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ABSTRACT

The Stand-off Radiation Detection System (SORDS) program is an Advanced

Technology Demonstration (ATD) project through the Department of Homeland Se-

curity’s Domestic Nuclear Detection Office (DNDO) with the goal of detection, identi-

fication and localization of weak radiological sources in the presence of large dynamic

backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-

based, hybrid gamma-ray spectroscopic and imaging system able to quickly detect,

identify and localize, radiation sources at standoff distances through improved sen-

sitivity provided by multiple detection modes while minimizing the false alarm rate.

Reconstruction of gamma-ray sources is performed using a combination of gamma-ray

spectroscopy and two imaging modalities; coded aperture and Compton scatter imag-

ing. The TMI consists of 35 sodium iodide (NaI) crystals (5x5x2 in3 each), arranged

in a random coded aperture mask array (CA), followed by 30 position sensitive NaI
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bars (24x2.5x3 in3 each) called the detection array (DA). The CA array acts as both

a coded aperture mask and scattering detector for Compton events. The large-area

DA array acts as a collection detector for both Compton scattered events and coded

aperture events. In this thesis, the implemented spectroscopic, coded aperture, Comp-

ton and hybrid imaging algorithms will be described along with their performance.

It will be shown that multiple imaging modalities can be fused to improve detection

sensitivity over a broader energy range than any mode alone.

Since the TMI is a moving system, peripheral data, such as a Global Positioning

System (GPS) and Inertial Navigation System (INS) must also be incorporated. A

method of adapting static imaging algorithms to a moving platform has been devel-

oped. Also, algorithms were developed in parallel with detector hardware, through

the use of extensive simulations performed with the Geometry and Tracking Toolkit

v4 (GEANT4). Simulations have been well validated against measured data. Results

of image reconstruction algorithms at various speeds and distances will be presented

as well as localization capability. Utilizing imaging information will show signal-to-

noise gains over spectroscopic algorithms alone.
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Chapter 1

INTRODUCTION

In many scenarios related to homeland security, it is not only desirable to detect the

presence of a radioactive source but also to identify and localize the source of the

radiation. It is also desirable to do so as quickly as possible with high confidence

and low probability of false alarm. In the simplest of scenarios stationary counting

detectors may be able to detect anomalies in count rates from a single location.

However, in dynamic scenarios where the detector is in motion, count rates can vary

erratically over both position and time making detection difficult. Figure 1.1 shows

the measured count rate from Naturally Occurring Radioactive Material (NORM) as

a function of data segment along a 3.2 km stretch of road in Lexington Massachusetts.

The measured count rate varies by as much as a factor of two over this small stretch

of road with an average count rate of approximately 30 kHz (dashed line) over all

energies integrated up to 3 MeV .

Additionally, NORM background can vary over time and as a function of weather

for the same location. Figure 1.2 demonstrates the fluctuation in measured count rate

as a function of position (latitude) for the same stretch of road taken just 24 hours

apart. Deviations in the background rate vary by up to 10 percent.
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Figure 1.1: Total count rate as a function of sequential data segment for a 3.2 km
stretch of road in Lexington, MA. Count rates vary from 24 to 44 kHz depending on
location.

Figure 1.2: Total count rate as a function of latitude along a north bound section
of road. Shown here are data from 1 August 2009 (blue) and 2 August 2009 (red).
Background rates vary by up to 10% along an identical stretch of road when measured
only 24 hours apart.
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NORM background is a large contribution to all measured gamma-ray flux and

represents the dominant obstacle for detection of other sources of radiation. Addi-

tionally, weak sources in the presence of large, rapidly changing NORM backgrounds

become increasingly difficult to detect due to attenuation in the surrounding medium

and low photon flux, potentially buried within expected variations in the background.

In order to address these challenges, a robust detection system which takes full

advantage of all available information is desired. The Department of Homeland Secu-

rity’s Domestic Nuclear Detection Office (DNDO) has expressed interest in a mobile

gamma-ray detector system. To meet the global detection challenge a sensitive mobile

instrument must be designed to detect, identify and localize radiological threats at

distances up to 100 meters. The system must do so over a wide range of gamma-ray

energies while providing the necessary sensitivity to true sources through background

rejection while maintaining very low false alarm rates. Furthermore, it must be com-

pact, low cost and lightweight.

Currently, no single detector technology has been fully optimized in the desired

energy range, weight, size, cost, resolution and sensitivity to meet this challenge. How-

ever, the challenge can be met by combining the best features of multiple existing

proven detection technologies. With a careful hardware design, detector configura-

tion and sophisticated processing, it is conceivable to construct a detector system

capable of performing both coded aperture imaging and Compton scatter imaging

along with enhanced spectroscopic detection simultaneously. The Raytheon-SORDS

Tri-Modal Imager (TMI) has been constructed as a unique and innovative approach

to mobile gamma-ray detection that exploits the advantages of all of these detection

technologies.
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Figure 1.3: The TMI prototype system with the side panel removed to allow visibility
into the detector system.

The TMI incorporates both imaging and non-imaging technologies, specifically

a coded aperture imager, a Compton scatter imager, and a large-area spectroscopic

detector. Together, these technologies are integrated into a powerful system capable

of effectively detecting, identifying and locating radioactive sources of interest from a

moving platform. Moreover, the design is capable of being scaled to meet deployment

requirements and adapted to aerial and maritime platforms. Figure 1.3 shows the TMI

prototype system with the side panel removed to allow visibility into the detector

system.

It should be noted that coded aperture and Compton scatter gamma-ray imaging

methods have complementary energy regions where they perform well. Coded aperture

imaging is typically best for gamma rays with low to mid-range energies (<1 MeV )
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and has a large Field-of-View (FOV). Compton imaging excels in the region of medium

to high gamma-ray energy (>0.5 MeV ) and has a potential 4π FOV. Due to the

large area of the scintillator detectors on the TMI, there are statistical advantages to

spectroscopic algorithms as well. While non-imaging algorithms are not capable of fine

source localization they have potential to determine proximity or likely region where

a potential source may exist. Through intelligent placement of detector materials a

system has been constructed to allow for multiple simultaneous gamma-ray imaging

techniques to be performed along with spectroscopic detection methods to improve

the overall performance of the system.

1.1 Coded Aperture Imaging

Coded aperture imaging is a method of gamma-ray imaging that uses a position sensi-

tive detector array, shadowed by a dense, sparse mask, in order to cast a coded shadow

onto the array [1–6]. The measured coded shadow can then be decoded to reconstruct

an image of the source. The advantage of coded aperture gamma-ray imaging comes

from the fact that the modulation pattern of background events reconstruct into a

randomly filled image while source events reconstruct to a common location. Figure

1.4 shows an example of the coded aperture concept.

1.2 Compton Imaging

Compton imaging is another method of gamma-ray imaging that uses multiple po-

sition and energy measurements in coincidence to reconstruct the probable origin of

the gamma-ray photon. When gamma-ray photons are emitted from a source, they

can Compton scatter in a scattering detector, and deposit the remaining energy in

5



Figure 1.4: Example of incident photons casting a coded shadow onto a detector array.
The coded pattern can be unscrambled to reconstruct the source image [7].

the absorbing detector. If this interaction can be precisely measured, the kinematics

of Compton scattering can be used to reconstruct the event, where the location of

the source can be confined to a point on the cone. The location of a source cannot be

determined from a single event cone, however the reconstruction of many cones will

overlap at the true location of the source. Figure 1.5 shows several example simulated

Compton scattering events, the intersection of the three cones reveals the true source

location.

1.3 Overview of Thesis

This thesis will present background information on gamma-ray imaging and spectro-

scopic techniques. Additionally, physics processes common to detector systems will be

presented such as radioactive decay and gamma-ray photon interaction mechanisms.

6



Figure 1.5: Example of three Compton scattering events that overlap at the correct
source location.
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The next few chapters will present the specifics of the implemented hardware on the

TMI prototype and simulation and modeling efforts performed.

Details of the non-imaging spectroscopic algorithms will be presented as well as

the details of the implemented coded aperture and Compton gamma-ray imaging

algorithms. Techniques for fusion of all imaging and non-imaging modalities as well

as methods for co-registration of images and data will be presented. Additionally a

chapter is devoted to the methods of analysis for performance metrics is included.

Since NORM background plays a major role in the detection sensitivity there is

a chapter devoted to the study and understanding of the principle components of

the background. Once characterized, background can be processed through the im-

plemented algorithms using data injection techniques and analysis methods to assess

performance under various conditions and assumptions. Finally, results of the pro-

totype systems and analysis of the results will be presented and future work will be

discussed.
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Chapter 2

BACKGROUND

2.1 Survey of Technology

Gamma-ray imaging is widely used as a tool in nuclear medicine research and proce-

dures as well as astrophysics research. Additionally, research in the use of gamma-ray

imaging for waste monitoring and nuclear nonproliferation began in the 1990s. Since

then, efforts to develop better detection technologies has gained increased attention, in

particular, imaging technologies suitable for homeland security applications. Imaging

and spectroscopic technologies are desirable because they allow for passive systems to

detect, identify and localize sources while rejecting background and minimizing false

alarm probabilities without complicated active interrogation systems. This capability

would provide the improved sensitivity needed to rapidly sense radioactive materi-

als from stand-off distances. Two common gamma-ray imaging techniques are coded

aperture and Compton scatter imaging.

2.1.1 Coded Aperture Imaging

Coded aperture imaging has been used for many years, mostly in the fields of X-ray

and gamma-ray astronomy [1, 8]. Coded aperture imaging is an attractive solution

9



because of its maturity and capability to provide accurate images of nuclear material

from meters to many light years away depending on the application. The principle

of a coded aperture imager is simple. A dense screen (aperture) with random holes

is placed in front of a position sensitive detector array. Gamma-ray photons from

a source cast an image of the screen onto the array. The screen image can then be

unscrambled to reconstruct the source image [8].

R.H. Dicke at Princeton University proposed a scatter-hole camera for X-ray and

gamma-rays in 1968 [8]. It was suspected that this technology would have applica-

tions in astronomy as well as the medical industry. It was also conceived that Dicke’s

proposed system would be capable of generating radiographic images or detailed inter-

nal images through the use of radioactive tracers in the body. Today coded aperture

imaging has been recognized to have applications to homeland security.

In the field of astrophysics, Allen et al. constructed protoEXIST [4], a prototype

coded aperture hard X-ray telescope. It features a 4.5 m2 Cadmium-Zinc-Telluride

(CZT) detector plane with 4096 pixels, and a wide 90x70 degree FOV. This was

the primary instrument on the Energetic X-ray Imaging Survey Telescope (EXIST)

mission [6]. EXIST is a large area, space based, coded aperture telescope tasked

with surveying Active Galactic Nuclei (AGN), searching for black holes and studying

Gamma Ray Bursts (GRBs) and other transient events. Other coded aperture detec-

tors used in astrophysics include the Imager on-board the Integral Satellite (IBIS) [5]

and the Burst Alert Telescope (BAT) on the Swift mission [7].

The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) incorpo-

rates coded aperture imaging technology on both the IBIS and the spectrometer

aboard INTEGRAL (SPI). The imagers are used to get directional information on
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the incoming gamma-ray radiation [9]. The SPI imager consists of 19 hexagonal ger-

manium detectors shadowed by 63 tungsten alloy elements 30 mm thick. Germanium

was chosen to deliver high-resolution energy spectra to the SPI (2.2 keV Full-Width

at Half-Maximum (FWHM) at 1.33 MeV ).

The IBIS imager is optimized for high angular resolution in order to scan the

gamma-ray sky from 3 keV to 10 MeV [10]. The coded aperture used on IBIS was

approximately 1 m2, 16 mm thick tungsten. The detection plane employed for low

energy (<150 keV ) consisted of a 128x128 (2600 cm2) multi-layer Cadmium-Telluride

(CdTe) detector. These detectors were applied to the low energy range because of their

thickness (2 mm). At 150 keV , the efficiency is already down to 50% [10, 11]. On

the high energy range a 64x64 Cesium-Iodide (CsI) array was used with photodiode

readout. CsI was selected due for its high gamma-ray stopping power. The sensitive

area of the CsI array was approximately 2890 cm2. Additionally the IBIS imager was

used as a Compton imaging system. The separation between the low energy CdTe

and high energy CsI arrays was approximately 94 mm. This allowed for simultaneous

capture of coincident interactions in the two arrays allowing for Compton scatter

reconstruction and background suppression.

The BAT aboard the SWIFT mission, launched in 2004, included a CZT coded

aperture imager [7]. BAT is one of three instruments on the Swift spacecraft, part

of the National Aeronautics and Space Administration (NASA) Medium Explorer

Program (MIDEX). The purpose of the BAT imager is to study GRBs with loca-

tion accuracy of 1-4 arcmin. The detector plane consists of 32,768 (4x4x2 mm3) CZT

crystals with an energy range from 15 to 150 keV and energy resolution of approxi-

mately 7 keV . The coded mask is comprised on 52,000 pieces of lead (5x5x1 mm3).
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The mask/detector separation distance is 1 meter. The combination of a large, fine-

grained mask and high position/energy resolution detectors are what give the BAT

its sensitivity and excellent resolution.

Unrelated to astrophysics, Smith et al. at the University of Michigan in 1999 pro-

posed a novel hybrid collimation technique for gamma-ray imaging called the Hybrid

Portable Gamma Camera (HPGC) [12]. This team proposed a system that combines

the mechanical collimation of a coded aperture imager with the electronic collimation

of a Compton camera. Advantages of this system included increased efficiency and

improved energy range (50-2000 keV ). The HPGC used a 2x2 mosaic of a basic 5x5

multiplexed, uniformly redundant array (MURA) [2] passive coded mask made of 5

mm thick lead. The detection array was a 100x100x10 mm3 Thallium Doped Sodium-

Iodide (NaI(Tl)) read out by four Photomultiplier Tubes (PMTs) using Anger-logic

for position sensitivity. Additionally a third detector plane (70x70x30mm3) of Sodium

Doped Cesium-Iodide (CsI(Na)) with 9x9x30 mm3 pixels was positioned behind the

sodium iodide (NaI) array. The passive mask and NaI array acted as a coded aperture

imager and the NaI and CsI arrays formed a Compton scatter camera. Results from

the HPGC imager demonstrated hybrid collimation was superior to either mechanical

or electronic alone.

For homeland security, the Naval Research Laboratory (NRL) in 2008 constructed

the Mobile Imaging and Spectroscopic Threat Identification (MISTI) system [13–15].

The MISTI system was developed as a mobile gamma-ray imaging and spectroscopy

system. They recognized the value of coded aperture imaging for localization of de-

tected materials using a high-resolution spectroscopic system with applications in

homeland security. Threats are identified using 28, 8.5 cm diameter, 6.5 cm long,
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cylindrical High-Purity Germanium (HPGe) detectors with an average relative effi-

ciency of 110% (compared to a 3x3 inch NaI) and 2 keV FWHM energy resolution at

1333 keV . Once identified by the HPGe, threats are imaged, for localization, using

a NaI/lead coded aperture system. The imager on MISTI consists of a 10x10 ele-

ment array of NaI tiles (10x10x5 cm3) for energy deposition and position sensitivity.

The passive coded mask is constructed from a 12x18 random array, 50% filled with

10x10x2.3 cm3 lead tiles. The mask and detection array are separated by 40 cm. The

reported angular resolution of the imager is 0.25 radians in both the horizontal and

vertical dimensions.

Also related to homeland security, Ziock et al. at Oak Ridge National Labora-

tory report the use of a mobile one-dimensional coded aperture imaging system for

orphan source searching [16]. Potential improvements include the ability to suppress

background through imaging, extending the range of detection for milliCurie class

sources by up to 50 meters and beyond. The imager is mounted in a 4.9 m long

trailer that can be towed by a large personal vehicle. Sources are localized in both

the direction of travel and range. The imager is a 27 element CsI(Na) detector array.

Each of the elements is a 4.2x4.2x40 cm3 CsI bar read out by a single PMT. A feature

of this system is the capability to perform imaging on both sides of the trailer. This

is accomplished by constructing masks on either side of the central CsI array. Masks

on opposing sides of the array are inverses of each other to allow for simultaneous

imaging on both sides. The passive mask is constructed from a dense metal alloy to

improve opacity and image contrast.
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2.1.2 Compton Scatter Imaging

Compton imaging has been recognized as an imaging technique with potential appli-

cations for homeland security. It is based on the Compton scattering interaction and

preserves information about the direction and energy of incident gamma rays if the

scattering by-products can be precisely measured.

Various Compton imaging designs have been studied for use in many fields includ-

ing homeland security and counterterrorism. One such effort was carried out by the

Naval Research Laboratory along with the University of California at Berkeley based

on their astrophysics expertise. This effort focused on the development of Comp-

ton imagers that used thick, position sensitive, solid-state detectors [17]. Efforts by

Lawrence Livermore National Laboratory (along with collaborators) included devel-

opment of the spectroscopic imager for gamma rays, SPEIR [18], Compton imaging

with position sensitive silicon and germanium detectors [19], and coaxial germanium

detectors [20]. There are many situations applicable to homeland security where it is

necessary to both detect and localize an unknown source. Applications include passive

searching of areas where nuclear material may be present, cargo screening, where it

is inefficient and costly to open containers to search for nuclear material or screening

the contents of suspicious objects while maintaining a safe distance.

While Compton imaging is not a new technique, recent advances in material fab-

rication and signal processing capabilities make building a Compton imaging device

more efficient. Also, Compton imaging is one choice for a gamma-ray imaging system

capable of performing three-dimensional imaging and provides the means to image

gamma rays without the use of a mechanical collimator. Eliminating heavy collimators

has the advantage of reducing the overall weight of the system, which is an important
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factor when considering a fieldable device, especially in mobile, airborne and space

applications. Compton imaging also increases the limited FOV of collimated detectors

to potential 4π imaging. There are some drawbacks however, including the medium

to high cost.

Compton imaging has been of interest to researchers in both the medical imag-

ing and astrophysics communities since the early 1980’s. More recently, the potential

value of Compton imaging for homeland security applications has been recognized.

Currently there are several efforts underway examining how new detector technolo-

gies can be applied to Compton imaging as well as utilizing advanced algorithms to

improve the detection capabilities of current systems.

Wulf et al. [21] at the Naval Research Laboratory (NRL) report the application of

germanium strip detectors for the construction of a Compton telescope. As gamma

ray energy increases, more material is required to stop it. If detectors with good posi-

tion and energy resolution are thick enough to have multiple Compton scatters then

the photon does not need to be fully absorbed. Thicker detectors require depth reso-

lution or a large separation between detectors to accurately determine the scattering

angle. Unfortunately, a large separation between detectors reduces the efficiency of

the instrument. Wulf proposed a detector system capable of both stopping low energy

gamma rays completely and using multiple Compton scatters for high-energy gamma

rays, however this requires expensive electronics and complex event reconstruction

algorithms.

Similarly, Vetter et al. [22] while at Lawrence Livermore National Laboratory

(LLNL) developed an imaging system using position-sensitive HPGe and lithium

drifted silicon detectors (Si(Li)) [23]. This system should allow for imaging of gamma
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ray sources with higher sensitivity than collimator based systems with the use of

advanced 3D gamma ray tracking techniques. They have implemented a Compton

camera built of a single double-sided strip HPGe detector with a strip pitch of 2 mm.

They report three dimensional position resolution of 0.5 mm at 122 keV using simple

pulse shape analysis techniques.

Sullivan, et al. [24–27] at Los Alamos National Laboratory have developed the

Prototype Compton Imager (PCI) a silicon/CsI prototype Compton scatter camera.

This system provided three thin silicon scattering planes followed by an array of

CsI(Tl) crystals for collection of scattered photons. Each silicon plane consisted of

320 (16x20) pixels, each 0.3 cm x 0.3 cm x 280 μM . In principle, the multiple layers

of thin silicon could potentially allow for tracking of recoil electrons, improving recon-

struction. The absorption plane consisted of a 6x7 array of 1.2x1.4x1.0 cm3 CsI(Tl)

elements read out by silicon PIN diode.

For space applications, Tanaka et al. [28] at the Institute of Space and Astronau-

tical Science (JAXA) have developed a Si/CdTe semiconductor Compton telescope.

This effort was aimed at developing a Compton telescope based on high resolution

silicon and CdTe imaging devices in order to obtain a high sensitivity astrophysical

observation in the sub-MeV gamma-ray region. The Compton telescope consists of

a double-sided silicon strip detector surrounded by CdTe pixel detectors. Similar to

the PCI, Tanaka uses silicon as a scattering detector but uses CdTe as absorbing

detectors rather than CsI.

In 2004 Xu et al. of the University of Michigan proposed a unique method of

Compton imaging [29, 30]. In their method, the use of a single CZT semi-conductor

detector with 3D position resolution, as well as energy information of each interaction,
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is used to perform Compton imaging. The detector used is a single 15x15x10 mm3

CZT crystal. Since any point within the crystal can be the scatter position, it allows

them to do 4π imaging in the near-field. This is a novel approach because it is the

first semiconductor based 4π Compton imaging system. They also worked to improve

on the algorithms used in Compton imaging, attempting to reconstruct images using

filtered back-projection and maximum likelihood techniques.

Aprile from Columbia University and collaborators developed a Compton tele-

scope for space applications called LXeGRIT [31]. LXeGRIT was the first Compton

telescope to perform complete 3D reconstruction of the sequence of interactions of

individual gamma rays in a single, position-sensitive, liquid xenon time projection

chamber for space applications. Characterization of LXeGRIT included both labora-

tory and balloon flight missions.

2.1.3 Considerations

Each of the examples of coded aperture and Compton imaging given have associated

drawbacks. The use of HPGe detectors is costly due to cooling constraints. CZT is still

a relatively new and expensive material that is not available in large quantities. Also,

commercially available CZT rarely operates as expected due to impurities. In addi-

tion, the angular uncertainty associated with measurements taken from the currently

available small CZT crystal sizes can be large. Silicon is an excellent room tempera-

ture detector but is inefficient at stopping high-energy gamma rays. Additionally, the

ruggedness of the material must be considered, silicon would not be a good choice

because it is fragile. CsI and NaI are both widely available and relatively inexpensive

scintillator materials but have worse energy resolution compared to HPGe. All of
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these factors come into play when designing a gamma-ray imager.

2.2 Radioactive Decay

Since several of the chapters in this thesis will discuss various forms of radioactive

decay it is important to review the fundamentals. Additionally, in order to under-

stand how to detect radioactive material it is important to understand the source

of radiation. As its name suggests radioactive decay is the decay of one material to

another, in the process releasing radiation, either in the form of charged particles,

neutrons, neutrinos, or gamma-ray and X-ray photons. The main modes of decay for

an unstable isotope are alpha decay, beta decay and electron capture, all of which

can lead to subsequent energetic photon emission.

2.2.1 Alpha Decay

Heavy nuclei are energetically unstable against the spontaneous emission of an alpha

particle. In an attempt to become more stable the nucleus will eject an alpha particle

lowering the atomic number (Z) by 2 and the mass number (A) by 4. Alpha decay is

a quantum tunneling process and is governed by the barrier penetration mechanism

[32, 33]. The alpha decay process is shown in Equation 2.1 where X is the unstable

nuclei, Y is the daughter nuclei and α is the ejected alpha particle.

A
ZX →A−4

Z−2 Y +4
2 α (2.1)

Since alpha particles have a relatively large mass, high charge and low ejection

velocity they are likely to interact quickly and lose their kinetic energy. As a result the

vast majority of alpha particles are stopped shortly after emission. However, alpha
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decay usually leaves the decayed nucleus in an excited stated. When the nucleus

transitions from the excited state energy must be released in the process, or by the

daughter atom; usually in the form of energetic photons; i.e. X-rays or gamma-rays.

These photons have a much longer path length given the probability of interaction in

matter, making them easier to detect at a distance.

2.2.2 Beta Decay

Beta decay is defined as the process in which an unstable nucleus decays altering

the atomic number while leaving the mass number unchanged [33, 35]. This occurs

through the release of an energetic electron/anti-neutrino pair or a positron/neutrino

pair. The kinetic energy released is split between the electron and neutrino up to

some finite value called the end-point energy or Q-value. The Q-value is determined

by the mass difference between the decay and daughter nuclei.

As with alpha decay the primary products are not as interesting, because of their

short range (electrons), or very small interaction probability (neutrinos). Instead,

secondary gamma-ray photons produced as daughter nuclei decay to ground are ob-

servable up to many meters away.

Beta minus decay is observed in unstable, neutron rich nuclei. In beta minus decay

the atomic number is increased by one as a neutron transitions to a proton, ejecting

an electron in the process [35]. Equation 2.2 shows the beta minus decay process.

A
ZX →A

Z+1 Y + β− + ν̄e (2.2)

Beta plus decay is observed in unstable, proton rich nuclei. In beta plus decay

the atomic number is reduced by one as a proton transitions to a neutron, ejecting
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a positron in the process [33, 35]. Equation 2.3 shows the beta plus decay process.

Secondary gamma-ray radiation from beta plus decay includes 511 keV annihilation

photons produced when the positron annihilates with an electron. Beta plus decay

is only possible when the Q-value is greater than 2mec
2, where me is the mass of an

electron and c is the speed of light.

A
ZX →A

Z−1 Y + β+ + νe (2.3)

2.2.3 Electron Capture

A proton rich nucleus can also decrease the atomic number by one, while maintaining

the mass number through the capture of an orbital electron. When the electron is

captured into the nucleus a proton transitions to a neutron and a neutrino is ejected.

Electron capture is a competing process to beta plus decay and is more probable

at lower Q-value decays (< 2mec
2). Equation 2.4 shows the electron capture decay

process.

A
ZX + e− →A

Z−1 Y + νe (2.4)

2.3 Interaction Processes

Prior to a discussion of gamma-ray detection and imaging it is important to un-

derstand the physics of photon interaction mechanisms. Understanding the relevant

interaction processes is a necessary step towards being able to detect and reconstruct

photon information using coded aperture or Compton imaging techniques.

The three major interactions relevant to the TMI are photoelectric absorption,

Compton scattering and pair production. Each of the three processes has an interac-
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Figure 2.1: Photon attenuation values (cm−1) for NaI (top) and the contribution to
total attenuation (bottom).

tion probability which depends on photon energy and the material. Figure 2.1 plots

the attenuation values (cm−1) for NaI (top) and the contribution to the total atten-

uation (bottom) [36]. It can be seen that photoelectric absorption is the dominant

interaction mechanism for gamma-ray photons up to 260 keV in NaI. Compton scat-

tering is the dominant mechanism from 260 keV up to 6.7MeV where pair production

takes over. The contributions from the various processes is important to detection and

will be discussed further in chapter 3.
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2.3.1 Photoelectric Absorption

Photoelectric absorption is a process in which photons interact with bound electrons

in an absorber atom, usually tightly bound K-shell electrons. Following absorption,

the incident photon produces a photoelectron. The photoelectron emerges with energy

Ee, as described by equation 2.5, where Eγ is the gamma ray energy and Eb is the

binding energy of the photoelectron, or the energy required to remove it from its

shell [37]. Photoelectric absorption is the dominant interaction mechanism for low-

energy gamma rays.

Ee = Eγ − Eb (2.5)

2.3.2 Compton Scattering

Compton, or incoherent scattering, was first explained by Arthur Compton in 1923

[38]. It was a significant discovery and earned him the Nobel prize in Physics. A key

reason for giving him the Nobel prize was his recognition of the fact that a photon

could behave like a particle in some circumstances. Compton scattering is an interac-

tion process by which there is a decrease in energy, or increase in wavelength, of an

incident photon when it elastically scatters off an electron in matter. The interaction

between the photon and an electron in the scattering material results in a portion

of the initial photon energy being imparted to the electron, causing it to recoil. The

photon then continues on in a direction different from the original direction. Figure

2.2 shows a schematic of the Compton interaction where Eγ is the incident photon

energy, E ′γ is the scattered photon energy, E ′e is the energy of the recoil electron, θγ

is the photon scattering angle and φe is the recoil electron scattering angle.
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Figure 2.2: The Compton scattering interaction.

The change in direction of the photon is proportional to the energy imparted to

the electron and can be calculated. Compton scattering is the dominant interaction

mechanism for medium energy photons (0.5 to 3.5 MeV ) in most materials. The

kinematics of Compton scattering can be derived using conservation of energy (2.6)

and momentum. Although the target electron does have non-zero initial momentum,

its initial momentum is not known. As a result, the initial total energy of the electron

is assumed to be its rest energy (0.511 MeV ) and its momentum 0. Taking these

assumptions into account, conservation of momentum can be expressed in the form

of (2.7).

Eγ + Ee = E ′γ + E ′e (2.6)

	Pγ = 	P ′γ + 	P ′e (2.7)

Solving equations 2.6 and 2.7, the relationship between photon energy and scat-

tering angle can be obtained and is known as the Compton scattering equation [38].

The Compton scattering formula is shown in Eq. 2.8.
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cos θγ = 1 +
mec

2

E ′e + E ′γ
− mec

2

E ′γ
(2.8)

2.3.3 Pair Production

Another process to be considered in a Compton camera system is pair production.

Pair production is the creation of an electron/positron pair from a photon. This

process occurs as a result of the interaction of the photon with the electromagnetic

field of the nucleus of a target atom. This interaction can also take place with an

electron but only at higher energies that are not of interest for Compton imaging.

Pair production can only occur when the amount of energy available is greater than

or equal to the rest mass energy of the pair (2mec
2 = 1.022 MeV ). Figure 2.3 shows

the nuclear pair production interaction where θ is the polar angle of both the exiting

positron and electron.

Figure 2.3: The nuclear pair production interaction.
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2.3.4 Doppler Broadening

Doppler broadening is an effect brought on by the electrons involved in the Compton

scatter interaction. Equation 2.8 is based on the assumption that the electrons are

initially free or unbound. The electrons, however, are neither free nor at rest, but

in motion and bound to a nucleus [39]. This has several effects on the kinematics of

the Compton scatter. First, the total scattering probability changes as defined by the

Klein-Nishina scattering cross-section [40]. Second, the scattering angle distribution

changes, and finally the energy distribution between the electron and the gamma ray

changes. All of these consequences give rise to a fundamental, lower limit for the

angular resolution of a Compton camera. It is safe to assume that in the case of the

TMI (and any other detector) this effect is uncorrectable. Generally, doppler broad-

ening is dominant in systems with very good energy resolution (e.g. semi-conductor

detectors). In the case of the TMI however, the effect is generally masked by the

moderate energy and position resolution of the NaI detectors. Also, the effect is most

pronounced at low-energy (<150 keV ). Since the effect of Doppler broadening is in-

herent to a material, as the atomic number (Z) of a material increases so does the

effect. This is an important consideration when designing a Compton camera.

2.4 Summary

In this chapter a summary of current technology has been presented for a variety

of gamma-ray detection systems. Also the source of gamma-ray radiation has been

discussed as well as the mechanisms with which energetic photons interact in matter.

With this information, it is possible to begin the discussion of the TMI and under-

stand the need and applicability of a hybrid detection system. A system prototype
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has been constructed which incorporates some or all aspects of current detection plat-

forms in order to improve the performance of the system overall within cost, size and

weight constraints – important considerations of a mobile system. Both coded aper-

ture and Compton imaging have proven useful technologies in a wide variety of fields.

Additionally, several of the examples combined multiple detection modes to improve

performance. This work aims to combine the power of both imaging and non-imaging

detection methods as well as implement the novel approach of image fusion through

the use of an active coded aperture mask.
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Chapter 3

THE RAYTHEON-SORDS
TRI-MODAL IMAGER

The TMI is a mobile, coded aperture and Compton scatter imager with enhanced

hybrid imaging and spectroscopic capability. The TMI uses a conventional coded

aperture imager with a non-conventional active mask to provide both veto capabil-

ity and Compton imaging. The TMI is unique in that it is the first of its kind as

both a mobile platform for 3D gamma-ray imaging and a hybrid active coded aper-

ture/Compton imaging system. The goal of a hybrid imaging system is to improve

system performance through the combination of multiple imaging modalities.

Coded aperture and Compton imaging are complementary in several ways. First,

coded aperture is normally a passive imaging technology that relies on the opacity of

the masking elements for image contrast. This makes coded aperture imaging useful

for low to medium energy gamma rays. Conversely, Compton imaging is more efficient

in the medium to high energy range because it relies on Compton scattering followed

by a photoelectric interaction. Combining these two modalities into a single imager is

unique because it provides wide energy applicability and increased sensitivity in both

the overlap regions of energy as well as the entire energy range. The sensitivity of the
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Figure 3.1: The Raytheon-SORDS Tri-Modal Imager. The TMI is a hybrid coded
aperture / Compton imager deployed in the back of a truck in order to perform
mobile gamma-ray imaging.

TMI increases because the background contribution (dominant) from each modality

is large but different, however the source contribution manifests in much the same

way. This leads to the ability to reject much of the background in an image and keep

only the true source components. Figure 3.1 shows a model of the TMI detector arrays

and support hardware.

A system as complex as the TMI requires many hardware (and software) com-

ponents to work seamlessly in order to take full advantage of the capabilities. This

system has many hardware components such as the detector hardware for both the

active mask and the absorption array, the navigational system, camera, generator,

environmental controls, user interfaces and data processing as well as reach-back ca-

pability for remote viewing of the online system. Figure 3.2 shows the top, front and

side views of the TMI geometry. The FOV indicated assumes 50% coding, i.e. limited
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Figure 3.2: Front, side, and top views of the TMI geometry.

to allow for the mask to shadow at least 50% of the detector array from all points.

3.1 Navigation Hardware

One of the key components to the TMI is the combined navigational Global Po-

sitioning System (GPS) and Inertial Navigation System (INS). The output of the

navigation system is both the geographical location of the detector unit (latitude,

longitude and altitude) as well as the attitude (roll, pitch and bearing) of the de-

tector. Roll is defined as the port/starboard angle normal to the plane of the earth.

Pitch is defined as the fore/aft angle normal to the plane of the earth and bearing is

the direction of travel with respect to true north. Additionally, the GPS/INS system

can estimate the goodness of the navigational solution based on signal reception and

accuracy of the calculated velocity vector.
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Figure 3.3: Photo of the KVH Industries Inc. CNS-5000 INS. The system combines
an inertial navigation system with a high-accuracy GPS receiver in a single small
enclosure.

3.1.1 Specifications

The navigational hardware selected for the TMI is a Commercial-Off-The-Shelf (COTS)

product from KVH Industries Incorporated [41]. The CNS-5000 inertial navigation

system combines the complementary technologies of a fiber optic gyro-based Iner-

tial Measurement Unit (IMU) with a precision GPS receiver in a single enclosure.

Figure 3.3 shows an image of the CNS-5000 INS. The physical and environmental

specifications of the CNS 5000 are shown in Table 3.1.
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Table 3.1: Physical and environmental specifications for the CNS-5000 navigational
subsystem.

Specification Value

Weight 5.2 lbs. (2.36 kg)
Size 6.0” x 6.6” x 3.5”
Power Consumption 15W Max
Operating Temperature -40°C to +75°C (-40°F to +167°F)
Storage Temperature -50°C to +80°C (-58°to +176°F)
Output Rate 100 Hz
Input Voltage 9-16V

Coupling of the GPS and INS systems provides uninterrupted navigation infor-

mation. This is very important to the operation of the TMI in the event that GPS

signal reception is obstructed, or unavailable. This is made possible by the ability

to correct for drift in the IMU using the GPS signal when available and the relative

position of the IMU provides accurate position readings when GPS is degraded or

unavailable. This can be important in urban canyon scenarios where the availability

of GPS can be intermittent. The CNS-5000 also uses inertial information to acquire

and track the satellite signal in order to improve signal reception and claims to deliver

signal acquisition (L1/L2 band lock) in less than 2 seconds compared to 10 seconds

for comparable systems [41]. Also, the use of a coupled IMU allows for the data rate

to be increased relative to standard GPS. Standard GPS location updates at 5 Hz,

however the IMU extrapolates position using data from the accelerometers at 100 Hz.

Since data from the gamma-ray imager is highly position sensitive and is measured

at rates that can exceed 50,000 events per second this can improve reconstruction

capability.
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3.1.2 GPS/INS Performance

To gauge the performance of the GPS/INS system it is important to look at the

deviation in position as a function of time when the imager is at a stand-still. This

will allow for measurement of drift in the readings. Shown below in figure 3.4 is the

calculation of the Circular Error Probable (CEP) metric. This is a common metric

used in assessing the performance of a positioning system [42]. CEP is defined by the

smallest radius of a circle, centered at the mean location of all measurements, that

will encompass 50% of all measured locations. For this measurement the data set was

82 seconds of 100 Hz location information while the imager was stationary. Since

the imager is not moving the GPS system should not change the location however,

there is some uncertainty and drift in the location calculation. For the purposes of

the gamma-ray imaging system the calculated CEP of 3.3 cm is more than sufficient.

3.1.3 Validation

The first step in making use of the GPS/INS information is to ensure the data is

sensible. Checking of navigational information is critical to the reconstruction algo-

rithms to ensure images are placed in the correct location. Table 3.2 shows the criteria

used in checking the navigational information. The values in Table 3.2 are first order

checks, the fact that a navigation information has a value in range does not imply it

is accurate. To this end, data are also checked for deviations between measurements,

where an unexpectedly large change in any value over a small time is flagged as in-

valid. It is also important to check the parameters when interpolating and averaging

between measurements within the algorithms to ensure a miscalculation has not been

made. Time output from the navigational hardware is presented in milliseconds into
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Figure 3.4: Calculation of the CEP resolution for the GPS location shows to be less
than 3.4 cm over 82 seconds.

the week. As such, the acceptable range in Table 3.2 is determined by the maximum

number of milliseconds in a single week.

3.2 Detector Hardware

The heart of the TMI is the detector subsystem. The detector hardware consists of

2 arrays of NaI elements. The first array is an active NaI mask containing 35, 5x5x2

in3 crystals called the CA array. The CA array is used for both attenuation and
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Table 3.2: List of checked parameters and acceptable ranges for GPS/INS navigational
data.

Segment Parameter Acceptable Range

Distance from Last <15 meters
Altitude -100 meters to 10,000 meters
Latitude -90 to 90 degrees
Longitude -180 to 180 degrees
Bearing 0 to 360 degrees
Pitch -180 to 180 degrees
Roll -45 to 45 degrees

Velocity <70 mph (32 m/s)
Time 0 to 6.04x108 ms

scattering of gamma-ray photons. The second is an array of 30, 2.5x3x24 in3 position

sensitive NaI bars with dual ended readout called the DA array. The purpose of the

DA array is to collect both un-scattered and scattered gamma-ray photons. The use

of an active coded mask array allows for simultaneous coded aperture and Compton

imaging to be performed using the same hardware. The output of the detector arrays

is a list-mode (event-by-event) stream of fully digitized data; energy, time, and relative

position. A coincidence tag is also included to allow for discrimination between coded

aperture events and Compton events. The detectors have been designed to meet the

requirements of the broad agency announcement DNDOBAA07-01 (BAA) from which

this program resulted. Table 3.3 summarizes the hardware requirements for the TMI.

3.2.1 Active Coded Mask - The CA Array

Coded aperture imaging requires the use of a coded mask array in order to attenuate

a fraction of incoming gamma-ray photons such that a shadow pattern is cast onto

the rear detector array. In traditional coded aperture systems the mask is constructed
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Table 3.3: Broad agency announcement requirements for the SORDS detector.

Criteria Required Value

Gamma-ray energy range 100-1200 keV
Energy resolution at 662 keV 7.5% FWHM
Energy resolution at 122 keV 17% FWHM
Detected gamma-rays per second in 15
photo peak from 1 mCi 137Cs at 100 m
Field of view in plane of motion > 2 radians
Field of view normal to motion > 0.5 radians
Point source angular resolution in plane of motion < 0.3 radians
Point source angular resolution normal to motion < 0.3 radians
Total system size † < 8 m3

Total system weight † 1200 kg
Total system power † < 3 kW
No radioactive sources used in system Yes

† Includes hardware extraneous to TMI detector arrays.

from dense materials such as lead or tungsten to achieve maximum opacity. The TMI

uses an active coded aperture mask, meaning that active NaI tiles are used which can

act as both gamma-ray attenuators and scattering detectors for Compton imaging.

The thickness of the NaI tiles has been optimized to provide similar opacity to lead at

1.5MeV , given equal mass. Mask elements of lead at 1.64 cm thick (3007 g) attenuate

61% of 1.5 MeV photons while 5.08 cm thick NaI elements (3007 g) attenuate 58%.

The coded aperture array is referred to as the CA array.

The active mask used in the TMI is a 15x5 element grid of NaI tiles. Each element

in the array is a 5x5 inch NaI crystal with a thickness of 2 inches. The array is filled in

a random pattern with 35 active tiles, leaving 40 open grid locations. This translates

to a 46.66% fill factor.

The CA array is mounted in a lightweight, rigid and movable structure that allows
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for a wide FOV and easy servicing and reconfiguration. The array structure is 121

inches long and 45 inches high. It has been milled from a single piece of aluminum

and is shock mounted to support stands at either end that have been designed not to

obstruct the FOV. The array is designed to be easily reconfigurable as the detectors

can be mounted in any of the 75 locations in the structure. Each detector element in

the array is electrically isolated.

Because the CA array acts as both a gamma-ray attenuator for coded aperture

imaging and a scattering plane for Compton imaging the selection of detector size has

been carefully considered. The detectors are designed to have good efficiency for low

energy gamma-ray absorption and single Compton scatters. Additionally, to meet the

off-axis requirements from Table 3.3 the thickness of the detector elements must not

occlude the aperture at high incident angles. Each NaI crystal is housed in a 1 mm

thick aluminum casing.

Each CA array detector element is optically coupled to a 4 inch bialkali PMT on

the 5x5 inch face. The 4 inch PMTs are custom built by Hamamatsu specifically for

the TMI to achieve similar performance to a 5 inch PMT at 40% of the mass. This is

an important consideration since any material in the path of incident gamma-rays can

cause scattering or absorption, degrading image reconstruction. Each PMT is housed

in an aluminum enclosure to provide shielding from external light and Electromagnetic

Interference (EMI). Some of the mass savings comes from the use of 16 μm cobalt

alloy foil wrapping used for magnetic shielding of the PMT. The magnetic shielding

was selected to provide immunity to the Earth’s magnetic field to a level of 0.5%

maximum gain drift between orientations. The bialkali photocathode material was

chosen to achieve the desired sensitivity to the 420 nm luminescence wavelength of
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Figure 3.5: CA detector element assembly with photomultiplier tube attached.

NaI while meeting BAA requirements and maintaining lower cost. Figure 3.5 shows

an assembled CA detector element with PMT.

Optimization was performed using Monte Carlo simulations in order to determine

if the PMTs should face out from the front of the detector array or back towards the

absorption array. Ultimately it was decided that position does not have an appreciable

effect on detection, therefore all PMTs were placed facing out from the front of the

detector. This configuration also allows for more room to move about inside the

vehicle; reducing the possibility of damaging one of the elements.

Affixed to each PMT is a dedicated, low-profile 4x2 inch circuit card housing High-

Voltage (HV) and discrimination electronics. The electronics were custom developed

and built by Bubble Technology Industries (BTI). Each circuit card is enclosed in
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Figure 3.6: Measured energy spectrum from a single CA detector element from a 137Cs
point source taken during field measurements. The FHWM energy resolution at 662
keV is shown to be 7.36%.

an 0.03 inch thick aluminum housing for HV safety and is shielded from EMI. The

specifics of the front-end electronics will be given in section 3.6.

The performance of the CA array elements fully meets the specifications in the

BAA requirements for energy resolution. Figure 3.6 shows the measured energy reso-

lution from a 1.0 mCi, 137Cs point source at 25 meters (90◦) taken during field trials

of the system in a single CA element. The demonstrated energy resolution is 7.36%

FHWM at 662 keV . Figure 3.6 also exhibits good energy calibration; the 661.59 keV

photo peak from 137Cs is centered at 662.74 keV .

It is also useful to look at the average resolution across the entire CA array. Figure
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Figure 3.7: Measured centroid (top) and width (bottom) of the 137Cs photo peak for
each of the 35 CA detector elements. The average resolution is 7.69± 0.2% FHWM.

3.7 shows the 137Cs photo peak location for each element (top) and the measured

width of the photo peak (bottom). From the measurements the average resolution of

the CA array is 7.69± 0.2% FWHM. The average centroid and width are shown with

a solid red line.

3.2.2 Absorption Elements - The DA Array

For both coded aperture and Compton imaging to function there is a need to absorb

the total gamma-ray energy. This functionality is provided by the DA array. This

serves coded aperture by measuring the position distribution of gamma rays that

have been shadowed by the CA mask array. Also, it serves Compton imaging by
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collecting the remaining energy from Compton scattered photons in the CA mask

array.

The DA array consists of 30, 2.5x3x24 in3, NaI bars. Similar to the CA array,

the DA array is mounted to a rigid, moveable structure comprised of four aluminum

beams anchored at the ends by support stands. Each beam has a shock mounted bar

attached that acts as the mounting point for the NaI bars. This prevents the bars

from moving independently. The array is 127 inches long and 46 inches high. Each of

the rear detectors is electrically isolated from the support structure. Figure 3.8 shows

two of the NaI bars used in the DA array.

In the design of the DA array it was important to balance multiple factors in-

cluding efficiency, energy resolution, position resolution, weight and cost of the bars

in order to meet BAA specifications. Additionally, all these factors are limited by

realistic detector availability from the manufacturer. Energy and position resolution

are key to the DA array since it will directly contribute to the angular resolution of

the imager.

Bars are read out by 2 inch Super Bialkali (SBA) PMTs at both ends. SBA PMTs

were chosen for the rear array, at increased cost, to boost the readout performance

due to the length of the bars and the attenuation of light along the length. SBA

PMTs have increased quantum efficiency for the emission wavelength of NaI; 32%

versus 23% for regular bialkali PMTs. [43].

Position-independent measurements of energy and position can be calculated using

the product and ratio of pulse height amplitudes. This calculation can be simplified

if the PMTs are gain matched, meaning a burst of light in the center of the bar

produces an equal amplitude signal from the PMTs at both ends. The specifics of the
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Figure 3.8: Two NaI bars used in the DA array with attached 2” PMTs at both ends
and LED pulser port at the center.
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gain matching are provided in section 3.3.

Position information is measured by localizing the source of scintillation light.

Intensity of light measured at one end of the bar falls exponentially with the origin

point of the light within the bar. Equations 3.1 and 3.2 show the calculation of the

expected PMT signal at one end of the bar where Eγ is the energy deposited, P is the

probability of an optical photon at one end of the bar reaching the PMT at the other

end, E0 is the energy deposited per optical photon generated, a characteristic of the

material, and α is the light attenuation coefficient in the material, y is the interaction

location along the bar and L is the length of the bar [33].

PMT1 =
EγP

E0
exp [−α(L/2 + y)] (3.1)

PMT2 =
EγP

E0
exp [−α(L/2− y)] (3.2)

Dividing the measured signal at both ends of the bar and taking the logarithm

as shown in Eq. 3.3 yields a linear indication of the position where the scintillation

occurred. Notice from Eq. 3.3 that the calculated position along the bar is independent

of energy deposited in the bar and only a function of the ratio of measured signals

and fixed material properties.

y =
1

2α
ln

(
PMT2

PMT1

)
(3.3)

The total energy deposited in the bar can be calculated by multiplying Eqs. 3.1

and 3.2 and taking the square root as shown in Eq. 3.4. Notice from Eq. 3.4 that the
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calculated energy deposited in the bar is position independent and only a function of

the measured signals and fixed material properties of the bar.

Eγ =
√
PMT1PMT2

E0

P
exp [αL/2] (3.4)

The performance of the DA array elements fully meet the specifications in the BAA

requirements for energy resolution. Figure 3.9 shows the measured energy resolution

from a 1.0 mCi, 137Cs point source at 25 meters (90◦) taken during field trials of the

system in DA bar 26. This is the measured energy spectrum, for all interactions, across

the entire length of the bar. The demonstrated energy resolution is 7.46% FHWM at

662 keV . Figure 3.9 also exhibits good energy calibration; the 661.59 keV photo peak

from 137Cs is centered at 663.84 keV .

It is also useful to look at the average resolution across the entire DA array. Figure

3.10 shows the 137Cs photo peak location for each DA bar (top) and the measured

width of the photo peak (bottom). From the measurements the average resolution of

the DA array is 7.29± 0.15% FWHM. The average centroid (658.52 keV ) and width

(21.56 keV ) are shown with a solid red line.

3.3 Gain Matching

Gain matching of the PMT readout for a single NaI bar is achieved through automatic

high voltage tuning using a reference signal at the center of the detector face. Gain

matching is a continuous, automated algorithm that ensures both PMTs register an

identical charge output when exposed to the exact same amount of light. Practically,

a scintillation event at the center of the detector should read out at each end with
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Figure 3.9: Measured energy spectrum from a single DA detector element from a 137Cs
point source taken during field measurements. The FHWM energy resolution at 662
keV is shown to be 7.46% integrating over all energy depositions along the length of
the bar.
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Figure 3.10: Measured centroid (top) and width (bottom) of the 137Cs photo peak for
each of the 30 DA detector elements. The average resolution is 7.29± 0.15% FHWM.
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equal voltage, however differences in the characteristics of the PMTs as well as gain

drifts can cause variations in the measurement of the same event at opposite ends of

the bars.

Normally, gain matching can be performed in the laboratory fairly easily using a

check source centered on the detector element and manually adjusting the gain of the

PMTs until an identical signal is measured at each end. This is complicated in the

case of the TMI because it must auto-calibrate, track gain drifts and make no use of

radioactive sources for calibration purposes to fully meet the system requirements.

In order to overcome this challenge the TMI makes use of a controlled Light

Emitting Diode (LED) flash precisely at the center of each NaI bar. Periodically, an

LED flashes a brief pulse, several hundred nanoseconds in duration. Light from the

LED is piped into the bar via a fiberoptic cable to a port at the geometric center of

the 3x24” face of the detector. The port is a hermetically sealed window to the crystal

with a SubMiniature version A (SMA) type coaxial connector. Light from the LED

emitted into the crystal is diffused evenly between the two ends of the bar, such that

light incident on each PMT photocathode will be approximately equal. The pulse

from the LED is controlled by the individual detector’s Field-Programmable Gate

Array (FPGA).

Since the FPGA on the detector electronics also controls both the LED flash

and the event classification it can separate calibration from scintillation events. The

gain matching algorithm is continuously running for each pair of PMTs on all 30

NaI bars, iteratively changing the voltages as necessary. It must also ensure that

the mean voltage provides a good dynamic range for the system in terms of energy

calculation. Continuous tracking is used to correct for any gain drifts which would
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affect each PMT uniquely. Figure 3.11 shows an event-by-event plot of the measured

pulse height amplitude at both ends of a DA array bar. Here, features from the 662

keV 137Cs photo peak, 1461 keV peak from 40K, the LED pulser and the 2614 keV

peak from 208Tl can be seen.

3.4 Energy Calibration

Energy calibration refers to the conversion of the channel value from the Analog-to-

Digital Converter (ADC) electronics corresponding to the Pulse Height Amplitude

(PHA) measured by the PMT, into a physical value of energy. Similar to the gain

matching algorithms, the energy calibration must run continuously and automatically

on each detector to account for changes in the PMT gain. The process of energy

calibration on the TMI is identical for both CA and DA detector elements with the

only exception being that the energy calibration takes place after gain matching in

the DA detectors and uses the PHA calculated from Eq. 3.4.

Each calibration is performed using a two-point calibration with the zero-energy

channel (pedestal) and the centroid channel of the 40K peak from NORM background.

The zero-energy channel is measured by forcing the ADC electronics to read out when

no real trigger is present in the system and taking the centroid of the pedestal. The

pedestal has some width defined by the noise in the triggering electronics.

Candidate 40K peaks are found using an automated searching algorithm. Several

tests of peak validation are performed to ensure that the correct peak is selected as

40K, errors in the searching algorithm could have major effects on the performance of

the system, as measurements would be incorrectly converted to energy. Once the 40K

peak is located, detector HV is adjusted such that the peak centroid is appropriate
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Figure 3.11: Event by event plot of pulse height amplitude as measured by the PMTs
at both ends of a single DA array bar [44].
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to maintain the dynamic range of the system (up to 3000 keV ) and maximize the

dispersion at the low-end of the energy spectrum. This translates to roughly 50% of

the full range of the ADC.

Event to event variation in the amount of light produced in the crystal results in

non-proportional response. Therefore, a final correction to the two-point calibration

accounts for the non-proportionality of light output ( γ
MeV

), that is characteristic of

the NaI crystal [34]. This correction is performed event-by-event using a lookup ta-

ble generated from interpolated measured data. Once a detector is calibrated it is

considered operational and ready to send data to the imaging algorithms for process-

ing. Detector firmware continuously updates the calibration for each element every 2

minutes using the most recent 10 minutes of data collected. The TMI remembers the

most recent calibration for each detector to avoid a lengthy calibration period at the

beginning of a collection. Any or all detectors can be forced to forget their calibration

parameters, putting them into calibration mode. A full initial calibration can take up

to 30 minutes to ensure adequate statistics for fitting the 40K spectral line. This can

be expedited by several minutes by placing bags of potassium chloride (KCl), or rock

salt, nearby the detector to boost the 40K peak statistics.

3.5 Position Calibration

With properly gain matched PMTs at the top and bottom of the detector the value of

y, or PHA, from Eq. 3.3 is proportional to the position along the length of the bar. In

order to make use of the position sensitivity of the bars the PHA must be converted

into a physical distance. Additionally, each of the 30 NaI bars, with varying crystal

quality, will behave in a slightly different way.
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Each of the 30 NaI bars have been manually calibrated using a 137Cs check source

moved along the length of the bar at 15 discrete locations and measured for 30 seconds.

By analyzing the measured ADC channel distributions for each bar a calibration curve

can be established that will convert the PHA into a physical measurement. Figure

3.12 shows the ADC channel distribution for each of the 15 measurements (top)

superimposed with the fit to each (red) and the derived calibration curve (bottom).

The observed wide distributions in Fig. (3.12) are a result of two factors. First the

check source was placed onto the surface of the bar housing and was not collimated,

making the interactions locations essentially a 2π distribution. Second, the energy

depositions were not windowed around the 662 keV photo peak from 137Cs since

the calibration could easily be estimated from the centroid of the distribution and

includes more photons, reducing the uncertainty.

The derived calibration curves for all 30 bars are shown in Figure 3.13. It can

be seen from Fig. 3.13 that there is variation between the bar calibrations, making

it necessary to calibrate each bar individually. Fit functions used to generate the

calibration curves are 3rd order polynomials. The equation used is of the form y =

P0 + P1x + P2x
2 + P3x

3, where y is the calculated interaction location and x is the

readout ADC value. The parameters of the fits are summarized in Table 3.4. Each of

the calibration fits has an acceptable range of ADC channels (ADCmin to ADCmax)

that will give a measurement location within the physical dimensions of the bar

(±30.48 cm).

Measurements taken from the middle region of each bar are generally linear in

nature as a function of ADC channel. However at the ends of the bars the functional

form takes more of a polynomial shape. This is because a signal near the edge of the
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Figure 3.12: Measured ADC channel distribution for 15 points along the face of a
single DA detector element (top) and the resulting calibration curve using centroids
of the fits to the 15 distributions (bottom).
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Figure 3.13: Derived position calibration curves for each of the DA detector bars from
measured data at 15 points along the each bar.
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Table 3.4: Polynomial DA bar calibration parameters and acceptable ADC channel
range

Bar ID P0 P1 P2 P3 ADCmin ADCmax

0 9.4610e+01 -1.5803e+00 1.0359e-02 -3.0321e-05 65 170
1 9.1647e+01 -1.4230e+00 8.2246e-03 -2.1346e-05 68 186
2 8.2253e+01 -1.0988e+00 5.4065e-03 -1.4135e-05 72 184
3 8.6735e+01 -1.2660e+00 7.2257e-03 -2.0943e-05 71 174
4 8.1936e+01 -1.1472e+00 5.9273e-03 -1.5629e-05 69 183
5 1.1339e+02 -1.7825e+00 1.0401e-02 -2.6615e-05 77 180
6 9.4967e+01 -1.4505e+00 8.3877e-03 -2.2570e-05 71 179
7 6.1342e+01 -7.6707e-01 3.2892e-03 -8.7411e-06 59 190
8 6.3696e+01 -7.9162e-01 3.4138e-03 -9.3941e-06 61 185
9 7.3556e+01 -9.4012e-01 4.3139e-03 -1.1642e-05 68 183
10 6.5110e+01 -7.7030e-01 3.0352e-03 -7.8997e-06 64 189
11 9.1031e+01 -1.2785e+00 6.5256e-03 -1.6414e-05 73 184
12 8.9409e+01 -1.2714e+00 6.6185e-03 -1.7052e-05 72 182
13 9.0568e+01 -1.3530e+00 7.5646e-03 -2.0023e-05 70 181
14 6.7990e+01 -8.1944e-01 3.3329e-03 -8.8639e-06 66 185
15 8.8091e+01 -1.2519e+00 6.4908e-03 -1.6614e-05 71 183
16 7.6223e+01 -9.7453e-01 4.3252e-03 -1.0925e-05 69 186
17 7.0382e+01 -9.4281e-01 4.5421e-03 -1.2050e-05 64 186
18 6.6499e+01 -8.8373e-01 4.2454e-03 -1.1097e-05 61 192
19 7.7089e+01 -9.8690e-01 4.4092e-03 -1.1055e-05 70 187
20 8.8316e+01 -1.2155e+00 6.1583e-03 -1.6206e-05 73 180
21 9.5132e+01 -1.3905e+00 7.5954e-03 -1.9965e-05 74 180
22 6.6190e+01 -8.5606e-01 3.9367e-03 -1.0083e-05 62 195
23 6.3197e+01 -7.9118e-01 3.4446e-03 -8.9881e-06 61 192
24 7.3183e+01 -1.0095e+00 5.2007e-03 -1.4109e-05 65 186
25 8.0895e+01 -1.1502e+00 6.0960e-03 -1.6796e-05 67 178
26 6.5410e+01 -6.6501e-01 1.6696e-03 -3.8903e-06 70 186
27 7.7436e+01 -1.0141e+00 4.5734e-03 -1.1060e-05 68 189
28 8.3500e+01 -1.2196e+00 6.6888e-03 -1.7906e-05 68 183
29 6.7714e+01 -8.0412e-01 3.1561e-03 -7.9489e-06 67 189
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bar will register a large PHA in the closer PMT while light has to diffuse through the

entire length of the crystal to reach the far PMT. Much of the signal is lost along the

way distorting the position calculation slightly. By fitting the measurements using a

polynomial function this effect can be minimized. It can also be seen from the plot that

measurements near the ends of the bars can vary in their reported physical distance

much more easily and therefore an effective area of the bar has been established.

If the measured PHA yields a location above or below the limits of the bar, the

measurement is discarded in processing because the uncertainty associated with that

particular measurement is greater than the benefit of including it in image reconstruc-

tion. Since this is a moving system, crystals can shift slightly and optical couplings

can degrade. Therefore the calibration should be checked periodically, however should

remain consistent as a result of the gain matching.

3.6 Front-end Electronics

Front-end electronics are designed to process individual gamma-ray interactions in the

TMI detector arrays. Each detector element must have dedicated electronics for signal

processing, high-voltage, and a combined processing unit to correlate events in time.

The front-end electronics are separated into three types of Circuit Card Assembly

(CCA). The TMI contains 95 High-Voltage Circuit Card Assembly (HVCCA), one

for each PMT, 65 sensor CCAs, one for each detector CA element and DA bar,

and one Event Characterization Unit (ECU). All front-end electronics were custom

designed and built by BTI in Ontario Canada. Figure 3.14 shows the flow of signals

and electronics on the TMI. All data are eventually sent to the Data Analysis System

(DAS) for parsing, navigational correlation and algorithm processing.
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Figure 3.14: The flow of signals and electronics on the TMI. Data is eventually sent
to the data analysis system (DAS)

55



3.6.1 Sensor Electronics

There are 65 sensor CCAs, one for each of the CA detector elements and one for

each DA array bar. Each sensor card is connected to one or two HVCCA cards for

input depending on whether it is connected to a CA element or a dual-ended readout

DA bar. The output of the sensor cards is a serial connection to the ECU. Sensor

CCAs are rack mounted above the detector arrays and have connections on the front

face. Figure 3.15 shows the sensor CCAs for the CA array mounted in a rack prior to

integration on the TMI. The red cables are the serial lines to the ECU, input power

lines come in from the right-hand side, 20-pin ribbon cables and coaxial lines are

also visible. There are also LED lights on each sensor CCA to indicate their current

operational status.

Sensor CCAs receive analog and digital signals from the HVCCA card attached

to the detector and convert them into data containing measured energy, time, and

position of interactions. Positions on the CA array are integer row and column num-

bers for the CA element that triggered, while positions on the DA array include an

integer bar number and an 8-bit (0-256) ADC channel representative of the location

of the interaction along the bar from the charge division algorithm. Additionally, each

sensor CCA card provides State-of-Health (SOH) information about the detector, for

example calibration status and HV settings.

3.6.2 High-Voltage Electronics

The HVCCA attached to each PMT is a low profile card that houses a local 1500

V high-voltage supply, the resistive divider chain to support the PMT, and the dis-

criminator circuitry. Analog preamplifier output from each HVCAA is fed to the
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Figure 3.15: Sensor CCAs for the CA array mounted in a rack prior to integration on
the TMI.
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Figure 3.16: Images of a high-voltage circuit card assembly (left) with PMT resistive
divider in the center and the HVCCA output connector (right) showing the 20-pin
ribbon cable connector.

corresponding sensor CCA via a coaxial cable. Additionally, each HVCCA card is

connected to the sensor CCA through a 20-pin ribbon cable. The ribbon cable sup-

plies the low voltage power required by the HVCCA, the voltage request signal and

discriminator trigger signals. Voltages on the HVCCA card are determined by the

sensor CCA card and communicated over the ribbon cable via a pulse-width modu-

lated signal. Figure 3.16 shows images of a high-voltage circuit card assembly (left)

with PMT resistive divider in the center and the HVCCA output connector (right)

showing the 20-pin ribbon cable connector on the reverse side of the circuit.

Each HVCCA has two discriminator channels. The first discriminator channel is

a fast, low threshold discriminator used to generate fast triggers. The fast threshold

is set such that it skims the noise. The second is a confirm discriminator that has

a higher threshold and ultimately decides if the detector triggered. If the detector

triggered the analog preamplifier signal is sent to the sensor CCA card for analysis.
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3.6.3 Event Characterization Unit

The ECU is connected, via serial lines, to all 65 sensor CCAs, the navigational subsys-

tem, and the DAS. The DAS is the central processing unit that feeds list-mode event

data to the imaging and detection algorithms. The ECU handles time synchroniza-

tion of all sensor CCAs over the serial connection by providing a master clock sync

pulse. It is necessary to maintain time synchronization among all detectors because

the relative time between events in different detectors is a crucial piece of informa-

tion in the coincidence determination. Additionally, events must be synchronized in

order to allow for precise correlation with GPS/INS navigational information. The

ECU can also be used to perform commanding of the sensor CCA FPGAs. Figure

3.17 shows the ECU with all serial lines from the CA detector array (red) and DA

detector array (teal) shown coming in from the top and bottom. Also visible in Fig.

3.17 is the master controller FPGA (center).

Event Timing and Synchronization

Pulse amplitudes with a signal above the confirm threshold on the HVCAA generate

a timing pulse that is sent to the sensor CCA. Each sensor CCA has a 100 MHz

oscillator that is running asynchronously to the ECU and all other sensors and a

Time-to-Digital Converter (TDC). The ECU generates a 1 MHz synchronization

pulse from the master clock which gets pushed to each sensor CCA card through

equal length cabling. The TDC on the sensor CCA measures the phase of the local

(asynchronous) clock to the master synchronization clock from the ECU. The sensor

CCA now has a Time-of-Arrival (TOA) stamp to sub-nanosecond precision.

The GPS/INS subsystem of the TMI is also connected to the ECU to provide
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Figure 3.17: Image of the ECU with all serial lines from the CA detector array (red)
and the DA detector array (teal) shown coming in from the top and bottom.
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coarse timing information (1 Hz). Events measured by the sensor CCAs are stamped

with a time calculated as the difference between the TOA and the GPS time. This

allows for precise correlation between gamma-ray interactions and the location and

attitude of the vehicle. The GPS system is also connected to the data analysis system

(DAS) to provide fine timing and location information (100Hz). Using the timestamp

of the measured events, the GPS information can be interpolated to provide the exact

location of the detector system for each event.

Coincidence Determination

Since the TMI is both a coded aperture and Compton imaging system, it requires

discrimination of the input data to each algorithm. Coded aperture algorithms are

only interested in gamma-ray photons that deposit energy in the DA array. Conversely,

the Compton imaging algorithms are interested in photons that Compton scattered

in the CA array and deposited their remaining energy in the DA array.

In order to separate these event types the ECU makes a coincidence determination

based on an acceptable time window. The FPGA in the ECU makes a coincidence

determination by examining the timestamps of events that arrive at the ECU within

a short window of time. Several factors play a role in the coincidence determination.

First, the synchronization between the sensor CCAs must be very accurate. This

is handled by the master clock synchronization pulse from the ECU to the sensor

cards. Also, there is some time-walk in the HVCCA discriminators due to the pulse

amplitude from the PMT, the physical distance between the CA and DA array (75

cm, 2.5 ns) and time-walk due to the position the interaction in the DA bar. Each of

these effects behaves predictably and is corrected for in the sensor CCA firmware. The

coincidence window width implemented on the TMI is on the order of a microsecond,
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however it is adjustable.

3.7 Data Processing

The final component of the detector system is the processing of event data. In order

to make use of the data from a mobile platform, list-mode event data must be asso-

ciated with the location and attitude of the TMI. Association is achieved in several

ways. First, the navigational subsystem has a pulse-per-second (1 Hz) signal that

feeds directly into the detector front-end electronics. As gamma-ray interactions are

measured, they are stamped with a time relative to the GPS time. This represents the

exact time of the interaction. Next, the higher-rate 100 Hz navigation signal is fed

into the DAS. The DAS performs a lookup of the high-rate navigational information

according to the event time and stamps each measured interaction with a location

and attitude. Once stamped the events can be imaged according to their location as

the imager is moving (or not) so that gamma-ray images can be overlaid to produce a

source distribution that aggregates counts appropriately. The chapters on the imaging

algorithms will discuss how to make use of this information.

3.8 Field-of-View

With the detector arrays fully described it is important to calculate the active FOV

of the imager. As stated in the BAA requirements the TMI must exhibit a horizontal

FOV of ± 1 rad and a vertical FOV of ± 0.25 rad. Measurements have been taken

with the TMI at various angles off-axis to determine the FOV in both the horizontal

and vertical directions. An 879 μCi, 137Cs source was used for all measurements. Each

measurement is calculated for 20 seconds of integration time. Figure 3.18 shows the
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Figure 3.18: Angular measurements taken for TMI horizontal FOV calculations. Each
measurement was taken with a 879 μCi, 137Cs source at a radius of 25 meters, with
20 seconds of integration time. At each location an image from the TMI is shown
where the background color (purple) indicates a flat background image.

results of the horizontal FOV calculation for 12 measurements approximately equally

spaced by 0.10 rad, and a single measurement in the middle. The horizontal FOV

is shown to be ±1.01 or 2.02 rad total. Figure 3.19 shows two measurements with

the source located at +0.4 (A) and -0.33 rad (B) off-axis in the vertical direction.

This demonstrates a vertical FOV of at least 0.73 rad, exceeding the 0.5 radian

requirement.

3.9 Summary

This chapter has given an overview of the components of the TMI that relate to the

detection of radiological material in a mobile system. The specifics of the navigation

system were presented along with performance characteristics. The detector hardware
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Figure 3.19: Two off-axis (vertical) measurements taken for field-of-view calculations.
Each measurement was taken with a 879 μCi, 137Cs source at a radius of 25 meters,
with 20 seconds of integration time. The vertical FOV is shown to be (at least) -0.33
radians (B) to +0.4 radians (A) or 0.73 radians total.

of the TMI was presented from all aspects from material, geometry, housing, electron-

ics and readout. Methods for automatic position and energy calibration within the

detector elements was presented as well as the flow of data to the detection algorithms.

It has been shown that the designed detector system meets BAA requirements and

represents a powerful tool for detection of weak radiological sources in the presence

of large dynamic NORM backgrounds.

At this point a discussion of the algorithms implemented to maximize the appli-

cability measured data content will be presented. Chapters 5, 6, 7 and 8 will give the

details of the spectroscopic, coded aperture imaging, Compton scatter imaging and

hybrid detection algorithms respectively.
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Chapter 4

SIMULATION AND MODELING

Monte Carlo modeling and simulation is extremely valuable for any detector design

project. For design and development of the TMI the utility was three-fold. First, it

provided a sound method for predicting and optimizing performance of conceptual

detector designs such as material selection, detector arrangement and element size.

Second, simulation and modeling provided synthetic source and background data to

enable both imaging and non-imaging algorithm and code development while detector

design was being finalized [45]. Third, once a validated model has been developed it

can be applied to other efforts for gamma-ray detection and imaging, for example

deployment of alternative systems on modified land, maritime or aerial platforms.

A model of the detector and truck platform was created as shown in Fig 4.1 using

the General Response Simulation System (GRESS) [46, 47] Monte Carlo application

developed at Los Alamos National Laboratory (LANL), an extension to the Geome-

try and Tracking Toolkit v4 (GEANT4) [48] package. Outer truck panels have been

removed to allow interior visualization. The truck components such as tires, engine,

and chassis are rather crude, while the individual detector models are more intricate

as they can have a larger effect on performance.
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Figure 4.1: GEANT4 model of the SORDS truck platform.

The simulated detector system is intended to accurately predict the response to

gamma-ray sources both in a static and moving frame of reference. For motion sim-

ulations, sources are moved around a stationary detector geometry, and the detector

location is transformed to be the inverse of the source location, thereby simulating

detector motion. Motion can be simulated along arbitrary paths to gauge the response

to various real-world conditions. Simulated data are reprocessed with estimated or

measured energy and position response curves. Reprocessed data can then be pro-

vided to detection algorithms as surrogates to measurements. Figure 4.2 shows the

reconstructed gamma-ray image from a simulated 0.5 mCi, 137Cs point source as the

model passed the source at 25 m traveling at 15 mph.
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Figure 4.2: Reconstructed image using simulated data of the TMI for a 0.5 mCi 137Cs
source at 15 mph and minimum approach of 25 meters.

4.1 Detector Modeling

The accuracy of SORDS detector simulations must be verified against measured data

and selected components. Once available, measurements taken with the prototype

detectors were used to validate the simulation output. The ability to reproduce mea-

sured data features with simulations lies largely in precise modeling of the detectors.

Fig. 4.3 shows a cross-sectional view the simulated model for one of the CA array

elements. The model is very detailed including the detector crystal and housing,

mounting plates and interface materials, a PMT model and the attached front-end

electronics box and HVCCA. A similar model has been constructed for the DA array

detectors.

For comparison to data measured in the laboratory, further details were added

to the model to account for materials close to the detector during the time of mea-

surement. This included lead bricks supporting the detector, a wooden table, and the

concrete floor. Such items are necessary to reproduce the contribution of scattering to

the measured data. A comparison between measured and simulated data for a single

67



Figure 4.3: Cross-sectional view of the simulated model for one of the 5x5x2 inch
sodium iodide (NaI) front-plane detectors.
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Figure 4.4: Comparison of measured and simulated data for a SORDS 5x5x2 in3 NaI
detector exposed to a 60Co source.

CA detector is shown in Fig. 4.4. Data are from a 60Co point source located 10.5 inches

from the detector face. Figure 4.5 shows data from the measurement and simulation

of one of the DA detector bars. These data were collected with a prototype version

of the acquisition hardware that had a large and unknown dead-time. As a result,

simulation data is normalized to the measured photo-peak area. The comparisons

illustrate that all major spectral features are reproduced. There is some discrepancy

in the simulated spectrum at lower energies, where scattered photons dominate. Ex-

haustive detail, either in the detector model or the surrounding materials (lead bricks,

table, floor, walls), would likely improve the low energy response.

4.2 Background Modeling

Background from NORM is abundant and will play a major role in the ultimate

performance of any large-area system tasked with detection of weak or distant sources.
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Figure 4.5: Comparison of measured and simulated data for a SORDS 2.5x3x24 in3

NaI detector exposed to a 60Co source.

Radiation is emitted from a variety of primordial and cosmogenic isotopes occurring

naturally in soil, rocks, and their by-products. The TMI detector, with its large active

area, will observe significant event rates from background sources, on the order of 30 to

100 kHz. Simulation of accurate data for the development of imaging and non-imaging

algorithms will therefore require a thorough and well-validated model of the typical

background environment. The approach taken was to build the background model

starting from the most basic details of soil composition and isotopic distributions.

The content of soil has substantial variations depending on location and geography.

The assumed radioisotope composition of soil is shown in Table 4.1 [49].

These isotopes and their decay daughters are assumed to be in secular equilibrium

and constitute the source of nearly all naturally occurring radiation. For each of the
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Table 4.1: Radioisotope composition of soil used for the simulation model.

Isotope Activity (pCi/g)
40K 9.00

226Ra 1.30
232Th 0.55
235U 0.70
238U 0.70
222Rn 0.34
7Be 0.27

isotopes in Table 4.1 and their daughters, the specific activity is multiplied by the

branching ratio for each gamma-ray emitted, thereby providing the gamma-ray flux

per gram of soil for each emitted energy. There are well over a thousand gamma-ray

energies produced by these isotopes. For simplicity, the developed model uses the 100

most intense energies. Figure 4.6 shows the calculated gamma-ray emission energies

from a sample of soil constructed in the simulation.

The gamma-ray energy spectrum emitted by an extended volume of soil is more

complicated than the idealistic representation of many mono-energetic line energies.

Some gamma-rays will experience absorption and scattering in the soil itself, stopping

some low-energy photons, and producing a continuum of energies from scattering.

To reproduce the scattering and absorption effects, a GEANT4 model of soil was

constructed, using the chemical composition shown in Table 4.2, with an average

density of 1.5 g/cm3.

The simulated soil model occupied a volume of 1x1x0.5 m3 cube. Gamma-ray

energies from Fig. 4.6 were selected at random according to relative intensity and
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Figure 4.6: 100 most intense gamma-ray emission energies from a sample of soil con-
structed in the simulation.

Table 4.2: Elemental composition of soil used for the simulation model.

Element Abundance (%)

Hydrogen 2.1
Carbon 1.6
Oxygen 57.7

Aluminum 5.0
Silicon 27.1

Potassium 1.3
Calcium 4.1
Iron 1.1
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Figure 4.7: Gamma-ray energy spectrum emitted from the simulated soil model. The
model includes both self-attenuation effects and scattering within the soil.

emitted in the soil with a random momentum direction. The energy of gamma-rays

leaving the surface of the soil was tabulated resulting in the spectrum shown in Figure

4.7. The angular distribution of gamma-rays exiting the soil model was not computed.

The output energy spectrum is normalized to gammas per square meter per second

so that it can be used to generate the background source term for an arbitrarily large

mass of soil.

Since it would be extremely time consuming to simulate interactions in the soil

each time we desire to study the response of a detector, the energy spectrum of

Fig. 4.7 is used as a source term. That is, photon energies for background studies

can be picked randomly from the spectrum when performing detector simulations.

Figure 4.8 shows a comparison of background data collected with the TMI (black)

and the simulated NORM background (red) using the background model and the

truck model discussed previously. Energy spectra are shown for detector front-plane
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Figure 4.8: Comparison between measured data with the TMI arrays (black) and
simulated data (red) for the DA detector elements (top) and the CA detector elements
(bottom).

single hit events (bottom), back-plane single hit events (top). The ground was modeled

as a plane beneath the truck with dimensions of 20x20 m2. The simulation data is

normalized to the measurement live-time. The comparison is generally good with

some over-prediction of the 1460 keV and 2614 keV lines. The ratio of counts in

the measured spectrum to the simulated spectrum is 0.85 for front-plane events, 0.96

for back-plane events, and 1.3 for coincidence events, well within the substantial

variations known to exist for background intensity.
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A truly accurate simulation of background would require the simulation of an

infinite plane to replicate the surface of the earth. The simulations performed used

a 400 m2 plane because it was more computationally feasible. The total fraction of

detected background events that would be expected to originate within a radius of

10 meters has been evaluated. This was accomplished by generating photons from a

series of annular rings of width 1 meter at multiple radii. As shown in Figure 4.9,

the rate drops off quite rapidly with increasing radius, however the total integral

is substantial. Through this calculation it is estimated that about a third of total

background photons observed in the detector would be expected to originate within a

10 meter radius. Also shown in Figure 4.9 (bottom) is the simulated origin of gamma-

ray photons that interact in the detector, here it can be seen that a large fraction of

detected events come from the soil directly in front of the TMI.

The observed agreement between the measured and simulated data using only a

400 m2 ground plane suggests the activity values of the soil constituents in Table 4.1

are too intense for an infinitely large plane. However, the assumed activity values are

appropriately normalized if one uses a 400 square meter ground plane. It should also be

noted that significant variations in NORM background intensity are not uncommon.

Figure 4.10 shows the comparison of this soil model with data measured from

various locations around North America measured with Advanced Spectroscopic Por-

tal (ASP) monitors [50]. A simple model of the detector was constructed in GRESS

and simulated with the 400 m2 background plane [45]. It can be seen that the simu-

lated model produces a response in the ASP model (black) that is close to the average

of all measurements.
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Figure 4.9: Decline of simulated count rate as a function of ground plane radius (top)
and the gamma-ray photon origin point for all simulated energy depositions in the
TMI above a 20x20 m2 ground plane.
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Figure 4.10: Comparison of the simple ASP detector response to the constructed soil
model.

4.3 Summary

In this chapter a method for design and optimization of a prototype detector for de-

tection, imaging, and identification of gamma-ray sources from a mobile platform was

presented. Additionally, the GEANT4 simulation toolkit as well as GRESS were used

to guide detector design and produce synthetic data for the development of imaging

algorithms and code while detector hardware was being constructed. Significant detail

was incorporated into the detector level models. Simulations of individual detectors

and of the entire truck assembly were validated against measured data. Terrestrial

background radiation is significant for our large-area detector, necessitating a detailed

simulation to evaluate the resulting detector signature. A background model was built

from first principles and compared well to measured data in several instances. De-

tector validation will be useful for future research and development of gamma-ray
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detection systems and the background model will be useful for any future projects

where background contributions are expected to be significant.
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Chapter 5

SPECTROSCOPIC
ALGORITHMS

Since the primary goal of the TMI is detection of threats, at a minimum a simple

method for detecting the presence of radioactive material is needed. Spectroscopic

algorithms can provide sensitive detection of materials without fine localization in-

formation. Additionally, overall system sensitivity can be improved by combining

non-imaging spectroscopic algorithms with gamma-ray imaging information.

5.1 Data Segmentation

In order for spectroscopic algorithms to provide proximity localization of suspected

sources of interest, data must be combined with navigational information and seg-

mented into discrete blocks for analysis. The size of the blocks must be balanced with

the need for adequate statistics in the measured energy spectrum and desired location

sensitivity.

Data measured by the TMI are segmented into 2 second energy spectra (config-

urable). Each spectra is associated with an average location provided by the naviga-

tional subsystem. Since the average count rate of the system is on the order of 50
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kHz including both the CA and DA arrays, as well as coincidence events between

the two, an integration time of 2 seconds provides adequate statistics for peak fitting

analysis.

Figure 5.1 shows the path of the TMI with a colored block showing the total count

rate from a 2 second integration of all measured events (up to MeV ) within the time

range. Each block is color coded to correspond to the total count rate of the system

where green is lower and red is higher. The run presented in Fig. (5.1) is a measured

run past at 0.5 mCi, 137Cs point source (left to right) located at 25 m Distance of

Closest Approach (DCA) from the road. Here, the actual source location is not shown

to emphasize the fact that it is not clear from the total count rate where the source

is located. There are 3 likely locations: at the first road crossing, just past the road

crossing and toward the end of the measurement. In order to increase the sensitivity

of detection a method for energy windowing is needed.

5.2 Energy Windowing

Energy deposition from gamma-rays originating from NORM background are dis-

tributed throughout the energy spectrum, whereas gamma-ray point sources emit

energetic photons at specific energies. It is advantageous to the Signal-to-Noise Ra-

tio (SNR) to select only those photons that would have come from a source of interest

– more specifically, the photo peak.

Gamma-ray lines emitted by isotopes are mono-energetic and could be approxi-

mated using a delta function however, due to the limited energy resolution of NaI,

multiple measurements of a single photon result in a Gaussian distribution about the

actual energy. This fact makes it necessary to accept all photons within a window of
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Figure 5.1: Sample measurement past a 0.5 mCi, 137Cs point source. The total count
rate in the TMI is indicated by the height and color of the bars. Each bar represents
the integration of total energy deposited in a 2.0 second interval. The location of the
source is not easily located due to fluctuations in the total count rate.

energies rather than a single specific photon energy. This method will also be applied

to coded aperture and Compton gamma-ray imaging reconstruction in chapters 6 and

7 respectively.

Figure 5.2 shows the energy region of interest for several gamma-ray sources

overlaid on the NORM background spectrum. The measured energy spectrum from

NORM background is shown in blue and the energy windows used for imaging of

137Ca, 22Na, 131I, and 235U are shown in red, blue, yellow and green respectively.

Some isotopes have multiple gamma-ray lines and therefore have multiple energy

windows. For example, 22Na has two energy windows around the photo peak regions

at 511 and 1275 keV .

The width of each energy window is defined using multiples of the known energy

resolution as a function of deposited energy. The energy resolution of the detector
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Figure 5.2: Example of the NORM background as well as the energy windows applied
for several gamma-ray sources.

elements has been characterized using a 137Cs check source and approximately follows

the 1/
√
E functional form shown in Figure 5.3. The function in Fig. 5.3 is scaled by

the laboratory measured 7.5% FWHM energy resolution at 662 keV from 137Cs.

In order to increase the sensitivity of detection measured events are segmented

into subsets of spectra pertaining to a single isotope as shown in Fig. 5.2. This has

several advantages, first it will increase the sensitivity of the algorithms by reducing

the total background in the spectrum relative to a potential signal and second will

allow for simultaneous detection and identification of threats. If the SNR calculated

for a given isotope spectrum is above threshold it will alarm the system providing

detection of a source and also identify the source based on the isotope definition that

alarmed. Figure 5.4 shows the same run as Fig. (5.1) but shows only the total count
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Figure 5.3: Expected energy resolution of the DA detector array (σ) as a function of
total energy deposited in the NaI.

rate within the 137Cs energy window. Here, the location of the source becomes more

easily located as the point just past the road crossing.

Figure 5.4: Count rate as a function of location for all measured events within the
137Cs energy window. The location of the source is now clearly visible.
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Additionally it can be seen that fluctuations in the total 137Cs rate are less affected

by variation in other parts of the energy spectrum. However, increased count rates in

the gamma-ray lines above the energy of the photo-peak(s) of interest can contaminate

the energy window with continuum energies. As a result it will be advantageous to

the sensitivity to devise a method to estimate the background intensity within the

energy window. One simple method for account for background is the Region-of-

Interest (ROI) algorithm.

5.3 Region-of-Interest

Spectroscopic ROI is a method of background estimation within an energy window.

This background estimation is based on the observed counts to the low and high end

of the energy window to estimate the background counts within the window. Once

the background count rate is estimated a value for the SNR can be calculated. This

will be the basis of triggering in the ROI algorithm.

The region of interest for a particular isotope is broken up into three regions.

The first region is the background window (B1) of total energy deposited at the low

end of the photo-peak (e0 to e1). The second is the background window (B2) located

at the high end of the photo-peak (e2 to e3). The third peak region (S + B) is the

photo-peak signal region (e1 to e2). Equations 5.1, 5.2 and 5.3 show the calculation

of B1, (S +B), and B2 respectively where S(E, T ) is the measured energy spectrum

in all detector elements as a function of energy and time, Ei is the ith energy bin in

the spectrum, Ni is the number of energy bins in the summation, and t0 and t1 are

the limits of the time range for the integration. It should be noted that binned data

have been normalized to counts per keV per second, therefore the width of the bins
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is already accounted for in these calculations.

B1 =

e2∑
i=e1

S(Ei, T )|t1t0
NB1

(5.1)

(S +B) =

e3∑
i=e2

S(Ei, T )|t1t0
N(S+B)

(5.2)

B2 =

e4∑
i=e3

S(Ei, T )|t1t0
NB2

(5.3)

Background is estimated as the average of counts in the measured total energy

spectrum between times t0 and t1, for the low and high energy windows. The signal

is estimated as the average counts over the same time interval for the photo-peak

region minus the background estimation (B̄). To calculate the SNR of the peak the

signal is divided by the uncertainty in the background estimation (B̄) . Equation 5.4

shows the calculation of the background estimation for an energy spectrum and Eq.

5.5 shows the calculation of the signal-to-noise ratio from the ROI algorithm.

B̄ =
B1 +B2

2
(5.4)

SNR =
(S +B)− B̄√

B̄
(5.5)
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Figure 5.5 shows an example measured energy spectrum (blue) with a 2 second

integration time in the 137Cs energy window. The signal and background regions are

indicated with the black lines and the red regions show the calculated background

estimation in all three regions. The estimated signal in the peak is shown in green.

Figure 5.5: Example measured energy spectrum (blue) with a 2.0 second integration
time in the 137Cs energy window with energy regions and estimations shown.

Figure 5.6 shows the calculated ROI SNR as a function of location along a mea-

sured run past a 0.5 mCi 137Cs source at 25 meters for each 2 second integration

time. Fluctuations in the SNR are not affected as much by variation in the NORM

background and the source location is easily located just past the road crossing.

Figure 5.7 shows the result of alarming on the source from the SNR calculation in
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Figure 5.6: Signal-to-noise ratio as a function of location as a result of the ROI
algorithm applied to the 137 isotope spectra. The location of the source is now clearly
visible and background is stable at all other locations.

the ROI algorithm. The red arrow shows the location of the TMI at the time the alarm

was generated and the green ring of radius 50 m shows an estimated area where the

source could be located. The ground truth location of the source is contained within

the ring.

5.4 Supplemental Algorithms

In addition to the simple ROI algorithm described here, Bubble Technology Industries

has implemented a proprietary isotope identification and detection algorithm which is

executed in parallel. Results from the BTI algorithms are also combined with imaging

algorithms to improve detection sensitivity of the TMI.

5.5 Summary

In this chapter it has been shown that simple spectroscopic methods are considerably

sensitive for the detection of radioactive sources in a dynamically changing environ-
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Figure 5.7: ROI alarm for a measured run past a 0.5 mCi, 137Cs source at 25 m. The
alarm was generated by the TMI at the location of the red arrow and the estimated
area of possible source locations is shown with a green ring. The ground truth location
of the source shown to be within the ring.

ment. Through energy windowing techniques the SNR can be increased, resulting

in improved sensitivity. Additionally, by analyzing measured energy spectra in order

to estimate the background within an energy window triggering and alarming can be

performed allowing for isotope detection and identification, as well as crude proximity

localization. The energy windowing method in this chapter will be applied to imaging

algorithms as well. Improvements in sensitivity can also be observed when combin-

ing the results of the ROI algorithm with coded aperture and Compton gamma-ray

imaging algorithms.
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Chapter 6

CODED APERTURE IMAGING
ALGORITHMS

Coded aperture imaging is a method of gamma-ray imaging that uses a position

sensitive detector array, shadowed by a dense, sparse mask, in order to cast a coded

shadow onto the array [1–6]. The TMI detection array consists of 30 position sensitive

NaI bars, 3x24x2.5 in3 each, to collect gamma-ray energy and position measurements.

This is collectively referred to as the DA array. The DA array is shadowed by 35, 5x5x2

in3, NaI tiles in a random 15x5 element grid, with approximately 50 percent fill factor

called the CA array [51].

The advantage of coded aperture gamma-ray imaging is evident when reconstruct-

ing background events and source events. Imaging of pure background counts will

modulate on the detector array in a different way than if a source is present in the

FOV of the imager. This chapter will present the details of the coded aperture algo-

rithm implemented for the TMI, including methods of data segmentation, registration

using navigational information, background suppression, imaging decoding through

back projection, and uncertainty compensation. Figure 6.1 shows a sketch of the

coded aperture imager integrated into the TMI. Photons from a source pass through
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Figure 6.1: Diagram of the coded aperture imager integrated into the TMI.

the open coded mask elements casting a shadow pattern on the detection array. The

coded imager is designed to face out the curb side of the vehicle where the positive x

and y directions point toward the front and top of the vehicle respectively.

A coded aperture event is defined as a single energy deposition in the DA detector

array. It excludes multiple DA interactions and coincident interactions in the CA

array elements. Given that the coded mask is comprised of active NaI crystals, an

interaction in a CA element in coincidence with an interaction in a DA array can be

rejected to provide background veto capability.

Each coded aperture event has a discrete x location based on the NaI bar that

triggered and a y position along the bar. Additionally, each interaction is accompa-

nied by a measurement of the energy deposited in the bar. Segments of events are

represented as a distribution of interaction locations (x,y) on the DA array within a
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well defined time and energy windows. Events are carefully segmented based on cer-

tain conditions depending on the mode of operation. Segments of event distributions

will be referred to as DA array snapshots. Event segments are parsed into multiple

isotope snapshots through energy windowing in order to improve the SNR.

6.1 Energy Windowing

A method of gamma-ray energy windowing was described in section 5.2. Similar

to the spectroscopic algorithms, it is advantageous to the coded aperture SNR to

reconstruct only those photons that would have come from a source of interest rather

than producing a single image using all measured photons in the detector array.

By looking at the reconstruction of a point source using all measured photons, and

only those in the energy window, the positive effects of energy windowing on image

reconstruction can be observed.

Figure 6.2 shows the reconstructed image of a 0.5 mCi, 137Cs source from a 15

mph drive by at 25 m DCA. The images are reconstructed with the coded aperture

algorithm using all measured events (top) and only those within ±1.5σ of the 662

keV cesium photo peak (bottom). It can be observed from both images that the

source is present. However, the non-windowed image contains more clutter than the

windowed image due to the inclusion of many more background photons. This has

a detrimental effect on the performance of the algorithms, lowering the sensitivity

of the system and raising the Minimum Detectable Activity (MDA) of a source of

interest. The calculated significance of the non-windowed image is 5.80 compared to

11.27 for the energy windowed image. Also, the uncertainty in location and Time-

to-Detect (TTD) are improved; ±2.40 m in 9.52 s (top) versus ±2.37 m in 7.46 s
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(bottom). The method used for calculating significance is given in section 8.5.

Figure 6.2: Reconstructed coded aperture images using all measured photons (top)
and only those that have a total energy deposited within the 137Cs energy window
(top). The non-windowed image has a calculated significance of 5.80 with location
accuracy of ±2.40 m and was detected in 9.52 seconds. The windowed image has a
calculated significance of 11.27 with location accuracy of ±2.37 m and was detected
in 7.46 seconds.

The width of the energy window has been optimized by analyzing the image

significance as a function of window width. The value of 1.5σ has been chosen to

optimize the SNR in the image based on the results of the analysis shown in Figure

6.3.

6.2 Data Segmentation

The coded aperture algorithm aggregates all valid interactions on the DA array during

a specified interval and decodes the distribution into an image at a distance. Since the

TMI is a mobile system, a method for segmentation of measured data is required to

ensure that images are projected to the correct location without introducing distortion

from movement of the detector. In a static imaging scenario the selection of interval
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Figure 6.3: Optimization of the energy window width. A width of 1.5σ corresponds
to the highest significance in the coded aperture image.

is only dependent on the ability to detect a moving source within the FOV, making

elapsed time the most important factor.

In a moving scenario the quality of the back projected images depends on the

motion of the imager. The imager should not traverse more than a single imaging

pixel for a given data segment. Therefore three criteria have been selected to define

the intervals at which measured data are packaged and sent to the coded aperture

algorithms. These criteria make it possible for the imaging system to function in both

stationary and mobile detection scenarios.

Data are segmented according to the first of three criteria; time elapsed, distance

traveled, or number of photons collected. When any one of these criteria have met the

threshold value, the event segment is sent to the coded aperture imaging algorithm
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Table 6.1: The three data segmentation criteria used for coded aperture data.

Criteria Threshold Value

Time (s) 1.0
Distance (m) 2.0
Counts (N) 100,000

for processing. Table 6.1 summarizes the three criteria.

The selection of the criteria is based on several considerations to the mode of

operation. In a static mode, a source in the FOV may be moving and the image must

be updated regularly based on time or number of events measured, otherwise the

image will blur, lowering the performance of the system. In a moving scenario the

distance criteria is the most important. Here, the threshold has been chosen to limit

the length of a data segment such that the back projected image does not shift more

than a single image pixel for any measurement in the segment.

Each NaI bar is segmented into 24 (1 in) virtual elements in the position sensi-

tive Y dimension (ground to sky). The coded aperture algorithms parse each event

segment meeting one of the criteria in Table 6.1 into multiple aggregate matrices of

30 columns and 24 rows for a total of 720 detector elements. These matrices contain

the encoded gamma-ray image information and are the basis of the coded aperture

reconstruction. A DA detector matrix, constructed from a measured event segment,

will be referred to as a snapshot.

Each snapshot represents the distribution of all gamma-ray photons whose total

energy deposited in the DA array, in a single interaction, fall into the window of ac-

ceptable energies for particular isotope. For example, if the algorithms are configured

to produce images for N isotope definitions, each event segment will be parsed into N
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Figure 6.4: Sample DA snapshot (1.46 seconds, 2.00 meters, 324 events) in the 137Cs
energy window.

snapshots, one for each isotope. Each isotope snapshot contains only those photons

with an energy in the range of interest for that isotope, however multiple isotope

snapshots can contain the same photon.

Figure 6.4 shows an example snapshot, segmented by the distance criteria. The

snapshot in Fig. (6.4) is an aggregate of all measured photons (324), valid for the 137Cs

energy window, in 1.46 seconds, traversing 2 meters. The complete event segment had

29,718 measured photons from 0 to 3000 keV . The upper limit of 3000 keV is a result

of the dynamic range of the ADC electronics.

Additionally, when performing imaging the average FOV of the imager must be

calculated. Figure 6.5 shows the location distribution of 9,438 measured coded aper-

ture events for a single event segment. The average location of the TMI is shown with

a red dot and the imaging FOV with red lines. The location of the TMI for each mea-

surement is shown with a blue cross and the corresponding DA element locations (in

X and Z) are shown with green marks. For the coded aperture imaging algorithms,

all measured photons on the DA array are assumed to be measured on a virtual array

located at the average position of the TMI. Obviously this adds uncertainty to the

projected image and is handled using the smoothing technique described in section
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Figure 6.5: Example coded aperture event segment with the average calculated (red
square) and the imaging FOV shown (red lines). The location of the TMI for each
measurement is shown in blue and the interaction locations are shown in green.

6.4.3. The average location is not directly centered on all the measurements because

the speed of the truck can vary as well as the measured count rate as a function of

location.

6.3 Array Flat Fielding

Energy windowing has been shown to increase sensitivity by reducing background

introduced into the coded aperture image. However, there still exists the background

within the energy window itself. One method of subtracting background from mea-

sured backplane data is to use array flat-fielding [52]. Since photons from NORM back-

ground do not have a characteristic emission distribution (usually), it can be assumed

that they are incident on the detector plane randomly and that the shape of the ran-
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dom distribution should not change, regardless of position or time. Array flat-fielding

also has the advantage of removing noisy detector elements or non-uniformities in the

array from the image reconstruction.

Flat fielding is the process of taking an estimator of the shape of the distribution

of counts on the DA array, scaling it to the observed measurement and subtracting

it from the array snapshot. Equation 6.1 shows the calculation of the scaling factor,

λ, where (S +B) is the measurement snapshot array, B is the background estimator

snapshot, and σ2
i is the number of counts in the ith detector element of each. In this

equation the background is scaled to the integral counts of the measurement. The

scaling factor could also be determined using the elapsed time however that would not

accurately compensate for changes in the overall background count rates. Equation

7.21 shows the calculation of the expected source distribution, S, after subtracting

the scaled background estimator. In the case of purely background counts, the value

of S should fluctuate normally around zero counts if the value of B is an accurate

estimator of the background.

λ =

∑
(S+B)i

σ2
i∑

Bi

σ2
i

(6.1)

S = (S +B)− λB (6.2)

Figure 6.6 shows the result of subtracting the background estimator from the

measurement snapshot. Array flat-fielding can be performed using either historical

data or in real-time. The coded aperture algorithms used on the TMI are capable of

utilizing both strategies. From Fig. 6.6, the integral number of counts in the snapshot
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has been flattened to 0 as expected. Also, the mean of the measured count distribution

has been reduced to 0, indicating that B is a good estimator of the background, given

the fact that no source is present in the FOV.

Figure 6.6: Example measured coded aperture backplane data before and after flat-
fielding.

Figure 6.7 shows two reconstructions of the same data. The top image shows the

reconstruction without array flat fielding enabled and the bottom shows the same

reconstruction using array flat fielding. The calculated image significance increased

from 4.83 (top) to 8.86 (bottom) while reducing the location uncertainty from ±4.6

m (top) to ±2.2 m (bottom).

6.3.1 Realtime Corrections

Realtime (RT) flat fielding is performed by aggregating counts on the detector plane

during a measurement in order to get an estimate of the shape of the distribution.

This aggregation can be performed on the basis of time elapsed or gross counts.
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Figure 6.7: Example coded aperture reconstructed images without (top) and with
(bottom) array flat fielding enabled.

Once the aggregate detector array has met a certain criteria such as a pre-defined

time interval the counts are added to the flat field estimator. Figure 6.8 shows the

background estimator as a function of time. The current algorithms update the flat

field estimator every 2 seconds when in time-based mode and 13 meters in motion-

based mode. The distance criteria is the equivalent distance traveled by the system

in 2 seconds at 15 mph. The three estimators shown in Fig. (6.8) are after 4.33 (A),

14.30 (B) and 94.7 (C) seconds. After each update the estimate of the background

improves.

The advantage of RT flat fielding includes the ability to account for rapid changes

to the electronic noise. For example, if a detector element begins to trigger on noise in

the middle of a run, the background estimator will incorporate the increased rate of

that channel and effectively subtract off the effect. Also, RT corrections are guaranteed

to represent the shape of the local background on the DA array. Disadvantages of RT

corrections include its susceptibility to the incorporation of real, or nuisance sources,
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Figure 6.8: Realtime background estimator for 137Cs. As time progresses the back-
ground estimator improves and adjusts to the current sensitivity of the system. The
three estimators shown are for 4.33 seconds into the run (A), 14.30 seconds (B) and
94.7 seconds (C).

100



Figure 6.9: Historical flat field estimator for 137Cs. The flat field history was aggre-
gated over 7086 seconds of background data including 1.5 million measured photons.

in the estimator, reducing the sensitivity of the system. Also, RT corrections cannot

be used effectively in a stationary Concept of Operations (CONOPS) because any

source in the FOV will potentially become part of the estimator template and get

subtracted out of the reconstructed image – making it invisible to the system.

6.3.2 Historical Corrections

Another method of array flat fielding is to use historical corrections. This method

makes use of an estimator constructed from the combination of array snapshots over

the entire period of a background collection, or training set. Additional work is re-

quired to ensure that any real or nuisance source are removed from the training set.

When the TMI processes measured snapshots using historical corrections, a new

estimator is also aggregated, which can be used to supplement the historical data or

form a new background estimator for future scans of the same area. Figure 6.9 shows

the historical background estimator for the 137Cs energy window. This estimator was

formed using over 7,000 seconds of background including over 1.5 million measured

photons.

It is interesting to observe the pattern formed from the large aggregation on the

DA array. Figure 6.9 shows that more counts generally accumulate toward large Y
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bins (the bottom of the array) and at the edges of the DA array (i.e. bars 0 and 29).

This is expected as the side bars have more surface area exposed to the outside world;

3 faces (front, back, and side), rather than 2 (front and back) for internal bars (bars

1 through 28). It is also expected to observe more counts on the bottom of the bar

because it acts as a shield to the top of the bar and is closer to the ground plane,

where the majority of NORM background originates.

6.4 Geometric Pre-calculation

In order to make the back projection calculation fast and efficient many of the com-

monly used values will be calculated a single time, during initialization, and used

repeatedly during reconstruction of images from detector snapshots.

The distance between the detector array (DA) and the coded mask array (CA)

will be denoted by ΔCA−DA and is calculated using Eq. 6.3; it has a value of 75

cm for the configured system. Similarly, the distance between the DA array and the

imaging plane (IM) is denoted by ΔIM−CA and is calculated using Eq. 6.4. The

value of ΔIM−CA is different depending on the plane for which the pre-calculation is

performed (nominally 5000 cm).

ΔCA−DA = CAz −DAz (6.3)

ΔIM−CA = IMz − CAz (6.4)

One of the most commonly used values in the coded aperture back-projection

is the number of image pixels that correspond to a single detector array element,
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(
dPX

dDA

)
x,y

. The calculation of
(

dPX

dDA

)
x,y

is given in Eq. 6.5, where D̂Ax,y and ˆPXx,y

are the unit size of a DA detector element and image pixel, in x or y, respectively.

(
dPX

dDA

)
x,y

= −
[

D̂Ax,y

ΔCA−DA

ΔIM−CA

ˆPXx,y

]
(6.5)

The negative sign comes from the fact that a movement in the +(x, y) direction

on the detector array corresponds to a movement in the opposite direction on the

imaging plane if the ray between the points is anchored at a point on the CA array.

For example the movement of a single DA detector element in +x and +y translates to

an equivalent movement of -1.73 and -0.504 image pixels respectively for an imaging

plane at 5000 cm. The values vary in x and y because of the asymmetry of the position

determination in the DA detector elements.

Additionally, it is useful to pre-calculate the number of image pixels that corre-

spond to a single coded mask element, when anchored to the DA array,
(

dPX

dCA

)
x,y

as

shown in Eq. 6.6. Here, ĈAx,y is the unit size, cm, of a CA detector element in x or y.

An example movement of a single CA array element x and y translates to a movement

of 3 image pixels. The values are identical for a movement in either direction because

the CA mask elements are square.

(
dPX

dCA

)
x,y

=
ĈAx,y

ΔCA−DA

ΔIM−CA +ΔCA−DA

ˆPXx,y

(6.6)

Figure 6.10 is a graphical representation of the detector planes CA and DA as well

as the imaging plane (not to scale). In Fig. 6.10 the variables used in the calculation
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of
(

dPX

dDA

)
x,y

(top) and
(

dPX

dCA

)
x,y

(bottom) are shown.

Next is the calculation of the image pixel offset from the bore sight for a projection

from DA element (0,0) through CA element (0,0), or the bottom corner elements of

both arrays; PX(0, 0)x,y. This calculation will be the basis for fast shifting of pre-

calculated projections onto the image. This value is also important because it will

define the location of projections on the image and contribute to alignment with

the Compton imaging algorithm. Equation 6.7 shows the calculation where BSx,y is

the bore sight image pixel, or the pixel closest to the geometric center of the image

and NDAx,y and NCAx,y are the number of DA and CA array elements in X and Y

respectively.

PX(0, 0)x,y = BSx,y −
[(

dPX

dDA

)
x,y

NDAx,y

2

]
−

[(
dPX

dCA

)
x,y

NCAx,y

2
)

]
(6.7)

6.4.1 Offsets

The calculated offset in pixels from the lower left corner for each of the detector array

and mask array elements is also required. This results in a single number that can be

referenced, by detector, to shift the projection to the correct location on the imaging

plane. When calculating the offset from the DA elements, PX(0, 0)x,y is used to find

the lower corner of the projection for that particular element. Calculations for the

CA detector elements are with respect to the corner point defined by the DA offset.

ODAix,y
= PX(0, 0)x,y +DAix,y

(
dPX

dDA

)
x,y

(6.8)
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Figure 6.10: Graphical view of the variables used the in calculation of the number of
image pixels that correspond to the movement of a single detector element in x and
y for the DA array (top) and the CA array (bottom).
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OCAix,y
= CAix,y

(
dPX

dCA

)
x,y

(6.9)

Once all the offsets have been calculated for each detector and mask element

(720x75) we can easily generate the projection from a DA element through any mask

element using the offsets. Equation 6.10 shows the simple calculation of the image

pixel corresponding to a projection from any DA element through any CA element.

The value of the projection is a 1 or -1 depending on whether the mask element is

open or closed respectively.

IMx,y = ODAx,y +OCAx,y (6.10)

6.4.2 Pixel Mapping

The last step in the pre-calculation is the calculation of image pixels corresponding

to the reference location we specified in Eq. 6.10. In this step the mapping between

each open and closed element of the coded mask is generated such that weighting

of the image pixels can be performed through a lookup matrix. If a mask element

is un-blocked the offset pixel gets added to the open element matrix. If the mask

element is blocked it gets added to the closed element matrix. These will be used

in the back projection of the DA snapshots to weight the pixel values in the image

base on the coding provided by the mask. The pixel indices will be shifted using the

pre-calculated offsets of Eq. 6.10.

Figure 6.11 shows 3 sample back projections from the bottom left DA detector

element (top plot), the center DA element (middle) and top right element (bottom).
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Here, the black pixels indicate a projection through an open mask element and receive

a +1 weighting because a source in those image pixels could have produced a count

in that detector array element. White pixels indicate a projection through a closed

mask element, and receive a weighting of -1 because a source in those images pixel

would not likely produce a count in that detector element. All other regions of the

image are untouched because there is not sufficient information to provide weights to

those pixels.

For each measured snapshot the projections like those in Fig. 6.11 are overlapped

for each of the 720 DA detector bins. Figure 6.12 shows the image produced from the

overlap of projections from each DA element through each mask element assuming

a completely flat distribution. The image is shown for the Z = 50 meter imaging

plane. It can be seen from the image in Fig. 6.12 that the projection is grainy and

not smooth, this is a result of the fast back projection, which ignores the effects of

position resolution, motion, and vignetting. Vignetting is an effect that results in the

distortion of a projection due to partial occlusion of mask elements by neighboring

elements as well as a softening of the projection edges due to the reduced path length

of a photon through the detector.

6.4.3 Image Smoothing

Since the back projection algorithm is designed to be as fast as possible, the image

quality achieved does not accurately describe the imaging system. It does not account

for uncertainty in the measurements and other effects such as vignetting of the de-

tector elements and motion of the detector during the collection of data. In order to

account for these uncertainties, back projected images are smoothed using an energy
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Figure 6.11: Example coded aperture mask projection for 3 individual points on the
DA detector array; the lower left element (top), the middle element (middle) and
the upper right element (bottom). Black pixels are projections through open mask
element (+1), white are projections through closed elements (-1) and grey pixels are
zero because no information was available to add to them.
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Figure 6.12: Example back-projected coded aperture image formed from the overlap
of projections from each of the 720 DA array elements assuming a single count in
each of the DA detector elements.

dependent, unit gaussian kernel. Gaussian kernels are pre-calculated for each isotope

based on the incident gamma-ray energy and are reused for each projected snapshot.

Gaussian smoothing kernels are constructed using the average energy of the iso-

tope being imaged because the uncertainty in the position of the photon interaction in

the DA detector element is energy dependent and therefore effects the reconstruction.

The expected energy resolution of the DA elements has been characterized using a

collimated 137Cs source and is assumed to follow a 1/
√

(E) form. Figure 6.13 shows

the expected position uncertainty in the DA elements, cm as a function of deposited

energy, keV .

Kernels are defined in a range of pixels, not distance. The calculated kernels cover

±3σ of the expected value of the uncertainty in each dimension. Uncertainty in the X

dimension is assumed to be 3.81 cm (fixed) and the uncertainty in the Y dimension

is evaluated using the equation in Fig. 6.13. In order to construct the kernel it is

necessary to calculate the number of pixels that correspond to 1σ in each dimension.

Equation 6.11 shows the calculation of the number of pixels, NPXx,y corresponding

to a 1σ movement on the DA array in X or Y , where M is the magnification factor
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Figure 6.13: The expected 1σ position resolution of the NaI bars as a function of
energy deposited.
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given the distance to the imaging plane (ΔIM−CA) from Eq. 6.12.

NPXx,y = Nσ
Mσx,y
ˆPXx,y

(6.11)

M =
ΔIM−CA

ΔCA−DA
(6.12)

Next, the dimensions of the kernel (Kx,y) are calculated using Eq. 6.13. Since

the desired kernel covers ±3σ the calculated value of NPXx,y is multiplied by 2.

Additionally, the kernel should have an odd dimension such that the peak of the

Gaussian is centered on an image pixel, so the dimension is increased by 1 pixel.

Kx,y = 2 (NPXx,y) + 1 (6.13)

Gaussian kernel values are calculated using an asymmetric two dimensional Gaus-

sian function centered at (Kx/2, Ky/2). The calculation of the Gaussian weights is

shown Eq. 6.14, where Wx,y is the calculated weight for the (x, y) pixel and NPXx,y

are the number of pixels corresponding to 1σ in X and Y .

Wx,y = exp

⎛
⎝−1

2

[
x− Kx

2

NPXx
+

y − Ky

2

NPXy

]2
⎞
⎠ (6.14)

To make a unit kernel, all values of Wx,y are divided by the sum of all the weights.

The kernel is normalized to maintain the original number of counts in the image.
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Figure 6.14: Example Gaussian smoothing kernel for 137Cs (left) and 131I (right).
Since the average energy of 131I (364 keV ) is lower than 137Cs (662 keV ) there is
more uncertainty in the Y dimension of the iodine kernel due to the uncertainty in
the measured DA element position.

Equation 6.15 shows the calculation of the normalized kernel (Ŵ ).

Ŵx,y =
Wx,y

Kx−1∑
i=0

Ky−1∑
j=0

(Wi,j)

(6.15)

Figure 6.14 shows two example Gaussian smoothing kernels for the 137Cs (left)

energy window and the 131I energy window (right). Since the average energy of 131I

(364 keV ) is lower than 137Cs (662 keV ) there is more uncertainty in the Y dimension

of the iodine kernel due to the uncertainty in the measured DA element position.

Figure 6.15 shows an example mask projection before (top) and after (bottom)
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Figure 6.15: A single mask projection before (top) and after (bottom) smoothing
using the Gaussian kernel.

smoothing using the Gaussian kernel.

6.5 Backprojection

With the pre-calculated projection matrices we can now take a segment of data and

back project it quickly into an image. Back projection of coded aperture data is fairly

straightforward since much of the work has be pre-calculated in order to save time

during the reconstruction.

Back-projection is the process of projecting the ray from each detector element on

the DA through each mask element using the pre-computed values described. Open

mask elements project onto the imaging plane with a positive weight and closed mask

elements project with a negative weight. Weights are determined by the number of
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Figure 6.16: Example measured DA snapshot (top) and the associated back-projected
coded aperture image (bottom) for a 10 mCi 137Cs source at 25 m. The image is
formed from the overlap of mask projections from each of the 720 DA array elements.
Both historical flat fielding and Gaussian smoothing have been applied to the image.

observed counts in the DA element. For example, if 1 of the 720 array elements has

54 counts, then image pixels get weighted with a value of 54 for open mask elements

and -54 for closed mask elements. Figure 6.16 shows a measured DA snapshot (top)

for 137Cs after historical flat fielding has been applied and the associated decoded

image (bottom) with Gaussian smoothing applied. The image is for a 10 mCi, 137Cs

source at 25 meters distance while the TMI was sitting stationary. Here, the coding

is apparent on the array snapshot (top) however it is not until the array is decoded

that the the source becomes visible.

6.6 Summary

This chapter has shown that the TMI is capable of producing coded aperture re-

construction images using measured photon interaction information in the DA array.
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Measurements are segmented to account for motion of the imager or source and di-

vided into energy windows to reduce the overall background. Energy windowing was

shown to provide an increase in image significance by a factor of 1.94 while reducing

TTD by 22% and improving uncertainty in the reported location. Additionally, esti-

mators of the background can be formed using multiple methods to account for the

expected background within an energy window. Array flat fielding was shown to im-

prove image significance by a factor of 1.8 while simultaneously reducing the location

uncertainty by 53%. A method for fast decoding of measured snapshots was presented

as well as a method of smoothing to account for uncertainties in the measurements.
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Chapter 7

COMPTON IMAGING
ALGORITHMS

Compton scatter imaging is a method of gamma-ray imaging that uses multiple posi-

tion and energy measurements in coincidence to reconstruct the probable origin of the

gamma-ray photon. The TMI is capable of Compton scatter imaging through the use

the array of NaI tiles in the CA array and the array of position sensitive NaI bars in

the DA array. Unlike coded aperture imaging which requires only a single interaction

in the DA array, Compton imaging requires a single interaction in both the CA and

DA arrays in coincidence.

Figure 7.1 shows a sketch of the TMI for an example simulated Compton scattering

event. Here a gamma-ray photon is emitted from the source, Compton scatters in the

CA array and deposits its remaining energy in the DA array. Using the kinematics of

Compton scattering the location of the source can be confined to a point on the cone

(red). The location of a source on the event cone cannot be determined from a single

event however the reconstruction of many cones will overlap at the true location of

the source.

Sufficient information to reconstruct the event cone of a single incident gamma ray
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Figure 7.1: Diagram of the Compton imager integrated into the TMI.
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can be deduced from a minimum of two position and energy measurements. The next

step in the process of reconstruction is to generate an image based on information

collected from many measured gamma rays. The measured distribution of a source

will be the intersection of many Compton event cones. Imaging is heavily dependent

on two factors: fidelity of the measured data and the qualities of the algorithm em-

ployed. Since the fidelity of the data is fixed for a given detector and increased fidelity

translates to higher cost, improvements in the algorithms and how they are able to

reconstruct the data is important.

7.1 Energy Windowing

A method of gamma-ray energy windowing was described in section 5.2. Similar to

the spectroscopic and coded aperture algorithms, it is advantageous to the SNR to

reconstruct an image from only those photons that would have come from a source of

interest rather than producing a single image using all measured photons. Discretiza-

tion of imaging through energy windowing also provides source identification as a

source present in the window of a particular isotope definition implies the presence

of that isotope.

By looking at a reconstruction of a point source using all measured photons,

and only those in the energy window, the positive effects of energy windowing on

Compton image reconstruction can be observed. Figure 7.2 shows the reconstructed

Compton image without (top) and with (bottom) energy windowing applied around

the 662 keV photo peak of 137Cs. The top image has a calculated significance of

2.74 and a location uncertainty of ±24.7 m. The bottom image has a calculated

significance of 3.81 and a location uncertainty of ±16.7 m. The width of the energy
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window has been optimized by analyzing the image significance as a function of

window width as described in section 6.1. The value of 1.5σ corresponds to the highest

image significance by simultaneously reducing the number of background photons and

maximizing source photons.

Figure 7.2: Example of energy windowing applied to Compton scatter image recon-
struction. The top image does not have energy windowing applied and the bottom
image does.

7.2 Data Segmentation

Similar to the data segmentation scheme presented for coded aperture in section 6.2,

the Compton imaging algorithms aggregate all valid coincident interactions during a

specified interval and reconstruct them into a gamma-ray image.

Since the TMI is a mobile system, segmented data must be correlated to the lo-

cation of the truck. This is accomplished through the navigational subsystem. Each

measured photon used in the Compton algorithms has been stamped with the GPS

time and navigational information. Reconstruction is centered at the average location
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and attitude of the event segment. Each event location is shifted based on the inter-

action locations within the TMI and the relative location of the truck with respect

to the average segment location.

Figure 7.3 shows an example Compton event segment with 6 events. The average

location between events is shown as a red square and the imaging FOV shown with

red lines. The distance between the event location and the average can be calculated

(blue stars) and is used to shift the interaction locations (green). Green lines show the

correlation between CA and DA locations. The positive X direction is always aligned

with the bearing of the segment average, as a result imaging planes are aligned parallel

to X.

7.3 Back-projection

Back-projection may be performed in several ways, however in this work a geometric

method will be presented because it is fast and accurate. Back-projection involves

the reconstruction of a single Compton event sequence onto an imaging plane. The

combination of many back-projected event sequences results in the formation of an

image. In the geometric back-projection method the dot product definition will be

used to solve for the intersection points of the event cone and the image pixel.

Begin by supposing that a photon scatters in the CA array at point P1 (x1, y1, z1)

and photo-absorbs in the DA array at point P2 (x2, y2, z2). Using event reconstruction,

the estimated scattering angle θ (Eq. 2.8) can be calculated. Also the uncertainty in

the scattering angle σθ can be estimated and will be shown in section 7.3.1. The event

can then be represented as a cone projected into space from P1 with its central axis

defined by the vector pointing from P2 to P1 (	V21) and opening angle described by θ
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Figure 7.3: Example Compton event segment with the average calculated (red square)
and the imaging FOV shown (red lines). The location of the TMI for each event is
shown in blue and the interaction locations are shown in green.

121



Figure 7.4: Back-projection of a single event sequence.

with a width corresponding to σθ. Let 	r represent the vector pointing from P1 along

the cone axis to the imaging plane and let 	R represent the vector pointing from P1

to the intersection point of the event cone and the imaging plane. Figure 7.4 shows

the back-projection of a single Compton event sequence.

In order to define 	r (x0, y0, z0), the intersection point of the cone axis and the

imaging plane must be calculated. Note that the positions of x0, y0 and z0 represent

the center of the image pixel. Larger pixel sizes will decrease the resolution of the

image but also decrease reconstruction time; an important consideration for realtime

processing. The calculation of 	r is shown in Eqs. 7.1 - 7.3 where all coordinates used

are shown in Fig. 7.4.
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z0 − z1 = Δz (7.1)

x0 − x1 =
x1 − x2
z1 − z2

Δz (7.2)

y0 − y1 =
y1 − y2
z1 − z2

Δz (7.3)

The back-projection method described here uses the definition of a dot product

(7.4) to solve for the intersection of the reconstructed Compton cone and a point in

space. Squaring and transposing (7.4) yields (7.5) where the unknown variables of the

intersection points (x, y, z from Fig. 7.4) for a given event sequence can be obtained

by finding the roots.

	r · 	R = |	r||	R| cos θ (7.4)

(	r · 	R)2 − r2R2 cos2 θ = 0 (7.5)

Note from Fig. 7.4 that z0 = z = zimage. If z is selected as the imaging plane and y

is known by selecting a row in the image, then x is the only unknown in the equation.

By turning (7.5) into a second order polynomial function of x (7.6), then x can be

solved using the quadratic formula (7.7). The coefficients of x are given in Eqs. 7.8

- 7.10. If the discriminant of (7.7) (i.e. b2 − 4ac) is less than zero it means the cone

does not intersect the imaging plane for the selected values of y and z.
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ax2 + bx+ c = 0 (7.6)

x =
−b±√

b2 − 4ac

2a
(7.7)

a = x20 − r2 cos2 θ (7.8)

b = 2(x0y0y + x0z
2) (7.9)

c = y20y
2 + 2y0yz

2 + z4 − r2(y2 + z2) cos2 θ (7.10)

For any given value of y at a specific z the outside and inside edges of the cone (in

x) can be calculated using σθ and θ. Pixels between the edges of the cone are filled

with weighted values. The result is an event circle scribed onto the imaging plane

properly weighted with a width consistent with the limits of the detector.

7.3.1 Angular Uncertainty

Calculation of the scattering angle alone leads to a thin cone of probability, however

the scattering angle has uncertainty associated with it. By including uncertainty in

the scattering angle during event reconstruction the cone is given width. By including

the width of the cone in reconstruction, the true source distribution can be more accu-

rately described and the imaging algorithms will have a better chance to reconstruct

the data correctly. Angular resolution depends on several factors including Doppler

broadening, energy, and position resolution. Doppler broadening represents the lower
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limit of angular resolution. Even if the energy and position are known exactly, it is not

possible to know the initial momentum of the electron in the scattering medium. En-

ergy and position resolution are known as they are functions of the detector geometry

and materials and their contributions to the angular uncertainty can be calculated

for each recorded event sequence.

Energy Contribution

Due to the fact that no detector material has the ability to perfectly resolve the energy

deposited, there is uncertainty in calculated scattering angle due to finite energy

resolution. As with position uncertainty, the energy resolution of the detector system

contributes to the reconstructed event uncertainty. The energy resolution function of

NaI was given in Fig. 5.3 from section 5.2. Equations 7.11 through 7.17 show the

calculation of the energy resolution contribution to angular uncertainty given the

known uncertainty in the energy measurements (σE1,E2).

x = 1 +
mec

2

E1 + E2

− mec
2

E2

(7.11)

θ = cos−1 x (7.12)

∂x

∂E1

= − mec
2

(E1 + E2)2
(7.13)

∂x

∂E2

=
mec

2

E2
2

− mec
2

(E1 + E2)2
(7.14)
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∂θ

∂x
=

−1√
1− x2

(7.15)

∂θ

∂E1,2

=
∂θ

∂x

∂x

∂E1,2

(7.16)

σθ,energy =

√
(
∂θ

∂E1

σE1)
2 + (

∂θ

∂E2

σE2)
2 (7.17)

7.3.2 Cone Weighting

The intersection pixels j of the cone for event i are weighted based on several factors

including the width, circumference and the slant of the cone. Weighting the cones is

a way to accurately model the information recorded within the event and serves to

smooth the images based on measurements.

In order to account for the width of the cone wall for event i, each pixel j inter-

sected by the cone is weighted according to a Gaussian centered at θi with a width

of σθi . The formula is shown in (7.18) where θi is the computed Compton scatter-

ing angle for event i and θj is what the scattering angle would be if the gamma ray

originated from pixel j.

Wij,width = exp [−(
θi − θj
2σθ

)2] (7.18)

The weight for the circumference of the event circle (Wij,circ), is obtained by di-

viding the weight by θi. This comes from the fact that larger scattering angles result

in greater cone circumferences. The weight due to the slant of the cone (Wij,slant), is

accounted for by multiplying by cos3 θ�R where θ�R is the polar angle of 	R. One power
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of the cosine term comes from the slant angle of the image area with respect to the

event cone and two powers come from the inverse square law. The total weight Wij of

each pixel in the reconstructed event cone is given by the product of all the weights

for that pixel (7.19). Figure 7.5 shows a single event cone projected onto an imaging

plane at 50 m from a Compton scatter interaction in the CA array followed by an

absorption in the DA array.

Wij = (Wij,width)(Wij,circ)(Wij,slant) (7.19)

Figure 7.5: A single event cone projected onto the imaging plane at z=50m.

7.4 Background Suppression

It has been shown in section 7.1 that energy windowing can reduce the overall back-

ground present in a reconstructed image, however there still exists the background

within the energy window itself. Similar to coded aperture array flat fielding, back-

ground suppression can be used to approximate and remove the contribution from

NORM background in the image. Since NORM background is randomly incident on

the detector system the reconstructed image will tend to reproduce the Point Spread
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Function (PSF) of the imager. Compton imaging differs from coded aperture imaging

in that it acts on the reconstructed image rather than the measured count distribution

on the back-plane. As a result an estimator of the background must be calculated for

each imaging plane that is being processed.

The suppression algorithm takes an estimator of the shape of the PSF (from

measurements), scales it to the counts of the reconstruction and subtracts it from the

image. Equation 7.20 shows the calculation of the scaling factor (λ), where (S + B)

is the reconstructed image (with background), B is the expected background image

and σ2
i is the value of the ith image pixel of each. In this equation the background

estimator is scaled to the integral number of counts in each image. The scaling factor

may be determined by either image counts (variance) or by the time elapsed, however

scaling by time does not accurately account for changes in the background count rates

as a function of location.

λ =

∑
(S+B)i

σ2
i∑

Bi

σ2
i

(7.20)

Equation (7.21) shows the calculation of the expected Compton image, S, after

subtracting the scaled background estimator. In the case of purely background counts,

the value of S should fluctuate normally around zero counts if the value of B is an

accurate estimator of the background.

S = (S +B)− λB (7.21)
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Figure 7.6: Example reconstructed Compton scatter image of 3 events before (top)
and after background suppression (bottom). There is no source present in the image.

Figure 7.6 shows the result of subtracting the background estimator from a single

reconstructed Compton scatter image at 50 m, formed by 3 measured events. In Fig.

7.6, 2 of the 3 events have a large scattering angle compared to the third so they are

less apparent due to cone weighting. Here it can be seen that the estimator is doing

a good job, the integral of the image has been reduced to 0 counts as expected and

the mean has been reduced to essentially 0 indicating the estimator is describing the

PSF well. This method of background suppression can be performed using historical

data or in real-time.

Figure 7.7 shows the results of Compton background suppression for a measured
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Figure 7.7: Example runs past a source without (top) and with (bottom) background
suppression applied.

run past a 0.5 mCi, 137Cs source at 25 m DCA and 15 mph. The top image does

not have background suppression applied; the calculated significance of the source

is 3.81 with a location uncertainty of ±16.7 m. The bottom image has background

suppression applied; the calculated significance of the source is 4.57 with a location

uncertainty of ±7.5 m.

7.4.1 Realtime Corrections

Realtime (RT) background suppression is performed by aggregating image weights

during a measurement in each reconstructed Compton image in order to get an es-

timate of the shape of the distribution or PSF. This aggregation can be performed

on the basis of time elapsed or gross counts. Once the aggregate image has met a

certain criteria such as a pre-defined time interval the counts are added to the back-

ground estimator. Figure 7.8 shows the background estimator as a function of time,

at each successive update of the estimator becomes more complete. The current algo-

130



rithms update the estimator every 2 seconds when in time-based mode and 13 meters

in motion-based mode. The three estimators shown in Fig. 7.8 are after 9 (top), 100

(middle) and 131 (bottom) measured events covering approximately 90 seconds. After

each update the estimate of the background improves.

The advantage of RT suppression includes the ability to account for rapid changes

to the electronic noise. For example, if multiple detector element begins to trigger on

noise in the middle of a run and generate false coincidences, the background estimator

will incorporate the increased rate of those channel combinations and effectively sub-

tract off the effect. Disadvantages of RT corrections include its susceptibility to the

incorporation of real, or nuisance sources, in the estimator, reducing the sensitivity of

the system. Also, RT corrections cannot be used effectively in a stationary CONOPS

because any source in the FOV will potentially become part of the estimator template

and get subtracted out of the reconstructed image – making it invisible to the system.

7.4.2 Historical Corrections

Another method of background estimation is to use historical approximations. This

method makes use of an estimator constructed from the combination many recon-

structed Compton images over the entire period of a background collection, or train-

ing set. Additional work is required to ensure that any real or nuisance source are

removed from the training set.

When the TMI processes data using historical corrections, a new estimator is

also aggregated, which can be used to supplement the historical data or form a new

background estimator for future scans of the same area. Figure 7.9 shows the back-

ground history for the 137Cs energy window. This estimator was formed using over
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Figure 7.8: On-the-fly Compton flat field estimator for 137Cs. As time progresses the
flat field estimator improves and adjusts to the current sensitivity of the system. The
three estimators shown include 9 events (top), 100 events (middle) and 131 events
(bottom).
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Figure 7.9: Historical background estimator for 137Cs at 50 meters. The flat field his-
tory was aggregated over 4774 seconds of background data including 30,000 measured
photons.

4774 seconds of background including over 30,000 measured photons.

The shape of the PSF arises from the angular sensitivity of the imager. Since

Compton scattering is more probable at small scattering angles [40], and range to

the image for off-axis pixels is increasing, the estimator is approaching a 2D cosine

distribution that scales with detection efficiency.

7.5 Summary

This chapter has shown that the TMI is capable of producing Compton scatter re-

construction images using measured photon interactions in the CA and DA arrays.

A detailed description of the Compton scatter reconstruction algorithm was given as

well as calculations to approximate the uncertainty in measurements. Measurements

are segmented to account for motion of the imager or source and divided into energy

windows to reduce the overall background. Energy windowing has been shown to im-

prove image significance by a factor of 1.4 and reduce localization uncertainty by 32%.

Additionally, estimators of the background can be formed using multiple methods to
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account for the expected background within an energy window. The background sup-

pression technique demonstrated improvements of a factor of 1.2 in image significance

and a 55% reduction in localization uncertainty. By combining energy windowing and

background suppression Compton reconstruction significance is improved by a factor

of 1.7 while reducing the localization uncertainty by 70%. With the details of the

ROI, coded aperture and Compton imaging algorithms complete, the next chapters

will describe the current methods used to combine all available data and quantify the

performance of the system as a whole.
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Chapter 8

MOBILE/HYBRID
ALGORITHMS

The coded aperture and Compton imaging algorithms implemented on the TMI have

been discussed in chapters 6 and 7. Additionally, a simple ROI spectroscopic algo-

rithm was discussed in chapter 5. So far the imaging algorithms have been used to

reconstruct gamma-ray images given a set of measured events at a single location.

However, since the TMI is a mobile system the imaging algorithms must be adapted

to function in a dynamic environment. Also, a robust method to generate hybrid

images through fusion of coded aperture and Compton data is needed, as well as a

method to combine imaging and non-imaging modalities.

8.1 Image Registration

So far imaging algorithms have focused on reconstruction of a gamma-ray image from

a single segment of events localized in time and space. A mobile imaging system,

such as the TMI, requires means for aggregation of imaging information, shifted by

location, such that all individual snapshot images are registered in the same reference

frame so they accumulate as the imager moves. Since static reconstructions are geo-
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located (from the average navigational information), a method of aggregation has

been developed such that a single large image is generated from the overlap of many

static images.

Figure 8.1 illustrates the image registration for the coded aperture imaging planes,

however the process is identical for all image types. Each image (1-5) has an associated

geographic location. The static images are aligned based on pixel size, and distance

traveled such that an aggregate image is formed from the overlap of all reconstructed

images. The cumulative world image keeps track of multiple pieces of information

including the exposure time, pixel locations, and weighted values for each pixel.

The aggregate image continues to expand as incoming data generates additional

static images. Aggregate images are capable of handling slight variations in bearing

however, once the TMI changes bearing more than 45 degrees (configurable) a new

world image is started. Registration and aggregation of image data is performed for

each imaging modality (CA/CI) as well as the fusion of both (FUS) at multiple

distances, for each isotope definition (energy window).

When searching for sources of interest in the aggregate images, geo-location for

pixels of interest is established through information carried along in the world image.

Each aggregate image is referenced geographically to the first element inserted. Since

image pixel sizes are known, the location of each individual pixel can be calculated.

When a pixel has a significance that is above a set threshold, the location of that

pixel is calculated and reported as the location of the source in geographic coordinates.

Additionally, the image peak is fit with a 2D gaussian function to estimate uncertainty

in the location.
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Figure 8.1: Example image registration for the coded aperture imaging planes. Each
image has an associated geographic location and can be aligned in the algorithms
such that an aggregate image is formed from the overlap of all reconstructed images.
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8.2 Distance Determination

Aggregate coded aperture, Compton scatter and hybrid images are constructed as

described in the previous section for each imaging modality, isotope definition and

reconstruction distance. Typically the TMI is operated with 14 imaging planes, from

as close as 5 out to 100m and beyond. The TMI also performs imaging simultaneously

for over 20 isotope definitions at each imaging distance and for each modality.

As the distance to a source of gamma-ray radiation increases, incident photons

become essentially parallel. Sources at farther distances move through the FOV of the

imager more slowly than those closer to the detector. This effect, known as parallax,

has been used in astronomy to determine the distance to objects in space as viewed

from multiple points along Earth’s orbit [53]. Since the TMI is a mobile system

parallax can be used to determine the location of a source when viewed from several

different angles. By moving past a source, multiple snapshot images constructively

form a stronger image at the actual distance and blur at incorrect distances. Figure

8.2 illustrates how the TMI is able to localize a source through motion. The dashed

lines represent the ray of highest pixel intensity through the image at each point. As

the imager moves past a source the rays will intersect in a common region, revealing

the source location.

8.3 Image Fusion

Hybrid gamma-ray imaging is the combination of multiple modes of imaging. It has

already been shown that by using an active mask for the coded aperture array the TMI

can capture Compton scatter events and veto background coded aperture events, pro-
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Figure 8.2:

viding multiple orthogonal imaging modalities. Images are combined through a mul-

tiplicative fusion of pixel data. Because of the nature of coded aperture and Compton

imaging to reconstruct background differently but sources the same, this method acts

as an AND gate on pixel data. For a pixel in the fused image to be considered sig-

nificant, there must be increased counts in both reconstructed coded aperture and

Compton reconstructions. Equations 8.1-8.3 show the calculations performed during

the fusion of modalities where σ2(i, j)FUS is the total number of measurements con-

tributing to the value of pixel (i, j) from the coded aperture and Compton scatter

images, ΔT (i, j)FUS is the average exposure time of fused image pixel (i, j), λ(i, j)CIAk

is the weight in pixel (i, j) of the Compton scatter image from the kth Compton snap-

shot, λ(i, j)CAAk
is the weight in pixel (i, j) of the coded aperture image from the kth

coded aperture snapshot and λ(i, j)FUS is the fused weight of pixel (i, j).
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σ2(i, j)FUS = σ2(i, j)CIA + σ2(i, j)CAA (8.1)

ΔT (i, j)FUS =

(
T (i, j)CIAmax + T (i, j)CAAmax

2

)
−

(
T (i, j)CIAmin

+ T (i, j)CAAmax

2

)
(8.2)

λ(i, j)FUS =
∑
k

λ(i, j)CIAk

∑
k

λ(i, j)CAAk
(8.3)

Coded aperture and Compton pixel data can be combined in many different ways

using various statistical techniques from scaled addition, maximum likelihood, mul-

tiplication, etc. Here, multiplicative fusion has been chosen because it provides the

best performance in background rejection over all methods tested. In the chapter on

future work (13) there will be a discussion of improvements that could be made to

the fusion algorithm.

Figure 8.3 shows an example coded aperture (top), Compton scatter (middle) and

hybrid image (bottom) from the reconstruction of a 0.5 mCi, 137Cs source at 25 m

DCA and 15mph. The coded aperture and Compton images are registered in the same

geographic coordinates and can therefore be fused to cancel background and improve

source reconstruction. The purple pixels in the image indicate a very low observed

count rate and the red pixels (source) indicate a high count rate. The coded aperture

image has a calculated significance of 9.51 with localization uncertainty of ±2.4 m.

The Compton scatter image has a calculated significance of 4.57 with localization

uncertainty of ±7.5 m. The hybrid image (bottom) has a much higher calculated
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Figure 8.3: Example hybrid CA/CI image of a 0.5 mCi, 137Cs source at 25 m DCA
and 15 mph. The coded aperture and Compton images are registered in the same
geographic coordinates and can therefore be fused to cancel background and improve
source reconstruction.

significance of 35.88 with localization uncertainty of ±2.2 m.

In Fig. 8.3 both the coded aperture and Compton scatter images demonstrate the

source location (red pixels) however there is some residual background noise present

in the images even after energy windowing and background suppression. The fused

image however takes advantage of the differences in the reconstruction of background

for each imaging modality and the agreement of source localization. Source pixels

get amplified and background remains small. The resulting hybrid image has a much

better SNR and therefore higher probability of detection and lower false alarm rate

for the same activity source. Results of the fusion performance will be given in chapter

11.
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8.4 Non-imaging Fusion

Since the TMI has both imaging and non-imaging capabilities, a method for improving

sensitivity using all available information has been implemented. The ROI algorithms

in chapter 5 calculate the significance value for each energy spectrum that is analyzed.

Additionally, image pixels of interest have an associated significance. The method for

combining imaging and non-imaging information is simple, the significances are added

together. Candidate image pixels have a calculated significance and know the location

of the TMI as a function of time. The non-imaging (ROI) significance calculated is

retrieved for the location nearest the candidate image pixel. Equation 8.4 shows the

calculation of the total significance (ITOT ) through the combination of the fused image

and the spectroscopic ROI algorithms. This method is effective since a simultaneous

rise in the imaging and non-imaging significance is not expected unless there is a true

source in the FOV. There are many methods of combining multiple sources of data,

however this method was chosen because it makes the largest overall improvement to

sensitivity of the TMI.

ITOT = IROI + IFUS (8.4)

8.5 Alarm Triggering

An alarm trigger calculation is performed whenever new data has been processed by

the algorithms and added to the world image. For the ROI algorithm the calculated

value of significance is compared to a threshold value for each measured spectrum. If

the calculated significance for a particular isotope is above a set threshold (adjustable)
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the detection and identification are reported to the operator along with the location

of the TMI at the time of the measurement. Reconstructed gamma-ray images are

added to the aggregate image for each isotope and distance as the TMI moves along.

At the end of processing a particular data segment the triggering algorithm will

analyze all pixel data in the world images to calculate the significance of the highest

intensity pixels in the image, for each isotope across all distances and modalities

(coded aperture, Compton scatter and hybrid).

Selection of intense pixels is based on the measured weights in the image. Can-

didate trigger pixels (by distance and isotope) are stored for comparison to newly

acquired pixels. Each imaging plane (distance, modality, and isotope) can have a sin-

gle bright pixel in the FOV, per trigger scan. If the location of the newly acquired

pixel is within a single pixel of the stored candidate pixel, the persistence time of

the candidate peak is incremented, otherwise the newly acquired pixel becomes the

candidate peak and the persistence time is reset to zero.

In the event a real source is present in the image it will persist for some length of

time, usually across multiple trigger scans, depending on the speed of the TMI. Once

the candidate peak list has been updated with the latest information, persistence

time is checked to ensure alarming does not occur on a bright pixel that has been in

the FOV for a fraction of a second. Persistence time cuts are distance dependent as

a source at 100 meters is expected to remain in the FOV for a longer period of time

than a source at 10 meters, given a constant velocity. Figure 8.4 shows the minimum

time required for a candidate imaging pixel to persist before the triggering system

will allow it to generate an alarm.

Once it has been decided by the triggering algorithm that the peak has persisted
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Figure 8.4: Minimum persistence time required as a function of imaging distance for
a candidate imaging peak to trigger an alarm.

long enough in the image the significance of that pixel value is calculated. Signifi-

cance is calculated by looking at the reconstructed signal in the image and how the

background fluctuates around it. This provides a uniform and stable method for se-

lecting a trigger threshold. First, the signal region is averaged within R = 1.5σ of the

candidate pixel based on the expected shape of a true source distribution. Next, the

background region is averaged between R = 2σ and R = 9σ of the candidate pixel and

the standard deviation is calculated. The SNR, or significance of the candidate peak

is then calculated as shown in Eq. 8.5. Figure 8.5 shows the regions used in a sample

trigger calculation. If the calculated significance of any pixel (in all images) using

Eq. 8.5 is above threshold an alarm is generated with the isotope identified (by the

alarming image plane) and the location of the image pixel in geographic coordinates
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Figure 8.5: Candidate peak (top) and signal (red) and background (green) regions
used in the calculation of image significance (bottom).

with uncertainty.

SNR =
¯(S +B)|1.5σ0 − B̄|9σ2σ

σB

(8.5)

Only pixel data that has changed since the last trigger scan is considered for

alarming. Additionally, the triggering rate is controlled by the operator. For example

image data is added to the aggregate depending on data segmentation rate, which

could happen as often as 5 times per second. It may not be desirable computationally
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or realistically to check for an alarm that often. The operator of the system can select

the interval on which data are checked, which ties directly into the probability of

false alarm by defining the false alarm rate. A discussion of threshold selection will

be presented in chapter 11.

8.6 Summary

In this chapter a method for handling reconstructed images from a moving platform

has been shown such that many static images can be summed into a single aggregate

image. The implemented algorithms are capable of creating an arbitrarily long image

that contains the sum image of all individual reconstructions. Additionally it was

shown that images from coded aperture and Compton scatter reconstructions can be

combined in a way the promotes the source intensity while minimizing the background

due to the orthogonal nature of the background manifestations. The fusion of coded

aperture and Compton data was shown to dramatically increase the SNR for a point

source while reducing the reported location uncertainty. Also, a method for combining

imaging and non-imaging data has been presented which adds additional suppression

of calculated significance to help reduce the false alarm rate and boost the probability

of detection overall. Each of the algorithms presented so far can trigger the system

independently or combined.
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Chapter 9

BACKGROUND
CHARACTERIZATION

Earth is naturally radioactive including over 60 radionuclides varying from primordial

to cosmogenic and human produced. The various contributions are highly variable

both in elemental composition and isotopic concentration based on multiple factors

including, but not limited to, location, time and weather. It is important to thoroughly

characterize the observed background from NORM so that the effect on the detection

algorithms can be quantified.

In this chapter a method for qualitative characterization of NORM background

based on the derived component fractions of expected materials is presented. Once

characterized through this analysis, the background can be grouped by similar com-

ponents using a clustering algorithm. Measured data falling into each of the defined

clusters can then be used to quantify the effect on the detection algorithms. Chap-

ter 10 presents a method of data injection which uses the results of this character-

ization to produce data to study the effect of varied NORM background on source

detection.
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9.1 Primary Components

There are three dominant components to NORM background in most areas. These

components result from the radioactive decay of the primordial nuclides potassium-

40 (40K), uranium-238 (238U) and thorium-232 (232Th). The half-life of 40K is 1.277

billon years with a simple decay scheme producing a single gamma-ray line at 1460.8

keV . Similarly, 238U and 232Th have long half-lives, 4.468 and 14.05 billion years

respectively, however they exhibit very complex decay schemes with many daughter

nuclei which produce a variety of gamma-ray lines as they decay to a stable isotope

of lead.

As a result of the emissions from the decay products, the NORM background

energy spectrum is cluttered with gamma-ray lines and continuum energies with very

few spectral features. In order to characterize background features by exploiting the

energy resolution of the detector system, it is necessary to select those features which

identify each of the principle components without difficulty. Figure 9.1 shows the

complete decay series (chain) from the three principle components 40K (bottom-left),

238U (top), 232Th (bottom-right).

The radioactive decay of 40K is straightforward and results in a stable isotope

of calcium (40Ca) or argon (40Ar) with a single decay (red boxes), however 238U and

232Th are complex with many daughter nuclei in the chain before reaching stable lead;

206Pb and 208Pb respectively. In Fig. 9.1 alpha decay (α) is denoted by a blue arrow,

beta decay (β−) by a red arrow and electron capture (ε) by a green arrow.

Each of the decays shown are usually accompanied by the release of energetic

gamma-ray photons (sometimes many). The daughter nuclei with the strongest, rela-

tive, gamma-ray branching ratios (BR) are shown with blue boxes; 214Bi (1764.5 keV
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Figure 9.1: Complete decay chains for the principle NORM background components
238U (top), 232Th (bottom-right) and 40K (bottom-left). Alpha decays are shown with
blue arrows, beta and electron capture are shown with red and green arrows respec-
tively. The daughter nuclei with the most easily characterizable lines are shown in
blue (40K, 208Tl, 214Bi).

- BR=0.15) for the uranium series, 208Tl (2614.5 keV - BR=0.14) for the thorium

series and 40K (1460.8 keV - BR=0.11) for potassium. These are the lines that will

be used for the background segmentation and characterization.

9.2 NORM Variations

Variations in NORM background are caused by the distribution of radioactive mate-

rial in the Earth and in surrounding materials. Primordial nuclides include long-lived

isotopes such as uranium-238, uranium-235, thorium-232, radium-226, radon-222 and
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potassium-40. Cosmogenic sources are those produced by reactions between high en-

ergy cosmic particles interacting in Earth’s atmosphere. Cosmogenic sources can be

short lived and include carbon-14, tritium (3H) and beryllium-7. Human produced

nuclides are those produced for medical treatments, through above ground nuclear

weapons testing and by fission power reactors. Figures 9.2, 9.3 and 9.4 show the

naturally occurring concentrations for 40K, 232Th and 238U, respectively throughout

the continental United States as mapped by the United States Geological Survey

(USGS). In addition to the variable concentration in the soil, construction materials

(e.g. bricks, concrete, granite, asphalt, and steel) have various amounts of radioactiv-

ity due to raw materials used in their production. For example, an urban environment

might have granite statues or brick sidewalks, a bridge may be constructed from a

certain type of steel or a tunnel may have used a particular type of concrete, each

with very different characteristics. Also, changes in weather, such as rain or snow can

cause elevated levels of 222Rn as it gets deposited onto surfaces from the atmosphere,

temporarily altering the background profile.

9.3 Background Measurements

In order to characterize NORM background, extensive measurements were taken in

February of 2012. The TMI surveyed the Washington D.C. area and the route to the

Boston, MA area. The primary focus of this collection was to increase the quantity of

background data available for characterization purposes. The data collection included

many varied background conditions such as urban, rural, suburban, tunnels, and

bridges.

Figure 9.5 shows the path of the TMI for a section of the data collection starting in
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Figure 9.2: Naturally occurring potassium-40 concentration throughout the continen-
tal United States as mapped by the United State Geological Survey (USGS).

the Washington D.C. area, ending outside Philadelphia, PA. Background data were

collected over four days totaling approximately 20 hours of data. From Fig. 9.5 it

can be seen that the TMI covered a wide variety of terrain in order to observe large

variations in the background.

NORM background from these regions can vary (or not) substantially both tem-

porally and spatially. This background characterization effort aimed to qualitatively

identify several main classifications of background in order to determine the effect

on the detection algorithms. Once complete, the background measurements will be

segmented into the constituent classes and used to quantify the expected response of

the TMI to each.

The first step in this process is to perform component analysis of the representative
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Figure 9.3: Naturally occurring thorium-232 concentration throughout the continental
United States as mapped by the United State Geological Survey (USGS).

spectral features observed in NORM background and define the classification scheme.

9.4 Component Analysis

There are three main elemental components to NORM background that will be used

in this characterization: potassium (K), uranium (U) and thorium (Th). This type of

characterization is sometimes referred to as KUT analysis [54]. Background gamma-

ray data are sometimes characterized by the relative concentrations of these elements

through quantitative analysis of the strongest spectral (energy) lines produced from

the decay products of those primary NORM components [49, 55, 56].

The first step in the component analysis process is the selection of commonly

observed gamma-ray lines in order to characterize the composition of the local back-
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Figure 9.4: Naturally occurring uranium-238 concentration throughout the continen-
tal United States as mapped by the United State Geological Survey (USGS).

ground. For example, 40K has a relatively strong 1460.8 keV gamma-ray emission

resulting from the electron capture (ε) decay to 40Ar. Figure 9.6 shows the complete

decay scheme of 40K. The decay schemes of the other U and Th isotopes have been

omitted because they are extremely complex and include thousands of gamma-ray

emissions from daughter nuclei, however they result from similar processes. A de-

scription of the radioactive decay processes which produce gamma-rays is given in

section 2.2.

The 1460 keV spectral feature of 40K is a secondary result of the electron capture

(ε) decay of 40K to the first excited state of 40Ar and subsequent gamma-ray emission

resulting from the transition to ground state. The primary decay mode for 40K is beta

decay (β−) to stable 40Ca with a branching ratio of 0.8925.
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Figure 9.5: Path of the TMI during the background collect in February 2012. The
path of the imager is shown with a red line starting in Washington D.C. and ending
this segment near Philadelphia, PA.

This decay does not produce any gamma-ray emission, however there is a gamma-

ray photon produced in the electron capture decay (BRε=0.1055) to the first excited

state (E = 1460.8 keV ) of 40Ar. When the argon nucleus transitions from the first

excited state to the ground state the energy difference between that states is released

in the form of an energetic photon; this is the source of the observed background

spectral feature.

The prominence of the 40K line is due to the high emission probability (11%)

and the fact that there are no other gamma-ray lines associated with the decay of the

potassium component of NORM background. Table 9.1 summarizes the characteristic

lines used in the component analysis where the dominant isotope from each decay
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Figure 9.6: Level diagram for the decay of 40K. The primary decay mode is beta decay
to stable 40Ca, however the electron capture decay and transition to stable 40Ar is
the source of the gamma-ray background feature at 1460 keV .

Table 9.1: Background component peak regions used during the background compo-
nent analysis.

Component Identifier Dominant Isotope Ec

(keV )
40K K 40K 1460.00
238U U 214Bi 1764.00
232Th T 208Tl 2614.00

chain (K/U/T) is shown along with the gamma-ray line centroid (Ec) in keV . Figure

9.7 shows the three energy regions from Table 9.1 used for analysis overlaid on a

measured energy spectrum.

Measured energy spectra will be fit using a combined Gaussian and exponential

parametric fit. The fit uses a least squares minimization to determine the optimal

parameters [57].

An exponential fit is used to account for the continuum background measured

155



Figure 9.7: Energy spectrum regions used for component analysis on a 5 second ag-
gregate background total energy spectrum. The three red areas increasing in energy
show the energy regions for 40K (1460 keV ), 214Bi (1764 keV ) and 208Tl (2614 keV ),
respectively.
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in the detector from incomplete collection of energy either in the detector material

itself or resulting from scattering in ambient materials (e.g. soil or concrete). The

formula used for the fit is shown in equation 9.1. In the fitting function, f(E), P0 is

the normalized amplitude of the gamma-ray peak ( γ
keV sec

), P1 is the known photon

energy in keV , P2 is the expected width of the gamma-ray peak distribution (keV )

as measured by the detector, and P3 and P4 are the amplitude and decay constant of

the background continuum. E(t) is the measured energy spectrum where t has been

evaluated on some interval t0 to t1. This fit is seeded and constrained using prior

knowledge of the detector system and the known location (energy) of the peaks in

order to ensure accurate fitting.

f(E)
∣∣t1
t0 = P0e

− 1
2

[
(E(t)−P1)

P2

]2
+ P3e

−P4E(t) (9.1)

The respective concentrations will be estimated from the integral counts of the

Gaussian only component of the fits. This method assumes that the isotopes have

reached an equilibrium state, which is a good assumption since the earth was formed

many years ago. Each of the component integrals are divided by the total (numerical)

integral of the energy spectrum up to 3000 keV in order to remove the dependence

on total count rate.

Equation 9.2 gives the equation for the calculation of the component fraction

basis estimators where FKUT is the estimated fraction of K/U/T, t0 and t1 are the

upper and lower time limits, in seconds, for the energy spectrum S(E, T ) measured

by the detector system. P0,1,2 are the results from the fit obtained from equation

9.1. To ensure adequate statistics for peak fitting the integral duration (t1 − t0) is
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5.0 seconds. This represents a compromise between the ability to distinguish rapid

changes in the background characteristics and the ability of the algorithms to fit the

defined peaks adequately. Figure 9.8 shows an example fit to measured data of the

three selected background features where the fit results from (9.1) are shown with red

lines, S(E, T ) is shown in blue for a 5 second aggregation, and the fit results of the

photopeak region are shown with green lines.

FKUT =

∫ t1
t0

∫ 3000

0 P0e
− 1

2

[
(E(t)−P1)

P2

]2
dEdT∫ t1

t0

∫ 3000

0 S(E, T )dEdT
(9.2)

9.5 Clustering Analysis

Once component analysis has been applied to reduce the data down to three dimen-

sions (i.e. K/U/T), the next step is to use a clustering algorithm to make unsuper-

vised decisions about the natural grouping of the measured data. This will allow for

unbiased, qualitative classification of background characteristics without associating

measurements to specific geographic regions or locations. Both manual (by eye) and

unsupervised algorithms were tested and it was decided to use an unsupervised K-

means clustering algorithm as it is fast and automated producing essentially the same

result. A description of the algorithm and the results of the clustering follow in section

9.5.1.

Figure 9.9 shows the component fraction derived from the fits defined for each 5

seconds of data throughout the entire 20 hour data set. The 40K fraction versus the

214Bi fraction is shown in the top left, 40K versus 208Tl in the top right and the 214Bi

versus 208Tl on the bottom. It can be seen from this figure that there is variation
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Figure 9.8: Example fit to background component regions using a Gaussian + expo-
nential fit. The component fractions are characterized by the ratio of the integral of
the green (Gaussian only) fit curves to the total integral of the spectrum.
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Figure 9.9: Results of fitting each 5 second spectrum for the entire 20 hour data set.
The 40K fraction versus the 214Bi fraction is shown in the top left, 40K versus 208Tl in
the top right and the 214Bi versus 208Tl on the bottom.

between all three components. The next step in the analysis will be to cluster these

data into distinct groups using a K-means clustering algorithm.

9.5.1 K-Means Clustering

The algorithm chosen for this effort was a K-means clustering algorithm [58–61]. K-

means clustering is a variance based clustering algorithm. Given a set of k points in

about d centers, the mean squared distance from each data point to the its nearest
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Figure 9.10: Example K-means clustering algorithm.

center is minimized [58]. There are many different algorithms available, in this work

a heuristic algorithm (generalized Lloyd’s) was chosen for simplicity [59].

Figure 9.10 shows an example of the K-means clustering algorithm. The algorithm

starts by selecting random centers, among the data points (A), shown in red, green

and blue. Next, each point is associated with the closest center (B). In step C, the

centers are re-calculated as the mean of the data points closest to them. Steps B and

C repeat until the centers no longer move, or converge. The result of the clustering

is shown in (D) where the groupings are different than the original random points.

9.6 Results

The clustering algorithm results in a list of geometric cluster centers which minimizes

the distance of each point to its closest center. When looking at a measurement,

in order to determine the grouping (1, 2, or 3) that best represents it, the distance

from each of the cluster centers is calculated. The grouping with the closest center

is selected. Figure 9.11 shows the results of the clustering. K-means analysis was

performed in three dimensions (K/U/T) with three centers (groupings). The centers
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Table 9.2: Geometric centers as calculated by the K-means clustering algorithm.
Group fK fU fT

1 5.556e-2 9.635e-3 4.879e-3
2 7.548e-2 1.202e-2 5.937e-3
3 1.316e-1 1.112e-2 4.291e-3

of the groups are shown with black points and the groupings are shown in the various

colors, group 1 (red), group 2 (green) and group 3 (blue). It can be seen from the figure

that group 3 was less frequently observed given there are far fewer measurements in

that group than the others. This will be discussed in section 9.6.1 when the geographic

distribution of the grouping is introduced with qualitative statements about their

possible causes. Table 9.6 shows the calculated geometric centers from the K-means

clustering algorithm.

It is also beneficial to look at the characteristics of each of the clusters. Figure 9.12

shows the averaged 5 second energy spectrum for each of the 3 groups of background

as derived by the K-means algorithm. Group 1 is shown on the top, group 2 in the

middle and group 3 on the bottom. Also shown is the number of 5 second spectra in

each class; about 7000, 5500, and 400 for groups 1, 2, and 3 respectively. The bottom

plot shows the average energy spectrum for each background group overlaid on each

other to show the difference. The green, blue and red lines represent classes 1, 2, and

3 respectively.

9.6.1 Geographic Distribution

With qualitative, automated classification of the NORM background measured across

a variety of terrain it is interesting, and provides some validation, to observe any geo-
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Figure 9.11: Results of the K-means clustering analysis of the component fit results.
K-means analysis was performed for three dimensions with three centers. The centers
of the groups are shown with block points and the groupings are shown in the various
colors, group 1 (red), group 2 (green) and group 3 (blue).
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Figure 9.12: Averaged 5 second energy spectrum for each of the 3 classes of background
as derived by the k-means algorithm. Also shown is the number of 5 second spectra in
each class; about 7000, 5500, and 400 for groups 1, 2, and 3 respectively. The bottom
plot shows the average energy spectrum for each class of background overlaid on each
other to show the difference. The green, blue and red lines represent classes 1, 2, and
3 respectively.
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graphical correlation among the groupings. Figure 9.13 shows a section of downtown

Washington D.C. with the determined background classification denoted by the col-

ors blue, green and red for classes 1, 2 and 3 respectively. Each block represents 5

seconds of data. From (9.13) it can be seen that the clustering algorithm is working as

expected and classifying the background differently in regions that would be expected

to have variations in NORM concentrations.

Group 3 (red) is associated mostly with bridges and group 2 (green) is associated

with open areas such as the National Mall. Group 1 (blue) covers most other areas.

This is also consistent with data from the rest of the collection. Throughout all data

collected group 3 is always nearby water, group 2 is observed in mostly rural or open

areas and group 1 is present throughout the collection. Another important observation

from Figure 9.13 are regions where the background can change rapidly in areas such as

gaps between buildings or highway underpasses. Even with this simple classification

using groups, large, frequent variations are observed.

9.7 Summary

This chapter presented a method for analysis of NORM background so that it can be

qualitatively classified by automated algorithms. The next chapter (10) will describe

a method by which measured background will be segmented into blocks of similar

characteristics using the result of the clustering such that simulation data can be

injected within it. This analysis will require at least 30 seconds of contiguous back-

ground data of the same type. Then from those resulting segments, blocks from each

group will be extracted for training detection algorithms.

Additionally, blocks for testing the performance of the algorithms will be ex-
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Figure 9.13: A section of downtown Washington D.C. with the determined back-
ground classification denoted by the colors blue, green and red for classes 1, 2, and 3
respectively
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tracted. Background blocks alone can be used to set alarming thresholds for each

algorithm and isotope for a given False Alarm Rate (FAR). Also, simulated source

data can be injected into the background blocks to analyze system performance as

will be demonstrated in chapter 10.
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Chapter 10

DATA INJECTION

Complete characterization of any detector system requires a large number of mea-

surements to be statistically significant. This can be prohibitively time consuming

and expensive due to source procurement costs. As a result, a limited number of mea-

surements are usually performed in order to characterize the most important aspects

of the system. An alternative, or supplemental, method for characterization is the

utilization of well validated simulation models combined with measured background.

Background measurements are trivial to procure because they are inexpensive and

can be acquired anywhere. In this chapter a method in which simulated data can

be injected into measured background will be presented and validated. Injected data

sets can be processed through analysis software to estimate the performance of the

algorithms (see chapter 11).

Since the GEANT4 [48] simulation model of the TMI developed and employed

during preliminary design stages of the program has been well validated, it can serve

to accurately produce the response of the instrument to various sources of interest.

Also, approximately 18 hours of background data have been collected across various

terrain from the metropolitan Washington D.C. area to Boston, MA. Simulation data
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will be injected into measured background after sufficient timing, energy and position

resolution (based on measurements) has been convolved into the simulated response.

This method is expected to predict the performance of the system since the dominant

factor in detection is variation in the NORM background. Figure 10.1 below shows a

Google Earth plot of the path of the imager for section of the data around Washington

D.C. collected on route to Boston in February of 2012.

Figure 10.1: The path of the TMI (red) around the Washington D.C. area during the
background collection efforts in February 2012.

In order to perform injection of simulated data into measured background there

must be a consistent (speed and distance) set of both background data and source
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simulations. Additionally, it will be useful to observe the effect of various categories of

background on the imaging and spectroscopic algorithms. To address this challenge, a

method was developed to take background segments classified by component analysis,

extract the background measurements into 30 second sections, and inject 30 seconds of

simulated data onto this background. A full description of the background component

analysis can be found in Chapter 9.

10.1 Source Simulation

The first step in the data injection process is the generation of simulated source data.

Depending on the source of radiation this can be a fairly trivial task, or extremely

detailed. A few of the simple cases include standard laboratory check sources such as

cesium-137, cobalt-60, cobalt-57 or iodine-131. These sources generally have several

gamma-ray emission lines with well defined branching ratios, for example 137Cs can

be approximated with a single 661.59 keV gamma-ray line with a branching ratio of

approximately 0.851. In the case of more complex sources such as special nuclear ma-

terial (SNM), e.g. plutonium-239 or highly enriched uranium (HEU), spectral features

become much more complicated to model due to lengthy decay chains, radioactive

daughter nuclei and self-absorption.

In order to reduce the complexity related to the simulation of SNM sources we will

use the well validated GADRAS code [62] to generate the source emission models. This

has the added benefit of providing a method for direct comparison to other simulation

models for other detection systems [63]. Once an emission model is generated, or

derived, it can be used in the existing GEANT4 framework to simulate the response

of the detector system as a function of activity and position. The gamma-ray flux
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at the source is generated by random sampling from the provided emission profile.

Detector simulations generate the response to the source only and do not include any

NORM background. The resulting list-mode event data is ready to be injected onto

background measurements acquired with the detector system. Additionally, realistic

resolution effects (energy, position) have been folded into the simulations based on

measurements performed with the TMI (see Figs. 5.3 and 6.13)

10.1.1 Simulation Geometry

The general geometry configuration of a typical simulation run is a straight line

trajectory past a single point source located at a distance off-axis (in Z) near the

geometric center of the run. Figure 10.2 shows an example scenario for a simulated

source run. The TMI travels from (-100, 0, 0) to (100, 0, 0) m in the +X direction

for 600 seconds (0.333 m/s). The source in this example is 1.0 mCi, 137Cs at (0, 0,

25) meters. In this figure the +X and +Z directions indicate the direction of travel

and the direction of the FOV of the imager, respectively.

10.1.2 Simulation Down Sampling

It is not necessary to simulate every configuration of speed and activity for a given

isotope and distance. If a large relatively source at a very slow speed is simulated,

that run can be down sampled using Monte Carlo techniques to produce a file that

contains a weaker source at the same speed, or a stronger source at a faster speed.

The distance to the source (Z) is more complicated, due to range and air attenuation

effects, therefore only speed and activity are scaled. Runs at various Z distances will

need to be simulated separately for down sampling.

For example, in order to alter the source activity, the original activity is scaled by
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Figure 10.2: Graphical example of an injection scenario (not to scale). The simulation
starts with the imager at (-100, 0, 0) m and travels straight in the +X direction, past
a 1.0 mCi source at (0, 0, 25) m, to (100, 0, 0) m. The total distance of the run is
200 meters and the imager speed and source activity can be adjusted through down
sampling.

the ratio of the desired to simulated activity. Alternatively, to increase the speed of

the imager from a simulation, the original activity is scaled by the ratio of speeds. If

the speed of a simulation is changed, then displacement of each event must also be

compressed, temporally, for each accepted event. Of course both values at the same

time may need to be modified simultaneously, which is also possible if there is enough

list-mode data in the simulation file to meet the requested parameters. An example

is shown in Eqs. 10.1-10.3 for the calculation to scale a 1.0 mCi, 0.333 m/s (0.745

mph) run into a 0.5 mCi, 15 mph run. Here S1 is the scaling factor for the velocity

172



change in mph, S2 is the scaling factor for the activity change where activity is in

mCi, and S is the total scaling factor. It should be noted that if S is greater than

1.0, the original simulation data does not contain a sufficient quantity of events to

produce an injection simulation at the requested speed and activity. According to the

calculations the down sampled simulation should contain 1 event per 40 simulated

events (0.025).

S1 =
vi
vf

=
0.745

15.0
= 0.05 (10.1)

S2 =
Af

Ai

=
0.5

1.0
= 0.50 (10.2)

S =
2∏

n=1

Sn = 0.025 (10.3)

In order to generate the correct sampling of events a Monte Carlo method is

used to preserve the ordering of the simulation events and only select the desired

fraction of events with a pseudo random number generator [64]. For each simulated

source event a pseudo random number R is generated, uniformly distributed between

0 and 1. If R is less than the desired fraction of events (S) the event is accepted

and added to the output array, otherwise it is ignored, as if it was not detected. The

random number generator requires the use of a seed value to initialize the random

number sequence. Since many runs are generated by sampling from the same base

data set, it is crucial that a different set of selected events is chosen for each down
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sampled run by selecting a different random number seed. This is handled by choosing

to use the Unix (or POSIX) time at the moment the down sampling is performed.

The Unix time is defined as the number of seconds that have elapsed since midnight

Coordinated Universal Time (UTC), 1 January, 1970, not including leap seconds [65].

Figure 10.3 shows an example down sample simulation from 1.0 to 0.7 mCi and 0.745

to 15 mph. It can be seen from (10.3) that the time, location and energy information

from the original simulation is preserved, while the total strength of the source and

the duration of the run is altered.

10.1.3 Time Correction

One aspect of the simulation that cannot easily be changed is the distance of travel

simply because the interactions measured in the system are at a particular location

along the path of travel with respect to the source and cannot easily, or reliably, be

changed because they include air attenuation and range effects. Since the original

simulation has a defined distance range defined by the speed and starting location

(i.e. 200 meters from (-100, 0, 0) m to (100, 0, 0) m at 0.745 mph), simply sampling

a random number of events may not be sufficient. If the speed of the simulation is

increased then the time range of the down sampled simulation will be shorter than

the original. As a result, each event must be corrected to the proper time given the

starting location and the desired velocity of the truck.

For example, to down sample the original, 200 meter simulation only by activity,

the position and time information would remain consistent. If the velocity of the

simulation is changed, the detector will move further in the same amount of time,

leading to erroneous position information. To address this problem, the simulation
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Figure 10.3: Demonstration of simulation downsampling. The simulated source only
counts as a function of time (top) and distance (middle) for all counts (Red), DA
array (blue), CA array (green) and coincidence (yellow). The bottom plot shows the
total energy deposited for all events as a function of time where the 137Cs source is
clearly visible in the middle of the run. The original simulation is shown in the left
column and the down sampled simulation is shown in the right column.
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must always have a fixed distance of travel. Each down sampled run will still cover

200 meters, however it may take 30 seconds to traverse at 15 mph or 600 seconds

at 0.745 mph. Since the distance of the simulation is fixed, the time of the resulting

down sampled simulation is determined by the amount of time that it will take the

TMI to traverse the simulation distance at the desired speed.

10.1.4 Down Sampling Validation

The goal of down sampling is to be able to create many small simulated runs from

a larger simulation. Through the use of a random number generator we can select a

different subset of events each time we process the simulation. This technique has been

validated to generate runs that are normally distributed about the desired fraction of

events. Figure 10.4 below shows the results of 1,000 down sampled runs. From the plot

on the left it can be seen that the total number of accepted events (green) is normally

distributed about the desired number of events (red line) with a width consistent with

the expected
√
N Poisson variation. The middle plot shows the fraction of events

for each down sampled simulation (blue dots) where the desired fraction of events

is represented by the blue line. The plot on the right shows the fraction of coded

aperture (red) and Compton (blue) events as a function of run number.

10.2 Background Extraction

Now that a simulated source run with the desired isotope, at a specific distance, speed

and activity is available, a background data set that is suitable for injection must be

created. There are several methods to achieve this. First, an average background rate

can be defined and events randomly selected from a much larger data set. Second,
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Figure 10.4: The frequency versus number of events sampled for 1000 down sampled
simulation runs (left) where the red line shows the desired number of events. The
middle plot shows the fraction of events sampled versus run number (blue dots) for
the same set of runs where the desired fraction is shown with the dashed blue line.
The right plot shows the fraction of coded aperture (red) and Compton (blue) events
as a function of run number with the desired fraction shown with dashed lines.

a continuous subset of background can be sampled from a larger set. The later is

more representative of normal variations in NORM for both energy and total count

rate, where the former can only approximate a change in overall count rate with

respect to position and may lead to unphysical, rapid, changes in the rate as well as

energy distribution. For comparison and validation a measurement from a section of

background will be extracted that can be replicated through injection. Figure 10.5

shows the path of the imager (red) around the rail yard track at the Savannah River

Site (SRS) test facility. The speed of the imager for this run (source and background)

is approximately 15 mph. The path shown is for a background only run, where the

location of the source from a corresponding run is indicated with an orange dot. To

make this scenario consistent with the simulation data 200 meters of background data

need to be extracted such that the source is located in the geometric center of the

run (yellow).
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Figure 10.5: Example data extraction. The full length measured run (red) is sampled
from +/- 14.91 seconds around the point closest to the known source location (yellow).
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Figure 10.6: Example industrial nuisance source (137Cs) in one of the preliminary
blocks of background data used for algorithm training.

10.2.1 Nuisance Sources

There is always the chance that an actual source of radiation is present within the

detectable range of the system, whether it is an industrial source used by utility

companies for pipe maintenance, or a cancer patient that just had a medial treatment.

As background data were collected in the Washington DC area in February of 2012

several nuisance sources were observed in the data. These sources included a 137Cs

industrial source and multiple 99mTc medial isotopes. Figure 10.6 shows an example of

a 137Cs source located in block 041/239 of the algorithm training set. When selecting

background blocks for algorithm testing or training, care must be taken to ensure any

nuisance sources of radiation are removed prior to processing and analysis.
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10.3 Injection

Injection of simulated data into measured background is performed through time

comparison. As it was seen in the source simulation and data extraction, there is

a comparable set of source and background data, each containing many individual

time-tagged interactions. To perform injection, each event from the source and back-

ground data sets are examined, deciding which has the next consecutive event time.

This process continues until there is no more data thereby producing a simulated

source injected into measured background. Figure 10.7 shows the results of a single,

down sampled, source simulation injected onto measured background. The top row

shows the source only energy spectrum, with the 662 keV line from 137Cs clearly

visible (column 1), the background only energy spectrum (column 2), the injected

energy spectrum (column 3) and a comparable measurement (column 4). The com-

parable measurement is a 25 m distance of closest approach, 15 mph, dive past a

0.5 mCi, 137Cs point source. The middle row shows the time evolution of the energy

spectrum for the simulated source (column 1), the measured background (column 2),

the injected simulation (column 3), and the measurement (column 4). The bottom

row shows the energy spectrum for events that are within 2 seconds of the middle of

the run, or where the truck is directly in front of the source. From these plots it can

be seen that the injection scheme appears to reproduce the correct time and energy

structure of the measurement. The peak in the background spectrum (top-row blue)

is the 511 keV electron/positron annihilation peak, not the 137Cs photo peak. All

sources are absent from the background spectrum.
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Figure 10.7: Results of the validation injection scenario. The top row shows the to-
tal energy spectrum (30 seconds) for the source simulation, measured background,
injected simulation and corresponding measurement, respectively (left to right). The
middle row shows the 2-dimensional energy versus time histograms with the same
columns. The third row shows the energy spectrum for the middle 4 seconds of the
runs to emphasize the source peak at 662 keV from 137Cs.
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10.4 Validation

In order to validate this method of data injection a 0.5 mCi 137Cs source with a DCA

of 25 meters will be used. This is a convenient run to compare against because there

was at least one run of this type taken each day of testing (chapter 12). To make the

comparison as close as possible, the 200 meters of data around the source location

was extracted. The same distance was extracted from the background only and source

runs. It should be noted that the background run count rate will not align exactly

with the background rate in the source run, as the variation in NORM is time, as

well as position, dependent.

10.4.1 Event Composition

The first step in validation of the injection technique is to compare the composition of

events in the simulation run and the measurement. The imaging subsystems are only

interested in those events used for Compton imaging (i.e. coincident interactions) and

coded aperture imaging (i.e. singles interactions in the DA array). Figure 10.8 shows

the coded aperture event rate as a function of time into the run (left) for the injection

simulation (blue) and measurement (red). The Compton event rate as a function of

time (right) shows the injected simulation (blue) and measurement (red).

It can be seen from the plot that aside from expected fluctuations in the back-

ground rate as previously mentioned the coded aperture and Compton scatter event

rates are consistent between the measurement and the injection simulation.
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Figure 10.8: Comparison of the composition of events from the data injection valida-
tion scenario (blue) and a source measurement (red). Both the coded aperture event
rate as a function of time (left) and the Compton event rate as a function of time
(right) match well against measurements.

10.4.2 Spectroscopy

Since this is both an imaging and spectroscopic system we must ensure that the en-

ergy distribution of injected events is consistent with measurements. To perform this

validation 4 second snapshots of the energy spectrum at each point in the injection

simulation with measurement will be compared. It is expected to observe some de-

viation in the energy spectrum based on Poisson noise and variation in the NORM

background between the background measurement time and the source measurement.

Figure 10.9 shows the comparison of the measured counts versus energy in keV for

the 4 seconds closest to the source to show the source emission line. From this plot

it can be seen that the injection simulation (blue) is very closely modeling the mea-

surement (red). It can also been seen that the high energy events (E > 700 keV )

differ between the injection simulation and the measurement. Since this part of the
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Figure 10.9: Total energy deposited in the detector system for the middle 4 seconds
of data for the data injection scenario (blue) and the corresponding measurement
(red). Counts above the 662 keV gamma-ray line from 137Cs are not simulated and
represent actual count rate variations between measurements at the same location.

spectrum has not been simulated it represents real fluctuations in the background

between the measurements. Additionally, Figure 10.10 shows the ratio of injected

counts to measurement for the same 4 second slice. From this it can be seen that

for the energy range of the source injection (E < 700keV ) the deviation is entirely

within the expected uncertainty of photon counting statistics.

10.4.3 Imaging

In order to fully validate the functionality of the injection method it is necessary to test

the imaging algorithms. If the injection method is working correctly, sources having

similar intensity in the injection simulation and the measurement should be equiva-
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Figure 10.10: Ratio of injected to measured counts as a function of energy (keV ) for
the injection scenario as compared to a measurement in the same location. Data are
shown for ± 2 seconds of closest approach to the source. The dashed red line shows
the expected ratio of 1.0, indicating a perfect match. Most data points are within the
expected uncertainty due to counting statistics.
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Figure 10.11: Comparison of imaging results for the source measurement (top) and
simulated injection run (bottom). Both images have similar image significance; 34.23
measured versus 33.58 injected. Images report a source within 2.2 meters of each
other.

lent. Also, reconstructed images should have similar shapes if the resolution folding

of the simulation is correctly applying position uncertainty. Figure 10.11 shows the

comparison of the measured source image (top) and the injection simulation (bottom)

for the same source location and intensity. The measured image has a calculated sig-

nificance of 34.23 versus 33.58 for the injected source. Both images are aligned in the

same location and report an alarm within 2.2 m of each other. Also, both images

have similar localization uncertainty; ±4.88 and ±5.58 m for the measured and in-

jected sources respectively. Replay of all 60 similar measured runs (see chapter 12)

the mean significance calculated was 34.62 ± 7.82 versus 29.5 ± 5.15 for the injection

data. Also, the reported uncertainty was on average 3.76 ± 1.64 m for measurements

versus 2.10 ± 1.32 m for injected data. There were 60 measurements and 240 injec-

tion runs compared. The agreement between the runs is reasonable considering that

the actual speed, distance, and source activity used in measurements are not exact.

Injected source runs are fixed at 25 m DCA, 15 mph, and 0.5 mCi.
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10.5 Injection Analysis

The method of data injection has been well validated. Simulated sources can be

injected over measured background and analyzed to determine the performance of the

system for both spectroscopy and imaging. Using the 18 hours of data collected on the

trip from Washington D.C. to Boston, we can extract many basis background sets and

perform injection into those sets. An example of the analysis is the injection of various

activities of 137Cs. In this case a set of 1000 unique background blocks (30 seconds

each) were extracted from measurements according to the groupings determined in

chapter 9. Each group consists of 240 background blocks for algorithm training and

240 for algorithm testing, with the exception of group 2, which only had data to

generate 40 unique blocks. Source simulations were then down sampled to various

activities and injected into those blocks using the method from this chapter.

Figure 10.12 shows several sample images from the algorithms for background only

(top) and 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0 mCi as the images go down. The color scale

of the image has been modified such that they are on the same scale for comparison.

It can easily be seen that as injected source activity increases so does the image

intensity.

Given a large number of runs for a specific isotope, distance and speed combination

(e.g. 137Cs, 25m, 15mph) for multiple source strengths performance of the algorithms

can be gauged as a function of source activity. Analysis includes performance of

the gamma-ray imaging algorithms, spectroscopic algorithms and the combination of

both.

To perform analysis, each of the 240 injected runs at each activity is processed

through the algorithms. For each activity, the mean and standard deviation of the
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Figure 10.12: Sample images generated from processing of injection simulations at
various activities: background only (top), 0.1, 0.3 0.5, 0.7, 0.9 and 1.0 mCi (bottom).
As the source activity increases, the image intensity increases.
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Figure 10.13: Centroid of the maximum trigger parameter for 240 simulated injection
runs as a function of source activity. Spectroscopic region-of-interest (ROI) is shown
in blue, imaging (red) and the combination (green).

maximum image pixel significance (trigger parameter) frequency distribution is calcu-

lated. Figure 10.13 shows the triggering parameter centroid as a function of activity.

As the source activity increases, the mean value of the trigger parameter increases for

each of the algorithms, region-of-interest (ROI), imaging (IMG) and the combined

(IMG+ROI).

Also, the mean and standard deviation of the 240 background blocks is calculated.

This demonstrates how the significance calculation in the images fluctuates in the

absence of a source. Analysis of the background only data allows for determination of

triggering thresholds. Figure 10.14 shows the maximum calculated trigger parameter

value for the various algorithms for the background blocks. It should be noted that

each set of data is independent and the lower value for ROI (blue) does not indicate

smaller background or better sensitivity.
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Figure 10.14: Trigger parameter maximum value for ROI (blue), imaging (red) and
the combination (green) as a function of injection run number (0-239). The average
(centroid) values for each are shown with a solid line of the corresponding color.

This analysis also allows for identification of blocks of background that have sub-

stantially higher trigger values. These blocks can be examined in more detail and

provide insight into potential improvements to the algorithms that would further

reduce the background significance and fluctuation.

10.6 Summary

This chapter has presented a method for injection of simulated source terms into

measured background. Background blocks have been segmented into groups according

to the analysis performed in chapter 9. Each set of background data has a unique

source injected into it for a given activity, speed and distance. This method of injection

has been shown to reproduce measurements with very good agreement. This method

allows for analysis of many injected source runs over realistic backgrounds to gauge the
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performance of the algorithms without making thousands of field measurements. Data

produced using this method have been processed through the detection algorithms in

order to calculate sensitivity. Sensitivity will be quantified using Receiver-Operator

Characteristic (ROC) analysis; the details of this analysis are presented in chapter

11.
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Chapter 11

PERFORMANCE RESULTS

In order to quantify strengths of each detection modality, individually and combined,

a uniform method of analysis is required. It is advantageous to use a standardized

approach to performance analysis such that information is presented clearly and un-

derstandably. Also, using a standardized method of analysis, performance of multiple

algorithms and detector systems can be compared and contrasted on equal footing.

A common method for the quantification of detection algorithms is ROC analysis.

In this chapter the details and results of the ROC analysis technique will be given.

ROC analysis will be used to compare the various modes of detection for the TMI.

The binary classifier used will be the single most effective measure of detection fidelity

for each algorithm. For imaging algorithms the classifier is the maximum significance

in the world image while for spectroscopic algorithms it is the maximum significance

calculated by the ROI algorithm.

11.1 Receiver Operator Characteristic Analysis

ROC analysis was first employed in World War II for the analysis of radar signals.

Following the attack on Pearl Harbor in 1941, the United States Army began new
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research to increase the prediction of correctly detected Japanese aircraft from their

radar signals [66–68]. ROC analysis is a method in signal detection theory that esti-

mates the performance of a system through the use of a binary classifier. The classifier

is observed as a function of discrimination threshold [69]. For the TMI the binary clas-

sifier is true if the measured significance of the data point is above the threshold value

for detection and false if it was not. ROC curves are a graphical representation of the

true probability of detection (sensitivity) versus the probability of false alarming (1-

specificity).

11.1.1 Binary Classifier

Through data injection methods presented in chapter 10 many pseudo-synthetic runs

can been generated for both background only and multiple activities for a source

of interest. The first step in generating an ROC curve is to gather the maximum

value of the classifier for each run. Figure 11.1 shows an example plot of three ROI

classifier frequency distributions (left) for background only (red), background with a

40 μCi source (blue) and background with a 300 μCi source (green). Additionally a

Gaussian fit to the data is shown on the right of Fig. 11.1, where each distribution

has been normalized the same intensity. These data represent the maximum classifier

value determined by the ROI algorithm for each of the 240, group 1 background

blocks (chapter 9) with a 137Cs source injected into them (chapter 10) at 2 different

activities (40 and 300 μCi). For each of the injected runs the source was located at

25 m DCA in the middle of a 30 second pass at 15 mph.

For each of the 240 runs the maximum value of the ROI significance calculation

is plotted. As expected the maximum value of the classifier increases with source ac-
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Figure 11.1: Example maximum classifier frequency distribution (left) for 240 runs of
background only (red) and 40 (blue) and 300 μCi (green), 137Cs injected source. A
Gaussian fit to each of the distributions is shown on the right.

tivity (with some spread). The Gaussian fits to the data are a good approximation to

the functional form of the frequency distribution given the Poisson nature of photon

counting statistics. Fitting the frequency distribution may allow for estimates of per-

formance in regions with a very low probability of false alarm where it would become

prohibitively time consuming to take the actual number of measurement required.

For example, to measure 1000, 30 second runs past a source would likely consume a

minimum of 83 hours.

11.1.2 Cumulative Distribution Functions

In order to make an estimate of the probability of detection or probability of false

alarm, frequency distributions are integrated as a function of threshold on the clas-

sifier value. The Cumulative Distribution Function (CDF) represents the fraction of

measurements with a classifier value below the threshold. The probabilities of false

alarm and detection are calculated as the ratio of measurements above the threshold
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Figure 11.2: 1-CDF distribution functions for the background only (red), 40 μCi
cesium (blue), and 300 μCi cesium (red) sources as a function of classifier threshold.

to all measurements for the background and source distributions respectively. By cal-

culating the cumulative number of measurements with a value below the threshold,

the value above threshold is simply one minus the fraction of measurements below

threshold (1-CDF). Figure 11.2 shows the 1-CDF functions for the background and

source frequency distributions from Fig. 11.1. As the threshold on classifier value

increases the probabilities of false alarm and detection are reduced as expected.

Additionally, the 1-CDF distributions are used to set triggering thresholds. For

example, reading from Fig. 11.2, if the operator was willing to accept a false alarm

probability of 20%, the classifier threshold could be set at around 0.0. This would

give a probability of detection of about 60% for the 40 μCi source and 100% for the

300 μCi source.
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11.1.3 Generating the Curve

Generating ROC curves is performed by scanning the 1-CDF distributions along

the discrimination threshold. At each threshold point the estimated probability of

detection is equivalent to the value of 1-CDF for the source distribution and the

probability of false alarm is the value of 1-CDF for the background only distribution.

Figure 11.3 shows the associated ROC curve generated from the data in Fig. 11.2.

From Fig. 11.3 it can be seen that fit to the distributions produces nearly the

same result and can be used as an estimated ROC area in the case where limited

run statistics are available, assuming the fit function is a good descriptor of the data.

Each ROC curve shown in Fig. 11.3 also has an Area Under the Curve (AUC) value

associated with it. AUC values can be used to quantify the overall sensitivity of the

system to a particular source.

11.1.4 Area Under the ROC Curve

Sensitivity can be characterized by the area under the ROC curve. It is a measure

of the overall discrimination power of a detector. The maximum value of AUC is 1.0

and the minimum value is 0.5, representing unambiguous discrimination and random

detection respectively [67].

AUC is a convenient metric because it does not rely on any particular portion of

the ROC plot but the complete curve. The interpretation of the area implies that a

randomly selected run with a source present has a probability equivalent to the area

of having a test value larger than a randomly selected run without a source present.

For example if the area under the ROC curve is 0.92, a randomly selected run with a

source present has a 92% probability of having a larger test value than a run without
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Figure 11.3: Generated ROC curve for a 40 μCi (blue) and 300 μCi (green), 137Cs
source. The solid lines are the curves generated directly from the measured frequency
distributions and the dashed lines are generated from fits to the frequency distribu-
tions.
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a source present. The area does not imply that a source is detected 92% of the time

or that a true alarm is associated with a run with a source present 92% of the time.

11.2 Imaging Modality Fusion

Since the TMI is a hybrid imaging system, each modality has different performance

characteristics as well as a different effective energy range. In order to verify that

the fusion of multiple imaging modalities improves sensitivity, ROC analysis can be

performed on each modality for the same set of data and compared. Figure 11.4 shows

the calculated ROC curves for the Compton imaging (CI), coded aperture (CA), and

the fusion of the two (CA/CI). These curves were generated from 100 simulated source

and background runs at 30 mph past a 1.0 mCi, 137Cs source located at 100 meters

DCA. Here, it can be seen that in this scenario Compton imaging is not very sensitive,

and provides nearly random detection (AUC=0.515). Coded aperture imaging is more

sensitive than Compton (AUC=0.696), however the combination of CA/CI is shown

to be superior to both at this energy (662 keV ) with an AUC of 0.843.

Another aspect of hybrid imaging is the ability to improve sensitivity over a broad

range of energies. Figure 11.5 shows the AUC metric for CI (blue), CA (red), and

CI/CA (green) as a function of source energy for 100 simulated runs past a 1 mCi,

137Cs source at 100 m DCA and 30 mph. As expected the CI algorithm does not

perform as well as coded aperture at low energy and coded aperture does not perform

as well as Compton at high energy. Also, as expected the fusion of CA and CI improves

sensitivity across the range of energies proving that hybrid coded aperture/Compton

imaging is a powerful tool in detection of weak sources at a distance in the presence

of large backgrounds. Additionally, a large improvement (as observed) is expected
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Figure 11.4: ROC analysis of the highest image pixel for Compton (blue), coded
aperture (red) and hybrid (green), generated using 100 simulated runs past a 1.0
mCi, 137Cs source at 100 m DCA and 30 mph.
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Figure 11.5: Area under the ROC curve as a function of incident gamma-ray energy
for Compton (blue), coded aperture (red) and hybrid (green).

because the data used in the coded aperture and Compton imaging algorithms are

orthogonal with very different background characteristics.

11.3 Imaging/Non-Imaging Modality Fusion

Since the TMI is also a large-area spectroscopic detector it is important to show

the applicability of fusing imaging and non-imaging modalities. Figure 11.6 shows

the ROC curves generated from 240 runs past a 75 μCi, 137Cs source at 25 m DCA

and 15 mph for ROI (blue), CA/CI imaging (red) and ROI/CA/CI (green). The

area under the curves for the spectroscopic algorithms and the imaging algorithms

are similar, 0.885 and 0.906 respectively. However, the combination of both leads
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to improved sensitivity (AUC=0.914) over either alone. The overall improvement in

area is small but expected since the majority of measured events are used by all

algorithms (DA singles, CA/DA coincidence), the only difference for ROI being CA

singles interactions.

So far the ROC curves have focused mainly on the region of the curve with a high

probability of false alarm, mostly because the examples so far have large observable

differences in this range. Even though the area under the ROC curve has been shown

to be slightly better for the fusion of imaging and non-imaging algorithms, at more

realistic false alarm probabilities (< 10−3) a larger difference can be observed. Figure

11.7 shows the same ROC curves as Fig. 11.6 with a logarithmic Probability of False

Alarm (PFA) scale to show very low probabilities of false alarm. Here it can be

seen that the relatively small difference in AUC translates to a large improvement in

detection probability.

11.4 Minimum Detectable Activity

ROC curves can also be used to estimate the smallest source the TMI is capable of

detecting, or the MDA. MDA values are derived based on two criteria from the ROC

curve, probability of false alarm and probability of detection. The choice of these

criteria can be based on many factors related to the CONOPS. If the operator of

the detector is performing a routine scan of an area they may be unwilling to accept

a high probability of false alarm. Other scenarios may be based on some form of

intelligence that a source is suspected to be present in a specific area. In this case it

may be acceptable to trade false alarm probability for detection probability. Figure

11.8 shows ROC curves for a 137Cs source located at 25 m DCA, for 240 runs at 15
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Figure 11.6: ROC analysis of ROI significance (blue), hybrid CA/CI gamma-ray imag-
ing (red) and the combination (green). This curve was generated using 240 injected
source runs past a 75 μCi, 137Cs source at 25 m DCA and 15 mph.
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Figure 11.7: ROC analysis of ROI significance (blue), hybrid CA/CI gamma-ray imag-
ing (red) and the combination (green) showing the region of very low probability of
false alarm in more detail.
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Figure 11.8: ROC curves generated for 240 runs past a 137Cs source at 25 m DCA
and 15 mph for 0.04, 0.05, 0.075, 0.1, 0.2, and 0.3 mCi for the ROI algorithm.

mph. Each line represents a different source activity including 0.04, 0.05, 0.075, 0.1,

0.2, and 0.3 mCi.

For example, if the operator is willing to tolerate a PFA of 10%. By using the

ROC curves in Fig. 11.8 the Probability of Detection (PD) for each activity can be

determined for the selected PFA, shown with a dashed black line. By correlating

source activity versus PD at a prescribed PFA data points can be interpolated to

estimate the MDA. Figure 11.9 shows the source activity as a function of PD for
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the arbitrary selected PFA of 10%. Now say the operator, in addition to accepting

a PFA of 10%, wishes to detect with probability 90%. By interpolating the plot in

Fig. 11.9 for a PD of 0.90, the hypothetical MDA is estimated to be 0.1 mCi. (black

lines). There is no single number for MDA because of the nature of detection, it relies

heavily on the selection of false alarm probability. As PFA goes to 1, MDA goes to 0,

since every point in space will be determined to have a source, eventually the source

location will be identified. Conversely, if PFA is strictly 0, MDA effectively goes to

infinity because the threshold would need to be set so high that even large sources

would never trigger an alarm.

11.5 Injection Results

In chapter 10 a method for simulated source injection into measured background

was presented. Additionally, chapter 9 classified measured background into various

groupings based on the principle NORM components. Data produced through injec-

tion methods have been analyzed as a function of both grouping and activity for

137Cs at 25 m DCA and 15 mph. Since NORM background is the dominant factor in

detection sensitivity and the spectral characteristics of NORM change as a function

of time and location it is interesting to observe the effect of various groupings on the

detection algorithms. Figures 11.10, 11.11 and 11.12 show the derived ROC curves

for the injection studies performed for 137Cs at 25 m DCA and 15 mph for 0.04, 0.05,

0.075, 0.1, 0.2 and 0.3 mCi. Table 11.1 below summarizes the results of the ROC

analysis for each algorithm, activity and background grouping.

From Table 11.1 it can be seen that the area under the curves increases as a

function of activity, as expected. Also, in most scenarios the combination of imaging
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Figure 11.9: Source activity (mCi) as a function of probability of detection assuming
a false alarm probability of 0.10.
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Table 11.1: Areas under the ROC curves for each ROI, CA/CI, and the combination
(TOT) generated using 240 runs of injection data for groups 1 and 2, and 20 for group
3. The source injected was a 137Cs source at 25 m DCA. The TMI speed for each run
was 15 mph.

Activity ROI1 IMG1 TOT1 ROI2 IMG2 TOT2 ROI3 IMG3 TOT3

0.040 0.729 0.724 0.725 0.644 0.698 0.690 0.843 0.546 0.552
0.050 0.769 0.807 0.828 0.615 0.699 0.705 0.966 0.660 0.704
0.075 0.877 0.907 0.913 0.722 0.858 0.868 0.995 0.697 0.724
0.100 0.930 0.971 0.975 0.804 0.927 0.940 1.000 0.946 0.961
0.200 0.993 1.000 1.000 0.974 0.997 0.997 1.000 1.000 1.000
0.300 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000

and ROI improves sensitivity. The results of group 3 indicate superior sensitivity from

ROI, however there are limited statistics for background conforming to group 3. It

is conceivable that ROI is more sensitive because of the observed characteristics of

the group 3 spectrum. Generally, these regions are near water or over bridges where

the background rate is significantly decreased. This should allow for easier detection

of small signals. Imaging algorithms rely on accurate estimators of the background,

ROI does not. Due to the limited statistics in group 3, poor background estimators

seem to be causing degraded performance.

11.6 Summary

In this chapter a method for analyzing the performance of the detection algorithms

implemented on the TMI has been presented. Additionally, it has been shown in pre-

vious chapters that, through thoughtful detector design a system can be constructed

that combines multiple independent data sets to improve the detector sensitivity

over any individual modality alone, over the entire energy range. Fusion of coded
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aperture and Compton scatter imaging has been shown to improve AUC (sensitiv-

ity) by as much as 64% over Compton imaging alone and 21% over coded aperture

alone. Moreover, methods shown in this chapter demonstrate multiple non-imaging

and imaging detection modes can be fused to improve the overall sensitivity and lower

false alarm rates. Using the methods described in this chapter allow for the calculation

of thresholds and minimum detectable activity estimates depending on the concept

of operations. Overall the TMI is a powerful tool for detection of weak sources at a

distance through the combination of multiple imaging and non-imaging modalities. It

gains strength in the combination of these modalities while exploiting the advantages

and capabilities of each individually.

208



Figure 11.10: ROC curves for the combined analysis. A 137Cs source at various activ-
ities was injected onto NORM background group 1. The source was located at 25 m
DCA and the TMI speed was 15 mph.
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Figure 11.11: ROC curves for the combined analysis. A 137Cs source at various activ-
ities was injected onto NORM background group 2. The source was located at 25 m
DCA and the TMI speed was 15 mph.
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Figure 11.12: ROC curves for the combined analysis. A 137Cs source at various activ-
ities was injected onto NORM background group 3. The source was located at 25 m
DCA and the TMI speed was 15 mph.
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Chapter 12

FIELD TESTING

Once constructed the TMI was delivered for field testing in the fall of 2009. Testing

covered a range of scenarios to gauge the applicability and performance of such a sys-

tem. The results of some of the field tests will be presented in this chapter. Testing

of the TMI was conducted over a period from October of 2009 to February of 2010.

Data collected during the testing phase of the program have been instrumental in

developing the analysis results of chapter 11 as well as providing a large set of mea-

surements to be used for improvement of the algorithms using off-line replay tools.

System characterization was conducted at the Department of Energy’s SRS facility in

Aiken, SC. This facility provided the sources, locations and expertise to perform the

characterization uniformly across multiple systems and scenarios. Each of the exam-

ples given in this chapter will present the performance of the algorithms to the replay

of data recorded during testing using the most recent version of the algorithms. A

source that is located or detected is defined as having the maximum significance of all

points in the FOV during a run, independent of threshold. Point source localizations

must have reported a location within ± 0.2 radians of ground truth to be considered

true. ROI algorithms must report the detection of a source within 50 m of the point
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of closest approach to the source to be considered true.

12.1 Consistency Checking

In order to ensure consistency during testing, each morning a system check was per-

formed. This check consisted of a moving run (15 mph) past a 0.5 mCi, 137Cs source

at 25 m DCA. Figure 12.1 shows an example detection of the source. The source was

localized to (33.228168◦N, -81.555054◦W) with a reported uncertainty of 4.33 meters

in the horizontal direction and 2.83 meters in the vertical direction. Ground truth for

the source location was (33.228178◦N, -81.555054◦W), a distance of 1.1 m from the

alarmed location; well within the reported uncertainty. During this 90 second run the

TMI came no closer than 24 m from the source according to GPS/INS data. Over

the course of the testing campaign the scenario in Fig. 12.1 was repeated 60 times.

Replay of recorded TMI data shows the distance of the reported source to ground

truth was on average 3.8 ± 1.6 meters with a calculated significance of 34.62 ± 7.82.

The TMI correctly detects, identifies and localizes the source for each of the 60 runs.

12.2 Distant Sources

Since the TMI was designed to be a stand-off detection system, testing included mea-

surements to verify the sensitivity to sources at large distances. The general scenario

is a point source located at a fixed distance aligned to the center of the detector array.

The TMI then drove past the source at 15 mph and attempted to detect, identify and

localize the source. Table 12.1 summarizes the results of the distance testing where

ΔR is the average radial distance of the reported maximum significance to the known

location of the source.
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Figure 12.1: Hybrid CA/CI image of the 0.5 mCi, 137Cs source used for consistency
checking. The source in the image was reported to have an uncertainty of 5.2 m. The
actual source location was 1.1 m from the reported location.

Table 12.1: Summary of distant source testing performed with the TMI.

Source Activity Distance Runs Located ΔR
[mCi] [m] [m]

137Cs 10 100 8 8 7.1 ± 1.8
137Cs 1 100 18 8 16.7 ± 15.1
137Cs 1 50 4 4 3.5 ± 0.5
68Ge 4 25 32 32 3.2 ± 1.0

12.3 Multiple Sources

In addition to a single gamma-ray point source in the FOV of the detector system it is

interesting to evaluate the ability of the system to distinguish multiple point sources.

Figure 12.2 shows the results of a run past a 137Cs source co-located with a 88Y source

at 50 m DCA. The TMI correctly detected, identified and localized both sources

simultaneously 10 out of 10 times, to within an average of 4.2 meters from ground

truth. The ROI algorithms also detected and identified both sources simultaneously
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Figure 12.2: Source images for 137Cs (top) and 88Y (bottom) co-located at 50 m DCA.
The TMI correctly detects, identifies and locates both sources simultaneously.

for each run. The calculated significance for the 137Cs source was 29.02 with a location

uncertainty of ±4.34 m. The calculated significance of the 88Y source was 24.08 with

a location uncertainty of ±4.30 m. The ROI algorithms calculated a significance of

0.71 for cesium and 0.96 for yttrium.

Results of several of the multiple source tests performed are shown in Table 12.2

below. The orientation specifies the placement of the sources. Co-located means the

sources were in the same location, separated refers to a 20 meter distance between

the two sources on the same side (curb-side) of the TMI. Opposite runs featured the

137Cs source on the curb-side of the TMI at 50 m DCA and the 88Y source on the

driver side (outside the imager FOV) close to the road. It can be seen from Table

12.2 that the TMI correctly identifies both sources in each of the runs and is able to

simultaneously detect sources using non-imaging and imaging modalities. The average

distance to the source is not specified for the 88Y runs when the source was located on
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the backside of the TMI because the actual location of the source was not recorded.

However, all ROI detections occur within ±1.9 m across all 13 runs and are assumed

to be correct detections.

Table 12.2: Results of multiple source testing performed with the TMI for both imag-
ing and ROI algorithms. In this table N is the number of detections over the number
of tests performed and ΔR is the average distance to the known location of the source
in m.

Algorithm Orientation N88Y ΔR88Y N137Cs ΔR137Cs

Region-of-Interest co-located 10/10 52.6 ± 2.5 10/10 54.7 ± 3.1
Imaging co-located 10/10 4.6 ± 1.4 10/10 4.2 ± 1.0

Region-of-Interest separated 16/16 52.7 ± 3.3 16/16 53.6 ± 3.8
Imaging separated 16/16 5.2 ± 1.8 16/16 3.0 ± 1.5

Region-of-Interest opposite 13/13 ±1.9 13/13 54.2 ± 3.2
Imaging opposite 0/13 N/A 13/13 5.4 ± 2.1

12.4 Shielded Sources

Some scenarios in gamma-ray detection likely include the presence of shielding ma-

terial. Shielding may be intentional, as in the use of high-Z materials such as lead,

or unintentional, through occlusion by objects in the environment. Shielding changes

both the intensity and average energy of gamma-rays escaping the shielding, softening

the measured energy spectrum. Figure 12.3 shows the results of 18 passes by a 10

mCi, 137Cs source at 72.5 m DCA. The speed the the truck for these runs was 15

mph. Approximately halfway between the detector and the source there are a series of

concrete pylons (yellow box). The pylons were several meters tall and act as a shield

of photons emitted from the source. The TMI algorithms accurately detect, identify

and localize the source for each of the 18 runs. The average reported distance to the
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known location of the source was 1.67 meters. Table 12.3 summarizes several of the

results of shielding tests performed at SRNL.

Figure 12.3: Example shielding scenario tested with the TMI. A 10 mCi, 137Cs source
was located 72.5 m from the roadside with large concrete barriers between the source
and detector. The TMI detects the source in the scenario 18/18 times within 1.7 ±
1.1 meters of ground truth.

12.5 Backside Sources

The TMI has been designed to perform gamma-ray imaging out the curb-side of the

vehicle, however it is important to know if a source outside the FOV of the imaging

system is present. This is where the spectroscopic detection system is extremely valu-

able. Figure 12.4 shows the results from 12 runs past a 1 mCi, 113Sn source located at

25 m DCA on the backside of the TMI. Since the FOV of the imaging system is not
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Table 12.3: Summary of all shielding tests performed with the TMI at SRNL.

Source Activity Distance Material Runs Detects ΔR
[mCi] [m] [m]

60Co 1.0 25.0 Lead 8 8 2.3 ± 1.0
60Co 1.0 25.0 Lead 10 5 3.5 ± 0.6
60Co 1.0 10.0 Lead 18 18 2.0 ± 0.8
137Cs 10.0 50.0 Concrete 21 21 6.9 ± 1.2
137Cs 1.0 10.0 Lead 5 5 3.9 ± 0.4
137Cs 10.0 25.0 Lead 2 2 2.1 ± 1.3
60Co 1.0 50.0 Concrete 21 18 4.4 ± 1.7
137Cs 10.0 72.5 Concrete 18 18 1.7 ± 1.1
60Co 1.0 72.5 Concrete 14 12 7.4 ± 4.1

facing the source it does not reconstruct an image and therefore cannot alarm. Since

the spectroscopic detection system is independent of direction it is able to detect an

increase in SNR in the region around the source and alarm the system. In Fig. 12.4

the green rings show a 50 meter radius around the TMI at the time of the alarm

and the red triangle shows the direction of the imaging FOV. The ROI algorithm

detected, identified the 113Sn source correctly as well as localized the proximity for

all runs. Table 12.4 summarizes all of the backside tests performed with the TMI

during field trials. If the ROI algorithm detects the strong presence of a source and

the imaging system does not it is an indication that a source is likely present outside

the FOV. To localize the source the imager could be repositioned/retasked until the

source is located.

218



Figure 12.4: Example set of testing runs past a 1 mCi, 131I source located behind the
FOV of the imaging system. The ROI algorithms detect and identify the source even
though it is not visible to the imaging system.

12.6 Elevated Sources

The location of a source may not always be directly centered on the vertical plane

of the imager as in the tests presented so far. As such, testing was performed that

included elevated sources. Partially Coded Field-of-View (PCFOV) tests were per-

formed by elevating sources such that only a potion of the the DA array was coded

(e.g. 50% PCFOV). Figure 12.5 shows three example PCFOV images; 1.0 mCi, 137Cs

(top), 1.0 mCi, 60Co (middle) and 2.0 mCi, 57Co (bottom). Each source was elevated

0.35 radians vertically. The calculated significance of the cesium source was 21.10

with a width of 5.2 m FWHM and reported an elevation of 0.32 ± 0.06 radians. The

calculated significance of the 60Co source was 19.79 with a width of 4.84 m FWHM

and reported an elevation of 0.34 ± 0.06 radians. The calculated significance of the
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Table 12.4: Summary of all backside tests performed with the TMI at SRNL where
ΔR is the distance between the reported and known source location.

Source Activity Speed Distance Runs Detects ΔR
[mCi] [mph] [m] [m]

113Sn 1.0 15.0 -25.0 12 12 31.4 ± 1.6
137Cs 1.0 15.0 -25.0 12 12 29.1 ± 2.1

57Co source was 9.32 with a width of 5.2 m FWHM and reported an elevation of 0.36

± 0.06 radians. The 57Co reconstruction is formed using coded aperture only since the

energy (122 keV ) is too low for Compton imaging to be used. Results of additional

elevated tests are given in Table 12.5.

Table 12.5: Summary of several elevated source (PCFOV) tests performed with the
TMI during field trials.

Source Activity Distance Elevation Detect ΔR
[mCi] [m] [rad] [m]

137Cs 1.0 25 0.35 5/5 3.5 ± 0.4
60Co 1.0 25 0.35 10/10 3.3 ± 1.0
57Co 3.0 25 0.35 11/11 3.4 ± 0.8

12.7 Medical Sources

During the coarse of testing several scenarios involving medial sources were character-

ized. Medical sources are often a source of nuisance alarms for detection systems. The

TMI is capable of detecting medicals and classifying them correctly as such. Figure

12.6 shows an example 131I (top) and 99mTc detection (bottom). The iodine source

has a calculated hybrid image significance of 26.94 and width of 5.75 m FHWM.
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Figure 12.5: Source images for a run past a 1.0 mCi, 137Cs source (top), 1.0 mCi,
60Co (middle) and 2.0 mCi, 57Co (bottom). Each source was elevated 0.35 rad from
the center of the imager.

The technetium source has a calculated coded aperture image significance of 9.86

and width of 6.58 m FHWM. The 140 keV gamma-ray line from 99mTc is too low in

energy for Compton scattering to be used, therefore only coded aperture is included

in the result. Table 12.6 summarizes the results of the medical isotope testing.

Table 12.6: Summary of several medial isotope tests performed with the TMI at
SRNL.

Source Activity Distance Speed Detect ΔR
[mCi] [m] [mph] [m]

99mTc 2.0 25 15 20/20 4.5 ± 1.1
131I 2.0 25 15 19/19 3.9 ± 0.5
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Figure 12.6: Measured 131I (top) and 99mTc (bottom) sources. Each source was 2.0
mCi located at 25 m DCA. The speed of the TMI during the measurement was 15
mph.

12.8 High Speed Detection

Depending on the CONOPS the TMI may be required to operate at high speed. Tests

were performed to verify the response of the system to a source at high speed. A 10

mCi, 137Cs source was placed at 25 m DCA and the TMI made up to 10 runs at

30, 40, and 50 mph each. Results of the high-speed testing are shown in Table 12.7.

Performance may be improved in this scenario by adjusting algorithm parameters

for increased speed, for example the peak persistence time. Figure 12.7 shows the

reconstructed images for 3 runs past a 10 mCi, 137Cs source at 25 m DCA and 30

(top), 40 (middle) and 50 (bottom) mph. The calculated significance for the 30, 40,

and 50 mph runs were 52.48, 41.38 and 40.90 respectively. The uncertainty in location

reported for the 30, 40, and 50 mph runs was 5.3, 5.4, and 5.8 m FWHM respectively.

It can be seen from Fig. 12.7 that the source reconstruction does get slightly wider
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Figure 12.7: Source images for a run past a 10.0 mCi, 137Cs source at 25 m DCA for
30 mph (top), 40 mph (middle) and 50 mph (bottom).

as a function of speed however the algorithms are adjusting the segmentation of data

on the fly in order to ensure precise reconstruction. The source was slightly below the

center of the imager for these runs (-0.3 rad).

Table 12.7: Summary of all high-speed tests performed with the TMI at SRNL.

Speed [mph] Runs Detects Mean Alarm Distance [m]

30 10 9 7.9 ± 0.8
40 9 6 9.8 ± 0.7
50 10 5 12.9 ± 0.7
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12.9 Summary

In this chapter it has been shown that the TMI performs well in a range of scenarios

related to detection of sources in the real-world. Additionally, the TMI takes advan-

tage of multiple detection modalities to ensure detection of radioactive material at

a minimum. In most cases however the sources are detected, identified and local-

ized within expected limits, taking full advantage of the sensitivity gains from the

combination of all available data.
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Chapter 13

FUTURE WORK

A project as extensive as the TMI has many valuable applications. However, a system

this complex has areas for potential improvement through algorithm development and

additional sensor integration. Much of the future work will involve improvements to

currently implemented algorithms as well as study of CONOPS to determine the most

useful environments to deploy the system.

13.1 SORDS Spiral Development

After the successful characterization campaign at SRS the government team, led by

Lawrence Berkeley National Laboratory (LBNL) performed detailed analysis of the

TMI and came to the conclusion that it would perform at increased capacity with

several changes and modifications to the algorithms. DNDO took this advice and

decided to allocate a period of time to make improvements to the TMI. The goal of

the improvements is to improve sensitivity and increase the Technology Readiness

Level (TRL) of the TMI bringing it closer to a production ready system. To date

the team has been actively engaged with DNDO to complete improvements to the

system and have shown substantial gains in sensitivity for both imaging algorithms
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and isotope identification. Spiral development will culminate in additional limited

testing phase to verify performance gains.

13.2 Background Modeling

An additional improvement to the TMI is careful treatment of the background. Since

the testing campaign we have collected additional data sets that can be used to

improve the basis templates used by the imager. This includes characterizing the

background among varied environments e.g. urban, rural and maritime. Fitting algo-

rithms can be used to compare measurements to the basis templates to both estimate

which current environment and how best to best handle the process data based on

that information. Using the vast collection of background data and the simulation

model of the TMI, algorithms can be written to fuse prior knowledge of detector

response with measurements to enhance background suppression.

13.3 Sensor Fusion

Technology and algorithms developed for the TMI demonstrate enhanced detection

when combining multiple gamma-ray detection methods. Additional gains can be

realized through incorporation of additional, non-nuclear, sensors to augment gamma-

ray detectors and algorithms in much the same way. Also, given lessons learned on

the Stand-off Radiation Detection System (SORDS) program to date, technologies

can be improved and migrated to platforms. One such platform is an aerial gamma-

ray detection. Aerial radiation monitoring and mapping technology has not changed

much since the 1970’s and could improve emergency responder’s capability to answer

actionable intelligence and routine monitoring of areas.
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This thesis has shown that multiple gamma-ray detection and imaging modalities

can be fused to improve sensitivity. Additional gains in performance can be achieved

through non-nuclear peripheral sensors. Research into the applicability of target track-

ing through radar, lidar, electro-optical and infrared may improve detection. This will

allow for improved sensitivity through a reduction in threat space. Also, incorpora-

tion of weather sensors could improve detection by providing realtime information to

algorithms to better anticipate background levels. Hyperspectral imaging may also

provide improved background handling capability by identifying materials in the FOV

of the system. Much research has already gone into many of these technologies making

them mature and ready for integration with radiation detection systems.
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Chapter 14

CLOSING REMARKS

This thesis has presented a novel approach to hybrid imaging from a mobile plat-

form. The widely used and complementary methods of coded aperture and Compton

scatter imaging have been combined through the use of an active coded mask. It has

been shown that the combination of these imaging technologies is superior to either

modality alone and sensitivity is increased over a wide range of energies. Additionally

it has been shown that non-imaging spectroscopic methods can be combined with

imaging methods to further improve sensitivity and extend the range of the system

beyond the field-of-view of the imager. It has been shown that simulation and mod-

eling is a valuable tool in the development of any detector system and can allow for

algorithm development prior to a realized system. Also, simulation and modeling,

once validated, can be used to predict the response of hypothetical systems and pro-

vide data to supplement algorithm development. The TMI has been a very successful

program whereby a novel detector concept was brought from the drawing board to

field testing in just under 2 years. Since then it has continued to improve with the

goal of production in the near future. The TMI continues to be fully functional and

operate as designed; a considerable feat considering the prototype nature of the sys-
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tem. Testing and development will continue on this and similar projects with the

goal of continuous improvement to detection of weak sources in the presence of large,

dynamic backgrounds.
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Chapter 16

ACRONYMS

ADC Analog-to-Digital Converter

AGN Active Galactic Nuclei

ASP Advanced Spectroscopic Portal

ATD Advanced Technology Demonstration

AUC Area Under the Curve

BAT Burst Alert Telescope

BTI Bubble Technology Industries

CA mask array

CAI Coded Aperture Imaging

CCA Circuit Card Assembly

CEP Circular Error Probable

CDF Cumulative Distribution Function

CdTe Cadmium-Telluride

CSI Compton Scatter Imaging

CsI Cesium-Iodide

CsI(Na) Sodium Doped Cesium-Iodide
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CONOPS Concept of Operations

COTS Commercial-Off-The-Shelf

CZT Cadmium-Zinc-Telluride

DA detection array

DAS Data Analysis System

DCA Distance of Closest Approach

DNDO Department of Homeland Security’s Domestic Nuclear Detection Office

EMI Electromagnetic Interference

ECU Event Characterization Unit

EXIST Energetic X-ray Imaging Survey Telescope

FAR False Alarm Rate

FOV Field-of-View

FPGA Field-Programmable Gate Array

FWHM Full-Width at Half-Maximum

GEANT4 Geometry and Tracking Toolkit v4

GPS Global Positioning System

GRB Gamma Ray Burst

GRESS General Response Simulation System

HPGe High-Purity Germanium

HPGC Hybrid Portable Gamma Camera

HV High-Voltage

HVCCA High-Voltage Circuit Card Assembly

IBIS Imager on-board the Integral Satellite

IMU Inertial Measurement Unit
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INS Inertial Navigation System

INTEGRAL International Gamma-Ray Astrophysics Laboratory

LANL Los Alamos National Laboratory

LBNL Lawrence Berkeley National Laboratory

LED Light Emitting Diode

MDA Minimum Detectable Activity

MIDEX Medium Explorer Program

MISTI Mobile Imaging and Spectroscopic Threat Identification

NaI sodium iodide

NaI(Tl) Thallium Doped Sodium-Iodide

NASA National Aeronautics and Space Administration

NORM Naturally Occurring Radioactive Material

NRL Naval Research Laboratory

PCFOV Partially Coded Field-of-View

PCI Prototype Compton Imager

PD Probability of Detection

PFA Probability of False Alarm

PMT Photomultiplier Tube

PHA Pulse Height Amplitude

PSF Point Spread Function

ROC Receiver-Operator Characteristic

ROI Region-of-Interest

SBA Super Bialkali

SMA SubMiniature version A
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SNR Signal-to-Noise Ratio

SOH State-of-Health

SORDS Stand-off Radiation Detection System

SRS Savannah River Site

TDC Time-to-Digital Converter

TMI Raytheon-SORDS Tri-Modal Imager

TOA Time-of-Arrival

TTD Time-to-Detect

TRL Technology Readiness Level
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