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ABSTRACT OF THE DISSERTATION

Time Varying Channels: Characterization, Estimation, and Detection

by

Nathan D. Ricklin

Doctor of Philosophy in Electrical Engineering (Communication Theory and
Systems)

University of California, San Diego, 2010

Professor James R. Zeidler, Chair

This dissertation is concerned with digital communications systems operating

over channels that vary in time due to mobility of the transmitter or receiver. Velocity

of the transmitter or receiver causes a Doppler shift or smearing in frequency which

hinders parameter estimation and degrades data detection performance.

To aid in our goal of improved estimation and detection performance, we discuss

several characterization methods, both probabilistic and deterministic, that can accu-

rately model the time-varying channel and that enable efficient parameter estimation

and data detection.

The first topic we address is that of carrier frequency offset estimation in the

presence of a time-varying frequency-selective channel. The scheme is data-aided, mean-

ing that a block of pilot data known to the receiver is first transmitted through the

channel. Joint estimators of both the CFO and the time-varying frequency-selective

channel are developed using both probabilistic and deterministic channel models. The

probabilistic CFO estimator is shown to achieve the Cramer-Rao Lower Bound, and the

deterministic estimator can perform well, but depends heavily on the choice of channel

parameterization in the deterministic model.

xvi



The second topic we focus on is concerned with blind data detection over time-

varying channels. The problem we consider is recovery of a short block of time-domain

data symbols transmitted over a channel with time-varying multiplicative distortion. The

receiver does not know the data, the channel, or any statistics that could parameterize

a probabilistic description of the channel. We design data detection algorithms based

on a deterministic parameterization of the channel that can be implemented efficiently

with the sphere decoding algorithm. Additionally we provide techniques for a priori

selection of the channel parameterization that result in near-optimal performance over

a wide range of channel conditions.

In our final topic we consider blind detection over a frequency-selective time-

varying channel. A short block of symbols is transmitted in the frequency domain,

as either an OFDMA frequency allocation or as a subset of a larger OFDM symbol.

The multiplicative distortion across the symbols is varying, due to frequency-selectivity.

In addition, the transmitted symbols interfere with one another due to the channel

time-variation, manifested as intercarrier interference. We introduce a novel method of

correlatively coding the symbols across frequency before transmission that reduces the

power of the ICI at the receiver. The scheme results in transmitted symbols that are

constant in magnitude, which enables the application of efficient detection algorithms

also based either probabilistic or deterministic parameterization of the channel. The

resulting blind detector is efficient and can outperform an OFDM system which knows

the channel perfectly.

xvii



Chapter 1

Introduction

1.1 Complexity of Communications Channels

As communications channels become more and more complex, so do the models

that characterize them, and so must the techniques used to recover data transmitted

through them. Here we introduce increasingly more complicated types of communica-

tions channels and briefly discuss the implications of that increased complexity on the

requirements for estimation and detection.

1.1.1 The AWGN Channel

T R

Figure 1.1: The AWGN channel.

Conceptually, the simplest communication channel is the additive white Gaussian

noise (AWGN) channel. As illustrated in Fig. 1.1, the channel consists of just a single

path from the transmitter to the receiver, with some additional thermal noise at the

receiver. It’s the simplest because it’s easy to analyze, and estimation and detection

methods are also easy to derive and efficient to implement.

Another property of the AWGN channel is separability; signals transmitted on

orthogonal frequencies, on orthogonal time slots, or on orthogonal codes are also orthog-

onal at the receiver. It is this property that allows efficient implementation of detection

1
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algorithms. The optimal detection method of a transmitted sequence of symbols is to

optimally detect each symbol separately.

1.1.2 The Multipath Fading Channel

T R

Figure 1.2: The multipath fading channel.

In more complex environments where there are scatterers surrounding the receiver

reflecting multiple copies of the transmitted signal, a simple line-of-sight model such as

the AWGN channel does not suffice to characterize the channel. Each path that the

transmitted signal follows on its way to the receiver is a different length, and so the

signal arriving from each path arrives with a different phase. The receiver then sees

a sum of many copies of the same signal, each with different phases. The paths all

sum constructively or destructively, and the receiver effectively sees a single copy of the

transmitted signal with a certain phase and a certain gain, depending on the summation

of the signal across all the received paths.

The gain caused my multiple paths degrades the performance of communica-

tions systems, since the times that it is very small lower the effective SNR and hurt

performance more than the times that it is very large helps performance.

Additionally, the unknown gain introduces the need for channel estimation, since

the gain must be known for optimal signal detection in noise.

1.1.3 The ISI Channel

If a portion of the path lengths of the multipath fading channel are very long,

then copies of the transmitted signal can arrive after one symbol duration, effectively

interfering with detection of the next symbol. This is known as intersymbol interference

(ISI), and can degrade system performance if not dealt with. When ISI is present,
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T R

Figure 1.3: The ISI channel.

the channel is no longer separable, meaning that the optimal detection of a sequence of

transmitted symbols must be done jointly. Methods of dealing with ISI include employing

a RAKE receiver, which optimally combines the copies of the received signal that arrive

at different times; and various equalization methods, which are typically filters that

attempt to “undo” the ISI of the channel.

Perhaps the best technique for dealing with ISI is the signaling technique known

as OFDM: orthogonal frequency-division multiplexing. The principle behind OFDM is

that while ISI channels are not separable in time, they are still separable in frequency, so

that data placed on separate frequencies remains orthogonal. For optimal detection with

OFDM, the separate symbols can be independently detected, but unknown frequency-

domain gains must first be estimated.

1.1.4 Motion through the Channel

The constructive and destructive interference seen by the receiver is different at

each point in space. If the receiver is moving, then at each point in time it will see a

different signal interference profile, and the apparent phase and gain of the channel will

accordingly be different. The rate at which the channel gain and phase change depends

on the velocity of the transmitter or receiver.

Another way to look at it is that the receiver sees an apparent Doppler shift that

is different for each propagation path, depending on the angle of incidence of that path

in relation to the direction of travel. For example, paths that the receiver is traveling

directly into will experience an apparent positive Doppler shift (increase in frequency),

and paths the receiver is traveling away from will experience a negative Doppler shift
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Figure 1.4: Node mobility creates channel time-variation.

(decrease in frequency). Propagation paths arriving at angles in between will experience

a Doppler shift somewhere in between. The effect is that the transmitted signal appears

to have been smeared in frequency.

The effect of time-variation is that the channel is no longer separable in frequency.

Even using OFDM, due to the frequency-smearing effect of the various Doppler shifts,

optimal symbol detection must be performed jointly. On top of that, all channel estimates

must be updated as the channel changes, creating more effort for a receiver trying to

keep accurate channel estimates and detect the transmitted data.

1.1.5 Carrier Frequency Offset

Carrier frequency offset (CFO) is a result of mismatch between the local oscilla-

tors of the transmitter and receiver of the communication system. After demodulation

at the receiver, this mismatch results in the addition of a time varying phase of the

received signal, on top of the varying phase and amplitude already present due to the

channel time-variation. This phase must be estimated and then compensated for, adding

an extra degree of coupling between all the transmitted symbols and the time-varying

channel state.

1.1.6 Joint Estimation and Detection

We have described several channel scenarios in order of increasing complexity,

and at each stage it becomes more clear that the role of the receiver to decide what

data has been transmitted also becomes more complex. The receiver’s two tasks are to
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estimate the channel in some way, and then to detect the data, and both increase in

complexity as the channel conditions degrade.

For the AWGN channel, no channel estimation is required. For the multipath

fading channel, a single parameter (including both amplitude and phase) must be deter-

mined. For the ISI channel, channel estimates must be taken at each frequency. Adding

transceiver motion into the equation, a full frequency-matrix must be known and finally,

when CFO is present, an additional offset parameter must first be extracted from the

system.

Similarly, detection algorithm complexity increases with the channel complexity.

In the AWGN channel and the multipath fading channel, a sequence of transmitted data

is optimally detected by deciding upon each symbol individually. In the ISI channel, this

separability of signals is still possible–in the frequency domain. But in the time-varying

channel or when CFO is present the sequence of transmitted symbols must be estimated

jointly, which requires an exponential increase in detection algorithm computation power.

Estimation of the channel requires characterization of the channel, with an as-

sumed probabilistic or deterministic model. The choice of model depends on the actual

channel conditions, but also plays a significant role in determining the specific detection

algorithm that can be used, and in its complexity. For this reason, the choice of channel

model is even more critical in channels for which the transmitted data must be detected

jointly.

As channels become more complex, a need arises for characterization methods

and signaling techniques that allow efficient implementation of their corresponding de-

tection algorithms. Thus, the goal of this dissertation is twofold: to determine channel

characterization methods that both accurately describe the physical channel and lend

themselves to simple detection techniques, and to develop signaling methods that are

robust to difficult channel conditions and can also be efficiently detected.

1.2 Dissertation Overview

1.2.1 Time-Varying Channel Characterization

In Chapter 2 we start from basic principles and derive the mathematical models

that represent the physical channel that we use throughout this dissertation. We begin

with the lowpass representation of signals and systems and quickly arrive at the discrete-
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time model of a time-varying frequency-selective channel.

We then show how the lowpass equivalent gain induced by a multipath-fading

channel may be considered a complex Gaussian random variable. When the channel

is time-varying, smearing in frequency results. As an example, Fig. 1.5 illustrates the

spectrum of s(t), a pure sinusoid transmitted at the carrier frequency fc. Due to relative

motion of the transmitter and receiver, the spectrum of the received signal is smeared

in frequency, as illustrated in Fig. 1.6. We derive the associated time-correlation of

the channel and show how it depends on the parameter fdT , the normalized Doppler

frequency.

−fc fc
0

s(t)

Figure 1.5: A transmitted signal s(t).

−fc fc
0

r(t)

Figure 1.6: Received signal with Doppler broadening.

We then examine the normalized Doppler parameter, and illustrate how it de-

pends on vehicle speed, carrier frequency, and symbol time-duration as well as give

examples of specific combinations of these parameters which result in a certain value of

fdT .

Next, we show how carrier frequency offset (CFO), caused by a mismatch between

the local oscillators of the transmitter and receiver, results in a multiplicative linearly-

varying phase applied to the discrete-time signal at the receiver. Fig. 1.7 illustrates the

spectrum of the received signal when CFO is present. The effects of CFO are an apparent



7

shift in carrier frequency of the received signal, and can also be seen as a special case of

time-variation.

−fc fc
0

r(t)
CFO

Figure 1.7: Received signal with Carrier Frequency Offset.

We then describe some deterministic channel modelling methods in relation to

our preferred method, normalized Chebychev polynomials. Fig. 1.8 illustrates the basic

idea behind our channel parameterization. The channel is approximated by a linear com-

bination of a set number of increasingly varying basis functions defined by the Chebychev

polynomials.

≈ +

Constant Part Linear PartChannel

Figure 1.8: Parameterizing the time-varying channel.

Finally, we place OFDM in the discrete-time channel framework and observe the

effect of channel time-variation. When the channel is time-varying, extra interference

terms appear. These terms represent intercarrier interference: the output of the channel

at one subcarrier depends on all the transmitted data symbols, not just the symbol on

that specific subcarrier.

1.2.2 CFO Estimation

In Chapter 3 we address the issue of extraction of the CFO, itself a special case

of time-variation, from a signal transmitted across a time-varying frequency-selective

channel. If the CFO can be successfully estimated, a correction can be applied to the
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received signal before any other processing, minimizing any performance degradation

due to its presence.

We consider a pilot-aided approach: a pilot sequence perfectly known to the

receiver is transmitted through the channel. This is then a first-order solution to the

problem of CFO estimation when the data is not known, and serves as a bound on the

achievable performance. We could also consider this technique to be part of a system

that adapts and iterates over time, estimating data then using the estimated data to

determine the CFO for a first attempt to estimate the next batch of data.

For the purpose of estimation, we consider the channel only in the time-domain.

Thus we have NL unknown parameters, where N is the is the number of symbols over

which we observe the channel output, and L is the number of channel taps, i.e. the

length of the ISI of the channel.

Given the known sequence of transmitted pilots, we derive novel joint estimators

of both the CFO and the time-varying frequency-selective channel (the NL channel

parameters) for two channel models: probabilistic and deterministic.

The probabilistic model assumes that the channel is Rayleigh fading (thus com-

plex Gaussian) and that the time-correlation is known. Bayesian estimation theory leads

to an estimator that is shown to achieve the Cramer-Rao lower bound, which is the min-

imum variance attainable by any unbiased estimator, assuming that our channel model

is correct.

If the probabilistic model cannot be assumed, either because the Rayleigh fading

assumption does not fit reality or the channel statistics are not known, we resort to

a deterministic modelling method based on parameterizing the channel with discrete

Chebychev polynomials. The channel parameterization reduces the dimensionality of the

problem from estimating NL unknown parameters to IL unknown parameters, where

I is the number of basis functions that characterizes each of the L time-sequences that

define the channel.

The performance of the deterministic estimator can also be good, but is sensitive

to over or underparameterization of the channel. Fig. 1.9 illustrates CFO estimation

performance for both schemes for a normalized Doppler of fdT (the time duration T

refers to the entire block of symbols). If too few polynomial functions are used in the

channel parameterization, error floors result since the channel model cannot fully capture

the actual channel time-variation. On the other hand, if too high a parameterization
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Figure 1.9: CFO Estimator performance vs. SNR for fdT = 0.1

order is chosen, the error floor is indeed lower but performance is worse at low SNR.

Obviously at some operating point the higher order basis functions are excited more by

noise than by the actual time variation of the channel. The probabilistic model with

Bayesian estimation techniques gives performance approaching the Cramer-Rao lower

bound.

1.2.3 Blind Detection in Time-Varying Channels

In chapter 4 we focus our attention on symbol detection over a time-varying

channel. In particular, we focus on the problem of transmission of a relatively short

block of N symbols through a multiplicative varying channel. The specific scenario that

we study has the following properties:

• The transmitter sends a block of N symbols through the channel.

• The detector is blind, i.e. the receiver does not know the state of the channel.
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• The receiver has no information about past or future states of the channel or blocks

of symbols.

• The channel varies with symbol index, i.e. the channel is time-varying and frequency-

flat with symbols in the time-domain (this is similar and applicable to the channel

being frequency-selective and static with symbols in the frequency domain).

• The receiver does not have access to the channel statistics.

In the scenario outlined above, we attempt to answer the questions of what de-

tection schemes can be devised, and how will they perform? We begin by assuming that

the channel is deterministic and unknown for the sake of estimation, and by parame-

terizing it with a set of basis functions based on discrete Chebychev polynomials. We

then develop a cost function based on maximum likelihood sequence estimation (MLSE)

for data detection which uses the channel parameterization, and doesn’t require channel

statistics.

The cost function is shown to have an inherent phase ambiguity in the transmitted

data sequence, so to overcome that we stipulate that the data be differentially encoded,

as illustrated in Fig. 1.10.

s1 s2 s3p s4 s5 s6 s7

Dwell length N

Reference Symbol
Differentially Encoded

Symbols

Figure 1.10: Block of symbols to be detected.

We then present a theoretical bit-error rate performance analysis of the proposed

detector in Rician and Rayleigh fading channels, and develop expressions for the pairwise

error probability in Rayleigh fading. To address the issue of detector complexity, we show

how the cost function can be manipulated into a form that can be efficiently implemented

with a sphere decoding algorithm.

The performance of the proposed detector with various channel parameterizations

is shown to be very good, with performance near the differential-coherent lower bound
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Figure 1.11: Theoretical performance of blind detectors in time-varying channels.

in some cases. However, similarly to the problems with channel parameterization in the

context of CFO estimation, under or over-parameterizing the channel can result in error

floors or poor low-SNR performance, respectively.

To combat this performance degradation, and to reduce the sensitivity of the de-

tector to the choice of channel parameterization, we note that the two outside symbols in

the transmitted block have the highest probability of error, and hurt overall performance

the most. A “subset”-type detector is then proposed, which simply ignores the outer

two symbols after detection, at a cost of slightly increased overhead and complexity.

Fig. 1.11 shows the theoretical bit-error rate performance of a detector with

block-length 9 which parameterizes the channel with 2 basis functions, and two “subset”-

type detectors with block lengths of 9 and 20 using 4 and 7 basis functions, respectively.

The subset detectors achieve near-optimal performance over the SNR range 0 - 40 dB

and over the normalized Doppler range fdT = 0.0001 - 0.05.
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1.2.4 ICI Reduction

In chapter 5 we increase the complexity of the problem addressed in the previous

chapter. Instead of trying to recover a block of symbols transmitted over a time-varying

channel, we consider a block of symbols in the frequency-domain transmitted via OFDM.

The frequency-selectivity of the channel provides the multiplicative varying channel seen

by the symbols, and is analogous to a block of time-domain symbols experiencing a mul-

tiplicative varying channel due to Doppler spread. Now we extend the problem and let

the frequency-selective channel be time-varying, so that the symbols in frequency expe-

rience not only a varying channel from symbol to symbol, but intercarrier interference

(ICI).

When ICI is present, the frequency-domain channel can be represented by a

matrix, since each output symbol is affected by several (or all) input symbols.

There are various methods of dealing with intercarrier interference including

frequency-domain equalization, which essentially tries to invert the channel matrix; time-

domain windowing, which changes the frequency spectrum to reduce power outside the

subcarrier of interest; and correlative coding of the frequency-domain data sequence,

which can effectively and directly reduce ICI power.

We focus on correlative coding because it’s separate and independent from any

potential channel estimation, and it allows us to think of the channel as orthogonal, i.e.

purely multiplicative and varying, which enables good possibilities for blind detection.

We begin by analyzing the ICI power due to time-variation/Doppler and show

how correlation of the data sequence affects it. The conclusion is that symbols that are

close to each other should be negatively correlated in order to reduce ICI power. The

more negatively correlated they are, the more reduction in ICI power is possible.

With this in mind, we introduce a novel correlative coding method which we

term “constant-magnitude correlative coding” (CMCC). CMCC is similar to DPSK in

that the previous symbol is used as a reference and a phase is added depending on the

input data sequence. The difference is that with DPSK the phase added is either 0 or

π, while with CMCC the phase added is +θ or −θ, with π/2 ≤ θ ≤ π.

The CMCC scheme is shown to provide similar ICI reduction performance as

other correlative coding schemes, is parameterized in a simple way that allows tweaking

of ICI reduction capability, and provides full spectral efficiency.

Aside from the negative autocorrelation provided by CMCC which reduces ICI
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Figure 1.12: BER performance of constant-magnitude correlative coding with blind de-
tection compared to coherent (known channel) OFDM in a time-varying frequency se-
lective channel with fdT = 0.05. Two detectors are shown, KS: known statistics and US:
unknown statistics.

power, its most important property is that the coded symbols are constant in magnitude,

a property that no other correlative coding scheme has. This property is shown to

enable efficient and robust blind detection, and we develop blind detectors based on both

a probabilistic (Rayleigh fading) and a deterministic (approximation with Chebyshev

polynomials) channel model that are implemented with sphere decoding. The constant

magnitude property is essential to the sphere decoding implementation.

Finally, simulation results show performance approaching and sometimes exceed-

ing that of coherent OFDM that does not attempt to control the ICI. Fig 1.12 illustrates

the performance of two detectors based on the CMCC signal precoding scheme. One

assumes a probabilistic channel model (KS = known statistics), and one assumes a de-

terministic channel model (US = unknown statistics). The detectors are able to blindly

estimate the frequency-selective channel in the face of ICI and provide performance near

to that of uncoded OFDM which perfectly knows the channel, but does not attempt to

reduce ICI.



Chapter 2

Time-Varying Channel

Characterization

In this chapter we attempt to bridge the gap between physical reality and the

abstract mathematical models that are intended to represent it. Throughout this disser-

tation signals and systems are represented by complex-valued discrete sequences. How-

ever, a quantity that exists in the real world cannot be complex. And similarly, practical

signals do not exist at only discrete points in time; they are continuous.

Our intention is to derive from basic principles the discrete-time complex channel

model framework, characterize it statistically, and then to present certain signalling

structures and channel degradations within this framework. First, we show how the

lowpass-equivalent channel model can be discretized. Then, we show how it can be

characterized as a Gaussian random process for which we derive the time-correlation.

Next, we illustrate how real-world time-varying channel conditions can be con-

densed down into a number: the normalized Doppler fdT , which is our basic parameter

for describing the degree of time-variation. We then show the effect of carrier frequency

offest on the discrete channel model. After that we present several ways of determin-

istically parameterizing the channel in time and our preferred method used throughout

this dissertation. Finally, we show the effect of time-variation on the signalling tech-

nique OFDM within the framework of our discrete model, and show how it gives rise to

intercarrier interference.

14
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s(t) h(t; τ) r(t)

m

sl(t) hl(t; τ) rl(t)

Figure 2.1: Equivalent lowpass system.

2.1 Lowpass-Equivalent Representation

A bandlimited signal may be represented by

s(t) = Re
{

sl(t)e
j2πfct

}

(2.1)

as long as the carrier frequency fc is much greater than the bandwidth W of the signal.

The quantity sl(t) is the complex-valued “lowpass equivalent” or “complex baseband”

representation of the signal s(t). The real and imaginary parts of sl(t) conveniently carry

information about the “in phase” and “quadrature” components of the signal, i.e. the

components of the signal modulating cos(2πfct) and sin(2πfct), respectively.

A useful property of the lowpass-equivalent representation is that the output of

a signal through a linear filter has a lowpass representation equal to the convolution of

the lowpass equivalent signal and the lowpass equivalent impulse response of the filter.

In other words, if

r(t) =

∫ ∞

−∞
h(t; τ)s(t − τ)dτ (2.2)

then

rl(t) =

∫ ∞

−∞
hl(t; τ)sl(t − τ)dτ (2.3)

where

r(t) = Re
{

rl(t)e
j2πfct

}

(2.4)

is the lowpass equivalent representation of the output signal r(t) and

h(t; τ) = Re
{

hl(t; τ)ej2πfcτ
}

(2.5)

is the lowpass equivalent representation of the linear filter hl(t; τ).
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2.2 Discrete Time Channel Model

Consider the communication system with linear, time-varying channel shown in

Fig. 2.2.

s(t) c(t; τ) r(t)xt(τ)xr(τ)

Figure 2.2: Basic communication system.

The various components of the system are defined as follows:

• s(t): transmitted signal.

• xt(τ): transmit shaping filter.

• c(t; τ): channel impulse response at time t.

• xr(τ): receiver filter.

• r(t): received signal.

We define the overall channel h(t; τ) as the cascade of the transmit filter, the

channel impulse response, and the receiver filter

h(t; τ) ≡ xt(τ) ⋆ c(t; τ) ⋆ xr(τ) (2.6)

and thus, the received signal is given by

r(t) =

∫ ∞

−∞
h(t; τ)s(t − τ)dτ. (2.7)

Since the transmitted signal s(t) is assumed to be bandlimited, its equivalent

lowpass representation can be rewritten using the Nyquist Reconstruction Theorem as

sl(t) =

∞
∑

n=−∞
sl

( n

W

)

sinc
(

W
(

t − n

W

))

(2.8)

and its corresponding Fourier transform is

Sl(f) =

∞
∑

n=−∞
sl

( n

W

)

e−j2πfn/W , − 1

2W
≤ f ≤ 1

2W
(2.9)

where W is the total bandwidth occupied by the signal s(t) and sinc(x) = sin(πx)/πx.
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The lowpass equivalent representation of the received signal may be written as

rl(t) =

∫ ∞

−∞
Sl(f)Hl(t; f)ej2πftdf (2.10)

where Hl(t; f) is the Fourier transform of hl(t; τ). Substituting (2.9) into (2.10) results

in

rl(t) =
∞
∑

n=−∞
sl

( n

W

)

∫ ∞

−∞
Hl(t; f)ej2πf(t− n

W )df (2.11)

=
∞
∑

n=−∞
sl

( n

W

)

hl

(

t; t − n

W

)

(2.12)

which can be rewritten as

rl(t) =

L
∑

k=1

hl

(

t;
k

W

)

sl

(

t − k

W

)

(2.13)

where the sum is truncated to L taps such that the multipath spread of the channel is

covered. The expression for the received signal in (2.13) is known as the tapped-delay

line channel model and is the basis for our ability to consider the transmitted signal, the

channel, and the received signal as discrete sequences instead of continuous signals.

Finally, to fully discretize our channel model, we have

rn =
L
∑

k=1

hn,ksn−k (2.14)

where rn = rl(nT ), sn = sl(nT ) and hn,k = hl(nT, kT ), T = 1/W is the sampling

interval of the discrete model. The discrete-time channel model of (2.14) is the linear

time-varying channel model used throughout this dissertation.

2.3 Multipath Fading and Time Variation

Considering the discrete-time channel model in (2.14), we are interested in the

statistical properties of the channel coefficients hn,k as they relate to multipath fading

and Doppler spread. To do this we first make some assumptions about the nature of the

underlying time-varying multipath channel c(t; τ).

We assume that there are N total propagation paths, where N is a very large

number. Associated with each path is an attenuation factor αn, a time delay τn, and an

angle of incidence θn. We also assume that the receiver is moving at a constant velocity
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Figure 2.3: Multipath fading and receiver motion.

v

θn

Figure 2.4: Receiver motion and the angle of incidence of the nth propagation path.

v, and that the angle of incidence is measured with respect to the direction of motion, as

pictured in Fig. 2.4. The received signal due to the nth propagation path will undergo

a Doppler shift such that the apparent received frequency will be given by

fn = fc + fd cos(θn) (2.15)

where fd = fcv/c is the maximum Doppler shift.

A signal s(t) propagating through the channel will be received as (ignoring the

transmit and receive filters):

r(t) = Re

{

N
∑

n=1

αnsl(t − τn)ej2πfn(t−τn)

}

(2.16)

= Re

{

N
∑

n=1

αne−j2π(fcτn−fdcos(θn)(t−τn)sl(t − τn)ej2πfct

}

(2.17)

which implies that the equivalent lowpass representation of r(t) is

rl(t) =

N
∑

n=1

αne−j2π(fcτn−fdcos(θn)(t−τn)sl(t − τn) (2.18)
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and that the equivalent lowpass representation of the channel is

cl(t; τ) =

N
∑

n=1

αne−j2π(fcτn−fdcos(θn)(t−τn)δ(τ − τn). (2.19)

Next, taking into account the effect of the transmit and receive filters, the overall

lowpass equivalent channel impulse response is given by

hl(t; τ) =

∫ ∞

−∞
cl(t;λ)xl(τ − λ)dλ (2.20)

where xl(τ) is the equivalent lowpass representation of xt(τ) ⋆ xr(τ).

Substituting (2.19) into (2.20) results in

hl(t; τ) =

N
∑

n=1

αne−j2π(fcτn−fdcos(θn)(t−τn)xl(τ − τn). (2.21)

The effective channel hl(t; τ) is the sum of a very large number of delayed, scaled, and

phase rotated copies of xl(t). A very small change in the value of τn results in a large

change in the overall phase, so that we can regard the phase as random and uniformly

distributed. If we further assume that the different scatterers are independent, then

application of the central limit theorem means that hl(t; τ) is approximately a complex

Gaussian random process.

To complete our statistical description of the channel, we find the time-correlation

of the channel impulse response induced by receiver motion and Doppler. We can directly

evaluate the correlation as follows:

E[hl(t1; τ)h∗
l (t2; τ)] = E

[

N
∑

n=1

|αn|2|xl(τ − τn)|2ej2πfd(t1−t2) cos(θn)

]

(2.22)

where we have made use of the fact that the attenuation of different scatterers is un-

correlated. We next make the assumptions that the path amplitudes and delays are

independent from the phases, and that the phases are uniformly distrubuted between 0

and 2π [3], which results in

E[hl(t1; τ)h∗
l (t2; τ)] = σ̃2

τ

1

2π

∫ 2π

0
ej2πfd(t1−t2) cos(θ)dθ (2.23)

= σ̃2
τJ0(2πfd(t1 − t2)) (2.24)

where σ̃2
τ = E

[

∑N
n=1 |αn|2|xl(τ − τn)|2

]

is the total received power of the scatterers

influencing the channel at delay τ .
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Finally, the time-correlation of the discrete channel sequence hn,k is

E
[

hn,kh
∗
m,k

]

= σ2
kJ0(2πfdT (n − m)) (2.25)

where σ2
k = σ̃2

kT is the power in the kth discrete channel tap.

2.4 Normalized Doppler

The quantity fdT that appears in the derivation of channel time-correlation

(2.25), known as the normalized Doppler frequency, is a measure of the Doppler shift

relative to the carrier frequency. This measure fully encapsulates the degree of time-

variation in the channel and is the fundamental parameter used to describe the degree

of time-variation in this dissertation. In this section we describe how various communi-

cations system parameters affect the normalized Doppler frequency.

The normalized Doppler is

fdT = fc
v

c
T (2.26)

where fc is the carrier frequency, v is the velocity of the mobile receiver, c is the speed of

light, and T is the time duration of a symbol. Clearly, when the carrier frequency or the

mobile velocity increase, the normalized Doppler increases proportionally. We illustrate

the interplay between these parameters in Figs. 2.5 and 2.6.

In Fig. 2.5 we fix the symbol duration at T = 200µs and plot carrier frequency–

velocity curves for normalized Dopplers of fdT = 0.01, 0.05, 0.1, and 0.2. Moving along

a curve shows the values of carrier frequency and velocity required to achieve a certain

normalized Doppler, for fixed T .

In Fig. 2.6 we fix the normalized Doppler at fdT = 0.1 and plot carrier frequency–

velocity curves for symbol durations of T = 50µs, 100µs, 200µs, and 400µs. Moving

along a curve shows the values of carrier frequency and velocity required to achieve the

normalized Doppler fdT = 0.1, for a fixed T corresponding to that curve.

These plots can be used to translate the values of normalized Doppler used

throughout this dissertation into the physical parameters under which the communi-

cations system is operating.

It is less obvious how the bandwidth of the communications system and the

number of subcarriers (as in the case of OFDM) affect the normalized Doppler.
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Figure 2.5: Carrier frequency - velocity curve for various levels of normalized Doppler
and fixed symbol duration T = 200µs.

Fig. 2.7 illustrates the effect of increasing the bandwidth of the communications

system. The solid line represents a system with bandwidth W1 in the frequency domain

on the top and corresponding symbol time-duration T1 = 1/W1 in the time-domain on

the bottom. If the system bandwidth is increased to W2, the corresponding symbol

time-duration decreases to T2 = 1/W2. Since the symbol time-duration decreases, the

normalized Doppler fdT also decreases and the system is affected less by Doppler. A

useful way to visualize this is that if the signal occupies more bandwidth overall, then

the Doppler’s effect of smearing the symbol in frequency has less of an impact.

In the case of OFDM it is interesting to note the effect on normalized Doppler

of increasing the number of subcarriers while keeping the bandwidth fixed. Fig. 2.8

illustrates this effect. In the frequency domain, the black line represents the spectrum

of an OFDM system with 5 subcarriers, and in the time domain the corresponding

time duration is T1 = 5/W . If the number of subcarriers is doubled to 10 within the

same bandwidth, as represented by the gray line, the corresponding time-duration of

one OFDM symbol also doubles to T2 = 10/W . Essentially, a finer frequency resolution

is achieved only by increasing the time duration of the OFDM symbol. This causes
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Table 2.1: Effects of physical and system parameters on the normalized Doppler fre-
quency fdT .

Parameter Effect on fdT

Mobile velocity ↑ ↑
Carrier frequency ↑ ↑

Symbol time-duration ↑ ↑
Bandwidth ↑ ↓

# subcarriers ↑, bandwidth fixed ↑

the normalized Doppler fdT to increase. Intuitively, if each subcarrier takes up less

bandwidth, then smearing in frequency has more of an impact, and if the OFDM symbol

time duration is larger, there is more variation between two adjacent OFDM symbols.

Table 2.1 summarizes the effects of changing system parameters on the normal-

ized Doppler frequency.

2.5 Carrier Frequency Offset

Carrier frequency offset (CFO) arises as a mismatch between the local oscilla-

tors of the transmitter and receiver. Unless dealt with, CFO can cause performance
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Figure 2.7: Increasing the bandwidth decreases the symbol duration.

degradation, depending upon the type of modulation used and the receiver design.

To determine the effect of CFO on the discrete channel input output relation

(2.14), first consider the simple scenario where the transmitter transmits a signal s(t) on

carrier fc + ∆f , and the receiver recovers the signal assuming that the carrier frequency

is fc.

The transmitted signal s(t) can be written as

s(t) = Re
{

sl(t)e
j2π(fc+∆f )t

}

(2.27)

where sl(t) is the lowpass equivalent representation of s(t), however from the perspective

of the receiver the lowpass equivalent representation of s(t) is s̃l(t) = sl(t)e
j2π∆f t.

The received signal can then be written as

r(t) = Re

{
∫ ∞

−∞
hl(t; τ)s̃l(t − τ)dτej2πfct

}

(2.28)

= Re

{

ej2π∆f t

∫ ∞

−∞
hl(t; τ)sl(t − τ)dτej2πfct

}

(2.29)

and thus the lowpass received signal is,

rl(t) = ej2π∆f t

∫ ∞

−∞
hl(t; τ)sl(t − τ)dτ. (2.30)

Finally, bringing (2.30) into the discrete domain, we have the discrete-time input-

output relation

rn = ej2πθn
L
∑

k=1

hn,ksn−k (2.31)
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Figure 2.8: Increasing the number of subcarriers for a fixed bandwidth increases the
symbol duration.

where θ = ∆fT is the CFO.

From (2.31) we can see that CFO manifests itself as a multiplicative time-varying

phase applied to the received signal. The CFO is different from Doppler in that all

propagation paths experience a frequency shift, not each separetely depending on angle

of incidence. Thus at the receiver there is an overall shift in the frequency domain, as

opposed to broadening or smearing due to Doppler.

It is interesting to note that the CFO can be thought of as a special case of

channel time-variation. The input-output relation in (2.31) can be rewritten as

rn =

L
∑

k=1

h̃n,ksn−k (2.32)

where h̃n,k = ej2πθnhn,k. It is this time-variation ambiguity between CFO and channel

that confounds CFO estimation in the presence of time-varying channels. We address

this issue in Chapter 3 in our treatment and analysis of CFO in a time-varying frequency-

selective channel.
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2.6 Modeling the Time-Varying Channel Deterministically

Knowledge of the statistics of the time-varying channel is not always available at

the receiver. For the purposes of estimation and detection, it is often advantageous to

assume a deterministic model of the channel time-variation that is conveniently parame-

terized. To be useful in estimation or detection, a deterministic model should use as few

parameters as possible to describe the time-variation of the channel as fully as possible.

Here we present several deterministic channel models including our own preferred

model, which we use throughout the rest of this dissertation. Each of these models

attempts to approximate the channel hn,k over a time-duration of interest 1 ≤ n ≤ N at

a particular channel tap k through a parameterization in the time variable n.

The general deterministic channel model that we assume throughout this work

is given by

hn,k ≈
I
∑

i=1

αk,ifi(n) (2.33)

where fi(n) are a set of orthonormal basis functions, i.e. they have the property

N
∑

n=1

fi1(n)f∗
i2(n) =











1, i1 = i2

0, i1 6= i2

(2.34)

and αk,i unknown time-invariant coefficients that must be estimated. The following

channel time-variation models all fit into this framework.

2.6.1 Basis Expansion Model

The basis expansion model [4] (BEM) assumes that the time-varying channel can

be accurately approximated by a weighted sum of complex exponentials. The channel is

approximated as

hn,k ≈
Q
∑

q=1

hq(k)ejωqn (2.35)

where the coefficients hq(k) and the frequencies ωq are all unknown parameters to be es-

timated. The ωq must be estimated first using estimated high-order moments of received

data, which in our view runs counter to the purpose behind deterministic modeling, since

second order statistics might as well be estimated and then it makes more sense to use

a statistical channel model.
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Additionally, using complex exponential basis functions has implications for CFO

estimation, since the CFO manifests itself as a multiplicative complex exponential applied

to the received signal. The received signal with CFO, as derived in (2.31),

rn = ej2πθn
L
∑

k=1

hn,ksn−k (2.36)

≈ ej2πθn
L
∑

k=1

Q
∑

q=1

hq(k)ejωqnsn−k (2.37)

=

L
∑

k=1

Q
∑

q=1

hq(k)ejω̃qnsn−k (2.38)

(2.39)

where ω̃q = ωq + 2πθ which shows that there is an ambiguity between the CFO and the

unknown BEM frequencies. Joint channel/CFO estimation will be unable to differentiate

between the CFO and channel using the BEM channel model.

2.6.2 Discrete Prolate Spheroidal Sequences

It was proposed in [5] that a good deterministic channel model could be param-

eterized by basis functions that are perfectly bandlimited in frequency and that have

the highest energy concentration in the time-duration of interest. Sequences that satisfy

these criteria are known as the Discrete Prolate Spheroidal (DPS) sequences. These se-

quences are defined by the eigenvectors ul of the real N by N matrix C which is defined

as

[C]i,j =
sin (2π(i − j)fdT )

π(i − j)
(2.40)

resulting in the channel approximation

hn,k ≈
I
∑

i=1

αk,i[ui]n. (2.41)

Similarly to the BEM channel model, in order to define the basis functions the

parameter fdT must be known a priori, however if fdT is known then the channel cor-

relation can be constructed as

E
[

hn,kh
∗
m,k

]

= σ2
kJ0(2πfdT (n − m)) (2.42)

and statistical estimation and detection techniques can be used.
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Figure 2.9: Discrete Chebyshev polynomials for parameterizing time-variation of the
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2.6.3 Discrete Chebyshev Polynomial

Throughout this work our deterministic channel model of choice is

hn,k ≈
I
∑

i=1

αk,ifi(n) (2.43)

where fi(n) are discrete, orthonormalized, Chebyshev polynomials. We choose this model

for simplicity, namely no parameters need to be estimated or assumed in order to gen-

erate the basis functions fi(n). Fig. 2.9 displays the first five discrete Chebyshev poly-

nomials for a sequence length of N = 30. If statistical parameters can be estimated or

assumed, then statistical models should be employed for estimation and detection, and

deterministic modeling is unnecessary.

2.7 OFDM Sensitivity to Time Variation

Orthogonal Frequency Division Multiplexing (OFDM) is a simple and efficient

method of dealing with the frequency-selectivity of the channel, i.e. the intersymbol
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interference (ISI) [6]. Instead of equalizing the ISI in the time-domain, the information

bearing symbols are considered to be in the frequency domain. Through a simple trick

of cyclically extending the time-domain transmitted sequence, the ISI channel is made to

appear as a circular convolution instead of a linear convolution with the data sequence,

and thus the ISI channel in the time-domain is transformed into a frequency-channel

with multiplicative gains on each symbol.

When the channel is time-varying due to Doppler, or when CFO is present, the

frequency-domain data symbols become smeared into each other, resulting in so-called

intercarrier interference (ICI). In this section, we illustrate the degradation of OFDM

due to Doppler spread and the origin of ICI.

The block of N data symbols xk, 1 ≤ k ≤ N are considered to be in the frequency

domain. The time-domain signal xn to be transmitted is constructed by taking the

inverse discrete Fourier transform (IDFT):

xn =
1√
N

N
∑

k=1

xke
j2πnk/N . (2.44)

After passing through the time-varying frequency-selective channel, the received signal

is

rn =

L
∑

l=1

hn,lxn−l (2.45)

=
1√
N

N
∑

k=1

L
∑

l=1

hn,lxke
j2π(n−l)k/N . (2.46)

Note that for values of n ≤ L the received time-domain signal rn depends on values of xn

for n ≤ 0, i.e. before we started transmitting xn and during the previous OFDM block.

Thus some of the xk in (2.45) refer to the previous block of frequency-domain symbols.

To make sure we are correctly referring to the symbols of only the current OFDM block,

a cyclic prefix must be prepended to the time-domain sequence xn.

The received sequence can be rewritten as

rn =
1√
N

N
∑

k=1

Hn,kxke
j2πnk/N (2.47)

where Hn,k =
∑L

l=1 hn,le
−j2πlk/N can be thought of as the frequency response of the

channel at time n.
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Next, the receiver applies the DFT to recover the transmitted symbols in the

frequency domain

ym =
1√
N

N
∑

n=1

rke
−j2πnm/N (2.48)

=
1

N

N
∑

k=1

xk

N
∑

n=1

Hn,ke
j2πn(k−m)/N (2.49)

≡
N
∑

k=1

xkH̃k,m (2.50)

where we have defined

H̃k,m ≡ 1

N

N
∑

n=1

Hn,ke
j2πn(k−m)/N . (2.51)

Upon examining H̃k,m closer, we see that if the channel is time-invariant then

Hn,k = Hk is constant in n, and H̃k,m = Hkδk−m. Thus in the case of a time-invariant

channel, we have the result that ym = Hmxm, or that the data modulated on different

frequencies remains separable and may be detected independently. On the other hand,

when the channel is varying in time, the received sequence after transformation to the

frequency domain is

ym = H̃m,mxm +

N
∑

k=1
k 6=m

H̃k,mxk. (2.52)

The second term on the right hand side of (2.52) is the ICI, a direct effect of the Doppler

induced channel time-variation. The ICI leads to degraded system performance [7], and

can be dealt with in a variety of ways. In chapter 5 we describe a novel data precoding

method that can reduce the ICI power, while being well suited for effecient detection

algorithms.



Chapter 3

Carrier Frequency Offset

Estimation

Carrier frequency offset is a result of mismatch between the local oscillators of the

transmitter and receiver of a communication system. The mismatch causes performance

degradation depending upon the specific modulation format and receiver structure.

OFDM is particularly sensitive to carrier frequency offset because it relies upon

the orthogonality of its subcarriers to separate its multiplexed data streams [8]. A slight

offset in carrier frequency shifts the OFDM spectrum, causing a loss of orthogonality

among the sub-carriers, which, upon applying the receiver FFT, results in so-called

intercarrier interference. Hence, carrier frequency offset must be effectively estimated

and corrected to achieve optimal system performance.

Communication systems frequently make use of a preamble block of known data

as a training sequence before data is transmitted and detection is performed at the

receiver. The training sequence can be used for channel impulse response estimation as

well as CFO estimation.

Previous data-aided CFO estimation approaches derived for the time-invariant

frequency-selective channel include [9], in which two consecutive identical symbols are

transmitted, inducing a correlation structure in the received signal from which the CFO

can be extracted, and [10], which presents a similar technique, but uses PN sequences to

achieve a wider estimation range. In [11] an elegant framework is provided for joint ML

estimation of CFO and time-invariant channel and it is shown that the joint estimation

decouples to first estimating the CFO, then the channel. Extensions of [11] include [12]

30
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Figure 3.1: CFO and channel estimation objective.

and [13] which perform gradient descent on the joint likelihood function and a decision

directed approach, respectively. The CFO estimator derived in [14] is also an extension

of [11], with reduced complexity and a closed form approximation.

When the receiver and/or transmitter are mobile, a Doppler shift spreads the

signal in frequency, and causes a time-variation of the channel taps. Because the CFO

can be viewed as a special case of channel time-variation, it is more difficult to jointly

estimate both the CFO and channel, and the previously mentioned estimators suffer a

performance degradation.

Previous approaches to joint estimation of CFO and time-varying channel include

[15], which presents a blind method and assumes channel time-variation statistics are

known, and [16], which parameterizes the channel with an autoregressive model then

uses the EM algorithm to determine the AR coefficients, from which a CFO estimate can

be extracted. In [17], two consecutive OFDM preamble symbols comprised of CAZAC

sequences are used, allowing a closed form CFO estimate.

In this work we propose a more direct approach to data-aided joint CFO and

channel estimation in a frequency-selective time-varying channel. We use a framework

very similar to [11], but that takes into account each channel tap at each point in time.

We directly estimate the channel and the CFO via maximum likelihood when the channel

statistics are not known, and via a Bayesian approach when they are.

When channel statistics are unknown, joint ML estimation faces the potential

problem of having to estimate more parameters (all channel taps at all points in time

plus CFO) than can be supported by the available data, also known as the “identifiability

problem” [18]. This problem arises in the time-varying channel, in contrast to the time-
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Figure 3.2: System model with carrier frequency offset.

invariant channel, because simply taking more data only leads to more points in time at

which the channel needs to be estimated. Thus the ML estimator is found to require a

channel parameterization.

This chapter is organized as follows: In section 4.1 we define the system model

for the time-varying frequency-selective channel then in sections 3.2 and 3.3 we derive

joint CFO/channel estimators for the cases of unknown and known channel statistics,

respectively. We derive the CRLB and high SNR approximations to the mean and

variance of the estimators in section 3.4, and finally present simulation results in 3.5.

3.1 System Model

We assume the system model pictured in Fig. 3.2. For a sequence x[n],−L+1 ≤
n ≤ M −1, transmitted through a frequency-selective time-varying channel, the sampled

complex-baseband received sequence y[n] is given by

y[n] = ej2πθn/M
L−1
∑

l=0

h[l, n]x[n − l] + w[n], (3.1)

where θ is the carrier frequency offset normalized to the block symbol rate (i.e. measured

in OFDM subcarrier spacings), M is the block size (number of OFDM subcarriers), L is

the number of channel taps, w[n] is zero-mean complex Gaussian circularly-symmetric

noise and h[l, n] is the lth channel tap at time n.

The values of x[n] at times n < 0 affect the received sequence at times n ≥ 0 due

to the length of the channel, and in the case of OFDM, they would be part of the cyclic

prefix. The received sequence y[n] can be stacked and represented in vector form as

y = Ω
L−1
∑

l=0

Alhl + w, (3.2)
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where y = [y[0], y[1], · · · , y[M − 1]]T , w = [w[0], w[1], · · · , w[M − 1]]T , the CFO matrix

Ω is M by M and diagonal with entries
[

1, ej2πθ/M , · · · , ej2πθ(M−1)/M
]

,

hl = [h[l, 0], h[l, 1], · · · , h[l,M − 1]]T

fully describes the time variation of the lth channel tap, and Al are diagonal matrices con-

taining the transmitted pilot sequence with entries [x[0 − l], x[1 − l], · · · , x[M − 1 − l]].

Intuitively, we can see that estimation of the carrier frequency offset is confounded

by the fact that it is hard to tell tell it apart from the time-varying channel. Note that

carrier frequency offset is in fact just a special case of channel time variation; we could

consider the lth channel tap at time n to be ej2πθn/Mh[l, n], or in the vector case, the

lth channel tap vector could be Ωhl.

3.2 CFO Estimation with Unknown Channel Statistics

We can further rewrite equation (3.2) as

y = ΩAh + w, (3.3)

where A is the stacked Al matrices, A = [A0,A1, · · · ,AL−1], and h is the stacked

channel tap time-variation vectors: h = [hT
0 ,hT

1 , · · · ,hT
L−1]

T .

When the channel statistics are not known, both the channel and CFO are as-

sumed deterministic and unknown. Estimation takes the form of jointly maximizing the

likelihood of the received data given the channel and CFO:

{θ̂, ĥ} = arg max
θ,h

p (y|θ,h) (3.4)

= arg min
θ,h

‖y − ΩAh‖2. (3.5)

For any θ, the h that minimizes the cost function in (3.5) is

ĥ = A†ΩHy, (3.6)

where (·)† denotes the pseudoinverse. Plugging (3.6) into (3.5) it follows that

θ̂ = arg max
θ

g1(θ), (3.7)

where g1(θ) = yHΩAA†ΩHy is the cost function for estimating the CFO via joint ML

in the time-varying channel.
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But, since h contains ML elements, the matrix A is M by ML, and so AA† is

identity and our cost function reduces to yHy, rendering CFO estimation impossible.

This is the “identifiability problem” as discussed in [18], where conditions are given that

guarantee the estimability of the CFO in a static channel. Note that if the channel were

time-invariant, we could simply increase the length of the pilot sequence and thereby

increase the number of observed data points to solve this problem. However, in the the

time-varying channel, increasing the length of the transmitted pilot sequence does not

mitigate the identifiability problem, because as the pilot sequence gets longer, so do the

lengths of the channel tap time-variation vectors. We are forced to try an alternate

method.

Since it is impossible to jointly estimate the value of each channel tap at each

time instant along with the CFO, we reduce the number of parameters that need to

be estimated by parameterizing the channel. To do this, we project hl onto a set of

I orthonormal basis vectors f1, · · · , fI that presumably can describe most of the time

variation.

Grouping the basis vectors into a matrix F = [f1, · · · , fI ], we can approximate

the lth channel time variation vector as

hl ≈ Fαl, (3.8)

where αl is a length I vector of coefficients corresponding to each basis vector. Using this

channel parameterization, we must now estimate the LI channel coefficients α0, · · · , αL−1

and the CFO, a total of LI + 1 parameters. This is possible if the received vector y

contains at least this many entries.

Rewriting (3.2) to take into account the approximation in (4.7), we obtain

y = Ω

L−1
∑

l=0

AlFαl + w, (3.9)

which can be rewritten similarly to (3.3) as

y = ΩAF α + w, (3.10)

where AF = [A0F,A1F, · · · ,AL−1F], and α = [αT
0 , αT

1 , · · · , αT
L−1]

T . The conditional

PDF of the data according to the model in (3.10) is

p (y|θ, α) =
1

πM |Rw| exp
[

(y − ΩAF α)HR−1
w (y − ΩAF α)

]

. (3.11)
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Now, jointly maximizing this approximate likelihood of both CFO and channel

parameters can be done as

{θ̂, α̂} = argmax
θ,α

p (y|θ, α) (3.12)

= argmin
θ,α

‖y − ΩAF α‖2 (3.13)

and, paralleling the underparameterized case, the α that minimizes (3.13) for any θ is

α̂ = (AH
F AF )−1AH

F ΩHy. (3.14)

Note that if we choose a small enough number of basis functions, AF is a tall matrix

and (AH
F AF )−1 exists. The CFO estimate then becomes

θ̂ = arg max
θ

g2(θ), (3.15)

where g2(θ) = yHΩAF (AH
F AF )−1AH

F ΩHy is the cost function for estimating the CFO

via joint ML after parameterizing the time-varying channel. Here we see that the CFO

estimator decouples from the channel estimator, but it depends on the particular channel

parameterization that we have chosen.

Note that if the channel is assumed constant, there is only one basis vector and

F is simply the (scaled) all ones vector. Under this scenario AF becomes an M by L

static-channel convolution matrix and the above cost function in (3.15) reduces to that of

Morelli and Mengali’s MLE#1 estimator from [11] which is optimal (achieves the CRLB)

for time-invariant channels.

3.3 CFO Estimation with Known Channel Statistics

When the channel statistics are known, i.e. we have available to us the channel

correlation matrix Rh = E[hhH ] and the noise variance σ2 with E[wwH ] = σ2I, we can

apply Bayesian methods to estimate the CFO and channel. Here the channel is assumed

to be a zero mean complex Gaussian circularly symmetric random variable in accordance

with Rayleigh fading, but the CFO is still considered deterministic.

Assuming Rayleigh fading and uncorrelated channel taps, Rh is an ML by ML
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block diagonal matrix

Rh =















R
(0)
h

0 · · · 0

0 R
(1)
h · · · 0

...
...

. . . 0

0 0 0 R
(L−1)
h















(3.16)

where each block on the diagonal is equal to the time correlation of a particular channel

tap R
(l)
h

= E[hlh
H
l ]. If we assume that each channel tap varies at the same rate, then

each block in (3.16) is a scaled version of the same time-correlation matrix:

R
(l)
h

= plRh (3.17)

where pl is the power in the lth channel tap and the {i, j}th entry of Rh is J0(2πfdT (i−
j)/M), according to the Jakes model. fd is the Doppler frequency and T is the duration

of the length-M received data vector.

Maximum a posteriori (MAP) estimation yields

{θ̂, ĥ} = argmax
θ,h

p (y|θ,h) p(h) (3.18)

= argmin
θ,h

1

σ2
‖y − ΩAh‖2 + hHR−1

h h. (3.19)

For any θ, the h that minimizes the cost function in (3.19) is

ĥ = (AHA + σ2R−1
h

)−1AHΩHy, (3.20)

which is also the MMSE estimate of h. Plugging (3.20) into (3.19) we arrive at

θ̂ = arg max
θ

g3(θ), (3.21)

where g3(θ) = yHΩA(AHA + σ2R−1
h

)−1AHΩHy is the cost function for estimating the

CFO when the time-varying channel statistics are known.

Notes:

• There is no identifiability issue due to regularization of the inverse in g3(θ). Hence,

the estimator with known channel statistics does not require a channel parameter-

ization.

• Maximizing g3(θ) is equivalent to minimizing yHR−1
yyy which maximizes the like-

lihood p(y|θ). So this Bayesian approach decouples to first finding θ̂ via ML and

then finding ĥ via MMSE or MAP.
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As is shown analytically and in simulations below, performance of the estimator without

statistics is highly dependent upon the basis functions and the number of parameters cho-

sen to represent each channel tap, degrading performance as compared to the estimator

with known statistics.

3.4 CFO Estimator Performance

3.4.1 Cramer-Rao Bound

The Cramer-Rao Lower Bound is the minimum variance attainable by any unbi-

ased estimator for a given parameter and observations related by p(y|θ). For a complex

Gaussian data vector y ∼ CN (0,Ryy(θ)) with scalar parameter θ, the CRLB is given

by [19]

Var(θ̂) ≥ 1

tr
[

(

R−1
yy(θ) ∂

∂θRyy(θ)
)2
] . (3.22)

The correlation of the data is

Ryy(θ) = E
[

yyH
]

= ΩR̃yyΩH (3.23)

where R̃yy =
∑L−1

l=0 plAlRhA
H
l + σ2I. Taking the derivative with respect to θ we have

∂

∂θ
ΩR̃yyΩH = Ω

(

DR̃yy + R̃yyD
H
)

ΩH (3.24)

where D is a diagonal matrix with elements [0, j2π/M, · · · , j2π(M − 1)/M ]. Using the

results of (3.24) and the fact that R−1
yy(θ) = ΩR̃−1

yyΩH , we arrive at

Var(θ̂) ≥ 1

2tr
(

D2 + R̃−1
yyDR̃yyDH

) . (3.25)

This bound holds for any unbiased estimator of θ that makes use of the data

y to form the estimate. For example, the bound holds even if the estimator does not

take advantage of, or even know, the channel statistics and correspondingly the PDF

p(y|θ). As such, it is a lower bound on the variance for all the estimators presented in

this chapter.

3.4.2 Known Channel Statistics

With the same technique used in [11] and originally developed in [20] and [21],

when the SNR is high we can approximate the mean and variance of the CFO estimator
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as

E[θ̂] ≈ θ − E[ ∂
∂θ g(θ)]

E[ ∂2

∂θ2 g(θ)]
(3.26)

and

Var(θ̂) ≈ E[( ∂
∂θ g(θ))2]

E[ ∂2

∂θ2 g(θ)]2
, (3.27)

where g(θ) is the cost function optimized by the estimator. Inserting the known-channel-

statistics cost function g3(θ) into the mean in (3.27), the numerator is easily found to be

zero, indicating that the estimator is unbiased.

When the cost function g3(θ), which is equivalently log p(y|θ), is inserted into

the variance in (3.27), it is easily manipulated into the definition of the CRLB for a

single scalar parameter. Hence, the Bayesian joint estimator achieves the CFO CRLB,

as expected, since it decouples to MAP or MMSE channel estimation and ML CFO

estimation, which has the property of asymptotic efficiency.

3.4.3 Unknown Channel Statistics

To find the bias of the estimator that doesn’t know the channel statistics we

insert g2(θ) into the mean in (3.27) to find

E[θ̂] − θ =
−tr

[(

DQ + QDH
)

R′
yy

]

tr
[

(D2Q + QD2 + 2DQDH)R′
yy

] , (3.28)

where Q = AF (AH
F AF )−1AH

F and R′
yy =

∑L−1
l=0 plAlRhA

H
l . Equation (3.28) is not in

general equal to zero, but it can be shown that if the pilots are purely real or imaginary,

or if the channel is well parameterized, meaning that the modeling error inherent in the

approximation (4.7) is zero, the estimator is unbiased.

To find the variance of the estimator we insert g2(θ) into the variance in (3.27),

and after some manipulation, we find

Var(θ̂) =
a + σ2b + σ4c

d
, (3.29)

where

a = tr2
[(

DQ + QDH
)

R′
yy

]

+ tr
[(

DQ + QDH
)

R′
yy

]2
,

b = 2tr
[

(

DQ + QDH
)2

R′
yy

]

,

c = tr
[

DQ + QDH
]2

,
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and

d = tr2
[(

D2Q + QD2 + 2DQDH
)

R′
yy

]

.

In (3.29) we see a term that is constant in the noise variance, leading to an error floor

at high SNR with a value equal to a/d. If the approximation in (4.7) is perfect (i.e.

hl = Fαl), it can be shown that a = 0, meaning there is no error floor. Thus, we conclude

that the error floor is due to the modeling error in the channel parameterization.

3.5 Simulation Results

WXCX
Analysis

CRLB
Known Stats

Quadratic
Linear

Constant (and MLE#1)

SNR (dB)

C
F
O

M
S
E

80706050403020100

102

101

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Figure 3.3: CFO Estimator performance vs. SNR for fdT = 0.01

Here we present simulations of the derived estimators in a frequency-selective

time-varying channel and we compare to Morelli and Mengali’s MLE#1 from [11] and

to Wei, Xu, Cai, and Xu’s (WXCX) estimator from [17] (with parameters r1 = 2 and

r2 = 20. The WXCX estimator was derived for a fast time-varying channel and actually

requires two separate training sequences. In our simulations we therefore give it an
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advantage and allow it a training sequence twice as long as that used for our estimators

and the MLE#1.

For the estimator without channel statistics, we parameterize the channel with a

varying number of orthogonal basis functions: from one to three. We choose these basis

functions to be constant, linear, and quadratic in time. Note that the “optimal” basis

functions (see [22]) cannot be chosen since they depend on the channel statistics, which

are not known to the estimator. Additionally, what is optimal for channel estimation

may not be optimal for CFO estimation.
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Figure 3.4: CFO Estimator performance vs. SNR for fdT = 0.1

We fix the length of the transmitted pilot sequence to be the sum of M = 256 and

the channel impulse response length L = 4. The channel taps exhibit Rayleigh fading

and vary in time according to the Jakes model as in section 3.3, with an exponential

decay power delay profile given by pl = c10−βl where c is a normalizing constant and

β = 1/20.

Figures 3.3-3.5 show simulations of CFO MSE vs. SNR for normalized Doppler

from fdT = 0.01 to fdT = 0.3 (T refers to the duration of an entire block of length
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Figure 3.5: CFO Estimator performance vs. SNR for fdT = 0.3

M). The lines show the CRLB and variance approximations while the points show

simulated performance of the estimators. For all levels of Doppler, the CRLB is shown

to underbound all estimators and it is achieved by the estimator with known channel

statistics, as predicted in section 3.4.2. At higher Doppler, in figures 3.4 and 3.5, the

error floors of the estimators become apparent, with a higher order model used for the

parameterization corresponding to a lower error floor. However, the estimators based

on higher order models experience poor performance at low SNR and low Doppler due

to overparameterization, i.e., the channel parameters corresponding to the higher order

basis functions contain very little energy, and at low SNR estimation error is more

significant than modeling error.

When the channel statistics are unknown it is difficult to choose the proper

model to use for channel parameterization. Using more parameters ensures a lower error

floor, but results in poor performance at low SNR. Using fewer parameters yields better

performance at low SNR, but results in a higher error floor.

The WXCX estimator, which was designed for a fast varying channel, performs

the same as our unknown statics estimator using a constant basis function, even though
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it is able to use twice the amount of training data. This is due to the fact that in its

derivation, the channel is assumed constant over each of its two pilot sequences. The

extra amount of training data does not improve its performance because the second

sequence merely resolves ambiguity in the CFO estimate that arises due to the CAZAC

structure of the first sequence.

3.6 Conclusion

We have derived joint CFO/channel estimators for use in a time-varying frequency-

selective channel for both known and unknown channel statistics. When the statistics

are known, the joint estimation reduces to sequentially estimating the CFO via ML and

the channel via MAP or MMSE, and the CFO estimator achieves the CRLB. When the

statistics are unknown, the channel must be parameterized and performance suffers due

to over or under-parameterization. Thus knowledge of the channel statistics is extremely

important to achieve the best performance in all scenarios.

Chapter 3, in part, is a reprint of the paper “Data-Aided Joint Estimation of

Carrier Frequency Offset and Frequency-Selective Time-Varying Channel”, Nathan D.

Ricklin and James R. Zeidler, as it appeared in the proceedings of IEEE ICC, Beijing,

2008.



Chapter 4

Blind Detection in Time-Varying

Channels

Differential phase shift keying (DPSK) is a simple and robust modulation tech-

nique that is useful in a wide range of communication channels, as it is simple to imple-

ment and does not require channel knowledge at the receiver. The well-known perfor-

mance penalty of DPSK as compared to coherent detection can be partially overcome by

jointly detecting multiple consecutive symbols, known as multiple-symbol differential-

detection (MSDD) [23–25].

When the receiver and/or transmitter are mobile, a Doppler shift spreads the

received signal in frequency, and causes the channel to vary in time. The noncoherent

nature of DPSK makes it well suited to time-varying channels, as no channel estimation

or tracking is required, and performance is good as long as the channel is approxi-

mately constant between two adjacent symbols. However, in rapidly varying channels,

the performance of DPSK and multiple-symbol extensions suffers due to the incorrect

assumption that the channel is constant, and error floors result. In this case, the per-

formance of MSDD is actually worse than that of DPSK since it implicitly assumes that

the channel is constant over more than two consecutive symbols.

If the time-varying channel statistics (e.g. channel autocorrelation and SNR

for Rayleigh fading, K-factor and line-of-sight Doppler frequency for Rician fading) are

known to the receiver, these error floors can be suppressed via a variety of methods.

In [26], a maximum-likelihood sequence estimation (MLSE) block detection method was

developed for use in Rayleigh fading channels, and a corresponding fast implementation

43
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based on sphere decoding was described in [1]. In [27] a similar MLSE block detection

method was developed for the Rician channel, which is more complicated to implement,

and there is no known low-complexity implementation. Other known-statistics tech-

niques include [28], in which the carrier phase between adjacent symbols is modelled as

a uniform random variable; [29], a sliding-window Viterbi implementation of MLSE in

Rayleigh fading; and [30], a sliding-window technique based on decision feedback. These

methods all perform well if the assumed channel model is correct and the statistics of

the chosen model are known, but obtaining channel statistics is not always practical,

especially in rapidly time-varying channels. Additionally, there will always be errors in

the estimated statistics, degrading the practical performance of such schemes.

If time-varying channel statistics are not available to the receiver, there are also

a number of methods capable of reducing the performance error floors due to channel

time-variation. In [31], a transformation on the data sequence is given such that the

receiver is able to cancel out successively higher orders of carrier-phase time-variation,

but is only applicable to channels with non-time-varying amplitude. In [32], a decision-

feedback receiver which uses linear prediction to estimate the channel is developed. Two

other unknown-statistics sliding-window type receivers rely upon parameterizing the

time-varying channel with a polynomial (or Taylor series) model, using linear-prediction

for channel estimation and per-survivor processing for data detection [33,34].

There are limitations to all of the above approaches in in rapidly time-varying

channels. Coherent detectors require accurate channel estimation, requiring pilot sym-

bols and possible feedback–which compromises throughput. Also, when the channel is

varying fast enough, its estimate is always out of date. When the communication dwell

interval is very short, as with frequency-hopping or burst-mode systems, it may be diffi-

cult or impossible to obtain accurate channel estimates or channel statistics, and there

is even less overhead available for pilot symbols. Additionally, the short communication

interval renders decision feedback and sliding-window based receivers impractical.

In this chapter we develop a blind detector that jointly recovers a short block

of symbols transmitted through a rapidly time-varying channel for which the above

receivers either do not work or require too much overhead. The detector developed

for this scenario does not require overhead for pilot symbols, nor feedback of any kind.

Additionally, the channel statistics need not be known at the receiver.

To develop our detector we first introduce a framework for parameterizing the
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unknown time-varying channel with an arbitrary set of orthonormal basis functions.

This parameterization reduces the dimensionality of the joint maximum-likelihood chan-

nel estimation/data detection problem, and enables us to derive a data-detection cost

function that is independent of channel statistics, and is thus applicable to any type of

time-varying channel (e.g. Rayleigh, Rician, etc.). We then show how the cost function

may be efficiently implemented via sphere decoding which can be viewed as an extension

of [1] to our unknown-statistics framework.

The choice of channel parameterization has a direct impact on the performance

of the detector. If the channel parameterization does not match the actual time-variation

of the channel, the performance can degrade either with the appearance of error floors

or by over fitting the noise.

To overcome the problem of how to select the channel parameterization, we show

that using the so-called “subset” technique [35] can reduce the detector’s sensitivity to

the choice of channel parameterization, and yields near-optimal performance over a large

SNR and Doppler range of interest.

This chapter is organized as follows: In section 4.1 we describe the system model,

dwell structure, and specific communication scenario which we will investigate. We then

derive the MSDD-US statistics-independent, data-detection cost function in section 4.2

for which we provide a theoretical performance analysis in section 4.3. In section 4.4

we describe a reduced-complexity implementation for the derived cost function based on

sphere decoding. In section 4.5 we describe the optimal detectors (which rely on known

channel statistics) which we then compare to our detector in section 4.6. We treat

the issue of selection of the channel parameterization order in section 4.7 and discuss

implementation complexity in section 4.8. Finally, in section 4.9, we conclude.

4.1 System Model

The length-N complex-baseband sequence to be transmitted is given by xn, 1 ≤
n ≤ N , where xn is the symbol transmitted in the nth signaling interval (n− 1)T ≤ t ≤
nT , and T is the time-duration of a single symbol interval. As in Fig. 4.1, information

bits are mapped to PSK symbols sn, which are then differentially encoded to obtain xn

as

xn = snxn−1, n = 2, . . . , N (4.1)
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Figure 4.1: System model showing the transmit chain: PSK mapper and differential
encoder, the frequency-flat time-varying channel with AWGN noise process, and receive
chain: our proposed MLSE detector followed by differential decoder and PSK unmapper.

where sn = exp(jθn) is an M-ary PSK information symbol with θn ∈ {2πm/M,m =

0, . . . ,M − 1} and x1 is an arbitrary phase reference. For convenience, we set x1 = 1 in

the rest of this chapter. Each length-N sequence contains N − 1 differentially encoded

information symbols.

After transmission through a frequency-flat time-varying channel, the sampled

complex-baseband received sequence yn is given by

yn = hnxn + wn, n = 2, . . . , N (4.2)

where wn is zero-mean complex Gaussian circularly-symmetric noise with variance σ2 and

hn is the time-varying channel at time n. We make no assumption on the channel model.

We assume only that the underlying continuous-time channel process is continuous and

relatively “smooth”, since some degree of channel time-correlation is required for data

detection.

4.2 MLSE Detection

Detection and recovery of the information bits can be done in three steps as

illustrated in the receive chain of Fig. 4.1. The estimated transmitted data sequence

x̂n is first recovered from the data yn, and then x̂n is differentially decoded to yield
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an estimate of the data symbols ŝn, which are then unmapped from PSK symbols to

recover the information bits. In the rest of this chapter, we develop a detector which

addresses the first step of recovering x̂n from yn for an unknown frequency-flat time-

varying channel.

The received sequence yn can be represented in vector form as

y = Ah + w (4.3)

where y = [y1, y2, · · · , yN ]T , w = [w1, w2, · · · , wN ]T , h = [h1, h2, · · · , hN ]T , and the

diagonal data matrix A = diag{x}, with x = [x1, x2 · · · , xN ]T .

We have no information on the statistics of the channel process hn, so we consider

it deterministic and unknown for the purpose of maximum likelihood sequence estima-

tion. The PDF of the received data y in AWGN conditioned on both the channel and

the transmitted data is

p(y|x,h) =
1

πN |σ2I| exp

{

− 1

σ2
‖y − Ah‖2

}

(4.4)

According to MLSE, the optimal data and channel estimates are given by

{ĥ, x̂} = arg max
h,x

p(y|x,h)

which is equivalent to minimizing the cost function

Λ(x,h) = ‖y − Ah‖2 (4.5)

over both h and x. Unfortunately, minimizing (4.5) directly provides no information

about the transmitted data x, since for any fixed x the channel that minimizes (4.5) is

ĥ = A−1y. Substitution of ĥ for h in (4.5) results in Λ(x, ĥ) = 0 for any value of x.

Thus, data detection is impossible with this cost function.

Intuitively, the problem is that in (4.5) the values of the channel h are completely

unconstrained, i.e. there are enough degrees of freedom in the variability of the channel

that the cost function can always be forced to zero, even though the resulting “optimal”

channel could be disjoint and unrealistic.

To limit the variability of h we constrain allowable h vectors to a subset of the

complex vector space:

min
h,x

‖y − Ah‖2 (4.6)

s.t. h ∈ H
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where H is the set of allowable h vectors with limited variation.

If we let H be a vector subspace, then the constraint h ∈ H is equivalent to

h = FFHh where F = [f1, · · · , fI ] contains the orthonormal basis vectors that span the

subspace, where I is the number of bases vectors used. This constraint is equivalent to

approximating the channel as a linear combination of a few orthonormal basis vectors:

h ≈ Fα, (4.7)

where α = FHh is a length I vector of coefficients corresponding to each basis vec-

tor. Thus, our channel approximation (equivalently, the subspace of allowed channel

variability) allows time-variation of the type:

hn =

I
∑

i=1

αifi[n], (4.8)

where fi[n] is the nth element of the ith basis vector.

The orthonormal bases fi can be chosen to allow any sort of time variation,

and thus can accommodate, for example, the basis expansion model (BEM) [4], discrete

prolate spheroidal sequences [5], or a simple polynomial approximation:

hn = α1 + α2n + α3n
2 + . . . (4.9)

Applying the above constraint to (4.6) (which is accomplished by simply replacing

h with FFHh), we have

(ĥ, x̂) = min
h,x

∥

∥y − AFFHh
∥

∥

2
. (4.10)

The ĥ that minimizes (4.10) for any particular x is given by

ĥ = FFHAHy. (4.11)

Substituting (4.11) into (4.10) gives us a cost function that is solely a function of the

transmitted data:

Λ(ĥ,x) = Λ(x) =
∥

∥y − AFFHAHy
∥

∥

2
(4.12)

or, after dropping terms constant in x,

Λ(x)
.
= −yHAFFHAHy. (4.13)
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This cost function is completely independent of the statistics of both the time-varying

channel and the additive white Gaussian noise, and is therefore suitable for data de-

tection in general time-varying channels of unknown distribution. Finally, in order to

construct and implement this cost function the number of basis functions I that are used

to parameterize the channel must be determined. The method used to select the value

of I is treated in Section 4.7.

Note that the cost function in (4.13) contains a phase ambiguity, i.e. the cost of

the data sequence xejθ is the same for any value of θ. It is the requirement that this

phase ambiguity be resolved (as well as the added robustness to time-variation) that

motivates the use of a differentially encoded data sequence.

Since F is defined as a size N by I matrix composed of I orthonormal basis

vectors, we have the condition that I ≤ N . If F is a square matrix, or I = N , then we

have FFH = I, and the cost function in (4.13) reduces to Λ(x) = −yHy, independent of

the transmitted data x, and maximization over the data symbols is impossible. Thus,

we have the condition that I ≤ N − 1, i.e. we must use at most one less basis vector

than the number of data symbols in y.

Re-writing the cost function (4.13) in scalar form, we have

Λ(x) = −
I
∑

i=1

∣

∣

∣

∣

∣

N
∑

n=1

ynx∗
nf∗

i [n]

∣

∣

∣

∣

∣

2

. (4.14)

To force the channel to be constant, we set I = 1 with f1[n] = 1/
√

N . In this case the

cost function reduces to

Λ(x) = −
I
∑

i=1

∣

∣

∣

∣

∣

N
∑

n=1

ynx∗
nf∗

i [n]

∣

∣

∣

∣

∣

2

= −N

∣

∣

∣

∣

∣

N
∑

n=1

ynx∗
n

∣

∣

∣

∣

∣

2

which is equivalent to the MSDD cost function derived in [23] for multiple symbol DPSK

in a constant channel.

4.3 Performance Analysis

For the MSDD-US system analyzed in this work, the probability of bit error can

be approximated by

Pb ≈
1

log2(M)(N − 1)

∑

x′∈χ

w(x → x′)P (x → x′) (4.15)
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where N − 1 is the number of information symbols in the transmitted sequence x, M is

the size of the symbol alphabet, χ is the set of dominant error events, w(x → x′) is the

hamming weight or number of differing bits in the underlying data sequences sn and s′n,

and P (x → x′) is the pairwise error probability (PEP), the probability that the receiver

chooses x′ over x when x was transmitted.

We consider the same dominant error events as in [26], i.e. we define the set of

dominant error events as those that maximize the correlation metric

µ =

∣

∣

∣

∣

∣

1 +
N
∑

k=2

x∗
nx′

n

∣

∣

∣

∣

∣

. (4.16)

When N > 2 and M > 2, there are 2N such error events: each x′
n being ±2π/M away

from the true xn, and {x′
2, . . . , x

′
N} all being ±2π/M away from the true values. When

N = 2 there are two dominant error events: x′
2 being ±2π/M away from x2.

Each of the dominant error events satisfying (4.16) differs from the transmitted

sequence in exactly one symbol location. Since the underlying data is differentially

encoded, if the bits are properly mapped to PSK symbols with Gray coding, then one

dominant symbol error in x′ corresponds to two bit errors: one bit error reaching the

errant symbol, and one leaving it. If the symbol error is at the beginning or end of the

block, only one bit is in error.

Thus, the hamming weight of a dominant error event is

w(x → x′) =











1, i = 1, i = N

2, 2 ≤ i ≤ N − 1
(4.17)

where i is the location of the symbol error.

The receiver decides upon x̂ if

x̂ = arg min
x

Λ(x) (4.18)

so to make the pairwise error x → x′, we require Λ(x) > Λ(x′). The PEP is then

P (x → x′) = P (Λ(x′) − Λ(x) ≤ 0) or

P (x → x′) = P (yH(AFFHAH − A′FFHA′H)y ≤ 0)

= P (∆ ≤ 0).

where we have defined

∆ ≡ yH(AFFHAH − A′FFHA′H)y. (4.19)
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To evaluate the PEP we need to compute the integral

P (∆ ≤ 0) =
1

2πj

∫ c+j∞

c−j∞

Φ∆(s)

s
ds (4.20)

where Φ∆(s) is the moment generating function of ∆ and c is an arbitrary constant in

the real part of the region of convergence of Φ∆(s). As shown in [36],

P (∆ ≤ 0) ≈ 1

ν

ν/2
∑

k=1

Re{Φ∆(c + jcτk)}

+ τkIm{Φ∆(c + jcτk)} (4.21)

where τk = tan((2k − 1)π/(2ν)), the parameter ν is even, and Re{·} and Im{·} denote

the real and imaginary parts, respectively. The approximation can be made tighter

by increasing the value of ν. To ensure that c is within the real part of the region of

convergence of Φ∆(s), it is chosen as half the real part of the right-hand pole of Φ∆(s)

closest to the imaginary axis.

Using (4.21), all that is required to evaluate the error performance of the proposed

detection scheme under various types of fading is to determine the moment generating

function Φ∆(s) for each particular fading process of interest.

4.3.1 Rician Fading

Under Rician fading the channel hn is composed of the sum of a scattering com-

ponent and a time-varying line-of-sight (LOS) component [37]. In other words hn is

distributed as CN (h̄n, σ2
h) where h̄n = E[hn] = µ exp (j2πflTn) is the time-varying LOS

component, σ2
h is the power of the scattering component, and µ is a complex constant

that does not vary in time. The LOS Doppler shift fl depends upon the maximum

Doppler shift fd as defined by fl = fd cos(θ0), where θ0 is the angle of arrival of the LOS

component relative to the difference in velocity between the receiver and transmitter.

The Rician K-factor is defined as the ratio of power in the LOS component to

the scattering component: K ≡ |µ|2/σ2
h. We normalize total channel power to one:

E[|hn|2] ≡ 1 = |µ|2 + σ2
h and so |µ|2 = K/(K + 1) and σ2

h = 1/(K + 1).

The channel is therefore given by

hn =

√

K

K + 1
e(j2πflTn)ejθ +

√

1

K + 1
vn (4.22)

where θ is the phase of µ and vn, the scattering component of the channel, is a complex

Gaussian circularly-symmetric random variable distributed as CN (0, 1).
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The time-correlation of the channel scattering component vn is defined by the

Jakes’ model [38] as E[vnv∗m] = J0(2πfdT (n−m)) where J0(·) is the zeroth order Bessel

function of the first kind.

The mean of the vector form of the channel h is

h̄ = E[h] =

√

K

K + 1
uejθ

where the elements of u are un = exp (j2πflTn) and the covariance is

Ch = E[(h − h̄)(h − h̄)H ] =
1

K + 1
RJ

where RJ is the time-correlation matrix of the scattering component of the channel with

elements RJ{n,m} = E[vnv∗m].

Using the channel model given in (4.22), y is a complex Gaussian vector with

mean

ȳ = E[y] =

√

K

K + 1
Auejθ (4.23)

and covariance

Cy = E[(y − ȳ)(y − ȳ)H ]

=
1

K + 1
ARJAH + σ2I. (4.24)

Thus, the random variable ∆ is a Hermitian quadratic form of a complex normal

random variable. From [39] the moment generating function of ∆ is given by

Φ∆(s) =
exp{−ȳHC−1

y

(

I− (I + sCyQ)−1
)

ȳ}
|I + sCyQ| (4.25)

where Q ≡ AFFHAH − A′FFHA′H . Error performance in Rician fading can now be

easily computed by using (4.21) and evaluating Φ∆(s) at the specified points.

4.3.2 Rayleigh Fading

Rayleigh fading is equivalent to Rician fading with Rician K-factor equal to

zero. There is no LOS component and the channel is therefore hn = vn with the same

time-correlation as in the previous section.

Under Rayleigh fading the received data vector y is a complex Gaussian vector

with mean ȳ = 0 and covariance

Cy = E[yyH ] = ARvA
H + σ2I.
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The moment generating function in this case is much simpler and is given by

Φ∆(s) =
1

|I + sCyQ| ,

and the PEP can be numerically evaluated with (4.21).

Alternatively, it is possible to obtain the pairwise error probabilities for Rayleigh

fading in closed form. If x and x′ differ in the pth symbol position, then the PEP

P (x → x′) = P (∆p ≤ 0) where there random variable ∆p can be written as

∆p = ℜ{2XY}

with

X = y∗p(xp − x′
p)

Y =

N
∑

n=1,n 6=p

y∗nxn

I
∑

i=1

fi(n)f∗
i (p).

Both X and Y are zero-mean complex Gaussian random variables, expressions developed

in [40] reduce to

P (∆p ≤ 0) =
1

2



1 − 1
√

1 + 2
(1−cos(2π/M))ρp



 , (4.26)

where

ρp =
|µxy|2

σ2
xσ2

y − |µxy|2
, (4.27)

σ2
x = |xp − x′

p|2(1 + σ2
n), (4.28)

σ2
y =

N
∑

n=1,n 6=p

N
∑

m=1,m6=p

Cy{n,m}xnx∗
m

I
∑

i=1

fi(n)f∗
i (p)

I
∑

k=1

f∗
k (m)fk(p), (4.29)

µxy = (xp − x′
p)

N
∑

n=1,n 6=p

Cy{n,p}x
∗
n

I
∑

i=1

f∗
i (n)fi(p). (4.30)

Thus, the pairwise error probabilities for the dominant error events in Rayleigh fading

can be calculated using (4.26)-(4.30).

4.4 Complexity Reduction via Sphere Decoding

The complexity of a brute force search over the cost function in (4.13) is expo-

nential in the block size N , since the cost function must be evaluated for each of MN−1
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possible transmitted sequences. Sphere decoding is a search-space reduction technique

for finding the closest lattice point to a given point (see [41] and [42]).

To reduce the complexity of our detector, we employ sphere-decoding with radius

update and the Schnorr-Euchner [43] search strategy as presented in [1]. The algorithm

in [1] relies on known Rayleigh fading statistics and is capable of efficiently solving a

shortest-vector problem of the form

x̂ = arg min
x

‖Ux‖2 (4.31)

where U is an upper triangular matrix.

To manipulate our cost function into the form of (4.31) we first note that

x̂ = arg min
x

yHA(−FFH)AHy

= arg min
x

yHA(ǫI − FFH)AHy (4.32)

for any value of ǫ since the additional term yHA(ǫI)AHy = ǫyHy is independent of the

data vector x.

We then rewrite (4.32) as

x̂ = arg min
x

(diag{y}x∗)H(ǫI − FFH)(diag{y}x∗)

and apply the Cholesky factorization to obtain (ǫI − FFH) = LLH with the condition

that ǫ > 1 to ensure that (ǫI−FFH) is positive definite (the nonzero eigenvalues of FFH

are equal to one since F is composed of orthonormal vectors). Setting U = (LHdiag{y})∗

puts the problem into the form of (4.31), and implementation follows [1] closely.

Note on the choice of ǫ: The choice of ǫ greatly affects the complexity (number of

visited nodes) of the sphere-decoding algorithm. For larger values of ǫ, a larger constant

term is added to the cost function. The effect of this is a reduced relative spread between

values of the cost function at different hypothesized sequence points. This requires the

sphere-decoding algorithm to search farther down a particular path before learning that

nodes beyond the current node are outside the sphere, resulting in a higher total number

of visited nodes. For this reason, ǫ should be chosen as small as possible, yet still large

enough to avoid problems with numerical precision. We have found that for a wide range

of channel conditions and parameters, a value of ǫ = 1.001 works well.
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4.5 Optimal Known-Statistics Cost Functions

We would like to compare the performance of our MSDD-US detection scheme

to detectors that are optimal in both the Rayleigh and Rician fading channel. In this

section we review the optimal cost functions and discuss their complexity.

The optimal detectors are found by joint maximum likelihood detection of the dif-

ferentially encoded information symbols and require full knowledge of the fading channel

distributions.

For Rayleigh fading, the cost function to maximize for MLSE detection is [26]

Λ(x) = yHA
(

RJ + σ2I
)−1

AHy. (4.33)

This detector requires knowledge of both the SNR and the second-order statistics of the

channel E[hhH ].

For Rician fading, the cost function to maximize for MLSE detection was devel-

oped in [27]

Λ(x) = exp
{

−yHC−1
y y

}

I0

(

2|zHC−1
y y|

)

(4.34)

where I0(·) is the zeroth-order modified Bessel function of the first kind. This detector

requires knowledge of the SNR, the Rician K-factor, and the second-order statistics of

the non-zero mean channel E[(h − h̄)(h − h̄)H ].

It was shown in [1] that a reduced-complexity implementation exists for the

optimal Rayleigh fading detector (4.33), however there is no fast way to implement

the known-statistics Rician cost function given in (4.34). Consequently, the estimated

transmitted data sequence must be found by a brute force search. This is in contrast

with our detection strategy derived in section 4.2, which is implementable with a sphere-

decoding algorithm. Thus, while the cost function of (4.34) achieves optimal performance

in Rician fading, there is a huge penalty in terms of implementation complexity as

compared to our sub-optimal detection scheme.

4.6 Performance Results

4.6.1 Channel Parameterization Vectors

We present four versions of our MSDD-US detector using between 2 and 5 ba-

sis vectors to parameterize the channel. For simplicity, we choose an orthonormalized
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Figure 4.2: Orthonormalized Chebyshev polynomial-based basis vectors for N = 10.

Chebyshev polynomial basis in which to restrict the time-varying channel. Fig. 4.2 shows

these basis vectors for a block length of N = 10. For example, if three basis vectors are

to be used in the MSDD-US detector, the first three vectors (the constant, linear, and

quadratic components) are used in the construction of the F matrix.

4.6.2 Rayleigh and Rician BER Performance

Here we present bit error rate (BER) performance results of our derived unknown-

statistics multiple-symbol differential detector (MSDD-US) in frequency-flat Rayleigh

and Rician fading channels, using a signal constellation of 4-PSK.

We compare the performance of our MSDD-US detector to:

• Standard DPSK

• Coherent detection with differential encoding (“Dif-Coh”), i.e. perfectly known

channel state, which provides a lower bound on BER performance for any detection

method when the information symbols are differentially encoded.

• Monte-Carlo simulations of the optimal known time-varying-statistics methods

((4.33) for Rayleigh fading, (4.34) for Rician fading), referred to here as the “Known

Stats” method.

Fig. 4.3 shows BER performance in Rayleigh fading for a block length N = 10

and normalized Doppler shifts of fdT = 0.01 and fdT = 0.03. Fig. 4.4 shows BER
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Figure 4.3: Bit error rate vs. SNR in Rayleigh fading for block size N = 10. Results are
shown for parameterization orders of 2, 3, 4, and 5, and normalized Doppler values of
fdT = 0.01 and fdT = 0.03. In both Doppler scenarios the performance is compared with
4-DPSK, the known-statistics detector, and differentially-encoded coherently-detected
4PSK. Curves are analysis and solid points are simulated.

performance in Rician fading for a block length of N = 6 with Rician K-factors of

K = 1 and K = 5, and scattering component and LOS normalized Dopplers of {fdT =

0.01, flT = 0} and {fdT = 0.03, flT = 0.01}. In both figures, lines show the theoretical

performance as derived in section 4.3 and solid symbols show the simulated MSDD-US

detection scheme using sphere decoding. Squares, triangles, circles, and “x”s correspond

to parameterization orders of I = 2, 3, 4 and 5, respectively.

In each of these scenarios, all versions of the MSDD-US detector outperform

ordinary DPSK above a certain SNR threshold, above which the DPSK detector’s per-

formance is degraded by being unable to account for the time-variation in the channel,

evidenced by an error floor.

If too few basis vectors are used, error floors result, with worse performance for

higher Doppler spreads. In these cases the chosen basis cannot fully describe all of the
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Figure 4.4: Bit error rate vs. SNR in Rician fading for block size N = 6. Results are
shown for parameterization orders of 2, 3, 4, and 5, scattering Doppler values of fdT =
0.01 and fdT = 0.03, LOS Doppler values of flT = 0 and flT = 0.01, and Rician K-
factors of K = 1 and K = 5. In both channel scenarios the performance is compared with
4-DPSK, the known-statistics detector, and differentially-encoded coherently-detected
4PSK. Curves are analysis and solid points are simulated.

channel time-variation, and channel estimation error plays a large role in overall BER

performance. For example, in Fig. 4.3 for a normalized Doppler of fdT = 0.03, choosing

I = 2 overly constrains the allowable amount of time-variation as compared to the actual

channel variation.

Conversely, if the channel order is overparameterized, there are no error floors,

but there is a performance gap as compared to the optimal “known stats” detector that

is most pronounced at lower levels of channel time-variation. This is due to the chosen

basis allowing too much channel time-variation, or, in another sense, the channel estimate

using the additional parameters to fit to the noise.

In each scenario, there is a parameterization order I, for which the MSDD-US

detectors performance is very close to that of the optimal “known stats” detector. In

this case, the actual time-variation of the channel is a close match to the chosen vector
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Figure 4.5: BER vs. block size N in Rayleigh fading for parameterization orders of 1,
2, 3, 4, and 5, SNR values of 10 dB and 30 dB, and Doppler values of fdT = 0.001 and
fdT = 0.03.

space of allowable time variation.

The value of I is clearly closely linked to the normalized Doppler fdT of the

channel, with a larger I required as the Doppler increases. In order for the MSDD-US

detector to be practical, it is necessary to find a priori combinations of block size N and

parameterization order I that provide good performance over a wide range of channel

conditions.

To accomplish this, in the next sections we examine performance vs. block size

and performance vs. symbol location in order to draw conclusions about a proper choice

of the parameterization order.

4.6.3 Performance vs. Block Size N

Fig. 4.5 shows Rayleigh BER performance vs. block size N for various parame-

terization orders, normalized Doppler shifts of fdT = 0.001 and fdT = 0.03, and SNR of

10dB and 30dB.

Regions of negative slope correspond to overparameterization, i.e. there are too
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many basis functions I as compared to the block size N and the channel estimate is

over-fitting the noise. As N is decreased the performance degrades further because the

space of allowable time-variation becomes larger relative to the full vector space. The

performance degradations in these regions are most prominent at high SNR.

Regions of positive slope correspond to underparameterization, i.e. there are

too few basis functions to describe the time-variation of the channel. The error floors

that go along with underparameterization are indicated by the convergence of curves

at differing SNRs, for example the parameterizations I = 1 and I = 2 at normalized

Doppler fdT = 0.03. As N is increased performance worsens because the channel is even

more restricted relative to its length. The performance degradations in these regions are

most prominent at high Doppler.

Points of zero slope correspond to an optimal choice of channel parameterization

I, given the block size N .

Maximum sensitivity to the parameterization order I occurs when both the SNR

and Doppler are high, which suggests that the choice of N and I should be based on

performance in this regime. Following this logic, when N = 10, one should choose I = 4

or I = 3 for good performance up to an SNR of 30dB and Doppler up to fdT = 0.03,

which is validated in Fig. 4.4.

However, using this technique for selection of I, the performance is still subject

to slight overparameterization within the range of interest, and to error floors outside

this range.

4.6.4 Performance vs. Symbol Location

In Fig. 4.6 we examine the Rayleigh fading pairwise error probabilities of different

symbols within the block for various parameterization orders, normalized Doppler shifts

of fdT = 0.001 and fdT = 0.03, SNR of 10dB and 30dB, and block size of N = 10.

It is clear that when the channel is overparameterized (e.g. I = 5 in Doppler of

fdT = 0.001), the PEPs of the two symbols on the outside of the block are significantly

larger than the others, and contribute most to the degradation of the overall BER.

Similarly, when the channel is underparameterized (I = 1 in Doppler of fdT = 0.03), the

PEPs of the two outside symbols are also the largest, but not as drastically so. Similar

observations have been made for the known-statistics detectors ( [40], [35]).
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Figure 4.6: Pairwise error probability vs. location in the block of symbols for parame-
terization orders of 1, 3, and 5, SNR values of 10 dB and 30 dB, and Doppler values of
fdT = 0.001 and fdT = 0.03.

4.6.5 Improving Performance via “Subset MSDD”

These observations suggest that using a subset method ( [35]), i.e. using only

the decisions on the innermost N − 2 symbols and ignoring the two outside symbols can

protect against performance degradation due to overparameterization as well as slightly

improve the error floors resulting from underparameterization.

To illustrate the performance improvements of this concept, in Fig. 4.7 we plot

BER of our detector in Rayleigh fading vs. normalized Doppler fdT for various parame-

terization orders, an SNR of 30dB, and block size N = 10, for both standard and subset

MSDD.

Regions of positive slope correspond to an error floor which worsens as the

Doppler increases, as a particular parameterization order cannot handle the time-variation

of the channel. Curves that are constant across the whole Doppler range, such as the

I = 5 detector, can fully describe the channel time-variation but suffer from overparame-

terization at lower Doppler. However, when the subset technique is used, the performance

is greatly improved as the overparameterization effects have been suppressed.
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Rayleigh fading vs. Normalized Doppler for parameterization orders of 1, 2, 3, 4, and 5,
fixed SNR = 30dB, and block size N = 10.

These results motivate the choice of a larger parameterization order I for a given

block size N , as any possible overparameterization effects can be suppressed by using

the subset-technique.

The trade-offs in using this technique are overhead and complexity for perfor-

mance, as the two outside symbols must be decoded, but are not used.

4.7 Selection of the Channel Parameterization Order

The numerical results in the previous sections provide insight that allows us to

select the channel parameterization order I for a given block size N to design detectors

that perform well and are robust to high levels of channel time-variation.

In this section, we consider the block size N and choice of parameterization or-

der I that provide good performance in a given SNR and Doppler range of interest. For

example, we consider SNR and Doppler range of interest to be 0 − 40dB and 0.00 to
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Figure 4.8: Bit error rate performance in Rayleigh fading of some particularly robust
pairs of window size N and parameterization order I.

0.05, respectively. The block size N should be large enough to obtain joint-detection

performance gains, but also small enough to keep complexity low. Additionally, using a

small block size N with the subset technique requires much more overhead than a larger

N . This means that for smaller N , we are more concerned with possible overparameter-

ization since we cannot suppress it with the subset technique, hence we must choose I

low and deal with error floors at the high end of our Doppler range.

For larger N we simply choose I large and to have a very low error floor outside

our Doppler range of interest, and we rely on the subset technique to improve perfor-

mance at lower Doppler and lower SNR.

In Fig. 4.8 we plot BER performance in Rayleigh fading vs. both Doppler and

SNR for three well-performing combinations of block size and parameterization order

{N, I}: {6, 2}, {9, 4}-subset, and {20, 7}-subset. Lines show theoretical performance

from section 4.3 and solid symbols show simulated MSDD-US using sphere decoding.

Squares, circles, and triangles correspond to {6, 2}, {9, 4}-subset, and {20, 7}-subset,

respectively.
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All three versions of the detector perform exceptionally well over the entire SNR

and Doppler range of interest, with the exception of the {6, 2} detector in high Doppler,

for the reasons mentioned above. In particular the {20, 7}-subset detector performs

within about 2.5dB of the differential-coherent lower bound over the entire range of

interest.

4.8 Complexity
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Figure 4.9: Complexity vs. 10 log10(Eb/N0) of our detection method (MSDD-US) with
sphere decoding compared to the known-statistics sphere decoding technique of [1] in
Rayleigh fading.

In Fig. 4.9 we plot complexity vs. SNR of our detection method (MSDD-US) with

sphere decoding compared to the known-statistics sphere decoding technique of [1] for

a variety of parameterization orders in two different Rayleigh fading scenarios: N = 10

with fdT = 0.03 and N = 6 with fdT = 0.01. Our measure of complexity is the number

of prospective sequence points visited by the algorithm (if a whole branch of sequence

points is excluded, it is counted as one sequence point visited), which we can compare

to the number of cost function evaluations required for a brute force search, which for

N = 6 is M (N−1) = 1024 and for N = 10 is 262,144. In all scenarios the complexity of

MSDD-US with sphere-decoding is typically much less than an order of magnitude away
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from that of the “known-stats” method [1], and is far superior to a brute-force search.

4.9 Conclusion

We have derived a block-detection method for multiple symbol DPSK for use in

a statistically unknown time-varying channel. We provide a parameterization framework

for the channel which allows us to derive a data-detection cost function that does not

require channel statistics, and is thus suitable for use in a general statistically-unknown

time-varying channel. Additionally, we have provided a reduced-complexity implemen-

tation based on sphere decoding, which is many orders of magnitude less complex than a

brute-force cost function optimization. This is especially attractive for the case of Rician

fading, for which there is no other reduced-complexity implementation.

We show that this truly blind detection method obtains near-optimal perfor-

mance (within about 2.5dB of differential-coherent detection) over a wide range-of-

interest of both SNR and Doppler.

Chapter 4, in part, is a reprint of the papers “Block Detection of Multiple Sym-

bol DPSK in a Statistically Unknown Time-Varying Channel” Nathan D. Ricklin and

James R. Zeidler, as it appeared in the proceedings of IEEE ICC, Dresden, 2009; “Multi-

ple Symbol Differential Detection of MPSK over Statistically-Unknown, Frequency-Flat,

Time-Varying Channels” Nathan D. Ricklin and James R. Zeidler, accepted for publica-

tion in the IEEE Transactions on Communications.



Chapter 5

ICI Reduction:

Constant-Magnitude Correlative

Coding

Orthogonal frequency division multiplexing (OFDM) and its multiple-access ex-

tension OFDMA, are widely used in wireless systems due to their high spectral efficiency,

ease of implementation, and robustness to frequency selective channels. In particular,

OFDMA has been used in commercial standards such as the LTE downlink [44], digital

video broadcasting [45], and the wireless metropolitan-area network standard [46].

To maintain subcarrier orthogonality, the OFDM system must operate over a

time-invariant channel. However, if the receiver or transmitter are mobile, a Doppler

shift spreads the received signal in frequency, and causes the multipath channel to vary in

time. This channel time-variation destroys the orthogonality of the subcarriers, resulting

in so-called intercarrier interference (ICI), which degrades system performance [7].

Previous efforts to reduce the impact of ICI include frequency-domain equaliza-

tion, which aims to invert the known or estimated frequency-domain channel matrix.

To reduce the complexity of this task, [47] uses a short equalizer to undo the effect

of only the significant nearby adjacent subcarriers, while [48] finds an efficient way to

compute the inverse using FFTs. Such methods still entail significant complexity and

require knowledge of the frequency channel matrix, which in a fast-fading environment

can significantly change from OFDM symbol to OFDM symbol.

Other methods of reducing ICI include time-domain windowing [49], [50], but

66
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these reduce spectral efficiency or rely on the guard interval being larger than the channel

impulse response.

A third way to mitigate the effects of ICI involves coding the transmitted data

sequence in frequency such that it has an autocorrelation that causes a reduction in ICI

power. Such correlative coding techniques are attractive because they require no special

modifications to the transmitter or receiver; the data is simply coded before transmission

and decoded after it is received.

The so-called ICI self-cancellation technique [51] intersperses symbols with re-

dundant 180 degree phase shifted copies to achieve the desired autocorrelation, at the

expense of throughput. The ICI compression technique [52] takes a different approach:

filtering the frequency-domain data with a 2-tap FIR filter with coefficients [1,−1]. Fur-

ther analysis and performance bounds are provided in [53]. An extension to the ICI

compression technique to FIR filters of length greater than 2 is derived in [2], and opti-

mal coefficients are provided.

The drawback of the above correlative coding schemes are that they result in

the transmission of non-constant magnitude symbols, and frequently null symbols. This

has consequences for blind detection: non-constant magnitude symbols can increase

the complexity of blind detection algorithms by requiring matrix inversions where they

would otherwise be unnecessary, and null data symbols provide no information about

the channel at their location.

In this chapter we first express ICI power in a form that makes clear the effect

of the autocorrelation of the data sequence. After providing insight into how to design

the autocorrelation, we present a simple constant-magnitude correlative coding (CMCC)

scheme by which binary data is placed onto the unit circle in such a way that the resulting

autocorrelation is favorable to reducing ICI power. The scheme is similar to both DPSK

and symmetric DPSK [54], [55]. Also, a similar unit-circle modulation scheme for limiting

adjacent-channel interference was outlined in [56].

We then present comparisons that show that the proposed CMCC scheme reduces

ICI power similarly to that of the Partial Response Coding (PRC)-based schemes of [2]

and [52], and that a parameter in the CMCC scheme, which we term the modulation

angle, can be adjusted to increase or decrease the degree of ICI power reduction.

Next, we design a blind detector for a short block of contiguous CMCC-encoded

symbols in the frequency-domain (e.g. the block of symbols could be an OFDMA subcar-
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rier allocation) that have been transmitted through a time-varying frequency-selective

channel. The constant-magnitude nature of the encoded data directly enables efficient

optimization methods such as sphere decoding to be applied to the blind detection prob-

lem. This is not possible with varying-magnitude correlative coding schemes such as

PRC, which must use a brute-force search in their associated blind detectors.

Performance simulations show that the CMCC encoding and blind detection

combination is both effective at reducing ICI and can achieve bit error rates better than

that of coherent uncoded OFDM and the PRC-based correlative coding methods, while

maintining a low implementation complexity.

5.1 OFDM Data Transmission

A block of information to be transmitted across the channel is first encoded into

the sequence of symbols xk, 1 ≤ k ≤ N , which are considered to be in the frequency

domain. The inverse DFT is applied to the sequence to bring it into the time-domain

for transmission:

xt
n =

N
∑

k=1

xke
j2πnk/N .

The sequence is then cyclically extended (to account for the delay spread of the channel)

and transmitted. The received time-domain sequence is given by

yt
n =

L
∑

l=1

ht
l,nxt

n−l+1 + wt
n (5.1)

where ht
l,n is the time-varying multiplicative channel gain of the lth path at time n, wt

n

is additive white Gaussian noise with power E|wt
n|2 = σ2

n, and L is the length of the

channel impulse response. We assume that the time-domain channel is Rayleigh fading

and that discrete channel paths are uncorrelated, i.e. E[ht
l1,n1

ht∗
l2,n2

] = 0 when l1 6= l2.

We also assume that all paths have the same maximum Doppler frequency fd, thus the

time correlation of the lth channel gain is

E[ht
l,n1

ht∗
l,n2

] = σ2
l rh(n1 − n2) (5.2)

where according to the Jakes’ channel model [38] rh(n1−n2) = J0(2πfdTs(n1−n2)) and

J0(·) is the zeroth order Bessel function of the first kind. The power in the lth channel
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gain is σ2
l , 1 ≤ l ≤ L, and the total power in the channel is normalized:

L
∑

l=1

σ2
l = 1. (5.3)

At the receiver, the cyclic prefix is removed and then the DFT is applied to bring

the received sequence back into the frequency domain.

yk =
N
∑

n=1

yt
ne−j2πkn/N .

After cyclic-prefix removal the length-N complex-baseband received sequence is

stacked into the vector y and is given by

y = FHtF
Hx + w (5.4)

where x = [x1, · · · , xN ]T contains the frequency-domain transmitted symbols with av-

erage transmitted power E|xn|2 = 1, F is the discrete Fourier transform (DFT) matrix

with {m,n}th entry fm,n = 1√
N

e−j2π(m−1)(n−1)/N , w = [w1, · · · , wN ]T is the DFT of the

noise sequence wt
n with covariance E[wwH ] = σ2

nI.

The structure of Ht takes into account the FIR filtering effect of the multipath

channel as well as the cyclic prefix addition and removal. If the cyclic prefix is of sufficient

length and the channel is time-invariant (i.e. no Doppler spread, no CFO, etc.) then

Ht is a circulant matrix and can be diagonalized by the DFT matrix, and the effective

frequency-domain channel, defined by

H ≡ FHtF
H (5.5)

is diagonal and there is no ICI. However when the channel is time-varying, Ht cannot

be diagonalized and ICI is manifested as non-zero off-diagonal entries of H.

Each element of H is given by

hk,n =
1

N

N
∑

i=1

L
∑

l=1

ht
l,ie

−j2π(i(k−n)+l(n−1)−k+1)/N (5.6)

and the correlation between any two elements is

E
[

hk1,n1
h∗

k2,n2

]

=
1

N2

N
∑

i1=1

N
∑

i2=1

L
∑

l1=1

L
∑

l2=1

E
[

ht
l1,i1h

t∗
l2,i2

]

×e−j2π(i1(k1−n1)+l1(n1−1)−k1−i2(k2−n2)−l2(n2−1)+k2)/N (5.7)

=
1

N2

N
∑

i1=1

N
∑

i2=1

L
∑

l=1

σ2
l rh(i1 − i2)

×e−j2π(i1(k1−n1)+l(n1−n2)−k1−i2(k2−n2)+k2)/N (5.8)
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where (5.8) follows from the uncorrelated nature of the different channel taps.

5.2 ICI and Signal Design Criteria

In this section we present the ICI power in terms of the autocorrelation function

of the transmitted sequence and develop conditions that must be satisfied in order to

reduce the ICI power.

5.2.1 ICI Analysis

Consider the intercarrier interference power onto the kth OFDM tone. The

received data at the kth tone yk is given by

yk =

N
∑

n=1

hk,nxn + wk (5.9)

= hk,kxk +

N
∑

n=1
n 6=k

hk,nxn + wk (5.10)

where hk,n is the {k, n}th element of the frequency-domain channel matrix H, i.e. the

effect of the data transmitted on the nth subcarrier onto the kth subcarrier at the

receiver. The first term of (5.10) is the signal component and the second term is the ICI

component.

We first find the power in the signal component:

PSIGNAL = E |hk,kxk|2 (5.11)

=
1

N2

N
∑

i1=1

N
∑

i2=1

rh(i1 − i2)

L
∑

l=1

σ2
l (5.12)

=
1

N2

N
∑

i1=1

N
∑

i2=1

rh(i1 − i2). (5.13)

The ICI Power onto the kth tone is then given by

PICI = E

∣

∣

∣

∣

∣

∣

∣

N
∑

n=1
n 6=k

hk,nxn

∣

∣

∣

∣

∣

∣

∣

2

(5.14)

=

N
∑

n=1
n 6=k

E|hk,n|2 +

N
∑

n=1
n 6=k

N
∑

m=1
m6=k
m6=n

E
[

hk,nh∗
k,m

]

E [xnx∗
m] (5.15)

≡ PICI OFDM + PICI MOD. (5.16)
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The first term in (5.15) is the ICI due to uncoded OFDM and is given by

PICI OFDM =

N
∑

n=1
n 6=k

E|hk,n|2 (5.17)

=

N
∑

n=1
n 6=k

1

N2

N
∑

i1=1

N
∑

i2=1

rh(i1 − i2)e
−j2π((i1−i2)(k−n))/N (5.18)

=
N − 1

N
− 1

N2

N
∑

i1=1

N
∑

i2=1
i2 6=i1

rh(i1 − i2) (5.19)

= 1 − 1

N2

N
∑

i1=1

N
∑

i2=1

rh(i1 − i2) (5.20)

= 1 − PSIGNAL (5.21)

where (5.19) follows from taking the sum over n which results in

N
∑

n=1
n 6=k

e
j2π
N

(i1−i2)n =











−e
j2π

N
(i1−i2)k, i1 6= i2

N − 1, i1 = i2

(5.22)

and (5.20) is evident because rh(0) = 1.

The second term in (5.15) is a modification to the total ICI power and is directly

impacted by the autocorrelation of the transmitted sequence xk. To determine the

dependence of total ICI power we analyze this term. We first note that

E
[

hk,nh∗
k,m

]

=
1

N2

N
∑

i1=1

N
∑

i2=1

rh(i1 − i2)e
−j2π

N
(i1(k−n)−i2(k−m)+n−m)Zn−m (5.23)

where Zτ , defined as

Zτ ≡
L
∑

l=1

σ2
l e

−j2π

N
(l−1)τ (5.24)

contains the whole effect of the frequency selectivity of the channel. For example for a

frequency-flat channel, we have L = 1 and Zτ = 1.
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Developing the second term in (5.15), we have

PICI MOD =

N
∑

n=1
n 6=k

N
∑

m=1
m6=k
m6=n

E
[

hk,nh∗
k,m

]

E [xnx∗
m] (5.25)

=
1

N2

N−1
∑

τ=1

N
∑

n=τ+1
n 6=k

n 6=k+τ

rx(τ)

×
N
∑

i1=1

N
∑

i2=1

rh(i1 − i2)e
−j2π

N
(k(i1−i2)−n(i1−i2)−i2τ+τ)Zτ . (5.26)

where we have substituted (5.23) into (5.25), we have made the change of variables

τ = n − m, and rx(τ) = E[xnx∗
n−τ ] is the autocorrelation of the data sequence.

For simplicity, we assume that the tone of interest k is not near the edge of

the OFDM symbol, which has the side effect of removing the dependence on k. This is

accurate if k is farther than about 3 symbols away from the edge. To achieve this we make

the assumption that the data sequence is circularly correlated, that is E[x1x
∗
N ] = rx(1),

E[x2x
∗
N ] = rx(2), etc. The result of this assumption is that the sum over n is extended

to begin at 1 instead of τ + 1.

Performing the sum over n in (5.26), we have

N
∑

n=1
n 6=k

n 6=k+τ

e
j2π
N

(n(i1−i2)) =











−e
j2π

N
(i1−i2)k − e

j2π

N
(i1−i2)(k+τ), i1 6= i2

N − 2, i1 = i2

(5.27)

and then substituting (5.27) back into (5.26) results in

PICI MOD =
−1

N2

N−1
∑

τ=1

rx(τ)

N
∑

i1=1

N
∑

i2=1
i2 6=i1

rh(i1 − i2)
(

ej 2π
N

(i1−1)τ + ej 2π
N

(i2−1)τ
)

Zτ

=
N−1
∑

τ=1

rx(τ)G(τ) (5.28)

where

G(τ) ≡ − 2

N2
Re















Zτ

N
∑

i1=1

N
∑

i2=1
i2 6=i1

rh(i1 − i2)
(

ej 2π
N

(i1−1)τ + ej 2π
N

(i2−1)τ
)















(5.29)

is the explicit dependence of the ICI power on each delay of the data autocorrelation. The

effect of the frequency selectivity of the channel is wholly contained in the term Zτ which,
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Figure 5.1: The first 10 values of G(τ) for a flat Rayleigh fading channel with N = 128
subcarriers and values of normalized Doppler fdT equal to 0.2, 0.02, and 0.002.

for L << N (as is typically the case in OFDM systems), we have the approximation

that Zτ ≈ 1, and so the frequency selectivity of the channel has only a very small effect

on the ICI power and on the data autocorrelation’s role in reducing it. Thus, we reach

a conclusion also reached in [2], that correlative coding schemes designed to reduce ICI

will work effectively in both flat and frequency-selective fading.

5.2.2 Signal Design Criteria

The total ICI power on the subcarrier of interest k is

PICI = PICI OFDM + PICI MOD (5.30)

= PICI OFDM +
N−1
∑

τ=1

rx(τ)G(τ). (5.31)

PICI OFDM is the ICI power of ordinary OFDM without correlative coding. The second

term depends upon the autocorrelation of the transmitted sequence x. It is through this

term that we are able to modify the total ICI power by tweaking the autocorrelation via

correlative coding, driving
∑N−1

τ=1 rx(τ)G(τ) as negative as possible.
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In Fig. 5.1 we plot the values of G(τ) for 1 ≤ τ ≤ 10 for a flat Rayleigh fading

channel with N = 128 subcarriers and values of normalized Doppler fdT equal to 0.2,

0.02, and 0.002. We make the following observations:

1. G(τ) decays rapidly as τ increases, and thus the sum
∑N−1

τ=1 rx(τ)G(τ) is dominated

by only the first few terms.

2. G(τ) is positive for the first few (dominant) terms.

3. G(τ) decays similarly for differing values of Doppler.

Taken together, these observations indicate that from a signal design perspec-

tive, we need only worry about the autocorrelation rx(τ) for a small number of values.

Additionally, we should design the sequence xn such that rx(τ) is large and negative for

the first few values of τ . The third point above indicates that a signal design scheme

will work similarly across a wide range of Doppler conditions.

5.3 Constant Magnitude Correlative Coding

In the previous section we determined the effect of the data autocorrelation on

the ICI power and showed how the autocorrelation of the transmitted sequence can drive

the ICI lower than that of ordinary OFDM.

In this section we introduce the concept of constant magnitude correlative coding

(CMCC). We then determine the optimal degree of correlation to place on the transmit-

ted symbols in order to balance the dual requirements of ICI reduction and detection

capability in noise in terms of bit error probability.

From the analysis in the previous section we know that the data autocorrelation

rx(τ) should be designed to be large and negative for the first few values of τ . In order to

achieve this while still maintaining a constant magnitude coded sequence, we proposing

the following symbol encoding scheme:

Let the dk = ±1 be the sequence of information bits slated for transmission via

OFDM. These bits are encoded into the transmitted sequence xk as follows:

xk = xk−1e
jθdk . (5.32)

Fig. 5.2 illustrates the encoding process. To transmit +1, a phase of θ is added to the

previously transmitted symbol, and to transmit −1, a phase of −θ is added. Similarly
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to differential encoding, a reference symbol must be transmitted at the beginning of the

sequence, e.g. by setting x1 = 1. In Fig. 5.3 the example information bit sequence

{+1,+1,−1,−1,−1} is encoded.

xk

xk+1 = xke
jθ(+1)

xk+1 = xke
jθ(−1)

e
jθ

dk+1 = +1

dk+1 = −1

rx(1)

Figure 5.2: Diagram of the proposed constant-magnitude correlative encoding process.

+1 +1 −1 −1 −1

Figure 5.3: A toy example of the proposed correlative data encoding scheme: transmis-
sion of the data sequence {+1,+1,−1,−1,−1}.

The autocorrelation induced upon the sequence xk by the correlative encoding
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scheme in (5.32) is

rx(τ) = E[xkx
∗
k−τ ] (5.33)

= E

[

xk−τx
∗
k−τ

k
∏

i=k−τ+1

ejθdi

]

(5.34)

=

k
∏

i=k−τ+1

E
[

ejθdi

]

(5.35)

=

k
∏

i=k−τ+1

1

2

(

ejθ + e−jθ
)

(5.36)

= cosτ (θ) (5.37)

where (5.35) follows from the independence of the information bits and (5.36) follows

from the fact that di = ±1 with equal probability.

In choosing θ we have direct control over the autocorrelation of the transmitted

sequence. It is clear that for rx(1) to be negative, we want π
2 ≤ θ ≤ π. With such

a choice of θ, rx(2), and all values of rx(τ) for even τ will be positive, however G(τ)

decreases rapidly enough that the ICI power is dominated by G(1) and rx(1).

This coding scheme is similar to both DPSK (in which the additive phase is either

0 for di = +1, or π for di = −1), and symmetric DPSK [54] [55] (which is equivalent to

CMCC with θ = π/2).

Clearly, with the CMCC scheme there is a trade-off between ICI reduction and

detection performance, as increasing θ to force rx(1) more negative results in the two

possible values of the next symbol being closer together in Euclidean distance (in Fig.

5.2, the dashed line between potential values of xk+1 becomes shorter), degrading per-

formance when additive noise is present and the detector must differentiate between the

two. We address this trade-off and determine optimal values of θ in section 5.5.

5.4 Comparisons to Other Correlative Coding Schemes

In this section we compare the ICI reduction capability of the proposed constant-

magnitude correlative coding (CMCC) scheme to that of other correlative coding schemes

including Partial Response Coding (PRC) [2], the ICI self-cancellation technique [51],

and to uncoded OFDM.

The values of the autocorrelation of the data sequence rx(τ) can be used in (5.16),

(5.20), and (5.28) to calculate the total ICI of any of the mentioned schemes. Since the
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Table 5.1: Data Autocorrelation of different Correlative Coding Schemes

rx(1) rx(2) rx(3) rx(4)

OFDM 0 0 0 0

CMCC θ = π
2 0 0 0 0

CMCC θ = 2π
3 −1

2
1
4 −1

8
1
16 · · ·

CMCC θ = 2.35 −.704 .495 −.349 .246 · · ·
CMCC θ = 2.511 −.808 .652 −.527 .425 · · ·

CMCC θ = π −1 1 −1 1 · · ·
PRC-2 −1

2 0 0 0

PRC-3 −.704 .228 0 0

PRC-4 −.808 .430 −.123 0

Self-Canc. −1
2 0 0 0

ICI powers of these schemes only differ as a result of differing data autocorrelations, we

compare the first four values of rx(τ) for various schemes in table 5.1.

When θ is set to π/2, the CMCC scheme results in zero data correlation, thus

there is no ICI reduction. In general, a parallel can be seen between the CMCC scheme

and the PRC scheme, in that increasing the value of θ for CMCC is analogous to increas-

ing the filter-length of PRC: rx(1) becomes more negative, and we expect improved ICI

reduction. For CMCC with values of θ resulting in the same rx(1) as the corresponding

PRC scheme (for example CMCC with θ = 2π/3 and PRC-2), the values of rx(2) are

comparatively higher, so we expect slightly better ICI reduction from the PRC scheme.

When θ is set to π, the ICI is theoretically minimized, however no information is actually

transmitted.

The ICI self-cancellation scheme has the same data autocorrelation and thus

ICI reduction performance as PRC-2, however its throughput is only half of the other

schemes.

In Fig. 5.4 we illustrate the reduction in ICI power of CMCC as compared

to uncoded OFDM and the PRC-2 and PRC-3 correlative coding schemes. ICI self-

cancellation is omitted with the understanding that its performance is identical to that

of PRC-2. Solid lines are the theoretical ICI according to (5.16), and the points are

simulated. In this simulation the ICI power is computed on one tone at the center of

the spectrum with N = 128 subcarriers. The rest of the data in the OFDM symbol is

correlative coded and then transmitted through a frequency-flat Rayleigh fading channel.
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Figure 5.4: ICI Power vs. normalized Doppler fdT for uncoded OFDM, the proposed
CMCC scheme with various values of θ, and partial-response coding (PRC) of orders 2
and 3 [2]. Lines are theoretical ICI according to (5.16), and points are simulated.

The ICI power is measured on the tone of interest and averaged over 1000 trials.

All of the correlative coding schemes can effectively reduce the total ICI power

as compared to that of uncoded OFDM. We can also observe the parallel between the

CMCC scheme and the PRC scheme: both increasing θ and increasing the PRC filter

length push the ICI power lower, to a lower bound defined by CMCC with θ = π.

The total ICI power of CMCC with θ = 2π/3 is very close to that of PRC-2 (and

the ICI self-cancellation scheme). It is only slightly higher due to the fact that rx(2) > 0.

For the same reason, the total ICI power of CMCC with θ = 2.35 slightly higher than

that of PRC-3.

The self-cancellation scheme achieves its improved ICI performance at the ex-

pense of spectral efficiency, cutting in half the the transmitted data per tone. The PRC

scheme achieves its performance at the cost of having non-constant magnitude symbols,

with the possibility of some of them being nulls, the practical consequences of which are

discussed in section 5.6.
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5.5 Signal Design

In this section we examine the effect of the modulation angle θ on bit error rate,

as it balances the requirements of ICI reduction and symbol detection, and we find the

optimal θ for different noise and Doppler regimes.

5.5.1 The Trade-off Between ICI Reduction and Symbol Detection Per-

formance

Consider a detector which assumes that the ICI has been mitigated by correlative

coding and what remains is now simply noise (i.e. there is no attempt at interference

cancellation). The received signal on the tone of interest k is given by

yk = hk,kxk +

N
∑

n=1
n 6=k

hk,nxn + wk. (5.38)

The job of the detector is to make a decision on xk considering that
∑N

n=1
n 6=k

hk,nxn and wk

are noise corrupting the signal, i.e. it must decide whether xk = xk−1e
jθ or xk = xk−1e

−jθ

was transmitted.

The magnitude of the distance between the two received points that must be

decided between is given by

|hk,kxk−1e
jθ − hk,kxk−1e

−jθ| = 2|hk,k| sin(θ). (5.39)

Thus, in the best case scenario of known channel coefficient hk,k and known symbol phase

reference, the probability of the detector committing an error is

Pe = P







N
∑

n=1
n 6=k

hk,nxn + wk > |hk,k| sin(θ)






. (5.40)

In the Rayleigh fading channel, the signal component |hk,k| is a Rayleigh fading

random variable with variance

PSIGNAL = E
[

|hk,k|2
]

=
1

N2

N
∑

i1=1

N
∑

i2=1

rh(i1 − i2). (5.41)

If we make the simplifying assumption that the ICI term is complex Gaussian noise and

is independent of the signal component, then the Rayleigh fading probability of error
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is [57]

Pe =
1

2

(

1 −
√

γ(cos(θ))

1 + γ(cos(θ))

)

(5.42)

where

γ(cos(θ)) = PSIGNAL
1 − cos2(θ)

PICI OFDM + σ2
n +

∑N−1
τ=1 cosτ (θ)G(τ)

(5.43)

is the signal to noise and interference ratio as a function of the modulation angle.
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Figure 5.5: Bit error rate in Rayleigh fading of the CMCC scheme as a function of
modulation angle θ for SNR = 40dB and varying degrees of normalized Doppler fdT .

From section 5.4 we know that a higher modulation angle (close to π) gives a

larger negative symbol correlation and thus the best ICI reduction performance. Con-

versely, detection in noise is improved when the two possible symbol points are maximally

separated, when the modulation angle is low (close to π/2). To illustrate the modulation

angle’s role in the trade-off between ICI reduction and symbol detection in noise, in Fig.
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Figure 5.6: Bit error rate in Rayleigh fading of the CMCC scheme as a function of
modulation angle θ for normalized Doppler fdT = 0.1 and varying degrees of SNR.

5.5 we plot the bit error rate of (5.42) versus modulation angle θ for SNR = 40dB

and varying degrees of Doppler, and in Fig. 5.6 we plot the bit error rate for fixed

normalized Doppler fdT = 0.1 and varying degrees of SNR. In both figures the sum
∑N−1

τ=1 cosτ (θ)G(τ) was truncated to the first few non-negligible terms, and N = 128

subcarriers were used in the calculation of G(τ). We first note that in both figures,

the angle θ that minimizes the BER is always between π/2 and π, indicating that some

degree of ICI reduction is always beneficial. In Fig. 5.5 we see that for a fixed noise

power, higher Doppler requires a higher modulation angle, approaching π, since in this

regime the ICI dominates the BER and must be mitigated. In Fig.5.6 we see that for

fixed Doppler, higher noise power requires a lower modulation angle, approaching π/2,

since the noise dominates and symbol point separation is most important.
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5.5.2 Finding the Optimal Modulation Angle

Minimizing the probability of the detector making an error is equivalent to max-

imizing γ(cos(θ)). For tractability, we minimize its reciprocal:

θ̂ = min
θ

1

γ(cos(θ))
,

π

2
≤ θ ≤ π. (5.44)

We next make the change of variables α = cos(θ) which results in the equivalent opti-

mization problem

α̂ = min
α

1

γ(α)
, −1 ≤ α ≤ 0. (5.45)

Next, taking the derivative with respect to α and setting to zero yields

∂

∂α

1

γ(α)
=

2(PICI OFDM + σ2
n)α +

N−1
∑

τ=1

G(τ)
(

(2 − τ)ατ+1 + τατ−1
)

= 0, −1 ≤ α ≤ 0 (5.46)

which consists of a polynomial of degree N + 1. The sum in (5.46) can be truncated to

only the first few terms since G(τ) decays exponentially. After truncation, the solution

to (5.46) can be found numerically by finding the roots of the reduced-degree polynomial

and selecting the root within the range −1 ≤ α ≤ 0. Finally, the optimal modulation

angle θ can be found as

θ̂ = arccos(α̂) (5.47)

and selecting the solution in the top half of the complex plane.

In Fig. 5.7 we plot bit error rate vs. normalized Doppler fdT for SNRs of 20dB

and 40dB vor various values of modulation angle θ. The channel is flat Rayleigh fading

with N = 128 subcarriers. When θ is set to the optimal θ̂ from (5.47) for each specific

SNR and Doppler, the performance serves as a lower bound on BER. When there is no

ICI reduction, i.e. θ = π/2, performance suffers at high SNR and at high Doppler due

to the effects of the ICI. When θ is set to favor a high amount of ICI reduction, i.e.

θ = 3π/4, performance is excellent at high SNR, but sub-optimal at low SNR where

the noise dominates the performance. We also plot the performance for θ = 2π/3 which

offers a middle ground between performance in noise and performance in ICI. Using this

value of θ is perhaps a good trade-off between ICI reduction and symbol detection when

the system operating point is a priori unknown.
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Figure 5.7: Bit error rate vs Doppler in Rayleigh fading for various values of modulation
angle θ and SNRs of 20dB and 40dB.

5.6 Considerations for Blind Detection: OFDMA

A class of detectors particularly applicable to OFDMA reception are blind se-

quence detectors that jointly decode all the symbols in a particular user’s contiguous

block of subcarriers. Blind detection is useful in the mobile environment because the

channel, which varies in time and frequency and may be changing rapidly, need not be

estimated before symbol detection takes place.

In evaluating the practical applicability of the constant-magnitude correlative

coding ICI reduction scheme, we consider two classes of blind sequence detector: multiple

symbol differential detection (MSDD) [26], which requires channel and noise statistics,

and a variant on MSDD which does not require channel statistics and instead relies on

a deterministic parameterization of the channel [58, 59]. Both classes of detector may

be implemented via a reduced-complexity algorithm based on sphere decoding [1,58,59]
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or other tree-search techniques [60]–provided that the transmitted symbols are constant

magnitude.

In an OFDMA system, for any block of N contiguous subcarriers (which can

include the whole OFDM symbol), the length N received signal vector y is given by

y = Hx + w (5.48)

where x is the vector of transmitted data applied to those subcarriers, w is complex

Gaussian noise, and H is the associated frequency-domain channel matrix for those

subcarriers, and is a sub-matrix on the diagonal of the whole OFDM symbol’s frequency-

domain channel matrix.

We assume that the data in the vector x has been correlatively coded, and thus

the off-diagonal elements of H, caused by ICI due to time-variation, can be ignored.

Thus, we rewrite (5.48) as

y = Ah + w + ICI (5.49)

where h is a vector containing the diagonal elements of H, A is a diagonal matrix

containing the elements of x on the diagonal, and ICI is a noise term resulting from

ignoring the diagonal of H. Since the detector will consider the remaining ICI that

has not been eliminated by correlative coding as noise, we consider the ICI an additive

Gaussian noise term which is independent of both the channel and the data.

5.6.1 Known Statistics Blind Detection

When the channel and noise statistics are known to the receiver, the maximum

likelihood sequence detector chooses the sequence x that maximizes the probability of

the received data conditioned on x [26]:

x̂ = arg max
x

p(y|x) (5.50)

= arg max
x

1

|Ry|
exp

{

−yHR−1
y y

}

(5.51)

where Ry = E[yyH ] is the correlation matrix of the received data y equal to

Ry = ARhA
H +

(

PICI + σ2
n

)

I, (5.52)

Rh = E[hhH ] is the correlation matrix of the diagonal of the frequency-domain channel

h whose {k1, k2}th entry is equal to

{Rh}k1,k2
=

1

N2

(

N
∑

i1=1

N
∑

i2=1

rh(i1 − i2)

)(

L
∑

l=1

σ2
l e

−j2π(k1−k2)(l−1)/N

)

, (5.53)
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and PICI is the ICI power after mitigation by correlative coding, defined in (xx).

If the symbols in x are constant in magnitude, then the determinant of Ry is

independent of the data, and performing the maximization in (5.51) is equivalent to

performing the minimization

x̂ = arg min
x

yHA
(

Rh + (PICI + σ2
n)I
)−1

AHy (5.54)

which can be efficiently implemented via sphere decoding [1].

The advantage of an ICI-mitigating correlative coding scheme that retains con-

stant magnitude symbols, such as the proposed CMCC scheme, is that it can be used

directly with the efficiently implementable detector of (5.54). The PRC correlative cod-

ing schemes, on the other hand, result in varying magnitude transmitted symbols so the

detector of (5.54) cannot be used. In this case a brute force search of (5.51) must be

completed at full computational complexity.

5.6.2 Unknown Statistics Blind Detection

When channel and noise statistics are not known to the receiver, we consider

the channel to be deterministic and unknown. If the data has been correlatively coded,

then again we can assume that H is a diagonal matrix and ignore the off-diagonal ICI

contributing terms, whose effects have been mitigated by the correlative coding. Thus

for joint data detection and channel estimation we must minimize

‖y − Ah‖2 (5.55)

over both the channel diagonal elements h and the data vector x on the diagonal of A.

Following [59], we parameterize the channel vector h (which varies due to the

frequency-selectivity of the channel) with a set of I orthonormal basis vectors fi as

h ≈
I
∑

i=1

αifi = Fα (5.56)

where α = [α1, . . . , αI ]
T are the coefficients of the parameterization. The vectors fi are

chosen to be orthonormalized Chebyshev polynomials. Next, substituting h = Fα into

(5.55) results in the optimization problem

{x̂, α̂} = arg min
x,α

‖y − AFα‖2. (5.57)
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The value of α that minimizes (5.57) is

α̂ =
(

FHAHAF
)−1

FHAHy (5.58)

which, when substituted back into (5.57) yields the data detection optimization problem:

x̂ = arg max
x

yHAF
(

FHAHAF
)−1

FHAHy. (5.59)

If the symbols in x are constant in magnitude, then AHA = I, so that the inverse

in (5.59) reduces to

(

FHAHAF
)−1

=
(

FHF
)−1

(5.60)

= I (5.61)

and the optimization problem (5.59) reduces to [59]

x̂ = arg max
x

yHAFFHAHy. (5.62)

As in the known-statistics detection framework, this optimization problem can be effi-

ciently implemented via sphere decoding or other fast tree-search detection algorithms.

The detector of (5.62) and associated fast implementations can be directly applied to

the proposed CMCC scheme since the transmitted symbols are constant magnitude.

If the symbols are not constant magnitude, as is the case with the PRC correlative

coding schemes, then again efficient algorithms cannot be applied and (5.59) must be

evaluated separately for each potential sequence at full computational complexity.

A further disadvantage of PRC correlative coding schemes in this unknown-

statistics detection framework stems from the possibility of transmitted null symbols.

For example, with PRC-2 the probability of a particular symbol being null is 0.5, and

with PRC-4 the probability is 0.25. Intuitively, null symbols are detrimental to blind

detection since no information about the channel is provided to the receiver at their

locations in the transmitted sequence. If the number of non-null symbols is less than

the number of basis vectors, then the inverse in (5.59) is not possible. In practice, this

means that PRC schemes with nulls must transmit extra overhead symbols to ensure

implementability, at the cost of decreased throughput.

5.6.3 OFDMA Structure

Consider the downlink OFDMA scenario where each user is allocated a block of

N contiguous subcarriers. All of the data at the receiver destined for separate users may
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be CMCC encoded together as one block spanning all subcarriers. With this encoding

structure, the receiver for each user takes as its input a block of N+1 subcarriers spanning

the user’s own subcarrier block and the previous user’s last subcarrier, which is used as a

reference. Fig. 5.8 illustrates this structure. With such an encoding structure, no symbol

overhead is required, i.e. N bits may be transmitted over a block of N subcarriers.

user u

user u + 1user u − 1

reference symbol

· · · · · ·

data symbols

Figure 5.8: OFDMA downlink subcarrier allocation. With the proposed CMCC scheme,
user u may use the last symbol of the previous adjacent user’s subcarrier block as a
reference symbol. No reference overhead is required.

With PRC encoding, on the other hand, the state of the encoder is not wholly

contained in the previous coded symbol, so the data bits must be encoded separately

in each user’s subcarrier block. For fair comparisons with CMCC encoded blind detec-

tion, we design the PRC encoded subcarrier block to have the same length and same

redundancy as a CMCC encoded block, i.e. we want to encode N bits into N + 1 trans-

mitted symbols. To achieve this, we include one reference symbol and one reference bit

for PRC-2 encoded data, and one reference symbol and two reference bits for PRC-3

encoded data. The reference bits serve to initialize the state of the encoder, and the

reference symbol provides phase information, similarly to the CMCC scheme.

5.7 Performance Results

5.7.1 Simulation Parameters

In this section we present simulated bit-error-rate performance of the CMCC

scheme in a downlink OFDMA system over a frequency-flat and frequency-selective time-

varying channel. The frequency-selective channel is comprised of six channel taps, with a

power delay profile of [0.21802, 0.19431, 0.17318, 0.15434, 0.13756, 0.12260] corresponding

to the exponential decay power delay profile model, i.e. σ2
l = β exp(−α(l − 1)) where

α = 0.5 and β = 1/
∑

l σ
2
l . The transmitter transmits an OFDM symbol with 128
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subcarriers and the entire OFDM symbol is encoded according to the CMCC scheme, as

described in section 5.6.3. The receiver of a particular user examines a block of N = 9

contiguous subcarriers at the center of the OFDM symbol and the sphere-decoding based

blind detector decides upon the length N − 1 sequence of bits that was transmitted.

5.7.2 Comparisons to Other Detectors

We will now evaluate two versions of the blind CMCC-based detector: one for

known, and one for unknown channel statistics, as presented in sections 5.6.1 and 5.6.2,

respectively.

We compare the CMCC-based detector to similar blind detectors based on the

PRC-2 and PRC-3 correlative coding schemes [2]. These detectors cannot be made more

efficient by use of the sphere-decoding algorithm, and so are full brute-force complexity.

To ensure that the comparison is fair, each of the PRC schemes is allowed to encode N−1

bits into N symbols which make up the frequency dwell of a particular user. To achieve

this, the PRC-2 scheme is allowed to have one reference bit before correlative coding, and

one reference transmitted symbol after correlative coding. The PRC-3 scheme is allowed

two reference bits and one reference symbol. All of the other transmitted symbols on

the subcarriers are encoded according to either PRC-2 or PRC-3.

We also compare to the performance of coherently detected uncoded OFDM.

The coherent OFDM receiver does not identify or correct for the ICI. The receiver has

perfect knowledge of the diagonal of the frequency-domain channel matrix H, but the

off-diagonal elements which contribute to the ICI are unknown, and the ICI is treated

as noise.

5.7.3 Performance

In Fig. 5.9 we present the bit error rate performance of the proposed CMCC

scheme and the other abovementioned detectors after transmission through a frequency-

flat Rayleigh-fading channel with normalized Doppler fdT = 0.05. Since the channel

is flat, all of the unknown statistics detectors are built using only the first constant

Chebychev polynomial as their deterministic channel approximation. The performance

of coherently detected OFDM is seen to have an error floor due to the intercarrier inter-

ference. The CMCC scheme, on the other hand, can outperform coherent OFDM above

an SNR of about 27 dB because of the robustness to ICI, even though the detector is
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Figure 5.9: BER vs. SNR in an OFDMA system in a frequency-flat Rayleigh-fading
channel with fdT = 0.05. The proposed CMCC scheme is compared to PRC-2 and
PRC-3, using both the known and unknown-statistics blind detectors, and to coherent
OFDM (known diagonal of H).

blind. The known and unknown-statistics CMCC detectors perform the same since they

are equivalent in a flat channel. The PRC-3 scheme performs worse than CMCC even

though it is better at mitigating ICI because the combination of noise and residual ICI

is still large compared to the minimum distance of PRC-3, which is much smaller than

CMCC, due to the many symbol amplitude levels inherent in the encoding scheme. Sim-

ilarly, the PRC-2 scheme performs worse still because its minimum distance is small and

the residual ICI is higher. The unknown-statistics version of PRC-2 performs relatively

worse because the presence of data nulls means that less information is available for the

joint channel estimation/data detection.

In Fig. 5.10 we plot the same curves at the same normalized Doppler of fdT =

0.05 but for a frequency-selective channel instead of a flat channel. To be able to track

the channel time-variation, the unknown statistics detectors use 3 Chebychev basis poly-

nomials in their respective implementations, except for the PRC-2 scheme which uses 2
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Figure 5.10: BER vs. SNR in an OFDMA system in a frequency-selective Rayleigh-
fading channel with fdT = 0.05. The proposed CMCC scheme is compared to PRC-2 and
PRC-3, using both the known and unknown-statistics blind detectors, and to coherent
OFDM (known diagonal of H).

because it cannot support more due to the data nulls. The coherent OFDM detector

outperforms all the other detectors because it does not have the task of determining the

frequency-varying channel and data in the presence of ICI. Again, the CMCC scheme

outperforms the PRC schemes because of the combination of ICI mitigation and large

minimum distance for symbol discernibility. The unknown statistics schemes perform

worse than their associated known-statistics counterparts because they are relying on

the imperfect Chebychev polynomial channel approximation.

Next, in Fig. 5.11 we reduce the Doppler to fdT = 0.01 and plot performance of

each of the detectors in a flat-fading channel. Again, the blind CMCC detector performs

very closely to coherent uncoded OFDM and only outperforms it at high SNR, where

ICI plays a larger role in performance degradation than the noise, and again, the CMCC

scheme outperforms both full-complexity PRC schemes.

Fig. 5.12 shows performance of the detectors in a frequency selective channel with
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Figure 5.11: BER vs. SNR in an OFDMA system in a frequency-flat Rayleigh-fading
channel with fdT = 0.01. The proposed CMCC scheme is compared to PRC-2 and
PRC-3, using both the known and unknown-statistics blind detectors, and to coherent
OFDM (known diagonal of H).

low normalized Doppler of fdT = 0.01. The CMCC scheme outperforms all the other

blind detectors at low SNR. In this case, the PRC-3 scheme can outperform CMCC

and also coherent OFDM at a high SNR. The PRC-3 scheme actually performs bet-

ter in a frequency-selective channel than in a flat channel, suggesting that the scheme

takes advantage of the frequency diversity of the channel due to the larger degree of

symbol spreading in the frequency domain. However, to achieve this blind-detection

performance, cost function optimization must be implemented with a full complexity

brute-force search.

Finally, in Fig. 5.13, we plot BER vs. SNR for the known-statistics CMCC

detector for various values of the modulation angle θ in a frequency-selective channel

with normalized Doppler fdT = 0.05. Increasing the modulation angle should improve

ICI reduction while decreasing the Euclidean distance between coded symbols. It is clear

that increasing the modulation angle can improve performance at high SNR to better
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Figure 5.12: BER vs. SNR in an OFDMA system in a frequency-selective Rayleigh-
fading channel with fdT = 0.01. The proposed CMCC scheme is compared to PRC-2 and
PRC-3, using both the known and unknown-statistics blind detectors, and to coherent
OFDM (known diagonal of H).

than that of uncoded coherent OFDM (due to the improved ICI reduction), but the

trade-off is poorer performance at low SNR due to closer Euclidean distance between

coded symbols.

5.8 Conclusion

We have introduced a new method of correlative coding which reduces ICI power

in OFDM due to Doppler spread and consists of constant magnitude symbols. Com-

parative existing correlative coding methods reduce ICI power, but result in varying-

magnitude coded symbols and transmitted null symbols.

The proposed constant-magnitude correlative-coding scheme is simple, effective

at reducing ICI power, and–since the resulting coded symbols are constant in magnitude–

enables low complexity blind detection. We have shown through bit error rate simulations

that the blind detector based on the proposed CMCC scheme can outperform both
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Figure 5.13: BER vs. SNR for various values of θ with normalized Doppler fdT = 0.05.

uncoded OFDM and blind detectors based on previously proposed correlative coding

schemes.

Chapter 5, in part, has been submitted for publication to IEEE Globecom 2010,

under the title “Constant Magnitude Correlative Coding for ICI Reduction and Blind

Detection in OFDM” Nathan D. Ricklin and James R. Zeidler, March 2010. Chap-

ter 5, in part, has also been submitted for publication to the IEEE Transactions on

Communications, under the title “Constant Magnitude Correlative Coding for OFDM:

ICI Reduction and Low-Complexity Blind Detection” Nathan D. Ricklin and James R.

Zeidler, May 2010.



Chapter 6

Conclusions

In this dissertation we considered the problem of digital wireless communications

over channels that are rapidly time-varying due to velocity of the receiver or transmitter.

In particular we have focused on the proper characterization of such channels and asso-

ciated CFO estimation and blind detection algorithms. The basic problem that we have

attempted to solve is to find a characterization of the channel that accurately represents

the physical channel and that also enables low-complexity, well-performing algorithms

for both CFO estimation and blind data detection.

In chapter 2 we reviewed the mathematical models that represent the physical

channel. We first introduced the discrete-time model of the time-varying frequency-

selective channel, a framework through which we performed all the analysis in this

dissertation. We reviewed the relevant statistical representations of the channel, and

introduced a deterministic channel approximation based on orthonormal polynomials

that can accurately portray the channel and enable the derivation of estimators and

detectors developed in the next chapters. We introduced the normalized Doppler pa-

rameter fdT and illustrated how it relates to the physical channel parameters. Finally,

we reviewed OFDM in the discrete-time channel framework and showed how channel

time-variation leads to intercarrier interference (ICI).

In Chapter 3 we addressed the issue of joint CFO/channel estimation over a

time-varying frequency-selective channel. Given a known sequence of transmitted pi-

lot symbols, we derived novel joint estimators of both the CFO and the time-varying

frequency-selective channel using both a probabilistic and a deterministic channel charac-

terization. Using the probabilistic channel model, the CFO estimate is shown to achieve

94
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the Cramer-Rao lower bound. The performance of the deterministic estimator can also

be good, but is sensitive to over or underparameterization of the channel, depending on

the number of basis polynomials used in the channel parameterization.

In Chapter 4 we focussed our attention on blind detection in time-varying chan-

nels. We developed a blind detector for a short block of data transmitted in the time-

domain through a time-varying channel that does not require channel statistics. In

developing the detector we considered the channel deterministic and unknown, and ap-

proximated it with a linear combination of discrete Chebyshev polynomials. We showed

how the resulting cost function can be implemented via the sphere decoding algorithm.

Additionally, we show that when the so-called “subset” method is used, the performance

of the detector is within about 2.5 dB of the optimal differential-coherent detector over

a wide range of SNR and Doppler.

Finally, in Chapter 5 we turned our attention to the problem of blind detection

of a short block of symbols transmitted through a time-varying frequency-selective chan-

nel. The short block of symbols is placed in the frequency-domain via OFDM, however

the data is then correupted by ICI. To both mitigate the ICI and enable low-complexity

blind detection we introduced a novel data encoding scheme called constant-magnitude

correlative-coding (CMCC). The correlative coding reduces ICI power, and the fact that

the resulting symbols are constant in magnitude directly enables low-complexity im-

plementation of a blind detector. Performance simulations show that the blind CMCC

encoding and detection scheme is both effective at reducing ICI and can achieve bit error

rates better than that of coherent uncoded OFDM and previously suggested correlative

coding methods.



Appendix A

Nomenclature

A.1 Acronyms/Abbreviations

AWGN Additive White Gaussian Noise
BEM Basis Expansion Model
CAZAC Constant Amplitude Zero AutoCorrelation sequence
CFO Carrier Frequency Offset
CMCC Constant Magnitude Correlative Coding
CRLB Cramer-Rao Lower Bound
DFT Discrete Fourier Transform
DPS Discrete Prolate Spheroidal (a set of orthonormal sequences)
DPSK Differential Phase-Shift Keying
FFT Fast Fourier Transform
FIR Finite Impulse Response
ICI Intercarrier Interference
IDFT Inverse Discrete Fourier Transform
ISI Intersymbol Interference
LOS Line-of-Sight
MAP Maximum a Posteriori
ML Maximum Likelihood
MLSE Maximum Likelihood Sequence Estimation
MSDD Multiple Symbol Differential Detection
MSDD-US Multiple Symbol Differential Detection - Unknown Statistics
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
PDF Probability Density Function
PEP Pairwise Error Probability
PRC Partial Response Coding
PSK Phase Shift Keying Modulation Method
PN Pseudo-Noise (sequence)
SNR Signal to Noise Ratio

96
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A.2 Notation

Re{·} The real part of a complex number
Im{·} The imaginary part of a complex number
{·}∗ The conjugate of a complex number
{·}T The transpose of a matrix or vector
{·}H The conjugate transpose of a matrix or vector
{·}† The Moore-Penrose pseudoinverse of a matrix
| · | The determinant of a matrix, or the absolute value

of a scalar
‖ · ‖ The Euclidean norm of a vector
⋆ The convolution operator
≡ Stands for “defined as”
≈ Stands for “approximately equal to”
∼ Stands for “follows the distribution”
E[·] The expectation operator

e{·} or exp{·} The exponential function
x A vector
[x]n The nth element of a vector
A A matrix
I The identity matrix
[A]n,m The {n,m}th element of a Matrix
δ(·) The Dirac delta function
J0(·) The zeroth order Bessel function of the first kind
I0(·) The zeroth-order modified Bessel function of the first kind
CN (0, 1) The Complex Normal distribution with zero mean and

unit variance
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