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ABSTRACT OF THE DISSERTATION

The Wiles Defect for Principal Series Deformation Rings

by

Ethan Alwaise

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Chandrashekhar Khare, Chair

Wiles’ proof of Fermat’s last theorem boils down to proving the existence of a ring

isomorphism R→ T , where R is a Galois deformation ring and T is a Hecke algebra acting

on a space of cusp forms. This relies on a numerical criterion for such a map to be an

isomorphism of complete intersections.

In [3] and [4], the authors study contexts where R and T are not complete intersections,

thus the Wiles numerical criterion cannot hold. They quantify the failure of the numerical

criterion by computing the associated Wiles defect in terms of the local behavior of a

global Galois representation ρf associated to a modular form f . We use the methods of [4]

to compute the Wiles defect in the case where we demand that the given modular

representation ρf is of principal series type at a fixed set of primes.
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Chapter 1

Introduction

Fermat’s last theorem states that if n ≥ 3 is an integer and a, b, c ∈ Z are integers which are

a solution to the Fermat equation of degree n

an + bn = cn,

then at least one of a, b, c is equal to 0. Although Pierre de Fermat originally stated his last

theorem in the margin of a copy of Arithmetica around 1637, he did not provide proof, and

it is widely agreed that he never found a proof. After over three centuries of effort by a

number of mathematicians, Andrew Wiles proved Fermat’s last theorem in [42] by showing

that all semistable elliptic curves over Q are modular. Wiles’ original proof in fact contained

a gap, but with the help of his graduate student Richard Taylor, Wiles was able to remedy

this gap in [38].

Today the more general modularity theorem is known, which guarantees that every elliptic

curve E/Q is modular [5], meaning that for some integer N ≥ 1, there exists a surjective

morphism (defined over Q) of algebriac curves X0(N) → E, where X0(N) is the modular

curve obtained by compactifying the quotient of the upper half-plane in C by the action of

the congruence subgroup Γ0(N) ⊆ SL2(Z). The modularity theorem was first conjectured in
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an imprecise form by Yutaka Taniyama at the 1955 international symposium on algebraic

number theory in Tokyo and Nikkō. Goro Shimura and Taniyama collaborated until 1957

to improve the rigor of the conjecture. André Weil further built upon the conjecture [41],

adding the stipulation that the integer N could be taken to be the conductor of E. At the

time of Wiles’ proof, the Taniyama-Shimura-Weil conjecture was considered out of reach.

A priori, there is no obvious relationship between Fermat’s last theorem and the theory

of elliptic curves. In 1975, Yves Hellegouarch introduced in [18] the idea of associating a

solution (a, b, c) ∈ Z3 to the Fermat equation of prime degree ` to the elliptic curve E/Q

defined by the equation

y2 = x(x− a`)(x+ b`).

In 1986, Gerhard Frey, iterating upon this idea, had the insight that the above curve could

link Fermat’s last theorem to the Shimura-Taniyama-Weil conjeture [12]. More specifically,

Frey observed that E is semistable (i.e. the conductor of E is square-free), and the number

field obtained by adjoining the `-torsion points of E to Q is ramified only at 2 and `. Frey

suggested that the exotic properties of the elliptic curve E would lead to a contradiction

if E were known to be modular. The above curve is known as a Frey curve due to Frey’s

contribution.

In 1987, Serre studied mod ` Galois representations Gal(Q/Q) → GL2(F`) for primes

` > 3 [35]. In particular, he was able to procure a precise list of properties of the mod

` representation ρE,` : Gal(Q/Q) → GL2(F`) (where E is a Frey curve) which would lead

to the contradiction imagined by Frey. More precisely, the representation ρE,` should be

irreducible, unramified outside 2 and `, finite flat at `, and the image of inertia at 2 should

have order `. Serre predicted that ρE,` should arise from a cusp form of level 2 and weight 2

on Γ0(2). Such forms do not exist, however, as they correspond to holomorphic differentials

of the modular curve X0(2), which has genus 0. Obtaining this contradiction, however,

requires a result that one can “lower the level” of a newform f ∈ Γ0(qN) (where N ≥ 1 is an
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integer and q is a prime not dividing N) to a newform g ∈ Γ0(N) such that the associated

Galois representations ρg and ρg are equivalent modulo `. Serre left this level-lowering result

as a conjecture, which came to be known as the “ε-conjecture”. In 1990, Ribet proved

the ε-conjecture [32], thus putting the connection between Fermat’s last theorem and the

Taniyama-Shimura-Weil conjecture on solid ground and setting the stage for Wiles’ 1995

proof.

Given an elliptic curve E/Q, for each prime p one obtains a 2-dimensional p-adic rep-

resentation ρE,p : Gal(Q/Q) → GL2(Qp) from the action of Gal(Q/Q) on the Tate module

Tp(E) = lim←−nE[pn] (with a choice of basis). A priori, the modularity of E means that ρE,p

is modular (i.e. is equivalent up to semisimplification to the p-adic representation attached

to a newform) for all primes p. However, using Faltings’ isogeny theorem, one can show that

the modularity of E is equivalent to the modularity of ρE,p for a single prime p. Wiles’ proof

relies on choosing a prime p such that ρE,p (the reduction of ρE,p modulo p) is modular, and

showing that under certain conditions, this implies that ρE,p itself is modular.

Wiles’ approach is to reframe the problem in a more general context. Let p be a prime

and let O be the ring of integers in some finite extension of Qp with uniformizer $ and

residue field k. Suppose ρ : Gal(Q/Q) → GL2(k) is a continuous, absolutely irreducible

Galois representation which is modular. Rather than studying a specific lift of ρ, one wishes

to consider lifts of ρ to rings in CNLO, the category of complete Noetherian local O-algebras

with residue field k. Given a finite set of primes Σ, one can consider the deformation functor

Dρ : CNLO → Set which sends a ring R ∈ CNLO to all lifts ρ : Gal(Q/Q)→ GL2(R) which

reduce to ρ modulo the maximal ideal of R (up to an equivalence relation) and are of “type

Σ” (meaning unramified outside Σ∪ S, where S is the set of primes at which ρ is ramified).

An equivalence class of lifts is called a deformation of ρ. Work of Mazur [29] shows that Dρ is

representable. The representating object RΣ is called the universal deformation ring of ρ and

satisfies the universal property that there exists a universal deformation ρΣ : Gal(Q/Q) →

GL2(RΣ) such that if ρ : Gal(Q/Q) → GL2(R) is any deformation of ρ with R ∈ CNLO,
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then ρ factors through ρΣ via a unique morphism RΣ → R.

Rather than show that a specific deformation of ρ is modular, as is the goal, Wiles shows

that in fact all deformations of ρ are. To this end, Wiles constructs a universal “modular”

deformation ring TΣ ∈ CNLO which parameterizes modular deformations of ρ of type Σ.

The ring TΣ is a Hecke algebra acting on a suitable space of cusp forms, localized at a

maximal ideal corresponding to a cusp form f such that ρf = ρ (recall that ρ is assumed

to be modular). Wiles then constructs a deformation ρΣ,mod : Gal(Q/Q) → GL2(TΣ) of

type Σ. If g is some other cusp form such that ρg = ρ, then g induces an augmentation

TΣ → O via which ρg factors through ρΣ,mod. In this sense the ring TΣ parameterizes

modular deformations of ρ. The universal property of RΣ then induces a unique morphism

ϕ : RΣ → TΣ. The task of showing that all deformations of ρ are modular thus becomes

equivalent to showing that ϕ is an isomorphism. Such a result is often referred to as a

“R = T” theorem.

One easily shows that ϕ is surjective, and thus one only needs to show injectivity. Wiles

accomplishes this in the minimal level case (Σ = ∅) via an ingenius commutative algebra

argument. Given an augmentation λ : R→ O for R ∈ CNLO, one defines the invariants:

ΦR = kerλ/(kerλ)2

ΨR = O/λ(AnnR(kerλ)).

The invariants Φλ and Ψλ are called the cotangent space and congruence module, respectively.

The key to proving the R = T theorem is the Wiles numerical criterion. As it turns out, that

RΣ
∼= TΣ is intertwined with the fact that both rings are complete intersections. Suppose we

have surjective morphism φ : R→ T in CNLO such that T is a finitely generated torsion-free

O-module and ΨR 6= 0. Suppose further that there is an augmentation λ : T → O (which

defines an augmentation R → O via composition with φ. Then the conditions that φ is an

isomorphism and R and T are complete intersections are together equivalent to the numerical
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criterion |ΦR| = |ΨT |. In fact surjectivity alone implies that |ΦR| ≥ |ΨT |, so one only needs

|ΦR| ≤ |ΨT |.

The proof that RΣ
∼= TΣ proceeds by induction on the cardinality of Σ. The minimal

level case (Σ = ∅) is proved via the Taylor-Wiles patching method. The remaining cases are

proved by bounding the growth of the cotangent space and congruence module as the size

of Σ is increased so as to show that the numerical criterion continues to hold. The Hecke

algebra T∅ acts on a space of cusp forms M∅, hence R∅ also acts on M∅. If one can show

that the action of R∅ on M∅ is free, then since this action factors through the surjective

map ϕ : R∅ → T∅, it follows that ϕ is an isomorphism.

One considers auxillary sets Q of Taylor-Wiles primes at which ramification is allowed.

For q ∈ Q let ∆q be the maximal p-power quotient of F×q and let ∆Q =
∏

q∈Q ∆q. Local class

field theory gives an action of the group ring O[∆Q] on RQ (and thus on TQ). Moreover,

there is a commutative diagram

RQ TQ

R∅ T∅,

where all maps are surjective and the kernels of the vertical maps are aQRQ and aQTQ,

respectively, where aQ is the augmentation ideal of O[∆Q]. For each n ≥ 1, one chooses

Taylor-Wiles sets Qn with prescribed properties. One would like to take an “inverse limit”

over the above diagrams as n→∞, but a priori there are no obvious maps between the rings

for different choices of Taylor-Wiles sets. However, using a pigeonhole principle argument,

one can extract a subsequence of the Qn which gives a compatible system. This produces a

“patched” ring R∞ which is an algebra over a power series ring S∞ = O[[y1, . . . , yd]] for some

integer d. Similarly, one patches TQn-modules MQn , which produces a patched R∞-module

M∞. Critically, R∞/aR∞ acts freely on M ∼= M∞/aM∞ ∼= M∅, where a = (y1, . . . , yd) ⊆ S∞.

Moreover, this action factors through a surjective map R∞/aR∞ → R∅, which gives that
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R∅ acts freely on M∅ as desired.

Wiles’ proof relied on the freeness of the action of the Hecke algebra T . In general,

freeness can be difficult to establish. However, Diamond and showed that in fact one only

needs that the action of T is faithful. In [23], Mark Kisin widely expanded the scope of

patching techniques by patching spaces of modular forms rather than Hecke algebras and

adopting the viewpoint that the global deformation ring R should be viewed as an algebra

over a completed tensor product of local deformation rings. The patching method is often

referred to as the Taylor-Wiles-Kisin patching method due to the significance of Kisin’s

contributions. The argument can be also be streamlined using the ultrapatching method

introduced by Peter Scholze [34], which replaces the role of the pigeonhole principle.

The work of Wiles inspired a large body of working focused on proving “modularity

lifting theorems”, which aim to prove the modularity of certain lifts of a starting residual

representation ρ. Serre conjectured [35] that any absolutely irreducible odd representation

ρ : Gal(Q/Q)→ GL2(k) over a finite field k should arise from a eigenform of specified weight

and level. In 2006, Chandrashekhar Khare proved Serre’s conjecture in the level 1 case [21],

and in 2011 he and Jean-Pierre Wintenberger proved the general level N case [22]. Very

recently, Ana Caraiani and James Newton proved the modularity of all elliptic curves over

infinitely many imaginary quadratic fields [7].

In [3], Böeckle, Khare, and Manning investigate Hecke algebras T which act on the coho-

mology of Shimura curves arising from maximal orders in indefinite quaternion algebras over

Q. They consider a newform f contributing to cohomology of a Shimura curve, which gives

an augmentation λ : T → O. One obtains a surjective map R→ T , where R is the universal

deformation ring which parameterizes deformations of ρf which satisfy additional local con-

ditions (namely, deformations which are Steinberg at a fixed set of primes). In this context,

the Taylor-Wiles-Kisin patching method still gives that R → T is an isomorphism, but the

rings are not complete intersections and the Wiles numerical criterion cannot hold. This

leads the authors to define the Wiles defect to be the quotient δλ(R) = δλ(T ) = |ΦR|/|ΨT |,
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which measures the degree to which the rings R and T fail to be complete intersections. The

authors prove a theorem which gives a formula for the Wiles defect in terms of the behavior

of the local behavior of the representation ρf at the primes at which the Steinberg condition

is imposed.

In [4], Böeckle, Khare, and Manning significantly generalize the results of [3] and give

a proof which shows a priori that the global Wiles defect δλ(R) is a sum of local Wiles

defects. In an unpublished work [40], Akshay Venkatesh showed that when the ring R is of

dimension 1, the Wiles defect δλ(R) is given in terms of two invariants. The authors of [4]

extend the definition of the Wiles defect to rings to higher dimensional rings by quotienting

by regular sequences to reduce to the 1-dimensional case. In this work, we use the methods

of [4] to compute the Wiles defect of a deformation ring R which parameterizes principal

series deformations of a modular residual representation ρ. As in [4], we use the Taylor-

Wiles-Kisin patching method to prove a R = T theorem which allows us to show that the

global Wiles defect δλ(R) = δλ(T ) is a sum of local Wiles defects. As in the Steinberg case,

we find a formula for the local Wiles defect in terms of the local behavior of a representation

ρ (arising from an augmetation R → T → O) at a set of places Σps at which the principal

series condition is imposed. More precisely, we show that the Wiles defect is given by

δλ(R) = δλ(T ) =
∑
v∈Σps

nv
e
,

where e is the ramification index of E/Qp, and for each v ∈ Σps, nv is the greatest nonnegative

integer such that ρ (mod $nv) is scalar.

1.1 Structure of the thesis

This thesis is organized as follows: in Chapter 2, we recall some background information

about deformations of Galois representations and the representability of deformation func-
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tors, and we define the specific deformation rings we will consider in this work. In Chapter 3,

we, as in [4], define the Wiles defect for rings not necessarily of dimension 1 and record some

basic properties of the Wiles defect. In Chapter 4, we compute the Wiles defect of a lo-

cal deformation ring corresponding to the principal series inertial type at an augmentation

arising from a Hilbert modular form of parallel weight 2. In Chapter 5, we use the Taylor-

Wiles-Kisin patching method to prove a R = T theorem, where R is a global deformation

ring parameterizing principal series deformations of a modular residual representation ρ, and

T is a Hecke algebra acting on a cohomology group. As a consequence, we deduce that the

Wiles defect of R and T is a sum of the local defects computed in Chapter 4.

1.2 Notation

Here we fix some notation which we will use throughout this work. We will frequently remind

the reader of much of this notation.

For a field L, we let GL = Gal(L/L) for some fixed separable closure L of L. We denote

by F our base field, which will be a totally real number field, and fix an algebraic closure F

of F . For a place v of F , we let Fv be the completion of F at v with F v a fixed algebraic

closure of Fv, and we let kv be the residue field of Fv, with qv = |kv|. We fix embeddings

F → F v, which determines embeddings GFv → GF . We let PFv ⊆ IFv be the wild inertia

and inertia subgroups of GFv , respectively. We let φv, ιv be generators of the tame quotient

Gt
Fv

= GFv/PFv , where φv is a lift of Frobenius (Frobv) and ιv is a topological generator of

IFv/PFv satisfying φvιvφ
−1
v = ιqvv .

We fix an odd prime p, and we let Qp be a fixed algebraic closure of Qp. We let E be a

finite extension of Qp with ring of integers O, uniformizer $, and residue field k. We denote

by Σp the set of places of F above p.

We define CNLO to be the category of complete Noetherian local O-algebras R with

maximal ideal mR and a fixed isomorphism R/mR → k. For a ring R ∈ CNLO, by an

8



augmentation λ of R we mean a surjective O-algebra homomorphism λ : R � O.

We let εp : GF → Z×p be the p-adic cyclotomic character. By abuse of notation, we also

write εp to mean any character obtained by composing εp with GFv → GF on the left or

Z×p → R× on the right, where v is a place of F and Z×p → R× is a map induced by a

morphism Zp → R in CNLZp .
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Chapter 2

Galois deformation rings

In this chapter we recall the notion of a deformation functor of a residual Galois represen-

tation and show that under certain conditions, these functors are representable by objects

which we call Galois deformation rings. We fix an odd prime p and a finite extension E/Qp

with ring of integers O, uniformizer $, and residue field k.

2.1 Deformation functors

In this section we recall the notion of a deformation functor which sends a ring R to the set

of lifts of a fixed residual representation ρ to R (sometimes up to equivalency). This material

can also be found in [17].

Fix a profinite group G (which in cases of interest to us will always be the Galois group

of some extension of Q or Qp). We fix a continuous representation

ρ : G→ GL2(k).

Let CNLO be the category of complete Noetherian local O-algebras R with maximal ideal

mR and residue field R/mR
∼= k. Technically speaking, objects in CNLO are pairs (R, ιR)

where R is a complete Noetherian local O-algebra and ιR : R/mR → k is a fixed O-algebra

10



isomorphism. Morphisms in CNLO are then continuous local O-algebra homomorphisms

f : R → S such that ιS ◦ (f (mod mS)) = ιR. We will usually simply identify the object

(R, ιR) with the ring R.

Given a ring R ∈ CNLO, a lift of ρ to R is a continuous representation ρ : G→ GL2(R)

such that ρ (mod mR) = ρ, i.e. the diagram

G GL2(R)

GL2(k)

ρ

ρ
ιR◦πR (2.1)

commutes, where πR : R � R/mR is the projection. We define the framed deformation

functor

D�
ρ : CNLO → Set

by D�
ρ (R) = {lifts of ρ to R}.

We need another deformation functor which only considers lifts of ρ up to a conjugacy

relation. We say that two lifts ρ1, ρ2 : G→ GL2(R) of ρ to R are strictly equivalent if there

exists some γ ∈ ker(GL2(R) � GL2(k)) such that ρ2 = γ−1ρ1γ. Note that if ρ : G→ GL2(R)

is a lift, then for any γ ∈ ker(GL2(R) � GL2(k)), the diagram (2.1) still commutes when ρ

is replaced by γ−1ργ, i.e. γ−1ργ is a lift. We call an equivalence class of lifts a deformation

of ρ to R. We then define the unframed deformation functor

Dρ : CNLO → Set

by Dρ(R) = {deformations of ρ to R}. Note that if f : R → S is a morphism in CNLO,

then for any γ ∈ ker(GL2(R) � GL2(k)) we have f(γ) ∈ ker(GL2(S) � GL2(k)), so Dρ is

well-defined on morphisms.

The deformation functors D�
ρ and Dρ satisfy the following continuity property

Proposition 2.1.1. Let D be either of the functors D�
ρ or Dρ. Then for any R ∈ CNLO we

11



have

D(R) = lim←−
n

D(R/mn
R).

Proof. Since R is complete, we have

lim←−
n

GL2(R/mn
R) = GL2(R).

It follows that we have a canonical bijection

D�
ρ (R)→ lim←−

n

D�
ρ (R/mn

R)

given by sending a lift ρ : G → GL2(R) to the compatible sequence of lifts (ρ (mod mn
R)).

This establishes the proposition for D = D�
ρ .

To establish the proposition for D = Dρ, let Γn = ker(GL2(R/mn
R) � GL2(k)) for n ≥ 1

and Γ = ker(GL2(R) � GL2(k)). If ρ : G → GL2(R) is a lift and γ ∈ Γ, each of the

lifts ρ (mod mn
R) is equivalent to γ−1ργ (mod mn

R) by γ (mod mn
R). Therefore we have a

well-defined map

Dρ(R)→ lim←−
n

Dρ(R/mn
R).

If ρ1, ρ2 : G → GL2(R) are lifts such that ρ1 (mod mn
R) and ρ2 (mod mn

R) are strictly

equivalent for all n, then we can inductively choose γn ∈ Γn such that γn+1 ≡ γn (mod mn
R)

and ρ1 (mod mn
R) and ρ2 (mod mn

R) are equivalent by γn. Since Γ = lim←−n Γn, we see that

(γn) defines an element γ ∈ Γ such that ρ1 and ρ2 are equivalent by γ. This proves injectivity.

Suppose (ρn : G→ GL2(R/mn
R)) is a compatible sequence of deformations. Note that the

equivalence class ρ1 contains only ρ. Assume by induction that for 1 ≤ i ≤ m we have lifts

ri : G → GL2(R/mi
R) such that ri+1 ≡ rk (mod mi

R) and ri is a representative of the strict

equivalence class ρi. Let r′m+1 : G → GL2(R/mm+1
R ) be any lift representing ρm+1. Since
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(ρn : G→ GL2(R/mn
R)) is a compatible sequence, there exists γm ∈ Γm such that

γ−1
m (r′m+1 (mod mm

R ))γm = rm.

Choose a lift γm+1 ∈ Γm+1 of γm and let rm+1 = γ−1
m+1r

′
m+1γm+1 so that rm+1 ≡ rm (mod mm

R ).

By induction there exists a compatible sequence of lifts (rn : G → GL2(R/mn
R)) such that

rn represents ρn. The induced lift r : G → GL2(R) satisfies r (mod mn
R) ≡ rn, so the

deformation ρ : G→ GL2(R) represented by r maps to (ρn : G→ GL2(R/mn
R)). This proves

surjectivity.

2.2 Representability of deformation functors

In this section we show that the deformation functors D�
ρ ,Dρ defined in the previous section

are representable under certain conditions. Again this material can be found in [17].

Suppose the functor D = D�
ρ ,Dρ is representible by some object Rρ ∈ CNLO, i.e. D ∼=

HomCNLO(Rρ, ·) naturally. Then the identity morphism on Rρ corresponds to a unique lift

(deformation) ρ : G→ GL2(R) with the following universal property: given any A ∈ CNLO

and a lift (deformation) ρ ∈ D(A), there exists a unique morphism f : Rρ → A such that

ρ = f ◦ ρ. The lift (deformation) ρ is thus universal in the sense that all lifts (deformations)

of ρ factor uniquely through ρ, and so the ring R “parameterizes” all lifts (deformations) of

ρ.

Let ALO denote the full subcategory of CNLO whose objects are Artinian local O-

algebras. If R ∈ CNLO, then R/mn
R ∈ ALO for all n, so Proposition 2.1.1 tells us that

the deformation functors are determined by their values on ALO. This is crucial as showing

that our functors are representable requires checking their behavior on fiber products. Un-

fortunately, CNLO does not admit fiber products, as the fiber product of two rings in CNLO

is not necessarily Noetherian. However, the category ALO does have fiber products.
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Lemma 2.2.1. Fiber products exist in the category ALO.

Proof. Suppose f : A → C, g : B → C are morphisms in ALO. We need to show that the

ring

A×C B = {(a, b) ∈ A×B : f(a) = g(b)}

belongs to ALO.

Since f and g are O-algebra homomorphisms, the compositions O −→ A
f−→ C and O −→

B
g−→ C are both equal to the O-algebra structure map O −→ C, so A×C B is an O-algebra.

Consider the ideal

m = {(a, b) ∈ A×C B : f(a) ∈ mC}

in A ×C B. If (a, b) ∈ A ×C B is not in m, then f(a) = g(b) is a unit in C, thus a and b

are units since f and g are local. Therefore A ×C B is a local ring with maximal ideal m.

Moreover, projecting onto either coordinate and composing with C � C/mC
∼= k yields an

injective map (A×C B)/m ↪→ k. Since A is an Artinian local ring, the map A� A/mA
∼= k

has a section k → A and likewise for B. These sections induce a morphism k → A ×C B

such that the composition k → A ×C B � (A ×C B)/m ↪→ k is the identity, thus k is the

residue field of A×C B.

Since A is Artinian, i.e. a finite length A-module, there is a finite composition series

0 = I0 ( I1 ( · · · ( In = A.

Then each quotient Im/Im−1 is a simple A-module, which must be isomorphic to A/mR
∼= k

since A is local. Then we see that Im/Im−1
∼= k as an O-module as well, hence Im/Im−1 is

also a simple O-module. The above sequence is therefore a composition series for A as an

O-module, hence A has finite length as an O-module, and likewise for B. Then A× B is a

finite length O-module, hence so is A ×C B ⊂ A × B. Therefore A ×C B is a finite length

(A×C B)-module, i.e. A×C B is Artinian.
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Suppose F : CNLO → Set is a functor which is continuous in the sense of Proposi-

tion 2.1.1. As we alluded to earlier, in the cases of interest to us, proving that F is

representable will involve examining its behavior on the subcategory ALO. Although the

restriction F|ALO
may not be representable, a slightly weaker condition will suffice. We say

that F|ALO
is pro-representable if there exists an object RF ∈ CNLO such that

F(A) = HomCNLO(RF , A)

naturally for all A ∈ ALO. Note that the continuity of F implies that F is represented by

RF if F|ALO
is pro-represented by RF , and the converse is clear. Thus F is representable if

and only if F|ALO
is pro-representable.

To state the criteria for F to be representable, we need to introduce a “tangent space”

construction for the functor F . Let k[ε] = k[X]/(X2) be the ring of dual numbers, where

ε = X (mod X)2. Assume that F(k) is a singleton. Since F is a functor, there is a natural

map

F(k[ε]×k k[ε])→ F(k[ε])×F(k) F(k[ε]) = F(k[ε])×F(k[ε]), (2.2)

where the equality holds by the assumption that F(k) is a singleton. We assume that the

above map is a bijection. Note that if F is representable, then this assumption holds by the

universal property of the fiber product.

We want to use our assumption that (2.2) is a bijection to endow F(k[ε]) with a natural k-

vector space structure. For scalar multiplication, note that if x ∈ k, then a+bε 7→ a+xbε is an

automorphism of k[ε] as an object in CNLO. By functoriality this induces an automorphism

of F(k[ε]), which we define scalar multiplication by.

For addition, note that the map

α : k[ε]×k k[ε]→ k[ε]
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defined by α(a + bε, a + dε) = a + (b + d)ε is a morphism in CNLO. We then define vector

addition by the map

F(k[ε])×F(k[ε]) ∼= F(k[ε]×k k[ε])
F(α)−−−→ F(k[ε]).

Proposition 2.2.2. The addition and multiplication operations defined above make F(k[ε])

into a k-vector space.

Proof. Addition and scalar multiplication are associative since F is a functor. The compo-

sition

k[ε]×k k[ε] k[ε]×k k[ε] k[ε]rev α

where rev is the coordinate-reversing map is equal to α, so applying F shows that the

addition is commutative.

The composition

k[ε] k[ε]×k k[ε] k[ε]∆ α

where ∆ is the diagonal map is the identity on k[ε]. Then applying F and noting that

F(k[ε]) = F(k[ε])×F(k) since F(k) is a singleton, we see that F(k) (which we can identify

with an element of F(k[ε]) by applying F to k → k[ε]) is the additive identity.

Let inv: k[ε]→ k[ε] be the map defined by a+ bε 7→ a− bε. Then the composition

k[ε]×k k[ε] k[ε]×k k[ε] k[ε]
id×inv α

factors through k (and likewise if the first map is replaced by inv × id), which shows that

additive inverses exist. Namely, the map F(inv) : F(k[ε])→ F(k[ε]) takes elements to their

additive inverses.

Given x ∈ k, the automorphism a + bε 7→ a + xbε of k[ε] induces a coordinate-wise

automorphism of k[ε]×k k[ε] such that the compositions
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k[ε]×k k[ε] k[ε]×k k[ε] k[ε]

k[ε]×k k[ε] k[ε] k[ε]

x α

α x

are the same, so applying F shows that scalar multiplication distributes over addition.

Finally, 1 ∈ k clearly acts as the identity on F(k[ε]) by functoriality since the automor-

phism of k[ε] defined by 1 is the identity.

Remark 2.2.3. The k-vector space F(k[ε]) is referred to as the tangent space of the functor

F because if F is represented by RF ∈ CNLO, then there is a natural bijection

Homk(mRF/(m
2
RF
, $), k) ∼= HomCNLO(RF , R[ε])

of k-vector spaces. In the representability theorem we present below, the assumption that

F(k[ε]) is finite-dimensional is necessary to ensure the representing object is Noetherian.

We need one last bit of terminology to state the representability criteria. We say that

a morphism A → B in CNLO is small if it is surjective and its kernel is principal and

annihilated by mA.

Let A→ C and B → C be morphisms in ALO. Since F is a functor, we have a map

F(A×C B)→ F(A)×F(C) F(B). (2.3)

We state four conditions (known as the “hull axioms”) regarding the properties of the above

map.

• H1: If B → C is small, then (2.3) is surjective.

• H2: If B = k[ε] and C = k, then (2.3) is bijective.

• H3: The k-vector space F(k[ε]) is finite-dimensional.
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• H4: If A = B and the maps A→ C and B → C are identical and small, then (2.3) is

bijective.

The following theorem due to Schlessinger [33] is the tool we use to prove that our

deformation functors are representable:

Theorem 2.2.4. Let F : CNLO → Set and assume that F(k) is a singleton. If F satisfies

the hull axioms H1 through H4, then F|ALO
is pro-representable.

We will now check using the above theorem that our deformation functors Dρ and D�
ρ

are representable under certain conditions. We check that the four hull axioms hold in a

series of lemmas as in [17]. In these proofs we use the notation Γ(R) to denote the kernel of

GL2(R)→ GL2(k) for a ring R ∈ CNLO.

Lemma 2.2.5. The functor D�
ρ satisfies H1, H2, H4.

Proof. Let f : A→ C and g : B → C be morphisms in ALO. Then the map

D�
ρ (A×C B)→ D�

ρ (A)×D�
ρ (C) D�

ρ (B)

sends a lift ρ : G → GL2(A ×C B) = GL2(A) ×GL2(C) GL2(B) to (ρA, ρB), where ρA and ρB

are the compositions of ρ with the projections onto GL2(A) and GL2(B), respectively. But

note that ρA and ρB determine ρ completely. The above map is thus injective. Conversely,

if (ρA, ρB) ∈ D�
ρ (A) ×D�

ρ (C) D�
ρ (B), then this is to say that f ◦ ρA = g ◦ ρB. Then ρ : G →

GL2(A ×C B), ρ(g) = (ρA(g), ρB(g)) is a well-defined lift in D�
ρ (A ×C B) which is sent to

(ρA, ρB) by the above map. This proves surjectivity. The above map is thus always a

bijection (without any additional hypotheses on the rings A,B,C or the morphisms f, g),

which simultaneously shows that D�
ρ satisfies H1, H2, H4.

Lemma 2.2.6. The functor Dρ satisfies H1.
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Proof. Let f : A → C and g : B → C be morphisms in ALO with g small. Let (ρA, ρB) ∈

Dρ(A) ×Dρ(C) Dρ(B). This is to say that if we choose lifts rA : G → GL2(A) and rB : G →

GL2(B) representing ρA and ρB, then there exists some γC ∈ Γ(C) such that

(g ◦ rB) = γ−1
C (f ◦ rA)γC .

Since g is small, it is surjective, so Γ(B) → Γ(C) is surjective. Therefore there exists

γB ∈ Γ(B) with g(γB) = γC , so r : G→ GL2(A×C B) defined by r(g) = (rA(g), γ−1
B rB(g)γB)

indeed has image in GL2(A ×C B). The strict equivalence class of r thus maps to (ρA, ρB)

under (2.3), which shows the desired surjectivity.

Lemma 2.2.7. The functor Dρ satisfies H2.

Proof. The map k[ε] → k is small, so by Lemma 2.2.6 the map (2.3) with B = k[ε], C = k

is surjective. To prove injectivity, suppose ρ, ρ′ ∈ Dρ(A ×k k[ε]) are such that their images

(ρ1, ρ2), (ρ′1, ρ
′
2) ∈ Dρ(A) ×Dρ(k) Dρ(k[ε]) are equal. This is to say that if we choose lifts

r = (r1, r2) : G→ GL2(A×k k[ε]) and r′ = (r′1, r
′
2) : G→ GL2(A×k k[ε]) representing ρ and

ρ′, then there exist γ1 ∈ Γ(A) and γ2 ∈ Γ(k[ε]) such that

r′1 = γ−1
1 r1γ1, r′2 = γ−1

2 r2γ2.

Since γ1 and γ2 both reduce to the identity in GL2(k), we have (γ1, γ2) ∈ GL2(A×k k[ε]), so

r and r′ are strictly equivalent by (γ1, γ2). This shows that ρ = ρ′, which proves that (2.3)

is injective.

We say that a profinite group G is p-finite if for every open compact subgroup H ⊆

G, there exist only finitely many continuous homomorphisms H → Fp. This condition is

necessary in order to ensure that our functors satisfy H3 (which is needed to guarantee that

the representing object is Noetherian).
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Lemma 2.2.8. If G is p-finite, then the functors D�
ρ and Dρ satisfiy H3.

Proof. Let ρ : G→ GL2(k[ε]) be a lift. Since ρ (mod ε) = ρ, for all g ∈ G we have

ρ(g) = ρ(g)(1 +Mg)

for some Mg ∈ εM2(k). Moreover, for g1, g2 ∈ G we have

Mg1g2 = Mg1 +Mg2 +Mg1Mg2 .

For g ∈ G, write g = g0h for h ∈ ker ρ. Then the above relation shows that Mg, hence ρ(g),

is determined by the values of ρ on ker ρ and a set of left coset representatives for ker ρ.

We have a group isomorphism

Γ(k[ε]) =


1 + aε bε

cε 1 + dε

 : a, b, c, d ∈ k

 ∼= k4 ∼= F4n
p ,

where |k| = pn, thus

Homcts(ker ρ,Γ(k[ε])) = Homcts(ker ρ,Fp)4n.

Now ker ρ is an open compact subgroup of G since GL2(k) is finite, so Homcts(ker ρ,Γ(k[ε])

is finite by the assumption that G is p-finite. Now ρ(ker ρ) ⊆ Γ(k[ε]) since ρ (mod ε) = ρ,

and ker ρ has finite index in G, so it follow that D�
ρ (k[ε]) is a finite set. Then Dρ(k[ε]) is

also finite since Dρ(k[ε]) is just the set of strict equivalence classes in D�
ρ (k[ε]).

Unlike D�
ρ , the functor Dρ need not satisfy H4 in general. For this to be true, we need an

additional assumption on ρ. Mazur proved the representability of Dρ under the hypothesis

that ρ is absolutely irreducible [29]. Note that in this case, Schur’s lemma implies that

Endk[G](ρ) = k. Ramakrishna noted in [31] that this weaker assumption is sufficient.
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Lemma 2.2.9. If Endk[G](ρ) = k, then the functor Dρ satisfies H4.

Proof. Let f : A → C be a small morphism in ALO. Then by Lemma 2.2.6 the map (2.3)

with B = A is surjective. To prove injectivity, suppose ρ, ρ′ ∈ Dρ(A ×C A) are such that

their images (ρ1, ρ2), (ρ′1, ρ
′
2) ∈ Dρ(A)×Dρ(C)Dρ(A) are equal. This is to say that if we choose

lifts r = (r1, r2) : G→ GL2(A×C A) and r′ = (r′1, r
′
2) : G→ GL2(A×k A) representing ρ and

ρ′, then there exist γ1, γ2 ∈ Γ(A) such that

r′1 = γ−1
1 r1γ1, r′2 = γ−1

2 r2γ2.

Since (ρ1, ρ2), (ρ′1, ρ
′
2) ∈ Dρ(A) ×Dρ(C) Dρ(A), f(r1) (resp. f(r′1)) is strictly equivalent to

f(r2) (resp. f(r′2)). Since Γ(A)→ Γ(C) is surjective, by conjugating by suitable elements of

Γ(A), we can in fact choose the representatives r1, r2, r
′
1, r
′
2 such that

f(r1) = f(r2), f(r′1) = f(r′2).

Then

f(r1) = f(γ1)f(r′1)f(γ−1
1 ) = f(γ1)f(r′2)f(γ−1

1 ) = f(γ1)f(γ−1
2 )f(r2)f(γ2)f(γ−1

1 ).

Since f(r1) = f(r2), this shows that δ = f(γ1)f(γ−1
2 ) commutes with the image of f(r1),

hence δ = δ (mod mC) commutes with the image of ρ. But Endk[G](ρ) = k by assumption,

so δ is scalar, hence δ = 1 since δ ∈ Γ(C). Since the kernel of f is annihilated by mA, we may

multiply γ2 by a suitable scalar lift of δ so that f(γ1) = f(γ2). Then (γ1, γ2) ∈ GL2(A×CA),

and we still have

r′1 = γ−1
1 r1γ1, r′2 = γ−1

2 r2γ2.

This shows that r and r′ are equivalent, thus ρ = ρ′, which proves that (2.3) is injective.

The above lemmas show that D�
ρ and Dρ satisfy all four hull axioms under the stated
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hypotheses, and we know thatD�
ρ (k) andDρ(k) are singletons. Therefore from Theorem 2.2.4

we obtain the following theorem:

Theorem 2.2.10. Suppose G is p-finite. Then D�
ρ is representable. If in addition

Endk[G](ρ) = k (in particular if ρ is absolutely irreducible), then Dρ is also representable.

When the conditions of the above theorem are saitisifed, we make the following definition:

Definition 2.2.11. We denote by R�
ρ (resp. Rρ) the representing object for D�

ρ (resp. Dρ),

which we call the universal lifting ring (resp. universal deformation ring) of ρ.

We record the following special cases of the above theorem:

Theorem 2.2.12. Let F be a number field and S be a finite set of finite places of F . Let

FS/F be the maximal extension of F unramified outside S and let Fv be the completion of F

at any finite place v of F . If G = Gal(FS/F ) or G = Gal(Fv/F ), then D�
ρ is representable.

If in addition Endk[G](ρ) = k (in particular if ρ is absolutely irreducible), then Dρ is also

representable.

Proof. For G = Gal(FS/F ), recall that the Hermite-Minkowski theorem says that there

are only finitely many extensions of F of a given degree which unramified outside S. Any

continuous homomorphism G → Fp corresponds to a degree p extension of F which is

unramified outside S, so G is p-finite. If G = Gal(Fv/F ), then G is p-finite since G is

topologically finitely generated. Therefore Theorem 2.2.12 applies in both cases.

2.3 Local deformation conditions

Fix a totally real number field F which is unramified at p and an algebraic closure F of F .

Let GF = Gal(F/F ) denote the absolute Galois group of F , and let εp : GF → O× be the

cyclotomic character. We fix a continuous, absolutely irreducible residual representation

ρ : GF → GL2(k)
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such that det ρ = εp. Assume that k contains the eigenvalues of all elements in the image of

ρ.

For a place v of F we let GFv denote the absolute Galois group of Fv and we let PFv ⊂

IFv denote the wild inertia and inertia subgroups, respectively. We recall that the tame

quotient Gt
Fv

= GFv/PFv is topologically generated by two elements φv, ιv, where φv is a lift

of Frobenius and ιv is a topological generator of IFv/PFv
∼= OFv . Moreover, the tame quotient

is characterized by the relation φv ◦ ιv ◦ φ−1
v = ιqvv , where qv is the order of the residue field

of Fv.

In the last section we considered all lifts of ρ to objects in CNLO. We often want to

consider only lifts which satisfy certain conditions. To this end, we make the following

definition:

Definition 2.3.1. For a finite place v of F we define a local deformation condition to be a

subfunctor D′v ⊆ D�
ρ|GFv

such that

• D′v is represented by a quotient R′v of R�
ρ|GFv

.

• If A ∈ CNLO, then for all lifts ρ ∈ D′v(A) and γ ∈ ker(GL2(A) → GL2(k)), we have

γργ−1 ∈ D′v(A).

The representing object R′v is called the restricted deformation ring associated to D′v.

In particular, if χ : GF → O× is a character, then the condition det ρ = χ for a lift

ρ is a local deformation condition, since determinants are invariant under conjugation. If

ρ� : GFv → R�
ρ|GFv

is the universal lifting, then the deformation condition is represented by

the quotient R�
ρ|GFv

/(det ρ�(g) − χ(g) : g ∈ GFv). We will only ever consider lifts which

have determinant εp, so we define D�
v to be the subfunctor of D�

ρ|GFv
giving liftings whose

determinant is εp. We also let R�
v be the resulting restricted deformation ring and we let

ρ�v : GFv → GL2(R�
v ) be the universal lifting.

The following lemma [39, Lemma 5.12] gives a sufficient condition for a quotient of R�
v

to be a local deformation condition:
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Lemma 2.3.2. Suppose π : R�
v � Rv is a surjective morphism in CNLO and ρπ : GFv →

GL2(Rv) composition of π with the universal lifting. Then the subfunctor of D�
v defined by

Rv is a local deformation condition if the following conditions hold:

• The ring Rv is reduced and not isomorphic to k.

• For any γ ∈ ker(GL2(Rv) � GL2(k)), the morphism R�
v → Rv induced by the rep-

resentation γ−1πγ : GFv → GL2(Rv) via the universal property of R�
v factors through

π.

We will need to consider several local deformation rings. Let Σp denote the set of places of

F above p. We fix a finite set of finite places Σ of F disjoint from Σp which contains all places

v 6∈ Σp at which ρ is ramified. For each v ∈ Σ we use a superscript τv ∈ {fl,min, ps,�}

to indicate a local deformation condition, and we denote by Rτv
v the resulting restricted

deformation ring. For all liftings ρ of ρ|GFv we impose the condition that det ρ = εp. All of

the restrictied deformation rings considered will thus be quotients of D�
v .

For v ∈ Σp the extension Fv/Qp is unramified by assumption, so Fontaine-Laffaile theory

applies. For all v ∈ Σp we assume that ρ|GFv is flat and we define

• Rfl
v to be the quotient of R�

v parameterizing flat lifts of ρ|GFv .

• Rmin
v be the quotient of R�

v parameterizing minimally ramified (semistable at places

v | p and unramified at places v - p such that ρ|GFv is unramified) lifts of ρ|GFv . In the

case when ρ|GFv is unramified, Rmin
v parameterizes unramified lifts.

We wish to define one more deformation condition for v ∈ Σps which is of primary concern

in this thesis. We must first recall some definitions. Fix a place finite place v of F . The

Weil group WFv is of Fv is the inverse image of Frobenius under the surjective morphism

GFv � Gkv . A Weil-Deligne representation is a pair (ρ0, N) consisting of a continuous

representation ρ0 : WFv → GL2(E) of WFv and a nilpotent operator (called the monodromy
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operator) such that

ρ0Nρ
−1
0 = ‖ · ‖N,

where ‖ ·‖ is the composition of the isomorphism W ab
Fv
→ F×v given by local class field theory

with the valuation on F×v . Two Weli-Deligne representations (ρ0, N) and (ρ′0, N
′) are equiv-

alent if there exists γ ∈ GL2(E) such that ρ′0 = γρ0γ
−1 and N ′ = γNγ−1. Grothendieck’s

monodromy theorem gives an equivalence of categories between the category of Weil-Deligne

representations and the category of representions GFv → GL2(E). The local Langlands cor-

respondence for GL2 gives a bijection between semisimple Weil-Deligne representations and

irreducible smooth representations of GL2(Fv).

Next we recall the notion of inertial types, as defined in [36]. These types correspond to

classes of irreducible smooth representations of GL2(Fv). An inertial type τ is an equivalence

class of pairs (rτ , Nτ ) such that

• rτ : IFv → GL2(E) is a continuous representation with open kernel.

• Nτ is a nilpotent matrix in GL2(E).

• (rτ , Nτ ) extends to a Weil-Deligne representation of GFv .

Two pairs are equivalent if they are conjugate by an element of GL2(E).

We say that a continuous representation ρ : GFv → GL2(E) has inertial type τ if the

restriction of the associated Weil-Deligne representation to IFv is equivalent to τ . In other

words, the representation of GL2(Fv)) given by the local Langlands correspondence belongs

to the class of representations corresponding to τ .

Let ζ ∈ O be a pm-th root of unity, where m is such that pm || (qv − 1). We define the

principal series inertial type τζ = (rτ , Nτ ) by

• rτζ(ιv) =

ζ 0

0 ζ−1

 and Nτζ = 0.
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Note here we are defining rτζ to be trivial on PFv so that rτζ factors through IFv/PFv , hence

is determined by rτζ(ιv). The term “principal series” refers to the principal series represen-

tations of GL2(Fv). These are representations which are induced from representations of

the subgroup of upper-triangular matrices in GL2(Fv) given by ( a b
∗d ) 7→ χ1(a)χ2(d), where

χ1, χ2 are characters of F×v .

We now define our last deformation condition

Definition 2.3.3. For v ∈ Σps, we define the local deformation ring Rps
v to be the maximal

reduced, p-torsion free quotient of R�
v with the following universal property: if α : Rps

v →

GL2(E) is any continuous homomorphism such that the induced representation ρα : GFv →

GL2(E) has type τζ, then α factors through Rps
v .

Note that Rps
v is the maximal reduced, p-torsion free quotient of the ring Rps,◦

v defined by

the local deformation condition that the characteristic polynomial of ιv is (X− ζ)(X− ζ−1).

The subfunctor of D�
v defined by Rps

v is a local deformation condition by Lemma 2.3.2.

We will also need to consider modified deformation problems introduced in [6], which

take into account a fixed eigenvalue α of ρ(Frobv). Recall that α ∈ k by hypothesis. We

define a functor D̃�
v : CNLO → Set by which takes a ring R ∈ CNLO to the set of tuples

(ρ, α), where ρ ∈ D�
v (R) is a lifting such that α is an eigenvalue of ρ(Frobv) such that α ≡ α

(mod mR).

Note that there is a natural transformation D̃�
v → D�

v given by forgetting the choice

of eigenvalue α. We also see that D̃�
v is represented by the localization R̃�

v of the ring

R�
v [X]/(X2−X tr ρ�v (Frobv) + det ρ�v (Frobv)) at the maximal ideal mR�

v
+ (X −α). We will

only be interested in the case when ρ(Frobv) has distinct eigenvalues, in which case we have

the following result (see [6, Lemma 2.1]):

Lemma 2.3.4. If ρ(Frobv) has distinct eigenvalues, then the natural map R�
v → R̃�

v is an

isomorphism.
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Proof. Let α, β be the eigenvalues of ρ�v . Since ρ(Frobv) has distinct eigenvalues, α 6≡ β

(mod mR�
v
). Therefore (X−β) is a unit in the localization R̃�

v ofR�
v [X]/(X2−X tr ρ�v (Frobv)+

det ρ�v (Frobv)) at mR�
v

+ (X −α). Then R̃�
v is isomorphic to the localization of R�

v [X]/(X −

α) ∼= R�
v at the unique maximal ideal. This provides an isomorphism R̃�

v → R�
v which is

inverse to the natural map R�
v → R̃�

v .

We will need to know some ring-theoretic properties of our restricted local deformation

rings (in particular the fact that the rings Rfl
v , R

min
v , R�

v are all complete intersections).

Proposition 2.3.5. We have the following:

(a) For v ∈ Σp we have Rfl
v
∼= O[[x1, . . . , x3+[F :Q]]], and for v ∈ Σ we have Rmin

v
∼=

O[[x1, x2, x3]].

(b) For v ∈ Σ, the ring R�
v is a complete intersection, reduced and flat over O, and

dimR�
v = 4.

(c) For v ∈ Σps, the ring Rps
v is Cohen-Macaulay and flat over O, and dimRps

v = 4.

Proof. (a) is from [9, Section 2.4.1, Section 2.4.4]. (b) follows from [36, Theorem 2.5],

modifiying the statement and proof to include the fixed determinant condition we impose.

As we will see from (the proof of) Theorem 4.1.1, imposing the fixed determinant condition

results in a dimension drop of 1, which ensures that R�
v is still a complete intersection by

Theorem A.0.7, and dimR�
v = 4. (c) will follow later from (the proof of) Theorem 4.1.1.

2.4 Global deformation rings

Our ultimate goal is to prove a theorem which gives the Wiles defect of a global deformation

ring as a sum of Wiles defects of local deformation rings. In this section we introduce the

global deformation rings we will consider.
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To prove our main theorem, we will need to consider rings which are completed tensor

products (over O) of local deformation rings. Recall that if M and N are linearly topologized

O-modules, then the completed tensor product M⊗̂ON is defined to be the completion of

M ⊗O N with respect to the linear topology defined by declaring the images of Mµ ⊗O N

and M⊗ONν to be a fundamental system of open submodules, where Mµ ⊆M and Nν ⊆ N

run through fundamental systems of open submodules of M and N , respectively. For each

v ∈ Σ fix τv ∈ {min, ps,�} and let τ = (τv)v∈Σ. Then we define

Rτ
loc =

(⊗̂
v∈Σ

Rτv
v

)
⊗̂
(⊗̂

v|p
Rfl
v

)
,

where the tensor products taken over O. When τv = � for all v ∈ Σ, we simply write

Rτ
loc = Rloc.

By [3, Lemma 4.4], we have

Lemma 2.4.1. The ring Rloc is a complete intersection, the ring Rτ
loc is Cohen-Macaulay,

and both rings are reduced and flat over O.

Adopting the notation of the previous section, we let R (resp. R�) be the global un-

framed (resp. framed) deformation ring parameterizing deformations (resp. lifts) of ρ

which are unramified outside Σ ∪ Σp. We may fix a non-canonical isomorphism R� =

R[[X1, . . . , X4|Σ∪Σp|−1]] so that we may view R as a quotient of R�. We may thus define

Rτ = Rτ
loc ⊗Rloc

R and R�,τ = Rτ
loc ⊗Rloc

R�.
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Chapter 3

The Wiles defect

In this chapter we define and discuss the Wiles defect, a numerical invariant which is the

primary interest of this thesis. We closely follow the work of [4].

We fix a prime p > 2 and a finite extension E/Qp with ring of integers O, uniformizer $,

and residue field k. We work in the category CNLO of complete Noetherian local O-algebras

R with maximal ideal mR and residue field k. The Wiles defect is defined with respect to an

augmentation λ : R � O, which by definition is a surjective homomorphism of O-algebras.

We need the augmentation to be formally smooth on the generic fiber of R. Furthermore,

we must deal separately with the case dimR = 1 and the case dimR > 1.

3.1 The Wiles defect for 1-dimensional rings

Let R be a ring in CNLO. Further assume that R is finite free overO. We fix an augmentation

λ : R � O. If we assume further that R is has Krull dimension 1, then the Wiles defect of

R can be defined in terms of invariants studied by Wiles. Moreover, this definition coincides

with a formula given in terms of two invariants defined by Venkatesh [40].

For a finitely-generated R-module M and a set of generators m1, . . . ,mn ∈M inducing a

surjection Rn �M we define the 0-th fitting ideal FittR(M) to be the ideal of R generated
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by all elements of the form det(v1, . . . , vn) where vi ∈ ker(Rn � M). We have FittR(M) ⊆

AnnR(M) and moreover, FittR(M) does not depend on the choice of generators of M . In

the case where M is a cyclic module, we have FittR(M) = ker(R �M) = AnnR(M).

We define the cotangent space and congruence module of R with respect to λ as

Φλ(R) := (kerλ)/(kerλ)2

and

Ψλ(R) := O/λ(AnnR(kerλ)),

respectively. We assume that Φλ(R) is finite. The Wiles defect is defined in terms of these

two invariants.

Definition 3.1.1. We define the Wiles defect of R as

δλ(R) =
logp |Φλ(R)| − logp |Ψλ(R)|

logp |O/p|
.

The Wiles defect is known to be a nonnegative rational number. Moreover, δλ(R) = 0

if and only if R is a complete intersection. The Wiles defect can thus be understood as

a numerical measurement of the degree to which R fails to be a complete intersection. In

situations of interest to us, we typically need to replace the coefficient ring O by the ring of

integers in a finite extension of E. The normalizing factor of logp |O/p| ensures that δλ(R)

is invariant under such an extension.

Let R act on E/O via the augmentation. Venkatesh’s first invariant [40] is the André-

Quillen cohomology group Der1
O(R,E/O). The André-Quillen cohomology groups arise from

the derived functors of the derivation functor DerO(·, E/O). The degree 0, 1, and 2 coho-

mology groups were introduced by Lichtenbaum and Schlessinger [25]. The higher groups

were defined independently by André [2] and Quillen [30].

Fix a surjection ϕ : R̃ � R where R̃ is a complete intersection which is 1-dimensional
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and finite free over O such that Φλ◦ϕ(R̃) is finite. Let I = kerϕ : R̃ � R so that we have a

containment of R̃-modules FittR̃(I) ⊆ AnnR̃(I). We define Venkatesh’s second invariant as

C1,λ(R) = λ(AnnR̃(I))/λ(FittR̃(I)).

Although it appears that C1,λ(R) depends on the choice of complete intersection R̃, in fact

C1,λ(R) depends only on R and λ [4, Lemma A.5]. This is proved by rewriting the right-hand

side above in terms of the homology of Koszul complex associated to a sequence of generators

of kerϕ. Furthermore, we have the following theorem [4, Proposition A.6], which expresses

the Wiles defect in terms of Venkatesh’s invariants:

Theorem 3.1.2. For a ring R and an augmentation λ : R � O as in this section, we have

|Der1
O(R,E/O)|
|C1,λ(R)|

=
|Φλ(R)|
|Ψλ(R)|

.

The Wiles defect δλ(R) can thus be expressed as

δλ(R) =
logp |Der1

O(R,E/O)| − logp |C1,λ(R)|
logp |O/p|

.

Remark 3.1.3. If R is not torsion-free over O, one can replace R by its maximal torsion-

free quotient in the definition of Ψλ(R). However, in all cases of interest to us, R will be

O-torsion free.

3.2 The Wiles defect for higher-dimensional rings

The definition of the Wiles defect in the previous section relied crucially on the finiteness of

the cotangent space Φλ(R). The following proposition shows that if R is Cohen-Macaulay,

this assumption actually forces R to be 1-dimensional.

Proposition 3.2.1. Suppose R is a ring in CNLO with an augmentation λ : R � O such
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that |Φλ(R)| is finite. If R is Cohen-Macaulay, then R is 1-dimensional.

Proof. The localization of the augmentation λ : R � O at p = kerλ gives a surjection

Rp � E. The residue field of Rp is thus isomorphic to E. By assumption p/p2 is finite, so

m/m2 is finite, where m = pRp is the maximal ideal of Rp. But m/m2 is a vector space over

E, thus m = m2. Nakayama’s lemma then implies that m = 0. Therefore Rp is a field, hence

p is a minimal prime of R. Since Cohen-Macaulay rings are equidimensional and R/p ∼= O,

we see that all minimal primes of R are 1-dimensional. It follows that every nonmaximal

prime ideal of R is minimal, i.e. R is 1-dimensional.

We let CNLaO be the category whose objects are pairs (R, λR) where

• R is a complete Noetherian local O-algebra with maximal ideal mR and residue field

R/mR = k

• R is flat over O and Cohen-Macaulay

• λR : R � O is an augmentation which is smooth on the generic fiber of R.

The morphisms in CNLaO are local O-algebra homomorphisms ϕ : R → S which are com-

patible with the augmentations in the sense that λR = λS ◦ ϕ. For convenience, we will

often omit the subscript R from λR. We wish to extend the definition of the Wiles defect to

objects in this category.

Let R ∈ CNLaO and consider a power series ring S = O[[y1, . . . , yd]]. We will be interested

in certain maps S ↪→ R which produce a quotient of R for which the cotangent space is finite.

Definition 3.2.2. We say that a continous injective O-algebra homomorphism

θ : S ↪→ R is a 1-codimensional embedding if the following hold:

• θ makes R into a finite free S-module.

• θ(y1), . . . , θ(yd) ⊆ kerλ.
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• For Rθ = R/(θ(y1), . . . , θ(yd)) and the induced augmentation λθ : Rθ � O, the cotan-

gent space Φλθ(Rθ) is finite.

As in the 1-dimensional case, in order to define Venkatesh’s invariants for rings in CNLaO,

we will need to consider an auxillary complete intersection which surjects onto R.

Definition 3.2.3. We say that a continuous surjection of O-algebras ϕ : R̃ � R is a CI

covering if the following hold:

• R̃ is a complete Noetherian local O-algebra which is flat over O and of the same di-

mension as R.

• R̃ is a complete intersection.

• R̃[1/$] is formally smooth (see [43, Definition 10.138.1]) at the augmentation (λ ◦

ϕ)[1/$] : R̃[1/$]→ E.

In the last condition above, we consider λ ◦ ϕ as a map R → E via composing with the

inclusion O ↪→ E. In order to prove that a 1-codimensional embedding and a CI covering

exist, we need the following lemma:

Lemma 3.2.4. Let A be a complete Noetherian local O-algebra with an augmentation λ : A�

O. Suppose there exist elements f1, . . . , fd ∈ kerλ such that $, f1, . . . , fd is a regular se-

quence in S and A[1/$] is formally smooth at λ of dimension n ≥ d. Then there exist

h1, . . . , hd ∈ kerλ∩ (f1, . . . , fd, $) such that $, h1, . . . , hd is a regular sequence in A and for

the quotient B = A/(h1, . . . , hd) and the induced augmentation λB : B � O, the ring B[1/$]

is formally smooth at λB[1/$] of dimension n− d.

Proof. By replacing each fi by f 2
i , we may assume that f1, . . . , fd ∈ (kerλ)2 [43, Lemma

10.68.9].

Let Â[1/$] be the completion of A[1/$] at (kerλ)[1/$] and let m̂ be its maximal ideal.

By the formal smoothness hypothesis, A[1/$] ∼= E[[y1, . . . , yn]] with n ≥ d. Since d ≤ n,
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by Nakayama’s lemma we can choose g1, . . . , gd ∈ kerλ whose images in m̂/m̂2 are linearly

independent over E. Let hi = fi + $gi for 1 ≤ i ≤ d. Observe that $, h1, . . . , hd is still a

regular sequence in A, and since each fi ∈ (kerλ)2, the images of the hi in m̂/m̂2 are also

linearly independent over E. This implies the desired formal smoothness for the quotient

A/(h1, . . . , hd).

Using Lemma 3.2.4, we can show that a 1-codimensional embedding into R always exists.

Proposition 3.2.5. A 1-codimensional embedding θ : S ↪→ R exists.

Proof. Since R is flat over O, we have that $ is not a zero-divisor in R, thus dimR/($) =

dimR − 1 = d. Choosing a system of parameters for R/($) and lifting it to R, we see

from Theorem A.0.7 that there exists a regular sequence $, f1, . . . , fd in R. We can assume

that each fi ∈ kerλR, since adding an element of $R to each fi preserves regularity and

kerλR +$R = mR.

By Lemma 3.2.4, there exist h1, . . . , hd ∈ kerλR such that $, h1, . . . , hd is a regular

sequence in R and for the quotient B = R/(h1, . . . , hd), the ring B[1/$] is formally smooth of

dimension 0 at the induced augmentation λB[1/$]. Since $, h1, . . . , hd is a regular sequence

in R, B/($) = R/($, h1, . . . , hd) is a finitely-generated algebra over O/($) = k of Krull

dimension 0. Therefore B/($) is finite, as it has finite dimension as a k-vector space. It

follows that if we define θ : S = O[[y1, . . . , yd]] → R by θ(y1) = hi, then R is finite over S.

Then since $, y1, . . . , yd is a regular sequence in S generating its maximal ideal and is also

R-regular, we have that R is free over S.

Now Rθ[1/$] = B[1/$] is a 0-dimensional E-algebra, and is therefore a direct product of

Artinian E-algebras, where the components are the localizations of Rθ[1/$] at its maximal

ideals. In particular, since Rθ[1/$] is formally smooth of dimension 0 at the localized

augmentation, the component corresponding to (kerλθ)[1/$] ∼= ker(λθ[1/$]) is equal to E.

It follows that the localization Φλθ(Rθ)[1/$] is 0, thus Φλθ(Rθ) is a torsion O-module. Now
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Rθ = R/(h1, . . . , hd) is finite over O for the same reason that R is finite over S, so Φλθ(Rθ)

is also finite over O. We conclude that Φλθ(Rθ) is finite.

Lastly note that R is S-torsion free since R is free over S, hence θ is injective. We have

thus shown that θ : S ↪→ R is a 1-codimensional embedding into R.

Lemma 3.2.4 also implies that a CI covering of R exists.

Proposition 3.2.6. A CI covering ϕ : R̃ � R exists.

Proof. Choose a surjective ring homomorphism Π: A = O[[x1, . . . , xn]] � R and let p =

Π−1(kerλR). Let d + 1 = dimR so that m = n − d ≥ 0. Since A has no $-torsion

and A/($) ∼= k[[x1, . . . , xn]] is regular of dimension n, there exist f1, . . . , fm ∈ ker Π such

that $, f1, . . . , fm is a regular sequence in S. Since A[1/$] ∼= E[[x1, . . . , xn]] is regular of

dimension n with maximal ideal p[1/$], the ring S[1/$] is formally smooth at p[1/$] of

dimension n.

Let λ = λR ◦Π: A� O and choose h1, . . . , hm ∈ (kerλ ∩ (f1, . . . , fm, $)) ⊆ ker Π +$A

as in Lemma 3.2.4. Then $, h1, . . . , hm is a regular sequence in A, and for the quotient

R̃ = A/(h1, . . . , hm) and λR̃ : R̃ � O, we have that R̃[1/$] is formally smooth at λR̃[1/$] of

dimension n−m = d. Since any permutation of a regular sequence in a Noetherian local ring

is a regular sequence, the regularity of $, h1, . . . , hm in A implies that $ is not a zero-divisor

in R̃, thus R̃ is flat over O. We also see that h1, . . . , hm is a regular sequence in A. Since A

is a regular local ring, this implies that R̃ = A/(h1, . . . , hm) is a complete intersection, and

together with Krull’s principal ideal theorem it also implies that

dim R̃ = dimA−m = n+ 1−m = d+ 1 = dimR.

The natural map ϕ : R̃ � R is thus a CI covering.

We want to show that a 1-codimensional embedding into R can be lifted along a CI

covering of R. We first need the following lemma:
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Lemma 3.2.7. Suppose A is a Noetherian ring and I ⊆ A is an ideal. If y is an element of

B = A/I not contained in any minimal prime of B, then there exists a lift ỹ ∈ A of x such

that ỹ is not contained in any minimal prime of A.

Proof. Let ỹ0 ∈ A be an arbitary lift of y. Let p1, . . . , pm be the minimal prime ideals of A.

Observe that none of the pi contain (ỹ0) + I, for if ỹ0 ∈ pi, then pi does not contain I, or

else the image of pi in B is a minimal prime ideal of B which contains y, a contradiction.

By the prime avoidance lemma, there exists x ∈ I such that x + ỹ0 6∈ pi for each i. Then

ỹ = x+ ỹ0 is a lift of y not contained in any minimal prime of A.

Now we can be prove the following lemma:

Lemma 3.2.8. Suppose θ : S = O[[y1, . . . , yd]] ↪→ R is a 1-codimensional embedding and

ϕ : R̃ � R is a CI covering. Then θ lifts to a map θ̃ : S ↪→ R̃ which is a 1-codimensional

embedding into R̃.

Furthermore, the quotient R̃θ = R̃/(θ̃(y1), . . . , θ̃(yd)) is a complete intersection of dimen-

sion 1.

Proof. We identify each yi ∈ S with its image in R so that $, y1, . . . , yd is a regular sequence

in S and R. Let d = dimR − 1. We show by induction that there exist ỹ1, . . . , ỹd ∈ R̃ such

that ϕ(ỹi) = yi for each i and dim R̃/($, ỹ1, . . . , ỹj) = d − j = dimR/($, y1, . . . , yj) for all

0 ≤ j ≤ d. We then set θ̃(yi) = ỹi.

Since R̃ and R are flat over O, we have dim R̃/($) = d = dimR/($), so the base case

holds. Now suppose for some 0 ≤ j < d we have found ỹ1, . . . , ỹj ∈ R̃ satisfying the desired

properties. Since $, y1, . . . , yd is a regular sequence in R, we have that yj+1 is not a zero-

divisor in Bj = R/($, y1, . . . , yj), hence is not in any minimal prime of B. By Lemma 3.2.7,

there exists a lift ỹj+1 ∈ Aj = R̃/($, ỹ1, . . . , ỹj) such that ỹj+1 is not in any minimal prime

of Aj. This implies that

dimAj/(ỹj+1) = dimAj − 1 = dimBj − 1 = dimBj/(yj+1),
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which completes the induction step.

Note that θ̃(yi) is necessarily in ker λ̃ since θ̃ lifts θ. Now observe that the sequence

$, ỹ1, . . . , ỹd is a system of parameters in R̃. It is therefore a regular sequence in R̃ by

Theorem A.0.7 since R̃ is Cohen-Macaulay as it is a complete intersection. It follows that

R̃θ = R̃/(ỹ1, . . . , ỹd) is a complete intersection and the Krull principal ideal theorem implies

dim R̃θ = 1. Defining θ̃ : S → R̃ by θ̃(yi) = ỹi for each i, we see as in the proof of Proposi-

tion 3.2.5 that θ̃ makes R̃ into a finite free S-module, θ̃ is injective, and R̃θ is finite free over

O.

For the finiteness of the cotangent space, let Rθ = R/(y1, . . . , yd) and λθ : Rθ � O be

the induced augmentation and consider the following commutative diagram with exact rows

(see the proof of [3, Theorem 7.16]):

Od Φλ̃(R̃) Φλ̃θ
(R̃θ) 0

Od Φλ(R) Φλθ(Rθ) 0

Θ̃

=

Θ

where the maps Θ̃ and Θ are given in terms of differentials by Θ̃(ei) = dỹi and Θ(ei) = dyi.

Since R[1/$] and R̃[1/$] are both equidimensional of dimension d and are formally smooth

at λ and λ̃, respectively, we have that Φλ(R) and Φλ̃(R̃) both have rank d as O-modules.

Since Φλθ(Rθ) is finite, it follows from exactness that Θ is injective. The commutativity of

the diagram then implies that Θ̃ is also injective, so by exactness Φλ̃θ
(R̃θ) is also finite.

3.3 Independence of C1,λθ(Rθ) of θ

In this section we fix a (R, λ) ∈ CNLaO, a 1-codimensional embedding θ : S ↪→ R, and a CI

covering ϕ : R̃ � R with I = kerϕ. We also fix a lift θ̃ : S ↪→ R̃ which satisfies the conclusion

of Lemma 3.2.8 and we identify S with its images in R and R̃.
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Let Rθ = R/(y1, . . . , yd) and R̃θ = R̃/(y1, . . . , yd). Noting that Rθ
∼= R⊗SO and similarly

R̃θ
∼= R̃ ⊗S O, we define ϕθ = ϕ ⊗ idO : R̃θ � Rθ and Iθ = kerϕθ. We also let πθ : R̃ � R̃θ

be the quotient map and note that λ̃ = λ̃θ ◦ πθ. Since R̃ is a free, hence flat, S-module, we

also have Iθ = πθ(I).

We wish to define C1,λ(R) as an analog of Venkatesh’s second invariant in the 1-dimensional

case. This will require a few lemmas.

Lemma 3.3.1. There exist isomorphisms Λ: R̃→ HomS(R̃, S) and Λθ : R̃θ → HomO(R̃θ,O)

such that the following diagram commutes

R̃ HomS(R̃, S)

R̃θ HomO(R̃θ,O)

Λ

πθ α

Λθ

where α sends a map R̃→ S to the map R̃θ → O induced by the quotient map S � O.

Proof. The ring S is Gorenstein since it is a complete intersection, so ωS ∼= S, where ωS is

the dualizing module of S. Likewise ωR̃
∼= R̃ since R̃ is also a complete intersection. Since S

and R̃ are Cohen-Macaulay and θ : S ↪→ R is a finite local map, by [19, Theorem 3.3.7 (b)]

we have

ωR̃
∼= ExtdimS−dim R̃

S (R̃, ωS) ∼= HomS(R̃, S),

where the second isomorphism follows since dimS = dim R̃. We let Λ be the composition

R̃ ∼= ωR̃
∼= HomS(R̃, S).

Since R̃ is free over S, we have

kerα = HomS(R̃, (y1, . . . , yd)S) =
d∑
i=1

yi HomS(R̃, S).

Since Λ is an isomorphism, we see that

Λ−1(kerα) = (y1, . . . , yd)R̃ = kerπθ.
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Then the map Λθ : R̃θ → HomO(R̃θ,O) given by Λθ(r) = (α ◦ Λ)(r̃) where r̃ ∈ R̃ is a lift

of r ∈ R̃θ is well-defined and makes the diagram commute. Since πθ is surjective, Λθ is

necessarily injective. Moreover, α is surjective since R̃ is a projective S-module, thus Λθ is

an isomorphism.

Lemma 3.3.2. Let Λ: R̃→ HomS(R̃, S) and Λθ : R̃θ : HomO(R̃θ,O) be isomorphisms as in

Lemma 3.3.1. Then

(i) Ψ(AnnR̃(I)) = HomS(R̃/I, S)

(ii) Ψθ(AnnR̃θ(Iθ)) = HomO(R̃θ/Iθ,O).

Proof. We have Ψ(AnnR̃(I)) = HomS(R̃, S)[I] since Ψ is an isomorphism. Now

HomS(R̃, S)[I] = {f : R̃→ S : r · f = 0 for all r ∈ I}

= {f : R̃→ S : f(rx) = 0 for all r ∈ I, x ∈ R}

= {f : R̃→ S : f(r) = 0 for all r ∈ I}

= HomS(R̃/I, S).

This proves (i), and (ii) follows from the same argument.

Theorem 3.3.3. We have

(i) AnnR̃θ(Iθ) = πθ(AnnR̃(I))

(ii) FittR̃θ(Iθ) = πθ(FittR̃(I))

Proof. Let Λ: R̃ → HomS(R̃, S), let Λθ : R̃θ → HomO(R̃θ,O), and let α : HomS(R̃, S) →

HomO(R̃θ,O) be as in Lemma 3.3.1. Since R̃/I ∼= R is a projective S-module, α in-

duces a surjective map HomS(R̃/I, R) � HomS(R̃/I,O) = HomO(R̃θ/Iθ,O). Then using

Lemma 3.3.2 (i), we see that

(α ◦Ψ)(AnnR̃(I)) = α(HomS(R̃/I, S)) = HomO(R̃θ/Iθ,O).
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The commutativity of the diagram in Lemma 3.3.1 implies that

πθ(AnnR̃(I)) = Λ−1
θ ((Λθ ◦ πθ)(AnnR̃(I))) = Λ−1

θ (HomO(R̃θ/Iθ,O))

On the other hand, by Lemma 3.3.2 (ii) we have

Λ−1
θ (HomO(R̃θ/Iθ,O)) = AnnR̃θ(Iθ),

thus AnnR̃θ(Iθ) = πθ(AnnR̃(I)) as desired. This proves (i).

Now we prove (ii). We have a short exact sequence

0 I R̃ R 0.

Tensoring with O over S gives an an exact sequence

TorS1 (R,O) I ⊗S O R̃θ Rθ 0.
ϕθ

But TorS1 (R,O) = 0 since R is a free S-module, thus Iθ ∼= I ⊗S O as S-modules. It now

follows from [43, Lemma 15.8.4 (3)] that

πθ(FittR̃(I)) = FittRθ(I ⊗S O) = FittR̃θ(Iθ),

proving (ii).

We can now define C1,λ(R) in the same way as in the case where dimR = 1.

Definition 3.3.4. We define

C1,λ(R) := C1,λ̃(R̃) := λ̃(AnnR̃(I))/λ̃(FittR̃(I)).
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Theorem 3.3.3 shows that

λ̃(AnnR̃(I))/λ̃(FittR̃(I)) = λ̃θ(πθ(AnnR̃(I)))/λ̃θ(πθ(FittR̃(I)))

= λ̃θ(AnnR̃θ(Iθ))/λ̃θ(FittR̃θ(Iθ))

= C1,λθ(Rθ).

By [4, Lemma A.5], the invariant C1,λθ(Rθ) is independent of R̃θ, so C1,λ(R) is well-defined

as in the 1-dimensional case.

3.4 Independence of Der1
O(Rθ, E/O) of θ

Fix (R, λ) ∈ CNLaO and a 1-codimensional embedding S = O[[y1, . . . , yd]] ↪→ R. We let

Rθ = R/(y1, . . . , yd) as before. In this section we show that the André-Quillen cohomology

group Der1
O(Rθ, E/O) is independent of the choice of θ and is in fact isomorphic to the

continuous cohomology group D̂er
1

O(R,E/O) which we will use to define the Wiles defect

for (R, λ).

Given any ring A, let ModA denote the category of A-modules, D(ModA) the derived

category of ModA, and D−(ModA) the subcategory of ModA whose objects are bounded

above complexes.

Given any ring homomorphism A→ B, let LB/A ∈ D−(ModB) denote the relative cotan-

gent complex [44, Definition 2.1]. For a ring A ∈ CNLO, we let ∧ : ModA → ModA denote

the mA-adic completion functor. By an abuse of notation, we also let ∧ : D−(ModA) →

D−(ModA) denote the left-derived functor of ∧, defined as in [13, Chapter 7.1].

Given a continuous ring homomorphism A→ B, we define the analytic relative cotangent

complex to be Lan
B/A = (LB/A)∧. We can now define the André-Quillen cohomology groups.

Definition 3.4.1. Let A → B be a ring homomorphism and let M be a B-module. Then
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for i ≥ 0 we define the i-th André-Quillen cohomology group to be

DeriA(B,M) = H i(RHomB(LB/A,M)).

Similarly, if A→ B is continuous, then we define the i-th André-Quillen cohomology group

to be

D̂er
i

A(B,M) = H i(RHomB(Lan
B/A,M)).

We will need to make use of some of the basic properties of continuous André-Quillen

cohomology to prove the main result of this section.

Proposition 3.4.2. Given A,B,C ∈ CNLO and continuous ring homomorphisms A →

B → C and any C-module M , we have the following long exact sequence in André-Quillen

cohomology:

0 D̂er
0

B(C,M) D̂er
0

A(C,M) D̂er
0

A(B,M)

D̂er
1

B(C,M) D̂er
1

A(C,M) D̂er
1

A(B,M) · · ·

Proof. This follows from the definition of the continuous André-Quillen cohomology groups

and the distinguished triangle

C ⊗L
B L

an
B/A → Lan

C/A → Lan
C/B → C ⊗L

B L
an
B/A[1].

from [13, Theorem 7.1.33].

Proposition 3.4.3. If A → B is a continuous morphism in CNLO which makes B into a

finite A-module, then Lan
B/A
∼= LB/A, hence D̂er

i

A(B,M) ∼= DeriA(B,M) for all i ≥ 0 and all

B-modules M .

Proof. Since the map A → B is of finite type, by [20, 6.11] we have that LB/A is quasi-

isomorphic to a bounded above complex of finite free B-modules L• ∈ Der−(ModB). Then
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we have

Lan
B/A = (LB/A)∧ ∼= (L•)∧ ∼= LB/A,

since finite free B-modules are mB-adically complete. The isomorphism of André-Quillen

cohomology groups now follows from their definition.

Proposition 3.4.4. Let A,B ∈ CNLO and let A → B be a continuous ring homomor-

phism. The module Ω̂B/A = lim←−Ω(B/mnB)/A of continuous Kähler differentials is the mB-adic

completion of ΩB/A and we have D̂er
0

A(B,M) ∼= HomB(Ω̂B/A,M) for any B-module M .

Proof. For the first claim, we proceed as in the proof of [3, Lemma 7.1]. For n > m we have

ΩB/A/m
m
BΩB/A = ΩB/A ⊗B B/mm

B
∼= Ω(B/mnB)/A ⊗B/mm

B .

Taking inverse limits, we obtain

ΩB/A/m
m
BΩB/A

∼= lim←−
n

(Ω(B/mnB)/A ⊗B/mm
B )

∼= lim←−
n

(Ω(B/mnB)/A)⊗B B/mm
B

= Ω̂B/A ⊗B B/mm
B .

Since Ω̂B/A is finite over B, it is mB-adically complete, so taking inverse limits again gives

Ω̂B/A
∼= lim←−

m

(Ω̂B/A ⊗B B/mm
B ) ∼= lim←−

m

ΩB/A/m
m
BΩB/A.

This proves the first claim. Note that this shows Ω̂B/A is the module Ω̂an
B/A = (Ω̂B/A)∧

from [13], so the second claim follows from the definition of the André-Quillen cohomology

groups and [13, Lemma 7.1.27(iii)].

We will need to know the continuous André-Quillen cohomology of power series rings,

which we compute in the following lemma:
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Lemma 3.4.5. Given any n ≥ 0, let A = O[[x1, . . . , xn]] and let M be an A-module. We

have

D̂er
i

O(A,M) =

 Mn i = 0

0 i > 0

Proof. By [13, Proposition 7.1.29] we have Lan
A/O = Ω̂A/O[0] = An[0], thus

RHomA(Lan
A/O,M) = RHomA(An[0],M) = RHomA(An,M) = Mn[0],

from which the lemma follows.

Lastly we will need to know the degree 0 and 1 continuous André-Quillen cohomology

groups D̂er
i

A(B, ·) for rings B which are quotients of A.

Lemma 3.4.6. Let A be a ring and B = A/I for some ideal I ⊆ A. Then D̂er
0

A(B,M) = 0

and D̂er
1

A(B,M) = HomB(I/I2,M)

Proof. Clearly B is a finite A-module, so Proposition 3.4.3 gives D̂er
i

A(B,M) ∼= DeriA(B,M)

for all i ≥ 0 and all B-modules M . The lemma now follows from [20, 6.12].

We can now work toward proving the main result of this section. We first want to show

that the continuous André-Quillen cohomology of Rθ depends only on R and not the choice

of θ.

Lemma 3.4.7. For any i ≥ 0 and any Rθ-module M , we have

D̂er
i

S(R,M) ∼= DeriS(R,M) ∼= DeriO(Rθ,M) ∼= D̂er
i

O(Rθ,M).

Proof. The first and last isomorphisms follow from Proposition 3.4.3 since R is a finite S-

module and Rθ is a finite O-module. For the second isomorphism, recall that R is a finite

free S-module, thus 0→ R→ R→ 0 is a projective resolution of R in D(ModS). Therefore

R⊗L
S O = R⊗S O ∼= Rθ, so applying [43, Lemma 91.6.2] with the commutative square
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R Rθ

S O

θ

gives that LR/S ⊗L
R Rθ

∼= LRθ/O. Then [43, Lemma 15.99.1] gives

RHomR(LR/S,M) ∼= RHomRθ(LR/S ⊗L
R Rθ,M) ∼= RHomRθ(LRθ/O,M)

for all Rθ-modules M . The second isomorphism now follows from the definition of the

André-Quillen cohomology groups.

We now need to show that D̂er
1

S(R,E/O) does not depend on the choice of θ : S ↪→ R.

We view E/O as a module over R and Rθ via the augmentations λ : R � O and λθ : Rθ � O.

Proposition 3.4.8. We have D̂er
1

S(R,E/O) ∼= D̂er
1

O(R,E/O).

Proof. We apply Proposition 3.4.2 to O → S
θ→ R with M = E/O to obtain the exact

sequence

0 D̂er
0

S(R,E/O) D̂er
0

O(R,E/O) D̂er
0

O(S,E/O)

D̂er
1

S(R,E/O) D̂er
1

O(R,E/O) D̂er
1

O(S,E/O).

By Proposition 3.4.4 we have

D̂er
0

O(R,E/O) = HomR(Ω̂R/O, E/O) ∼= HomO(Ω̂R/O ⊗λ O, E/O).

By assumption R[1/$] is smooth at the augmentation λ : R � O, so

Ω̂R/O ⊗λ O ∼= Od ⊕ T with T a finite torsion O-module. Then

HomO(Ω̂R/O ⊗λ O, E/O) ∼= HomO(Od, E/O)⊕ HomO(T,E/O) ∼= (E/O)d ⊕ T.
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Similarly, since θ is a 1-codimensional embedding, Φλθ(Rθ) ∼= Ω̂Rθ/O ⊗λθ O is finite, so

HomO(Ω̂Rθ/O, E/O) ∼= HomO(Φλθ(Rθ), E/O) ∼= T ′,

where T ′ is some finite torsion O-module. Using Proposition 3.4.8 and Proposition 3.4.4 we

see that

D̂er
0

S(R,E/O) ∼= D̂er
0

O(Rθ, E/O) = HomRθ(Ω̂Rθ/O, E/O).

We also have D̂er
0

O(S,E/O) ∼= (E/O)d and D̂er
1

O(S,E/O) = 0 by Lemma 3.4.5.

The exact sequence now simplifies to

0 T ′ (E/O)d ⊕ T (E/O)d D̂er
1

S(R,E/O) D̂er
1

O(R,E/O) 0

Now we see that (E/O)d ⊕ T → (E/O)d has finite kernel and its image is a finite-index

subgroup of (E/O)d. Since (E/O)d is divisible, the only such subgroup is (E/O)d, hence

(E/O)d ⊕ T → (E/O)d is surjective. Then (E/O)d → D̂er
1

S(R,E/O) has trivial image, so

D̂er
1

S(R,E/O)→ D̂er
1

O(R,E/O) is an isomorphism as desired.

Lemma 3.4.7 and Proposition 3.4.8 now immediately imply the following theorem, which

shows that Der1
O(Rθ, E/O) is independent of the choice of θ.

Theorem 3.4.9. We have Der1
O(Rθ, E/O) ∼= D̂er

1

O(R,E/O).

To actually compute the Wiles defect of (R, λ), we require a method for computing

D̂er
1

O(R,E/O). For this we fix a CI covering R̃ � R with kernel I. We will need the

following lemmas:

Lemma 3.4.10. Let A be a Noetherian local ring and J ⊆ A be an ideal generated by a

regular sequence f1, . . . , fn. Then J/J2 is free of rank n as an A/J-module.

Proof. Clearly J/J2 is generated over A/J by the images of f1, . . . , fn, so it suffices to show

46



these are linearly independent. Suppose

a1f1 + · · ·+ anfn ∈ J2

for a1, . . . , an ∈ A. Then there exist b1, . . . , bn ∈ J such that

a1f1 + · · ·+ anfn = b1f1 + · · · bnfn.

Let ci = ai − bi for each i. Then

c1f1 + · · ·+ cnfn = 0,

hence

−cnfn = c1f1 + · · ·+ cn−1fn−1 ∈ (f1, . . . , fn−1)A

Since f1, . . . , fn is a regular sequence, this implies that cn ∈ J , so an ∈ J . Since A is

a Noetherian local ring, any permutation of f1, . . . , fi−1, fi+1, . . . , fn, fi is also a regular

sequence for each i < n, so the above argument shows that ai ∈ J for each i, hence the

images of fi in A/J are linearly independent as desired.

Lemma 3.4.11. Let n ≥ 1 and let M ⊂ (E/O)n be an O-submodule.

(i) We have M ∼= (E/O)n if and only if M = (E/O)n.

(ii) If |M | is finite, then (E/O)n/M ∼= (E/O)n.

Proof. To prove (i), note that

(E/O)n ∼= lim−→
k

(E/O)n[$k],

where (E/O)n[$k] is the $k-torsion submodule of (E/O)n. Therefore M ∼= (E/O)n if
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and only if M [$k] = (E/O)n[$k] for all k ≥ 1. But (E/O)n[$k] ∼= (O/($k))n has finite

cardinality, so this occurs if and only if M = (E/O)n, proving (i).

Now we show (ii). First suppose M is generated by a single element x ∈ M . Consider

the natural map

En � (E/O)n � (E/O)n/M,

whose kernel is L = On + Ox̃ for some lift x̃ of x. Note that En is torsion-free, so L is

torsion-free and finitely-generated, hence free. Moreover, the rank of L is clearly at least n

but also at most n since L is a submodule of En. If v1, . . . , vn ∈ L is an O-basis of L, then

it is an E-basis of En, so we have

(E/O)n/M ∼= En/L ∼=
n⊕
i=1

Evi
/ n⊕

i=1

Lvi ∼= (E/O)n.

(ii) now follows by induction on the number of generators of M .

Our last theorem of this section gives a method of computing D̂er
1

O(R,E/O).

Theorem 3.4.12. We have an exact sequence

0 HomR(Ω̂R/O, E/O) HomR̃(Ω̂R̃/O, E/O)

HomR(I/I2, E/O) D̂er
1

O(R,E/O) 0

Proof. We apply Proposition 3.4.2 to O → R̃
ϕ→ R with M = E/O to obtain the exact

sequence

0 D̂er
0

R̃(R,E/O) D̂er
0

O(R,E/O) D̂er
0

O(R̃, E/O)

D̂er
1

R̃(R,E/O) D̂er
1

O(R,E/O) D̂er
1

O(R̃, E/O)

Applying Proposition 3.4.4 to the first three terms and Lemma 3.4.6 to the fourth term, the

exact sequence becomes
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0 HomR(Ω̂R/R̃, E/O) HomR(Ω̂R/O, E/O) HomR̃(Ω̂R̃/O, E/O)

HomR(I/I2, E/O) D̂er
1

O(R,E/O) D̂er
1

O(R̃, E/O)

But Ω̂R/R̃ = 0 since R̃ → R is surjective, thus HomR(Ω̂R/R̃, E/O) = 0. The proof will thus

be complete once we show that D̂er
1

O(R̃, E/O) = 0.

Since R̃ is a complete intersection, there exists a power series ring P = O[[x1, . . . , xn+d]]

and a surjection P � R̃ with kernel J ⊆ P generated by a regular sequence f1, . . . , fn. We

apply Proposition 3.4.2 to O → P → R̃ with M = E/O to obtain the exact sequence

0 D̂er
0

P (R̃, E/O) D̂er
0

O(R̃, E/O) D̂er
0

O(P,E/O)

D̂er
1

P (R̃, E/O) D̂er
1

O(R̃, E/O) D̂er
1

O(P,E/O)

As with D̂er
0

R̃(R,E/O), we have D̂er
0

P (R̃, E/O) = 0 since P → R̃ is surjective. By

Lemma 3.4.5 we have D̂er
0

O(P,E/O) = (E/O)n+d and D̂er
1

O(P,E/O) = 0. As in the proof of

Proposition 3.4.8, we see that D̂er
0

O(R̃, E/O) ∼= (E/O)d⊕T for some finite torsion O-module

T since R̃[1/$] is formally smooth at λ̃. Lastly, by Lemma 3.4.10, we have that J/J2 ∼= R̃n

as an R̃-module. Applying Lemma 3.4.6 again, we thus see that

D̂er
1

P (R̃, E/O) ∼= HomR̃(J/J2, E/O) ∼= (E/O)n.

Therefore the exact sequence above is

0 (E/O)d ⊕ T (E/O)n+d (E/O)n D̂er
1

O(R̃, E/O) 0

Consider the exact sequence

0 (E/O)d (E/O)n+d M ′ 0
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where the injective map is the composition (E/O)d ↪→ (E/O)d ⊕ T → (E/O)n+d and

M = (E/O)n+d/(E/O)d is its cokernel. Since (E/O)d is an injective O-module, the above

sequence splits, thus

(E/O)n+d ∼= (E/O)d ⊕M ′.

Now observe that for every r, k ≥ 1, the $k-torsion submodule of (E/O)r is isomorphic

to (O/($k))r. We thus see from the above direct sum decomposition that the $k-torsion

submodule of M ′ is isomorphic to (O/($k))n, thus

M ′ ∼= lim−→
k

(O/($k))n ∼= (E/O)n.

LetM be the image of (E/O)n+d → (E/O)n, which is isomorphic to (E/O)n+d/((E/O)d⊕T ).

Then M ∼= M ′/T ′ where T ′ = ((E/O)d + T )/(E/O)d. Since |T ′| has finite cardinality, we

have M ∼= (E/O)n by Lemma 3.4.11 (ii). Then M is a submodule of (E/O)n which is

isomorphic to (E/O)n, so M = (E/O)n by Lemma 3.4.11 (i), i.e. (E/O)n+d → (E/O)n is

surjective. We now see from the exact sequence that D̂er
1

O(R̃, E/O) = 0 as desired.

We now have a concrete method of computing |D̂er
1

O(R,E/O)|, explained in the following

corollary:

Corollary 3.4.13. Let M be the cokernel of HomR(Ω̂R̃/O, E/O) → HomR̃(Ω̂R/O, E/O).

Then

|D̂er
1

O(R,E/O)| = |HomR(I/I2, E/O)|/|M |.

Proof. This follows straightforwardly from Theorem 3.4.12.
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3.5 The Wiles defect for augmented rings in the cate-

gory CNLaO

In the previous two sections, we defined the invariants D̂er
1

O(R,E/O) which make sense for

any augmented ring (R, λ) ∈ CNLO, even when dimR > 1. In this section, we define the

Wiles defect for objects in CNLO in terms of these two invariants. We then prove some

useful properties satisfied by the Wiles defect.

Definition 3.5.1. Let (R, λR) ∈ CNLO, i.e. R is a complete Noetherian local O-algebra

which is Cohen-Macaulay and flat over O together with an augmentation λ : R � O such

that R[1/$] is formally smooth at λ. Define the invariants

d1,λ(R) =
logp |D̂er

1

O(R,E/O)|
logp |O/p|

and

c1,λ(R) =
logp |C1,λ(R)|

logp |O/p|
,

where the definition of C1,λ(R) is given in Definition 3.3.4. Then we define the Wiles defect

of R with respect to the augmentation λ to be

δλ(R) = d1,λ(R)− c1,λ(R).

We fix an augmented ring (R, λ) ∈ CNLO for the remainder of this section so as not to

repeat this in the statements of the following results. First we give our main theorem of this

chapter, which shows that the Wiles defect of (R, λ) is the same as the Wiles defect of the

augmented quotient ring (Rθ.λθ) obtained from a 1-codimensional embedding:

Theorem 3.5.2. Let θ : S = O[[y1, . . . , yd]] ↪→ R be a 1-codimensional embedding into R,

and let Rθ = R/(y1, . . . , yd) with induced augmentation λθ : Rθ � O. Then the invariants
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Der1
O(Rθ, E/O), C1,λθ(Rθ), and δλθ(Rθ) depend only on R and λ and not on θ.

Proof. Lemma 3.4.7 and Proposition 3.4.8 imply that Der1
O(Rθ, E/O) ∼= D̂er

1

O(R,E/O),

so Der1
O(Rθ, E/O) and thus d1,λθ(Rθ) depends only on R and λ. As mentioned in Defini-

tion 3.3.4, it follows from Theorem 3.3.3 that C1,λθ
∼= C1,λ(R̃) given a CI covering R̃ � R.

It thus follows from [40] that C1,λθ(Rθ) and thus c1,λ also only depends on R and λ. The

same is thus true for δλθ(Rθ) by definition.

We have the following useful reformulation of the above theorem, which shows that the

Wiles defect remains invariant upon quotienting by a regular sequence annihilated by the

augmentation:

Theorem 3.5.3. Let r1, . . . , rd, $ be a regular sequence in R with (r1, . . . , rd) ⊆ kerλ and

let λθ : Rθ = R/(r1, . . . , rd) � O be the augmentation induced by λ. Then

δλ(R) = δλθ(Rθ).

Proof. Define θ : S = O[[y1, . . . , yd]]→ R by θ(yi) = ri. Note that the proof Proposition 3.2.5

depended only on choosing a regular sequence f1, . . . , fd, $ in R with (f1, . . . , fd) ⊆ kerλ,

so θ is a 1-codimensional embedding. The result now follows from Theorem 3.5.2.

The following proposition shows that our definition of the Wiles defect for augmented

rings agrees with Definition 3.1.1 for rings of dimension one:

Proposition 3.5.4. In the case when dimR = 1, we have

δλ(R) = d1,λ(R)− c1,λ(R) =
logp |Φλ(R)| − logp |Ψλ(R)|

logp |O/p|
.

Proof.
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Proof. Choose a 1-codimensional embedding θ : S = O[[y1, . . . , yd]] ↪→ R. Then by Theo-

rem 3.5.2 we have

δλ(R) = δλθ(Rθ),

where λθ : Rθ = R/(y1, . . . , yd) � O is the induced augmentation. Definition 3.3.4 for

C1,λθ(Rθ) coincides with the definition given in Section 3.1 for 1-dimensional rings, and

D̂er
1

O(Rθ, E/O) ∼= Der1
O(Rθ, E/O)

by Lemma 3.4.7. The proposition now follows from Theorem 3.1.2.

As in the 1-dimensional case, the Wiles defect measures the degree to which R fails to

be a complete intersection.

Proposition 3.5.5. We have δλ(R) = 0 if and only if R is a complete intersection.

Proof. If R is a complete intersection, then the identity map ϕ : R → R is a CI covering

of R. Since I = kerϕ = 0, we have AnnR(I) = FittR(I) = R, thus C1,λ(R) = 0, and the

argument given in the proof of Theorem 3.4.12 shows that D̂er
1

O(R,E/O) = 0. Therefore

δλ(R) = 0.

If δλ(R) = 0, then choose a 1-codimensional embedding θ : S = O[[y1, . . . , yd]] ↪→ R so

that Rθ = R/(y1, . . . , yd) has dimension 1. Letting λθ : Rθ � O be the induced augmenta-

tion, we have

δλθ(Rθ) = δλ(R) = 0

by Theorem 3.5.2, so Rθ is a complete intersection by Proposition 3.5.4. Since Rθ is a

quotient of R by a regular sequence, this implies that R is also a complete intersection.

The last property of the Wiles defect we will need to know is additivity over completed

tensor products.
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Proposition 3.5.6. Let (R1, λ1), (R2, λ2) ∈ CNLaO. Assume that R1 and R2 are reduced. If

we let R = R1⊗̂OR2 and λ = λ1⊗̂λ2 : R � O, then we have

δλ(R) = δλ1(R1) + δλ2(R2).

Proof. The lemma will follow by definition once we show that

c1,λ(R) = c1,λ1(R1) + c1,λ2(R2) (3.1)

and

d1,λ(R) = d1,λ1(R1) + d1,λ2(R2). (3.2)

To prove (3.2), choose 1-codimensional embeddings θ1 : S1 = O[[x1, . . . , xd1 ]] ↪→ R1 and

θ2 : S2 = O[[y1, . . . , yd2 ]] ↪→ R2. Then the map

θ = θ1 ⊗ θ2 : S1⊗̂OS2 = O[[x1, . . . , xd1 , y1, . . . , yd2 ]] ↪→ R

is a 1-codimensional embedding into R. Let

R1,θ1 = R1,θ1/(x1, . . . , xd1)

R2,θ2 = R2,θ2/(y1, . . . , yd2)

Rθ = R/(x1, . . . , xd1 , y1, . . . , yd2).

By Lemma 3.4.7 we have

D̂er
1

O(R1, E/O) ∼= Der1
O(R1,θ1 , E/O)

D̂er
1

O(R2, E/O) ∼= Der1
O(R2,θ2 , E/O)

D̂er
1

O(R,E/O) ∼= Der1
O(Rθ, E/O),
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so it suffices to show that

Der1
O(Rθ, E/O) ∼= Der1

O(R1,θ1 , E/O)⊕Der1
O(R2,θ2 , E/O).

Per the proof of Proposition 3.2.5, R1,θ1 and R2,θ2 are free over O, thus Tor independent

O-algebras, i.e. TorOi (R1,θ1 , R2,θ2) = 0 for all i > 0. Noting that Rθ
∼= R1,θ1 ⊗O R2,θ2 , we see

by [43, Lemma 91.15.1] that

LRθ/O
∼= LR1,θ1

/O ⊗L
R1,θ1

Rθ ⊕ LR2,θ2
/O ⊗L

R2,θ2
Rθ.

Therefore

Der1
O(Rθ, E/O) = H1(RHomRθ(LRθ/O, E/O))

∼= H1(RHomRθ(LR1,θ1
/O ⊗L

R1,θ1
Rθ ⊕ LR2,θ2

/O ⊗L
R2,θ2

Rθ, E/O))

∼= H1(RHomRθ(LR1,θ1
/O ⊗L

R1,θ1
Rθ, E/O))

⊕H1(RHomRθ(LR2,θ2
/O ⊗L

R2,θ2
Rθ, E/O))

∼= H1(RHomR1,θ1
(LR1,θ1

/O, E/O))⊕H1(RHomR2,θ2
(LR2,θ2

/O, E/O))

= Der1
O(R1,θ1 , E/O)⊕Der1

O(R2,θ2 , E/O)

as desired.

To prove (3.1), choose CI coverings ϕ1 : R̃1 → R1 and ϕ2 : R̃2 → R2 with kernels I1 and

I2, respectively. Let R̃ = R̃1⊗̂OR̃2 and λ̃ = λ̃1⊗ λ̃2 : R̃ � O. Note that ϕ = ϕ1⊗ϕ2 : R̃ � R

is a CI covering. Since R1 and R2 are flat over O, we see that I1⊗̂OR̃2 and R̃1⊗̂OI2 are ideals

in R̃ and their sum is I = kerϕ. For (R′, λ′) ∈ CNLaO and a CI covering ϕ′ : R̃′ � R′ with

kernel I ′, we have

c1,λ′(R
′) logp |O/p| = logp |λ′(AnnR̃′(I

′))/λ′(FittR̃′(I
′))|,
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so to prove (3.1), it suffices to show that

λ̃(AnnR̃(I)) = λ̃1(AnnR̃1
(I1))λ̃2(AnnR̃2

(I2))

λ̃((FittR̃(I)) = λ̃1((FittR̃1
(I))λ̃2(FittR̃2

(I)).

We have

AnnR̃(I) = AnnR̃(I1⊗̂OR̃2 + R̃1⊗̂OI2)

= AnnR̃(I1⊗̂OR̃2) ∩ AnnR̃(R̃1⊗̂OI2)

= AnnR̃1
(I1)⊗̂OR̃2 ∩ R̃1⊗̂O AnnR̃2

(I2)

= AnnR̃1
(I1)⊗̂O AnnR̃2

(I2),

where the third line follows by taking a presentation of I1 (resp. I2) and tensoring it with

R̃2 (resp. R̃1) and the fourth line follows from O-flatness. Therefore

λ̃(AnnR̃(I)) = (λ̃1 ⊗ λ̃2)(AnnR̃1
(I1)⊗̂O AnnR̃2

(I2)) = λ̃1((FittR̃1
(I))λ̃2(FittR̃2

(I))

as desired.

For the statement above concerning fitting ideals, fix presentations

0 K1 R̃m
1 I1 0

0 K2 R̃m
2 I2 0,

α

β

whereKi is a finitely-generated R̃i-module. Then α and β induce surjective maps α⊗1: R̃m =

R̃m
1 ⊗̂OR̃2 → I1⊗̂OR̃2 and 1 ⊗ β : R̃n = R̃1⊗̂OR̃n

2 → R̃1⊗̂OI2. We obtain another surjective

map

γ = (α⊗ 1)− (1⊗ β) : R̃m+n = R̃m ⊕ R̃n → I1⊗̂OR̃2 + R̃1⊗̂OI2 = I

with kernel K = ker γ. Identify elements in K1, K2, K with their images in R̃m
1 , R̃

m
2 , R̃

m+n,
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respectively. By definition FittR̃1
(I1) is the ideal in R̃1 generated by elements of the form

det(u1, . . . , um) ∈ R̃1 for all u1, . . . , um ∈ K1, and FittR̃2
(I2) is likewise generated by all

elements of the form det(v1, . . . , vn) ∈ R̃2 for all v1, . . . , vn ∈ K2. Given u1, . . . , um ∈ K1 and

v1, . . . , vm ∈ K2, we see that ( ui⊗1
0 ),

(
0

1⊗vj
)
∈ K for all i and j, thus FittR̃(I) contains

det

u1 ⊗ 1 · · · um ⊗ 1 0 · · · 0

0 · · · 0 1⊗ v1 · · · 1⊗ vn

 = det(u1, . . . , um)⊗ det(v1, . . . , vm).

This shows that FittR̃1
(I1)⊗O FittR̃2

(I2) ⊆ FittR̃(I). Therefore

λ̃1(FittR̃1
(I))λ̃2(FittR̃2

(I)) ⊆ (λ̃1 ⊗ λ̃2)(FittR̃1
(I1)⊗O FittR̃2

(I2)) ⊆ λ̃(FittR̃(I)).

For the reverse incluson, let w = ( w1
w2 ) ∈ K with w1 ∈ R̃m and w2 ∈ R̃n. Since w ∈ K,

we have

γ(w) = (α⊗ 1)(w1)− (1⊗ β)(w2) = 0,

so we may let r = (α⊗ 1)(w1) = (1⊗ β)(w2) ∈ R̃. Note that

r ∈ (I1⊗̂OR̃2) ∩ (R̃1⊗̂OI2) = I1⊗̂OI2.

By definition λ̃1(I1) = λ̃2(I2) = 0, thus (λ̃1⊗1)(r) = (1⊗ λ̃2)(r) = 0. Let u = (1⊗ λ̃2)(w1) ∈

R̃m
1 and v = (λ̃1 ⊗ 1)(w2) ∈ R̃n

2 so that

λ̃1(u) = λ̃1((id⊗λ̃2)(w1)) = (λ̃1 ⊗ λ̃2)(w1) = λ̃(w1)

λ̃2(u) = λ̃2((λ̃1 ⊗ id)(w2)) = (λ̃1 ⊗ λ̃2)(w2) = λ̃(w2).
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and

α(u) = (α⊗ id)(id⊗λ̃2)(w1) = (id⊗λ̃2)(α⊗ id)(w1) = (id⊗λ̃2)(r) = 0

β(u) = (id⊗β)(λ̃1 ⊗ id)(w2) = (λ̃1 ⊗ id)(id⊗β)(w1) = (λ̃1 ⊗ id)(r) = 0.

Therefore w1 ∈ kerα and w2 ∈ ker β.

Given w1, . . . , wm+n ∈ K, we can thus write λ̃(wi) =
(
λ̃1(ui)

λ̃2(vi)

)
for ui ∈ K1, vi ∈ K2. Then

λ̃(det(w1, . . . , wm+n)) = det

λ̃1(u1) · · · λ̃1(um+n)

λ̃2(v1) · · · λ̃2(vm+n)

 .

The above determinant can be expressed as an alternating sum of the form

∑
X,Y

(±1) det((λ̃1(ui))i∈X) det((λ̃2(vj))j∈Y ) =
∑
X,Y

(±1)λ̃1(det((ui)i∈X))λ̃2(det((vj)j∈Y )),

where the sums are taken over disjoint partitions X ∪Y of {1, . . . ,m+n} with |X| = m and

|Y | = n. The above sum is clearly in λ̃1(FittO(I1))λ̃2(FittO(I2)), so

λ̃(FittO(I)) ⊆ λ̃1(FittR̃1
(I))λ̃2(FittR̃2

(I))

as required.
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Chapter 4

Local computations

Let F be a totally real number field and v a finite place of F . Let kv denote the residue field

of Fv and let qv = |kv|.

Let p be an odd prime which is unramified in F and not divisible by v such that qv ≡ 1

(mod p). Let E/Qp be a finite extension with ring of integers O, uniformizer $, and residue

field k. We fix a nontrivial pm-th root of unity ζ ∈ O, where pm || (qv − 1). We let

εp : GF → O× be the cyclotomic character.

Fix a residual representation ρv = ρ|GFv : GFv → GL2(k) which we assume is trivial. Fix

an augmentation λ : Rps
v � O such that the induced representation ρλ : GFv → GL2(O) is of

the form εpχ ∗

0 χ−1

 ,

where χ : GFv → O× is a character with χ(ιv) = ζ.

Our main goal in this chapter is to compute the Wiles defect of (Rps
v , λ) ∈ CNLaO. By

the results of Chapter 3, this can be done by finding a CI covering ϕ : R̃ � Rps
v with kernel

I and computing the following: (a) the first two steps in a finite free resolution of I, (b) the

R̃-annihilator AnnR̃(I) of I, and (c) the cokernel of the map HomRps
v

(Ω̂Rps
v /O,O) → Ω̂R̃/O.

We will begin by finding a presentation of Rps
v as a quotient of a power series ring over O.
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Using this presentation, we find a CI covering ϕ : R̃ � Rps
v . Using properties of regular

sequences with respect to exact sequences, we produce (a), from which (b) can be computed.

The calculation of (c) is reduced to linear algebra upon showing that the desired cokernel is

a quotient of O-lattices.

4.1 A presentation of Rps
v

Our first task is to compute an explicit presentation for the ring Rps
v . Since the image of

inertia under ρv divides p and v does not divide p, the deformations parameterized by Rps
v

factor through the tame quotient Gt
Fv

of GFv . Recall that Gt
Fv

can be topologically generated

by two elements φv and ιv, where φv is a lift of Frobenius and ιv is a topological generator

of the inertia subgroup of GFv . Moreover, Gt
Fv

is characterized by the relation φvιvφ
−1
v =

ιqvv . Computing a presentation for Rps
v thus amounts to elementary matrix calculations and

checking the necessary ring-theoretic properties, as is done in [36].

Let ρps
v : GFv → GL2(Rps

v ) be the universal deformation and let

Y = ρps
v (φv) =

1 + A B

C 1 +D

 , Z = ρps
v (ιv) =

1 + T U

V 1 +W

 .

Rps,◦
v is thus the quotient of R = O[[A,B,C,D, T, U, V,W ]] by the one relation which arises

from fixing the determinant of ρps
v (φv), the two relations which arises from the condition that

ρps
v (ιv) has characteristic polynomial (X − ζ)(X − ζ−1), and the four relations which arise

from the relation Y ZY −1 = Zqv .

Using that det(ρps
v ) is the cyclotomic character and that the characteristic polynomial of
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Z is (X − ζ)(X − ζ−1), we obtain the relations

r1 = det(Y )− qv = 1− qv + A+D + AD −BC

r2 = det(Z)− 1 = T +W + TW − UV

r3 = tr(Z)− (ζ + ζ−1) = 2− ζ − ζ−1 + T +W.

Since the eigenvalues of Z are (qv − 1)-th roots of unity, we have Zqv = Z, so the relation

Y ZY −1 = Zqv = Z implies that Y and Z commute. From this we obtain four relations

r4, r5, r6, r7:

r4 r5

r6 r7

 = Y Z − ZY =

 BV − CU U(A−D) +B(W − T )

C(T −W ) + V (D − A) CU −BV

 .

We immediately note that r4 = −r7. This shows that Rps,◦
v
∼= R/(r1, r2, r3, r4, r5, r6).

Theorem 4.1.1. We have Rps
v
∼= R/Ips, where Ips = (r1, r2, r3, r4, r5, r6). Moreover, Rps

v is

flat over O and Cohen-Macaulay.

Proof. We have already shown that R/(r1, r2, r3, r4, r5, r6) ∼= Rps,◦
v . Since Rps

v is the maximal

reduced p-torsion free quotient of Rps,◦
v , it suffices to show that Rps,◦

v is already reduced and

p-torsion free.

Lemma 4.2.1, proved in the next section, shows that Rps,◦
v is flat over O, hence p-torsion

free. Now observe that ideal (r4, r5, r6) ⊂ Ips is generated by the 2× 2 minors of the matrix

 B −C A−D

−U V W − T

 .

The determinantal ring R/(r4, r5, r6) is therefore a Cohen-Macaulay, non-Gorenstein domain

and flat over O by [36, Proposition 2.7]. By Lemma 4.3.3, also proved in the next section,

we have that r1, r2, r3 is a regular sequence in R/(r4, r5, r6). Thus Rps,◦
v is the quotient of a
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Cohen-Macaulay ring by a regular sequence, and therefore Cohen-Macaulay.

To show that Rps,◦
v is reduced, let X = Spec(Rps,◦

v ⊗OE). Since 2−ζ−ζ−1 +T +W ∈ Ips,

we see that T + W 6= 0 on X . Therefore the affine open subsets UT = {T 6= 0} and

UW = {W 6= 0} cover X . Consider the natural morphism

α : X → Spec

(
O[[A,B,C,D, T, U, V,W ]]

(2− ζ − ζ−1 + T +W )
⊗O E

)

so that α maps UT and UW isomorphically onto open subschemes. Sending W 7→ ζ + ζ−1 −

2− T defines an isomorphism

O[[A,B,C,D, T, U, V,W ]]

(2− ζ − ζ−1 + T +W )
∼= O[[A,B,C,D, T, U, V ]],

thus the image of α is Spec(E[[A,B,C,D, T, U, V ]]), which is formally smooth. This shows

that X is formally smooth, and thus reduced. Since Rps,◦
v is flat over O, this shows that

Rps,◦
v is generically reduced. Therefore by [16, Prop. 14.124], Rps,◦

v is reduced since it is

Cohen-Macaulay.

We observe that Rps
v is not a complete intersection.

Remark 4.1.2. As mentioned in the proof of Theorem 4.1.1, the ring R/(r4, r5, r6) is non-

Gorenstein, hence not a complete intersection. It follows that r1, r2, r3, r4, r5, r6 is not a

regular sequence in R and Rps
v is not a complete intersection.

We fix the notation defining our presentation of Rps
v for the remainder of this chapter.

4.2 A CI covering of Rps
v

In this section we find a CI covering of the ring Rps
v , which we will use to compute the

Wiles defect of (Rps
v , λ) using the results of Chapter 3. One would hope that a CI covering

can be obtained by taking the quotient map R/I � Rps
v , where I is an ideal generated by
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some subset of r1, r2, r3, r4, r5, r6. If this is the case, then necessarily I cannot contain all of

r4, r5, r6 by Remark 4.1.2. Fortunately, it turns that one can in fact obtain a CI covering by

simply dropping the relation r4. The following lemma ensures that the resulting quotient of

R is a complete interesecton:

Lemma 4.2.1. The sequence $,D,A− U − V,C −B − T, r1, r2, r3, r5, r6 is regular in R.

Proof. Let J = ($,D,A−U − V,C −B− T, r1, r2, r3, r5, r6). By Theorem A.0.7, it suffices

to show that dimR/J = 0.

After quotienting by D and $, the relation r3 = 2 − ζ − ζ−1 + T + W becomes T + W

since ζ ≡ 1 (mod $), allowing us to eliminate W . Thus

R
J
∼=

k[[A,B,C, T, U, V ]]

(A−BC, T 2 + UV, UA− 2BT,−V A+ 2CT,A− U − V,C −B − T )
.

Now the relations A− U − V = C −B − T = 0 allow us to eliminate A and C, thus

R
J
∼=

k[[B, T, U, V ]]

(B2 +BT − U − V, T 2 + UV, U2 + UV − 2BT, V 2 + V U − 2T (T +B))
.

We use Macaulay2 to compute a Gröebner basis of the ideal

J = (B2 +BT − U − V, T 2 + UV, U2 + UV − 2BT, V 2 + V U − 2T (T +B))
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in the ring Z[B, T, U, V ]:

U2 − 2UV − V 2

T 2 + UV

2BT − 3UV − V 2

B2 +BT − U − V

3TUV − 2BV 2 + TV 2 + 4TU + 4TV

BUV +BV 2 − 2TU − 2TV

10UV 3 + 4V 4 + 12UV 2 + 4V 3

2TV 3 − TUV − 2BV 2 + 13TV 2 + 4TU + 4TV

2BV 3 − 4TV 2

TUV 2 + TV 3 + 4TV 2

2V 5 − 4UV 3 + 12V 4

UV 4 + V 5 + 4V 4.

We want to show that dimFq[B, T, U, V ]/J = 0 for all odd primes q. Let B denote the above

basis. Since the elements of B have coefficients divisible only by the primes 2, 3, 5, 13, it

follows that the image of B in Fq[B, T, U, V ] is also a Gröebner basis for the image of J for any

prime q 6= 2, 3, 5, 13. It thus suffices to check that dimFq[B, T, U, V ]/J = 0 for q = 3, 5, 13

and one another prime not in {2, 3, 5, 13} (we choose q = 7). Using the above Gröebner basis,

we use Macaulay2 to compute that dimFq[B, T, U, V ]/J = 0 for q = 3, 5, 7, 13. We conclude

that dimFq[B, T, U, V ]/J = 0 for all odd primes q as desired. Now Fq[[B, T, U, V ]]/J is the

completion of Fq[B, T, U, V ]/J at the maximal ideal (B, T, U, V ), thus

dimFq[[B, T, U, V ]]/J ≤ dimFq[B, T, U, V ]/J

64



and so dimFq[[B, T, U, V ]]/J = 0 for all odd primes q. In particular we have

dimR/J = dim k[[B, T, U, V ]]/J = dim(k ⊗Fp Fp[[B, T, U, V ]]/J ) = 0

as desired.

Let R̃ = R/(r1, r2, r3, r5, r6) and let ϕ : R̃ � Rps
v be the quotient map. Then we have the

following:

Lemma 4.2.2. The map ϕ : R̃ � Rps
v is a CI covering.

Proof. It follows from Lemma 4.2.1 that r1, r2, r3, r5, r6, $ is a regular sequence in R, thus

R̃ is a complete intersection which is flat over O and dim R̃ = dimR− 5 = 4. Since r4, r5, r6

is not a regular sequence in R as mentioned in Remark 4.1.2, we have dimRps
v = dimR = 4

as well, hence dim R̃ = dimRps
v .

To complete the proof, we need to check the formal smoothness condition. The Jacobian

matrix for (A,B,C,D, T, U, V,W ) 7→ (r1, r2, r3, r4, r5, r6), obtained by differentiating the

expression for each relation with respect to each of the variables A,B,C,D, T, U, V,W , is



1 +D −C −B 1 + A 0 0 0 0

0 0 0 0 1 +W −V −U 1 + T

0 0 0 0 1 0 0 1

U W − T D −U −B A−D 0 B

−V 0 T −W V C 0 D − A −C


Let q = qv, a = χ(φv) and let b, u denote the top-right entries of ρλ(φv) and ρλ(ιv), respec-

tively. Evaluating the above matrix at the augmentation λ̃ = λ ◦ ϕ and rearranging rows,
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we obtain 

a−1 0 −b qa 0 0 0 0

0 0 0 0 ζ−1 0 −u ζ

0 0 0 0 1 0 0 1

u ζ−1 − ζ a−1 − 1 −u −b qa− a−1 0 b

0 0 ζ − ζ−1 0 0 0 a−1 − qa 0




a−1 0 −b qa 0 0 0 0

u ζ−1 − ζ a−1 − 1 −u −b qa− a−1 0 b

0 0 ζ − ζ−1 0 0 0 a−1 − qa 0

0 0 0 0 ζ−1 0 −u ζ

0 0 0 0 1 0 0 1


The above matrix has full rank since ζ 6= ±1, so R̃[1/$] is formally smooth at λ̃ as desired.

We fix our CI covering ϕ : R̃ � Rps
v with I = kerϕ for the remainder of this chapter.

4.3 A partial finite free resolution of I

In order to calculate the André-Quillen cohomology group D̂er
1

O(R,E/O), we need the first

two terms of a finite free resolution of I as an R̃-module. Since I = (BV −CU) is generated

by a single element, this amounts to calculating AnnR̃(I). We will do this by first calculating

AnnS(BV − CU), where S is a larger quotient of R. Properties of regular sequences will

then allow us to leverage this calculation in order to compute AnnR̃(BV − CU).

Lemma 4.3.1. Let S = R/(r5, r6). Then

AnnS(BV − CU) = (D − A,W − T ).

Proof. Let J = (r5, r6) = (U(A − D) + B(W − T ), C(T − W ) + V (D − A)) and let

P = (D − A,W − T ). Clearly J ⊆ P . Note that P is a prime ideal of R since R/J ∼=
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O[[A,B,C, T, U, V ]] is a domain. If r ∈ R is such that its image r in S is in AnnS(BV −CU),

then r(BV − CU) ∈ J ⊆ P . Since P is a prime ideal and does not contain BV − CU , we

must have r ∈ P . This shows that AnnS(BV − CU) ⊆ P .

Conversely, note that

(D − A)(BV − CU) = BV (D − A)− CU(D − A)

= C(U(A−D) +B(W − T )) +B(C(T −W ) + V (D − A))

and

(W − T )(BV − CU) = BV (W − T )− CU(W − T )

= V (U(A−D) +B(W − T )) + U(C(T −W ) + V (D − A)),

which shows that P ⊆ (r5, r6).

Although the functor M 7→M/JM in ModS for S a ring with J ⊆ S an ideal is not exact

in general, when applied to a short exact sequence such that J is generated by a sequence

which is regular on the third term, one does obtain an exact sequence.

Lemma 4.3.2. Let S be a ring and suppose

0 M1 M2 M3 0

is an exact sequence of S-modules. If J ⊆ S is an ideal generated by an M3-regular sequence

s1, . . . , sm ∈ S, then

0 M1/JM1 M2/JM2 M3/JM3 0

is also exact.

Proof. Consider the following diagram, where the vertical maps are multiplication by s1:
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M1 M2 M3 0

0 M1 M2 M3

The rows are exact by hypothesis. Since s1 is not a zero-divisor in M3, multiplication by s1

on M3 is injective. Then by the snake lemma

0 M1/s1M1 M2/s1M2 M3/s3M3 0

is exact. The lemma now follows by induction.

We will need to use a specific regular sequence in the quotient R/(r4, r5, r6) to compute

our resolution of I.

Lemma 4.3.3. The sequence r1, r2, r3 is regular for S = R/(r4, r5, r6).

Proof. Note that the proof of Lemma 4.2.1 shows that

S

(r1, r2, r3, A− U − V,C −B − T,D,$)
∼=

R
(r1, r2, r3, r5, r6, A− U − V,C −B − T,D,$)

is 0-dimensional. We have that r5, r6 is a regular sequence in R by Lemma 4.2.1, but r4, r5, r6

is not a regular sequence inR as mentioned in Remark 4.1.2. Therefore dimS = dimR−2 =

7, so it follows from Theorem A.0.7 that r1, r2, r3 is a regular sequence for S.

Note that the above lemma does not contradict that Rps
v
∼= R/(r1, r2, r3, r4, r5, r6) is not

a complete intersection, as r4, r5, r6 is not a regular sequence in R.

The following lemma gives the first two terms of a finite free resolution of I as a R̃-module:

Lemma 4.3.4. We have an exact sequence of R̃-modules

R̃2 R̃ I 0
BV−CU

where the first map takes the standard R̃-basis to D−A,W−T . In particular, the annihilator

of I in R̃ is

AnnR̃(I) = (D − A,W − T ).
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Proof. Throughout this proof, we view ideals in quotients of R as R-modules.

Let S = R/(r5, r6) and S ′ = R/(r4, r5, r6). By Lemma 4.3.1, the sequence

S2 S S S ′ 0
BV−CU

is exact, where the image of the first map is J = (D−A,W −T )S and the third map is the

quotient map. Let I = (BV − CU)S so that S ′ ∼= S/I. Consider the exact sequence

0 J S I 0.
BV−CU

We wish to show that the above exact sequence remains exact upon quotienting by (r1, r2, r3).

This will follow from Lemma 4.3.2 once we show that r1, r2, r3 is a regular sequence for I.

By Lemma 4.3.3 we have that r1, r2, r3 is regular for S ′. Now consider the short exact

sequence

0 I S S ′ 0.

Since r1, r2, r3 is an exact sequence for S ′, it follows from Lemma 4.3.2 that the sequences

0 I/(r1) S/(r1) S ′/(r1) 0

0 I/(r1, r2) S/(r1, r2) S ′/(r1, r2) 0

0 I/(r1, r2, r3) S/(r1, r2, r3) S ′/(r1, r2, r3) 0

are all exact. It follows that r1, r2, r3 is a regular sequence for I. To see this, note that

r1, r2, r3 is a regular sequence for S by Lemma 4.2.1, i.e. for each i we have that ri is

not a zero-divisor in S/(r1, . . . , ri−1). Then ri is also not a zero-divisor in I/(r1, . . . , ri) ⊆

S/(r1, . . . , ri−1). Furthermore, the exactness of the third sequence above shows that

I/(r1, r2, r3) is isomorphic to the ideal (BV − CU) in S/(r1, r2, r3).

Now consider the following commutative diagram:

69



0 J /(r1, r2, r3) S/(r1, r2, r3) I/(r1, r2, r3) 0

0 J S/(r1, r2, r3) I 0

=

BV−CU

BV−CU

where J and I are the ideals (D−A,W−T ) and (BV−CU) in S/(r1, r2, r3), respectively. We

have shown that the third vertical map is an isomorphisms. The first vertical map is clearly

surjective and is thus an isomorphism by the commutativity of the diagram. Additionally,

we know that the top row is exact by Lemma 4.3.2. Therefore the bottom row is also exact.

Noting that S/(r1, r2, r3) ∼= R/(r1, r2, r3, r5, r6) = R̃ and the images of J and I under this

isomorphism are the ideals (D −A,W − T ) and (BV − CU) in R̃, respectively, we see that

R̃2 R̃ I 0
BV−CU

is an exact sequence ofR-modules, where first map takes the standard R̃-basis to D−A,W−

T . Since these maps are also homomorphisms of R̃-modules, this proves the first statement

of the lemma, from which the second statement is immediate.

4.4 The cokernel of HomR
ps
v

(Ω̂R
ps
v /O,O)→ HomR̃(Ω̂R̃/O,O)

In this section we compute the size of the cokernel of HomRps
v

(Ω̂Rps
v /O,O)→ HomR̃(Ω̂R̃/O,O).

This is needed to compute |D̂er
1

O(Rps
v , E/O)| using Corollary 3.4.13.

For a differential x ∈ Ω̂R/O, we write dx
∣∣
λ̃

= dx
∣∣
λ

for the evaluation of x at the augmen-

tation λ, i.e. the differential obtained by setting the variables A,B,C,D, P, T, U, V,W equal

to 0. Note that Ω̂R/O ⊗λ̃R O ∼= O8 is a free O-module of rank 8 spanned by the differentials

dA, dB, dC, dD, dP, dT, dU, dV, dW .

Since R̃ = R/(r1, r2, r3, r5, r6), the kernel of the natural surjection Ω̂R/O ⊗λ̃R O �

Ω̂R̃/O ⊗λ̃R̃ O is an O-lattice spanned by dr1

∣∣
λ
, dr2

∣∣
λ
, dr3

∣∣
λ
, dr5

∣∣
λ
, dr6

∣∣
λ
. Denote this lattice
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by Λ̃. Similarly, let Λps denote the kernel of Ω̂R/O ⊗λR O � Ω̂Rps
v /O ⊗λRps

v
O, which is an O-

lattice spanned by dr1

∣∣
λ
, dr2

∣∣
λ
, dr3

∣∣
λ
, dr4

∣∣
λ
, dr5

∣∣
λ
, dr6

∣∣
λ
. Note that Λ̃ ⊂ Λps. We thus have a

commutative diagram

0 Λ̃ O8 Ω̂R̃/O ⊗λ̃R̃ O 0

0 Λps O8 Ω̂Rps
v /O ⊗λRps

v
O 0

=

with exact rows, where the third vertical map is the surjection induced by ϕ. Applying the

exact functor HomO(·, E/O), we get a commutative diagram

0 HomO(Ω̂Rps
v /O ⊗λRps

v
O, E/O) HomO(O8, E/O) HomO(Λps, E/O) 0

0 HomO(Ω̂R̃/O ⊗λ̃R̃ O, E/O) HomO(O8, E/O) HomO(Λ̃, E/O) 0

=

(4.1)

with exact rows, where the first vertical map is injective. Now

HomO(Ω̂R̃/O ⊗
λ̃
R̃
O, E/O) ∼= HomR̃(Ω̂R̃/O,HomO(O, E/O)) ∼= HomR̃(Ω̂R̃/O, E/O),

and likewise HomO(Ω̂Rps
v /O ⊗λRps

v
O, E/O) ∼= HomRps

v
(Ω̂Rps

v /O, E/O), so the size of the cok-

ernel of interest is the size of the cokernel of the first vertical map in (4.1). Note that by

exactness of HomO(·, E/O), the kernels in the rows of (4.1) are HomO(O8/Λps, E/O) and

HomO(O8/Λ̃, E/O), so the cokernel of the first vertical map in (4.1) is given by

HomO(O8/Λps, E/O)/HomO(O8/Λ̃, E/O) ∼= HomO(Λps/Λ̃, E/O) ∼= Λps/Λ̃.

Here the first isomorphism follows again from the exactness of HomO(·, E/O) and the second

isomorphism follows since Λps/Λ̃ is a finite torsion O-module (as we will show in the following

lemma). Our task is thus to calculate the size of the quotient Λps/Λ̃.
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For the remainder of this section we set q = qv for convenience. Recall that the repre-

sentation ρλ : GFv → GL2(O) induced by the augmentation λ is given by

ρλ(φv) =

qa b

0 a−1

 , ρλ(ιv) =

ζ u

0 ζ−1


for some u, b ∈ O. We see from the proof of Theorem 4.1.1 that the above two matrices

must commute, from which we obtain the relation b(ζ − ζ−1) = u(qa− a−1).

Lemma 4.4.1. The O-module Λps/Λ̃ is given by

Λps/Λ̃ ∼=

 O/(u
−1(ζ − ζ−1)) u | (ζ − ζ−1)

0 (ζ − ζ−1) | u

Note that u and ζ − ζ−1 both divide each other if and only if u−1(ζ − ζ−1) is a unit, i.e.

O/(u−1(ζ − ζ−1)) = 0.

Proof. The differentials of the relations r1, r2, r3, r4, r5, r6 are

dr1 = (1 +D) dA+ (1 + A) dD −B dC − C dB

dr2 = (1 +W ) dT + (1 + T ) dW − U dV − V dU

dr3 = dT + dW

dr4 = B dV + V dB − C dU − U dC

dr5 = U dA+ (A−D) dU − U dD +B dW + (W − T ) dB −B dT

dr6 = C dT + (T −W ) dC − C dW + V dD + (D − A) dV − V dA.

72



Evaluating at the augmentation λ, we get

dr1

∣∣
λ

= a−1 dA+ qa dD − b dC

dr2

∣∣
λ

= ζ−1 dT + ζ dW − u dV

dr3

∣∣
λ

= dT + dW

dr4

∣∣
λ

= b dV − u dC

dr5

∣∣
λ

= u dA+ (qa− a−1) dU − u dD + b dW + (ζ−1 − ζ) dB − b dT

dr6

∣∣
λ

= (ζ − ζ−1) dC + (a−1 − qa) dV.

The O-lattice Λps is thus spanned by the rows of the matrix



a−1 0 −b qa 0 0 0 0

0 0 0 0 ζ−1 0 −u ζ

0 0 0 0 1 0 0 1

0 0 −u 0 0 0 b 0

u ζ−1 − ζ 0 −u −b qa− a−1 0 b

0 0 ζ − ζ−1 0 0 0 a−1 − qa 0


.

We will row reduce the above matrix to obtain an O-basis of Λps. After a few steps, we

obtain the matrix

a−1 0 −b qa 0 0 0 0

0 ζ−1 − ζ bau −u− qa2u −b qa− a−1 0 b

0 0 −u 0 0 0 b 0

0 0 ζ − ζ−1 0 0 0 a−1 − qa 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 −u ζ − ζ−1


. (4.2)
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To proceed further, we need to consider two cases depending on whether or not ζ − ζ−1

divides u or vice versa.

Case u | (ζ − ζ−1)

Beginning with the matrix (4.2), we add u−1(ζ − ζ−1) times the third row to the fourth

row to obtain:



a−1 0 −b qa 0 0 0 0

0 ζ−1 − ζ bau −u− qa2u −b qa− a−1 0 b

0 0 −u 0 0 0 b 0

0 0 0 0 0 0 a−1 − qa+ bu−1(ζ − ζ−1) 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 −u ζ − ζ−1


.

The relation b(ζ − ζ−1) = u(qa − a−1) implies that the fourth row is zero, and we see that

the remaining rows are linearly independent since ζ 6= ±1. Therefore an O-basis of Λps is

given by the rows of the matrix



a−1 0 −b qa 0 0 0 0

0 ζ−1 − ζ bau −u− qa2u −b qa− a−1 0 b

0 0 −u 0 0 0 b 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 −u ζ − ζ−1


. (4.3)

Case (ζ − ζ−1) | u

Beginning with the matrix (4.2), we add u(ζ − ζ−1)−1 times the fourth row to the third
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row to obtain:

a−1 0 −b qa 0 0 0 0

0 ζ−1 − ζ bau −u− qa2u −b qa− a−1 0 b

0 0 0 0 0 0 b+ (a−1−qa)u
ζ−ζ−1 0

0 0 ζ − ζ−1 0 0 0 a−1 − qa 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 −u ζ − ζ−1


.

The relation b(ζ − ζ−1) = u(qa− a−1) implies that the third row is zero, and we see that the

remaining rows are linearly independent since ζ 6= ±1. Therefore an O-basis of Λps is given

by the rows of the matrix



a−1 0 −b qa 0 0 0 0

0 ζ−1 − ζ bau −u− qa2u −b qa− a−1 0 b

0 0 ζ − ζ−1 0 0 0 a−1 − qa 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 −u ζ − ζ−1


. (4.4)

Now we need to compute anO-basis for Λ̃. The lattice Λ̃ is spanned by dr1, dr2, dr3, dr5, dr6,

i.e. the rows of the matrix



a−1 0 −b qa 0 0 0 0

0 0 0 0 ζ−1 0 −u ζ

0 0 0 0 1 0 0 1

u ζ−1 − ζ 0 −u −b qa− a−1 0 b

0 0 ζ − ζ−1 0 0 0 a−1 − qa 0


.
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After row reducing, we obtain the matrix



a−1 0 −b qa 0 0 0 0

0 ζ−1 − ζ bau −u− qa2u −b qa− a−1 0 b

0 0 ζ − ζ−1 0 0 0 a−1 − qa 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 −u ζ − ζ−1


. (4.5)

The rows of the above matrix are linearly independent since ζ 6= ±1, and thus form an

O-basis for Λ̃.

To finish the proof, we need to calculate the coordinate matrix M which expresses our

basis for Λ̃ in terms of our basis for Λps, i.e. the i-th row of M should be the coordinate

vector of the i-th basis vector for Λ̃ with respect to the basis for Λps (where the basis vectors,

as expressed in matrices above, are ordered from top to bottom). Then Λps/Λ̃ ∼= O/(detM).

Again we have two cases

Case u | (ζ − ζ−1)

In this case we need to express the rows of (4.5) as linear combinations of the rows of

(4.3). Using the relation b(ζ − ζ−1) = u(qa− a−1), we find that

M =



1 0 0 0 0

0 1 0 0 0

0 0 u−1(ζ−1 − ζ) 0 0

0 0 0 1 0

0 0 0 0 1



Case (ζ − ζ−1) | u

In this case we need to express the rows of (4.5) as linear combinations of the rows of
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(4.4). We note that these two matrices are identical, thus

M =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

4.5 The Wiles defect of (Rps
v , λ)

We have now gathered all of the information necessary to compute c1,λ(R
ps
v ) and d1,λ(R

ps
v )

and thus the Wiles defect of (Rps
v , λ). First we observe that c1,λ(R

ps
v ) = 0.

Corollary 4.5.1. We have c1,λ(R
ps
v ) = 0.

Proof. By definition c1,λ(R
ps
v ) = logp |C1,λ(R

ps
v )|/ logp |O/p|. We have

C1,λ(R
ps
v ) = C1,λ̃(R̃) = λ̃(AnnR̃(I))/λ̃(FittR̃(I)).

But since I = (BV −CU) is a cyclic R̃-module, we have FittR̃(I) = AnnR̃(I), so the corollary

holds.

Remark 4.5.2. The proof of the above corollary only relied on the fact that I is a cyclic

R̃-module, and not the explicit computation of AnnR̃(I). However, we will still need the

partial resolution of I given in Lemma 4.3.4 in order to compute D̂er
1

O(Rps
v , E/O).

To calculate d1,λ(R
ps
v ), we first need to calculate HomRps

v
(I/I2, E/O) as an O-module.
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Lemma 4.5.3. As O-modules, we have

HomRps
v

(I/I2, E/O) ∼= O/(qa− a−1, ζ − ζ−1).

Proof. Regarding E as an Rps
v -module via the augmentation λ, we see that

HomRps
v

(I/I2, E/O) ∼= HomRps
v

(I ⊗R̃ R
ps
v , E/O) ∼= HomO(I ⊗λ̃

R̃
O, E/O).

Now recall the partial resolution of I

R̃2 R̃ I 0
f

given by Lemma 4.3.4, where f sends the standard R̃-basis of R̃2 to D−A,W−T . Tensoring

the above sequence with O over R̃ gives the right-exact sequence

O2 O I ⊗λ̃
R̃
O 0

λ̃(f)

Noting that λ̃(D − A) = a−1 − qa and λ̃(W − T ) = ζ−1 − ζ, we see that

I ⊗λ̃
R̃
O ∼= O/(Im λ̃(f)) ∼= O/(a−1 − qa, ζ−1 − ζ).

Now we calculate the invariant d1,λ(R
ps
v ).

Proposition 4.5.4. Let e be the ramification index of E over Qp. Then we have

d1,λ(R
ps
v ) =

nv
e
,

where nv is the largest nonnegative integer such that ρλ (mod $nv) is scalar.
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Proof. Recall that the size of the cokernel of HomRps
v

(Ω̂Rps
v /O, E/O)→ HomR̃(Ω̂R̃/O, E/O) is

equal to |Λps/Λ̃|. Then by Corollary 3.4.13 the size of D̂er
1

O(Rps
v , E/O) is given by

|D̂er
1

O(Rps
v , E/O)| = |HomRps

v
(I/I2, E/O)|/|Λps/Λ̃|.

We have

HomRps
v

(I/I2, E/O) ∼= O/(qa− a−1, ζ − ζ−1).

by Lemma 4.5.3, and by Lemma 4.4.1 we have

Λps/Λ̃ ∼=

 O/(u
−1(ζ − ζ−1)) u | (ζ − ζ−1)

0 (ζ − ζ−1) | u
.

By definition d1,λ(R
ps
v ) = logp |D̂er

1

O(Rps
v , E/O)|/ logp |O/p|. Analyzing the four possible

cases depending on the valuations of qa−a−1, ζ−ζ−1, u and applying the relation b(ζ−ζ−1) =

u(qa− a−1), we find that

d1,λ(R
ps
v ) ∼=



1
ef

logp |O/(u)| (ζ − ζ−1) | (qa− a−1), u | (ζ − ζ−1)

1
ef

logp |O/(ζ − ζ−1)| (ζ − ζ−1) | (qa− a−1), (ζ − ζ−1) | u
1
ef

logp |O/(b)| (ζ − ζ−1) | (qa− a−1), u | (ζ − ζ−1)

1
ef

logp |O/(qa− qa−1)| (qa− a−1) | (ζ − ζ−1), (ζ − ζ−1) | u

,

where f is the order of residue field of O. Examining the conditions in each of the four cases

and using the relation b(ζ − ζ−1) = u(qa− a−1), we find that in all cases

d1,λ(R
ps
v ) =

1

ef
logp |O/(b, u, qa− a−1, ζ − ζ−1)|.

Now note that 1
f

logp |O/(b, u, qa − a−1, ζ − ζ−1)| is the greatest integer n such that
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b ≡ u ≡ 0 (mod $n) and qa ≡ a−1, ζ ≡ ζ−1 (mod $n). Recalling that

ρλ(φv) =

qa b

0 a−1

 , ρλ(ιv) =

ζ u

0 ζ−1

 ,

we see that nv = n = 1
f

logp |O/(b, u, qa− a−1, ζ − ζ−1)|, thus the corollary holds.

We now obtain the following theorem which gives the Wiles defect of (Rps
v , λ):

Theorem 4.5.5. Let e be the ramification index of E over Qp. The Wiles defect of the ring

Rps
v with the augmentation λ : Rps

v � O is given by

δλ(R
ps
v ) =

nv
e
,

where nv is the largest integer such that ρλ (mod $nv) is scalar.

Proof. By definition

δλ(R
ps
v ) = d1,λ(R

ps
v )− c1,λ(R

ps
v ),

so this is immediate from Corollary 4.5.1 and Proposition 4.5.4.
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Chapter 5

Global computations

In this chapter, we fix a residual representation ρ which we assume to be modular. We

define a global deformation ring R parameterizing deformations of ρ with prescribed local

behavior. Using the Taylor-Wiles-Kisin patching method, we show that R is isomorphic to

a (localized) Hecke algebra T (with an augmentation λ : T → O) acting on the cohomology

of a Shimura curve (or Shimura set). Moreover, we show that R is the quotient by a regular

sequence of a power series ring over a completed tensor product of local deformation rings.

This leads us to our main theorem, which shows that the global Wiles defect δλ(R) = δλ(T )

is a sum of local defects.

5.1 The Taylor-Wiles-Kisin patching method

Let F be a totally real number field. Fix a finite set of finite places Σ of F and for each v ∈ Σ,

fix a local deformation condition τv ∈ {min, ps,�}. Let τ = (τv)v∈Σ and for σ ∈ {min, ps,�}

let Σσ = {v ∈ Σ : τv = σ}. For each v ∈ Σ we let Fv be the completion of F at v with

ring of integers Ov and residue field kv with qv = |kv|. We also let PFv ⊆ IFv be the wild

inertia and inertia subgroups of GFv , respectively, and we let φv, ιv be topological generators

for the tame quotient Gt
Fv

, where φv is a lift of Frobenius and ιv is a topological generator
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of IFv/PFv satisfying the relation φvιvφ
−1
v = ιqvv .

Let p be an odd prime unramified in F and not divisible by any prime in Σ and let Σp

be the set of places of F above p. Let E/Qp be a finite extension with ring of integers O,

uniformizer $, and residue field k. For each v ∈ Σps, fix ζv ∈ O such that ζv is a nontrivial

pmv -th root of unity, where pmv || (qv − 1). Let εp : GF → O× be the cyclotomic character.

Let ρ : GF → GL2(O) be a Galois representation for which:

• ρ corresponds to a Hilbert modular form of parallel weight 2.

• det ρ = εp.

• ρ is unramified for all places v 6∈ Σ ∪ Σp.

• For every place v | p, ρ|GFv is finite flat.

• If v ∈ Σmin, then either qv 6≡ −1 (mod p), ρ|GIFv is irreducible or ρ|GFv is absolutely

irreducible.

• If v ∈ Σps, then ρ|GFv is trivial and ρ|GFv (ιv) has characteristic polynomial (X −

ζv)(X − ζ−1
v ).

• The residual representation ρ : GF → GL2(k) is absolutely irreducible and satisfies the

Taylor-Wiles conditions : ρ|GF (ζp)
is still absolutely irreducible, and in the case when

p = 5, we have
√

5 ∈ F and the image of the projective representation proj ρ : GF →

PGL2(F5) is isomorphic to PGL2(F5).

Let D be a quaternion algebra over F unramified at all finite places of F and ramified

at either all or all but one of the infinite places of F (depending on the parity of [F : Q]).

Define an open compact subgroup Kτ =
∏

vK
τ
v ⊆ (D ⊗ AF,f )

× by:

• Kτ
v = GL2(Ov) if v 6∈ Σ.

• Kτ
v = U1(v) if v ∈ Σps.
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• Kτ
v = U0(vav) if v ∈ Σmin, where av is the Artin conductor of ρ|GFv .

• Kτ
v = U0(vav+2) if v ∈ Σ�.

Here U0(vav) (resp. U1(v)) is the subgroup of GL2(Ov) consisting of matrices which are

upper-triangular modulo v (resp. upper-triangular and unipotent modulo v). We will omit

the τ from the notation for convenience.

In the case when [F : Q] is odd (resp. even), i.e. D is ramified at all (resp. all but

one) infinite place of F , let XK be the Shimura curve (resp. Shimura set) associated to K

(see [8]). Let TD(K) be the Hecke algebra acting on H(K) = H1(XK ,O) in the Shimura

curve case and on H0(XK ,O) in the Shimura set case, generated as an O-algebra by the

operators Tv and Sv for all finite places v 6∈ Σ. Note that TD(K) is a finite O-module, as it

is a submodule of EndO(H(K)).

Now let

TD(K)ps = TD(K)/((Sv − εp(Frobv) : v 6∈ Σ), (Sv − ζv : v ∈ Σps))

be the principal series fixed determinant Hecke algebra.

Since ρ corresponds to a Hilbert modular form of parallel weight 2 by assumption, we

have the following:

Proposition 5.1.1. There is an augmentation λ : TD(K)ps � O such that ρ(Frobv) has

characteristic polynomial X2−λ(Tv)X +λ(Sv) for any v 6∈ Σ∪Σp. Moreover, Φλ(TD(K)ps)

is finite.

Let λ : TD(K)ps � O be an augmentation as in the above proposition, let m = λ−1($O) ⊆

TD(K)ps be the maximal ideal of TD(K)ps corresponding to ρ, and let Tτ be the localization

of TD(K)ps at m. Note that any ring homomorphism x : Tτ → E corresponds to a Galois

representation ρx : GF → GL2(E) lifting ρ such that det ρx = εp and tr ρx(Frobv) = x(Tv)

for v 6∈ Σ.
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Define Hτ = HomO(H(K),O) to be the O-dual of H(K) viewed as a TD(K)-module.

Define

M τ = Tτ ⊗TD(K)ps H
τ = Hτ/((Sv − εp(Frobv) : v 6∈ Σ), (Sv − ζ : v ∈ Σps)).

Let

Rloc =

(⊗̂
v∈Σ

R�
v

)
⊗̂
(⊗̂

v|p
Rfl
v

)
, Rτ

loc =

(⊗̂
v∈Σ

Rτv
v

)
⊗̂
(⊗̂

v|p
Rfl
v

)
,

where the tensor products are taken over O, as in Section 2.3. Note that Rτ
loc is naturally

an Rloc-algebra since each Rτv
v for v ∈ Σ is a quotient of R�

v .

We let R (resp. R�) denote the global unframed (resp. framed) deformation ring pa-

rameterizing lifts of ρ with determinant εp which are flat at all places v | p. Note that here

we use the assumption that ρ is absolutely irreducible (and ramified at only finitely many

places) to ensure that the ring R exists by Theorem 2.2.12.

We fix a noncanonical isomorphism R� ∼= R[[X1, . . . , X4j−1]] for some j and thus treat R

as a quotient ofR�. Let ρ�univ : G→ GL2(R�) be the universal lifting. For each v ∈ Σ∪Σp, the

restriction ρ�univ

∣∣
GFv

is a lifting with determinant εp which is flat if v | p, thus after composing

with the inclusion GFv ↪→ GF , the universal property of R�
v induces a map R�

v → R�. We

thus have a natural map Rloc → R�. Likewise, via the composition R�
v → R� � R, we

have a map Rloc → R. We then define R�,τ = Rτ
loc ⊗Rloc

R� and Rτ = Rτ
loc ⊗Rloc

R as in

Section 2.4.

We have the following standard lemma [23] concerning the existence of a surjective “R→

T” map, which we ultimately show is an isomorphism via the patching method:

Lemma 5.1.2. There is a surjective map Rτ � Tτ inducing a representation ρτ : GF →

GL2(Tτ ) such that ρτ (Frobv) has characteristic polynomial X2 − TvX + Sv for all places

v 6∈ Σ ∪ Σp.
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Our goal is prove that the mapRτ � Tτ is in fact an isomorphism. Since Tτ acts faithfully

on M τ , this will follow if we show that M τ ⊗O E is supported on all of SpecRτ [1/$] and

Rτ is free over O. These statements are shown via the Taylor-Wiles-Kisin patching method.

We will consider deformation rings where we impose additional deformation conditions at a

finite set Q of “Taylor-Wiles” primes disjoint from Σ∪Σp. The patching method allows us to

take a “limit” of these deformation rings to produce a “patched” ring Rτ
∞ and Rτ

∞-module

M τ
∞. From the action of Rτ

∞ on M τ
∞, we deduce the required properties of Rτ . We use the

notation and terminology of [26] in applying the “ultrapatching” method due to Scholze [34].

For each v ∈ Q we fix an eigenvalue αv of ρ�v (Frobv), and let R̃�
v be the modified local

deformation corresponding to αv as defined in Section 2.3. We then define

R�,τ
Q =

(⊗̂
v∈Q

R̃�
v

)
⊗̂
(⊗̂

v∈Σ
Rτv
v

)
⊗̂
(⊗̂

v|p
Rfl
v

)
⊗Rloc

R�

Rτ
Q = R�,τ

Q ⊗R� R

analogous to the definitions of R�,τ and Rτ , and we let ρ�,τQ : GF → GL2(R�,τ
Q ) and

ρτQ : GF → GL2(Rτ
Q) be the universal lifting and universal deformation, respectively.

We require the following standard lemma (see [27, Lemma 2.5], [23, Proposition 3.2.5],

and [15, Proposition 5.10]), which guarantees we can produce a sequence of Taylor-Wiles

sets satisfying additional conditions.

Lemma 5.1.3. Let r = max(dimH1(GF,Σ∪Σp , (ad0 ρ)(1)), 1 + [F : Q]− |Σ ∪ Σp|). For each

n ≥ 1, there exists a set Qn of finite places of F such that

• Qn ∩ (Σ ∪ Σp) = ∅.

• For each v ∈ Qn, ρ(Frobv) has distinct eigenvalues.

• qv ≡ 1 (mod pn) for all v ∈ Qn.

• |Qn| = r.
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• R�,τ
n = R�,τ

Qn
is topologically generated over Rτ

loc by g = |Σ ∪ Σp| − 1 − [F : Q] + r

elements.

Lemma 5.1.4. Let Q be a set of Taylor-Wiles primes as in Lemma 5.1.3. Then for each

v ∈ Q, we have ρτQ
∣∣
GFv

= χ1 ⊕ χ2 for some tamely ramified characters χ1, χ2 : GFv → Rτ
Q.

Proof. Let v ∈ Q. Since Q is disjoint from Σ ∪ Σp, we have that ρ|GFv is unramified.

Therefore ρτQ(Iv) is contained in the 1-units of Rτ
Q, which is a pro-p group. But PFv is pro-v

and Q is disjoint from Σp, thus ρτQ(PFv) is trivial. This proves the tamely ramified part of

the assertion.

By assumption ρ(Frobv) has distinct eigenvalues, so by Hensel’s lemma we may choose a

basis such that

ρτQ(φv) =

α 0

0 β


is diagonal. With respect to this basis, write

ρτQ(ιv) = 1 +

a b

c d


for a, b, c, d ∈ m = mRτn . Using the relation φvιvφ

−1 = ιqvv , we find that

 a αβ−1b

α−1βc d

 =

qv∑
m=0

(
qv
m

)a b

c d


m

.

Comparing top-right and bottom-left entries modulo m2, we see that

αβ−1b ≡ qvb (mod m2)

α−1βc ≡ qvc (mod m2)

By assumption α, β are distinct modulo m and qv ≡ 1 (mod p), so the above relations imply
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that b, c ∈ m2. Assuming by induction that b, c ∈ mm, we see that the above relations hold

modulo mm+1, thus b, c ∈ mm+1. Therefore b, c ∈ mm for all m ≥ 1, hence b = c = 0 by

completeness. This completes the proof.

Let r and Qn for n ≥ 1 be as in Lemma 5.1.3, and let ρ�,τn = ρ�,τQn
. For each n ≥ 1, choose

a place v ∈ Qn. By Lemma 5.1.4, ρτn|GFv = χv,1 ⊕ χv,2 for some tamely ramified characters

χv,2, χv,2 : GFv → Rτ
n. Let χv be equal to either χv,1 or χv,2. By local class field theory, χv|IFv

determines a character χ̃v : O×v → (Rτ
n)× Moreover, χv(IFv) is pro-p, being a closed subgroup

of the 1-units of Rτ
n. Since Qn is disjoint from Σp and the 1-units of Ov are pro-` when v | `,

it follows that χv|IFv factors through ∆v, where ∆v is the maximal p-power quotient of k×v .

Let ∆n =
∏

v∈Qn ∆v. Then the choices of the χv define an action of O[∆n] on Rτ
n via the

characters χ̃v. Moreover, the congruence condition |kv| ≡ 1 (mod pn) implies that ∆v,n is

cyclic of order divisible by pn, so

O[∆n] ∼=
O[[y1, . . . , yr]]

((y1 + 1)p
m1 − 1, . . . , (yr + 1)pmr − 1)

(5.1)

for some integers mi ≥ n.

We need to define a few more objects in order to proceed with the patching argument.

Let r and g be as in Lemma 5.1.3 and let d = r + 4j − 1, where j = |Σ ∪ Σp|. Now define

Rτ
∞ = Rτ

loc[[x1, . . . , xg]],

S∞ = O[[y1, . . . , yd]].

By Proposition 2.3.5, Rτv
v is of dimension 4 for v ∈ Σ while Rfl

v is of dimension 4 + [Fv : Qp]

for v | p. Recalling that g = |Σ∪Σp|− 1− [F : Q] + r, we see from the definition of Rτ
loc that

dimRτ
loc = 3 · |Σ ∪ Σp|+

∑
v|p

[Fv : Qp] + 1 = 3j + [F : Q] + 1,
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from which it follows that

dimS∞ = d+ 1 = g + dimRτ
loc = dimRτ

∞.

For each n ≥ 1, choose Qn as in Lemma 5.1.3 and let R�,τ
n = R�,τ

Qn
and Rτ

n = Rτ
Qn

.

By the last statement in Lemma 5.1.3, there exists a surjection Rτ
∞ � R�,τ

n . Now R�,τ
n
∼=

Rτ
n[[yr+1, . . . , yd]], so by the preceding discussion regarding the action of O[∆n] on Rτ

n, we see

that R�,τ
n has a S∞-module structure which factors through O[∆n][[yr+1, . . . , yd]] (treated as

a quotient of S∞).

The construction in [27, Section 4.2] produces a compact open subgroup Kn =
∏

vKn,v ⊂

(D ⊗ AF,f )
× (with Kn,v = Kv for all v 6∈ Qn). We define a Hecke algebra Tτn and a Hecke-

module M τ
n analogously to Tτ and M τ (but at level Kn). Then we have surjections Rτ

n � Tτn,

which makes M τ
n an Rτ

n-module (hence an S∞-module as well). Using this surjection and the

fact that Rτ
n is naturally an O-subalgebra of R�,τ

n since ρ is irreducible, we define a framed

Hecke algebra and a framed Hecke module by

T�,τ
n = Tτn ⊗Rτn R

�,τ
n

M�,τ
n = M τ

n ⊗Rτn R
�,τ
n

Next we show that R�,τ = {R�,τ
n }∞n=1 is a weak patching algebra and M �,τ = {M�,τ

n }∞n=1

is a weak patching R-module as defined in [26]. Moreover, we show the stronger statement

that M �,τ is a free patching R-module as defined in [26].

Lemma 5.1.5. We have that R�,τ = {R�,τ
n }∞n=1 is a weak patching algebra covered by Rτ

∞,

and M �,τ = {M�,τ
n }∞n=1 is a free patching R-module.

Proof. Consider the ideal n = (y1, . . . , yd) and the subring S ′∞ = O[[y1, . . . , yr]] in S∞. Let

n′ = (y1, . . . , yr) = n ∩ S ′∞. Then R�,τ
n /n ∼= Rτ and M�,τ

n /n ∼= M τ and M�,τ
n is finite free

as an O[∆n][[yr+1, . . . , yd]]-module (see [11], [10], [37], [23]). Now R�,τ
n
∼= Rτ

n ⊗S′∞ S∞ and
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M�,τ
n = M τ ⊗S′∞ S∞ (the d − r = 4j − 1 variables yr+1, . . . , yd make the unframed objects

non-canonical quotients of the framed objects), so

rankS∞ R
�,τ
n = rankS′∞ R

τ
n = rankO R

τ

rankS∞M
�,τ
n = rankS′∞M

τ
n = rankOM

τ .

This shows that the S∞-ranks of the rings R�,τ
n and the modules M�,τ

n for n ≥ 1 are constant,

hence uniformly bounded. Therefore R�,τ = {R�,τ
n }∞n=1 is a weak patching algebra and

M �,τ = {M�,τ
n }∞n=1 is a weak patching R-module as defined in [26].

Since M�,τ
n is free over O[∆n][[yr+1, . . . , yd]], we have

In = AnnS∞M
�,τ
n = AnnS∞ O[∆n][[yr+1, . . . , yd]] = ((y1 + 1)p

mn,1 − 1, . . . , (yr + 1)p
mn,r − 1),

where the mn,i are as in (5.1). Therefore M�,τ
n is free over S∞/AnnS∞M

�,τ
n .

Now let a ⊆ S∞ be an open ideal. Then S∞/a is finite. Since 1+mS∞ is a pro-p group, the

image of 1 +mS∞ in S/a is a finite p-group. For each i = 1, . . . , r, we have yi + 1 ∈ 1 +mS∞ ,

thus there exists some integer N ≥ 0 such that (yi + 1)p
N ≡ 1 (mod a) for all i = 1, . . . , r.

Recall that mn,i ≥ n for each i = 1, . . . , r, thus if n ≥ N , we have (yi + 1)p
mn,i − 1 ∈ a for

all i = 1, . . . , r, i.e. In ⊆ a. This, together with the freeness of M�,τ
n over S∞/AnnS∞M

�,τ
n ,

shows that M �,τ is a free patching R-module as defined in [26]. Moreover, we see from the

last condition of Lemma 5.1.3 that Rτ
∞ covers the weak patching algebra R�,τ .

We are now ready to apply the patching method to show our map Rτ → T τ is an

isomorphism.

Theorem 5.1.6. The rings Rτ
∞ and S∞ satisfy the following conditions:

(a) dimS∞ = dimRτ
∞.

(b) There exists a continuous O-algebra homomorphism i : S∞ → Rτ
∞ which makes Rτ

∞
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into a finite free S∞-module.

(c) There exists an isomorphism Rτ
∞ ⊗S∞ O ∼= Rτ and Rτ is finite free over O.

(d) The surjective map in Lemma 5.1.2 is an isomorphism. Moreover, the rings Rτ and

Tτ are reduced.

(e) If λRτ∞ : Rτ
∞ −→ Rτ ∼= Tτ λ−→ O is the augmentation induced by λ then Rτ

∞[1/$] is

formally smooth at λRτ∞.

Proof. Part (a) was shown in the preceding discussion in which we defined Rτ
∞ and S∞.

By [27, Theorem 4.2] and Lemma 5.1.5, we obtain the following:

• Rτ
∞
∼= P(R�,τ ) is a finite type S∞-algebra and M τ

∞ = P(M �,τ ) is a finite free

S∞-module. Here P denotes the patching functor defined in [26].

• M τ
∞ is a maximal Cohen-Macaulay module over Rτ

∞.

• Rτ
∞ ⊗S∞ O ∼= Rτ and M τ

∞ ⊗S∞ O ∼= M τ .

• There is a surjection π∞ : Rτ
∞ � Rτ

∞ through which the map Rτ
loc → Rτ = Rτ

loc⊗Rloc
R

factors.

Since Rτ
∞ is a S∞-algebra, Rτ

∞ is a complete local ring, and S∞ is a power series ring, we

can lift the structure map S∞ → Rτ
∞ to a map i : S∞ → Rτ

∞, which makes π∞ a surjection of

S∞-modules. Then M τ
∞ is a maximal Cohen-Macaulay Rτ

∞-module. Therefore the support

of M τ
∞ is a union of irreducible components of SpecRτ

∞. Since Rτ
∞ = Rτ

loc[[x1, . . . , xg]],

the irreducible components of SpecRτ
∞ are in bijection with the irreducible components of

SpecRτ
loc.

Using [14, Corollary 3.1.7], we see that each irreducible component of SpecRτ
∞ contains

a point in the support of M τ
∞/(i(y1), . . . , i(yd))⊗O E ∼= M τ ⊗O E which is not contained in

any other irreducible component. Now since the support of M τ
∞ clearly contains the support
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of M τ
∞/(i(y1), . . . , i(yd)) ⊗O E, it follows that the support of M τ

∞ is all of SpecRτ
∞. Then

AnnRτ∞(M τ
∞) is contained in the nilradical of Rτ

∞. But Rτ
loc, hence Rτ

∞, is reduced, thus the

action of Rτ
∞ on M τ

∞ is faithful. This implies that π∞ : Rτ
∞ � Rτ

∞ is injective and thus an

isomorphism of S∞-algebras, which together with the condition Rτ
∞⊗S∞ O ∼= Rτ proves the

first part of (c).

It follows from Lemma 2.4.1 that Rτ
∞ is Cohen-Macaulay, thus depthRτ∞ R

τ
∞ = dimRτ

∞.

Since M τ
∞ is a maximal Cohen-Macaulay Rτ

∞-module supported on all of SpecRτ
∞, we have

depthRτ∞M
τ
∞ = dim(SuppRτ∞M

τ
∞) = dimRτ

∞.

Then by the Auslander–Buchsbaum formula, the projective dimension of M τ
∞ as a Rτ

∞-

module is equal to

depthRτ∞ R
τ
∞ − depthRτ∞M

τ
∞ = 0.

Therefore M τ
∞ is projective over Rτ

∞, hence free since Rτ
∞ is a local ring. By definition the

action of S∞ on M τ
∞ factors through i : S∞ → Rτ

∞. Since M τ
∞ is free over S∞ it follows that

M τ
∞ is also free over Rτ

∞, proving (b).

Since M τ
∞ is supported on all of SpecRτ

∞, the module M τ ∼= M τ
∞⊗S∞ O is supported on

all of SpecRτ ∼= Spec(Rτ
∞⊗S∞O). Let I = ker(Rτ � Tτ ). By definition the action of Rτ on

M τ factors through Rτ � Tτ , thus every prime ideal of Rτ contains I = ker(Rτ � Tτ ) since

M τ is a faithful Tτ -module. Since Tτ is reduced, it follows that I is the nilradical of Rτ ,

hence (Rτ )red ∼= Tτ . This implies that Rτ is finite over O since Tτ is finite over O. Therefore

Rτ is also free over O since Rτ = Rτ
∞⊗S∞ O is free over S∞, proving the second part of (c).

Since the action of Rτ [1/$] on M τ ⊗O E factors through Rτ [1/$]→ Tτ [1/$], it follows

that Rτ [1/$] → Tτ [1/$] is injective. Therefore ker(Rτ � Tτ ) is a torsion O-module. But

we showed that Rτ is free over O, thus Rτ � Tτ is injective, which proves (d).

As in the proof of [3, Theorem 6.3], SpecRτ
∞ is formally smooth at every point in the

support of M τ ⊗O E, in particular at the point corresponding to λRτ∞ : Rτ
∞ � O, which
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proves (e). The smoothness follows from the fact that cohomological Hilbert modular forms

are generic in the sense of [1, Lemma 1.1.5], which in turn follows from the genericity of the

corresponding automorphic representation of GL2(AF ) at all finite places and local-global

compatibility as recorded in [1, Theorem 2.1.2].

5.2 Main theorem

We are now ready to prove our main theorem, which gives the Wiles defect of the global

rings Rτ ∼= Tτ with respect to the augmentation λ : Tτ � O from Proposition 5.1.1. By

making use of the properties of the Wiles defect recorded in Section 3.5 and the patching

argument of the previous section, we show that the global Wiles defect is equal to a sum of

local defects.

Theorem 5.2.1. For the rings Rτ ∼= Tτ and the augmentation Rτ ∼= Tτ λ−→ O, the Wiles

defect is given by

δλ(R
τ ) = δλ(Tτ ) =

∑
v∈Σps

nv
e
,

where e is the ramification index of E/Qp and for each v ∈ Σps, nv is the greatest integer

such that ρλ|GFv is scalar.

Proof. Theorem 5.1.6 (b) implies that S∞ → Rτ
∞ is a 1-codimensional embedding. Then by

Theorem 3.5.2 we have

δλ(Tτ ) = δλ(R
τ ) = δλ(R

τ
∞ ⊗S∞ O) = δλ(R

τ
∞).

Now x1, . . . , xg ∈ kerλ is a regular sequence in Rτ
∞ = Rτ

loc, so by Theorem 3.5.3 we have

δλ(R
τ
∞) = δλ = δλ(R

τ
loc) = δλ

((⊗̂
v∈Σ

Rτv
v

)
⊗̂
(⊗̂

v|p
Rfl
v

))
.
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Since the rings Rτ
v for v ∈ Σ and Rfl

v for v | p are all reduced, by Proposition 3.5.6 we have

δλ

((⊗̂
v∈Σ

Rτv
v

)
⊗̂
(⊗̂

v|p
Rfl
v

))
=
∑
v∈Σ

δλ(R
τv
v ) +

∑
v|p

δλ(R
fl
v)

By Proposition 2.3.5, we have that Rfl
v
∼= O[[x1, . . . , x3+[Fv :Qp]]] and Rmin

v and R�
v are complete

intersections, thus δλ(R
fl
v) = δλ(R

min
v ) = δλ(R

�
v ) = 0 by Proposition 3.5.5. By Theorem 4.5.5

we have δλ(R
ps
v ) = nv/e. Therefore

∑
v∈Σ

δλ(R
τv
v ) +

∑
v|p

δλ(R
fl
v) =

∑
v∈Σps

δλ(R
τv
v ) +

∑
v∈Σmin

δλ(R
τv
v ) +

∑
v∈Σ�

δλ(R
τv
v ) +

∑
v|p

δλ(R
fl
v)

=
∑
v∈Σps

nv
e
.
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Appendix A

Cohen-Macaulay modules and rings

In this appendix we recall the definition of and basic facts about Cohen-Macaulay modules

M over a Noetherian local ring R. We are particularly intersted in Cohen-Macaulay rings,

i.e. Noetherian local rings R which are Cohen-Macaulay modules over themselves.

We first recall the meaning of regular sequences and the depth of a module.

Definition A.0.1. Let M be a module over a ring R. A sequence of elements r1, . . . , rn ∈ R

is called a regular sequence on M (or a M-regular sequence) if M/(r1, . . . , rn) 6= M and for

each 1 ≤ i ≤ n, the element ri is not a zero divisor on M/(r1, . . . , ri−1). In particular, a

regular sequence in R is a regular sequence on R considered as a module over itself.

Definition A.0.2. Let M be a module over a ring R and I ⊆ R an ideal. We define

depthI(M) to be the supremum of lengths of M-regular sequences contained in I if IM 6= M .

If IM = M , we define depthI(M) =∞. If R is a local ring with maximal ideal m, we simply

write depth(M) = depthm(M).

Definition A.0.3. Let M be a module over a Noetherian local ring R. We say M is Cohen-

Macaulay if depthM = dimM . In particular, we say that R is a Cohen-Macaulay ring if

depthR = dimR when R is considered as a module over itself.
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In general the regularity of a sequence depends on order, but for finitely-generated mod-

ules over Noetherian local rings this is not the case (see [24, Lemma 1.4]).

Proposition A.0.4. Let M be a finitely generated module over a Noetherian local ring R. If

r1, . . . , rn is a regular sequence on M , then so is rσ(1), . . . , rσ(n) for any permutation σ ∈ Sn.

Proof. We prove the case n = 2. The result then follows by induction.

Suppose r1, r2 is a regular sequence on M . If x ∈M is such that r2x = 0, then we must

have x = r1x1 for some x1 ∈M since r1, r2 is regular on M . Then

r2x = r1r2x1 = 0,

so r2x1 = 0 since r1 is regular on M . Then x1 = r1x2 for some x2 ∈ M . By induction we

have a sequence x = x0, x1, x2, . . . in M such that xn = r1xn−1 for n ≥ 1. It follows that

x ∈
⋂∞
n=1 r1M . But this intersection is 0 by the Krull intersection theorem, thus x = 0. This

shows that r2 is regular on M .

If r1x1 = r2x2 for some x1, x2 ∈M , then x2 = r1x
′
2 for some x′2 ∈M since r1, r2 is regular

on M . Then

r1x1 = r1r2x
′
2,

which implies x1 = r2x
′
2 since r1 is regular on M . We conclude that r2, r1 is regular on M

as desired.

We want to prove an equivalent condition for a sequence in a Cohen-Macaulay ring to be

regular. We require a theorem due to Ischebeck (see [28]):

Theorem A.0.5. Let R be a Noetherian local ring. If M and N are finitely generated

R-modules, then

ExtiR(N,M) = 0 for all i < depthM − dimN.
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Let R be a ring and let M be a R-module. Recall that the set of associated primes of M is

the set AssR(M) of prime ideals p ∈ SpecR such that p = AnnR(x) for some x ∈M . Minimal

elements of AssR(M) are called isolated primes while the remaining elements of AssR(M)

are called embedded primes. The following theorem (see [24, Theorem 1.22]) asserts that all

associated primes of a Cohen-Macaualy module are minimal and have the same dimension.

Theorem A.0.6. Let M be a finitely generated Cohen-Macaulay module over a Noetherian

local ring R. Then

(a) We have dimR/p = dimM for all p ∈ AssR(M).

(b) The module M has no embedded primes.

Proof. Let p ∈ AssR(M). Then p = AnnR(x) for some nonzero x ∈ M , so r 7→ rx defines a

nonzero R-module homomorphism R/p→M . Then

Ext0
R(R/p,M) = HomR(R/p,M) 6= 0.

thus dimR/p ≥ depthM by Theorem A.0.5. On the other hand, since p ∈ AssR(M), we have

p ∈ SuppM , so dimR/p ≤ dimM . Now depthM = dimM since M is Cohen-Macaualy,

thus we conclude that dimR/p = dimM .

For the second part, note that if p1 ( p2 is a strict inclusion of primes in AssR(M), then

dimR/p2 < dimR/p1,

contradicting (a).

The following theorem is the main result of this appendix. It provides a useful criterion

for checking if a sequence in a Cohen-Macaualy ring is regular.
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Theorem A.0.7. Let R be a Noetherian local ring which is Cohen–Macaulay. A sequence

r1, . . . , rn in R is regular if and only if

dimR/(r1, . . . , rn) = dimR− n.

Proof. The sequence r1 is regular if and only if r1 is not a unit or a zero divisor. If r1 is

not a unit or a zero divisor, then dimR/(r1) = dimR − 1 since R is a Noetherian local

ring. Conversely, suppose dimR/(r1) = dimR − 1. Then r1 is not a unit, and if r1 is a

zero divisor, then AnnR(r1) 6= 0, thus r1 ∈ p for some associated prime p ∈ AssR(M). But

Theorem A.0.6 implies that p is a minimal prime, thus

dimR = dimR/p ≤ dimR/(r1) = dimR− 1,

a contradiction. Therefore r1 is not a zero divisor.

Now assume by induction that a sequence r1, . . . , rn in R is regular if and only if

dimR/(r1, . . . , rn) = dimR− n. The sequence is regular if and only if r1, . . . , rn is a regular

sequence in R and rn+1 is a regular sequence in R/(r1, . . . , rn). This is the case if and only if

dim
R

(r1, . . . , rn+1)
= dim

R/(r1, . . . , rn)

(rn+1)
= dim

R

(r1, . . . , rn)
− 1 = dimR− (n+ 1).

The theorem now follows by induction.
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[4] Gebhard Böeckle, Chandrashekhar B. Khare, and Jeffrey Manning. Wiles defect of

Hecke algebras via local-global arguments. arXiv 2108.09729, 2021.

[5] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor. On the modu-

larity of elliptic curves over Q: Wild 3-adic exercises. Journal of the American Mathe-

matical Society, 14(4):843–939, 2001.

[6] Frank Calegari. Non-minimal modularity lifting in weight one. Journal für die reine

und angewandte Mathematik, 2018(740):41–62, 2018.

[7] Ana Caraiani and James Newton. On the modularity of elliptic curves over imaginary

quadratic fields. arXiv 2301.10509, 2023.

[8] Pete L. Clark. Rational Points on Atkin-Lehner Quotients of Shimura Curves. PhD

thesis, Harvard University, April 2003.

99



[9] Laurent Clozel, Michael Harris, and Richard Taylor. Automorphy for some `-adic lifts

of automorphic mod-` Galois representations. Publications mathématiques de l’IHÉS,
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