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Abstract. The disadvantages of the usual linear least-squares analysis of first- and second-order

kinetic data are described, and nonlinear least-squares fitting is recommended as an alternative.
Keywords. Kinetics, Graduate Education/Research, Reactions

A common task in chemical kinetics is to extract the rate constant from the time dependence
of concentrations. We first consider a reaction where reactant A is converted to product B, as in eq
1, and where the rate of reaction (rate of product formation or rate of reactant disappearance) is
proportional to the concentration of reactant A, as in eq 2. Such a reaction is said to follow first-

order kinetics, because the rate is proportional to only one concentration.

A—>B (1)

b = dgf] - _dgj] = KA] )

Alternatively, the rate may also be proportional to the concentration of another species C
with proportionality constant k', as in eq 3. However, if C is a catalyst, so that its concentration
remains constant, or if C is in large excess, so that its depletion is negligible, its concentration does
not deviate from its initial concentration [C], and eq 3 can be simplified to eq 2 by setting £'[C]g
equal to k. Such a reaction is said to follow pseudo-first-order kinetics, and k is often called a rate
coefficient, rather than a rate constant, because its value changes with [C]p. In either case the

solution to eq 2 is given by eq 4, where [A]g is the initial concentration of A.



v= ABL_ AL ey (3)
[A] = [Aloe! )

First-order Kinetics by Linear Least Squares

The customary method for analyzing concentration-time data that follow eq 4 is to take the
logarithms of both sides, to obtain eq 5. Now a plot of In[A] vs. ¢ is linear, with slope —k and with
intercept In[A], both of which can be evaluated by linear least-squares analysis. Alternatively, even
if [A] itself is not measured, but a quantity A that is proportional to [A], such as UV-vis absorbance,
conductivity, titer, or NMR intensity, eq 5 then becomes eq 6, also amenable to linear least-squares

analysis. The familiar equations for evaluating [A], or A, k, and the error in k are given in

Supporting Information.

In[A] = In[A], — kt )
InA = InA, — kt (6)

Linear least-squares analysis is a poor method for evaluating the rate constant, as we shall
see. Nevertheless, because it is so easy to apply, it is often presented in textbooks on kinetics,!2-3
even recent ones,*> and it is the classical method. The defect in applying it to eq 5 or 6 is that the
values are not equally reliable. Usually [A] or A is measured with a constant error A[A] or AA, as
with UV-vis absorbance, whereas the values of In[A] or InA do not have a constant error. Figure 1
shows the fit to eq 5 of simulated data with [A]p = 100 and k = 0.0016 but with a random error in
[A] whose average is 3.37. When the reaction is followed to three half-lives, as shown in this
example, it becomes obvious that the error in In[A] is not constant but increases as [A] decreases.
This is because, according to the formula for propagation of errors, Ojp[a] = (dIn[A]/d[A])oA =
oa/[A]. Such data are said to be heteroskedastic, meaning that the error is not constant across the

range. (Moreover, it may be noted that logarithms of values lower than the hypothetical ones



deviate more than those higher than the hypothetical, leading to a steeper calculated slope, as can be

seen in Fig. 1.)
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Figure 1. Plot of best linear fit (solid) to eq 5 of simulated data (X), along with hypothetical values

(dashed) and error bars that increase as [A] and In[A] decrease.

This heteroskedasticity shows that the linear least-squares analysis can be faulty.
Nevertheless, this method continues to be used and published by scientists. Indeed, over the past
ten or so years I have refereed about a dozen manuscripts for prominent journals where the authors
obtained faulty rate constants by analyzing kinetics with linear least squares. It is hoped that this
article will discourage that practice.

One remedy that is often proposed for dealing with heteroskedasticity is to use a weighted
linear least-squares fit.% Instead of pretending that all values are equally reliable, as is done
implicitly with linear least-squares, the values are weighted inversely to the variance associated with
each of them. In that way the less reliable values become less influential. The appropriate equations

are given in the Supporting Information.



A further complication arises if the analytical method measures formation of product B,

rather than reactant disappearance. The counterpart to eq 4 is then eq 7. Taking the logarithms of

both sides does not produce an equation linear in z. Instead it can be solved for [A], — [B], whose
logarithm is linear in ¢, as given in eq 8. To evaluate In[A], and k by linear least-squares analysis
requires that [A], be known in advance. Small errors in [A], can cause large errors in k, because of

the increasing error in the logarithm of the difference [A], — [B] as [A] decreases.

[B] = [Alyll —e#] (7)
In([A], - [B]) = In[Al], — k¢ (8)

A similar situation arises if [A] does not react completely, so that residual reactant remains,
or if the quantity A that is proportional to [A] does not decrease to zero but approaches a nonzero
baseline value A at infinite time. This is well known to produce curvature in the log plot of eq 5-6.
Instead eq 4 must be revised to eq 9, and eq 5 or 6 becomes eq 10 or 11. A plot of In([A] — [A]«) or
In(A — Ax) vs. tis linear, with slope —k and with intercept In([A]p — [A]w) or In(Ag — Ax). Now [A]
or Ay need not be known in advance but [A]e or A must be known. Small errors in [A]e or A can
cause large errors in k, because of the increasing error in the logarithm of the difference [A] — [A]w

or A — Ax as [A] or A decreases and [B] increases.

[A] - [Als = ([Alo-[Al)e K €)
In([A] - [Alw) = In([Alo - [Alw) — kz (10)
In(A — Ax) = In(Ag— Ax) — kt (11)

Finally, it should be mentioned that in contrast to the evaluation of rate constants the
problem of heteroskedasticity does not arise in evaluating AH* and AS* from an Eyring plot of
In(k/T) vs. 1/T. This is because the relative error in a rate constant is usually the same for all, so that

the error in any rate constant & is the same fraction of that rate constant. Then, although the error in



k is not constant, the error in Ink is constant across the range of temperatures. Consequently a linear

least-squares evaluation of slope and intercept does correctly provide AH+ and AS¥.

First-order Kinetics by Nonlinear Least Squares

A more effective method for fitting all such data to first-order kinetics is nonlinear least-
squares analysis. This method has been mentioned in various books on kinetics,’-8- but without
illustrative examples. In this journal nonlinear least squares has been recommended for curve-fitting
in general,!0 for fitting the kinetics of two-step reactions,!1.12 for fitting first-order
kinetics,13-14.15,16,17 for fitting enzyme kinetics to the Michaelis-Menten equation,18.19 for using
Excel's Solver,20 and for estimating the precision of the resulting parameters,2! but none of these
articles documents the advantage over linear least squares. Two useful books present both linear
and nonlinear curve fitting, along with many other examples of data analysis.22-23 Therefore this
article presents well-known but often-ignored information, and it makes the advantages of the
nonlinear least-squares method graphic.

For generality, lest [A] or A does not approach zero at infinite time, we seek to fit data to eq
9. We seek values of the three parameters &, [A]w Or Aw, and [A]g or Ag (or A = [A]g — [A]w or Ag —
Awx) that minimize S, the sum of the squares of the deviations of calculated [A] or A from observed.
In past years finding that minimum was a formidable problem.

With modern computers, even small ones, it is possible to find that minimum numerically.
Numerous programs are available. A set of initial values is needed, and guesses or values from a
linear least-squares analysis are adequate. The program will then find the "best" values of k, [A]e or
Aw, and A, the ones that minimize S. Often it can also find the uncertainties in those values. As an
example, Fig. 2 shows a plot of the same data as in Fig. 1, along with the best nonlinear least-
squares fit to eq 9. It is clear that the fitted line is closer to the hypothetical one than in Fig. 1 and

that therefore the rate constant k obtained here is more reliable.
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Figure 2. Plot of nonlinear least-squares fit (solid) to eq 9 of simulated data (X), along with

hypothetical values (dashed) and constant error bars representing the average error in [A].

This procedure is also effective if the analytical method measures B, proportional to the
extent of formation of product [B]. Instead of eq 7, data can be fit to three-parameter eq 12, where A

=Boo —BO.

B = Bo—Aekt (12)

Second-order Kinetics by Linear and Nonlinear Least Squares
We next consider a reaction where reactants A and B are converted to product, as in eq 13,
and where the rate of reaction is proportional to the product of the concentrations of the two

reactants, as in eq 14. When [A] = [B], the solution to the differential equation can be written as

eq 15. The customary method for analyzing second-order kinetics is linear least-squares fitting of

the left-hand side of this equation, whose slope vs. 7 is conveniently ([A], — [B])k. Unfortunately

the error in the logarithm is again not constant but increases as [A] and [B] decrease. As with eq 6,



the data are heteroskedastic. Moreover, the data are subject to the uncertainty in [A], — [B],, which

is the small difference between two large concentrations.

A+ B L product (13)
v = dlproduct]__dIA]__dIB]_ 4y p g (14)
[Al[Blo

N TATo(AT = [Alo + (Blo) = (Ao~ [Blpkt (15)

Alternatively, eq 15 can be solved for [A], as in eq 16. Experimental data can then be fit by
nonlinear least squares, to find the values of the three parameters k, [A]g, and [B]( that minimize the
sum of the squares of the deviations of calculated [A] from observed.

_ [Alo([Alo - [Blo)
Al = [Alo — [Bloe—([Alo-[Blp)kt (16)

Simpler equations result if [A], = [B],. Then eq 16 becomes eq 17, whose plot vs. 7 is

linear, with a slope equal to k. Unfortunately the data are again heteroskedastic because the error in
the reciprocal is not constant but increases as [A] and [B] decrease. Moreover, the data remain
subject to any error in the difference [A]y — [B]p, which is assumed to be zero but whose magnitude
increases relative to the decreasing values of [A] or [B]. Consequently it is not generally advisable

to assume that samples can be prepared with identical initial concentrations of A and B.

1 1
ﬁ—m+kl‘ (17

The only situation where equal initial concentrations can be guaranteed is when A and B are
identical, as in a dimerization or disproportionation (eq 18), so that the rate of reaction is given by
eq 19. Eq. 16 then becomes eq. 20, and eq 17 becomes eq 21, which can be fit by linear least
squares to obtain slope k and intercept 1/[A]p. Figure 3 shows the fit to eq 17 of simulated data

with [A]p = 100 and k = 0.000016 but with a random error in [A] whose average is the same 3.37



as in Figs. 1 and 2. Again the data are heteroskedastic, with errors that increase as [A] decreases. A
better method is to use nonlinear least squares to fit eq 20 with the values of the two parameters k
and [A]p that minimize the sum of the squares of the deviations of calculated [A] from observed.

The result of this fit, for the same simulated data, is depicted in Fig. 4.

2 A product(s) (18)
y = diproduct®)] _ _TdIAL_ yap (19)
(Al = oariag 0)
A = Ap 2 (21)
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Figure 3. Plot of best linear least-squares fit (solid) to eq 21 of simulated data (X), along with

hypothetical values (dashed) and error bars representing the average error in [A].
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Figure 4. Plot of best nonlinear least-squares fit (solid) to eq 20 of simulated data (X), along with

hypothetical values (dashed) and constant error bars representing the average error in [A].

In summary, the familiar linear least-squares fit to kinetic data for first- and second-order
reactions is defective because the data are heteroskedastic, i.e., of unequal reliability. This is
especially the case if the analytical method measures product formation, rather than disappearance
of reactant, or if the analytical method reports residual reactant. The remedy is to use nonlinear
least-squares fitting, which is now readily accomplished with modern computer programs.

Supporting Information Equations S1-S3 for evaluating slope, intercept, and error in
intercept by linear least squares analysis, and equations S4-S6 for evaluating slope, intercept, and
error in intercept by weighted linear least squares analysis. Simulated data used for construction of
Figs. 1-4, with results of linear, weighted, and nonlinear least-squares fits of those simulated data,
showing the influence of experimental error on the rate constant as evaluated by the different
methods.
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