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Abstract

Learning argument structure constructions is believed to de-
pend on input properties. In particular, in a cued production
task, verb production within each construction has been shown
to depend on three input factors: frequency of a verb in a con-
struction, contingency of verb–construction mapping, and verb
semantic prototypicality. Earlier studies have estimated these
values from a language corpus, without accounting for varia-
tion in the input to individual learners. We use a computational
model to control for such variation, and our results replicate
those reported for human learners. The second issue that we
address relates to different ways of representing constructions:
while the earlier studies employ form-only representations, we
run an additional analysis for form–meaning representations.
Again, the results show the impact of all three input properties
on the verb production, but their relative impact depends on
the representations used.
Keywords: language learning; argument structure construc-
tions; learning factors; frequency effects

Introduction
Cognitive, or usage-based, approaches to language acquisi-
tion claim that our linguistic knowledge is based on our indi-
vidual experiences with the language (e.g., Kemmer & Bar-
low, 2000). This is why a crucial role within such theories
is assigned to the language input that learners are exposed
to. In this view, cognitive skills, such as pattern recogni-
tion, categorization, induction, etc., enable learners to notice
various statistical regularities in the input and build up the
structured knowledge of language (Tomasello, 2003). Usage-
based theories are often associated with constructionist ac-
counts. Such accounts claim that our linguistic knowledge
can be represented as a structured inventory of constructions,
or form–meaning pairings, which vary from fully specific to
fully schematic. Schematic, or abstract, constructions emerge
as generalizations from individual instances—a particular ex-
ample of this process is described in Goldberg’s (1995) ac-
count of clausal-level argument structure (AS) constructions.
The nature of such constructions is well captured by the term
“argument structure generalizations”, suggested by Goldberg,
Casenhiser, and Sethuraman (2004).

Although the input is believed to play a crucial role in lan-
guage learning, it is yet unclear how exactly the input shapes
our lingustic knowledge—that is, which properties of the in-
put determine how well we know specific language units and

how readily we use them. One particular proposal in this
respect, which addresses the learning of AS constructions,
has been made by Ellis and colleagues in a series of studies
(Ellis & O’Donnell, 2012; Ellis, O’Donnell, & Römer, 2014a,
2014b). They have analysed how the production of verbs in
AS constructions is affected by certain properties of these
verbs, related to the distribution of their forms and mean-
ings in the constructions. In particular, Ellis et al. (2014a,
2014b) have carried out a series of experiments with L1 and
L2 speakers. In these experiments the frequency of verb pro-
duction in a given construction has been shown to be pre-
dictable from three characteristics of the verb, which quan-
titatively describe its use in the construction, as reflected in
language corpora:

1. Frequency, or the token frequency of occurrence of the
verb within this construction. This is believed to reflect
the degree of accessibility of the verb, or its entrenchment:
more entrenched verbs are produced more often.

2. Contingency, or the reliability of the verb–construction
mapping. This is related to the selectivity of verbs within
each construction: verbs that are strongly associated with
the construction are more likely to be produced first.

3. Prototypicality, or the centrality of the verb meaning:
learners would more readily, or more frequently produce
verbs whose meanings are most central to the construction.

Methodological issues
The values of frequency, contingency, and prototypicality
have been calculated by Ellis et al. (2014a, 2014b) based on
the occurrence of each verb in the British National Corpus.
This implies that all learners are exposed to language input
with exactly the same distributional properties. On the con-
trary, the usage-based approach claims that language learn-
ing is driven by usage, therefore different language experi-
ences of individual learners lead to different language rep-
resentations in learners (Dąbrowska, 2012; Misyak & Chris-
tiansen, 2012). The variation is even higher among L2 learn-
ers, who may be exposed to very different kinds of L2 input
(DeKeyser, 2013). In short, it is important to account for the
individual variation in the langage input. This is a challeng-
ing task for studies with human subjects, because it is nearly
impossible to account for the whole learning history of each
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individual learner. On the other hand, computational model-
ing can tackle the problem by providing us with a maximum
control over input data (Poibeau, Villavicencio, Korhonen, &
Alishahi, 2013). In an earlier study (Matusevych, Alishahi,
& Backus, 2014) we have shown how various input variables
can be systematically manipulated in a computational model
of AS construction learning (Alishahi & Stevenson, 2008).
Similarly, if it is important to keep the naturalistic input with-
out manipulating its characteristics, we can also simply mon-
itor such characteristics. In the current study, we exploit this
advantage of the model and use it for simulating the earlier
experimental studies (Ellis et al., 2014a, 2014b).

These earlier studies also give rise to a more theoretical
question. In theory, they adopt the definition of construc-
tions as form–meaning pairings. In practice, however, they
analyse constructions as grammar patterns, informed by the
COBUILD dictionary project (Hunston, Francis, & Manning,
1996). Each pattern contains slots for the verb and its argu-
ments, together with a specific preposition (if any), e.g. V of
N. Therefore, the patterns are form-based and contain little
semantic information. This may result in grouping semanti-
cally divergent verbs together—e.g. a cognition verb think, a
communication verb speak, and a perception verb smell are
analysed within the same pattern V of N (example from El-
lis et al., 2014a). Ellis and O’Donnell (2012) suggest that the
same analysis should be carried out for construction represen-
tations informed by other theories of construction grammar.

The current study addresses these two issues. First, we in-
tend to investigate whether the findings of Ellis et al. (2014a,
2014b) can be obtained in controlled computational simula-
tions of L1 and L2 learning, in which we monitor the actual
characteristics of the input to each individual learner. Sec-
ond, we carry out an additional analysis, in which construc-
tions are represented as form–meaning pairings rather than
form-based patterns, and the distributional characteristics are
monitored for these pairings. We compare the results of the
two analyses, to investigate whether the findings are consis-
tent for the two types of construction representations.

Computational model
We use a computational model of AS construction learn-
ing from exposure (Alishahi & Stevenson, 2008). The ex-
posure consists of individual argument structure usages (AS
usages). Each usage is represented as a set of features that
correspond to linguistic and perceptual cues normally avail-
able to human learners in an utterance they hear and the ac-
companying scene. The features include the verb, its lexi-
cal meaning, its arguments, their lexical meanings, their the-
matic roles and linguistic cases, the syntactic pattern and
prepositions. Values of some features, such as the verb
and arguments, are represented as a single symbol (e.g.,
acquire), while values of other features, in particular lexi-
cal meanings and thematic roles, are formed by sets of se-
mantic primitives: e.g., the lexical meaning of acquire is
a set {GET, HAS POSSESSION, TRANSFER, CAUSE, COST}.

These primitives have been automatically extracted from
WordNet (Miller, 1995) and VerbNet (Schuler, 2006). As for
syntactic patterns, we define them as strings describing the
word order, e.g. ARG1 VERB in ARG2.

The learning task consists in learning AS generalizations
by abstracting from individual verb usages (cf. Goldberg et
al., 2004). Such generalizations are represented as groups
of AS usages: each group combines the properties of all the
participating usages, but does not store the information about
each AS usage individually. During the learning, the model
receives one AS usage at a time and adds it either to one of
the existing groups, or to a new one. The decision for each us-
age is made based on two factors: the similarity between the
AS usage and each group, and the number of usages in each
group (which reflects its degree of entrenchment). In case
of bilingual learning, L1 and L2 usages are treated equally.
The model is not explicitly informed about the language of
each AS usage, therefore L1 and L2 usages can potentially
be mixed within groups. In other words, the learning of both
languages is grounded in their use, which is reflected in the
input. A more detailed description of the model can be found
in our earlier study (Matusevych et al., 2014).

Eliciting language use
Ellis et al. (2014a, 2014b) in their experiments use an elicited
production task. Participants are given a number of phrases,
from which the actual verb is removed (e.g., it about
the...), and they have to produce verb(s) that fit the empty slot.
In a similar way, we elicit the verb production by simulated
computational learners. At the end of the learning process,
the model is provided with a test set containing a number of
AS usages, in which the value of the verb feature is masked.
For each test AS usage, the model is asked to provide a num-
ber of most likely verbs that fit the usage, given the values
of other features. The probability of using each verb is es-
timated considering (1) how likely it is that the test usage
belongs to a specific group, and (2) how frequently each verb
occurs within this group.

Input data
The input data sets come from two monolingual corpora of
German (the SALSA corpus, see Burchardt et al., 2006) and
English (the PropBank, see Palmer, Gildea, & Kingsbury,
2005). From each corpus, a number of AS usages were ex-
tracted (see Table 1), each of which had a FrameNet frame
type associated with it (e.g., RECEIVING, DEPARTING, see
Ruppenhofer, Ellsworth, Petruck, Johnson, & Scheffczyk,
2006). For the German data the frame types were contained
in the SALSA corpus itself, while for the English data we
used the existing mapping between PropBank propositions
and FrameNet frames (Palmer, 2009). Frame types were not
used as input features available to simulated learners, but only
as a tool for carrying out our analysis of form–meaning map-
pings. Additionally, the semantic information was automat-
ically obtained from computational resources such as Verb-
Net and WordNet (via the existing FrameNet–WordNet map-
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Figure 1: Schematic description of preparing the input data.

ping, see Bryl, Tonelli, Giuliano, & Serafini, 2012). Figure 1
schematically illustrates the procedure.

A quantitative descripton of the English and the German
data sets is provided in Table 1. It contains information about
the total number of AS usages in the data, the number of verb
types, frame types, and syntactic patterns.

Table 1: Characteristics of the two data sets.

Data set AS
usages

Verb
types

Pattern
types

Frame
types

German 3,370 301 97 179
English 3,803 351 51 151

Experimental setup
We run a computational simulation of the experiment 2 de-
scribed by Ellis et al. (2014a). Their experiment investigated
only L1 learning, however a similar experiment for L2 learn-
ing was reported by Ellis et al. (2014b). Therefore, we run
our simulations for both L1 and L2 learning, both in English
and in German (hence four sets of simulations), and compare
our results to those of the two earlier studies.

The actual input to the computational model is ran-
domly sampled from the appropriate data set(s), so that the
model’s actual language experience varies among simula-
tions. Thereby, running a number of simulations corresponds
to collecting data from a population of language learners. In
each set of simulations, 30 learners are exposed to a total
number of AS usages N. Given the size of our data sets and
the sampling procedure, we have found that simulated learn-
ers achieve a high proficiency in each language after they
are exposed to 6,000 AS usages in this language. There-
fore, L1 learners start with no linguistic knowledge and re-
ceive N = 6,000 L1 usages, following which they perform
the elicited production task in L1 (see Figure 2a). Bilingual
learners, on the other hand, receive in total N = 12,000 AS
usages. First they are exposed to 6,000 L1 usages, which
results in the emergence of groups consisting of L1 usages.

(a) L1 learners (b) L2 learners

Figure 2: Schemes of the experimental setup.

Following this, learners receive 6,000 more usages of bilin-
gual input, in which L1 and L2 are mixed in a proportion 1 : 1
(see Figure 2b). Note that the input in this latter case con-
tains only 1

2 ×6,000 = 3,000 L2 AS usages, but this is done
to simulate L2 learners whose exposure to L2 is limited, and
whose L2 proficiency is lower than L1 proficiency.1 Follow-
ing the acquisition process, L2 learners perform the elicited
production task in L2.

For the production task (both in L1 and L2), a set of 300
stimuli is randomly generated from the respective data set
(English or German). The head verb is always masked, so that
the production is yielded by the values of other features: syn-
tactic pattern, prepositions, number of arguments, argument
cases and thematic roles. The arguments and all the lexical
meanings are also masked, as they would associate the stim-
uli only with particular verbs. To test each learner on a variety
of constructions, we ensure that the test set does not contain
more than one usage of the same verb in the same construc-
tion. For each test stimulus, learners produce a number of
verbs that they find most likely to occur in the respective slot.
Each verb V in the data is accompanied by a probability value
PV , which shows how likely V fits the stimulus. Upon obtain-
ing the production outcomes from each learner, we filter out
verbs with PV ≤ 1%, and those that never occured in the target
construction in the input to this specific learner, in order to re-
duce the unwanted noise in the data. Following this, we look
at how PV can be explained by each of the three determinants.

Learning determinants

For each individual learner, we record the information about
the actual frequency of each verb in each construction (FVC),
the frequency of each construction (FC), and the overall fre-
quency of each verb (FV ) in the input. Besides, we also know
which verbs participate in every construction in the input to
each learner. This allows us to calculate the values of the
three learning determinants for each learner individually.

1In an earlier study (Matusevych et al., 2014) we manipulated
parameters of exposure such as N and the L1:L2 proportion, and
found that the simulated learning process was robust to the variation
of these parameters.
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Frequency. The token frequency of each verb in each con-
struction is directly accessible via FVC.

Contingency. Following the earlier experiments (Ellis et
al., 2014a, 2014b), contingency is measured using a one-way
dependency statistic ∆P (construction→ verb), or ∆PCV (Ellis
et al., 2014a), which in this case reflects the degree to which a
given construction selects a particular verb in the input. This
measure can be calculated as follows:

∆PCV = P(V |C)−P(V |¬C) =
FVC

FC
− FV −FVC

N−FC
(1)

Prototypicality. Since each verb meaning in AS usages is
represented as a set of semantic primitives, the most proto-
typical verb V for a construction C is the one whose meaning
MV shares most primitives with the meanings Mi of all the
other verbs i occurring in C (i ∈C). In this terms, the proto-
typicality of a verb V can be calculated as follows:

PrtV =
∑i∈C

|Mi∩MV |
|MV |
|C|

(2)

Note that the value of PrtV may also vary among different
learners, because some of them may have not encountered in
their input a certain verb occuring in a certain construction.

As it is clear from the definitions of the learning determi-
nants, their values are calculated for each verb in each con-
struction. In other words, their values depend on the type of
construction representations used in the analysis. In our repli-
cation of Ellis et al.’s (2014a, 2014b) experiments, the values
of the learning determinants are associated with form-based
patterns, while in the second analysis that we carry out the
values are calculated for form–meaning pairings.

Statistical methods
In each analysis, we use linear mixed effects models to pre-
dict PV values by the three main effects—FVC, ∆PCV and
PrtV . Before fitting the model, we log-transform the outcome
and the predictors (following Ellis et al., 2014a), center the
predictors (to reduce their collinearity), and standardize the
outcome and the predictors (to make all the β coefficients
directly comparable). The random effect structure of each
model is kept as maximal as it is justified by the data sample
(Barr, Levy, Scheepers, & Tily, 2013). In each case, ran-
dom effects account for the variation between constructions
(CONSTRUCTION factor) that the test stimuli belong to, and—
within each construction—between verbs that are masked in
the test stimuli (CONSTRUCTION:PREDICATE factor). For
each model we calculate the goodness of fit using a marginal
and a conditional R2, which quantify the amount of variance
explained by the fixed factors and the full model, respectively
(Johnson, 2014). Due to the difficulties related to the infer-
ence of p values in mixed effects models, we do not report
such values, but only the respective 95% confidence inter-
vals estimated via parametric bootstrap with 100 resamples
(Bates, Maechler, Bolker, & Walker, 2015).

Table 2: Summary of mixed effects models predicting the use
of verbs within form-based patterns.

Language
Goodness

of fit Predictor
Statistics

R2
m R2

c β SE 95% CI
FVC 0.44 0.06 [0.33,0.56]

L1 English .17 .47 ∆PCV 0.06 0.01 [0.04,0.07]
PrtV 0.17 0.04 [0.09,0.25]
FVC 0.21 0.01 [0.18,0.23]

L1 German .07 .50 ∆PCV 0.09 0.02 [0.05,0.14]
PrtV 0.19 0.04 [0.11,0.26]
FVC 0.47 0.09 [0.29,0.66]

L2 English .15 .55 ∆PCV 0.04 0.03 [−0.02,0.11]
PrtV 0.13 0.04 [0.05,0.19]
FVC 0.20 0.02 [0.15,0.25]

L2 German .06 .47 ∆PCV 0.12 0.01 [0.09,0.14]
PrtV 0.12 0.04 [0.05,0.19]

Results
Constructions as form-based patterns
In the results reported here, the values of frequency, contin-
gency, and prototypicality are computed for form-based pat-
terns. Table 2 provides the summary of mixed effects models
predicting the learners’ verb use from the values of the three
determinants. First, we can observe that the goodness of fit
(both R2

m and R2
c) for L1 English and L1 German is generally

higher than that for L2 English and L2 German, respectively.
We explain this by the fact that the language input during the
bilingual learning consists of both L1 and L2 usages, there-
fore, it is characterized by a higher variability than the L1-
only input.

As for the actual predictors, we can see that for most pre-
dictors in all four data sets (in L1 and L2 English and Ger-
man) the 95% confidence intervals do not contain zero, with
the only exception of ∆PCV in L2 English. This is evidence of
the independent contribution of each variable—FVC, ∆PCV ,
and PrtV —to predicting the probability of the verb produc-
tion in our simulated data. The lack of the evidence for the
effect of ∆PCV in L2 English may be explained by the in-
teraction of this variable with FVC, which we discuss in the
concluding section. Overall, however, the results are in line
with the findings reported by Ellis et al. (2014a, 2014b). It
could be interesting to compare the magnitude of the effect
of each predictor in our simulations vs. their studies, but they
report non-standardized regression coefficients, which makes
the comparison difficult.

Another factor we should mention is the overall fit of the
models reported in Table 2. Although the conditional R2

c val-
ues are similar for all four data sets (between .47 and .55),
the marginal R2

m values are lower for German than for En-
glish data (.07 vs. .17 for L1, and .06 vs. .15 for L2). In
other words, random effects explain more variance in the Ger-
man data sets, compared to the English data. The higher
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amount of the random variance in the German data may be
simply due to the larger number of groups per random factor
(CONSTRUCTION and CONSTRUCTION:PREDICATE) in Ger-
man data sets: 89 and 703 in L1 German vs. 47 and 536 in
L1 English; 89 and 688 in L2 German vs. 45 and 531 in L2
English, respectively.

This, however, does not explain why the R2
m values are gen-

erally low. We discuss this in the concluding section, but be-
fore that we run the second analysis, to investigate whether
the results hold for different construction representations.

Constructions as form–meaning pairings
This time we compute the values of frequency, contingency,
and prototypicality for constructions which comprise form
(syntactic pattern) and meaning (frame type), e.g. PLACING :
ARG1 VERB ARG2 in ARG3. The statistical results are sum-
marized in Table 3.

Table 3: Summary of mixed effects models predicting the use
of verbs within form–meaning pairings.

Language
Goodness

of fit Predictor
Statistics

R2
m R2

c β SE 95% CI
FVC 0.13 0.04 [0.06,0.20]

L1 English .21 .61 ∆PCV 0.27 0.04 [0.20,0.34]
PrtV 0.44 0.02 [0.39,0.48]
FVC 0.13 0.02 [0.09,0.18]

L1 German .21 .65 ∆PCV 0.14 0.03 [0.08,0.20]
PrtV 0.46 0.02 [0.41,0.51]
FVC 0.12 0.04 [0.04,0.21]

L2 English .18 .56 ∆PCV 0.24 0.03 [0.17,0.30]
PrtV 0.38 0.02 [0.34,0.42]
FVC 0.10 0.03 [0.04,0.14]

L2 German .25 .65 ∆PCV 0.24 0.03 [0.18,0.31]
PrtV 0.50 0.02 [0.46,0.54]

Again, we see that the confidence intervals for FVC, ∆PCV ,
or PrtV do not include zero in all four data sets, this time
with no exception. Therefore, all three predictors contribute
to explaining the probability of verb use to a certain extent.
The most interesting aspect, however, is to compare the ex-
planatory power of each variable in the two types of analysis.
For this, we plot the sizes of the respective standardized β

coefficients—see Figure 3. Overall, the pattern for the four
sets of the form–meaning data is more consistent than for the
form-based data sets: prototypicality explains most variation,
followed by contingency, followed by frequency. There is no
clear pattern in this respect for the form-based data, in partic-
ular due to the differences between the German and English
data mentioned in the previous section.

The most consistent difference between the results for the
form-based and the form–meaning data is the higher impact
of prototypicality for the latter representations. Evidently,
form–meaning pairings are more semantically coherent than
form-based patterns, which explains the higher predictive

Form only, L1 English Form + meaning, L1 English

Form only, L2 English Form + meaning, L2 English

Form only, L1 German Form + meaning, L1 German

Form only, L2 German Form + meaning, L2 German

Frequency Contingency Prototypicality

Figure 3: Contributions of the predictors across the analyses.

power of verb semantic prototypicality in the second analy-
sis. In short, the overall findings hold both for form-based
and for form–meaning data, but the magnitudes of the indi-
vidual effects depend on the representations used.

Discussion
The present paper has addressed two methodological issues
related to the two earlier studies, in which the learning of
AS constructions is explained by three input-related distribu-
tional factors. The first issue is whether individual differences
between participants in Ellis et al.’s (2014a, 2014b) studies
might have affected their results. In our computational setup
the measures of frequency, contingency, and prototypicality
reflected the actual characteristics of the input to each indi-
vidual learner, while in the earlier experiments the measures
were calculated for a language corpus, and did not account for
each learner’s individual language experience. In our simu-
lation, all three variables had significant individual contribu-
tions (with one exception) to predicting the verb production.
This is in line with the results reported by Ellis et al. (2014a,
2014b).

The second question was whether the results for form-
based patterns would be generalizable to form–meaning pair-
ings, which is a more common definition of constructions
within the usage-based framework. Overall, the results were
consistent between the two types of analysis: all the vari-
ables showed significant individual contributions. However,
the magnitude of the individual effects differed: for form–
meaning pairings, the impact of semantic prototypicality was
found to be substantially higher than for form-based patterns.
Thus, the use of form-based patterns in the analysis may re-
sult in underestimating the power of prototypicality in ex-
plaining the process of AS construction learning.

Overall, this study confirms the proposal by Ellis et al.
(2014a, 2014b) that verb token frequency, contingency of
verb–construction mapping, and verb semantic prototypical-
ity have individual impact on the verb production. An impor-
tant issue, however, relates to whether this three-factor model
of explaining the verb production is optimal and complete.
In our simulations, the model fit (R2

c and R2
m) was rather low

in some cases, which suggests the model can be further im-
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proved. In particular, the current model includes verb token
frequency within a construction (that is, the joint frequency
of a verb and a construction) and verb–construction contin-
gency. Both variables, in fact, relate to the associations be-
tween verbs and constructions, so including them both to the
model may be redundant. This may also explain why the ef-
fect of contingency did not even reach the significance level
for L2 English form-based analysis. On the other hand, the
total (marginal) verb frequency is absent from the model, but
there is experimental evidence in psychology that the total
item frequency affects cued recall (Clark & Burchett, 1994).
To conclude, the three-factor model of verb production may
need to be refined in further research.
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