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Abstract: In structural vibration response sensing, mobile sensors offer outstanding benefits as
they are not dedicated to a certain structure; they also possess the ability to acquire dense spatial
information. Currently, most of the existing literature concerning mobile sensing involves human
drivers manually driving through the bridges multiple times. While self-driving automated vehicles
could serve for such studies, they might entail substantial costs when applied to structural health
monitoring tasks. Therefore, in order to tackle this challenge, we introduce a formation control
framework that facilitates automatic multi-agent mobile sensing. Notably, our findings demonstrate
that the proposed formation control algorithm can effectively control the behavior of the multi-
agent systems for structural response sensing purposes based on user choice. We leverage vibration
data collected by these mobile sensors to estimate the full-field vibration response of the structure,
utilizing a compressive sensing algorithm in the spatial domain. The task of estimating the full-field
response can be represented as a spatiotemporal response matrix completion task, wherein the suite
of multi-agent mobile sensors sparsely populates some of the matrix’s elements. Subsequently, we
deploy the compressive sensing technique to obtain the dense full-field vibration complete response
of the structure and estimate the reconstruction accuracy. Results obtained from two different
formations on a simply supported bridge are presented in this paper, and the high level of accuracy in
reconstruction underscores the efficacy of our proposed framework. This multi-agent mobile sensing
approach showcases the significant potential for automated structural response measurement, directly
applicable to health monitoring and resilience assessment objectives.

Keywords: full-field sensing; compressive sensing; multi-agent system; mobile sensors; formation
control; structural health monitoring

1. Introduction

Bridge health monitoring is essential to ensure public safety, prolong infrastructure
lifespan, and mitigate potential risks through continuous assessment of structural integrity
and performance. Although fixed sensors placed on the structure are commonly used for
vibration-based bridge health monitoring [1], they require ongoing monitoring of sensor
health to ensure data reliability [2,3]. Mobile sensing presents an alternative approach,
involving the installation of vibration sensors on mobile vehicles or carriers [4]. These
mobile units traverse the structure, collecting vibration response data in relation to spatial
and temporal variations. Mobile sensing offers distinct benefits compared to traditional
fixed sensors, including increased spatial information, scalability, and reduced maintenance
costs [5]. The advancements in wireless sensing technologies enable mobile sensor networks
to complement wired counterparts, facilitating expanded usage of mobile sensors [6]. Mod-
ern smartphones, equipped with motion sensing chips like accelerometers and gyroscopes,
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enhance the potential for crowd-sourced data collection [7–9]. Nevertheless, these mobile
sensing techniques often require multiple passes on bridges to record vibration response
data. Notably, Matarazzo et al. [10] demonstrated that controlled field experiments and
UBER trips on the Golden Gate Bridge enable continuous modal information extraction
from smartphone-recorded vibration data. In their study, the researchers traversed the
bridge 102 times and utilized 72 UBER trips, capturing acceleration vibration data with
smartphones. The collected data were then analyzed to determine the most probable
modal frequencies (MPMFs) using the synchro-squeezed wavelet transform [11]. Impor-
tantly, multiple vehicles were employed simultaneously for data collection. Additionally,
the effectiveness of this mobile sensing approach was verified on the Harvard Bridge by
Matarazzo et al. [12]. In a similar vein, Eshkevari et al. [13] conducted an experimental
study validating crowd-sourced modal identification using continuous wavelets (CMICW),
utilizing a collection of smartphone-mounted sensors on vehicles that moved back and
forth across the bridge using a motored pulley system. Therefore, this paper introduces
a multi-agent formation control framework to automate the mobile sensing procedure,
eliminating the need for manual driving stages, particularly in the context of structural
vibration response sensing.

The concept of capturing bridge vibration data through sensors on moving vehicles
was first introduced by Yang et al. [14]. Leveraging the pure structural responses recorded
by these mobile sensors, system properties have been deduced using input–output bal-
ance [15]. Over the past decade, extensive studies have explored mobile sensing through
diverse avenues, encompassing analytical and numerical analyses [16–19], laboratory-scale
experiments [20–23], and real-life scenarios [24,25]. The literature predominantly empha-
sizes bridge modal identification via mobile sensing. Oshima et al. [26] detected mode
shape-based support damage by mapping mobile sensor data to fixed sensor data. Mode
shape-based bridge damage detection was achieved by Malekjafarian and O’Brien [27]
using the short time-frequency domain decomposition (STFDD) method. High-resolution
mode shapes were obtained via laser vibrometer and accelerometers mounted on vehi-
cles as proposed by O’Brien and Malekjafarian [28]. Additional signal processing tech-
niques like Short-Time Fast Fourier Transform (STFFT) [29], Empirical mode decomposition
(EMD) [30,31], and Hilbert transform [32] are employed for estimating mode shapes from
data collected by mobile sensors. Matarazzo et al. [33,34] introduced the “structural identi-
fication using expectation maximization (STRIDE)” method for mode shape identification
from mobile sensors. Eshkevari et al. [35–37] formulated mobile sensing data as a sparse
matrix with missing values. They employed alternating least-square (ALS) for matrix
completion, followed by principal component analysis (PCA) and structured optimization
analysis (SOA) for modal identification. Matrix completion approaches have gained trac-
tion in recent years for health monitoring due to their data-driven nature, applicable to
both fixed sensors [38] and mobile sensors [19,36,37]. Yang and Nagarajaiah [38] utilized
nuclear norm minimization for matrix completion, and a comprehensive overview of such
methods is presented in Nagarajaiah and Yang [39].

Throughout the aforementioned research, instances involving multiple mobile sensors
for structural sensing or system identification typically involve independent manual control
of each vehicle by humans. In certain cases, trains or vehicles with multiple trailers [26]
have been employed, attaching sensors to each axle. The evolution of self-driving cars [40]
presents the potential to streamline and enhance the mobile sensing process for structural
health monitoring (SHM). Multiple self-driving cars could be useful for this purpose;
however, autonomous vehicles are optimized for individual operations, often proving
expensive for structural vibration response measurement work. Thus, an alternative
approach is imperative to automate the mobile sensing procedure without relying on costly
self-driving vehicles.

The primary objective of this paper is to automate the mobile sensing process instead of
manually driving the vehicles or deploying fully self-driving cars. As a novel contribution,
this paper introduces a formation control-based framework to collect the bridge vibration
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response data through multi-agent systems. The vibration measurement sensors installed
on the multi-agent can capture structural responses at the corresponding position of their
movement on the system, which can create a sparse space–time response matrix. In recent
work, we proposed full-field structural vibration response estimation from a limited number
of fixed sensors using data-driven [41] and physics-based [42] approaches. In this study,
we deploy this concept to acquire full-field structural vibration responses but utilizing a
limited number of automatic multi-agent mobile sensors.

In this paper, we first introduce a framework designed for acquiring full-field re-
sponses using mobile sensors and underscore its significance in Structural Health Mon-
itoring (SHM) for bridges. Within this proposed framework, two primary components
take center stage: the formation control strategy and compressive sensing. We provide a
brief overview of these fundamental concepts. The formation control strategy streamlines
the process by harnessing mobile sensors, while the compressive sensing algorithm is
employed to estimate full-field responses with a limited sensor setup. This becomes espe-
cially pertinent as we leverage data from a network of multi-agent sensors to achieve this
objective. Subsequently, we validate the effectiveness of this proposed framework through
a numerical study involving a simply supported bridge. We explore two distinct scenarios
for formation control. Additionally, we outline practical implementation recommendations
that should be taken into consideration. Finally, we delve into the results, draw conclusions,
and outline potential avenues for future research.

2. Proposed Framework and Its Significance in Bridge SHM

In this section, we initially outline the overarching process for vibration response
sensing for bridge health monitoring. Subsequently, we delineate where our proposed
automatic formation control-based mobile sensing framework fits in the domain of bridge
SHM. Following this, we introduce the details of the formation control-based mobile
sensing framework.

The overall sensing pipeline for the bridge structural health monitoring is illustrated
in Figure 1. Generally, such sensing can be performed using either fixed or moving/mobile
sensors. For fixed sensing cases, sensors are strategically placed at specific locations on the
bridge. This approach facilitates the measurement of vibration responses at those particular
bridge locations. By analyzing these responses, the health of the bridge can be monitored by
estimating system parameters, detecting the presence of damage, and deriving a full-field
response from a limited array of sensors. This full-field response can then be utilized for
tasks such as damage localization, full-state estimation, or control purposes. An alternative
approach to obtaining similar information involves mobile sensing. In this setup, sensors
are mounted on vehicles, which can be operated manually or autonomously. Given that
the aim of this paper revolves around achieving a fully automated sensing process with
minimal human intervention, we refrain from addressing manual driving. Also, achieving
coordination through manual driving is complex. In the context of automated driving, two
possibilities emerge: (a) autonomous vehicles like Tesla or Waymo, and (b) multi-agent
systems wherein vehicles interact with each other. Self-driving cars entail substantial
costs, and using multiple self-driving cars for sensing purposes might prove economically
unfeasible, as a single sensor might not suffice for bridge health monitoring. Thus, this
paper concentrates on multi-agent systems to perform such tasks, as they offer a cost-
effective and automated approach to the sensing process.

Nevertheless, within all mobile sensing strategies—whether manual driving or auto-
matic driving—the responses measured by the sensor installed within the vehicle comprise
bridge responses, superimposed with road roughness and vehicle dynamics [43], attributed
to vehicle–bridge interaction [44,45]. When the recorded sensor data are amalgamated with
the vibration from other sources mentioned above, conventional SHM methods cannot be
directly applied as they are designed to work with pure structural vibration responses [46].
To circumvent this problem, the existing literature addresses primary approaches: (1) con-
trolling the sensing conditions like vehicle speed and road roughness intensity so that the
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recorded response mainly contains the bridge vibration [14,27], (2) modeling the vehicle–
bridge interaction in a closed form to eliminate the uncertainties due to vibration sources
other than the bridge itself [47,48], (3) to use blind source separation (BSS) techniques to
extract the different sources of the recorded response [35]. The BSS technique is capable of
estimating pure bridge vibration response.

Sensing for Bridge SHM

Fixed Sensing Mobile Sensing

Manual Driving Automatic Driving

Self-Driving cars Multi-agent systems

Pure Bridge response at the instantaneous sensor location

System Parameter Estimation,
Detection of Presence of damage

Full-field response estimation

System Parameter Estimation,
Detection and Localization of possible damage,
Full-state vibration Control

Bridge response superposed with road 
roughness and vehicle dynamics

Source separation
techniques

Figure 1. Framework for bridge vibration response sensing and structural health monitoring. This
paper proposes a multi-agent formation control strategy for automatic driving in mobile sensing
(marked with a red solid border). The result is numerically validated in the full-field response
estimation (marked with a red dotted border). All the other framework components are marked with
blue solid border. The image on the right shows that the acquired vibration response in the sensor
contains the bridge vibration, road roughness, and vehicle dynamics.

In this paper, we focus on the multi-agent-system-based sensing framework and
assume that the recorded bridge vibration response has undergone prior processing to
eliminate the unintended road roughness and vehicle–bridge-interaction-related motion
to work with pure structural vibration. This is a valid assumption as we explore only
numerical scenarios in this study.

In the formation-control-based framework, the multi-agent system is designed to
traverse the bridge in a user-defined formation. At a given instantaneous position of all
the mobile agents, they collect the vertical vibration response of the bridge. The ultimate
goal of this paper is to estimate full-field vibration response time history. In terms of matrix
terminology, the objective is to complete the spatiotemporal response matrix. The mobile
agent sparsely populates some of the elements of this spatiotemporal response matrix.
To better elucidate the matrix completion process, drawing a comparison with fixed sensors
could provide enhanced clarity.

The distinction between fixed and mobile sensing for a simply supported bridge is
depicted in Figure 2. In scenarios involving fixed sensors, the spatiotemporal response
matrix is populated along a particular column based on the sensor’s position, as illus-
trated in Figure 2a. Conversely, with mobile sensors, the spatiotemporal response matrix
is populated diagonally in accordance with the movement and instantaneous positions
of the vehicles, as shown in Figure 2b. The slope of these diagonals depends on the ve-
hicle speeds. Now, considering one particular time instance marked by the red arrow in
Figure 2b, only four elements are occupied (as four sensors are considered for demon-
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stration purposes). The spatial compressive sensing algorithm’s task is to estimate other
values from the measured ones. Consequently, executing this procedure in real time for
all rows leads to a complete spatiotemporal matrix, essentially constituting the full-field
vibration response.

Space

T
im
e

Space
T
im
e

(a) (b)

Figure 2. Vibration response sensing and the sensed entries of the spatiotemporal response matrix
using (a) fixed sensors, (b) mobile sensors.

The authors recently published studies to complete the spatiotemporal matrix using
the compressive sensing algorithm for fixed sensor cases [41,42], addressing the problem in
Figure 2a. In the present paper, we intend to employ the same algorithm to accomplish
spatiotemporal matrix completion for mobile sensor cases, e.g., addressing the problem
in Figure 2b. In essence, the core proposition of this paper revolves around introducing
a formation control algorithm to efficiently and autonomously populate the elements of
the spatiotemporal matrix using a multi-agent system. Subsequently, the capability of
compressive sensing is leveraged to complete the spatiotemporal response matrix utilizing
response data collected through the multi-agent system, thus estimating the full-field
vibration response of the structure.

3. Formation Control of Multi-Agent System Formulation

In this section, we introduce the formation control algorithm intended for automated
sensing within the multi-agent system. We adopt a graphical model to depict interactions
among these multi-agent systems, a prevalent approach in the state-of-the-art study. This
framework often utilizes a graph, wherein agents represent graph nodes, while the graph
edges symbolize communication and sensing exchanges between these agents, as empha-
sized by Godsil and Royle [49].

Graph G is defined as (V , E); here, V denotes the set of nodes or vertices of graph
and E ⊆ V × V symbolizes the edges. Here, it is assumed that there are no self-edges,
viz., (i, i) 6∈ E for any i ∈ V , which is a valid assumption. The neighbor set of node i ∈ V
is defined as Ni := {j ∈ V : (i, j) ∈ E}. The graph edges are weighted by wij which
are associated with (i, j) for i, j ∈ V ; here, wij > 0 if (i, j) ∈ E and wij = 0 otherwise.
The Laplacian Matrix L = [lij] ∈ R|V|×|V| of G = (V , E) is defined as

lij =

{
∑k∈Ni

wik, if i = j
−wij, if i 6= j

. (1)
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The majority of dynamic models for automated mobile sensors adhere to the double-
integrator dynamic models, given that the control feedback can be linearized in this form,
as outlined in Ren and Beard [50]. In the context of graph G, a collection of n agents, each
modeled as a double-integrator system, residing within an m-dimensional space, can be
succinctly expressed: {

ṗi = vi,
v̇i = ui,

i = 1, · · · , n. (2)

Here, pi ∈ Rm, vi ∈ Rm, and ui ∈ Rm indicate the position, velocity, and control input
of agent i in relation to the global coordinate system. The agents have the capacity to sense
the relative positions and velocities of neighboring agents within the global coordinate
system. The overarching aim of the agents is to maneuver in a manner that controls a
formation shape, where the designated desired position p∗ ∈ Rmn and desired velocity
v∗ ∈ Rmn are pre-defined.

A formation comprises agents that move to acquire and maintain a specific geometric
configuration based on the relative positions of neighboring agents. A formation can be
denoted by specifying the desired position p∗i (t) and the desired velocity v∗i (t) for all
i = 1, · · · , n at any given time instant t ≥ 0. The primary goal is to formulate a control
strategy ui in a manner such that,{

pi(t) −→ p∗i (t),
vi(t) −→ v∗i (t),

i = 1, · · · , n. (3)

Here, the symbol, ‘’−→”, indicates the desirability, e.g., the actual position and actual
velocity of agent i at time instant t which are pi(t) and vi(t), but desired to be p∗i (t) and
v∗i (t).

If the agents can precisely measure their positions and velocities in the global coordi-
nate system in which p∗i (t) and v∗i (t) are specified, then the Equation (3) could be solved
in a straightforward manner using classical control. In this case, the controller follows the
subsequent equation:

ui(t) = gp(p∗i (t)− pi(t)) + gv(v∗i (t)− vi(t)); i, j = 1, · · · , n; gp, gv > 0. (4)

In this context, parameters gp and gv function as scaling factors linked to the posi-
tion and velocity components of the control force. The formulation of formation control
presented in Equation (4) corresponds to the concept of position-based formation control,
a framework previously explored in works such as Ren and Beard [51] and Oh et al. [52].
However, within this position-based control scheme, every agent must possess sophisti-
cated sensors capable of precisely measuring position and velocity with respect to global
coordinates. Implementing this control strategy could prove challenging due to the as-
sociated financial costs tied to the requirement for advanced sensors, especially only for
structural health monitoring purposes. Nevertheless, if agents are restricted to sensing their
neighboring agents’ relative positions and velocities solely, the goal outlined in Equation (4)
becomes notably more intricate to attain. A more lenient objective emerges, revolving
around maintaining relative positions and velocities amongst the agents. This approach
is termed displacement-based control [52]. In this context, agents actively regulate their
neighboring counterparts to realize the intended formation, with most agents operating
without knowledge of the global coordinate system. Consequently, a less rigid objective is
to devise a control law ui such that{

pi(t)− pj(t) −→ p∗i (t)− p∗j (t),

vi(t)− vj(t) −→ v∗i (t)− v∗j (t),
i, j = 1, · · · , n. (5)

To satisfy the objective in Equation (5), the control law can be written as
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ui(t) = gp ∑
j∈Ni

(pj(t)− pi(t)− p∗j (t) + p∗i (t))

+ gv ∑
j∈Ni

(vj(t)− vi(t)− v∗j (t) + v∗i (t)); gp, gv > 0; i = 1, · · · , n.
(6)

Considering the formation moves in a constant velocity, ṗ∗ = v∗ and v̇∗ = 0. We assume

p =


p1
...

pn

; v =


v1
...

vn

; p∗ =


p∗1
...

p∗n

; v∗ =


v∗1
...

v∗n

.

From Equation (2), the system dynamics are{
ṗ
v̇

}
=

[
0mn Imn
0mn 0mn

]{
p
v

}
+

[
0mn
Imn

]
u. (7)

Equation (6) can be rewritten as

ui = gp

[∣∣∣Ni

∣∣∣(p∗i − pi)− ∑
j∈Ni

(p∗j − pj)

]
+ gv

[∣∣∣Ni

∣∣∣(v∗i − vi)− ∑
j∈Ni

(v∗j − vj)

]
. (8)

Here,
∣∣∣Ni

∣∣∣ denotes the cardinality of neighbor set Ni (total number of neighbors of agent i).
Equations (7) and (8) can be simplified to

u =
[
gp(Ln ⊗ Im) gv(Ln ⊗ Im)

]{p∗ − p
v∗ − v

}
. (9)

Here, ⊗ denotes the Kronecker product. Defining the error signals as{
ep = p∗ − p
ev = v∗ − v

, (10)

ep and ev are the differences between the desired and actual amplitude of agent position
and velocity, respectively. With ṗ∗ = v∗ and v̇∗ = 0, the error dynamics can be evolved
from Equations (2) and (10) as{

ėp = ṗ∗ − ṗ = v∗ − v = ev

ėv = v̇∗ − v̇ = −v̇ = −u
. (11)

From Equations (9) and (11),

ėv = −u =
[
−gp(Ln ⊗ Im) −gv(Ln ⊗ Im)

]{ep
ev

}
. (12)

From Equations (11) and (12), error dynamics expression [52] is{
ėp
ėv

}
=

[
0mn Imn

−gp(Ln ⊗ Im) −gv(Ln ⊗ Im)

]{
ep
ev

}
. (13)

The system represented in Equation (13) reaches consensus if and only if Gn is con-
nected (if there is at least one edge from one node to any other node of the graph, Gn, is
said to be connected). In consensus,
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
∣∣∣∣∣∣epi (t)− epj(t)

∣∣∣∣∣∣→ 0,∣∣∣∣∣∣evi (t)− evj(t)
∣∣∣∣∣∣→ 0,

t→ ∞. (14)

The rate at which convergence or consensus is achieved hinges on the values of the
constants gp and gv, intrinsic properties of the controller. In the context of Structural Health
Monitoring (SHM) applications involving carriers, these constants, gp and gv, are reliant
upon the vehicle controller responsible for steering the system. During convergence or
consensus processes, Equation (14) guarantees compliance with Equation (5). With the
control law established as per Equation (6), the dynamics of the closed-loop system are
characterized by{

ṗ
v̇

}
=

[
0mn Imn

−gp(Ln ⊗ Im) −gv(Ln ⊗ Im)

]{
p
v

}
+

[
0mn 0mn

gp(Ln ⊗ Im) gv(Ln ⊗ Im)

]{
p∗

v∗

}
. (15)

In the scenario where agents are limited to sensing only the relative positions and
velocities of neighboring agents, they would not fulfill Equation (3), implying an inability
to attain predetermined absolute positions within the global coordinate system. To address
this, a minimum subset of agents, usually just one, must possess the capability to sense
absolute positions. This particular agent plays the role of a leader within the multi-agent
system, and by employing a leader–follower methodology, formation consensus can be
achieved. Consequently, the control law is modified as follows:

ui(t) = gp ∑
j∈Ni

(pj(t)− pi(t)− p∗j (t) + p∗i (t))

+gv ∑
j∈Ni

(vj(t)− vi(t)− v∗j (t) + v∗i (t))

+higp(p∗l − pl) + higv(v∗l − vl),

(16)

where pl and vl denote the position and velocity of the leader, respectively, and

hi =

{
1 if i = l
0 otherwise

. (17)

Defining the matrix, H = diag(h1, · · · , hn), the error dynamic is given by{
ėp
ėv

}
=

[
0mn Imn

−gp

[
(Ln + Hn)⊗ Im

]
−gv

[
(Ln + Hn)⊗ Im

]]{ep
ev

}
, (18)

and similarly, the final closed-loop system dynamics is expressed as{
ṗ
v̇

}
=

[
0mn Imn

−gp

[
(Ln + Hn)⊗ Im

]
−gv

[
(Ln + Hn)⊗ Im

]]{p
v

}

+

[
0mn 0mn

gp

[
(Ln + Hn)⊗ Im

]
gv

[
(Ln + Hn)⊗ Im

]]{p∗

v∗

}
.

(19)

In brief, Figure 3 presents a flowchart illustrating the formation control strategy. This
strategy comprises two distinct loops: the inner loop focuses on controlling the individual
agent dynamics, as described in Equation (2), while the outer loop manages the overall
formation, adhering to the less stringent objective outlined in Equation (5).

The performance evaluation of the proposed formation control algorithm can be based
on the disparity between the desired and actual positions of the agents [53]. Therefore,
for any given agent i and time instance t, the error is quantified as ∆i(t) = |p∗i (t)− pi(t)|.
Over the entire data collection duration denoted as Q, the position error for each agent is
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computed as ∆i =
1
Q

Q

∑
i=1

∆i(t). Ultimately, the collective formation error for all n agents

is expressed as ∆ =
1
n

n

∑
i=1

∆i. It is important to note that since the primary goal of the

multi-agent system is to populate the elements of the spatiotemporal response matrix,
the formation error is exclusively contingent on the agents’ positions and not their velocities.

Outer Loop
(Formation Level 

Controller)

Inner Loop
(Agent Controller) Agent

Sensors

Formation controlled 
variables

Inner Loop
variables

States

Output 
(motion)

Desired Formation 
Variable – Feedback 
formation variable

Actuator 
Commands

Formation 
Controller values – 

Feedback valuesDesired 
Formation 

States

Figure 3. Formation control framework for a multi-agent system.

4. Brief Overview of Full-Field Response Estimation from a Limited Number
of Sensors

Using the Formation control algorithm proposed in Section 3, the elements of the
spatiotemporal response matrix are sparsely filled as shown in Figure 2b. In order to obtain
the full-field response, the compressive sensing framework proposed by the authors [41,42]
is used in this paper. Hence, in this section, we briefly discuss the procedure for the sake
of completeness.

4.1. Compressive-Sensing-Based Full Signal Reconstruction from Few Measurements

The concept of Compressive Sensing [54] is briefly discussed in this section. A signal
y ∈ Rm is sparse, if

y = Dx =
n

∑
j=1

xjdj = ∑
j∈S

xjdj. (20)

In this context, D ∈ Rm×n signifies the orthonormal basis matrix, with dj representing
the jth column of D. Typically, the basis matrix is treated as overcomplete, i.e., m < n.
The majority of coefficients of xj are zero in Equation (20). This characteristic results
in signal sparsity, which can be expressed as S = {j|xj 6= 0}. The level of sparsity is
represented by s = |S| = ||x||0, thus indicating that x ∈ Rn represents a sparse vector.

The Compressive Sensing (CS) technique is capable of estimating y ∈ Rm from the
noisy measured vector z ∈ Rp, where p << m.

z = Θy + e = ΘDx + e = Φx + e, where Φ = ΘD, (21)

where Θ ∈ Rp×m constitutes the measurement matrix. The term e signifies the error
or noise constrained within the bound ||e||2 ≤ ε. Consequently, the estimation of basis
coefficients is attainable by solving the following convex optimization problem:

x̂ = arg min
||Φx−z||2≤ε

||x||1, (22)

where the `2 norm is represented by || · ||2. The formulation given in Equation (22) can be
expressed within an optimization framework known as LASSO [55], as follows:

minimize ||Φx− z||2 + λ||x||1. (23)

Here, λ represents the regularization parameter. The interior point method [56] is employed
to derive the sparse solution x from Equation (23), subsequently enabling the recovery of
the complete signal y using Equation (20).
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As proposed by Amini et al. [57], the determination of the minimum sampling points
required for accurate signal reconstruction relies on the basis matrix D. This estimation
can be achieved by applying techniques like Singular Value Decomposition (SVD) and
Normalized Power Index (NPI), as follows:

D = UΣV; NPIp =
∑

p
i=1 σ2

i

∑m
i=1 σ2

i
, (24)

where D ∈ Rm×n, U ∈ Rm×m, V ∈ Rn×n, and Σ ∈ Rm×n with m < n. Diagonal values of
Σ represent the singular values, and σi represents the ith singular value. The minimum
sensor number for accurate signal reconstruction is the smallest integer value of p for which
NPI→1.

We use the concept of compressive sensing in the spatial domain for every time instant
to obtain the full field response from the response time histories of sparse sensors. However,
the knowledge of basis or Dictionary matrix D in Equation (20) is still required. If no model
knowledge is available, then Dictionary learning [58] can be used to obtain D from the
training signals [41]. On the contrary, if the intrinsic physics of the system is known, then
physics-informed dictionaries could be easily obtained [42]. Both of these methods are
briefly discussed.

4.2. Learning the Basis Functions Using Dictionary Learning

Dictionary learning [58] designs matrix D ∈ Rm×n to attain a good sparse represen-
tation y ≈ Dx for a set of signals y ∈ Rm based on training samples. The sparse vectors,
x ∈ Rn, consist of few nonzero coefficients. To construct the dictionary, D, matrix Y ∈ Rm×N

can be formulated, where columns correspond to training signals and N represents the
number of training signals. Assembling this matrix Y involves arranging individual y
signals in a stack. Consequently, the optimization problem inherent to Dictionary learning
can be expressed as follows:

min
D,X
||Y−DX||2F (25)

such that, ||x`||0 ≤ s, ` = 1 : N,

||dj|| = 1, j = 1 : n.

Here, X corresponds to the matrix of sparse representations, while || · ||F denotes the
Frobenius norm. Upon resolving the optimization problem defined in Equation (25), each
column within the matrix D serves as a basis function for the signal set Y.

Directly obtaining D and X from Y is difficult as Y = DX; hence, it is subdivided
into two smaller optimization problems: (a) Sparse Coding and (b) Dictionary Updating.
Basically, in Dictionary learning, the objective is to obtain D and X from the training signals
Y. The typical approach for solving such challenges is alternating minimization, which
involves the following steps: (1) During the sparse coding phase, D remains fixed while X is
estimated, and (2) in the Dictionary updating stage, X is held constant while D is estimated.
This iterative process continues until a convergence point is reached.

4.3. Obtaining the Basis Functions from Physics-Based Knowledge

One method alternative to Dictionary learning for estimating basis matrix D is ob-
tained from the closed-form solution of the inherent differential equation of the continuous
system. One example of a simple beam is presented in this section. The equation of motion
governing an Euler–Bernoulli beam subject to a distributed transverse force can be denoted
using the formulation given by Rao [59]:

∂2

∂x2

[
EI(x)

∂2w(x, t)
∂x2

]
+ ρA(x)

∂2w(x, t)
∂t2 = f (x, t), (26)
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where w(x, t) signifies the transverse displacement response of the beam, while f (x, t)
represents the applied forcing function. Here, E denotes Young’s modulus, ρ represents
density, and I(x) and A(x) stand for the moment of inertia and cross-sectional area at
position x from one end of the beam, respectively. In the case of uniform beams, it is
reasonable to assume that the transverse displacement response can be expressed as a linear
combination of the beam’s normal modes utilizing a separation of variables approach. For a
simply supported beam of length L, the deflection equation is expressed as

w(x, t) =
∞

∑
i=1

Wi(x)ηi(t) =
∞

∑
i=1

Ci sin(βix)ηi(t) =
∞

∑
i=1

Ci sin
iπx

L
ηi(t) =

∞

∑
i=1

C̃i sin
iπx

L
. (27)

Here, the ith mode is characterized by the mode shape Wi(x) in generalized coordi-
nates. The response time history of the ith mode is denoted as ηi(t). The spatial parameter

β is connected to the natural frequency ω through relation ω = β2
√

EI
ρA . The constant Ci

represents the amplitude associated with the ith mode, dependent on the applied forcing
function. Consequently, the basis matrix D can be formulated as

D =


sin(β1x1) . . . sin(βnx1)
sin(β1x2) . . . sin(βnx2)

...
...

...
sin(β1xm) . . . sin(βnxm)

. (28)

When considering p random measurements across the beam’s length at a specific time

instance, the representation can be expressed [60] as follows: zj =
n

∑
q=1

C∗q sin(βqxj); j =

1, 2, · · · , p. This can be compactly represented in matrix form as z = ΘDx = Φx. In this
context, x = [C∗1 , C∗2 , · · · , C∗n]T , and it is expected that the sparse solution should exhibit
non-zero values for C∗q if C∗q ≈ C̃i. It is crucial to note that the sparse solution x differs from
spatial locations xi.

In summary, Figure 4 illustrates the compressive sensing framework used to estimate
the full-field vibration response, employing a network of multi-agent sensors.

Vibration response collected from mobile 
agents and the corresponding location

𝒁 ∈ ℝ!×#

Compressive sensing 
with basis matrix D

𝐳 ∈ ℝ!

Consider only one time 
instance and using the 

instantaneous location of 
mobile agents

𝐲 ∈ ℝ$

Repeat this 
process for all Q 
time instances

Spatiotemporal matrix completion/Full-
field vibration response from limited 

number of multi-agent mobile sensors, 
𝒀 ∈ ℝ$×#

No model knowledge – 
learn basis matrix D using 

Dictionary Learning
(Data-driven approach)

Partial model knowledge – 
Get basis matrix D from the 

generalized partial differential 
equation of the system 

(Physics based approach)

p = number of mobile agents
m = number of dense sensor
 (full-field sensing points)
Q = time instances
 Q is infinity for real-time

Figure 4. Proposed compressive sensing framework for spatiotemporal response matrix completion.
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5. Numerical Analysis and Result

In this section, we showcase the practicality of the proposed formation control frame-
work, as introduced in Section 3, for accomplishing essential formations within multi-agent
systems. Initially, we demonstrate the feasibility of achieving user-defined formations from
the initial condition of automated mobile sensors. The term “intended formation” refers to
the prescribed motion of a collection of mobile sensors, while “initial condition” pertains to
the initial position and velocity of this group of mobile sensors. Subsequently, we illustrate
the process of estimating the full-field response by employing recorded responses from the
array of mobile sensors, using the method outlined in Section 4. In this context, all mobile
sensors are treated as point sensors, and their mass is negligibly small in comparison to
the total mass of the bridge, which is a realistic assumption. For this numerical analysis,
a simply supported bridge is considered as the structure of interest.

5.1. System Description

Bridge decks could be modeled as simply supported beams. In this study, a sim-
ply supported steel beam [41] of 50 m in length, 1 m in height, and 0.5 m in width
is considered. The beam’s Young’s modulus is E = 2.1× 1011 Pa, while its density is
ρ = 7860 kg/m3. Consequently, the first four natural frequencies of the beam are computed
as 0.94, 3.75, 8.44, and 15 Hz. For this scenario, a 1% Rayleigh damping is taken into con-
sideration. The total count of virtual and dense sensing points is set at 4999, resulting
in a spatial separation of 0.01 m between the virtual sensing points. The primary aim of
this section involves the estimation of vibration time histories for the dense virtual points
(4999 in total) using the vibration data collected from a limited number of mobile sensors.
In this example, we acquire the system’s basis functions through Dictionary learning [41].
In practical scenarios, the training data required for Dictionary Learning can be acquired
through various means, including the utilization of cameras [61,62] or alternative full-field
sensing techniques such as Digital Image Correlation [63,64]. Utilizing this data-driven
basis matrix, compressive sensing is applied across the entire time series to acquire the time
histories of all virtual sensing points. Subsequently, the obtained dense time histories need
to be compared with against the results of finite element formulation to assess the accuracy
of reconstruction. To facilitate this evaluation, a relative error metric εi [41] is considered
as follows:

εi =
||RExact,i − REstimated,i||22

1
m ∑m

i=1 ||RExact,i||22
× 100; i = sensor index. (29)

Here, m is the number of virtual sensing points, and || · ||2 indicates the two-norm.
REstimated,i and RExact,i symbolize the estimated and exact (FEM) responses of the ith virtual
sensing point, respectively. Both RExact,i and REstimated,i have dimensions of nt × 1, where
nt corresponds to the number of time samples. The overall average error E [41] is expressed
as follows:

E =
1
ns

ns

∑
i=1

εi, (30)

where E signifies the average error of all the relative errors εi of independent virtual
responses, and hence E is invariant to the number of virtual sensors.

5.2. Different Types of Formation Control and the Corresponding Reconstruction Result

In this section, we examine two specific configurations termed Formation-1 and
Formation-2, with the objective of assessing the capability of the proposed formation
control to emulate user-defined formations. In the context of Formation-1, the fleet of
mobile sensors traverses the entire bridge back and forth, capturing vibration responses.
In contrast, Formation-2 involves the mobile sensors moving back and forth within localized
sections of the bridge. Subsequent sections comprehensively delve into the details of these
formations. Each individual mobile sensor captures the acceleration response of the bridge’s



Sensors 2023, 23, 7848 13 of 24

vibration data, a practical choice owing to the convenience of installing accelerometers
on vehicles.

5.2.1. Formation-1

This formation involves a total of ten mobile sensors. Half of these sensors (R1 to R5)
commence from the left segment of the bridge, while the remaining half (R6 to R10) initiate
their movements from the bridge’s right segment, as depicted in Figure 5a. Subsequently,
R1 to R5 advance towards the right extremity of the bridge until the leading vehicle de-
tects proximity to the bridge’s end. Likewise, R6 to R10 move towards the bridge’s left
end. Through synchronized back-and-forth motion, all these mobile sensors record the
vibration response data from the bridge. The number of laps conducted entirely depend
upon the user’s data collection duration. Since the mobile sensors move in opposing direc-
tions, creating crossover instances, practical feasibility warrants of two lanes, as depicted
in Figure 5.

Figure 5. Two instances illustrating Formation 1—(a) R1 to R5 commencing from the left section of
the bridge, while the remaining half (R6 to R10) initiate movement from the right segment. The ”blue”
arrows represent the immediate direction of motion for the mobile sensors. (b) Once the mobile
sensors detect proximity to the bridge’s end supports, they alter their movement direction. This
sequence persists during the entire sensing duration.

As the direction of movement of agents R1 to R5 and R6 to R10 are opposite, crossing
occurs between these two sets of agents in the middle region of the bridge. During these
occurrences, two agents simultaneously record identical bridge vibration response read-
ings. Consequently, in such scenarios, the elements of the spatiotemporal response matrix
are determined as the average measurements derived from these two mobile sensors.
The graph connection topology between all the mobile agents is visually depicted in
Figure 6. Here, graph G is considered as an undirected and unweighted graph, where
(j, i) ∈ E only if wij = wji = 1 ∀; (i, j) ∈ E for the sake of simplicity. This study as-
sumes that graph G has no switching topologies (multi-agent connection topologies remain
unchanged over time). The exploration of more intricate agent connection topologies is
reserved for future endeavors.

5 4 3 2 6 7 8 91 10

Figure 6. Graph connection topology of Formation-1. Mobile agents are connected only with their
neighboring agents. The red line shows the connection between the agents.

Analyzing the graph connection topology in Figure 6, it is evident that the entire
graph is disconnected. R1 to R5 are interlinked, while R6 to R10 are connected indepen-
dently. In these scenarios, mobile sensors are connected in a manner where each vehicle
can only sense the relative position and velocity of its nearest neighboring mobile sensors.
To maintain a global sense of position, at least one mobile sensor, the leader, must measure
its position relative to the global coordinates (Equation (16)). For the connected graph
of R1 to R5, R1 is designated as the leader; similarly, R6 serves as the leader for R6 to
R10. Importantly, any vehicle within R1 to R5 or R6 to R10 could be assigned as the leader.
The reference velocity amplitude v∗ is set to 1 m/s for all vehicles, though this choice is
user-dependent. However, this can result in the mobile agents leaving the bridge after
traversing from one end to the other. The multi-agent system must move back and forth
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to capture longer vibration data, as depicted in Figure 5. This movement can be achieved
by applying the same control strategy discussed in Section 3 at different time windows.
The formation error for Formation-1 is calculated as 0.98 m; it arises due to the minimal
interconnectivity among the agents. To achieve a more precise formation, it is possible to
increase communication among the agents, but this would come at the cost of higher com-
putational demands, particularly concerning wireless communication between the agents.
It is important to note, however, that this formation error does not affect the estimation
of the full-field response matrix since compressive sensing is employed for this purpose.
Compressive sensing is well-suited for reconstructing the entire signal from randomly
selected samples. In this context, compressive sensing effectively generates the complete
spatial profile of the full field from the randomly positioned multi-agent vehicles at a given
time instance. With a time sampling frequency of 100 Hz, this demonstration involves
the automated mobile sensors collecting data for 100 s. Consequently, the spatiotemporal
matrix assumes dimensions of 10,000 × 4999 (with 4999 spatial points as discussed in
Section 5.1). Data from the automated mobile sensors populate some of the spatiotemporal
response matrix elements, while the rest are filled using the compressive sensing algorithm
outlined in Section 4. The spatiotemporal response matrix elements filled by the auto-
matic multi-agent mobile sensors are depicted for four-time instances (at t = 5, 10, 15, 20 s)
in Figure 7.

Figure 8a showcases all the sparsely populated entries in the spatiotemporal response
matrix for the entire 100 s using Formation-1. Given this limited amount of data, matrix
completion or full-field sensor data reconstruction is performed for each time instance
through the compressive sensing technique outlined in Section 4. The spatial profile
of relative errors εi for the estimated full-field response, as defined in Equation (30), is
computed and presented in Figure 8b. The computed average error E amounts to 1.18%.
Notably, relatively large εi values are observed at locations around 7.02 m and 44.63 m from
the left end, corresponding to relative errors of 6.94% and 1.55%, respectively, as depicted in
Figure 8b. Worth mentioning is the higher error values near the bridge’s ends (0–10 m and
40–50 m from the left end), likely due to fewer sensors being present as vehicles cross each
other, particularly during instances like t = 12 s, 37 s, and so on. Given that the vehicles
are concentrated in the middle portion nearly half the time, this phenomenon contributes
to prominent errors at the ends and negligible errors in the middle. Investigating optimal
vehicle movement strategies to minimize reconstruction errors across the entire beam could
be a scope of future research.

Reconstructed responses for Location 1 are displayed in Figure 9 for two distinct
time segments: 50–55 s and 60–65 s. Figure 8a shows that during the period from 50
to 55 s, the instantaneous location of the automated mobile sensors covers the entirety
of the bridge, resulting in the reconstructed time history to be exact to the actual true
response. Conversely, in the time span of 60–65 s (Figure 8b), as the automated mobile
sensors are intercepting near the middle of the bridge, they become concentrated within
that specific region. This concentration leads to discernible disparities between the actual
and reconstructed time histories.
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Figure 7. Sparsely filled entries of the spatiotemporal matrix at various time instants due to the
data collected by automatic multi-agent mobile sensors in Formation-1. (a) at t = 5 s, (b) at t = 10 s,
(c) at t = 15 s, and (d) at t = 20 s. The top figure of each subfigure shows the filled entries, and the
corresponding bottom figure shows the instantaneous position of the mobile sensor formation.

Figure 8. (a) Sparse entries in the spatiotemporal response matrix for the entire duration of 100 s
using Formation-1 which are used for estimating full-field response. (b) Relative reconstruction error
(%) is associated with each location along the length of the simply supported bridge. Location 1
corresponds to the highest error observed across the bridge’s entire span.
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Figure 9. Comparison of reconstructed and actual time history responses at Location 1 (Figure 8) for
two time snippets. (a) t = 50–55 s, (b) t = 60–65 s.

5.2.2. Formation-2

The reconstruction error of Formation-1 is higher near the bridge ends than in the
middle section, which is attributed to the multi-agent system’s crossing near the bridge
midpoint. As the final objective is to achieve highly accurate full-field response estimation,
Formation-2 is designed to circumvent situations involving “crossing”. In Formation-2,
the mobile sensors execute back-and-forth movements within a confined spatial range,
as depicted in Figure 10. In this case, we study with only six mobile sensors, as obtained
through the formula for the optimal number of sensors required for accurate full-field
response estimation as provided in Equation (24). The graph connection topology among
all the automated multi-agent mobile sensors is depicted in Figure 11.

Figure 10. (a) Initial positions of R1 to R6 in Formation-2. The ”blue” arrows indicate the current
movement direction of the mobile sensors. (b) When the mobile sensors detect their proximity to
the bridge end supports, their movement direction is altered. This back-and-forth process continues
throughout the data collection phase.

5 4 3 2 16

Figure 11. Graph connection topology of Formation-2. Mobile agents are connected only with their
neighboring agents. The red line shows the connection between the agents.

Figure 11 shows that the mobile agents are only connected with their neighboring
agents, enabling them to sense their relative velocity and relative displacement with respect
to the nearest neighboring vehicles. Consequently, the presence of a leader is necessary
to determine global position coordination and ensure proper formation maintenance.
For Formation-2, the role of the leader is assumed by the agent R1. The reference velocity
amplitude is randomly chosen and kept constant as [1, 1.1, 1.4, 1.6, 1.2, 1.1] m/s for all
vehicles throughout the process. Similar to Formation-1, the control strategy is applied in
different time windows to achieve the back-and-forth movement of the automatic multi-
agent mobile sensors. The formation error of Formation-2 is calculated as 0.54 m and it
is important to emphasize that this formation error does not impact the estimation of the
full-field response, as explained in Section 5.2.1. The sparsely filled entries contributed
by the automated mobile sensors in the spatiotemporal response matrix of dimensions
10,000 × 4999 are depicted in Figure 12 for four distinct time instances.
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Figure 12. Sparsely filled entries of the spatiotemporal response matrix at different time instants due
to Formation-2 motion of multi-agent mobile sensors at (a) at t = 5 s, (b) at t = 10 s, (c) at t = 15 s,
and (d) at t = 20 s. The top figure of each subfigure shows the filled entries, and the corresponding
bottom figure shows the instantaneous position of the mobile sensor formation.

Figure 13a shows the sparsely populated entries of the spatiotemporal response
matrix for the total 100 s, when the multi-agent system follows Formation-2. Utilizing the
compressive sensing technique, the full-field sensor time history can be derived for each
time instance using these sparse entries. The spatial distribution of relative reconstruction
error for Formation-2 is depicted in Figure 13b. The average relative error is computed
as 0.36%. Notably, Location 1 (18.9 m from the left end) and Location 2 (45.6 m from the
left end) exhibit relatively higher relative error values of 0.62% and 1.63%, respectively.
The corresponding estimated time histories for these locations are depicted in Figure 14,
revealing that the reconstructed response time histories are comparable to the actual
response time histories.

We attempted to compare the compressive-sensing-based spatiotemporal matrix com-
pletion approach with other state-of-the-art algorithms currently available. Nevertheless,
employing matrix completion techniques based on Singular Value Decomposition (SVD)
methods [65] and the OptSpace method [66] proved unfeasible due to their failure to con-
verge within an acceptable tolerance limit, even with a large number of iterations. This
outcome can be attributed to the dimensions of sparse matrices, which are 10,000 × 4999,
containing only 10,000 × 6 populated values, resulting in a mere 0.12% of filled entries.
Consequently, estimating the remaining unknown values without additional information
proved exceedingly difficult. In contrast, our proposed approach applies compressive sens-
ing to each row of the spatiotemporal matrix independently, leveraging knowledge of the
underlying basis function obtained either through dictionary learning or a physics-based
approach. This approach rendered full-field response estimation feasible, distinguishing it
from the other methods.
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Figure 13. (a) Sparsely filled sparse entries of the spatiotemporal matrix for the total time 100 s with
Formation 2. (b) Relative reconstruction error (%) for each location of the simply supported bridge.

Please note that different types of formations yield varying levels of reconstruction
accuracy. As demonstrated in the aforementioned examples, Formation-2 exhibits superior
accuracy in estimating full-field vibration responses compared to Formation-1. The pri-
mary objective of this paper is to enable user-driven control of the multi-agent system.
It is evident from the agent formation control that the proposed algorithm effectively
adheres to user-defined formations. Generally, the compressive sensing-based frame-
work yields improved reconstruction accuracy when mobile sensors can continuously
span the entire beam. This is in contrast to Formation-1, which yields inferior results
due to instances where all mobile sensors cluster in the central portion of the structure.
Identifying the optimal formation remains a potential area for future research, which can
be motivated from optimal input [67–69] and sensor location [70] for structural system
identification literature.

Figure 14. Time history response comparison of (a) Location 1 and (b) Location 2 in Figure 13b. Both
the reconstructed time histories are comparable with the actual time histories.

5.3. Achieving Formation-1 from Any Initial Condition

While Figures 5a and 10a illustrate the initial starting positions of Formation-1 and
Formation-2, respectively, a significant advantage of formation control is its capability to
achieve any formation from varying initial positions and velocities of the automated multi-
agent mobile sensors using the controller outlined in Equation (19). Notably, the multi-agent
system requires a certain amount of time to converge to the desired formation from any
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given position or velocity. Throughout this study, gp and gv in Equation (19) are consistently
set to one, controlling the convergence rate towards the formation. A practical example is
depicted in Figure 15, wherein the initial positions of the mobile sensors are set at 25 m from
the left end (bridge midpoint) with zero initial velocity. Utilizing this starting condition,
Formation-1 is achieved. Figure 15d illustrates the formation’s attainment in approximately
26 s. Consequently, for better accuracy while using the full-field response estimation
framework, data collected beyond 26 s are appropriate.

Figure 15. The automated multi-agent mobile sensors achieve Formation-1 where the initial position
of all the mobile sensors is in the middle of the bridge. This figure shows the instances of how it
achieves the target formation (a) t = 5 s, (b) t = 10 s, (c) t = 15 s, (d) t = 20 s.

The requirements for consensus for the undirected graphs are as follows [50]:

(a) Every agent must be connected with at least one other agent; otherwise, achieving
consensus becomes unattainable.

(b) The time it takes for all agents to reach a consensus from an arbitrary starting point,
known as the convergence time is dependent on gp, gv, and the second eigenvalue of
the Laplacian matrix (L in Section 3). Moreover, this convergence time is inversely
proportional to the magnitude of the second eigenvalue, which is influenced by the
graph connection weights. In essence, increasing the strength of graph connections or
weights results in quicker convergence for achieving consensus.

(c) The convergence time of consensus is also influenced by graph connectivity. In this
study, the multi-agent system is considered to be connected with only neighboring
agents. For instance, if we consider the second eigenvalue of the Laplacian matrix
as λ2, considering a total of n agents, there can be 2(

n
2) potential graphs, considering

the isomorphic graphs as different graphs. Amidst these diverse graph sets, there
are instances where the second eigenvalue of the Laplacian matrix λ̂2 exceeds λ2.
Such graphs with a higher second eigenvalue converges faster toward consensus than
the neighboring connection graph, as demonstrated in this paper. However, more
connections among agents would be attributed to the cost. Therefore, in the pursuit of
simplicity and cost effectiveness, we opted to investigate the most straightforward
scenarios, such as multi-agent connection with only neighboring agents.
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The presented formation control strategy holds potential for modern structural health
monitoring through the crowd-sensing of bridge vibration data. It offers the ability to
automate the process of collecting vibration data by coordinating the movement of vehicles.
The data gathered from smartphones installed in these mobile vehicles can be harnessed
to characterize the modal properties of bridge structures under real-world circumstances,
which is essential for condition assessment and damage detection frameworks. We discuss
the advantages of full-field sensing from a limited number of fixed sensors in detail in our
previous studies [41,42]; this paper performs a similar task, i.e., full-field sensing, but with
a limited number of automatic mobile sensors.

6. Recommendation for Practical Implementation

Practical implementation recommendations are crucial for the successful execution
of full-field vibration response estimation tasks based on multi-agent formation control.
Several factors must be taken into account when designing experiments for this purpose.

Sensor arrangement: To successfully achieve the formation control, every agent
should be equipped with the IMU (Inertial Measurement Unit) and Wireless Commu-
nication Modules. IMUs combine accelerometers and gyroscopes to measure an agent’s
linear acceleration and angular velocity. They are essential for estimating an agent’s orien-
tation and motion dynamics. In this paper, the movement of agent is one-directional; hence,
only linear accelerometer is sufficient. For the 2D and 3D formation control problem, IMUs
would be necessary. Wireless communication modules (e.g., Wi-Fi, Bluetooth) facilitate
communication and coordination among agents as the formation control often requires
agents to exchange information with one another. As the proposed formation control
requires a “leader” agent, a GPS (Global Positioning System) device should be mounted on
the “leader” agent. GPS sensors provide accurate global position information, including
latitude, longitude, and altitude, which are used to obtain absolute position estimates of
agents.

Data frequency: The data frequency or sampling rate for formation control depends
primarily on agent dynamics (faster moving agents needs higher sampling frequency to
maintain formation accuracy) and formation precision (precise formation control requires
higher data frequency). In this paper, the agents are moving at an approximately 1 m/s
velocity; hence, we considered 100 Hz as the data sampling frequency to maintain the
preciseness at a cm level.

Noise reduction techniques: Noise reduction techniques play a crucial role in improv-
ing the performance and reliability of formation control algorithms, especially in scenarios
where sensor data is subject to various sources of noise and uncertainty. The Kalman
filter [71] is a widely used technique for estimating the state of a dynamic system while
accounting for measurement noise. In formation control, it can be employed to filter noisy
sensor measurements, such as GPS positions or IMU data, to obtain more accurate estimates
of agent positions and velocities. Additionally, sensor fusion (combining data from multiple
sensors) and Predictive Filters (such as the Alpha–Beta filter which can provide a more
stable estimate of the current state) can be employed to achieve the desired level of noise
reduction and robustness in real-world formation control systems.

Sensor synchronization: Sensor synchronization in formation control is the process of
aligning the data from sensors on different agents or vehicles in a formation such that they
share a common time reference and are temporally aligned. This synchronization is crucial
for achieving accurate and coordinated control of the agents within the formation. How-
ever, sensor inaccuracies can lead to errors in position estimation, which can degrade the
formation quality. Additionally, delays in communication can disrupt the synchronization
of sensors.

Calibration: In many formation control scenarios, agents may have different types
of sensors, each with its own calibration requirements and limitations. Coordinating the
calibration of heterogeneous sensors can be challenging, as the calibration process for one
sensor may not be directly applicable to others.
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Scalability: Scalability issues can arise when the formation control system encounters
challenges in maintaining performance, coordination, and communication efficiency as the
system scales up as the number of agents in the formation grows, communication load and
overhead can increase significantly. Also, as the density of agents in a formation increases,
the likelihood of collisions or near misses can also rise. To address scalability issues in
formation control, decentralization and sparse communication can be adopted, which is
scope of future exploration.

Computational demands for real-time data acquisition and processing: As the multi-
agent system are connected with each other wirelessly, the computational demand of col-
lecting and transmitting data wirelessly in real time to the server depends on the sampling
frequency and data latency. Sometimes, the wireless transmission experience data packet
losses which need to recovered, as well in the data server [3]. Efficient wireless protocols
and technologies as well as a real-time operating system could be helpful in this regard.
Once the data are stored in the server and sparsely populate the spatiotemporal data matrix,
the real-time full-field response estimation is very fast. In this paper, each of the rows of
the spatiotemporal response matrix requires approximately 0.43 s on average from the
sparse data.

7. Discussion

Mobile sensing serves as an alternative to fixed sensing for the acquisition of vibration
response data in the field of structural health monitoring. Currently, mobile sensors are op-
erated by assigned drivers, a potentially impractical approach if the array of mobile sensors
needs to follow specific patterns to optimize the data collection procedure. To address this
issue, we introduce an automated multi-agent mobile sensing framework in this paper. Our
proposed method diverges from fully autonomous vehicles which necessitate numerous
sensors to maintain the vehicle’s position and speed, a potentially economically inefficient
arrangement for structural health monitoring objectives. Therefore, the proposed formation
control strategy relies solely on vehicles that autonomously manage themselves by gaug-
ing the relative velocity and relative position of their nearest neighboring agent/vehicles.
In this technique, very few vehicles (often just one) with information about their global
position, referred to as the “leader vehicle,” are required. This formation control strat-
egy could be useful across various mobile sensing-oriented structural health monitoring
technologies. In this work, we utitize the suggested framework for estimating full-field
responses using a limited number of mobile sensors. We consider two distinct formations:
Formation-1 involves two groups of vehicles crossing each other and traversing back and
forth over a bridge during the data collection phase. However, Formation-1 exhibits notable
response estimation errors near the bridge’s ends due to sensor gaps as the vehicle groups
intersect. In contrast, Formation-2 features vehicles moving back and forth locally, result-
ing in a reduced number of estimation errors. Furthermore, we showcase the capability
of mobile sensors to achieve any formation from any initial position and velocity using
the proposed formation control framework. This strategy holds the potential to facilitate
real-time assessment of changing system parameters or automated localization of damage.

8. Conclusions and Future Work

In this paper, we explored a minimalistic and cost-efficient scenario where the multi-
agent system exclusively relies on neighboring connections. Instead, if the number of
connections between the multi-agent system increases, then the consensus, as well as the
whole framework, i.e., formation control combined with controlling the position of the
entire formation over time, is more robust. However, achieving such a dense connection
among the multi-agent systems would demand a better and larger number of sensors,
potentially leading to higher costs.

This paper primarily investigates mobile sensors with time-invariant graph interaction
topology. Exploring directed, weighted, and switching graph topologies could offer insights
into the performance of formation control in the domain of vibration sensing and health
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monitoring, which remains a subject for future investigation. Additionally, in the paper,
it is assumed that the vehicles are configured as point mobile sensors with unidirectional
movement. In the context of 2D and 3D structures, the adaptation of mobile sensors into
multi-dimensional vehicles and the potential consideration of mobile sensors as rigid
bodies could be a scope of future study. Furthermore, for 2D and 3D systems, optimal paths
for mobile sensors could be identified to maximize sensing information—an aspect not
necessary for the current 1D movement scenario. Furthermore, to evaluate the effectiveness
of the proposed method, real-life or laboratory experiments can be executed, which could
also be explored in future work.
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