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A Discrete Ordinates Algorithm for Domains with 
Embedded Boundaries 

~ouis H. Howell* and Vincent E. Becknert 
Lawrence Berkeley National Laboratory, Berkeley, California 94720 

Abstract 

Embedded boundary methods model fluid flows in complex geometries by treating boundaries 
as tracked interfaces in a regular mesh. Though often referred to as "Cartesian grid" methods, 
they are equally well-suited to axisymmetric problems. This paper describes a formulation of 
the discrete ordinates method for radiative transfer calculations with embedded boundaries. The 
method uses diamond-difference stencils in the interior with a conservative extension to boundary 
cells based on a volume-of-fluid approach. Numerical examples are presented in both 2D Cartesian 
and axisymmetric geometries, including a model of the BERL 300kW natural gas burner. 

Nomenclature 

J.L,~,1J 
w 
p,q 
m 
Wp,q, Wm 

f!p,q, Om 
Ip,q, Im 

Ib 
K,,CI 

€, p 
s 
a: 
w 
LW 

Direction cosines 
Angle of revolution about ~ axis, tan -l ( 1J / J.L) 
Ordinate indices, axisymmetric coordinates 
Ordinate index, Cartesian coordinates 
Ordinate weight 
Ordinate direction unit vector 
Radiant intensity, W /(m2 • Sr) 
Blackbody intensity, abT4 j1r, W /(m2 • Sr) 
Absorption and scattering coefficients, m-1 

Wall emissivity and reflectivity 
Source term, W /(m3 · Sr) 
Dimensionless parameter in angular difference 
Superscript for quantities at the wall 
Length of embedded boundary segment, m 
Unit normal to embedded boundary segment 
Volume fraction, E [0, 1) 
Area fraction, E [0, 1) 

n 
F 
f 
fxl 
lxJ 

max(x,O) 
min(x,O) / 

Introduction 

Embedded boundary methods have proven to be a robust and competitive approach to computing fluid 
flows in complex geometries. First introduced in [1), they have been used successfully both in compressible 
calculations with adaptive mesh refinement [2), [3) and, more recently, in incompressible calculations as well 
[4). In [5) we presented some results using this approach to model combustion in a gas-fired burner, with the 
radiative transfer effects discretized using a discrete ordinate method. Our intent in this paper is to 'give a 
more complete and validated presentation of the discrete ordinate method with embedded boundaries, which 
in [5) was only briefly introduced. 

"Mathematician, Center for Computational Sciences and Engineering 
tcomputer Systems Engineer, Center for Computational Sciences and Engineering 
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The basic idea behind embedded boundaries is to use a regular mesh to cover the computational domain, 
then block off those parts of the grid that are inside the chamber walls or any solid obstructions. Previous 
work of this nature with the discrete ordinate method has been presented by Chai, et al. in [6]. In their 
approach computational cells are marked as being either fluid cells or body cells, giving the embedded 
boundary a "stairstep" appearance. In contrast, our present work tr~ats the boundary more as a piecewise­
linear tracked front, so a third kind of cell, the mixed cell, has been added to the model. This approach is 
consistent with that taken in (3], permitting us to use the same data structures for fluid dynamics and for 
radiation and to compute coupled solutions such as the ones in (5]. 

We will begin by briefly presenting the discrete ordinate discretization for an axisymmetric coordinate 
system. This is not new work, but will serve to introduce the notation and provide a framework for in­
troducing the embedded boundary. The discretization for Cartesian coordinates is a limiting case of the 
axisymmetric discretization, and need not be presented separately. Next, we will develop stencils for repre­
senting the embedded boundary in Cartesian coordinates, and then extend these to cover the axisymmetric 
case. Finally, we will present validation results and some numerical examples. 

Method with Flat Walls 

The discrete ordinates representation of the radiative transport equation with isotropic scattering in 
axisymmetric coordinates is 

(1) 

where the ordinate weights Wp,q are normalized so that L:p,q Wp,q = 411". The subscript p identifies a level 
of ordinate directions with a particular value of ~' while q indexes the separate ordinates sharing that 
level. The angular term involving TJ and w is written without subscripts because it represents an interaction 
between ordinate directions; this term will not be discretized directly, rather it will be used to maintain 
joint conservation with the 8f8r term. The right hand side of (1), representing the emission and scattering 
sources, respectively, we will abbreviate as S. 

We discretize (1) as a conservation relation for each cell, 

~~~ (ri+!f2Ip,q,i+%,i- ri-!f2Ip,q,i-%,i) 

+ kz (Ip,q,i,i+% - Ip,q,i,i-%) 

(2) 

where quantities with half-indices exist at cell faces. The a term represents propagation from one ordinate 
direction to the next due to curvature of the mesh; a uniform isotropic radiation field with no 'emission, 
absorption or scattering yields the relation 

(3) 

Detailed derivations of these equations can be found in (7] and (8], as can most aspects of the solution 
procedure. To summarize briefly, we relate the face- and cell-based quantities in (2) using diamond-difference 
formulas, 

(4) 

For each ordinate direction we sweep through the mesh in the direction of propagation. When J.L and ~ are 
positive this involves solving for Ip,q,i,j, Ip,q,i+lf2,j> Ip,q,i,i+% and Ip,q+lf2,i,j in terms or' Ip,q,i-%,i> Ip,q,i,i-% 
and Ip,q-%,i,j· In some cases one of the computed edge quantities can be negative. Since negative fluxes are 
nonphysical and can lead to spurious oscillations, we set the offending quantities to zero and recompute the 
other dependent fluxes. The ability to perform this flux limiting in a relatively straightforward manner is 
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the main motivation for choosing the cell- and face-based diamond difference formulation over the otherwise 
equivalent node-based bilinear formulation. 

To incorporate the flux limiting operation into a vector loop, we observe that the cell-centered flux Ip,q,i,j 
takes on its smallest possible value when the correct combination of dependent face fluxes is limited. The 
sign of one flux may depend on which others are limited, so it is necessary to consider all eight combinations 
separately. The additional computation is not excessive, however, since many terms common to all flux 
combinations may be precomputed. The general form for the central flux computation is 

(5) 
where each of lp., e{ and fa is 0 or 1 depending on whether the corresponding face is or is not limited, 
respectively. Once Ip,q,i,i has been determined as the minimum of its eight possible values, we set 

Ip,q,i+%,i = max(2Ip,q,i,i - Ip,q,i-1J2,i• 0) (6) 

and likewise with Ip,q,i,i+% and Ip,q+lf2,i,j· 
The computation begins at the outer boundary with inward-directed ordinates and proceeds through 

increasing values of J.Lp,q for each ~p· Zero-weight starting directions are used to obtain each Ip,l/2. These 

starting directions are additional ordinates added to the set, one for each p, with J.Lp,o = -Jl- ~~- With 

no angular extent, they have Ip,-lf2,i,j = Ip,O,i,j = Ip,lf2,i,j and their discretization reduces to the one for 
Cartesian coordinates: 

~: (Ip,O,i+lf2,j- Ip,O,i-lf2,j) + kz (Ip,O,i,i+%- Ip,O,i,j-1J2) + (K + a)Ip,O,i,j = Si,i· (7) 

At the r = 0 boundary we follow the suggestion of [8] and set each outward Ip,q to the w-weighted average 
of the inward fluxes on the same p-level: 

" W 1! I 

I 
- L..Jp.p,q' <O p,q p,q 

p,q - " w ' J.Lp,q > 0. 
L..Jp.p,q'<O p,q' 

(8) 

Reflecting wall boundaries and the scattering source can be accounted for by iteration in the manner of 
[9]. Since our primary focus in this paper is the treatment of wall boundaries, we will not concern ourselves 
here with the details of the scattering solution. The equation to be satisfied at the "outer" (r) wall of the 
domain is 

Ip,q = €1;:' + ; L Wp',q' J.lp',q' Ip',q'' J.L;,q < 0, 
Jl.p',q'>O 

(9) 

and similarly for the "top" and "bottom" (z) walls. This equation implicitly assumes that the ordinate set 
has a half-range first moment exactly equal to 1r. Ordinate sets with this property-for walls aligned with 
the coordinate axes-are given in [10] and [11]. 

It is not necessary to store interior fluxes for all ordinate directions at once, but it is convenient to 
store fluxes for each ordinate along edges where the radiation meets a wall. This permits us to update the 
reflection sources after each ordinate sweep, so that all of the source information is up-to-date before starting 
the sweep for the next ordinate direction. 

The radiation solver couples back into the equation for fluid energy conservation through the quantity 

\7 · qrad = 47rKh- K L Wp,qlp,q· 
p,q 

Discretization at an Embedded Boundary 

(10) 

Many calculations involve more complicated geometries, which we model as embedded boundaries. (This 
is often called the "Cartesian Grid" method, even though it works just as well for axisymmetric coordinates.) 
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Geometry information is represented on the entire grid as volume fractions for each cell and area fractions 
for each face. These fractions are all 1 for fluid cells and all 0 for body cells, with intermediate values in the 
partial cells at the boundary. 

To adapt the radiation solver to this algorithm framework we derived a form of the discrete ordinate 
discretization which is valid for all three cell types and which reduces to the usual form given above for 
cells entirely in the fluid. The advantages of this approach are that separate coding for boundary cells is 
minimized, boundary cells are updated in the same vector loop as interior cells, and they are updated in the 
proper order following the radiation flow so that information lags do not degrade the convergence rate. 

Cartesian Coordinates 

It is easiest to start the derivation with a true .Cartesian coordinate system, and since this formulation 
applies to the zero-weight starting directions for axisymmetric coordinates the formulas will be directly 
useful. The conservation relation in each cell becomes 

~: (fi+lf2,jlm,i+1f2,j - fi-1f2,jlm,i-1f2,j)+ 

.~~ (hi+lfim,i,j+lf2 - fi,j-1f2Im,i,j-1J2)+ 

n 0 nm LW JW ( .)F I 
D..xD..y i,j m,i,j + K + a i,j m,i,j (11) 

where F and f are volume and area fractions, respectively, and I~,i,j is the intensity at the wall. (We use 
a single subscript, m, to denote the ordinate direction in Cartesian coordinates, since there is no angular 
coupling and hence no need to distinguish the sets of ordinates sharing a value of ~.) The contribution from 
flux across the embedded boundary appears to require the unit normal n and the wall segment length Lw 
for each cell, but this term can be rewritten in terms of volume and area fractions by considering a uniform 
flow in empty space: 

J.Lm ( ) ~m ( ) n ° nm w 
D..x fi+%,i - fi-1J2,i + /).y hi+% - hi-% + D..xD..y Li,i = 0. (12) 

The diamond difference formulation is based on taking a multilinear profile across each cell in order to 
express Im,i+%,i in terms of Im,i-lf2,j and Im,i,j, and similarly for Im,i,i+%· With embedded boundaries we 
must consider the possibility that Im,i-1J2,i may not be available, if that face of the cell is entirely outside 
the fluid region. Permitting the discretization to drop to first order at the boundary, we modify the diamond 
difference formulas as follows: 

Im,i+lf2 ,j = lm,i,j + fi-%,j(Im,i,j- Im,i-1f2,j) 

lm,i,i+% = lm,i,j +/i.j-1f2(Im,i,j - lm,i,j-1J2)· 

(These formulas change in the obvious way for rays traveling in the -J.L and-~ directions.) 

(13) 

(14) 

If n·Om < 0, the I~,i,j term represents a source to the cell from emission and reflection at the boundary­
we precompute these sources s;,,i,j for all boundary cells before beginning the transport sweep for each 
ordinate direction. H n · Om > 0, this term is flux from the cell to the boundary and becomes part of the 
cell update. We use I;,,i,j = Im,i,j to compute these fluxes since the relation is already first order at the 
boundary. 

Using the modified profile across the cell, the conservation relation becomes 

~:[fi+lf2,j(1 + fi-1f2,j)Im,i,j- fi-1J2,j(1 + fi+%,j)Im,i-%,j]+ 

~~[hi+%(1 + hi-%)Im,i,j- /i,j-1f2(1 + hi+%)Im,i,j-1J2]+ 

rn · nm w l ( ) D..xD..y Li,j Im,i,j + K +a Fi,jlm,i,j (15) 

where fxl = max(x,O). This expression is solved for Im,i,j, and modified as before to limit the fluxes at the 
extrapolated faces. Note that since I;,,i,j is not extrapolated, it does not have to be limited. 
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For each ordinate direction, after completing the transport sweep the reflection source is updated for all 
boundary cells with n ·Om > 0. This update requires that we store intensities for all ordinate directions .in 
the boundary cells, though we still do not have to store more than one direction at a time in the interior. 
(For storage of boundary information we use a sparse data structure, which is essentially a list of mixed cells 
with pointers into the main grid.) 

The general form of the boundary condition is 

(16) 

where lxJ = min(x,O). To apply this in practice we precompute the denomenator of the reflection term, and 
update the numerator after each ordinate sweep. If the ordinate set had the correct half-range first moment 
in the direction n the denomenator would become simply 1rL't,i (cf. equation (9)), but it is not possible to 
choose an ordinate set for which :En.n,.>o(n · Om)wm = 1r for all possible n. 

Cylindrical Coordinates 

There are no new difficulties involved in taking this embedded boundary method to an axisymmetric 
coordinate system, the formulas just become more complicated. The fractions Fi,j and /i,j±l/2 are r-weighted 
so as to be true volume and area fractions in three dimensions. That is, the volumes and areas are derived 
for the annular regions which result when cells are rotated about the central axis. The cell conservation 
relation with volume and area fractions takes the form 

~~~ (ri+%fi+lf2,jlp,q,i+%.i- ri-%fi-lf2,jlp,q,i-lf2,j)+ 

.tz (fi,i+lf2Ip,q,i,i+% - !i,i-%IP,q,i,i-%)+ 

R· 
r-~·1 ·(o:p,q+lf2Ip,q+lf2,i,i- o:p,q-lf2Ip,q-lf2,i,i)+ 
• p,q 

n·O 
----'P'-''-'-'1 r~u.L'!l.Jw · . + (~~: + cr)Fi -I · · = Fi,1·Si,1·. rit:l.rt:l.z '•1 '·1 p,q,•,1 •1 p,q,•,1 

Uniform isotropic flow then yields an equation for the wall factor: 

~~~ (ri+%fi+lj2 ,j - ri-lf2fi-1f2,j) + .tz Ui,i+Y2- /i,i-Y2)+ 

Fi,j ( ) n · Op,q w Lw 
-- 0: +ll - 0: ll + T· · · · TiWp,q p,q 12 p,q- 12 Tit:l.rt:l.z '•1 '•1 = 0. 

(17) 

(18) 

To see that the weighting on the angular term is correct, consider replacing this term with a source function 
of the formS= J.Lfr. 

The spatial differences can use the same modified diamond difference as in Cartesian coordinates, while 
no modification is necessary in the angular term. Eliminating extrapolated values from the conservation 
relation then yields 

~~~ [ri+%/i+lj2 ,j(1 + fi-1f2,j)Ip,q,i,j - fi-lj2 ,j(ri-% + ri+%fi+1J2,j)Ip,q,i-lf2,j]+ 

~ . 
t:l.z [/i.i+%(1 + fi,i-YJip,q,i,i - /i,i-%(1 + /i,i+%)Ip,q,i,i-%]+ 

R· ·. 
r-~'1 

[2o:p,q+lhlp,q,i,j - (o:p,q+% + o:p,q-y2 )Ip,q-lf2,i,j]+ 
• p,q 

which can be solved for lp,q,i,j and limited appropriately. 
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Figure 1: A circular enclosure represented as an embedded boundary in a uniform 8 x 8 grid. 

As in the previous section, we update the boundary source term S;',q,i,j after every ordinate sweep so 
that the reflection source will always be up-to-date. The general form of the boundary condition follows the 
same pattern as for Cartesian coordinates. 

Numerical Examples 

The first two examples in this section establish second-order convergence of the heat transfer to the walls 
for straight and curved geometries, with black or gray walls. The final example shows a more complicated 
geometry representing an axisymmetric furnace. All ordinate values are taken from the Ss set listed in [11], 
which has correct half-range first moments in the directions parallel to the coordinate axes. 

Though we have written our code in a vectorizable form so that it will couple efficiently with fluid 
dynamics simulations running on Cray computers, all numerical examples presented here were computed on 
a DEC Alpha. 

Scaled by 1r Scaled by Length Scaled by Area 

Mesh Absorption Rate Mesh Absorption Rate Mesh Absorption Rate 

8 0.8087779775 8 0.8148179684 8 0.8249516079 
16 0.8152651038 2.363 16 0.8167151729 3.221 16 0.8193067597 1.681 
32 0.8165258819 3.523 32 0.8169186113 0.110 32 0.8175457223 1.432 
64 0.8166355411 1.185 64 0.8167301495 0.668 64 0.8168932723 1.437 

128 0.8165873005 0.413 128 0.8166114962 1.125 128 0.816q522731 1.506 
256 0.8165510810 1.178 256 0.8165571095 1.407 256 0.8165674273 1.587 
512 0.8165350736 1.346 512 0.8165365979 1.463 512 0.8165391793 1.591 

1024 0.8165287755 1.435 1024 0.8165291575 1.508 1024 0.8165298054 1.596 
2048 0.8165264457 1.505 2048 0.8165265420 1.550 2048 0.8165267038 1.612 
4096 0.8165256248 4096 0.8165256490 4096 0.8165256894 

Table 1: Scaled heat transfer to the wall of a black circular enclosure of unit diameter. Mesh sizes range 
from 8 x 8 to 4096 x 4096. 
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Black Circular Enclosure 

We first consider the circular enclosure of unit diameter shown in Figure 1. The walls are cold and black, 
and the interior is a uniform absorbing medium with blackbody emissive power 7r h = 1 and "' = 2. Table 1 
gives the average heat transfer per unit length along the embedded boundary, which is the only boundary 
in the problem. Each value ri given for convergence rate is a function of the three numbers ai-l, ai, ai+1 in 
the sequence to its left. We define 

l

ai- ai-11 
ri = log2 , 

ai+l- ai 
(20) 

so that ri will indicate the order of accuracy of the scheme: 1 for first-order, 2 for second-order and so on. 
We calculate the average flux through the boundary as follows: 

Flux= i ~)1- p) L (n · Om)wmLi,ii::'t,i,j· 
i,i n·fl,.>O 

(21) 

The L in this equation represents the total length of the circular boundary, but there is some question of how 
best to define this for the discrete problem at hand. For the first column of the table we use L = 1r, the length . 
of the circle itself. For the second column we take L equal to the length of the polygonal representation of 
the circle on the discrete mesh. The errors are slightly greater for this case, but the convergence rate is more 
consistent. Finally, for the third column we take L = 2Ajr, with r = 0.5 and A being the discrete area of 
the region. This gives the most consistent convergence rates--even for coarser grids-suggesting that this 
interpretation comes closest to capturing the discrete behavior of the system. (To see why scaling by area is 
reasonable, consider that since the algorithm is conservative, the heat transferred to the walls is equivalent 
to the difference between emission and absorption in the interior medium.) 

All three columns are asymptotically equivalent, since L-+ 1r and A-+ 7r/4, both to second order. The 
overall convergence rate for the scheme appears to be a bit less than second order. In the next section we will 
see that a problem with straight sides comes much closer to second-order convergence. We speculate that 
the degraded performance for curved boundaries is an effect of the changing surface normals as the mesh 
is refined, interacting with the fixed ordinate directions, so that :Er..fl,.>o(n · Om)wm takes on completely 
different values for each mesh. 

The results in Table 1 are presented to 10 decimal places only for the purpose of showing the convergence 
behavior of the scheme. The numbers given are not in any sense "correct" to this level of accuracy, so it is 
worthwhile to estimate the actual sizes of the errors in the calculation: 

The largest error is that due to the choice of ordinate discretization. The correct analytic value for this 
problem is 0.8143 [12]. The limiting value of 0.8165 seen in the table shows the error in angular discretization 
with this particular 86 ordinate set. The error is similar in size to those computed in [13] for three different 
ordinate sets, using a fixed unstructured grid roughly comparable to our 16 x 16 example. It is apparent 
from the table that at this resolution the errors due to the spatial and angular discretizations are at about 
the same order of magnitude. 

The ordinates and weights are tabulated in [11] to seven decimal places. We rescale these so that Lm Wm 

is exactly 47r, and in the boundary condition (9) we replace 7r with the actual half-range first moment in 
the manner of equation (16). With these changes the system is conservative to machine precision for black 
walls. For gray walls, as in the next example, the system is conservative to the accuracy to which we solve 
the reflecting boundary condition, about twelve decimal places. 

The errors due to the spatial discretization are apparent from the table, being at about the seventh 
decimal place for the finest grids. Though the errors due to the choice of ordinate set are much larger, they 
should not affect the observed convergence rates since the ordinate set is the same for all of the runs. 

Gray Axisymmetric Enclosure 

For our second example we consider the geometry shown in Figure 2. The region is a unit square, except 
for the side on the right which slants inward at a 20° angle. We use axisymmetric coordinates with the 
left side falling on the axis, so the actual three-dimensional geometry forms a frustum of a cone. Only the 
slanting wall is modeled as an embedded boundary-the axis and the two remaining walls fall on the edges of 
the domain and are modeled as in a uniform mesh. Note that two cells contain both domain and embedded 
boundaries. 
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Figure 2: An axisymmetric enclosure represented using a combination of embedded and domain boundaries. 

The interior is a uniform absorbing medium with blackbody emissive power 1r h = 1 and r;, = 2. The walls 
are all gray with p = f = 0.5 and 1r h = 0.5. The RTE is solved by initializing the wall reflection sources to 
zero and iterating until the change in reflection source from one iteration to the next is reduced by a factor 
of 10-12 . For the present problem with immediate updates at each boundary we saw approximately one· 
order of magnitude reduction per iteration. 

Table 2 gives the average heat transfer per unit area along the boundaries. The first column shows 
absorption alone along the slanting wall, the second column shows absorption minus emission, while the 
third column shows this same quantity for all three walis combined. Because the walls are all straight, the 
surface areas and enclosed volume are always correct to machine precision. Since L is a constant the scaling 
issues of the previous example do not arise. The convergence rate is nearly 2, and is roughly the same for 
each column. Thus the method is second-order for straight sides, and performs correctly with emitting and 
reflecting walls and with interactions between domain and embedded boundaries. 

Axisymmetric Furnace 

For our final example, we plot contours of incident energy G;,j = l:p,q wp,qlp,q,i,j for the furnace geometry 
shown in Figure 3. Furnace dimensions, wall temperatures, emissivities and reflectivities are taken from (14], 
while the interior is taken to be a cold absorbing medium with r;, = 0.2m-1 . A 40 x 227 grid is used with 

Embedded Wall Absorption Embedded Wall Net Flux Total Wall Net Flux 

Mesh Absorption Rate Mesh Absorption Rate Mesh Absorption Rate 
8 0.4603048202 8 0.2102362789 8 0.2085897529 

16 0.4605075961 2.598 16 0.2101239715 0.005 16 0.2084476802 0.715 
32 0.4604741120 -0.332 32 0.2100120832 0.864 32 0.2083611186 1.132 
64 0.4604319634 0.935 64 o. 2099505878 1.198 64 0.2083216156 1.322 

128 0.4604099129 1.444 128 0.2099237879 1.527 128 0.2083058114 1.555 
256 0.4604018086 1.697 256 0.2099144862 1.733 256 0.2083004335 1.752 
512 0.4603993098 1.839 512 0.2099116890 1.855 512 0.2082988363 1.871 

1024 0.4603986113 L933 1024 0.2099109159 1.939 1024 0.2082983996 1.931 
2048 0.4603984284 1.944 2048 0.2099107143 1.949 2048 0.2082982850 1.963 
4096 0.4603983809 4096 0.2099106621 4096 0.2082982556 

Table 2: Scaled heat transfer to the wall of an axisymmetric gray radiating enclosure. 
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Figure 3: Left: Contours of incident energy in the BERL geometry. Right: Detail of grid around inlet and 
burner region at lower left. 

axisymmetric coordinates. Ray effects are visible at the lower left due to the relatively cold inlet region, and 
in the exhaust duct due to the temperature differential between the duct and the furnace. 

This example is provided to show the use of the embedded boundary algorithm on a more complex 
geometry. It is not a realistic model of radiation in the furnace since fluid emission is neglected; see [5] for 
a more complete simulation. 

The geometry includes fine details of the burner region that are not well-represented on the discrete 
mesh. The inset shows how the grid in this region only roughly captures the shape of the burner-for details 
of the actual geometry see [14]. Accurate simulations will require a combination of the embedded boundary 
techniques presented here, with the adaptive mesh refinement/9-lgorithms presented in [15] and [3]. 

Conclusions 

We have presented an extension of the discrete ordinates method for radiative transfer calculations to 
domains with embedded boundaries. An embedded boundary is represented as a piecewise-linear tracked 
front within a regular mesh using volume and area fractions for each cell. The method supports both 
Cartesian and axisymmetric meshes. Both ·embedded and domain-wall boundary conditions can coexist 
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within a single problem or even within a single cell. 
The discretization is equivalent to second-order diamond differences in the mesh interior, and reduces to 

first-order at the boundaries. Flux limiting is implemented in a way that does not inhibit vectorization. The 
solution strategy is based on transport sweeps, iterated to convergence of the wall reflection and scattering 
terms. Due to the form of the reflection updates, energy is conserved to the level of the convergence tolerance. 
(With minor modifications the method could conserve to machine precision independent of this tolerance, 
but at the expense of slower convergence.) 

Numerical examples illustrate the method for a curved embedded boundary in Cartesian coordinates, 
and for a combination of straight embedded and domain-wall boundaries in axisymmetric coordinates. Both 
black and gray walls are considered. The results show clear second-order convergence of the heat transfer to 
the walls for the straight wall example. The curved example shows a convergence rate intermediate between 
first and second order. A final example shows the method applied to a more complex geometry, that of an 
axisymmetric furnace. 

Acknowledgme11ts 

This work was supported by the Applied Mathematical Sciences Program and the HPCC Grand Challenge 
Program of the Office of Mathematics, Information and Computational Sciences of the U.S. Department of 
Energy under Contract No. DE-AC03-76SF00098. 

References 

[1] Purvis, J. W., and Burkhalter, J. E., "Prediction of Critical Mach Number for Store Configurations," 
AIAA Journal, Vol. 17, No. 11, 1979, pp. 117D-1177. 

[2] Berger, M. J., and LeVeque, R. J., "An Adaptive Cartesian Mesh Algorithm for the Euler Equations in 
Arbitrary Geometries," 9th AIAA Computational Fluid Dynamics Conference, Buffalo, 1989. 

[3] Pember, R. B., Bell, J. B., Colella, P., Crutchfield, W. Y., and Welcome, M. L., "An Adaptive Cartesian 
Grid Method for Unsteady Compressible Flow in Irregular Regions," Journal of Computational Physics, 
Vol. 120, No. 2, 1995, pp. 278-304. 

[4] Almgren, A. S., Bell, J. B., Colella, P., and Marthaler, T., "A Cartesian Grid Projection Method for .. 
the Incompressible Euler Equations in Complex Geomtries," SIAM Journal on Scientific Computing, 
to appear. 

[5] Pember, R. B., Almgren, A. S., Crutchfield, W. Y., Howell, L. H., Bell, J. B., Colella, P., and Beckner, 
V. E., "An Embedded Boundary Method for the Modeling of Unsteady Combustion in an Industrial Gas­
Fired Furnace," Proceedings of the 1995 Fall Meeting of the Western States Section of the Combustion 
Institute, Stanford, CA, October 30-311995. 

[6] Chai, J. C., Lee, H. S., and Patankar, S. V., "Treatment of Irregular Geometries Using a Cartesian 
· Coordinates Finite-Volume Radiation Heat Transfer Procedure," Numerical Heat Transfer, Part B, 
Vol. 26, 1994, pp. 225-235. 

[7] Carlson, B. G., and Lathrop, K. D., "Transport Theory-The Method of Discrete Ordinates," Comput­
ing Methods in Reactor Physics, edited by Greenspan, H., Kelber, C. N., and Okrent, D., pp. 171-266, 
Gordon and Breach, New York, 1968. 

[8] Lewis, E. E., and Miller, Jr., W. F., Computational Methods of Neutron Transport, American Nuclear 
Society, La Grange Park, IL, 1993. 

[9] Fiveland, W. A., "Discrete-Ordinates Solutions of the Radiative Transport Equation for Rectangular 
Enclosures," Journal of Heat Transfer, Vol. 106, No. 4, 1984, pp. 699-706. 

[10] Lathrop, K. D., and Carlson, B. G., "Discrete Ordinates Angular Quadrature of the Neutron Transport 
Equation," LASL-3186, Los Alamos Scientific Laboratory, 1965. 

10 



[11] Fiveland, W. A., "Three-Dimensional Radiative Heat-Transfer Solutions by the Discrete-Ordinates 
Method," Journal of Thermophysics and Heat Transfer, Vol. 2, No.4, 1988, pp. 309-316. 

[12] Modest, M. F., Radiative Heat Transfer, McGraw-Hill, New York, 1993. 

[13] Fiveland, W. A., and Jessee, J.P., "Comparison of Discrete Ordinates Formulations for Radiative Heat 
Transfer in Multidimensional Geometries," Journal of Thermophysics and Heat Transfer, Vol. 9, No. 1, 
1995, pp. 47-54. 

[14] Kaufman, K. C., Fiveland, W. A., Peters, A. A. F., and Weber, R., "The BERL 300kW Unstaged 
Natural Gas Flames with a Swirl-Stabilized Burner, Case 1: Hot-Wall Conditions," prepared for the 
Gas Research Institute under Contract No. 5093-260-2729, November 1994. 

[15] Jessee, J. P., Fiveland, W. A., Howell, L. H., Colella, P., and Pember, R. B., "An Adaptive Mesh 
Refinement Algorithm for the Discrete Ordinates Method," Proceedings of the 1996 National Heat 
Transfer Conference, Houston, August 3-6, 1996. 

11 



@9~1:!§'\j' ~ ~9S!J~I!I$ @S!I;.J(:!!Ei!LJ3"\? ~ ~ 

~~~~~D~~'W~ 




