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ON REPRESENTATION VARIETIES OF 3-MANIFOLD GROUPS

MICHAEL KAPOVICH, JOHN J. MILLSON

Abstract. We prove universality theorems (“Murphy’s Laws”) for representation
varieties of fundamental groups of closed 3-dimensional manifolds. We show that
germs of SL(2)-representation schemes of such groups are essentially the same as
germs of schemes of finite type over Q.

1. Introduction

In this paper we will prove that there are no “local” restrictions on geometry of
representation schemes of 3-manifold groups to PO(3) and SL(2). Note that both
groups H = PO(3) and H = SL(2) are affine algebraic group schemes defined over
Q, thus, for every finitely-generated group Γ, the representation schemes

Hom(Γ, H)

and character schemes
X(Γ, H) = Hom(Γ, H)//H

are affine algebraic schemes over Q. Our goal is to show that, to some extent, these are
the only restrictions on local geometry of the representation and character schemes of
fundamental groups of closed 3-manifolds. The universality theorem we thus obtain
is one in many universality theorems about moduli spaces of geometric objects, see
[11], [15], [5], [6], [7], [18], [13], [14].
Below is the precise formulation of our universality theorem. In what follows we

will be using the notation G = PO(3), G̃ = Spin(3).

Theorem 1.1. Let X ⊂ CN be an affine algebraic scheme over Q and let x ∈ X be
a rational point. Then there exist:
1. An open subscheme X ′ ⊂ X containing x.
2. A closed 3-dimensional manifold M with the fundamental group π.
3. A representation ρ0 : π → PO(3,R), such that the image of ρ0 is dense in

PO(3,R).
4. An open G-invariant subscheme R′ ⊂ Hom(π,G) containing ρ0 and a closed

subscheme R′
c ⊂ R′ which is a cross-section for the action

G× R′ → R′.

5. An isomorphism of schemes over Q:

f : R′ → Gk ×X ′, f(ρ0) = (1, x),

for some k.

Remark 1.2. One can show that the same theorem holds for a homomorphism ρ0
whose image is a finite group with trivial centralizer in PO(3,R).
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Since the groups PSL(2,C) and PO(3,C) = G(C) are isomorphic, and

G̃(C) = Spin(3,C) ∼= SL(2,C),

“universality” for PO(3)–representations leads to the one for SL(2)–representations:

Corollary 1.3. Let X ⊂ CN be an affine algebraic scheme over Q and x ∈ X be a
rational point. Then there exist:
1. An open subscheme X ′ ⊂ X containing x.
2. A closed 3-dimensional manifold M with the fundamental group π.
3. A representation ρ̃0 : π → SU(2) < SL(2,C), such that the image of ρ̃0 is dense

in SU(2).

4. An open G-invariant subscheme Ŝ ⊂ Hom(π, SL(2)) containing ρ̃0, such that

every complex point of Ŝ is a Zariski dense representation to SL(2,C).
5. A regular étale covering of schemes over C:

f̃ : Ŝ → G̃k ×X ′, f̃(ρ̃0) = (1, x),

with the deck-transformation group isomorphic to Zr2, for some k and r.

In particular, f̃ yields an isomorphism of the analytic germs

(Hom(π, SL(2)), ρ̃0) → (C3k+3 ×X ′, 0× x),

for some k ≥ 1. Thus, if the scheme X ′ is non-reduced at x, so is Hom(π, SL(2)).

Remark 1.4. Despite of our efforts, we were unable to replace an étale covering with
an isomorphism in Corollary 1.3. This is strangely reminiscent of the finite abelian
coverings appearing in our universality theorem for planar linkages, [7]. Note that
a relation between universality theorems for projective arrangements and spherical
linkages was established in [6], where a finite abelian covering appeared for essentially
the same reason as in the present paper.

We will see that the action of SL(2) on R̃′ factors through the group PSL(2), which
admits a cross-section. In particular, we obtain

Corollary 1.5. There exists an isomorphism of analytic germs

(X(π, SL(2)), [ρ̃0]) → (C3k ×X ′, 0× x).

Example 1.6. Pick a natural number ℓ. Then there exists a closed 3-dimensional
manifoldM , an integer n and a representation ρ : π1(M) → SU(2) with dense image,
so that the completed local ring of the germ

X(π1(M), SL(2)), [ρ])

is isomorphic to the completion of the ring

C[t, t1, . . . , t3k]/(t
ℓ).

This shows that the representation and character schemes of 3-manifold groups can
be nonreduced (at points of Zariski density), which is why we refrain from referring
to these schemes as “varieties,” as it is commonly done in the literature.
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Remark 1.7. Recently Igor Rapinchuk proved a universality theorem for character
schemes of groups Γ satisfying Kazhdan’s Property T: It involves representations of
Γ’s into SL(n,C), [14, Theorem 3]. Unlike [5] and this paper, Rapinchuk’s theorem
applies to the entire character variety Xred(Γ, SL(n,C)) minus the trivial represen-
tation (which is an isolated point). In Rapinchuk’s theorem, the number n (and the
group Γ) depend on the given affine variety X over Q.

Acknowledgments. Partial financial support to the first author was provided by the
NSF grant DMS-12-05312 and to the second author by the NSF grant DMS-12-06999.
We are grateful to the referee for useful remarks.

2. Preliminaries

2.1. Representation and character schemes. We will say that a subscheme Y ⊂
X is clopen if it is both closed and open. We will use the topologist’s notation:

Zm := Z/mZ,

is the cyclic group of order m.
Let G be an algebraic group scheme over a field k of characteristic zero (this will

be the default assumption through the rest of the paper) with the Lie algebra g. Let
Γ be a finitely-presented group with the presentation

〈s1, . . . , sp|r1 = 1, . . . , rq = 1〉.

(In fact, one needs Γ only to be finitely-generated, but all finitely-generated groups in
this paper will be also finitely-presented.) Every word w in the generators si, s

−1
i , i =

1, . . . , p, defines a morphism

w : Gp → G,

obtained by substituting elements g±1
1 , . . . , g±1

p ∈ G in the word w for the letters

s±1
1 , . . . , s±1

p . We then obtain the representation scheme

Hom(Γ, G) = {(g1, . . . , gp) ∈ Gp : rj(g1, . . . , gp) = 1, j = 1, . . . , q},

as every homomorphism Γ → G is determined by its values on the generators of Γ.
We will, thus, think of points of this scheme as homomorphisms ρ : Γ → G. The
representation scheme is known to be independent of the presentation of the group
Γ. We refer the reader to [9, 17] for more details. We also refer the reader to [16, 17]
for detailed discussion of character varieties/schemes and survey of their applications
to 3-dimensional topology.
We will frequently use the following two facts about representation schemes, see e.g

[17]:

1. Hom(Γ1 ⋆ . . . ⋆ Γk, G) ∼=
∏k

i=1
Hom(Γi, G).

2. For each ρ ∈ Hom(Γ, G(k)) satisfying H1(Γ, gAdρ) = 0,

ρ ∈ Hom(Γ, G(k))

is a smooth point of the scheme Hom(Γ, G). The G-orbit through ρ is open in
Hom(Γ, G).

In what follows we will use the simplified notation Hq(Γ, Adρ) instead of Hq(Γ, gAdρ).



4 MICHAEL KAPOVICH, JOHN J. MILLSON

We assume from now on that the group G is affine; in particular, Hom(Γ, G) is also
an affine scheme. The group G acts naturally on this scheme:

(g, ρ) 7→ ρg, ρg(γ) = gρ(γ)g−1.

Assuming, in addition, that G is reductive, we obtain the GIT quotient

X(Γ, G) = Hom(Γ, G)//G,

which is a scheme of finite type known as the character scheme (or, more commonly,
as the character variety). However, as we will see, both representation and character
schemes can be nonreduced, so we will avoid the traditional representation/character
variety terminology.
We will use the notation

Homred(Γ, G), Xred(Γ, G)

to denote the varieties which are the reductions of the schemes

Hom(Γ, G), X(Γ, G).

Recall that for every ρ ∈ Hom(Γ, G), the vector space of cocycles

Z1(Γ, Adρ)

is isomorphic to the Zariski tangent space TρHom(Γ, G) and this isomorphism carries
the subspace of coboundaries B1(Γ, Adρ) to the tangent space of the G-orbit through
ρ. Note, however, that H1(Γ, Adρ) is not always isomorphic to the Zariski tangent
space of [ρ] ∈ X(Γ, G), see [2, §6] as well as [17].

Suppose now that the group Φ is finite. Then for every ρ ∈ Hom(Φ, G),

H1(Φ, Adρ) = 0.

(Furthermore, Hi(Φ, Adρ) = 0, i ≥ 1.) In particular, the G-orbit of ρ is a clopen
(closed and open) subscheme

Homρ(Φ, G) ⊂ Hom(Φ, G).

This subcheme is isomorphic to the quotient G/ζG(ρ(Φ)), where ζG(H) denotes the
centralizer of the subgroup H in G. (Note that if ζG(ρ(Φ)) equals the center of G,
then the point [ρ] ∈ X(Φ, G) is a reduced isolated point in the character scheme and
the entire character scheme is smooth.) We obtain:

Lemma 2.1. For every finite group Φ and connected affine group G, the scheme
Hom(Φ, G) is smooth and each irreducible component of Hom(Φ, G) is G-homogeneous.
These irreducible components are the open subschemes Homρ(Φ, G). If the represen-
tation ρ is trivial, then Homρ(Φ, G) is a single point.

The following lemma is also immediate:

Lemma 2.2. Let φ : Γ → Γ′ be a group homomorphism. Then the pull-back map
φ∗(ρ) = ρ ◦ φ is a morphism of schemes

Hom(Γ′, G) → Hom(Γ, G).
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Lemma 2.3. Let Γ be a finitely-presented group and let Θ ⊂ Γ be a finite subset with
the quotient group

Γ′ := Γ/〈〈Θ〉〉.

Let φ : Γ → Γ′ denote the projection homomorphism. Then the pull-back morphism

φ∗ : Hom(Γ′, G) → HomΘ(Γ, G)

is an isomorphism, where

HomΘ(Γ, G) ⊂ Hom(Γ, G)

is the closed subscheme defined by

HomΘ(Γ, G) = {ρ ∈ Hom(Γ, G) : ρ(θ) = 1, ∀θ ∈ Θ}.

Proof. Given a finite presentation P of Γ let P ′ be the presentation of Γ′ obtained
from P by adding words representing elements of Θ as the relators. Then the assertion
follows immediately from the definition of the representation scheme of a group using
a group presentation.

Corollary 2.4. Suppose that every element θ ∈ Θ has finite order. Then the iso-
morphism φ∗ : Hom(Γ′, G) → HomΘ(Γ, G) sends Hom(Γ′, G) to the open subscheme
HomΘ(Γ, G) ⊂ Hom(Γ, G).

Proof. Consider an element θ ∈ Θ and the trivial representation ρ0,θ : 〈θ〉 → G. By
Lemma 2.1, the singleton

{ρ0,θ} = Homρ0,θ(〈θ〉, G) ⊂ Hom(〈θ〉, G)

is a reduced isolated point in the scheme Hom(〈θ〉, G). In particular, this point is
open in Hom(〈θ〉, G). We have the pull-back morphism

φ∗
θ : Hom(Γ, G) → Hom(〈θ〉, G),

induced by the inclusion homomorphism φθ : 〈θ〉 →֒ Γ. Therefore,

(φ∗
θ)

−1 (Homρ0,θ(〈θ〉, G)) ⊂ Hom(Γ, G)

is an open subscheme. Furthermore, by the definition of HomΘ(Γ, G),

HomΘ(Γ, G) =
⋂

θ∈Θ

(φ∗
θ)

−1 (Homρ0,θ(〈θ〉, G)) .

(A homomorphism belongs to HomΘ(Γ, G) if and only if it sends each θ ∈ Θ to 1 ∈ G.)
Therefore, HomΘ(Γ, G) is also open in Hom(Γ, G). �

2.2. Coxeter groups. We refer the reader to [3] for the basics of Coxeter groups.
Let ∆ be a finite simplicial graph with the vertex and edge sets denoted V = V (∆)

and E = E(∆) respectively. We will use the notation e = [v, w] for the edge of ∆
connecting v and w, if it exists. We assume also that we are given a function

m : E → N, m(e) ≥ 2, ∀e ∈ E,



6 MICHAEL KAPOVICH, JOHN J. MILLSON

labeling the edges of ∆. We will call the pair (∆, m) a labeled graph or a Coxeter
graph. Given a labeled graph, we define the associated Coxeter group Γ = Γ∆ by the
presentation

〈gv, v ∈ V |∀v, w ∈ V, g2v = 1, gvgw · · ·︸ ︷︷ ︸
m terms

= gwgv · · ·︸ ︷︷ ︸
m terms

, e = [v, w], m = m(e), e ∈ E〉.

Alternatively, one can describe the relators of this group as g2v = 1 and

(gvgw)
m = 1

where m = m(e), e = [v, w].

Remark 2.5. Note that the notation we use here is different from the one in the Lie
theory, where two generators commute whenever the corresponding vertices are not
connected by an edge. In our notation, every such pair of elements of Γ generates an
infinite dihedral subgroup of Γ.

We also define the canonical central extension

(1) 1 → Z2 → Γ̃
η
→ Γ → 1

of the group Γ, with the extended Coxeter group Γ̃ = Γ̃∆ given by the presentation

〈z, gv, v ∈ V |z2 = 1, ∀v ∈ V, [gv, z] = 1, g2v = z,

gvgw · · ·︸ ︷︷ ︸
m terms

= zm+1 gwgv · · ·︸ ︷︷ ︸
m terms

, e = [v, w], m = m(e), e ∈ E〉.

The number r = |V | (the cardinality of V ) is called the rank of Γ and Γ̃. We will
refer to the generator z of the group Γ as the central element of Γ, even though, the
center of Γ̃ might be larger than Z2: This happens precisely when ∆ consists of a
single vertex.

A subgraph Σ ⊂ ∆ is called full if for every vertices v, w ∈ Σ, the edge [v, w] in
∆ also belongs to Σ. Every subgraph Σ ⊂ ∆ inherits labels from ∆. For the new
labeled graph (which we still denote Σ), we have the natural homomorphism,

ιΣ : ΓΣ → Γ∆

sending each generator gv ∈ ΓΣ, v ∈ V (Σ), to the generator of Γ∆ with the same
name. It is immediate that the homomorphism ιΣ lifts to a homomorphism

ι̃Σ : Γ̃Σ → Γ̃∆

sending each gv to itself (v ∈ V (Σ)) and the central element z ∈ Γ̃Σ to the central

element z ∈ Γ̃∆. We will use this construction in two spacial cases:
a. Σ := ∆∅ is the subgraph which has the same vertex set as Γ, but empty edge

set. Then
ΓΣ

∼= Fr, Γ̃Σ
∼= Fr × Z2.

b. Σ ⊂ ∆ is a full subgraph. In this case, the homomorphism ιΣ is injective, see
e.g. [3], page 113; it follows that the homomorphism ι̃Σ is injective as well.

For full subgraphs Σ ⊂ ∆, the subgroups ιΣ(ΓΣ) < Γ∆ and ι̃Σ(Γ̃Σ) < Γ̃∆ are called
parabolic subgroups of Γ∆ and Γ̃∆ respectively. We say that a parabolic subgroup
of Γ∆, Γ̃∆ is elementary, if it is a finite parabolic subgroup of rank ≤ 2. The latter
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requirement simply means that Σ consists of at most two vertices; the finiteness
condition means that if Σ consists of two vertices, then these vertices are connected
by an edge. We will refer to such subgraphs Σ elementary as well.

Example 2.6. 1. Suppose that ∆ consists of a single edge e labelled 2. Then
Γ∆

∼= Z2 × Z2 and
Γ̃∆

∼= Q8,

the finite quaternion group.
2. If the edge e is labeled 4 then Γ∆ is the dihedral group I2(4) of order 8; it admits

an epimorphism
Γ∆ → Z2 × Z2,

whose kernel is the center of Γ∆, which is generated by the involution gvgwgvgw.

3. Representations of Coxeter groups and extended Coxeter groups

In this section we prove some basic facts about representations of Coxeter and
extended Coxeter groups to PSL(2,C) and SL(2,C) respectively.

3.1. Representations of elementary Coxeter groups. Recall that the quotient
map

p : G̃(C) = SL(2,C) → G(C) = PSL(2,C) = SL(2,C)/{±1},

is a 2-fold covering. The extended Coxeter groups appear naturally in the context of
lifting homomorphisms of Coxeter groups from PSL(2,C) to SL(2,C).
Consider the labelled graph ∆, consisting of two vertices v, w and the edge [v, w]

labelled n ≥ 2. The corresponding Coxeter group Γ∆ is a finite dihedral group,
usually denoted I2(n). This group is isomorphic to the subgroup of the group of
symmetries of a regular planar 2n-gon, acting simply transitively on the set of edges
of this polygon. Hence, this group embeds canonically (up to conjugation) into O(2)
and, thus, into PO(3,R) ∼= SO(3,R) < PSL(2,C). If n is odd, then such group of
symmetries will lift isomorphically to a subgroup of SU(2) < SL(2,C). In contrast,
we will be interested (only) in the case when n is even; in fact, we will be using only
the labels n = 2 and n = 4 in this paper.
Below we will prove several lemmas about faithful representations of elementary

Coxeter (and extended Coxeter) groups into G(C) (and G̃(C)).

Lemma 3.1. 1. There exists, unique up to conjugation, faithful representation
ρ : Z2 × Z2 → G(C).

2. There are no faithful representations Z2 × Z2 → G̃(C).

Proof. 1. Since the image of ρ is finite, its conjugate to a subgroup of SO(3,R) <
G(C). Part 1 now follows from the fact that the group SO(3,R) acts transitively on
the set of pairs of orthogonal 1-dimensional subspaces of R3 (these subspaces, in our
setting, are fixed lines of the images of the direct factors of Z2 × Z2 under ρ).
2. Part 2 follows from the fact that any involution A ∈ SL(2,C) has both eigen-

values equal to −1, i.e., A equals −1 ∈ SL(2,C). �

The next lemma and proposition generalize Lemma 3.1 to representations of the
dihedral group I2(4).
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Lemma 3.2. All injective representations ρ : Γ = I2(4) → G(C) are conjugate to
each other.

Proof. Since the group Γ is finite, its image in G(C) lies in a conjugate of the
maximal compact subgroup SO(3,R) < G(C). Thus, we will assume that ρ(Γ) is
contained in SO(3,R). Since the product of the generating involutions ρ(gv), ρ(gw)
of ρ(Γ) has order 4, the fixed lines of ρ(gv), ρ(gw) meet at the angle π

4
in R3. Now,

the assertion follows from the fact that SO(3,R) acts transitively on the set of 1-
dimensional subspaces in R3 meeting at the given angle. �

Proposition 3.3. Consider the dihedral group I2(2m) = Γ∆, and its isomorphism

ρ : Γ∆ → Γ < G(C).

Then:
1. For every choice of matrices g̃u ∈ G̃(C) projecting to the generators ρ(gu) ∈ Γ <

G(C), the map
gu → g̃u, u ∈ {v, w},

extends to a monomorphism ρ̃ : Γ̃∆ → G̃(C).

2. The centralizer of the group ρ̃(Γ̃∆) in G̃(C) equals the center of G̃(C).

Proof. The proof amounts to elementary linear algebra, we include the details for the
sake of completeness. For the notational convenience we will identify the isomorphic
groups Γ and Γ∆. After conjugating the subgroup Γ in G(C), we can (and will)
assume that Γ lies in the subgroup SO(3,R) < G(C). The orthogonal subgroup is
covered by the unitary subgroup SU(2) < SL(2,C). We let Z(SU(2)) ∼= Z2 denote
the center of SU(2); this center consists of the matrices ±1.
We begin with several trivial observations. Since ρ is injective, the involutions

gv, gw are distinct rotations in SO(3,R). In particular, their fixed-point sets in CP 1

are pairwise disjoint. Suppose that the elements g̃u, g̃v ∈ SU(2) project to gv, gw
respectively. Since the kernel of the covering G̃→ G is isomorphic to Z2, the unitary
transformations g̃v, g̃w ∈ SU(2) have order at most 4:

g̃2u ∈ Z(SU(2)), u ∈ {v, w}.

Note that the only involution in SU(2) is the matrix−1. Since g̃u projects nontrivially
to SO(3), this matrix cannot be an involution. It follows that

g̃2u = −1 ∈ SU(2), u ∈ {v, w}.

The eigenvalues of the matrices g̃v, g̃w have to be roots of unity of the order 4, which
implies that the spectrum of each matrix g̃u, u ∈ {v, w}, equals {i,−i}.
We next claim that the eigenspaces of unitary transformations g̃v, g̃w are pairwise

distinct. If not, then these matrices would be simultaneously diagonalizable, which
would imply that their projections to PSL(2,C) are equal. (Two involutions in
SO(3,R) which have same fixed point sets have to be the same.)
Suppose now that A ∈ SL(2,C) is a matrix centralizing the subgroup 〈g̃v, g̃w〉

generated by g̃v, g̃w. We claim that A is a scalar matrix, i.e., an element of the
center of SL(2,C). Indeed, since A commutes with both g̃v, g̃w, it has to preserve the
eigenspaces of each matrix g̃v, g̃w. (Here we are using the fact that the eigenvalues of
g̃u are distinct, u ∈ {v, w}.) However, a nonscalar matrix in SL(2,C) cannot have
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three distinct eigenlines. Therefore, A is a scalar matrix. This implies the second
claim of the lemma.
The generators gv, gw satisfy

t = (gvgw)
m = (gwgv)

m,

where t is an order 2 element, which belongs to the center of Γ. (In the geometric real-
ization of ΓΣ as a group of symmetries of a regular 2n-gon, the element t corresponds
to the order 2 rotation, the central symmetry of the polygon.)
If we had the relation

(g̃vg̃w)
m = (g̃wg̃w)

m,

it would result in the monomorphism

α : Γ → SU(2), α(gu) = g̃u, u ∈ {v, w},

lifting the embedding ρ : Γ →֒ SO(3,R). The image of the center Z(Γ) of Γ would
then be in the center of α(Γ), hence, as we noted above, in the center of SU(2). Then,
the composition ρ = p ◦ α would send Z(Γ) to 1, which is a contradiction.
This leaves us with the only possibility

(g̃vg̃w)
m = −(g̃wg̃v)

m.

To conclude, the map
gv 7→ g̃v, z 7→ −1 ∈ SL(2,C),

extends to an homomorphism Γ̃∆ → p−1(Γ), sending the central element z ∈ Γ̃∆ to
the matrix −1 ∈ SL(2,C). Injectivity of this homomorphism follows from injectivity
of the representation Γ → PSL(2,C). �

3.2. Representations faithful on elementary subgroups. For a Coxeter group
Γ = Γ∆ we define two subschemes:

Homo(Γ, G) ⊂ Hom(Γ, G), Homo(Γ̃, G̃) ⊂ Hom(Γ̃, G̃).

The former consists of homomorphisms which are injective on every elementary sub-
group of Γ; the latter consists of homomorphisms which are injective on every elemen-
tary subgroup of Γ̃ and send z ∈ Γ̃ to −1 ∈ SL(2,C). (In fact, the requirement for
z follows from faithfulness on elementary subgroups, except when ∆ has no edges.)

Since elementary subgroups of Γ and Γ̃ are finite, both Homo(Γ, G) and Homo(Γ̃, G̃)
are open subschemes of the respective representation schemes. We will see later on
that these subschemes are also closed. For each

ρ ∈ Homo(Γ̃, G)

we have ρ(z) = 1, while for each ρ̃ ∈ Homo(Γ̃, G̃) which projects to ρ ∈ Homo(Γ, G)
we have ρ̃(z) = −1.
In the paper we will be using the labelled graph Ω depicted in the Figure 1: This

graph has five vertices and nine edges. The edges left unlabeled in the figure, all have
the label 2. The vertices x, y are the only ones not connected to each other by an
edge.
In what follows, we will also use the subgraph Υ ⊂ Ω, which is the complete graph

on the vertices u, v, w. The parabolic subgroup ΓΥ < ΓΩ is isomorphic to Z3
2. Since

the group ΓΥ is finite, the representation scheme Hom(ΓΥ, G) is smooth.
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4

u

v

w

x y

4

4 4

Figure 1. Graph Ω.

Lemma 3.4. Each representation ρ ∈ Homo(Γ, G(C)) of the group Γ = ΓΥ satisfies:
1. The kernel of ρ is generated by the subgroup

〈gugvgw〉 ∼= Z2

and the image of ρ is isomorphic to Z2 × Z2.
2. The centralizer of the abelian subgroup ρ(Γ) < G(C) in the group G(C) equals

the subgroup ρ(Γ) itself.
3. Homo(Γ, G(C)) is the G(C)-orbit of a singleton {ρΥ}.

Proof. This lemma is also elementary:
1. Consider a homomorphism ρ ∈ Homo(Γ, G(C)). For each element γ ∈ Γ

we let Fix(γ) denote the fixed-point set of ρ(γ) in CP 1. The condition that all
three involutions ρ(gu), ρ(gv), ρ(gw) are distinct, implies that the three fixed-point
sets Fix(gu), F ix(gv), F ix(gw) are pairwise disjoint. Commutativity of ρ(Γ) implies
that this group preserves the six-point set

F = Fix(gu) ∪ Fix(gv) ∪ Fix(gw) ⊂ CP 1.

The element ρ(gu) fixes Fix(gu), of course, and defines nontrivial involutions of the
other two fixed-point sets

Fix(gv) → Fig(gv), F ix(gw) → Fix(gw).

The same applies to gv and gw. It follows that

ρ(gugv)|F = ρ(gw)|F .



ON REPRESENTATION VARIETIES OF 3-MANIFOLD GROUPS 11

Hence,

ρ(gugv) = ρ(gw)

and, thus,

〈gugvgw〉 < ker(ρ).

The equality of these subgroups of Γ follows from the condition that

ρ ∈ Homo(Γ, G(C)).

This establishes Part 1 of the lemma.
2. To prove Part 2, note that every g ∈ G centralizing ρ(Γ) has to preserve each

set Fix(gu), Fix(gv), Fix(gw). After composing g with elements of ρ(Γ), we achieve
that g fixes the set Fix(gu) ∪ Fix(gv) pointwise. Therefore, g ∈ ρ(Γ). This proves 2.
3. Part 3 note that, by Part 1, the pull-back morphism

Homo(Z
2, G(C)) → Homo(Γ, G(C))

induced by the quotient homomorphism

1 → 〈gugvgw〉 → Γ → Z2

is surjective. Now, the claim follows from Lemma 3.1. �

Lemma 3.5. 1. Homo(ΓΩ, G(C)) is a single orbit G(C) · ρΩ.
2. The representation ρΩ is infinitesimally rigid: H1(ΓΩ, sl(2,C)) = 0.
3. For each ρ ∈ Homo(ΓΩ, G(C)), the adjoint action Adρ of ΓΩ on the Lie algebra

sl(2,C) has no nonzero fixed vectors.

Proof. 1. Consider ρ ∈ Homo(ΓΩ, G). In view of Lemma 3.4, we can assume that the
restriction of ρ to the subgroup ΓΥ equals the representation ρΥ. Consider now the
dihedral subgroups

〈gu, gx〉, 〈gx, gv〉

in the group ΓΩ. It follows from Lemma 3.2 that there are exactly two extensions
ρ± of the representation ρΥ to the subgroup 〈gu, gx, gv〉 (which are faifthful on all
elementary parabolic subgroups): For both representations, ρ±(gx) lies in SO(3,R),
its fixed line in R3 is contained in the span of the fixed lines of ρΥ(gu), ρΥ(gv). This
fixed line makes the angle π

4
with the fixed lines of ρΥ(gu), ρΥ(gv) and is orthogonal

to the fixed line of ρ(gw). These representations ρ± are conjugate via the element
ρ(gv) ∈ SO(3). Therefore, after such conjugation, we fix the value ρ(gx). We next
repeat this argument for the subgroup of ΓΩ generated by

{gv, gy, gw}.

Since conjugation via ρ(gw) does not alter ρ(gx), we obtain the required uniqueness
statement.
2. In what follows we will be using the fact that the adjoint representation of

PSL(2,C) is isomorphic to the complexification V of the standard representation of
SO(3,R) on R3. We will also use the notation V and sl(2,C) for the representation
Adρ of the group ΓΩ (and its subgroups) in the notation for cocycles and cohomology
groups. In particular, for each element a of

{u, v, w, x, y}



12 MICHAEL KAPOVICH, JOHN J. MILLSON

the fixed-point set of Adρ(ga) is a line in V , which we will denote by V a. An elemen-
tary but useful geometric observation is that

V x ⊂ V u ⊕ V v

while

V = V u ⊕ V v ⊕ V w = V u ⊕ V x ⊕ V w.

Consider a cocycle ξ ∈ Z1(ΓΩ, V ). Since ΓΥ is finite, H1(ΓΥ, V ) = 0. Since the
restriction of ξ to the subgroup ΓΥ is a coboundary, by subtracting off a coboundary
from ξ, we can assume that ξ vanishes in ΓΥ. Similarly, there exist α, β ∈ V such
that

ξ(h) = α− Adρ(h)α, ∀h ∈ 〈x, u〉

ξ(h) = β − Adρ(h)β, ∀h ∈ 〈x, w〉.

It follows that α ∈ V u, β ∈ V w. Moreover, by looking at the value ξ(x), we see that

α− β ∈ V x.

Since the lines V u, V x, V w also span V , it follows that α = β = 0. Therefore, ξ(x) = 0.
Similarly, ξ(y) = 0 and, thus, ξ = 0 on the entire group ΓΩ.
3. This follows from the fact that ρ(ΓΥ) has no nonzero fixed vectors in V =

sl(2,C). �

Corollary 3.6. The scheme Homo(ΓΩ, G) is smooth.

From now on, we will be making the following assumption on the labeled graphs ∆
of Coxeter groups Γ:

Assumption 3.7. 1. Every label of the graph ∆ is even.
2. ∆ contains as a full subgraph the graph Ω above.

Proposition 3.8. 1. The schemes Homo(Γ, G)and Homo(Γ̃, G̃) are clopen1 sub-
schemes in Hom(Γ, G) and Hom(Γ̃, G̃) respectively.

2. There is a morphism of schemes q : Homo(Γ̃, G̃) → Homo(Γ, G), such that for

every ρ̃ ∈ Homo(Γ̃, G̃) and ρ = q(ρ̃) we have

p ◦ ρ̃ = ρ ◦ η,

where η : Γ̃ → Γ is the quotient map from (1).
3. The morphism q is a regular étale covering with the deck-group Zr2, where r is

the rank of Γ.

Proof. 1. We will give a proof for Homo(Γ, G), since the other statement is similar.
Consider an elementary subgroup ΓΣ ⊂ Γ; this subgroup is finite. In Lemma 2.1
we proved that each irreducible component of Hom(ΓΣ, G) is a clopen subscheme
of Hom(ΓΣ, G); furthermore, each component is a single G-orbit of a representation
ΓΣ → G. Then

Homo(ΓΣ, G) = Hom(ΓΣ, G) \
⋃

θ∈ΓΣ−{1}

Hom〈θ〉(ΓΣ, G)

1I.e. closed and open.
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is an open subscheme in Hom(ΓΣ, G). It is also closed since every subscheme removed
was open.
For each elementary subgroup ΓΣ < Γ and the inclusion map ιΣ : ΓΣ → Γ, we have

the pull-back morphism

ι∗Σ : Hom(Γ, G) → Hom(ΓΣ, G).

Then we have the finite intersection, taken over all elementary subgraphs Σ ⊂ ∆:

Homo(Γ, G) =
⋂

Σ

(φ∗
Σ)

−1 (Homo(ΓΣ, G)) .

Therefore, Homo(Γ, G) ⊂ Hom(Γ, G) is clopen as a finite intersection of clopen sub-
schemes.

2. For each ρ̃ ∈ Homo(Γ̃, G̃(C)), the reduction modulo centers of Γ̃ and G̃ yields a
homomorphism ρ ∈ Homo(Γ, G(C)). We need to check that the map

q : Homo(Γ̃, G̃(C)) → Homo(Γ, G(C)), q(ρ̃) = ρ

obtained in this fashion comes from a morphism of schemes. First, the composition

ρ̃→ p ◦ ρ, Hom(Γ̃, G̃) → Hom(Γ̃, G)

is clearly a morphism of schemes. For Θ = {z}, we obtain an isomorphism of the
schemes

HomΘ(Γ̃, G) → Hom(Γ, G),

see Lemma 2.3; and HomΘ(Γ̃, G) contains the image of Homo(Γ̃, G̃). Therefore, q is
a composition of two morphisms.
We next verify surjectivity. Let ρ ∈ Homo(Γ, G). Define ρ̃ : Γ̃ → G̃ by sending

generators gv to arbitrary elements of p−1(ρ(gv)) and sending the central element
z ∈ Γ̃ to −1 ∈ SL(2,C). In view of Proposition 3.3, for each elementary subgroup ΓΣ

in Γ, the restriction of ρ̃ to the generators of Γ̃Σ extends to a faithful homomorphism
ρ̃|ΓΣ

.

Since all the relators of the group Γ̃ come from elementary subgroups, it follows that
our map of the generators of Γ̃ to SL(2) extends to a homomorphism ρ̃ : Γ̃ → SL(2).
This homomorphism belongs to Homo(Γ̃, G̃) since it is faithful on each elementary
subgroup.
Thus, we obtained a surjective morphism

q : Homo(Γ̃, G̃) → Homo(Γ, G), q(ρ̃) = ρ.

The group Z2 is the group of automorphisms of the covering G̃ → G; therefore, the
product of r copies of Z2 acts naturally on the product of r copies of G̃ as the group
of automorphisms of the (regular) cover

p̂ = p× . . .× p :
r∏

i=1

G̃→
r∏

i=1

G.

Since the rank r of the group Γ is the number of its generators gv, we have the
morphism

r∏

i=1

G̃ ∼= Hom(Fr, G̃)
p̂

−→
r∏

i=1

G ∼= Hom(Fr, G),
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where Fr is the free group on r generators. We also have the following commutative
diagram

Hom(Γ̃, G̃)
q
✲ Hom(Γ, G)

Hom(Fr, G̃)
❄

p̂
✲ Hom(Fr, G)

❄

where the vertical arrows are the inclusions of representation schemes induced by the
epimorphisms

Fr → Γ̃, Fr → Γ

sending the free generators of Fr to the generators gr of extended Coxeter and Cox-
eter groups. It is elementary and left to the reader to verify that the group Zr2 of

automorphisms of p̂ preserves the subscheme Homo(Γ̃, G̃). Therefore, this finite group
acts simply transitively on the fibers of the morphism q.
3. It remains to show that the map q is etale, i.e., is an isomorphism of analytic

germs at every point. Let ρ̃ be in Homo(Γ̃, SL(2,C)) and set ρ := q(ρ̃).
Below is a proof which assumes reader’s familiarity with [1], where the theory

of controlling differential graded Lie algebras for various deformation problems was
developed.
In view of [1, Theorem 6.8], it suffices to verify that the differential graded Lie

algebras controlling these germs are quasi-isomorphic. First, the Lie algebras of G
and G̃ are isomorphic under the covering p, which implies that the covering map p
induces an isomorphism

Hi(Γ̃, Ad ◦ ρ̃) → Hi(Γ̃, Ad ◦ p(ρ̃)), i ≥ 0.

Since the central subgroup Z2 of Γ̃ is finite,

Hi(Z2, sl(2,C)) = 0, i ≥ 1.

Therefore, applying the Lyndon–Hochshild–Serre spectral sequence to the central
extension (1), we obtain isomorphisms

(2) Hi(Γ, Ad ◦ ρ) → Hi(Γ̃, Ad ◦ ρ̃), ρ = q(ρ̃), i ≥ 1.

(Actually, for i = 0 both cohomology groups vanish, which implies that they are also
isomorphic.) These isomorphisms ensure that the morphism

q : (Hom(Γ̃, G̃), ρ̃) → (Hom(Γ, G), ρ)

is an isomorphisms of germs. �

Remark 3.9. Below is an alternative argument proving that q is etale, which does
not reply upon differential graded Lie algebras. The morphism q is etale if and only
if q induces bijections of sets of A-points of representation schemes for all local Artin
C-algebras A. Let A be a local Artin C-algebra and ǫ : A → C be the quotient by
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the maximal ideal. Then we have natural bijections Hom(Γ, G(A)) ∼= Hom(Γ, G)(A)

and Hom(Γ̃, G̃(A)) ∼= Hom(Γ̃, G̃)(A), and the commutative diagram

1 ✲ Hom(Γ̃, K̃A) ✲ Hom(Γ̃, G̃(A)) ✲ Hom(Γ̃, G̃(C)) ✲ 1

1 ✲ Hom(Γ, KA)

qK,A

❄

✲ Hom(Γ, G(A))

qA

❄

✲ Hom(Γ, G(C))

q

❄

✲ 1

where K̃A and KA are the respective kernels of the group homomorphisms

G̃(A) → G̃(C), G(A) → G(C)

induced by ǫ : A → C. We observe that the group K̃A is torsion free nilpotent and,
since the covering map p : G̃ → G is etale, the induced map pK,A : K̃A → KA is an

isomorphism. Since K̃A is torsion free, each homomorphism ρ̃A : Γ̃ → G̃(A) descends
to a canonical homomorphism ρA : Γ → G(A). The fact that K̃A is torsion-free also

implies that if ρ̃A, ρ̃
′
A have the same projection to Hom(Γ̃, G̃(C)) and define the same

homomorphism ρA : Γ → G(A), then ρ̃A = ρ̃′A. Therefore, qA is a injective. The proof
that qA is surjective is also elementary and is left to the reader.

3.3. Character schemes of representations faithful on elementary subgroups.
In this section we extend the results of the previous section from representation
schemes to character schemes.

3.3.1. Stability. Given a reductive affine algebraic group H and a finitely-generated
group Λ, we have the algebraic action of the group H on the homomorphism scheme
Hom(Λ, H),

(h, ρ) 7→ Inn(h) ◦ ρ,

where Inn(h) is the inner automorphism g 7→ hgh−1 of the group H . Recall that the
character scheme is defined as the Mumford quotient

X(Λ, H) = Hom(Λ, H)//H.

Geometrically speaking, Mumford quotient is obtained by identifying semistable points
Homss(Λ, H) of the H-action by the extended orbit equivalence relation, while the re-
striction of the projection

µ : Homss(Λ, H) → X(Λ, H)

to the stable locus Homst(Λ, H) (consisting of stable points) is just the quotient by
the H-orbit equivalence. Hence the restriction of the projection to the stable locus
has especially simple form. We will use the notation

ρ 7→ [ρ]

for the projection µ.
A sufficient condition for stability of representations ρ ∈ Hom(Λ, H) (under the

H-action) in terms of the Zariski closure of ρ(Λ) in H was established in [10]:

Theorem 3.10. A representation ρ ∈ Hom(Λ, H) is semistable provided that the

Zariski closure ρ(Λ) is reductive. A representation is stable provided that the Zariski

closure ρ(Λ) is reductive and the centralizer ZH(ρ(Λ)) of the image of ρ is finite.
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In the case of representations into H = PO(3) and H = Spin(3), the sufficient
condition for stability amounts to requiring that the image of ρ is not contained in
a Borel subgroup of H . Our next goal is to verify stability condition and identify
centralizers of the images of representations in the context of Coxeter and extended
Coxeter groups. Recall that we are using the notation G for PSL(2) and G̃ for SL(2)
(regarded as group-schemes).

Lemma 3.11. Let Γ be a Coxeter group and Γ̃ the corresponding extended Cox-
eter group, satisfying the Assumption 3.7. Then for each ρ ∈ Homo(Γ, G) and

ρ̃ ∈ Homo(Γ̃, G̃) we have:
1. The representations ρ, ρ̃ are stable points in Mumford’s sense.
2. The centralizers of the images of ρ, ρ̃ equal the center of the target group.

Proof. Recall that we require the group Γ to contain a subgroup ΓΩ. It suffices to
prove both 1 and 2 for the representations ρ ∈ Homo(ΓΩ, G), ρ̃ ∈ Homo(Γ̃Ω, G̃), since
we have to verify that the image of the representation is not contained in a Borel
subgroup and that its centralizer equals the center of the target group.
(i) First, we consider the case of representations ρ̃ : Γ̃ = Γ̃Ω → SL(2,C). We

restrict our attention to the subgraph Σ ⊂ Ω, which consists of two vertices x, y and
the edge e = [x, y] labelled 4. Each representation ρ̃ ∈ Homo(Γ̃, G̃) projects to a
faithful representation

ρ : ΓΣ →֒ PSL(2,C).

By Proposition 3.3, the centralizer of the subgroup ρ̃(Γ̃Σ) equals the center of SL(2,C).
Moreover, the images of the generators of Γ̃Σ under ρ̃ have distinct eigenlines. It fol-
lows that the subgroup ρ̃(γ̃Σ) cannot have an invariant line in C2, thereby proving

that ρ̃(Γ̃) is not contained in a Borel subgroup of SL(2,C). This proves Parts 1 and
2 for representations to SL(2,C).
(ii) Consider now representations ρ : Γ → G. By the assumption, ρ sends distinct

generators of Γ to distinct elements of G. It follows that the group ρ(Γ) cannot fix a
point in CP 1. In other words, the group ρ(Γ) is not contained in a Borel subgroup
of G. This proves Part 1.

To prove Part 2, we will use subgroups ΓΥ and ΓΩ of the group Γ. Since ρ belong
to Homo(Γ, PSL(2,C)), the centralizer of ρ(ΓΥ) in G equals the subgroup ρ(ΓΥ)
itself (Lemma 3.4). On the other hand, ρ is faithful on the subgroups generated by
{gu, gx}, {gv, gy}, {gw, gz}. Therefore,

[ρ(gu), ρ(gx)] 6= 1, [ρ(gv), ρ(gy)] 6= 1, [ρ(gw), ρ(gz)] 6= 1,

and, hence, the subgroup ρ(Γ) has trivial centralizer in PSL(2,C). �

3.3.2. Cross-sections. Let Y be an (quasiaffine) scheme and G y Y be a stable (in
Mumford’s sense) algebraic group action on Y . Suppose that S ⊂ Y is a closed
subscheme, such that the orbit map

G× S → Y

is an isomorphism. (In particular, S projects isomorphically onto Y//G). Then S is
called a cross-section for the action of G on Y .
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Lemma 3.12. Suppose that Y is a (quasiaffine) scheme of finite type, G × Y → Y
is an (algebraic) action of an affine algebraic group, S ⊂ X is a cross-section for this
action. Suppose that Y ′ ⊂ Y is a G-invariant subscheme. Then S ′ = Y ′ ∩ S is also
a cross-section for the action G× Y ′ → Y ′.

Proof. We need to show that the orbit map G × S ′ → Y ′ is an isomorphism. It
suffices to show that for each commutative ring A, the orbit map

µ′ : G(A)× S ′(A) → Y ′(A)

of A-points is a bijection. We have S ′(A) = S(A) ∩ Y (A). Since the orbit map

µ : G(A)× S(A) → Y (A)

is a bijection and Y ′(A) is G(A)-invariant, it follows that µ is a bijection. �

Note that if the scheme Y and its subscheme S ⊂ Y are both smooth then the
condition that S is a cross-section for the action of G is easier to check: It suffices
to verify that the set of complex points of S is a set-theoretic cross-section for the
action of G and that G-orbits are transversal to S: For each y ∈ S(C),

TyY ∼= Ty(Gy)⊕ TyS.

We now specialize to the case of representation schemes. Let π′ = π/N be a
finitely-generated group (where π is a finitely generated group and N ⊳ π is a normal
subgroup), G is an affine algebraic group G×Hom(π,G) → Hom(π,G) is the action
of G by conjugation on the representation scheme. We will think of Hom(π,G) as a
closed subscheme in the smooth scheme Hom(F,G). Suppose that U ⊂ Hom(F,G)
is a G-invariant open affine subscheme and U ′ = U ∩ Hom(π,G). We assume that
S ⊂ U is a closed smooth subscheme. Then, in view of smoothness, the property that
S is a cross-section for the G-action amounts to:
1. S(C) is a cross-section for the action of G(C) on U .
2. For each ρ ∈ S(C) the action of ρ(π) on the Lie algebra of G(C) has no nonzero

invariant vectors. (This condition amounts to the transversality property above.)
In view of Lemma 3.12, the subscheme S ′ = S ∩U ′ is a cross-section for the action

of G on U ′.

3.3.3. Cross-sections of representation schemes. We apply the above observations in
two situations. First, suppose that Γ is a Coxeter group satisfying the Assumption
3.7; we let G = PO(3). We have the identity embedding ιΩ : ΓΩ →֒ Γ of the finite
subgroup ΓΩ. Recall that, according to Lemma 3.5, Homo(ΓΩ, G(C)) consists of a
single G-orbit G(C) · ρΩ. We then set

Homc(Γ, G) := (ι∗Ω)
−1(ρΩ).

The next lemma is an analogue of Corollary 12.11 in [5]:

Lemma 3.13. The subscheme Homc(Γ, G) is a cross-section for the action G y

Homo(Γ, G). In particular,

Xo(Γ, G) ∼= Homc(Γ, G).
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Proof. We let π′ = Γ and define the new group π as the Coxeter group whose Coxeter
graph is obtained from the one of Γ by removing all the edges which are not in Ω.
Define

πo := Z2 ⋆ . . . ⋆ Z2.

Then the representation scheme Homo(π,G) is smooth, since π is isomorphic to the
free product

πo ⋆ ΓΩ,

and U = Homo(ΓΩ, G) is smooth by Lemma 3.5. Clearly, π′ = π/N for a normal
subgroup N ⊳ π. We again have the inclusion homomorphism ιΥ : ΓΩ → π; the
subscheme

S = Homc(π,G) := (ι∗Υ)
−1(ρΩ)

is smooth since it is naturally isomorphic to Hom(πo). The fact that S is a cross-
section for the action of G on U follows immediately from Lemma 3.5 and observations
following Lemma 3.12. Lastly, note that

U ′ = Homc(Γ, G) = U ∩ Hom(Γ, G).

Now, the lemma follows from Lemma 3.12. �

The second situation when we apply our description of cross-sections is the one of
representations of extended Coxeter groups Γ̃ (again satisfying the Assumption 3.7)
to the group G̃ ∼= SL(2). The group G̃ does not act faithfully on Hom(Γ̃, G̃); this
action factors through the action of the group G = PO(3).
Earlier, we defined the subscheme Homo(Γ̃, G̃) ⊂ Hom(Γ̃, G̃). Set

Homc(Γ̃, G̃) := q−1(Homc(Γ, G)).

Lemma 3.14. Homc(Γ̃, G̃) is a cross-section for the action of G on Homo(Γ̃, G̃).

Proof. We let π′ = Γ̃. Similarly to the proof of Lemma 3.13, we define the extended
Coxeter group π by eliminating all the edges which are not in the subgraph Ω. Then
π′ is isomorphic to a quotient of π and the same proof as in Lemma 3.13 goes through.

�

3.3.4. Character schemes. We let Xo(Γ, G) and Xo(Γ̃, G̃) denote the projections of
Homo(Γ, G) and Homo(Γ̃, G̃) to the corresponding character schemes.
In view of Lemmata Lemma 3.13 and Lemma 3.14, the projections

Homo(Γ, G) → Xo(Γ, G), Homo(Γ̃, G̃) → Xo(Γ̃, G̃)

are principal fiber bundles with the structure group G = PSL(2,C): The center of
the group G̃ acts trivially on Hom(Γ̃, G̃). We record this as

Corollary 3.15. There exist natural isomorphisms of germs

(Homo(Γ̃, SL(2)), ρ̃) ∼= (Homc(Γ̃, SL(2))× PSL(2), ρ̃× 1) ∼=

(Xo(Γ̃, SL(2))× PSL(2), [ρ̃]× 1)

and
(Homo(Γ, PSL(2)), ρ) ∼= Homc(Γ, PSL(2))× PSL(2), ρ× 1) ∼=

(Xo(Γ, PSL(2))× PSL(2), [ρ]× 1).
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3.3.5. Adding a free factor. Let Fk be the free group on k generators. For an arbitrary
finitely-generated group Λ and an algebraic group H we have an isomorphism of
schemes:

(3) Hom(Λ ⋆ Fk, H) ∼= Hom(Λ, H)× Hom(Fk, H) ∼= Hom(Λ, H)×Hk.

This isomorphism is H-equivariant, where the action of H by conjugation on the left
side and the diagonal action (by conjugations) on the product space on the right
side. We will use these isomorphisms in the two spacial cases: Λ = Γ, H = G and
Λ = Γ̃, H = G̃, where G = PSL(2,C), G̃ = SL(2,C) and Γ, Γ̃ are Coxeter and
extended Coxeter groups respectively. Then the isomorphisms (3) for these groups
allow us to define clopen subschemes

Homo(Γ ⋆ Fk, G) ⊂ Hom(Γ ⋆ Fk, G), Homo(Γ̃ ⋆ Fk, G̃) ⊂ Hom(Γ̃ ⋆ Fk, G̃)

as the images of
Homo(Γ, G)×Gk, Homo(Γ̃, G̃)× G̃k

respectively.
It follows from Lemmata 3.13 and 3.14 that Homc(Γ, G)×Gk is a cross–section for

the action of G on Homo(Γ, G) × Gk, while Homc(Γ̃, G̃) × G̃k is a cross–section for

the action of G on Homo(Γ̃, G̃)× G̃k. We, thus, obtain:

Lemma 3.16.
(Homo(Γ, G)×Gk)/G ∼= Xo(Γ, G)×Gk

The etale covering q defined above yields, for each k, the etale covering

qk : Homo(Γ̃, G̃)× G̃k ∼= Homo(Γ̃ ⋆ Fk, G̃) → Homo(Γ ⋆ Fk, G) ∼= Homo(Γ, G)×Gk.

Corollary 3.17. 1. Xo(Γ ⋆ Fk, G) ∼= Xo(Γ, G)×Gk.
2. Homo(Γ̃ ⋆ Fk, G̃) ∼= Xo(Γ̃, G̃)× G̃k.
3. The covering qk is étale.

4. Universality theorem of Panov and Petrunin

Proof of Theorem 1.1 and its corollaries hinges upon two results, the first of which
is the following:

Theorem 4.1 (Panov–Petrunin Universality Theorem, [12]). Let Γ be a finitely–pre-
sented group. Then there exists a closed 3-dimensional (non-orientable) hyperbolic
orbifold O so that π1(Y ) ∼= Γ, where Y is the underlying space of O. Furthermore, Y
is a 3-dimensional pseudomanifold without boundary.

Remark 4.2. Examination of the proof in [12] shows that the orbifold O admits a
hyperbolic manifold cover Õ → O with the deck-transformation group Z4

2.

The singular set of the pseudomanifold Y consists of singular points yj, j = 1, . . . , 2k,
whose neighborhoods Cj in Y are cones over RP2. Note that, since RP2 has Euler
characteristic 1, the number of conical singularities has to be even. Observe also that
one needs k ≥ 1 in this theorem, since fundamental groups of 3-dimensional mani-
folds are very restricted among finitely-presented groups. For instance, there are no
3-manifolds M with π1(M) ∼= Z4; therefore, for Γ ∼= Z4, one cannot have k = 0 in
Theorem 4.1.
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Problem 4.3. Does Theorem 4.1 hold with k = 1?

Given Γ and Y as in Theorem 4.1, we will construct a closed (non-orientable) 3-
dimensional manifold M = MΓ as follows. (Formally speaking, this 3-manifold also
depends on the choice of an orbifold O in Theorem 4.1, which is very far from being
unique, however, in order to simplify the notation, we will suppress this dependence).
Let O be a 3-dimensional orbifold as in Theorem 4.1 and let Y be the underlying

space of O. Let Y ′ be obtained by removing open cones Cj, j = 1, ..., 2k, from Y .
Then Y ′ is a compact 3-dimensional manifold with 2k boundary components each
of which is a copy of the projective plane RP2. We let θi denote the generator of
the fundamental group of the projective plane Pi ∼= RP2 ⊂ ∂M , which equals the
boundary of the cone Ci. We will regard θi as an element of π1(Y

′). Set

Θ := {θ1, . . . , θk}.

Then

Γ = π1(Y ) = π1(Y
′)/〈〈θ1, . . . , θ2k〉〉.

Next, let M be the closed 3-dimensional manifold obtained by attaching k copies
of the product RP2 × [0, 1] to Y ′ along the boundary projective planes, pairing the
projective planes Pi and Pi+k, i = 1, . . . , k. Then π = π1(MΓ) is the iterated HNN
extension of π1(Y

′) with stable letters t1, ..., tk:
(((

π1(Y
′)⋆〈θ1〉

)
⋆〈θ2〉

)
...
)
⋆〈θk〉 .

Taking the quotient

(4) φ : π → π/〈〈Θ〉〉,

we, therefore, obtain the group Γ ⋆ Fk, where Fk is the free group on k generators,
projections of the stable letters ti, i = 1, . . . , k in the above HNN extension. We let

ψ : Γ ⋆ Fk → Γ

denote the further projection to the first direct factor and set

(5) ξ := ψ ◦ φ : π → Γ.

Now, given an algebraic group H , we obtain

HomΘ(π,H) = φ∗(Hom(Γ ⋆ Fk, H)),

a clopen subscheme in Hom(π,H) (see Corollary 2.4). The isomorphism

Hk ×Hom(Γ, H)
∼=

−→ Hom(Γ ⋆ Fk, H)
φ∗

−→ HomΘ(π,H)

restricted to 1× Hom(Γ, H) equals ξ∗. We, thus, we obtain:

Lemma 4.4. For each open subscheme S ⊂ Hom(Γ, H), there exists an open sub-

scheme Ŝ ⊂ Hom(π,H) isomorphic to Hk × S via the morphism φ∗. Furthermore, Ŝ
contains ξ∗(S).

Proof. Take Ŝ = φ∗(Hk × S), where we identify Hk × Hom(Γ, H) with the represen-
tation scheme Hom(Γ ⋆ Fk, H). �
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5. A universality theorem for Coxeter groups

The second key ingredient we need is the following theorem which is essentially
contained in [5]. Before stating the theorem we recall (cf. Lemma 3.13) that the action
G y Homo(Γ, G) has a cross–section Homc(Γ, G) ⊂ Homo(Γ, G), i.e., Homo(Γ, G) is
G-equivariantly isomorphic to the product Xo(Γ, G)×G. As always, G = PO(3).

Theorem 5.1 (M. Kapovich, J. J. Millson). Let X and x ∈ X be as in Theorem 1.1.
Then there exists an open subscheme X ′ ⊂ X containing x, a finitely-generated Cox-
eter group Γ (so that every edge of its graph ∆ has label 2 or 4) and a representation
ρc : Γ → PO(3,R) with dense image, so that X ′ is isomorphic to an open subscheme
S ′ ⊂ Xo(Γ, G). The representation ρc belongs to Homo(Γ, PO(3,R)). Furthermore,
under this isomorphism, x corresponds to [ρc].

Remark 5.2. The fact that the Homo(Γ, G) ∼= Xo(Γ, G) × G (with Homc(Γ, G)
containing ρc serving as a cross-section for the action Gy Homo(Γ, G)) implies that
the preimage R′

o of S
′ in Homo(Γ, G) is isomorphic to G × S ′ = G × S ′

c. As we saw
in §2.2, the representation ρc lifts to a representation

ρ̃c : Γ̃ → SU(2)

of the canonical central extension Γ̃ of Γ.

Since the universality theorems proven in [5] are somewhat different from the one
stated above, we outline the proof of Theorem 5.1. The main differences are that
the results of [5] are about representations of Shephard and Artin groups rather than
Coxeter groups. Furthermore, the representation to PO(3,R) constructed in [5] has
finite image (which was important for [5]), although the image group does have trivial
centralizer in PO(3,C).
The arguments below are minor modifications of the ones in [5].

Step 1 (Scheme-theoretic version of Mnëv Universality Theorem). With-
out loss of generality, we may assume that the rational point x is the origin 0 in the
affine space containing X . In [5] we first construct a based projective arrangement A,
so that an open subscheme BR0(A,P

2) in the space of based projective realizations
BR(A,P2), is isomorphic to X as a scheme over Q, and, moreover, the geometrization
isomorphism

X
geo
−→ BR0(A,P

2)

sends x ∈ X to a based realization ψ0 : A→ P2 whose image is the standard triangle.
Furthermore, the images of the points and lines in A under ψ0 are real.

Remark 5.3. Subsequently, a proof of this result was also given by Lafforgue in [8],
who was apparently unaware of [5].

Step 2. An arrangement A is a certain bipartite graph containing a subgraph T
(the “base”) which is isomorphic to the incidence graph of the “standard triangle”
(also known as “standard quadrangle”), see [5, Figure 7]. The subgraph T has 5
vertices v00, vx, vy, c10, v01, v11 corresponding to the “points” of the standard triangle
and 6 vertices lx, ld, ly, lx1, ly1, l∞ which correspond to the “lines” of the standard
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triangle. In [5, §11] we further modify the bipartite graph A: We make the following
identification of vertices:

v00 ∼ l∞, vx ∼ ly, vy ∼ lx.

We also add to A the edges:

[v10, v00], [v01, v00].

We will use the upper case notation V00 = ψ0(v00), Vx = ψ0(vx), etc., to denote vectors
in C3 which project to the images under ψ0 of the point-vertices of T . The choice of
this vectors is not unique, of course; we assume that V00, Vx, Vy form a basis and

(6) V10 = V00 + Vx, V01 = V00 + Vy, V11 = V00 + Vx + Vy.

This is possible due to the incidencies in ψ0(T ).
However, here, unlike [5], we will not add the edge [v00, v11]. (The purpose of this

edge in [5] was to ensure that certain representation of a Shephard group is finite.)
We let A′ denote the resulting graph (no longer bipartite). We assign labels to the
edges of A′ as follows: All edges are labelled 2 except for the two edges

[v10, v00], [v01, v00],

which have the label 4. We then let Γ denote the Coxeter group corresponding to
this labelled graph. We let T ′ denote the labelled subgraph of A′, whose vertices are
the images of the vertices of the arrangement T .
The labeled graph Ω as in Fugure 1 embeds into T ′ via the map

v 7→ v00, x 7→ v10, y 7→ v01, u 7→ vx, w 7→ vy.

We equip the vector space C3 with a nondegenerate bilinear form, so that:
1. All subspaces which appear in the image ψ0(T ) = ψ0(A) are anisotropic (the

bilinear form has nondegenerate restriction to these subspaces).
2. The vectors V00, Vx, Vy ∈ C3 are pairwise orthogonal and have unit norm.

We let PO(3) denote the projectivization of the orthogonal group O(3) preserving
this bilinear form.
A realization ψ ∈ R(A,P2) is anisatropic if for each vertex v ∈ A, the image ψ(v)

is an anisatropic subspace in C3. We will use the notation Ra(A,P
2) ⊂ R(A,P2) and

BRa(A,P
2) ⊂ BR(A,P2) for open schemes of anisotripic realizations and anisotropic

based realizations. By the condition (1) on the inner product above, BRa(A,P
2)

containins ψ0.
To every anisotropic realization ψ ∈ R(A,P2), we associate a representation of the

group Γ by sending every generator gv ∈ Γ to the isometric involution in PO(3) fixing
the subspace ψ(v) in P2. As in [5], this map of generators of Γ to PO(3) defines a
representation

ρψ : Γ → PO(3,C).

We define

ρc := ρψ0
.

By the construction, each representation ρψ is faithful on elementary subgroups:
For the edges [v, w] in A (where v is a point and w is a line), the incidence condition
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ψ(v) ∈ ψ(v) in P 2 forces the point reflection in ψ(v) be distinct from the line reflection
in ψ(w). For the edges

[v10, v00], [v01, v00]

the condition (6) forces the point reflections in ψ(v00), ψ(v10), ψ(v01) to be pairwise
noncommutting and, hence, both subgroups

ρψ(〈gv00 , gv10〉) < PO(3,C)

ρψ(〈gv00 , gv01〉) < PO(3,C)

are isomorphic to I2(4). We also note that

(7) ρψ|ΓΩ
= ρΩ := ρψ0

: ΓΩ → PO(3,C).

We, thus, obtain the algebraization morphism of schemes

alg : BRa(A,P
2) → Hom(Γ, PO(3)), ψ 7→ ρψ.

As in [5], the morphism alg is an isomorphism to its image. It follows from Lemma
3.13 and (7) that the subscheme

Sc := alg(BRa(A,P
2)) ⊂ Homc(Γ, PO(3)) ⊂ Homo(Γ, PO(3))

is a cross-section for the action of G on the G-orbit of Sc.

Let Σ ⊂ A′ denote the complete subgraph whose vertices are the vertices (points
and lines) of the standard triangle in A, except for the vertex v11. As in [5], the image
under ρc of the corresponding parabolic Coxeter subgroup ΓΣ ⊂ Γ, is isomorphic to
the finite Coxeter group B3 (the symmetry group of the regular octahedron) divided
by the center Z2. Such a group is a maximal finite subgroup of PO(3,R). However,
the involution ρc(gv11) does not belong to the group ρc(ΓΣ) (this would be order 2
rotation in the center of a face of the octahedron). Thus, the group ρc(Γ) has to be
dense in PO(3,R), as it contains (actually, equals to) the dense subgroup ρc(ΓT ′).
This is the only essential difference between the construction in this paper and in [5],
where it was important for the group ρc(Γ) to be finite.
We let

µ : Homo(Γ, G) → Xo(Γ, G).

denote the restriction of the GIT quotient Hom(Γ, G) → X(Γ, G). Since Homc(Γ, G)
is a cross-section for the G-action on Homo(Γ, G), the morphism µ is a trivial principal
G-bundle.

Theorem 5.4. alg : BRa(A,P
2) → Homc(Γ, PO(3,C)) is an isomorphism.

Proof. We will only sketch the proof since it follows closely the argument in Theorem
12.14 in [5] and the latter is quite long. One verifies that alg induces a natural
isomorphism of functors of points. For instance, over the complex numbers, each
representation ρ ∈ Homc(Γ, PO(3,C)) gives rise to an anisotropic realization: ψ(v) ∈
P2(C) is the point fixed by ρ(gv) (if v is a point-vertex) and ψ(v) ∈ P2(C) is the line
fixed by ρ(gv) (if v is a line-vertex).

Corollary 5.5. 1. Sc is a cross-section for the action of G on Homo(Γ, G).
2. µ ◦ alg : BRa(A,P

2) → Xo(Γ, G) is an isomorphism.
3. S := µ ◦ alg(BRa(A,P

2)) ⊂ X(Γ, G) is an open subscheme.
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Proof. Part 1 follows from the fact that

Sc = alg(BRa(A,P
2(C)) = Homc(Γ, PO(3,C))

and the latter is a cross-section for the G-action on Homo(Γ, G) (Lemma 3.13). Part 2
is immediate from Theorem 5.4 and Part 1. Part 3 follows from the fact that Xo(Γ, G)
is an open subscheme in X(Γ, G). �

We define X ′ := geo−1(BRa(A,P
2)) ⊂ X , an open subscheme in X . The composi-

tion of geo, alg and µ, yields an isomorphism κ : X ′ → S ′,

X ⊃ X ′ geo
−→ BRa(A,P

2) ∩ BR0(A,P
2)

alg
−→ Sc

µ
−→ S ⊂ Xo(Γ, G),

κ(X ′) = S ′ ⊂ S,

where X ′ ⊂ X and S ′ ⊂ S ⊂ Xo(Γ, G) are open subsechemes, The isomorphism κ
sends the point x ∈ X ′ to [ρc] ∈ Xo(Γ, G). This concludes the proof of Theorem
5.1. �

We let R′
o denote the preimage of S ′ in Homo(Γ, G) and define

S ′
c = Sc ∩ R

′
o.

Then

R′
o = G · S ′

c
∼= G× S ′

c.

By inverting the isomorphism κ and multiplying with the identity map G → G, we
obtain:

Corollary 5.6. There exists an isomorphism of schemes over Q

ω : R′
o → G×X ′.

6. Proof of Theorem 1.1

We continue with notation introduced in the previous sections. Given an affine
scheme X over Q and a rational point x ∈ X , we use Theorem 5.1 to construct a
Coxeter group Γ and a representation ρc : Γ → PO(3,R) < PO(3,C). Then, as in §4,
we will construct a closed 3-manifold M =MΓ with the fundamental group π, and a
clopen subscheme Homo(π,G) which is isomorphic to the product Homo(Γ, G)×Gk.
In (5) we defined an epimorphism

ξ : π
φ

−→ Γ ⋆ Fk
ψ

−→ Γ.

Define ρ0 = ξ∗(ρc) ∈ Hom(π,G). The subgroup ρ0(π) = ρc(Γ) < G(R) is dense
according to Theorem 5.1.
We next “convert” the open subscheme R′

o ⊂ Homo(Γ, G) to an open subscheme
R′ ⊂ Hom(π,G). The obvious choice ξ∗(R′

o) will not be open in Hom(π,G). Instead,

we use the open subscheme R′ := R̂′
o ⊂ Hom(π,G) defined in Lemma 4.4.

By combining the isomorphism

R′ → Gk × R′
o ⊂ Gk ×Hom(Γ, G)

with the isomorphism

id× ω : Gk ×R′
o → Gk × (G×X ′)
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(where ω is from Corollary 5.6), we obtain an isomorphism

f : R′ ∼=
−→ Gk × R′

o

∼=
−→ Gk+1 ×X ′ ⊂ Gk+1 ×X,

sending ρ0 ∈ R′ to

x′ = 1× x ∈ Gk+1 ×X ′.

By the construction, R′ is open in Hom(π,G) and Gk+1 ×X ′ is open in Gk+1 ×X .
The cross-section S ′

c ⊂ Homo(Γ, G) in Theorem 5.1 yields a cross-section R′
c ⊂ R ⊂

Hom(π,G) for the action Gy R′:

R′
c = φ∗(Gk × ψ∗(S ′

c)).

This concludes the proof of Theorem 1.1. �

7. Corollaries of Theorem 1.1

Theorem 1.1 deals with representation schemes of 3-manifold groups to G = PO(3);
we now consider the corresponding character schemes. Since R′

c ⊂ Homo(π,G) is a
cross-section for the action of G on R′, Theorem 1.1 immediately implies:

Corollary 7.1. With the notation of Theorem 1.1, there exists an open embedding
of schemes:

Gk ×X ′ →֒ Xo(π,G) = Homo(π,G)//G

which sends (1, x) to [ρ0]. In particular, the analytic germ (C3k × X ′, 0 × x) is iso-
morphic to the analytic germ (X(π,G), [ρ0]).

We next consider representations of 3-manifold groups to the group G̃ = SL(2);
we work over C and, thus, identify PSL(2,C) with PO(3,C). Recall that, according
to Theorem 5.1 (and Remark 5.2), for every affine scheme X over Q and a rational
point x ∈ X , there exists an open subscheme X ′ ⊂ X containing x, a Coxeter group
Γ an open subscheme G × S ′

c
∼= R′

o ⊂ Hom(Γ, G), and an isomorphism of schemes
over C (which is the identity on the G-factor):

R′
o = G× S ′

c
∼= G× S ′ → G×X ′

sending ρc ∈ S ′
c ⊂ Homc(Γ, G) ⊂ Homo(Γ, G) ⊂ Hom(Γ, G) to 1× x.

Now, consider representations of the corresponding extended Coxeter group Γ̃.
Proposition 3.8 gives us a G-equivariant regular étale covering

q : Homo(Γ̃, G̃) → Homo(Γ, G)

with the covering group Zr2. Restricting toR
′
o ⊂ Homo(Γ, G) we obtain aG-equivariant

regular etale covering

q′ : R̃′
o → R′

o, R̃′
o = q−1(R′

o) ⊂ Homo(Γ̃, G̃), q′ = q|R̃′

o

.

We let ρ̃c : Γ̃ → G̃(C) be a lift of ρc. The subscheme S = R̃′
o is open in Hom(Γ̃, G̃).

We now repeat the proof of Theorem 1.1. Given the group Γ̃ we construct a closed
3-manifold with the fundamental group π̃ which admits an epimorphism

ξ̃ : π̃ → Γ̃× Fk → Γ̃.

Set ρ̃0 := ξ∗(ρ̃c).
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Lemma 4.4 (applied to S) yields an open subscheme Ŝ ⊂ Hom(π̃, G̃) isomorphic to

G̃k × R̃′
o. Combining this isomorphism with the etale covering

G̃k × R̃′
o → G̃k × R′

o

and the isomorphism

R′
o
∼= G×X ′

we obtain a regular etale covering

f̃ : Ŝ → Gk+1 ×X ′,

sending the representation ρ̃ to 1× x. The group of covering transformations of f̃ is
the group Zr2 (coming from the covering R̃′

o → R′
o).

Furthermore, the subgroup ρ̃0(π) ⊂ SL(2,C) is Zariski dense over C, since this sub-
group is dense in SU(2) (because it projects to a dense subgroup ρc(Γ) ⊂ PO(3,R)).
Since all groups p(ρ̃(π)), ρ̃ ∈ Homo(π, G̃), contain a conjugate of the group

ρc(ΓT ′),

it also follows that for every ρ̃ ∈ Ŝ, the group ρ̃(π) is Zariski dense in SL(2,C). (The
subgraph T ′ ⊂ A′ is defined in §5); the group ΓT ′ ⊂ ΓA′ = Γ is the corresponding
parabolic subgroup.) This proves Corollary 1.3. �

8. Orbifold-group representations

Let Γ̂ be the fundamental group of the hyperbolic orbifold appearing in Theorem
4.1. This group contains cyclic subgroups 〈θi〉 ∼= Z2, i = 1, . . . , 2k, corresponding to
the singular points yi. The group Γ is the quotient

Γ̂/〈〈Θ̂〉〉,

where Θ̂ = {θ1, . . . , θ2k} ⊂ Γ̂. Then for every algebraic group H ,

Hom(Γ, H) ∼= Hom
Θ̂
(Γ̂, H)

and the latter is an open subscheme in Hom(Γ̂, H) (see Corollary 2.4). Now, let Γ
be a Coxeter group (as in Theorem 5.1) or its canonical central extension. In view of
Theorems 4.1 and 5.1, one obtains:

Corollary 8.1. Theorems 1.1 and Corollaries 1.3, 1.5, also hold for groups π which
are fundamental groups of 3-dimensional closed hyperbolic orbifolds.

By passing to a finite-index torsion-free subgroups of π, in view of [4, Theorem
5.1], we obtain new examples of fundamental groups of hyperbolic 3-manifolds and
their representations to SO(3), SU(2) with non-quadratic singularities of character
varieties, cf. [4, Theorem 5.1] where it is proven that nonquadratic singularities of
character schemes are inherited by finite index subgroups. (The first such examples
were constructed in [4].)

Question 8.2. Do Theorems 1.1 and Corollaries 1.3, 1.5, also hold for groups π
which are fundamental groups of 3-dimensional closed hyperbolic manifolds? Do they
hold for 3-dimensional manifolds which are 3-dimensional (integer or rational) ho-
mology spheres?
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Older examples. We note that the first example of a nonreduced representation
scheme was constructed by Lubotzky and Magid in [9, p. 43]: They start with the
von Dyck group

Γ = 〈a, b, c|a3 = b3 = c3 = abc = 1〉

and its representation
ρ : Γ → SL(2,C)

whose image is a cyclic group Z3 of order 3 (ρ sends a, b and c to the same generator
of Z3). Then H1(Γ, Adρ) ∼= C, while [ρ] ∈ Xred(Γ, SL(2,C)) is an isolated point. It
follows that B1(Γ, Adρ) ∼= C2 and, therefore,

Z1(Γ, Adρ) ∼= C3.

The same, of course, holds for all representations Γ → SL(2,C) conjugate to ρ.
On the other hand, the component C of ρ in Homred(Γ, SL(2,C)) is a smooth 2-fold,
isomorphic to SL(2,C)/T , where T ∼= C∗ is a maximal torus in SL(2,C). In contrast,
the Zariski tangent space TcC at each c ∈ C is isomorphic to Z1(Γ, Adρ) ∼= C3. It
follows that the representation scheme Hom(Γ, SL(2)) is nonreduced.
This example is promoted to a nonreduced representation scheme of a 3-manifold

group as follows. Consider a closed 3-dimensional Seifert manifold M which is an
oriented Seifert-bundle over the orbifold S2(3, 3, 3), i.e., over the sphere with 3 cone
points of order 3. The fundamental group of S2(3, 3, 3) is the von Dyck group Γ
above, while π = π1(M) is the central extension of Γ:

1 → Z → π → Γ → 1,

π = 〈a, b, c, z|a3 = b3 = c3 = abc = z, [a, z] = [b, z] = [c, z] = 1〉.

The representation ρ lifts to a representation ρ̃ : π → SL(2,C) whose kernel contains
the center 〈z〉 of π. Then, a direct computation shows that

H1(π,Adρ) ∼= C2, Z1(π,Adρ) ∼= C4,

while the germ of the reduced representation variety Homred(π, SL(2,C)) at ρ̃ is a
smooth 3-fold, consisting of reducible representations π → SL(2,C). Up to conjuga-
tion, these representations all have the form

ρt(a) = ρt(b) = ρt(c) =

[
t 0
0 t−1

]
, t ∈ C∗.

The advantage of the examples constructed in Theorem 1.1 and its corollaries, is
that the representation and character schemes constructed there are nonreduced at
points corresponding to representations with trivial centralizer.
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