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GAMMA-RAY SOURCES AT STANDOFF DISTANCES
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B.S., Physics, Michigan State University, 2005
M.S., Nuclear Engineering, University of New Mexico, 2009

Ph.D., Engineering, University of New Mexico, 2013

ABSTRACT

The Stand-off Radiation Detection System (SORDS) program is an Advanced
Technology Demonstration (ATD) project through the Department of Homeland Se-
curity’s Domestic Nuclear Detection Office (DNDO) with the goal of detection, identi-
fication and localization of weak radiological sources in the presence of large dynamic
backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-
based, hybrid gamma-ray spectroscopic and imaging system able to quickly detect,
identify and localize, radiation sources at standoff distances through improved sen-
sitivity provided by multiple detection modes while minimizing the false alarm rate.
Reconstruction of gamma-ray sources is performed using a combination of gamma-ray
spectroscopy and two imaging modalities; coded aperture and Compton scatter imag-
ing. The TMI consists of 35 sodium iodide (Nal) crystals (5x5x2 in? each), arranged

in a random coded aperture mask array (CA), followed by 30 position sensitive Nal
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bars (24x2.5x3 in® each) called the detection array (DA). The CA array acts as both
a coded aperture mask and scattering detector for Compton events. The large-area
DA array acts as a collection detector for both Compton scattered events and coded
aperture events. In this thesis, the implemented spectroscopic, coded aperture, Comp-
ton and hybrid imaging algorithms will be described along with their performance.
It will be shown that multiple imaging modalities can be fused to improve detection
sensitivity over a broader energy range than any mode alone.

Since the TMI is a moving system, peripheral data, such as a Global Positioning
System (GPS) and Inertial Navigation System (INS) must also be incorporated. A
method of adapting static imaging algorithms to a moving platform has been devel-
oped. Also, algorithms were developed in parallel with detector hardware, through
the use of extensive simulations performed with the Geometry and Tracking Toolkit
v4 (GEANT4). Simulations have been well validated against measured data. Results
of image reconstruction algorithms at various speeds and distances will be presented
as well as localization capability. Utilizing imaging information will show signal-to-

noise gains over spectroscopic algorithms alone.
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Chapter 1

INTRODUCTION

In many scenarios related to homeland security, it is not only desirable to detect the
presence of a radioactive source but also to identify and localize the source of the
radiation. It is also desirable to do so as quickly as possible with high confidence
and low probability of false alarm. In the simplest of scenarios stationary counting
detectors may be able to detect anomalies in count rates from a single location.
However, in dynamic scenarios where the detector is in motion, count rates can vary
erratically over both position and time making detection difficult. Figure 1.1 shows
the measured count rate from Naturally Occurring Radioactive Material (NORM) as
a function of data segment along a 3.2 km stretch of road in Lexington Massachusetts.
The measured count rate varies by as much as a factor of two over this small stretch
of road with an average count rate of approximately 30 kHz (dashed line) over all
energies integrated up to 3 MeV.

Additionally, NORM background can vary over time and as a function of weather
for the same location. Figure 1.2 demonstrates the fluctuation in measured count rate
as a function of position (latitude) for the same stretch of road taken just 24 hours

apart. Deviations in the background rate vary by up to 10 percent.
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Figure 1.1: Total count rate as a function of sequential data segment for a 3.2 km
stretch of road in Lexington, MA. Count rates vary from 24 to 44 kH 2z depending on
location.
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Figure 1.2: Total count rate as a function of latitude along a north bound section
of road. Shown here are data from 1 August 2009 (blue) and 2 August 2009 (red).
Background rates vary by up to 10% along an identical stretch of road when measured
only 24 hours apart.



NORM background is a large contribution to all measured gamma-ray flux and
represents the dominant obstacle for detection of other sources of radiation. Addi-
tionally, weak sources in the presence of large, rapidly changing NORM backgrounds
become increasingly difficult to detect due to attenuation in the surrounding medium
and low photon flux, potentially buried within expected variations in the background.

In order to address these challenges, a robust detection system which takes full
advantage of all available information is desired. The Department of Homeland Secu-
rity’s Domestic Nuclear Detection Office (DNDO) has expressed interest in a mobile
gamma-ray detector system. To meet the global detection challenge a sensitive mobile
instrument must be designed to detect, identify and localize radiological threats at
distances up to 100 meters. The system must do so over a wide range of gamma-ray
energies while providing the necessary sensitivity to true sources through background
rejection while maintaining very low false alarm rates. Furthermore, it must be com-
pact, low cost and lightweight.

Currently, no single detector technology has been fully optimized in the desired
energy range, weight, size, cost, resolution and sensitivity to meet this challenge. How-
ever, the challenge can be met by combining the best features of multiple existing
proven detection technologies. With a careful hardware design, detector configura-
tion and sophisticated processing, it is conceivable to construct a detector system
capable of performing both coded aperture imaging and Compton scatter imaging
along with enhanced spectroscopic detection simultaneously. The Raytheon-SORDS
Tri-Modal Imager (TMI) has been constructed as a unique and innovative approach
to mobile gamma-ray detection that exploits the advantages of all of these detection

technologies.



Figure 1.3: The TMI prototype system with the side panel removed to allow visibility
into the detector system.

The TMI incorporates both imaging and non-imaging technologies, specifically
a coded aperture imager, a Compton scatter imager, and a large-area spectroscopic
detector. Together, these technologies are integrated into a powerful system capable
of effectively detecting, identifying and locating radioactive sources of interest from a
moving platform. Moreover, the design is capable of being scaled to meet deployment
requirements and adapted to aerial and maritime platforms. Figure 1.3 shows the TMI
prototype system with the side panel removed to allow visibility into the detector
system.

It should be noted that coded aperture and Compton scatter gamma-ray imaging
methods have complementary energy regions where they perform well. Coded aperture

imaging is typically best for gamma rays with low to mid-range energies (<1 MeV)



and has a large Field-of-View (FOV). Compton imaging excels in the region of medium
to high gamma-ray energy (>0.5 MeV') and has a potential 4r FOV. Due to the
large area of the scintillator detectors on the TMI, there are statistical advantages to
spectroscopic algorithms as well. While non-imaging algorithms are not capable of fine
source localization they have potential to determine proximity or likely region where
a potential source may exist. Through intelligent placement of detector materials a
system has been constructed to allow for multiple simultaneous gamma-ray imaging
techniques to be performed along with spectroscopic detection methods to improve

the overall performance of the system.

1.1 Coded Aperture Imaging

Coded aperture imaging is a method of gamma-ray imaging that uses a position sensi-
tive detector array, shadowed by a dense, sparse mask, in order to cast a coded shadow
onto the array [1-6]. The measured coded shadow can then be decoded to reconstruct
an image of the source. The advantage of coded aperture gamma-ray imaging comes
from the fact that the modulation pattern of background events reconstruct into a
randomly filled image while source events reconstruct to a common location. Figure

1.4 shows an example of the coded aperture concept.

1.2 Compton Imaging

Compton imaging is another method of gamma-ray imaging that uses multiple po-
sition and energy measurements in coincidence to reconstruct the probable origin of
the gamma-ray photon. When gamma-ray photons are emitted from a source, they

can Compton scatter in a scattering detector, and deposit the remaining energy in
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Figure 1.4: Example of incident photons casting a coded shadow onto a detector array.
The coded pattern can be unscrambled to reconstruct the source image [7].

the absorbing detector. If this interaction can be precisely measured, the kinematics
of Compton scattering can be used to reconstruct the event, where the location of
the source can be confined to a point on the cone. The location of a source cannot be
determined from a single event cone, however the reconstruction of many cones will
overlap at the true location of the source. Figure 1.5 shows several example simulated
Compton scattering events, the intersection of the three cones reveals the true source

location.

1.3 Overview of Thesis

This thesis will present background information on gamma-ray imaging and spectro-
scopic techniques. Additionally, physics processes common to detector systems will be

presented such as radioactive decay and gamma-ray photon interaction mechanisms.
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Figure 1.5: Example of three Compton scattering events that overlap at the correct
source location.



The next few chapters will present the specifics of the implemented hardware on the
TMI prototype and simulation and modeling efforts performed.

Details of the non-imaging spectroscopic algorithms will be presented as well as
the details of the implemented coded aperture and Compton gamma-ray imaging
algorithms. Techniques for fusion of all imaging and non-imaging modalities as well
as methods for co-registration of images and data will be presented. Additionally a
chapter is devoted to the methods of analysis for performance metrics is included.

Since NORM background plays a major role in the detection sensitivity there is
a chapter devoted to the study and understanding of the principle components of
the background. Once characterized, background can be processed through the im-
plemented algorithms using data injection techniques and analysis methods to assess
performance under various conditions and assumptions. Finally, results of the pro-
totype systems and analysis of the results will be presented and future work will be

discussed.



Chapter 2
BACKGROUND

2.1 Survey of Technology

Gamma-ray imaging is widely used as a tool in nuclear medicine research and proce-
dures as well as astrophysics research. Additionally, research in the use of gamma-ray
imaging for waste monitoring and nuclear nonproliferation began in the 1990s. Since
then, efforts to develop better detection technologies has gained increased attention, in
particular, imaging technologies suitable for homeland security applications. Imaging
and spectroscopic technologies are desirable because they allow for passive systems to
detect, identify and localize sources while rejecting background and minimizing false
alarm probabilities without complicated active interrogation systems. This capability
would provide the improved sensitivity needed to rapidly sense radioactive materi-
als from stand-off distances. Two common gamma-ray imaging techniques are coded

aperture and Compton scatter imaging.

2.1.1 Coded Aperture Imaging

Coded aperture imaging has been used for many years, mostly in the fields of X-ray

and gamma-ray astronomy [1,8|. Coded aperture imaging is an attractive solution



because of its maturity and capability to provide accurate images of nuclear material
from meters to many light years away depending on the application. The principle
of a coded aperture imager is simple. A dense screen (aperture) with random holes
is placed in front of a position sensitive detector array. Gamma-ray photons from
a source cast an image of the screen onto the array. The screen image can then be
unscrambled to reconstruct the source image [8].

R.H. Dicke at Princeton University proposed a scatter-hole camera for X-ray and
gamma-rays in 1968 [8]. It was suspected that this technology would have applica-
tions in astronomy as well as the medical industry. It was also conceived that Dicke’s
proposed system would be capable of generating radiographic images or detailed inter-
nal images through the use of radioactive tracers in the body. Today coded aperture
imaging has been recognized to have applications to homeland security.

In the field of astrophysics, Allen et al. constructed protoEXIST [4], a prototype
coded aperture hard X-ray telescope. It features a 4.5 m? Cadmium-Zinc-Telluride
(CZT) detector plane with 4096 pixels, and a wide 90x70 degree FOV. This was
the primary instrument on the Energetic X-ray Imaging Survey Telescope (EXIST)
mission [6]. EXIST is a large area, space based, coded aperture telescope tasked
with surveying Active Galactic Nuclei (AGN), searching for black holes and studying
Gamma Ray Bursts (GRBs) and other transient events. Other coded aperture detec-
tors used in astrophysics include the Imager on-board the Integral Satellite (IBIS) [5]
and the Burst Alert Telescope (BAT) on the Swift mission [7].

The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) incorpo-
rates coded aperture imaging technology on both the IBIS and the spectrometer

aboard INTEGRAL (SPI). The imagers are used to get directional information on
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the incoming gamma-ray radiation [9]. The SPI imager consists of 19 hexagonal ger-
manium detectors shadowed by 63 tungsten alloy elements 30 mm thick. Germanium
was chosen to deliver high-resolution energy spectra to the SPI (2.2 kel Full-Width
at Half-Maximum (FWHM) at 1.33 MeV).

The IBIS imager is optimized for high angular resolution in order to scan the
gamma-ray sky from 3 kel to 10 MeV [10]. The coded aperture used on IBIS was
approximately 1 m?, 16 mm thick tungsten. The detection plane employed for low
energy (<150 keV') consisted of a 128x128 (2600 cm?) multi-layer Cadmium-Telluride
(CdTe) detector. These detectors were applied to the low energy range because of their
thickness (2 mm). At 150 keV, the efficiency is already down to 50% [10,11]. On
the high energy range a 64x64 Cesium-lodide (Csl) array was used with photodiode
readout. Csl was selected due for its high gamma-ray stopping power. The sensitive
area of the Csl array was approximately 2890 em?. Additionally the IBIS imager was
used as a Compton imaging system. The separation between the low energy CdTe
and high energy Csl arrays was approximately 94 mm. This allowed for simultaneous
capture of coincident interactions in the two arrays allowing for Compton scatter
reconstruction and background suppression.

The BAT aboard the SWIFT mission, launched in 2004, included a CZT coded
aperture imager [7]. BAT is one of three instruments on the Swift spacecraft, part
of the National Aeronautics and Space Administration (NASA) Medium Explorer
Program (MIDEX). The purpose of the BAT imager is to study GRBs with loca-
tion accuracy of 1-4 arcmin. The detector plane consists of 32,768 (4x4x2 mm?) CZT
crystals with an energy range from 15 to 150 keV and energy resolution of approxi-

mately 7 keV. The coded mask is comprised on 52,000 pieces of lead (5x5x1 mm?).

11



The mask/detector separation distance is 1 meter. The combination of a large, fine-
grained mask and high position/energy resolution detectors are what give the BAT
its sensitivity and excellent resolution.

Unrelated to astrophysics, Smith et al. at the University of Michigan in 1999 pro-
posed a novel hybrid collimation technique for gamma-ray imaging called the Hybrid
Portable Gamma Camera (HPGC) [12]. This team proposed a system that combines
the mechanical collimation of a coded aperture imager with the electronic collimation
of a Compton camera. Advantages of this system included increased efficiency and
improved energy range (50-2000 keV'). The HPGC used a 2x2 mosaic of a basic 5x5
multiplexed, uniformly redundant array (MURA) [2] passive coded mask made of 5
mm thick lead. The detection array was a 100x100x10 mm? Thallium Doped Sodium-
lodide (Nal(T1)) read out by four Photomultiplier Tubes (PMTs) using Anger-logic
for position sensitivity. Additionally a third detector plane (70x70x30 mm?) of Sodium
Doped Cesium-Todide (CsI(Na)) with 9x9x30 mm? pixels was positioned behind the
sodium iodide (Nal) array. The passive mask and Nal array acted as a coded aperture
imager and the Nal and Csl arrays formed a Compton scatter camera. Results from
the HPGC imager demonstrated hybrid collimation was superior to either mechanical
or electronic alone.

For homeland security, the Naval Research Laboratory (NRL) in 2008 constructed
the Mobile Imaging and Spectroscopic Threat Identification (MISTI) system [13-15].
The MISTT system was developed as a mobile gamma-ray imaging and spectroscopy
system. They recognized the value of coded aperture imaging for localization of de-
tected materials using a high-resolution spectroscopic system with applications in

homeland security. Threats are identified using 28, 8.5 ¢m diameter, 6.5 ¢m long,
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cylindrical High-Purity Germanium (HPGe) detectors with an average relative effi-
ciency of 110% (compared to a 3x3 inch Nal) and 2 keV FWHM energy resolution at
1333 keV. Once identified by the HPGe, threats are imaged, for localization, using
a Nal/lead coded aperture system. The imager on MISTI consists of a 10x10 ele-
ment array of Nal tiles (10x10x5 c¢m?) for energy deposition and position sensitivity.
The passive coded mask is constructed from a 12x18 random array, 50% filled with
10x10x2.3 em? lead tiles. The mask and detection array are separated by 40 cm. The
reported angular resolution of the imager is 0.25 radians in both the horizontal and
vertical dimensions.

Also related to homeland security, Ziock et al. at Oak Ridge National Labora-
tory report the use of a mobile one-dimensional coded aperture imaging system for
orphan source searching [16]. Potential improvements include the ability to suppress
background through imaging, extending the range of detection for milliCurie class
sources by up to 50 meters and beyond. The imager is mounted in a 4.9 m long
trailer that can be towed by a large personal vehicle. Sources are localized in both
the direction of travel and range. The imager is a 27 element CsI(Na) detector array.
Each of the elements is a 4.2x4.2x40 cm? CsI bar read out by a single PMT. A feature
of this system is the capability to perform imaging on both sides of the trailer. This
is accomplished by constructing masks on either side of the central Csl array. Masks
on opposing sides of the array are inverses of each other to allow for simultaneous
imaging on both sides. The passive mask is constructed from a dense metal alloy to

improve opacity and image contrast.

13



2.1.2 Compton Scatter Imaging

Compton imaging has been recognized as an imaging technique with potential appli-
cations for homeland security. It is based on the Compton scattering interaction and
preserves information about the direction and energy of incident gamma rays if the
scattering by-products can be precisely measured.

Various Compton imaging designs have been studied for use in many fields includ-
ing homeland security and counterterrorism. One such effort was carried out by the
Naval Research Laboratory along with the University of California at Berkeley based
on their astrophysics expertise. This effort focused on the development of Comp-
ton imagers that used thick, position sensitive, solid-state detectors [17]. Efforts by
Lawrence Livermore National Laboratory (along with collaborators) included devel-
opment of the spectroscopic imager for gamma rays, SPEIR [18], Compton imaging
with position sensitive silicon and germanium detectors [19], and coaxial germanium
detectors [20]. There are many situations applicable to homeland security where it is
necessary to both detect and localize an unknown source. Applications include passive
searching of areas where nuclear material may be present, cargo screening, where it
is inefficient and costly to open containers to search for nuclear material or screening
the contents of suspicious objects while maintaining a safe distance.

While Compton imaging is not a new technique, recent advances in material fab-
rication and signal processing capabilities make building a Compton imaging device
more efficient. Also, Compton imaging is one choice for a gamma-ray imaging system
capable of performing three-dimensional imaging and provides the means to image
gamma rays without the use of a mechanical collimator. Eliminating heavy collimators

has the advantage of reducing the overall weight of the system, which is an important
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factor when considering a fieldable device, especially in mobile, airborne and space
applications. Compton imaging also increases the limited FOV of collimated detectors
to potential 47 imaging. There are some drawbacks however, including the medium
to high cost.

Compton imaging has been of interest to researchers in both the medical imag-
ing and astrophysics communities since the early 1980’s. More recently, the potential
value of Compton imaging for homeland security applications has been recognized.
Currently there are several efforts underway examining how new detector technolo-
gies can be applied to Compton imaging as well as utilizing advanced algorithms to
improve the detection capabilities of current systems.

Wulf et al. [21] at the Naval Research Laboratory (NRL) report the application of
germanium strip detectors for the construction of a Compton telescope. As gamma
ray energy increases, more material is required to stop it. If detectors with good posi-
tion and energy resolution are thick enough to have multiple Compton scatters then
the photon does not need to be fully absorbed. Thicker detectors require depth reso-
lution or a large separation between detectors to accurately determine the scattering
angle. Unfortunately, a large separation between detectors reduces the efficiency of
the instrument. Wulf proposed a detector system capable of both stopping low energy
gamma rays completely and using multiple Compton scatters for high-energy gamma
rays, however this requires expensive electronics and complex event reconstruction
algorithms.

Similarly, Vetter et al. [22] while at Lawrence Livermore National Laboratory
(LLNL) developed an imaging system using position-sensitive HPGe and lithium

drifted silicon detectors (Si(Li)) [23]. This system should allow for imaging of gamma
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ray sources with higher sensitivity than collimator based systems with the use of
advanced 3D gamma ray tracking techniques. They have implemented a Compton
camera built of a single double-sided strip HPGe detector with a strip pitch of 2 mm.
They report three dimensional position resolution of 0.5 mm at 122 keV using simple
pulse shape analysis techniques.

Sullivan, et al. [24-27] at Los Alamos National Laboratory have developed the
Prototype Compton Imager (PCI) a silicon/Csl prototype Compton scatter camera.
This system provided three thin silicon scattering planes followed by an array of
CsI(T1) crystals for collection of scattered photons. Each silicon plane consisted of
320 (16x20) pixels, each 0.3 ¢m x 0.3 em x 280 pM. In principle, the multiple layers
of thin silicon could potentially allow for tracking of recoil electrons, improving recon-
struction. The absorption plane consisted of a 6x7 array of 1.2x1.4x1.0 em? CsI(T1)
elements read out by silicon PIN diode.

For space applications, Tanaka et al. [28] at the Institute of Space and Astronau-
tical Science (JAXA) have developed a Si/CdTe semiconductor Compton telescope.
This effort was aimed at developing a Compton telescope based on high resolution
silicon and CdTe imaging devices in order to obtain a high sensitivity astrophysical
observation in the sub-MeV gamma-ray region. The Compton telescope consists of
a double-sided silicon strip detector surrounded by CdTe pixel detectors. Similar to
the PCI, Tanaka uses silicon as a scattering detector but uses CdTe as absorbing
detectors rather than Csl.

In 2004 Xu et al. of the University of Michigan proposed a unique method of
Compton imaging [29,30]. In their method, the use of a single CZT semi-conductor

detector with 3D position resolution, as well as energy information of each interaction,
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is used to perform Compton imaging. The detector used is a single 15x15x10 mm?

CZT crystal. Since any point within the crystal can be the scatter position, it allows
them to do 47 imaging in the near-field. This is a novel approach because it is the
first semiconductor based 47 Compton imaging system. They also worked to improve
on the algorithms used in Compton imaging, attempting to reconstruct images using
filtered back-projection and maximum likelihood techniques.

Aprile from Columbia University and collaborators developed a Compton tele-
scope for space applications called LXeGRIT [31]. LXeGRIT was the first Compton
telescope to perform complete 3D reconstruction of the sequence of interactions of
individual gamma rays in a single, position-sensitive, liquid xenon time projection
chamber for space applications. Characterization of LXeGRIT included both labora-

tory and balloon flight missions.

2.1.3 Considerations

Each of the examples of coded aperture and Compton imaging given have associated
drawbacks. The use of HPGe detectors is costly due to cooling constraints. CZT is still
a relatively new and expensive material that is not available in large quantities. Also,
commercially available CZT rarely operates as expected due to impurities. In addi-
tion, the angular uncertainty associated with measurements taken from the currently
available small CZT crystal sizes can be large. Silicon is an excellent room tempera-
ture detector but is inefficient at stopping high-energy gamma rays. Additionally, the
ruggedness of the material must be considered, silicon would not be a good choice
because it is fragile. Csl and Nal are both widely available and relatively inexpensive

scintillator materials but have worse energy resolution compared to HPGe. All of
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these factors come into play when designing a gamma-ray imager.

2.2 Radioactive Decay

Since several of the chapters in this thesis will discuss various forms of radioactive
decay it is important to review the fundamentals. Additionally, in order to under-
stand how to detect radioactive material it is important to understand the source
of radiation. As its name suggests radioactive decay is the decay of one material to
another, in the process releasing radiation, either in the form of charged particles,
neutrons, neutrinos, or gamma-ray and X-ray photons. The main modes of decay for
an unstable isotope are alpha decay, beta decay and electron capture, all of which

can lead to subsequent energetic photon emission.

2.2.1 Alpha Decay

Heavy nuclei are energetically unstable against the spontaneous emission of an alpha
particle. In an attempt to become more stable the nucleus will eject an alpha particle
lowering the atomic number (Z) by 2 and the mass number (A) by 4. Alpha decay is
a quantum tunneling process and is governed by the barrier penetration mechanism
[32,33]. The alpha decay process is shown in Equation 2.1 where X is the unstable

nuclei, Y is the daughter nuclei and « is the ejected alpha particle.

2X =53 Y Ha (2.1)

Since alpha particles have a relatively large mass, high charge and low ejection
velocity they are likely to interact quickly and lose their kinetic energy. As a result the

vast majority of alpha particles are stopped shortly after emission. However, alpha
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decay usually leaves the decayed nucleus in an excited stated. When the nucleus
transitions from the excited state energy must be released in the process, or by the
daughter atom; usually in the form of energetic photons; i.e. X-rays or gamma-rays.
These photons have a much longer path length given the probability of interaction in

matter, making them easier to detect at a distance.

2.2.2 Beta Decay

Beta decay is defined as the process in which an unstable nucleus decays altering
the atomic number while leaving the mass number unchanged [33,35]. This occurs
through the release of an energetic electron/anti-neutrino pair or a positron/neutrino
pair. The kinetic energy released is split between the electron and neutrino up to
some finite value called the end-point energy or Q-value. The Q-value is determined
by the mass difference between the decay and daughter nuclei.

As with alpha decay the primary products are not as interesting, because of their
short range (electrons), or very small interaction probability (neutrinos). Instead,
secondary gamma-ray photons produced as daughter nuclei decay to ground are ob-
servable up to many meters away.

Beta minus decay is observed in unstable, neutron rich nuclei. In beta minus decay
the atomic number is increased by one as a neutron transitions to a proton, ejecting

an electron in the process [35]. Equation 2.2 shows the beta minus decay process.

X 5o Y+ B+ (2.2)

Beta plus decay is observed in unstable, proton rich nuclei. In beta plus decay

the atomic number is reduced by one as a proton transitions to a neutron, ejecting
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a positron in the process [33,35]. Equation 2.3 shows the beta plus decay process.
Secondary gamma-ray radiation from beta plus decay includes 511 kel annihilation
photons produced when the positron annihilates with an electron. Beta plus decay
is only possible when the Q-value is greater than 2m,c?, where m, is the mass of an

electron and c is the speed of light.

2X =5 Y +8" +u. (2.3)
2.2.3 Electron Capture

A proton rich nucleus can also decrease the atomic number by one, while maintaining
the mass number through the capture of an orbital electron. When the electron is
captured into the nucleus a proton transitions to a neutron and a neutrino is ejected.
Electron capture is a competing process to beta plus decay and is more probable
at lower Q-value decays (< 2m.c?). Equation 2.4 shows the electron capture decay

process.
X +e =5 Y+, (2.4)

2.3 Interaction Processes

Prior to a discussion of gamma-ray detection and imaging it is important to un-
derstand the physics of photon interaction mechanisms. Understanding the relevant
interaction processes is a necessary step towards being able to detect and reconstruct
photon information using coded aperture or Compton imaging techniques.

The three major interactions relevant to the TMI are photoelectric absorption,

Compton scattering and pair production. Each of the three processes has an interac-
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Figure 2.1: Photon attenuation values (em~!) for Nal (top) and the contribution to
total attenuation (bottom).

tion probability which depends on photon energy and the material. Figure 2.1 plots
the attenuation values (cm™') for Nal (top) and the contribution to the total atten-
uation (bottom) [36]. It can be seen that photoelectric absorption is the dominant
interaction mechanism for gamma-ray photons up to 260 keV in Nal. Compton scat-
tering is the dominant mechanism from 260 keV up to 6.7 M eV where pair production
takes over. The contributions from the various processes is important to detection and

will be discussed further in chapter 3.
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2.3.1 Photoelectric Absorption

Photoelectric absorption is a process in which photons interact with bound electrons
in an absorber atom, usually tightly bound K-shell electrons. Following absorption,
the incident photon produces a photoelectron. The photoelectron emerges with energy
E., as described by equation 2.5, where F, is the gamma ray energy and £, is the
binding energy of the photoelectron, or the energy required to remove it from its
shell [37]. Photoelectric absorption is the dominant interaction mechanism for low-

energy gamia rays.

E.=E,—E, (2.5)
2.3.2 Compton Scattering

Compton, or incoherent scattering, was first explained by Arthur Compton in 1923
[38]. It was a significant discovery and earned him the Nobel prize in Physics. A key
reason for giving him the Nobel prize was his recognition of the fact that a photon
could behave like a particle in some circumstances. Compton scattering is an interac-
tion process by which there is a decrease in energy, or increase in wavelength, of an
incident photon when it elastically scatters off an electron in matter. The interaction
between the photon and an electron in the scattering material results in a portion
of the initial photon energy being imparted to the electron, causing it to recoil. The
photon then continues on in a direction different from the original direction. Figure
2.2 shows a schematic of the Compton interaction where E, is the incident photon
energy, Eg is the scattered photon energy, E! is the energy of the recoil electron, 6.,

is the photon scattering angle and ¢, is the recoil electron scattering angle.
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Figure 2.2: The Compton scattering interaction.

The change in direction of the photon is proportional to the energy imparted to
the electron and can be calculated. Compton scattering is the dominant interaction
mechanism for medium energy photons (0.5 to 3.5 MeVl') in most materials. The
kinematics of Compton scattering can be derived using conservation of energy (2.6)
and momentum. Although the target electron does have non-zero initial momentum,
its initial momentum is not known. As a result, the initial total energy of the electron
is assumed to be its rest energy (0.511 MeV') and its momentum 0. Taking these
assumptions into account, conservation of momentum can be expressed in the form

of (2.7).

E,+E.=E +E (2.6)

P,=P +P (2.7)
Solving equations 2.6 and 2.7, the relationship between photon energy and scat-

tering angle can be obtained and is known as the Compton scattering equation [38].

The Compton scattering formula is shown in Eq. 2.8.
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Mmec? Mec?

- — (2.8)
E.+E, E|

cost, =1

2.3.3 Pair Production

Another process to be considered in a Compton camera system is pair production.
Pair production is the creation of an electron/positron pair from a photon. This
process occurs as a result of the interaction of the photon with the electromagnetic
field of the nucleus of a target atom. This interaction can also take place with an
electron but only at higher energies that are not of interest for Compton imaging.
Pair production can only occur when the amount of energy available is greater than
or equal to the rest mass energy of the pair (2m.c* = 1.022 MeV). Figure 2.3 shows
the nuclear pair production interaction where 6 is the polar angle of both the exiting

positron and electron.

Positron (e*

Photon (y) Nucleus

Electron (e’)

Figure 2.3: The nuclear pair production interaction.
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2.3.4 Doppler Broadening

Doppler broadening is an effect brought on by the electrons involved in the Compton
scatter interaction. Equation 2.8 is based on the assumption that the electrons are
initially free or unbound. The electrons, however, are neither free nor at rest, but
in motion and bound to a nucleus [39]. This has several effects on the kinematics of
the Compton scatter. First, the total scattering probability changes as defined by the
Klein-Nishina scattering cross-section [40]. Second, the scattering angle distribution
changes, and finally the energy distribution between the electron and the gamma ray
changes. All of these consequences give rise to a fundamental, lower limit for the
angular resolution of a Compton camera. It is safe to assume that in the case of the
TMI (and any other detector) this effect is uncorrectable. Generally, doppler broad-
ening is dominant in systems with very good energy resolution (e.g. semi-conductor
detectors). In the case of the TMI however, the effect is generally masked by the
moderate energy and position resolution of the Nal detectors. Also, the effect is most
pronounced at low-energy (<150 keV'). Since the effect of Doppler broadening is in-
herent to a material, as the atomic number (Z) of a material increases so does the

effect. This is an important consideration when designing a Compton camera.

2.4 Summary

In this chapter a summary of current technology has been presented for a variety
of gamma-ray detection systems. Also the source of gamma-ray radiation has been
discussed as well as the mechanisms with which energetic photons interact in matter.
With this information, it is possible to begin the discussion of the TMI and under-

stand the need and applicability of a hybrid detection system. A system prototype
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has been constructed which incorporates some or all aspects of current detection plat-
forms in order to improve the performance of the system overall within cost, size and
weight constraints — important considerations of a mobile system. Both coded aper-
ture and Compton imaging have proven useful technologies in a wide variety of fields.
Additionally, several of the examples combined multiple detection modes to improve
performance. This work aims to combine the power of both imaging and non-imaging
detection methods as well as implement the novel approach of image fusion through

the use of an active coded aperture mask.
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Chapter 3

THE RAYTHEON-SORDS
TRI-MODAL IMAGER

The TMI is a mobile, coded aperture and Compton scatter imager with enhanced
hybrid imaging and spectroscopic capability. The TMI uses a conventional coded
aperture imager with a non-conventional active mask to provide both veto capabil-
ity and Compton imaging. The TMI is unique in that it is the first of its kind as
both a mobile platform for 3D gamma-ray imaging and a hybrid active coded aper-
ture/Compton imaging system. The goal of a hybrid imaging system is to improve
system performance through the combination of multiple imaging modalities.

Coded aperture and Compton imaging are complementary in several ways. First,
coded aperture is normally a passive imaging technology that relies on the opacity of
the masking elements for image contrast. This makes coded aperture imaging useful
for low to medium energy gamma rays. Conversely, Compton imaging is more efficient
in the medium to high energy range because it relies on Compton scattering followed
by a photoelectric interaction. Combining these two modalities into a single imager is
unique because it provides wide energy applicability and increased sensitivity in both

the overlap regions of energy as well as the entire energy range. The sensitivity of the
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Figure 3.1: The Raytheon-SORDS Tri-Modal Imager. The TMI is a hybrid coded
aperture / Compton imager deployed in the back of a truck in order to perform
mobile gamma-ray imaging.

TMI increases because the background contribution (dominant) from each modality
is large but different, however the source contribution manifests in much the same
way. This leads to the ability to reject much of the background in an image and keep
only the true source components. Figure 3.1 shows a model of the TMI detector arrays
and support hardware.

A system as complex as the TMI requires many hardware (and software) com-
ponents to work seamlessly in order to take full advantage of the capabilities. This
system has many hardware components such as the detector hardware for both the
active mask and the absorption array, the navigational system, camera, generator,
environmental controls, user interfaces and data processing as well as reach-back ca-
pability for remote viewing of the online system. Figure 3.2 shows the top, front and

side views of the TMI geometry. The FOV indicated assumes 50% coding, i.e. limited
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Figure 3.2: Front, side, and top views of the TMI geometry.

to allow for the mask to shadow at least 50% of the detector array from all points.

3.1 Navigation Hardware

One of the key components to the TMI is the combined navigational Global Po-
sitioning System (GPS) and Inertial Navigation System (INS). The output of the
navigation system is both the geographical location of the detector unit (latitude,
longitude and altitude) as well as the attitude (roll, pitch and bearing) of the de-
tector. Roll is defined as the port/starboard angle normal to the plane of the earth.
Pitch is defined as the fore/aft angle normal to the plane of the earth and bearing is
the direction of travel with respect to true north. Additionally, the GPS/INS system
can estimate the goodness of the navigational solution based on signal reception and

accuracy of the calculated velocity vector.
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Figure 3.3: Photo of the KVH Industries Inc. CNS-5000 INS. The system combines
an inertial navigation system with a high-accuracy GPS receiver in a single small
enclosure.

3.1.1 Specifications

The navigational hardware selected for the TMI is a Commercial-Off-The-Shelf (COTS)
product from KVH Industries Incorporated [41]. The CNS-5000 inertial navigation

system combines the complementary technologies of a fiber optic gyro-based Iner-

tial Measurement Unit (IMU) with a precision GPS receiver in a single enclosure.

Figure 3.3 shows an image of the CNS-5000 INS. The physical and environmental

specifications of the CNS 5000 are shown in Table 3.1.
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Table 3.1: Physical and environmental specifications for the CNS-5000 navigational
subsystem.

\ Specification \ Value \
Weight 5.2 Ibs. (2.36 kg)
Size 6.0” x 6.6” x 3.5”
Power Consumption 15W Max

Operating Temperature | -40°C to +75°C (-40°F to +167°F)
Storage Temperature -50°C to +80°C (-58°to +176°F)
Output Rate 100 Hz

Input Voltage 9-16V

Coupling of the GPS and INS systems provides uninterrupted navigation infor-
mation. This is very important to the operation of the TMI in the event that GPS
signal reception is obstructed, or unavailable. This is made po