be

respected by all techniques. PASTEMP and Thermal PO [71] are both

proactive techniques which use optimization to assign thermally safe power states

to the cores based on the performance requirements of the workload and also the

thermal state of the system. The optimization formulation in PASTEMP is based

91

80

85

90

95

73 75 77 79 81 83

Maximum Temperature

Thermal_DVFS_H

Thermal_DVFS_L

Thermal_PO

PASTEMP

PASTEMP

TemPrompt

M
a

x
im

u
m

 T
e

m
p

e
ra

tu
re

 (
ºC

)

Initial temperature of heat sink Ti (ºC)

Figure 5.4: Comparison of Maximum Temperature

on a modified dynamic thermal model called instantaneous thermal model [71],

while optimization in Thermal PO is based on a steady state thermal model.

The third technique, Thermal DVFS relies on the direct temperature

readings from the thermal sensors. It switches the core to a lower power state when

the core temperature reaches a critical threshold of Ttop. When the temperature

gets below a lower threshold, Tbottom, the power state of the core can be switched to

a higher level again. This lower threshold helps prevent oscillations between power

states. They are proactive and change the power state only if their estimated

temperature falls in the safe range. We test two variations of Thermal DVFS

with different thresholds: Thermal DVFSL with Ttop=85◦C and Tbottom=83◦C and

Thermal DVFSH with Ttop=87◦C and Tbottom=85◦C. Thermal DVFS does default

load balancing to create a balanced distribution of the workload across the cores.

We run a same mix of MiBench benchmarks for 100 seconds. Before each

run, the heat sink is pre-heated to the initial temperature Ti ranging from 73 ◦C to

83 ◦C. Figure 5.4 reports the maximum core temperature observed under various

conditions. At low Ti, all techniques are able to meet the 90◦C temperature thresh-

old. Only Thermal DVFS violates the threshold at high Tis, because in this region

the core temperature quickly reaches above the threshold before Thermal DVFS

can respond.

PASTEMP and Thermal PO have consistently lower maximum temper-

ature, because their thermal models overestimate temperature and as a result

of these pessimistic temperature estimates, they tend to make more conservative

92

0

500

1000

1500

2000

2500

3000

73 75 77 79 81 83

Average Missed Ticks

Thermal_DVFS_H

Thermal_DVFS_L

Thermal_PO

PASTEMP

TemPrompt

TempoMPA
v
e

ra
g

e
 L

a
te

n
e

s
s
 (

s
)

Initial temperature of heat sink Ti (ºC)

Figure 5.5: Average lateness (seconds)

scheduling decisions and use lower power states. Although this keeps the temper-

ature lower, it results in more performance loss compared to the other techniques

as shown next.

To compare how techniques address individual performance requirements

of the tasks, we measure lateness of a task which is defined as the time it takes

to finish the task after its deadline is missed. Since the workload contains tasks

of various types and lengths, this metric is more relevant compared to the number

of deadline misses. To compare how the potential processing capabilities of the

MPSoC are utilized as a whole, we also look at the throughput of the MPSoC

which is the number of instructions executed per second. Figure 5.5 and 5.6 report

these two metrics. As expected, as Ti increases, so does the average lateness, while

the throughput degrades.

TempoMP and TemPrompt miss deadlines only at the highest Ti where

turning on the SPARC without violating Tth is not possible. In this case, no

temperature aware scheduling technique can meet all the deadlines because while

the performance of SPARC core is necessary to meet the deadlines, turning this core

on will violate Tth. Another interesting point is that at the highest Ti, TempoMP

and PASTEMP perform similarly and slightly better than TemPrompt. The reason

is that in this case the larger core cannot be turned on and even TempoMP cannot

use this core. Therefore its performance is similar to PASTEMP. They do slightly

better than TemPrompt because they both use optimized power state assignments,

while TemPrompt uses a heuristic approach to make power state decisions. Due

93

0

200

400

600

800

1000

73 75 77 79 81 83

MIPS
Thermal_DVFSH

Thermal_DVFSL

Thermal_PO

PASTEMP

TemPrompt

TempoMP

T
h

ro
u

g
h

p
u

t
(M

IP
S

)

Initial temperature of heat sink Ti (ºC)

Figure 5.6: Throughput (million instructions executed per second)

0

2

4

6

8

73 75 77 79 81 83

Avergage Power

Thermal_DVFS_H

Thermal_DVFS_L

Thermal_PO

PASTEMP

TemPrompt

TempoMPA
v
e

ra
g

e
 P

o
w

e
r

(W
)

Initial temperature of heat sink Ti (ºC)

Figure 5.7: Average power consumption

to the pessimistic temperature estimates by the steady state thermal model of

Thermal PO, it prevents cores from operating at the highest possible power states.

As a result, it consistently performs worse than the other techniques in terms of

both lateness and throughput. TempoMP and PASTEMP improve the lateness

by 2.5X and throughput by 1.9X compared to the average of the other techniques.

To achieve this performance improvement, TempoMP and TemPrompt consume

around 1.4X more power compared to the average of other techniques as shown in

Figure 5.9.

Figure 5.9 reports the average power consumption of MPSoC with various

DTM techniques studied. In some cases TempoMP and TempoMP consume more

power than the other techniques. Due to the accurate estimation of thermal slack,

these two techniques are able to turn on the higher power large cores to meet the

94

performance requirements. Other techniques do not use these cores due to their

pessimistic temperature estimates and as a result have much lower performance as

shown earlier. For example, in all cases, Thermal PO consumes the least power

and has the lowest performance.

We also compare these techniques using two different measures of combined

energy efficiency and performance: energy consumed per billion instructions exe-

cuted and energy-lateness product (ELP). ELP is similar to energy-delay product

(EDP) metric, but applied to the systems with deadlines. In terms of both of these

measures, TempoMP and TempoMP are on average an order of magnitude better

compared to the other techniques. This is mainly because these two techniques

provide just enough performance for the workload requirements and use the larger

cores -which are less power and energy efficient - only when their high performance

is necessary. Therefore, they can better match the performance provided to the

performance required. Thermal PO is the least energy efficient because while it

uses lower power states of the lower power cores, due to longer execution time and

leakage power, it is not energy efficient.

As the experimental results show, TempoMP performs the best across all

the techniques. It provides the best trade-off between temperature, power and per-

formance. The TemPrompt is generally close to TempoMP. The main reason that

these techniques performed better compared to the other techniques is the accurate

evaluation of the thermal impacts of future scheduling decisions. Overestimated

temperature leads to conservative decisions thus not taking full advantage of ther-

mal slack which results in performance loss. Running the cores slower might also

result in higher energy consumption due to leakage. On the other hand, underesti-

mating future temperature can cause violating temperature requirements and reli-

ability issues. Taking advantage of accurate predictions of Tempo, PROMETHEUS

performs better across various metrics compared to other reactive and proactive

techniques. On average, PROMETHEUS scheduling techniques reduced the late-

ness of the tasks by 2.5X and the energy-lateness product by ∼5X.

95

0

10

20

30

73 75 77 79 81 83

Energy per Billion Instruction

Thermal_DVFSH

Thermal_DVFSL

Thermal_PO

PASTEMP

TemPrompt

TempoMP

E
n

e
rg

y
 p

e
r

B
il
li
o

n
 I
n

s
tr

u
c
ti
o

n
s
 (

J
)

Initial temperature of heat sink Ti (ºC)

Figure 5.8: Average energy per billion instructions executed

0

20

40

60

80

73 75 77 79 81 83

ELP

Thermal_DVFS_H

Thermal_DVFS_L

Thermal_PO

PASTEMP

TemPrompt

TempoMP

E
n

e
rg

y
-L

a
te

n
e

s
s
 P

ro
d

u
c
t
(J

S
)

Initial temperature of heat sink Ti (ºC)

Figure 5.9: Average Energy Lateness Product (ELP)

5.5 Conclusion

In this chapter we introduced PROMETHEUS, a framework for proactive

temperature aware scheduling of embedded workloads on heterogeneous Multi-

Processor Systems-on-Chip (MPSoC). It systematically combines various thermal

management mechanisms such as temperature aware task assignment, task migra-

tion and DVFS. PROMETHEUS is based on our novel low overhead temperature

prediction technique, Tempo, which was introduced in chapter 4. Using Tempo,

PROMETHEUS framework provides two temperature aware scheduling techniques

which proactively avoid power states leading to future thermal emergencies while

matching the provided performance to the workload requirements.

The first technique, TempoMP incorporates Tempo temperature prediction

96

with multi-parametric optimization to choose the locally optimal alternative among

possible power states of the cores and task assignments which does not violate the

thermal requirements. As a lower overhead solution, our second scheduling tech-

nique, TemPrompt uses Tempo in a heuristic algorithm which provides comparable

efficiency at lower overhead. Taking advantage of accurate predictions of Tempo,

scheduling techniques of PROMETHEUS performs better across various metrics

compared to other reactive and proactive techniques. On average, PROMETHEUS

scheduling techniques reduced the lateness of the tasks by ∼2.5X and the energy-

lateness product by ∼5X.

Chapter 5 in part, is a reprint of the material accepted for publication at

Design, Automation and Test in Europe (DATE) 2012. Sharifi, S. Ayoub, R. and

Rosing, T.S. and and the material under submission at IEEE Transactions in Com-

puter Aided Design of Integrated Circuits and Systems. Sharifi, S. Krishnaswamy,

D. and Rosing, T.S. The dissertation author was the primary investigator and

author of these papers.

Chapter 6

Conclusion and Future Work

MPSoCs are increasingly used in many applications including communica-

tion, signal processing, multimedia, etc. One of the major reasons for prevalence

of MPSoCs is that they provide higher performance within a specific power budget

and thermal envelope. But as technology scales, decreasing device dimensions and

increasing power densities result in higher temperatures even in MPSoCs. Elevated

temperatures negatively affect reliability, timing characteristics, power, cost and

lifetime of these systems. These issues have made temperature one of the major

factors which must be addressed in design, manufacturing and test of MPSoCs and

other modern computing systems. High cost of off-chip thermal management and

high cost of design time techniques in addressing run time workload variations have

made DTM essential in these systems. Using DTM, the packaging and cooling can

be designed for typical cases which can reduce the costs significantly. When the

system temperature approaches critical levels, the chip temperature is controlled

by DTM.

This dissertation proposes several techniques to improve efficiency of DTM

in MPSoCs. The general approach is applying analytical and formal methods

toward thermal management as opposed to the ad-hoc and heuristic methods.

This approach allows systematic analyses and development of algorithms which

are able to guarantee meeting desired requirements.

This dissertation first introduces an analytical upper bound on the maxi-

mum spatial thermal gradients which might happen at run time. Then novel tech-

97

98

niques are introduced for accurate temperature sensing which is the starting step

for efficient DTM. The first one, called accurate direct temperature sensing is a de-

sign time technique for optimal sensor allocation and placement. The second one,

accurate indirect temperature sensing targets inaccuracies which cannot be com-

pletely addressed at design time, such as sensor degradation, dynamic change of

hotspots, noisy sensors, etc. For efficient proactive DTM, this dissertation proposes

a new temperature prediction technique called Tempo. Finally, PROMETHEUS

is introduced, which is an efficient proactive temperature-aware scheduling frame-

work for single ISA heterogeneous MPSoCs.

The rest of this chapter provides a summary of the contributions of this

dissertation, followed by some potential directions for future research.

6.1 Thesis Summary

6.1.1 Analytical Model for Upper Bound on On-chip Spa-

tial Thermal Gradients

Spatial and temporal temperature gradients determine the device reliabil-

ity at moderate temperatures [44]. Spatial temperature differences can create

dynamic performance mismatch due to the temperature effect on carrier mobil-

ity and interconnect resistance. This phenomenon also affects clock tree design

and optimization by introducing thermal-induced clock skew. Therefore, analysis

of the temperature variations and maximum spatial thermal gradients (maximum

temperature difference between two locations on the die) is crucial. The maximum

spatial thermal gradients under different workloads can be found by extensive sim-

ulations, which is obviously computationally expensive and workload dependent.

For systems interacting with other systems, even the same workload may result in

completely different behavior due to interactions with other systems. This makes

simulations of a set of benchmarks even less reliable in finding the actual maximum

temperature difference.

The first part of this dissertation tries to bring determinism to this area by

99

proposing an analytical model which guaranties finding the upper bound on spatial

thermal gradient between any two locations on the die. A close upper bound is cal-

culated which does not depend on the workloads or interactions between systems.

Moreover, the model provides this upper bound with practically no overhead. Our

results show that the traditional simulation-based techniques can be up to 9oC off

while our technique guaranties finding accurate maximum spatial thermal gradi-

ent. In addition, it is able to identify the conditions under which the maximum

temperature difference happens. This information can be used in generating test

data for thermal stress tests and augmenting the existing benchmarks.

6.1.2 Accurate Direct Temperature Sensing

The first step for efficient dynamic thermal management is obtaining accu-

rate temperature values of various points on the die. If the temperature estimations

are lower or higher than the actual temperature, the DTM technique may be acti-

vated late or early which are both undesirable. If DTM is activated late, it might

fail in keeping the temperature under the desired threshold. On the other hand, if

DTM is activated early, it might result in unnecessary performance loss.

One of the major sources of errors in temperature sensing is sensor place-

ment error because typically sensors cannot be placed directly on the locations of

interest. Previous sensor placement methods were typically heuristic based and

workload dependent, therefore unable to guaranty the accuracies desired by the

designer. To address these issues, this dissertation proposes an efficient design time

thermal sensor allocation and placement technique which we refer to as accurate

direct temperature sensing. Relying on our analytical model for thermal gradi-

ent analysis, this technique is able to guaranty that the sensor placement error

is bounded and less than the desired accuracy. It also shows an average of 16%

reduction in the number of thermal sensors compared to the previous techniques.

100

6.1.3 Accurate Indirect Temperature Sensing

Due to limitations in sensor placement such as routing or constraints in

silicon real estate, sometimes it is not possible to place enough number of sensors

and close to the locations of interest. In such cases, the readings from the sensors

are not accurate. Moreover, there are other sources of inaccuracy in temperature

sensing which cannot be addressed at design time. Failure or gradual degradation

of sensors are examples of these issues. This dissertation proposes a run time indi-

rect accurate temperature sensing method to address these issues. This technique

is based on Kalman filtering technique and allows accurate temperature sensing

using noisy sensors and even at the locations far from the available sensors. The

experiments show that this technique can reduce the mean absolute error and

variance of these errors by an order of magnitude.

Indirect accurate temperature sensing is complemented by another run time

method for early detection of sensor failures and degradations. Using statistical

hypothesis testing techniques, we can detect sensor failure and degradations are

detected early and before they affect the efficiency of the thermal management

technique. Upon detection of any of these problems, the system adapts and cali-

brates the indirect accurate temperature sensing to avoid sensing inaccuracies due

to the new failure or degradation.

6.1.4 Tempo Temperature Prediction

Proactive techniques for DTM are more efficient because unlike reactive

techniques, they try to avoid thermal emergencies rather than waiting for them to

happen and then respond. Therefore, by intelligent and planned actions they can

keep the response time and performance overhead of DTM low. Typically, proac-

tive DTM techniques rely on temperature predictors. The efficiency of a proactive

DTM directly depends on how well it can predict the temperature. Previous

temperature prediction methods typically do not consider the underlying physical

characteristics of the temperature. They use general signal analysis and prediction

methods and depend only on the history of the temperature. They are not able

to evaluate the thermal effects of potential scheduling decisions. In addition, some

101

previous temperature prediction methods need costly run time adaptations too.

This dissertation proposes a novel temperature prediction method called

Tempo to address the deficiencies in the existing temperature prediction methods.

Tempo is a completely deterministic techniques. Based on the physical charac-

teristics of the chip and packaging, its parameters are calculated at design time.

Therefore, it does not need any kind of run time adaptations. Moreover, unlike

some previous methods, it doesn’t depend only on the temperature history and can

take into account the effect of future power state changes before they are applied to

the system. This capability allows it to accurately evaluate future thermal impact

of potential scheduling decisions.

6.1.5 PROMETHEUS Framework for Temperature-aware

Scheduling in Heterogeneous MPSoCs

Although heterogeneous MPSoCs are used increasingly in various appli-

cations, there has been few work addressing temperature aware scheduling on

them. This dissertation proposes PROMETHEUS framework which allows proac-

tive temperature-aware scheduling in heterogeneous MPSoCs. It is able to con-

sider individual performance, power and thermal characteristics of various cores,

which makes it applicable to heterogeneous MPSoCs as well as homogeneous ones.

PROMETHEUS uses Tempo to systematically decide about thermally safe power

states of the cores and task to core assignments. It provides two different scheduling

techniques based on Tempo, TempoMP and TemPrompt. TempoMP incorporates

Tempo with multi-parametric optimization to choose the optimal and thermally

safe alternative among possible power states of the cores and task assignments.

In the interest of scalability, TemPrompt uses a heuristic algorithm which pro-

vides efficiency comparable to TempoMP at a lower overhead. Both scheduling

techniques in PROMETHEUS can guarantee meeting thermal requirements by

evaluating future impacts of possible scheduling decisions and avoiding decisions

leading to thermal emergencies.

102

6.2 Future Research Directions

In this dissertation, thermal management of heterogeneous MPSoCs con-

sisting of cores with the same instruction set architecture (ISA) was addressed.

There are also more strongly heterogeneous MPSoCs where various types of gen-

eral purpose (GP) and special purpose (SP) cores are integrated on the same chip

are not addressed here. These MPSoCs are getting more prevalent and there is a

growing need for techniques addressing thermal management challenges specific in

these systems.

The other problem not addressed in this dissertation the increasing com-

plexity of the techniques proposed here which superlinearly depends on the number

of cores in an MPSoC. Therefore, these techniques cannot be directly applied to

many-core systems because of their computational overhead. Increasing demand

for performance and functionality has caused a constant increase in the number

of cores on a MPSoC which has led to emergence of hundred- and thousand-core

systems. Techniques are needed which are able to overcome the complexity of

thermal management in many-core systems with reasonable overhead.

Here we discuss the future research directions addressing these challenges

and propose potential approaches to these problems.

6.2.1 Thermal Management in Heterogeneous MPSoCs

with Special Purpose Cores

Integrating cores with the same ISA which operate at various power and

performance points is one form of heterogeneity. The heterogeneity can also be

provided by addition of diverse special purpose (SP) cores (or accelerator cores)

specifically designed for certain applications. Existing examples of such embed-

ded heterogeneous MPSoCs are Qualcomm’s Snapdragon platform [63], or Texas

Instruments’ OMAP platform [78]. Qualcomm’s latest Snapdragon platform in-

cludes two general purpose cores also called application cores (ARM Cortex A9),

a DSP, a multimedia co-processor and a graphics processing unit. Texas Instru-

ment’s OMAP5 platform [7] includes four general purpose cores (two ARM Cortex

103

A15 and two ARM Cortex M4 cores), a DSP, 3D and 2D graphics accelerators,

video accelerator, an image signal processor and an audio processor, plus some

other accelerators and coprocessors.

Special purpose cores are specifically designed and optimized for the special

tasks they are supposed to do. They may be third party IP (intellectual property).

Many of them are hard IP cores which are optimized for certain technologies and

described in low-level physical descriptions and could not be modified at the time

of integration. Such components typically do not run general purpose operating

systems (OS). Also they are not under full control of the central operating system.

In some cases, these cores might have autonomous control of their power states

for thermal management purposes, but usually these controls are not coordinated

with the other cores in the system. These issues create challenges for thermal

management of the overall MPSoCs. Increasing use of heterogeneous MPSoCs

with special purpose cores calls for techniques addressing these challenges.

One possible approach is controlling the temperature on the SP cores in-

directly through the knobs available for controlling general purpose cores such as

DVFS and task migration. The OS running on the system (on GP cores) should be

aware of the heterogeneity of MPSoC, characteristics of the cores and performance

requirements of the tasks in the system. This allows the OS to indirectly control

the temperature of the autonomous SP cores. For example, when an autonomous

SP core is getting hot, the OS running on the general purpose (GP) cores can

migrate tasks running on its neighbor GP to a GP farther away from the SP core.

6.2.2 Thermal Management in Many-core MPSoCs

Demand for high performance is continuously increasing, but typically the

power and thermal limits have not increased. This, plus the diminishing return of

extracting performance from traditional instruction-level parallelism (ILP) lead to

use of multi-core processors to keep up with Moore’s law. To continue this trend,

going from multi-core to many-core and thousand-core processors is inevitable [12].

Intel’s 80-core chip [80], TILERA’s TILE-Gx100 [79] with 100 cores and AMD’s

Radeon family of graphics chips with up to 1600 stream processing units [5] are

104

signs of this emerging trend.

Traditionally, a centralized controller monitors the temperature of the entire

MPSoC and based on the temperature and state of the cores makes decisions

regarding assignment of the tasks to the cores and setting power states of the cores.

Therefore, the amount of information from thermal sensors and the computational

overhead for decisions in many-core systems will be prohibitive. As a matter of

fact, as the number of cores on an MPSoC increases, the complexity of this kind

of thermal management increases exponentially. Therefore, centralized approaches

are not scalable and practical for many-core systems.

New approaches are needed to manage the complexity of dynamic thermal

management in these systems. Decentralizing the thermal control can significantly

reduce this complexity and make the solution more scalable. Therefore, distributed

thermal management will definitely be an interesting direction to follow.

One possible approach would be using a collaborative approach where each

core has its own simple controller, but these controllers cooperate and collectively

decide about their future power state. To decide which core to set to a lower

power state, information is required regarding the tasks running on the cores,

their characteristics and performance impact. This information can be exchanged

among the neighbor cores through a low overhead message passing mechanism. The

simple controller can be implemented in hardware where there is no OS running.

Such a distributed approach is also applicable to cases where power states

of some of the cores cannot be controlled by the OS. In this case, when there is no

control on the power states of a core, its controller can request the neighbor cores

to switch to lower power states in order to cool down that core.

Appendix A

Compact Thermal Modeling

The work presented in this dissertation uses a compact thermal model-

ing methodology which translates the three dimensional partial differential heat

diffusion equation into a compact network of thermal resistances and thermal ca-

pacitances. This model allows studying steady state temperature as well as the

transient evolution of temperature. Here we describe this compact thermal RC

modeling methodology briefly. For more information and detailed discussion, in-

terested readers can refer to [74, 33, 32].

This methodology allows developing a parameterized compact thermal mo-

del for multi-layered package structures. Typical components that are modeled

include silicon die, heat spreader, thermal interface material, heat sink, etc. These

layers can be modeled with different levels of granularity and details, e.g. at the

level of functional units or regular grid cells. The methodology can be applied at

early stages of design where detailed layout is not available.

A.1 Electrical Representation of Heat Transfer

The differential equations describing the heat flow have a form dual to that

of electrical current. This duality is the basis for the micro-architectural thermal

model proposed in [74] and is further explained in [33] and [32].

Using the law of heat conduction, also known as Fourier’s Law, the temper-

ature at a given point in a homogeneous material can be related to the coordinates

105

106

of that point and the time elapsed by the following equation:

k

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
+ g = ρ · Cp ·

∂T

∂t
(A.1)

where k is the thermal conductivity in W/moC, T is the temperature in oC, g is

the power density of the heat source in W/m3, ρ is the density of the material in

Kg/m3, and Cp is the specific heat in J/KgoC. This partial differential equation

describing the heat flow has a form similar to the equation describing electrical

current. This is the basis for the well-known duality between thermal and electrical

phenomena which is summarized in Table A.1. The heat flow (W) through a

thermal resistor (in oC/W) corresponds to the electrical current (A) through an

electrical resistance (Ohm). Similarly, the temperature difference oC corresponds

to voltage difference (Volt). Heat absorbing capability of a material is described

by the thermal capacitance (in J/oC), which corresponds to electrical capacitance

(Farad) which describes the the ability of a material in accumulating electrical

charges . g is the heat flow generated by power consumption of the functional

units which corresponds to electrical current.

Based on this duality, the thermal dynamics of the chip and package are

modeled by a network of thermal resistances and capacitances. In this electrical

representation of heat transfer, the node voltages will represent the temperature

of the corresponding nodes in the material. Current sources will model the power

consumption of the functional units and an independent voltage source will model

the ambient temperature. To model the lateral heat conduction path between the

neighboring nodes, a thermal resistance is added. Heat transfer between the con-

nected layers of material is modeled by vertical thermal resistances which connect

the corresponding nodes in the thermal RC network. Figure A.1 is an example

of this thermal model created for the chip with 4 functional units and its package

shown on the left.

Based on this model, the dynamics of the temperature and the relation be-

tween the temperature, power consumption of the cores and thermal characteristics

of the system is described as:

Cth
d

dt
T (t) = −GthT (t) + P (t) (A.2)

107

Table A.1: Duality between Thermal and Electrical Quantities

Thermal Quantities Electrical Quantities

Power Current

Temperature Difference Voltage Difference

(Rth) Thermal Resistance (R) Electrical Resistance

(Cth) Thermal Capacitance (C) Electrical Capacitance

(Rth × Cth) Thermal RC Time Constant (R× C) Electrical RC Time Constant

where the vectors and matrices are defined as:

T Temperature at all the nodes of the thermal network

P Power consumptions of the nodes of thermal network

Gth Thermal conductance matrix

Cth Thermal capacitance matrix

A.2 Extracting the Parameters of the Thermal

Network

In this section we describe how the values for thermal resistances and ca-

pacitances are computed. Thermal resistance in a material can be calculated as:

R =
t

K.A
(A.3)

where t is the thickness of the material, A is the cross-sectional area across which

the heat is being transferred and K is the thermal conductivity of the material

per unit volume which is 100W/(m.K) for silicon and 400W/(m.K) for copper at

85oC. Thermal capacitance, which is proportional to both thickness and area of

the material can be calculated as:

C = c.t.A (A.4)

where c is the thermal capacitance per unit volume which is 1.75x106J/(m3.K)

for silicon and 3.55x106J/(m3.K) for copper. It should be noted that this model

108

S1

S3
S4

S2

C
T

IM
(3

)

TIM1

TIM3

TIM2

C
T

IM
(1

)

C
T

IM
(4

)

C
T

IM
(2

)

P1

P3

P4

P2

 Ambient

Temperature

Silicon

Layer

Thermal

Interface

Material

Layer

Heat

Spreader

Layer

Heat

Sink

Layer

Heat Spreader

Heat Sink

S1

S3
S4

S2

C
S
(2

)

TIM1

Figure A.1: An example of a chip and package, together with their

corresponding thermal RC network

109

requires a scaling factor to be applied to the capacitors to account for some sim-

plifications in this lumped model relative to a full, distributed RC model. These

factors can be analytically derived from physical properties [74]. The thermal

resistance of heatsink to air convection can also be modeled as:

Rconvection =
1

h.A
(A.5)

where h is the heat transfer coefficient and A is the surface area of convection.

For more detailed discussion on the extraction of the thermal model and

parameters, the interested reader can refer to [74, 33, 32].

Bibliography

[1] Intel R© PXA270 processor, electrical, mechanical and thermal specification
data sheet. http://www.intel.com.

[2] International technology roadmap for semiconductors (ITRS).
http://public.itrs.net/.

[3] lp solve. http://lpsolve.sourceforge.net/.

[4] Hotspot temperature modeling tool, 2010.
http://lava.cs.virginia.edu/HotSpot/.

[5] AMD RadeonTM graphics chips., 2011. http://www.amd.com
/us/products/desktop/graphics.

[6] Multi-parametric toolbox (mpt), 2011. http://control.ee.ethz.ch/mpt/.

[7] Ti omap5 platform, 2011. http://www.ti.com.

[8] Yalmip, 2011. http://users.isy.liu.se/johanl/yalmip/.

[9] A. Ajami, K. Banerjee, and M. Pedram. Modeling and analysis of nonuniform
substrate temperature effects on global ulsi interconnects. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 24(6):849
– 861, june 2005.

[10] R. Z. Ayoub and T. S. Rosing. Predict and act: dynamic thermal management
for multi-core processors. In Proceedings of the 14th ACM/IEEE international
symposium on Low power electronics and design, ISLPED ’09, pages 99–104,
2009.

[11] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The m5 simulator: Modeling networked systems. IEEE Micro, 26,
July 2006.

[12] S. Borkar. Thousand core chips: a technology perspective. In Proceedings
of the 44th annual Design Automation Conference, DAC ’07, pages 746–749,
New York, NY, USA, 2007. ACM.

110

111

[13] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In Computer Architec-
ture, 2000. Proceedings of the 27th International Symposium on, pages 83 –94,
june 2000.

[14] T. Chantem, R. Dick, and X. Hu. Temperature-Aware Scheduling and Assign-
ment for Hard Real-Time Applications on MPSoCs. In Design, Automation
and Test in Europe, 2008. DATE ’08, pages 288 –293, 2008.

[15] M. Cho, S. Ahmedtt, and D. Z. Pan. TACO: temperature aware clock-tree op-
timization. In Proceedings of the 2005 IEEE/ACM International conference on
Computer-aided design, ICCAD ’05, pages 582–587, Washington, DC, USA,
2005. IEEE Computer Society.

[16] R. Cochran and S. Reda. Spectral techniques for high-resolution thermal
characterization with limited sensor data. In Proceedings of the 46th Annual
Design Automation Conference, DAC ’09, pages 478–483, New York, NY,
USA, 2009. ACM.

[17] J. Cong, J. Wei, and Y. Zhang. A thermal-driven floorplanning algorithm for
3d ics. In Proceedings of the 2004 IEEE/ACM International Conference on
Computer-Aided Design, pages 306–313, 2004.

[18] A. Coskun, T. S. Rosing, and K. Whisnant. Temperature aware task schedul-
ing in mpsocs. In Design, Automation Test in Europe Conference Exhibition,
2007. DATE ’07, pages 1 –6, 2007.

[19] A. K. Coskun, T. S. Rosing, and K. C. Gross. Utilizing predictors for efficient
thermal management in multiprocessor socs. Trans. Comp.-Aided Des. Integ.
Cir. Sys., 28:1503–1516, October 2009.

[20] A. K. Coskun, T. S. Rosing, K. Mihic, G. De Micheli, and Y. Leblebici. Anal-
ysis and optimization of MPSoC reliability. Journal of Low Power Electronics,
2(1):56–69, 2006.

[21] A. K. Coskun, T. S. Rosing, K. A. Whisnant, and K. C. Gross. Temperature-
aware mpsoc scheduling for reducing hot spots and gradients. In Design Au-
tomation Conference, 2008. ASPDAC 2008. Asia and South Pacific, pages 49
–54, 2008.

[22] J. Donald and M. Martonosi. Techniques for multicore thermal management:
Classification and new exploration. In Proceedings of the 33rd Annual Inter-
national Symposium on Computer Architecture, pages 78–88, 2006.

[23] K. Fu. Sequential methods in pattern recognition and machine learning. Math-
ematics in science and engineering. Academic Press, 1968.

112

[24] G. Fursin, J. Cavazos, M. O’Boyle, and O. Temam. Midatasets: creating
the conditions for a more realistic evaluation of iterative optimization. In
Proceedings of the 2nd international conference on High performance embedded
architectures and compilers, HiPEAC’07, pages 245–260, Berlin, Heidelberg,
2007. Springer-Verlag.

[25] G. Fursin, J. Cavazos, M. O’Boyle, and O. Temam. Midatasets: creating
the conditions for a more realistic evaluation of iterative optimization. In
Proceedings of the 2nd international conference on High performance embedded
architectures and compilers, HiPEAC’07, pages 245–260, Berlin, Heidelberg,
2007. Springer-Verlag.

[26] G. Golub and C. Van Loan. Matrix Computations. Baltimore, MD, second
edition, 1989.

[27] M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-and-run: leveraging
smt and cmp to manage power density through the operating system. In
Proceedings of the 11th international conference on Architectural support for
programming languages and operating systems, ASPLOS-XI, pages 260–270,
New York, NY, USA, 2004. ACM.

[28] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. Mibench: A free, commercially representative embedded bench-
mark suite. In Proceedings of the Workload Characterization, 2001. WWC-4.
2001 IEEE International Workshop, pages 3–14, Washington, DC, USA, 2001.
IEEE Computer Society.

[29] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. Mibench: A free, commercially representative embedded bench-
mark suite. In Proceedings of the Workload Characterization, 2001. WWC-4.
2001 IEEE International Workshop, pages 3–14, Washington, DC, USA, 2001.
IEEE Computer Society.

[30] S. Heo, K. Barr, and K. Asanović. Reducing power density through activity
migration. In Proceedings of the 2003 international symposium on Low power
electronics and design, ISLPED, pages 217–222, 2003.

[31] HP. Cacti, 2011. http://www.hpl.hp.com/research/cacti.

[32] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and
M. Stan. Hotspot: a compact thermal modeling methodology for early-stage
vlsi design. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 14(5):501 – 513, May 2006.

[33] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and
S. Velusam. Compact thermal modeling for temperature-aware design. In

113

Proceedings of the 41st annual Design Automation Conference, DAC ’04, pages
878–883, New York, NY, USA, 2004. ACM.

[34] Intel. Intel pxa270 processor, electrical, mechanical and thermal specification
data sheet., 2011. http://www.intel.com.

[35] C. Isci, G. Contreras, and M. Martonosi. Hardware performance counters
for detailed runtime power and thermal estimations: Experiences and propos-
als. In Hardware Performance Monitor Design and Functionality Workshop in
conjunction with 11th International Symposium on High-Performance Com-
puter Architecture (HPCA-11), 2005.

[36] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase monitoring and
prediction on real systems with application to dynamic power management.
In Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 39, pages 359–370, Washington, DC, USA, 2006.
IEEE Computer Society.

[37] JEDEC Solid State Technology Association. JEDEC Standard 51-
2A, Integrated Circuit Thermal Test Method Environmental Conditions-
Natural Convection (Still Air), 2008. http://www.jedec.org/standards-
documents/docs/jesd-51-2a.

[38] P. Kabisatpathy, A. Barua, and S. Sinha. Fault diagnosis of analog integrated
circuits. Frontiers in electronic testing. Springer, 2005.

[39] K. W. Kenny C. Gross and A. Urmanov. Electronic prognostics through
continuous system telemetry. In Meeting of the Society for Machine Failure
Prevention Technology (MFPT), pages 53–62, 2006.

[40] O. Khan and S. Kundu. Hardware/software co-design architecture for thermal
management of chip multiprocessors. In Design, Automation Test in Europe
Conference Exhibition, 2009. DATE ’09., pages 952 –957, 2009.

[41] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen.
Processor power reduction via single-isa heterogeneous multi-core architec-
tures. Computer Architecture Letters, 2, 2003.

[42] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas.
Single-isa heterogeneous multi-core architectures for multithreaded workload
performance. In ISCA, pages 64–75, 2004.

[43] R. Kuppuswamy, S. Sawant, S. Balasubramanian, P. Kaushik, N. Natarajan,
and J. Gilbert. Over one million TPCC with a 45nm 6-core Xeon R© CPU.
In Solid-State Circuits Conference - Digest of Technical Papers, 2009. ISSCC
2009. IEEE International, pages 70 –71,71a, feb. 2009.

114

[44] C. J. M. Lasance. Thermally driven reliability issues in microelectronic sys-
tems: status-quo and challenges. Microelectronics Reliability, 43(12):1969–
1974, 2003.

[45] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: a tool for
evaluating and synthesizing multimedia and communicatons systems. In Pro-
ceedings of the 30th annual ACM/IEEE international symposium on Microar-
chitecture, MICRO 30, pages 330–335, Washington, DC, USA, 1997. IEEE
Computer Society.

[46] K.-J. Lee, K. Skadron, and W. Huang. Analytical model for sensor placement
on microprocessors. In Proceedings of the 2005 International Conference on
Computer Design, ICCD ’05, pages 24–30, Washington, DC, USA, 2005. IEEE
Computer Society.

[47] A. S. Leon, K. W. Tam, J. L. Shin, D. Weisner, and F. Schumacher. A
power-efficient high-throughput 32-thread sparc processor. Solid-State Cir-
cuits, IEEE Journal of, 42(1):7 –16, 2007.

[48] P. Liu, H. Li, L. Jin, W. Wu, S. X.-D. Tan, and J. Yang. Fast thermal
simulation for runtime temperature tracking and management. IEEE Trans.
on CAD of Integrated Circuits and Systems, 25(12):2882–2893, 2006.

[49] Y. Liu, R. Dick, L. Shang, and H. Yang. Accurate temperature-dependent
integrated circuit leakage power estimation is easy. In Design, Automation
Test in Europe Conference Exhibition, 2007. DATE ’07, pages 1 –6, 2007.

[50] J. Long, S. O. Memik, G. Memik, and R. Mukherjee. Thermal monitoring
mechanisms for chip multiprocessors. ACM Trans. Archit. Code Optim., 5:9:1–
9:33, September 2008.

[51] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Mas-
sachusetts, 2010.

[52] M. Meterelliyoz, H. Mahmoodi, and K. Roy. A leakage control system for
thermal stability during burn-in test. In Test Conference, 2005. Proceedings.
ITC 2005. IEEE International, pages 10 pp. –991, nov. 2005.

[53] F. Mohammadi and M. Marami. Dynamic compact thermal model of a pack-
age. In Circuits and Systems, 2008. ISCAS 2008. IEEE International Sym-
posium on, pages 2869 –2872, may 2008.

[54] S. Mondal, R. Mukherjee, and S. O. Memik. Fine-grain thermal profiling and
sensor insertion for fpgas. In ISCAS, 2006.

115

[55] R. Mukherjee and S. O. Memik. Systematic temperature sensor allocation
and placement for microprocessors. In Proceedings of the 43rd annual Design
Automation Conference, DAC ’06, pages 542–547, New York, NY, USA, 2006.
ACM.

[56] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, L. Benini, and
G. De Micheli. Temperature control of high-performance multi-core plat-
forms using convex optimization. In Proceedings of the conference on Design,
automation and test in Europe, DATE ’08, pages 110–115, New York, NY,
USA, 2008. ACM.

[57] D. Narciso, N. Faisca, and E. Pistikopoulos. A framework for multi-parametric
programming and control; an overview. In Engineering Management Confer-
ence, 2008. IEMC Europe 2008. IEEE International, pages 1 –5, june 2008.

[58] A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabukswar, K. Krish-
nan, and A. Kumar. Power and thermal management in the intel core duo
processor. Intel Technology Journal, 10(2):109–122, 2006.

[59] A. Odabasioglu, M. Celik, and L. Pileggi. Prima: passive reduced-order in-
terconnect macromodeling algorithm. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 17(8):645 –654, aug 1998.

[60] S. Park, J.-J. Chen, D. Shin, Y. Kim, C.-L. Yang, and N. Chang. Dynamic
thermal management for networked embedded systems under harsh ambient
temperature variation. In Low-Power Electronics and Design (ISLPED), 2010
ACM/IEEE International Symposium on, pages 289 –294, 2010.

[61] M. Pedram and S. Nazarian. Thermal modeling, analysis, and management
in vlsi circuits: principles and methods. In Proceedings of the IEEE, 2006.

[62] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, and et al. The design and implemen-
tation of a first-generation CELL processor. ISSCC 2005 IEEE International
Digest of Technical Papers SolidState Circuits Conference 2005, 10(2):184–
186, 2005.

[63] Qualcomm R©. Snapdragon TM Processor Family., 2011.
http://www.qualcomm.com/snapdragon.

[64] S. Remarsu and S. Kundu. On process variation tolerant low cost thermal
sensor design in 32nm cmos technology. In Proceedings of the 19th ACM
Great Lakes symposium on VLSI, GLSVLSI ’09, pages 487–492, New York,
NY, USA, 2009. ACM.

116

[65] E. Rotem, J. Hermerding, A. Cohen, and H. Cain. Temperature measurement
in the Intel R© CoreTM duo processor. In Thermal Investigations of ICs and
Systems (THERMINIC), International Workshop on, 2007.

[66] K. Sankaranarayanan, S. Velusamy, M. Stan, and K. Skadron. A case
for thermal-aware floorplanning at the microarchitectural level. Journal of
Instruction-Level Parallelism, 7(2), October 2005.

[67] M. Santarini. Thermal integrity: a must for low-power-ic digital design. EDN,
pages 37–42, September 2005.

[68] T. Sato, J. Ichimiya, N. Ono, K. Hachiya, and M. Hashimoto. On-chip thermal
gradient analysis and temperature flattening for soc design. In Proceedings of
the 2005 Asia and South Pacific Design Automation Conference, ASP-DAC
’05, pages 1074–1077, New York, NY, USA, 2005. ACM.

[69] S. Sharifi, A. K. Coskun, and T. S. Rosing. Hybrid dynamic energy and ther-
mal management in heterogeneous embedded multiprocessor SoCs. In Pro-
ceedings of the 2010 Asia and South Pacific Design Automation Conference,
ASPDAC, pages 873–878, 2010.

[70] S. Sharifi and T. S. Rosing. Accurate direct and indirect on-chip temperature
sensing for efficient dynamic thermal management. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 29(10):1586 –1599,
2010.

[71] S. Sharifi and T. S. Rosing. Package-Aware Scheduling of Embedded Work-
loads for Temperature and Energy Management on Heterogeneous MPSoCs.
In International conference on computer design, 2010.

[72] D. Simon. Optimal state estimation: Kalman, H∞ and nonlinear approaches.
Wiley-Interscience, 2006.

[73] T. Simunic, L. Benini, P. W. Glynn, and G. D. Micheli. Event-driven power
management. IEEE Trans. on CAD of Integrated Circuits and Systems, pages
840–857, 2001.

[74] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware microarchitecture. In Proceedings of the In-
ternational Symposium on Computer Architecture, pages 78–88, 2003.

[75] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware microarchitecture: Modeling and implementa-
tion. ACM Trans. Archit. Code Optim., 1, March 2004.

117

[76] D. Sylvester and H. Kaul. Future performance challenges in nanometer design.
In Proceedings of the 38th annual Design Automation Conference, DAC ’01,
pages 3–8, New York, NY, USA, 2001. ACM.

[77] A. Telikepalli. Designing for power budgets and effective thermal management.
Xcell Journal, (56), 2006.

[78] Texas Instruments R©. OMAP TM Mobile Processors., 2011.
http://focus.ti.com/omap/docs/omaphomepage.tsp .

[79] TILERA R©. Tile-Gx TM Processor Family., 2011.
http://www.tilera.com/products/processors.

[80] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar,
and S. Borkar. An 80-tile sub-100-w teraflops processor in 65-nm cmos. Solid-
State Circuits, IEEE Journal of, 43(1):29 –41, jan. 2008.

[81] R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur. Thermal perfor-
mance challenges from silicon to systems. Intel Technology Journal, vol(3):1–
16, 2000.

[82] J. M. Wang and T. V. Nguyen. Extended krylov subspace method for reduced
order analysis of linear circuits with multiple sources. In Proceedings of the
37th Annual Design Automation Conference, DAC ’00, pages 247–252, New
York, NY, USA, 2000. ACM.

[83] K. Whisnant, K. Gross, and N. Lingurovska. Proactive fault monitoring in
enterprise servers. In L. T. Yang, H. R. Arabnia, Y. Li, S. N. Salloum, and
J. G. Delgado-Frias, editors, CDES, pages 3–10. CSREA Press, 2005.

[84] F. Zanini, D. Atienza, L. Benini, and G. De Micheli. Multicore thermal
management with model predictive control. In Circuit Theory and Design,
2009. ECCTD 2009. European Conference on, pages 711 –714, aug. 2009.

[85] F. Zanini, D. Atienza, and G. De Micheli. A control theory approach for
thermal balancing of mpsoc. In Proceedings of the 2009 Asia and South Pacific
Design Automation Conference, ASP-DAC ’09, pages 37–42, Piscataway, NJ,
USA, 2009. IEEE Press.

[86] S. Zhang and K. S. Chatha. Approximation algorithm for the temperature-
aware scheduling problem. In Proceedings of the IEEE/ACM international
conference on Computer-aided design, ICCAD, pages 281–288, 2007.

[87] S. Zhang and K. S. Chatha. Approximation algorithm for the temperature-
aware scheduling problem. In Proceedings of the 2007 IEEE/ACM interna-
tional conference on Computer-aided design, ICCAD ’07, pages 281–288, 2007.

118

[88] Y. Zhang and A. Srivastava. Accurate temperature estimation using noisy
thermal sensors. In Proceedings of the 46th Annual Design Automation Con-
ference, DAC ’09, pages 472–477, New York, NY, USA, 2009. ACM.

