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Systems/Circuits

Creation of Neuronal Ensembles and Cell-Specific
Homeostatic Plasticity through Chronic Sparse Optogenetic
Stimulation

Benjamin Liu,1 Michael J. Seay,2 and Dean V. Buonomano1,2
1Department of Neurobiology, Integrative Center for Learning and Memory, University of California-Los Angeles, Los Angeles, California 90095
and 2Department of Psychology, University of California-Los Angeles, Los Angeles, California 90095

Cortical computations emerge from the dynamics of neurons embedded in complex cortical circuits. Within these circuits,
neuronal ensembles, which represent subnetworks with shared functional connectivity, emerge in an experience-dependent
manner. Here we induced ensembles in ex vivo cortical circuits from mice of either sex by differentially activating subpopula-
tions through chronic optogenetic stimulation. We observed a decrease in voltage correlation, and importantly a synaptic
decoupling between the stimulated and nonstimulated populations. We also observed a decrease in firing rate during Up-
states in the stimulated population. These ensemble-specific changes were accompanied by decreases in intrinsic excitability
in the stimulated population, and a decrease in connectivity between stimulated and nonstimulated pyramidal neurons. By
incorporating the empirically observed changes in intrinsic excitability and connectivity into a spiking neural network model,
we were able to demonstrate that changes in both intrinsic excitability and connectivity accounted for the decreased firing
rate, but only changes in connectivity accounted for the observed decorrelation. Our findings help ascertain the mechanisms
underlying the ability of chronic patterned stimulation to create ensembles within cortical circuits and, importantly, show
that while Up-states are a global network-wide phenomenon, functionally distinct ensembles can preserve their identity dur-
ing Up-states through differential firing rates and correlations.

Key words: computational model; homeostatic plasticity; neural dynamics; neuronal ensembles; Up-states

Significance Statement

The connectivity and activity patterns of local cortical circuits are shaped by experience. This experience-dependent reorgan-
ization of cortical circuits is driven by complex interactions between different local learning rules, external input, and recipro-
cal feedback between many distinct brain areas. Here we used an ex vivo approach to demonstrate how simple forms of
chronic external stimulation can shape local cortical circuits in terms of their correlated activity and functional connectivity.
The absence of feedback between different brain areas and full control of external input allowed for a tractable system to
study the underlying mechanisms and development of a computational model. Results show that differential stimulation of
subpopulations of neurons significantly reshapes cortical circuits and forms subnetworks referred to as neuronal ensembles.

Introduction
Cortical computations rely on the neural dynamics that emerge
from local cortical microcircuits (Douglas et al., 1995; Yuste,
2015; Barack and Krakauer, 2021). While it is not known how

the appropriate connectivity between the tens of thousands of
neurons within local circuits emerges through development, it
is known that experience and patterned activity shape cortical
circuits into functional neuronal ensembles (Hebb, 1949;
Gerstein et al., 1989; Buzsáki, 2010; Carrillo-Reid and Yuste,
2020). Neuronal ensembles are often defined as subgroups
of coactive and interconnected neurons that underlie numerous
neural computations, from encoding memories to guiding
behavior (Cossart et al., 2003; Stringer et al., 2019; Perez-
Ortega et al., 2021). It has been shown that patterned stim-
ulation of subpopulations of neurons alters the functional
connectivity of local microcircuits and leads to the formation of
neuronal ensembles (Johansen et al., 2010; Carrillo-Reid et al.,
2016; Kim et al., 2016; Mendez et al., 2018; Sadeh and Clopath,
2021).

Received June 2, 2022; revised Sep. 15, 2022; accepted Oct. 16, 2022.
Author contributions: B.L. and D.V.B. designed research; B.L. and M.J.S. performed research; B.L. and M.J.S.

analyzed data; B.L. wrote the first draft of the paper; B.L., M.J.S., and D.V.B. edited the paper; B.L. and D.V.B.
wrote the paper.
This work was supported by National Institute of Mental Health Grant NS116589 and National Science

Foundation Grant RI:2008741. We thank Saray Soldado-Magraner and Jeffrey Yang for helpful scientific
discussions and technical assistance.
The authors declare no competing financial interests.
Correspondence should be addressed to Dean V. Buonomano at dbuono@ucla.edu.
https://doi.org/10.1523/JNEUROSCI.1104-22.2022

Copyright © 2023 the authors

82 • The Journal of Neuroscience, January 4, 2023 • 43(1):82–92

https://orcid.org/0000-0001-8298-9681
https://orcid.org/0000-0002-8528-9231
mailto:dbuono@ucla.edu


Neuronal ensembles are often identified based on high
degrees of correlated activity between neurons within an en-
semble, and decorrelated activity between ensembles. This
neural signature, however, appears to be at odds with other
dynamic regimes, which are characterized by network-wide or
global patterns of activity. The best-studied example of such
global activity regimes is Up-states, in which highly correlated
transitions from a quiescent state to a depolarized state occur
simultaneously in all neurons within a local microcircuit
(Sanchez-Vives and McCormick, 2000; Neske et al., 2015;
Bartram et al., 2017). Up-states seem to comprise a fundamen-
tal and intrinsic cortical dynamic regime because they are
observed during anesthesia, slow-wave sleep, quiet wakefulness
(Steriade et al., 1993; Timofeev et al., 2000; Beltramo et al., 2013;
Hromádka et al., 2013), as well as in acute slices (Sanchez-Vives and
McCormick, 2000; Shu et al., 2003; Fanselow and Connors, 2010;
Sippy and Yuste, 2013; Xu et al., 2013; Sadovsky and MacLean,
2014; Neske et al., 2015; Bartram et al., 2017). Indeed, Up-states
even emerge over the course of ex vivo development (Plenz and
Kitai, 1998; Seamans et al., 2003; Johnson and Buonomano, 2007;
Kroener et al., 2009; Motanis and Buonomano, 2020). While Up-
states have been reported to have some spatiotemporal structure
(MacLean et al., 2005; Sadovsky and MacLean, 2014; Motanis and
Buonomano, 2020), a defining property of Up-states is that they
are characterized by a global shift in activity, in which virtually
all excitatory and inhibitory neurons become depolarized and
increase their firing rate simultaneously. The global nature of
Up-states poses a paradox regarding how distinct functional
connections within ensembles of neurons are maintained and
whether the identity of the ensembles can be preserved during
Up-states. Here we examined both the ability for patterned
stimulation to shape local microcircuits and induce ensembles,
as well as whether the induced ensemble identities are pre-
served during network-wide Up-states.

Our approach was to chronically optogenetically stimulate
sparse populations of pyramidal neurons and record spontane-
ous Up-states. The use of ex vivo cortical cultures allowed us to
preserve the defining microcircuitry of local cortical networks
while unambiguously ascertaining that the observed dynamics
emerge locally within the circuit being studied (i.e., in the ab-
sence of influences from downstream or upstream circuits). This
approach also allowed us to develop a spike-based computational
model of network dynamics that captures the “stand-alone”
results of an isolated cortical circuit.

We first show that, consistent with previous results, chronic
global stimulation induces a dramatic homeostatic decrease in
Up-state frequency (Motanis and Buonomano, 2015). In con-
trast, the same amount of optical stimulation to a sparse subpo-
pulation of neurons did not abolish spontaneous Up-states, but
induced intrinsic homeostatic plasticity of the optogenetically
stimulated neurons. Critically, these units formed a local en-
semble, and during Up-states the identity of this ensemble was
preserved through differences in firing rate and pairwise corre-
lations. Mechanistically, these alterations were associated with
subpopulation-specific changes in connectivity and intrinsic
excitability. When incorporated into a spiking neural network
model, these mechanistic changes were able to account for the
differential ensemble activity during simulated Up-states.

Materials and Methods
Organotypic cultures. Cortical organotypic slices were prepared and

transduced as described previously (Motanis and Buonomano, 2015;

Goel and Buonomano, 2016). Slices were obtained from postnatal day 6-
7 WT FVB mice of either sex. Organotypic cultures were prepared using
the interface method (Stoppini et al., 1991). Coronal slices (400mm
thickness) containing primary somatosensory and auditory cortex
were sliced using a vibratome (Leica VT1200) and bisected before
being placed on filters (Millipore) with 1 ml of culture media.
Culture media was changed at 1 and 24 h after cutting and every 2-
3 d thereafter. Cutting media consisted of MEM (Corning 15-010-
CV) plus (final concentration in mM): MgCl2, 3; glucose, 10;
HEPES, 25; and Tris-base, 10. Culture media consisted of MEM
(Corning 15-010-CV) plus (final concentration in mM): glutamine,
1; CaCl2, 2.6; MgSO4, 2.6; glucose, 30; HEPES, 30; ascorbic acid,
0.5; 20% horse serum, 10 units/L penicillin, and 10mg/L strepto-
mycin. Slices were incubated in 5% CO2 at 35°C.

Viral transduction. For the dense transduction optogenetic experi-
ments, slices were transduced with AAV9-CaMKIIa-hChR2(H134R)-
mCherry [1 � 1013], whereas for the sparse experiments, slices were
transduced with diluted AAV9-CaMKIIa-Cre [1 � 109] and nondi-
luted AAV9-DIO-ChR2-mCherry [5� 1012]. Each slice received a total
of 1 ml of viral solution gently delivered via a sterilized pipette above
the cortex. All viral transductions were performed at DIV 7 and record-
ings were performed between DIV 21-30 to allow sufficient time for viral
expression.

Chronic optogenetic stimulation. To reduce variability, experiments
relied on “sister” slices; that is, experimental groups were derived from
the same batch of animals (littermates), maintained with the same cul-
ture medium and serum, placed in the same incubator, and virally
transduced in the same session. For the fully transduced slices, both
stimulated and unstimulated sister slices were simultaneously placed
into the stimulation incubator to ensure identical culture environments
and experimental conditions. The optical stimulation protocol con-
sisted of 50ms pulses of blue light (465 nm) delivered every 5 s for ei-
ther 24 or 48 h. The sparsely transduced slices underwent an identical
stimulation protocol for 48 h.

Electrophysiology. Culture filters were transferred to the recording
rig and perfused with oxygenated ACSF composed of the following (in
mM): 125 NaCl, 5 KCl, 2.5 MgSO4, 25 NaHCO3, 1 NaH2PO4, 25 glucose,
2.5 CaCl2 (ACSF was formulated to match the standard culture media).
Temperature was maintained at 32°C-33°C and perfused at 5 ml/min.
Whole-cell solution was be composed of the following (in mM): 100 K-
gluconate, 20 KCl, 4 ATP-Mg, 10 phosphocreatine, 0.3 GTP, 10 HEPES
(adjusted to pH 7.3 and 300 mOsm). For the dense transduction
experiments, whole-cell current-clamp recordings were performed on
pyramidal neurons in both stimulated and nonstimulated slices. For
the sparse transfection experiments, simultaneous whole-cell current-
clamp recordings were performed on one ChR– and one ChR1 pyrami-
dal neuron or two ChR– neurons. In both paradigms, transduced cells
were identified by the presence of mCherry expression and additionally
confirmed by the presence of a direct light-evoked response.

Intrinsic excitability was measured as the number of action potentials
evoked during a 250ms current step at intensities of (0.05, 0.1, 0.15, 0.2,
0.25, 0.3 nA). For each neuron, a minimum of 5min of spontaneous ac-
tivity was recorded. Connectivity between stimulated and nonstimulated
pyramidal neurons was assessed through simultaneous current-clamp
recordings where alternating trains of current were applied to each cell.
A connection was considered to exist if the average EPSP amplitude was
at least 3 times the baseline SD.

In the sparse transduction experiments, we fit the mean spike fre-
quency� intensity (F-I) curve to a threshold-linear activation function.

Up-state quantification/analysis. A minimum of 5min of spontane-
ous activity was recorded for each neuron. Recordings were sampled at
10 kHz. Spontaneous network events and Up-states were quantified
based on previously defined criteria (Johnson and Buonomano, 2007;
Goel and Buonomano, 2013). The first criterion for Up-states was volt-
age deflections of 5mV above the resting membrane potential. However,
during network events, the membrane potential would often make mul-
tiple crossings above and below the 5mV threshold before returning to
the resting potential. Thus, we defined Up-states as events that remained
above threshold for at least 500ms, allowing for drops below threshold
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that lasted ,100ms. We also calculated the SD of the voltage during
spontaneous activity to provide an assumption-independent measure of
overall spontaneous activity.

Up-state pairwise correlations were calculated with median-filtered
traces (25ms window) to remove the spikes during Up-states. For each
Up-state, the median-filtered voltage was taken from 50ms after its
detected onset to 50ms before its detected offset to exclude the transi-
tions between Down- and Up-states. The set of resulting Up-state volt-
age segments (representing the same time indices in each cell’s
recording) were then concatenated for each cell in a paired recording,
and the two concatenated voltage time series were correlated to yield a
single correlation coefficient for each simultaneously recorded pair of
cells, either (ChR–/ChR–) or (ChR1/ChR–).

Statistics. Comparisons between stimulated and unstimulated sli-
ces were performed with unpaired two-tailed t tests; comparisons
that used paired recordings of ChR1 and ChR– cells in the same slice
were performed with paired two-tailed t tests. To compare the F-I
curve results, we used a two-way repeated-measures ANOVA with
factors of Cell (ChR–, ChR1) and Intensity (0.05, 0.1, 0.15, 0.2, 0.25,
0.3 nA). Mann–Whitney tests were used to compare the experimen-
tal Up-state voltage correlations, EPSP amplitudes, and EPSP slopes
because the data were not normally distributed. To compare the
proportion of connected versus unconnected pairs of pyramidal
neurons, a x 2 test was used. Wilcoxon signed-rank tests were used
to compare the model units’ mean pairwise Up-state voltage correla-
tions across simulations.

Computational model. Elaborating on previous work (Jercog et
al., 2017), we modeled a network of 2000 units (1600 Ex and 400
Inh) that were sparsely connected (25%) by current-based synap-
ses. Units in the model were leaky integrate-and-fire neurons with
an adaptation current whose membrane potential was governed by
the following equations:

Cm
dVðtÞ
dt

¼ gL EL � VðtÞð Þ1 ISynðtÞ � IAdðtÞ1s
ffiffiffiffiffiffi
tm

p
hðtÞ

dIAdðtÞ
dt

¼ �IAdðtÞ
tAd

The noise term s
ffiffiffiffiffiffi
tm

p
hðtÞ represents an Ornstein–Uhlenbeck pro-

cess with zero mean, SD s , and a time constant equal to the membrane
time constant tm ¼ Cm=gL. When VðtÞ � Vthresh, the unit emitted a
spike, its voltage was reset to Vreset , and its adaptation current IAd was
incremented by b =tAd. After spiking, the unit entered an absolute re-
fractory period t refractory, during which time it could not emit spikes. In
some simulations (see Fig. 5), the unit parameters for 200 of the 1600 Ex
units were modified based on empirical observations to create a subpo-
pulation we refer to as Ex1. Default values for unit parameters based on
their type can be found in Table 1.

Total synaptic current Isyn tð Þ was summed across each unit’s incom-
ing synapses with distinct synaptic weights determined by matrices JEE,
JEI, JIE, and JII. Thus, for example, the total synaptic current to the ith

excitatory unit was given by the following:

ISyni tð Þ ¼
XNexc

j¼1

JEEij sij tð Þ1
XNinh

j¼1

JEIij sij tð Þ; i 2 Nexc

We use “post-pre” notation for the weight matrices JXY such that the
weights from presynaptic population Y onto postsynaptic population X.
The kinetics of synaptic currents were determined by the function
ssyn x; y; tð Þ for each presynaptic unit y and postsynaptic unit x. When a
presynaptic spike occurred in unit y at time t�, ssyn x; y; tð Þ was incre-
mented by an amount described by a delayed difference of exponentials
equation (Brunel andWang, 2003) as follows:

Dsij tð Þ ¼ tm

t d � t r
exp � t � t l � t�

t d

� �
� exp � t � t l � t�

t r

� �" #

where tm indicated the postsynaptic membrane time constant. Thus, the
temporal envelope of a synaptic current was determined by the synaptic
delay t l, the synaptic rise time t r, and the synaptic decay time td, which
differed for excitatory and inhibitory synapses (Table 2). Normalization
constants were chosen so that varying synaptic time constants would not
affect the time integral of the synaptic current. The synaptic delay t l was
uniformly distributed between 0 and 1ms (0 and 0.5ms) across all exci-
tatory (inhibitory) synapses. Default values for synaptic parameters can
be found in Table 2. Weight matrices JEE, JEI, JIE, and JII were predefined
to contain normally distributed weights that were capable of supporting
stable Up-states with empirically observed firing rates (Soldado-
Magraner et al., 2022). The average value of the non-zero elements of
JEE, JEI, JIE, and JII are shown in Table 2. Neither JEE nor JII had non-zero
diagonal elements; in other words, there were no autapses (self-connec-
tions). In some simulations (see Fig. 6), the weight matrix JEE was modi-
fied based on empirical observations. Specifically, E units were first
divided into two populations (Ex– and Ex1) consisting of 1400 and 200
units, respectively, and 50% of the mutual connections between the Ex–

and Ex1 units were randomly deleted, which reduced the probability of
connection between the Ex– and Ex1 populations from 25% to 12.5%. In
order to prevent a large imbalance of excitation and inhibition from
causing spurious model behavior, JEI was also modified by deleting a
number of inhibitory connections equivalent to the deleted excitatory
connections of that same postsynaptic population.

In order to model the stochastic process by which Up-states are initi-
ated, we simulated 60 s trials in which external “kicks” (DeWeese and
Zador, 2006; Jercog et al., 2017) were applied to a subpopulation of 100 Ex
units (these units were always Ex– units for simulations with subpopula-
tions of Ex1 units). To do so, we first defined kick times by randomly gen-
erating a Poisson process with the mean parameter l ¼ 0.2 Hz over the
60 s trial period. At each kick time, the subpopulation of 100 kicked Ex
units each received a large excitatory synaptic current with an equivalent
synaptic weight of 960pA, which typically caused exactly one spike. Spike
times of all Inh units were used to construct a poststimulus time histo-
gram with a bin size of 10ms. Up-states were detected as contiguous peri-
ods of time in which the population FR of inhibitory neurons exceeded
0.2Hz for at least 500ms, and fluctuations beneath the 0.2Hz threshold
that were,100ms were considered interruptions of an Up-state. For each

Table 1. Unit parameters

Cell parameter Symbol Ex– Ex1 Inh Unit

Resting potential EL �65 �65 �65 mV
Reset potential Vreset �58 �58 �58 mV
Spike threshold Vthresh �52 �46 �43 mV
Refractory period t refractory 2.5 2.5 1 ms
Membrane capacitance Cm 200 240 120 pF
Leak conductance gL 10 8 8 nS
Membrane time constant t 20 30 15 ms
Adaptation strength b 10 10 1 nA·ms
Adaptation time constant t a 500 500 500 ms
Noise SD s 1 1 1 mV

Table 2. Synaptic parameters

Synaptic parameter Value Unit

Average E-to-E weight 252 pA
Average E-to-I weight 264 pA
Average I-to-E weight 308 pA
Average I-to-I weight 282 pA
Excitatory rise time 8 ms
Excitatory fall time 23 ms
Inhibitory rise time 1 ms
Inhibitory fall time 1 ms
Mean excitatory synaptic delay 1 ms
Mean inhibitory synaptic delay 0.5 ms
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Up-state, the FR of each unit was calculated as the number of spikes it
fired during that Up-state divided by that Up-state’s duration. Each unit’s
average FR during the Up-state was then calculated as the mean FR across
all Up-states in the 60 s trial, yielding distinct values for each unit. Up-state
voltage correlation among all pairwise units was calculated using identical
methodology to what was used for the experimental data. Pairwise correla-
tions between units in different populations were then separated. A total
of ten 60 s simulations were run for each manipulation (control, intrinsic
excitability, or connectivity) where the initial weight matrix would undergo
a random shuffling of weights within each weight class. The average Up-
state firing rate of each population per simulation was used as the unit of
observation for analyses in Figures 5E and 6C. The average pairwise Up-
state voltage correlation within each population of neurons per simulation
was used as the unit of observation for analyses in Figures 5F and 6D.

Simulations were implemented in the Brian 2 library (Stimberg et al.,
2019) on Python 3.7 using forward Euler integration with a time step of
0.1ms. Code is available at https://github.com/BuonoLab/spiking-upstates/
tree/liu-et-al.

Results
Homeostatic regulation of Up-states following chronic
optical stimulation
To confirm the effectiveness of chronic optogenetic stimulation
ex vivo, we first densely expressed channelrhodopsin-2 (ChR)

using AAV9-CaMKIIa-ChR2-mCherry in excitatory neurons of
mouse cortical organotypic slices. We stimulated the transduced
slices at 0.2Hz with 50ms pulses of 465nm blue light in the in-
cubator for 24 or 48 h (Fig. 1A). Using whole-cell patch-clamp
recordings, we confirmed that each 50ms pulse of light was suffi-
cient to elicit 1 or 2 action potentials in ChR1 pyramidal neu-
rons, and consistent with previous results observed that optical
stimulation often triggered Up-states. We quantified spontaneous
Up-state activity using three measures: SD of the membrane
potential (STDVm), Up-state frequency, and Up-state duration
(Fig. 1B; see Materials and Methods). There was a significant
decrease in both STDVm (Fig. 1C) at 24 h (t(70) = 5.6, p , 10�4,
unpaired t test) and 48 h (t(78) = 5.9, p, 10�4). We also observed
a decrease in spontaneous Up-state frequency following both 24 h
(t(69) = 5.8, p, 10�4) and 48 h (t(77) = 6.6, p, 10�4) of light stim-
ulation (Fig. 1D). There was no change in the observed Up-state
duration (Fig. 1E).

These data demonstrate that chronic stimulation of excitatory
neurons produced a pronounced homeostatic downregulation of
Up-states, consistent with the notion that neural circuits seek out
“setpoint” levels of activity (Turrigiano, 2008, 2012; Slomowitz et
al., 2015; Hengen et al., 2016), which in control slices are achieved
through internally generated spontaneous Up-states. But in the

Figure 1. Spontaneous Up-state frequency is reduced in densely transduced cortical slices following 24 or 48 h of stimulation. A, Schematic of densely transduced cortical circuits in organo-
typic slice cultures (top) and image from auditory cortex densely transduced with AAV9-CaMKIIa-hChR2(H134R)-mCherry and chronic optogenetic stimulation paradigm (bottom). B, Example
traces of spontaneous Up-states in Pyramidal neurons from unstimulated (black), 24 h stimulated (green), and 48 h stimulated (blue) slices. Up-states were rarely observed in the 24 and 48 h
stimulated slices. Orange annotations represent the three quantitative measures of spontaneous activity shown in C–E. C, The SD of membrane voltage was significantly decreased by both 24
and 48 h of stimulation. STDVm was calculated over a 5 min period of spontaneous activity in Pyr neurons. D, Spontaneous Up-state frequency was significantly decreased by both 24 and 48 h
of stimulation. E, Although Up-state frequency was decreased by stimulation, when Up-states occurred, on average, they were of the same duration.
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stimulated slices, these setpoints are achieved through external
inputs, resulting in the internal activity being downregulated.

Chronic stimulation of a sparse subpopulation of pyramidal
neurons generates a decorrelation of activity between
stimulated and nonstimulated populations
To determine whether we could induce distinct ensembles or
“clustering” through differential stimulation of neurons, we next
expressed ChR in a sparse population of pyramidal neurons
using a Cre-dependent ChR and a diluted Cre expressing AAV
(see Materials and Methods). This approach led to sparse
(;10%) transduction of cortical pyramidal neurons (Fig. 2A).
We next used the same 48 h chronic stimulation protocol used
above. In contrast to the effect of stimulation on densely trans-
duced circuits, robust spontaneous Up-states were present in the
sparsely transduced slices.

Up-states correspond to global changes in network activity
which are believed to recruit all excitatory neurons in a circuit.
Thus, as expected, there was no difference in Up-state frequency
between ChR1 and ChR– subpopulations. Interestingly, how-
ever, there were differences in the voltage dynamics during the
Up-state between the ChR1 and ChR– subpopulations. First, the
amplitude of Up-states was significantly reduced (t(18) = 6.3, p,
10�4, paired t test) in the ChR1 compared with the ChR– neu-
rons (Fig. 2B). To control for the possibility that the amplitude
differences could be driven by the changes in the intrinsic prop-
erties of ChR1 and ChR– neurons (see below), such as resting
membrane potential, we also compared Up-state amplitude of
simultaneously recorded ChR– pairs grouped by lowest and
highest membrane potential. These analyses revealed that Up-
state amplitude was not affected by baseline Vm (Fig. 2B, right).
The average firing rate during Up-states was also significantly
lower (t(13) = 3.1, p= 0.008, paired t test) in ChR1 neurons (Fig.
2C), although there was no difference in the firing rate between
ChR– pairs with low and high membrane potential (t(15) = 0.2,
p=0.85). Importantly, the pairwise correlation of Up-state activ-
ity between simultaneously recorded ChR–/ChR– pairs was sig-
nificantly greater (U= 41, n1 = n2 = 14, p= 0.008, Mann–
Whitney test) than in ChR1/ChR– pairs (Fig. 2D). These findings
suggest that chronic patterned stimulation of a sparse population
of pyramidal neurons in a cortical network led to the formation
of distinct clusters or neuronal ensembles, whereby the ChR1 is

decoupled from ChR– subpopulation as indicated by the differ-
ences in firing rate and correlations during Up-states.

Differential input–output functions between stimulated and
nonstimulated neurons
The differential activity during Up-states is somewhat surprising
given that Up-states are a global network-wide phenomenon. To
begin to understand whether this decoupling may be accounted
for by intrinsic and/or network properties, we analyzed the intrin-
sic neuronal properties of the ChR1 and ChR– subpopulations,
including the F-I curve (i.e., the input–output function as defined
by the relationship between spike frequency and injected current;
Fig. 3A). Consistent with previous studies of intrinsic homeostatic
plasticity (Desai et al., 1999; Karmarkar and Buonomano, 2006),
chronic stimulation of the ChR1 neurons resulted in significantly
different F-I curves (F(1,86) = 20.5, p, 10�4; Fig. 3B). To quantify
the source of these differences, and to incorporate the differences
in intrinsic excitability in a neurocomputational model (see
below), we fit the F-I curve of each neuron to a rectified linear
function defined by a threshold and gain (Romero-Sosa et al.,
2021). Results revealed that the differences in F-I curve could be
accounted for by a significant increase (t(109) = 2.8, p=0.006,
paired t test) in the threshold from u = 0.10 6 0.06nA in the
ChR– population to u = 0.13 6 0.04nA in ChR1 neurons (Fig.
3C). There was also a trend (t(109) = 1.8, p=0.07) for an accompa-
nying decrease in the gain (the slope of the F-I curve) in the ChR1

subpopulation. Additionally, there was a small difference in resting
Vm between ChR1 and ChR– cells (�65.6 6 5.3 and �67.5 6
3.2mV, respectively; p=0.05), and input resistance (2366 54 and
202 6 63 MV, respectively; p=0.01). Overall, these results estab-
lish that there are significant changes in intrinsic excitability that
could contribute to the subpopulation differences. Specifically, the
intrinsic plasticity may account for the observed decrease in
Up-state firing rate observed in the ChR1 neurons (Fig. 2C);
however, it is less clear whether the changes in intrinsic excit-
ability could account for the decoupling of the correlation in
activity (Fig. 2D).

Synaptic decoupling between stimulated and nonstimulated
pyramidal neurons
To examine whether network-level changes contribute to the
observed differential effects in firing rate and activity correlation,

Figure 2. Pairwise differences in Up-state amplitude, firing rate, and voltage correlation between stimulated and nonstimulated pyramidal neurons in sparsely transduced slices. A, Example
of cortical pyramidal neurons sparsely transduced with AAV9-CaMKIIa-Cre and EF1a-DIO-hChR2(H134R)-mCherry (left), and sample paired recordings of ChR1 and ChR– neurons (right). B,
Spontaneous Up-state amplitude was significantly reduced in ChR1 compared with ChR– pyramidal neurons. Up-state amplitude was not significantly different between simultaneously
recorded ChR1 pyramidal neurons grouped according to their resting membrane potential (ChR– pyramidal neurons with the lower resting membrane potential of the pair was plotted on the
left). C, Spontaneous Up-state firing rate was significantly reduced in ChR1 versus ChR– pyramidal neurons. Up-state firing rate was not significantly different between simultaneously recorded
ChR– pyramidal neurons grouped according to their resting membrane potential. D, The correlation between the Up-state voltage dynamics of ChR1 and ChR– neurons was significantly less
than ChR– and ChR– pairs, indicating a decorrelation between the shared inputs to the ChR1 and ChR– subpopulations.
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we next asked whether there is a synaptic decoupling between
the ChR1 and ChR– subpopulations. We assessed the connection
probability and strength of the connections between ChR1 and
ChR–. Connectivity between nearby pyramidal neurons (,50
mm) was measured through paired whole-cell current-clamp
recordings. Trains of action potentials were alternatively elicited in
one cell while measuring any corresponding EPSPs in the other (Fig.
4A). We recorded from ChR1/ChR– and ChR–/ChR– pairs. Because
of the sparseness of the ChR expression, it was not feasible to record
from nearby ChR1/ChR1 pairs, and recording from distant pairs
dramatically decreased the connectivity likelihood.

Among the connected pairs both the unitary EPSP ampli-
tudes (U= 20, n1 = 8, n2 = 19, p , 0.002, Mann–Whitney test)
and slopes (U=24, n1 = 8, n2 = 19, p , 0.004) were dramatically
smaller in ChR1/ChR– compared with ChR–/ChR– pairs (Fig.
4B). In addition to weaker synaptic connections between the sub-
populations, there was a significant difference in connection
probability (x 2

1;158 ¼ 5:1, p= 0.02, x 2) between pairs of ChR–/
ChR– (0.24) compared with ChR1/ChR– (0.10) (Fig. 4C).
There was not a significant difference in the likelihood in the
proportion of reciprocal connections (x 2

1;21 ¼ 1:1, p = 0.31)
between the ChR–/ChR– (4 of 15 pairs) and the ChR1/ChR–

(3 of 6 pairs), nor was there any detectable asymmetry in the
direction of the ChR1 $ ChR– connections. Together, these
results establish that chronic stimulation of sparsely transduced
pyramidal neurons resulted in a rewiring of the local cortical
circuit in the form of a synaptic decoupling between ChR1 and
ChR– subpopulations.

Synaptic decoupling between subpopulations accounts for
the experimental observations
In order to determine whether either, or both, the empirically
observed changes in intrinsic excitability and synaptic decou-
pling, could account for the observed changes in Up-state firing
rate, we next implemented an empirically informed spike-based
computational model of Up-states (see Materials and Methods).
Previous computational and mathematical models of Up-states
and inhibition-stabilized networks have carefully characterized
the constraints that must be met in order for networks to exhibit
transiently stable Up- and Down-states (Tsodyks et al., 1997;
Destexhe, 2009; Ozeki et al., 2009; Jercog et al., 2017; Maes et al.,
2020). Key among these is the appropriate balance of excitation
and inhibition in both the excitatory and inhibitory populations.
The model was composed of 1600 excitatory (Ex) and 400 inhibi-
tory (Inh) integrate-and-fire units. We first established that in
the baseline network, in which all Ex units had the same input–
output function and a uniform connection probability, the
network exhibited global transitions between a quiescent Down-
state and depolarized Up-states (Fig. 5A). This provided the
opportunity to directly model and evaluate the influence of the
empirically observed cell-specific and connectivity changes
to account for the observed changes in firing rates during
Up-states. Our approach allowed us to independently adjust
both the input–output function as well as the connection
probability between populations in the spiking neural network
model to approximately match the empirically observed changes
following chronic optogenetic stimulation.

Figure 3. Cell-autonomous decreases in the intrinsic input–output function of ChR1 compared with ChR– pyramidal neurons in sparsely transduced slices. A, Sample
intrinsic excitability traces simultaneously recorded from ChR– and ChR1 pyramidal neurons from sparsely transduced cortical circuits stimulated for 48 h (250 ms current
steps ranged from �0.10 to 0.3 nA). B, F-I curves of the average input–output functions from ChR– and ChR1 pyramidal neurons from sparsely transduced cortical slices
stimulated for 48 h. C, Threshold-linear fits of the F-I curves of the ChR– and ChR1 populations. Light gray lines indicate the fits of the F-I curves of individual neurons.
Solid cyan or blue lines indicate the mean threshold-linear fit. The threshold (u = 0.10 nA) of the ChR– Pyr neurons was significantly lower than the ChR1 Pyr neurons
(u = 0.13 nA).
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We first created two subpopulations of excitatory units (Ex1

and Ex–), as defined by the F-I curves of the ChR1 and ChR–

neurons (Fig. 3), respectively. Simply adjusting the input–output
function of the Ex1 population to match the empirically derived
F-I curves was sufficient to account for the population-specific
changes in Up-state firing rate (Fig. 5B-E). Specifically, we modi-
fied the intrinsic parameters of 200 (12.5%) Ex units so that they
had a higher spike threshold and lower gain (Ex1) while leaving
the intrinsic parameters of the remaining 1400 Ex units untouched
(Ex–). We then ran ten 60 s simulations with the manipulated
intrinsic parameters and shuffled the weights within each weight
class for each simulation. Across simulations, the Up-state median
firing rate of the Ex1 population was significantly reduced to 1.9Hz
compared with the Ex– population’s median of 4.2Hz (t(9) = 100.2,
p, 10�10). To determine whether changes in intrinsic excitability
could account for the decrease in voltage correlation during Up-
states between the ChR1 and ChR– populations (Fig. 2D), we also
measured the pairwise correlation of model units’ voltage during
Up-states using the same methodology used to quantify the

experimental data. We found that, across simulations, there was
no significant difference in the median pairwise correlations dur-
ing Up-states between or within ChR1 and ChR– populations
(Fig. 5F): (Ex–/Ex–) versus (Ex–/Ex1) (n=10, W=29, p=0.16),
(Ex–/Ex1) versus (Ex1/Ex1) (n=10, W=33, p=0.10), (Ex–/Ex–)
versus (Ex1/Ex1) (n=10, W=35, p=0.08).

We next modified the model to incorporate only the empirically
observed changes in connectivity, while leaving the intrinsic excitabil-
ity unchanged (i.e., as in the baseline model, all Ex units in this simu-
lation have the same input–output function) (Fig. 6). According to
our observation that the connection probability between ChR1 and
ChR– neurons decreased (symmetrically) from 24% to 10% (Fig.
4C), we deleted half of the connections between Ex1 (200 units) and
Ex– (1400 units) populations (reciprocally), decreasing their probabil-
ity of connection from 25% to 12.5%. However, because of the mod-
el’s sensitivity to the balance of excitation and inhibition, we found
that deleting a portion of excitatory connections without an accom-
panying decrease in inhibition resulted in unbalanced dynamics and
implausible behavior in the model. We thus made an additional
assumption that there was an excitatory/inhibitory rebalancing,
implemented by decreasing the inhibitory connections onto each of
the two populations (Fig. 6A). Across simulations, the Up-state me-
dian firing rate of the Ex1 population was significantly reduced com-
pared with the Ex– population (Fig. 6B; t(9) = 8.5, p, 10�4).
Importantly, we also observed a marked decrease in the voltage cor-
relation between Ex1/Ex– pairs during Up-states (Fig. 6C), compared
with the Ex–/Ex– (n=10, W=55, p=0.002) and the Ex1/Ex1 popu-
lations (n=10,W=55, p=0.002).

These findings indicate that either decreases in the intrinsic
excitability of the ChR1 subpopulation or synaptic decoupling of
the ChR1 and ChR– subpopulations can account for the observed
decreases in firing rate during Up-states, but only the manipula-
tion of synaptic connectivity accounted for the decrease in Up-
state voltage correlations. Our results are consistent with the
hypothesis that parallel forms of plasticity cooperate in a synergistic
and redundant manner to implement homeostatic adjustments and
experience-dependent neuronal ensembles, and that each plasticity
locus can produce distinct or shared phenotypes (Burrone et al.,
2002; Maffei and Turrigiano, 2008; Tetzlaff et al., 2011; Turrigiano,
2012; Slomowitz et al., 2015; Wefelmeyer et al., 2016; Gainey and
Feldman, 2017).

Discussion
Cortical circuits must carefully balance opposing neuronal and
circuit properties, including the balance of excitation and inhibi-
tion (Froemke, 2015; Hennequin et al., 2017), and overall levels
of neuronal activity so that cells are neither underactive nor over-
active (Turrigiano, 2008; Goold and Nicoll, 2010; Pozo and
Goda, 2010). Additionally, cortical circuits must balance the
degree to which interconnected neurons function as independent
groups or as globally coactive networks. On one hand, distinct
neuronal ensembles must operate independently during cortical
processing, but also remain a part of a larger network during
global dynamic regimes, including Up-states and sleep states.
Here we have begun to address this balance between local versus
global dynamic regimes by showing that, while chronic stimula-
tion of subsets of neurons induces a decoupling from other neu-
rons in the circuit, it remains the case that both populations of
neurons participate in global Up-state dynamics. Critically, how-
ever, in contrast to the prevailing view in computational models
of Up-states in which all neurons participate equally in Up-state
dynamics (Destexhe, 2009; Jercog et al., 2017), we observed that

Figure 4. Synaptic decoupling between ChR1 and ChR– pyramidal neurons. A, Example
traces of a paired recording between reciprocally connected ChR– and ChR– pyramidal neu-
rons (,50 mm apart). B, EPSP amplitude and slope were significantly reduced between
connected pairs of ChR1 and ChR– pyramidal neurons compared with connected pairs of
ChR– pyramidal neurons following 48 h of stimulation. C, Connectivity ratio was higher between
pairs of ChR– pyramidal neurons compared with pairs of ChR1 and ChR– pyramidal neurons.
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functionally distinct ensembles can preserve their identity during
Up-states through differential firing rates and decreased cross-
ensemble correlations.

Homeostatic plasticity of Up-states
Up-states have been proposed to have multiple functional roles,
including memory consolidation and synaptic homeostasis
(Tononi and Cirelli, 2003; Sirota and Buzsáki, 2005; Marshall et
al., 2006; Vyazovskiy et al., 2008; Diekelmann and Born, 2010).
Consistent with previous studies, our results suggest that Up-
states also play a role in the homeostatic regulation of neural activ-
ity (Goel and Buonomano, 2013; Motanis and Buonomano, 2015).
Specifically, in densely transduced cortical circuits, chronic optical
stimulation dramatically reduced the frequency of spontaneous
Up-states: in many cases, no Up-states were observed in stimu-
lated slices, suggesting that, in the presence of an external source
of neural activity, networks downregulated spontaneous network-
wide Up-states to adjust their activity setpoints. We note that,
while the concept of an activity setpoint is generally interpreted as
an ontogenetically determined target level of activity as measured

by the mean levels of Ca21, the existence and potential mecha-
nisms of these hypothesized setpoints remain an open question
(Turrigiano, 2008; Pozo and Goda, 2010; Trojanowski et al.,
2021).

In sparsely transduced slices, network-wide Up-states were
observed in both ChR– and ChR1 neurons; however, the firing
rate during Up-states was significantly reduced in the directly
stimulated population. This indicates that all neurons partici-
pated in Up-states at the same time, but that ChR1 neurons
downregulated their spiking, again consistent with the notion
that they reached their activity setpoints through direct optical
stimulation and downregulated their activity during Up-states to
achieve activity homeostasis. To the best of our knowledge, this
is the first result suggesting that, based on activation history, dif-
ferent subpopulations of the same neuron class may have distinct
activity signatures during Up-states.

Ensembles maintain identity within Up-states
It is widely accepted that the formation of functionally distinct
subcircuits embedded within larger local cortical networks is of

Figure 5. Empirically observed changes in intrinsic excitability is sufficient to account for cluster-specific changes in firing rate. A, The neural network model was composed of 2000 adaptive
integrate-and-fire units (1600 Ex, 400 Inh). Traces represent two example Up-states in two sample Ex units in the baseline model. Average firing rate of all excitatory and inhibitory neurons
during an Up-state is shown below. B, In the experimental network, there were two populations of Ex units (Ex1 and Ex–) with different intrinsic excitability. Spike threshold, leak conductance,
and membrane capacitance parameters differed between the Ex– and Ex1 units. Traces represent the response to 250 ms square waves of injected current. C, F-I curves comparing the spiking
output of the Ex1, Ex–, and Inh units. The difference in spike threshold and slope for the Ex– and Ex1 units qualitatively match empirical findings. D, Sample Up-states in the experimental
neural network. E, Average firing rates of Ex– and Ex1 units during Up-states were significantly different. F, The mean pairwise correlations between the Ex–/Ex–, Ex–/Ex1, and Ex1/Ex1 pairs
were not significantly different (data from 10 simulations).
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fundamental importance to cortical computa-
tions (Hebb, 1949; Yuste, 2015; Carrillo-Reid
and Yuste, 2020; Sadeh and Clopath, 2021). This
functional specialization has been observed in
many in vivo and in vitro studies (Dechery and
MacLean, 2017; Carrillo-Reid et al., 2019;
DeNardo et al., 2019; Marshel et al., 2019;
Sugden et al., 2020). Furthermore, in vivo studies
have shown that it is possible to artificially
induce the formation of ensembles by direct
coactivation of cortical neurons (Carrillo-Reid et
al., 2016; Kim et al., 2016), consistent with the
theory that Hebbian plasticity contributes to this
functional specialization. Here, we demonstrate
that the coactivation of a subset of pyramidal neu-
rons also reconfigures cortical circuits ex vivo,
resulting in a synaptic decoupling between directly
activated ChR1 neurons and the ChR– subpopula-
tion, and the formation of neuronal ensembles.

One might have predicted that our stimula-
tion protocol would have resulted in ChR1 neu-
rons becoming hubs of a rich-club network
architecture, in which ChR1 neurons asymmet-
rically drive ChR– neurons, a prediction that
might be expected based on STDP or reports of
rich-club networks in the cortex (Nigam et al.,
2016). We did not observe any enhanced connec-
tivity fromChR1 to ChR– neurons; however, given
the relatively low interpopulation connectivity, it is
possible that a small degree of ChR1 $ ChR–

asymmetry could have been missed. Nevertheless,
our results suggest that the differential stimulation
of different subpopulations of neurons favors the
formation of neural ensembles rather than rich-club networks.

While neuronal ensembles refer to functionally intercon-
nected subpopulations of neurons, it is recognized that they are
not fully isolated functional units. Ensembles are composed of
overlapping subpopulations of neurons; but during some cortical
regimes most, if not all, neurons within a local circuit undergo
synchronous shifts between inactive Down-states to depolarized
Up-states. This tension between compartmentalized and global
activity regimes raises the question of if and how ensemble iden-
tity is maintained during Up-states. Here we show that ensemble
identity is preserved during Up-states. Specifically, in addition to
the lower firing rates during Up-states, the cross-ensemble corre-
lations are weaker. At the mechanistic level, this is likely to be a
result of the decreased cross-ensemble connectivity.

Mechanisms underlying the formation of neuronal
ensembles and homeostasis
The experience-dependent reconfiguration of cortical subnetworks
observed here must be mediated through specific learning rules and
plasticity mechanisms. Part of the observed changes are attributed
to well-defined homeostatic mechanisms: activity-dependent upreg-
ulation and downregulation of intrinsic excitability (Desai et al.,
1999; Maffei et al., 2004; Karmarkar and Buonomano, 2006;
Grubb and Burrone, 2010; Wefelmeyer et al., 2016; Debanne et
al., 2019). Homeostatic plasticity by itself, however, cannot fully
account for our results as it would not account for the selective
decrease in cross-ensemble connectivity (e.g., the decrease in ChR1

to ChR– connectivity). Thus, associative Hebbian mechanisms that
capture the correlational structure of neuron pairs are likely to

operate in parallel with homeostatic plasticity (Watt and Desai,
2010; Turrigiano, 2011;Walcott et al., 2011; Zbili et al., 2021).

A limitation of our study was that we were not able to specifi-
cally contrast the connectivity between ChR1 pairs and ChR–

pairs because of the challenges in performing paired ChR1 record-
ings in sparsely transduced slices in which the ChR1 neurons
were distant from each other. Thus, future studies should specifi-
cally determine whether the connectivity within ChR1 pairs is the
same, or perhaps higher, than between ChR– pairs. However, our
computational model allowed us to demonstrate that synaptic
decoupling was sufficient to account for the observed cross-en-
semble decreases in correlations, as well as for the lower firing
rates in ChR1 neurons. Overall, our experimental and computa-
tional results support the notion that the nervous system engages
multiple synergistically operating plasticity loci in parallel to
robustly implement experience-dependent cortical reorganization.
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