Lawrence Berkeley National Laboratory

LBL Publications

Title

Optimizing Vertical Crystallization for Efficient Perovskite Solar Cells by Buried Composite Layers

Permalink https://escholarship.org/uc/item/2f17c6m9

Journal Solar RRL, 5(10)

ISSN 2367-198X

Authors

Yang, Xiaoyu Li, Lei Wu, Jiang <u>et al.</u>

Publication Date 2021-10-01

DOI

10.1002/solr.202100457

Peer reviewed

www.solar-rrl.com

Optimizing Vertical Crystallization for Efficient Perovskite Solar Cells by Buried Composite Layers

Xiaoyu Yang,* Lei Li, Jiang Wu, Qin Hu, Yanju Wang, Thomas P. Russell, Yongguang Tu,* and Rui Zhu

Planar-heterojunction perovskite solar cells (PSCs) have experienced rapid evolution in recent years because of the low-temperature processing, suitable alignment, and high mobility of the tin oxide buried contact layer. However, improper SnO₂ surface states and poor crystallinity of the top perovskite films are still the main obstacles for the planar PSCs in which performance always lags behind their mesoporous counterparts. Herein, a new buried contact is reported by introducing graphitic carbon nitride (g-C₃N₄) into the commonly used SnO2 which performs outstanding transmittance, conductivity, and surface states for a high-quality electron-transporting layer. Moreover, the vertical composition and crystallinity of the top perovskite film are manipulated by rich amino groups on the edge of the g-C₃N₄ nanosheets which induce the prenucleation of the lead-rich species at the buried interface. Benefiting from the high-quality buried contacts and the optimized perovskite layers, the resultant PSCs achieve a champion efficiency of 21.5% with all photovoltaic parameters enhanced in comparison with their control counterparts (<20%).

1. Introduction

Perovskite solar cell (PSC) has witnessed rapid progress over the past 10 years, which makes it the most promising photovoltaic technology.^[1–8] Metal oxide buried contact layers (BCLs), such as the titanium oxide (TiO₂) and tin oxide (SnO₂), have promoted the development of PSCs due to their interfacial compatibility,

superior transmittance, and good reproducibility.^[9,10] In comparison with the mesoporous TiO₂ BCLs, the planar SnO₂ BCLs have attracted enormous attention because of their low-temperature fabrication, high electron mobility, and suitable band alignment with the commonly used transparent conductive substrates.^[11,12] These huge potentials of the SnO₂ BCL accelerate the development of the planar-heterojunction solar cells that have approached the world-record PSC efficiency.^[13–15]

Despite the great achievements on efficient perovskite devices, the planar SnO_2 BCL still encounters some drawbacks to realize high-quality top perovskite films. The ultrathin and smooth SnO_2 BCL generally leads to rapid volatilization of the perovskite precursor upon annealing, resulting in the nonideal nucleation and growth of perovskite crystallites in the absence of mesoporous scaffolds.^[16–18]

Moreover, the improper surface states of the SnO₂ BCL deposited from the colloidal precursor also generate trap/surface states at the buried interface of the perovskite film.^[19,20] In brief, the unsatisfied film quality of the perovskite could be one of the main obstacles for the SnO₂-based devices compared with their TiO₂ counterparts. Therefore, the development of the high-quality SnO₂ buried layer for optimizing perovskite

X. Yang, L. Li, J. Wu, Y. Wang, R. Zhu State Key Laboratory for Artificial Microstructure and Mesoscopic Physics School of Physics Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter Peking University Beijing 100871, China E-mail: yangxy_seed@pku.edu.cn J. Wu, R. Zhu

Yangtze Delta Institute of Optoelectronics Peking University Nantong, Jiangsu 226010, China

Q. Hu School of Microelectronics University of Science and Technology of China Hefei, Anhui 230026, China

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/solr.202100457.

DOI: 10.1002/solr.202100457

T. P. Russell

Department of Polymer Science and Engineering University of Massachusetts Amherst, MA 01003, USA

T. P. Russell

Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA

Y. Tu

Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an, Shaanxi 710072, China E-mail: iamygtu@nwpu.edu.cn

R. Zhu Collaborative Innovation Center of Extreme Optics Shanxi University Taiyuan, Shanxi 030006, China

crystallization and realizing outstanding device performances is urgently demanded.

IDVANCED

www.advancedsciencenews.com

Recently, graphitic carbon nitride $(g-C_3N_4)$ as a stable n-type semiconductor has shown great potential in the development of the PSCs because of its outstanding chemical properties and good compatibility with halide perovskites.^[21] Introducing C₃N₄-related nanomaterials into the bulk or at the interface of the perovskite active layer could passivate the trap states and enhance the crystallization of the polycrystalline film,^[22-26] but developing a facile strategy for collectively optimizing contact and photoactive layers based on the g-C₃N₄ remains challenging and the exact regulating mechanism of the g-C₃N₄ on the perovskite is still vague. In this work, we report a new composite BCL (SnO₂:g-CN) by introducing graphitic carbon nitride (g-C₃N₄) nanosheets (50-150 nm; Figure 1a) into the SnO₂ layer. The SnO₂:g-CN BCLs exhibit superior transmittance, conductivity, and surface states for efficient electron extraction at the buried interface. More importantly, the introduced g-C₃N₄ manipulates the growth of the perovskite film by virtue of its nanosheet template and rich amino groups on the edge, which optimize the vertical composition and crystallization of the polycrystalline perovskite film from the buried interface to the top surface. Residual lead-halide crystallites in the films are rationally controlled and the grain boundaries are reduced, collectively resulting in enhanced charge-carrier lifetimes. In brief, based on the SnO₂: g-CN BCL, all photovoltaic parameters were enhanced in the planar PSCs and a champion efficiency of 21.5% was achieved.

2. Results and Discussion

We first evaluated the properties of the newly developed SnO₂: g-CN BCL. In Figure 1b, the dark g-C₃N₄ nanosheets distribute uniformly into the SnO₂ layer by simply spin-coating the SnO₂: g-CN precursor onto the indium tin oxide (ITO) glass, and the thickness of SnO₂:g-CN BCL was measured as about 40 nm. A small amount of C and N could be detected from the X-ray energy dispersive spectrum (EDS) of the SnO₂:g-CN/ITO glass (Figure 1c). And N 1s X-ray photoelectron spectroscopy (XPS) spectrum confirms the C–N (≈402.5 eV) and C=N (≈398.8 eV) characteristic signals which attribute to the g-C₃N₄ nanosheet instead of organic contaminants.^[27,28]

The surface chemical states of the SnO₂ and SnO₂:g-CN BCLs were compared by analyzing the O 1*s* spectra (Figure 1d). Two characteristic peaks belonging to O²⁻ (at \approx 530.7 eV) and OH⁻ (at \approx 531.9 eV) terminal groups on the SnO₂ surface were performed in O 1*s* spectra, and the OH⁻ terminals were likely to generate trap states near the valence band of the SnO₂ layer.^[19,29] With the aid of the introduced acidic g-C₃N₄ dispersion, we found the peak area of the OH⁻ terminal group was significantly reduced, which means the eliminated trap states at the SnO₂ surface. The increased Fermi level of the SnO₂:g-CN further confirmed the variation of the surface chemical termination and indicated a more n-type buried contact layer (Figure S1, Supporting Information), facilitating the extraction of the electrons at the buried interface. However, we cannot identify the diffraction

Figure 1. a) Transmission electron microscopy image of the $g-C_3N_4$ nanosheet. b) SEM images and c) EDS analysis for the SnO₂:g-CN BCL. The inset is the N 1s characteristic spectrum of the SnO₂:g-CN. d) O 1s spectra of the SnO₂ and SnO₂:g-CN BCLs. e) UV–vis transmission spectra for the ITO glass, ITO/SnO₂, and ITO/SnO₂:g-CN. f) Electrical conductivity measurements for the SnO₂ and SnO₂:g-CN BCLs.

peaks of SnO₂ or g-C₃N₄ for both BCLs because of the weak diffraction signals from the ultrathin BCLs (Figure S2, Supporting Information). From the UV-vis spectra (Figure 1e), the obviously improved transmittance was found in the SnO2:g-CN BCL compared with the SnO₂ BCL in the range of 350-500 nm. We speculate that the enhanced transmittance derives from the adjustment of incident lights by the evenly distributed g-C₃N₄ nanostructures or the possible optical coupling in the SnO₂: g-CN laver.^[30-32] Furthermore, we measured the electrical conductivity of the BCLs, which is critical for electron transport at the buried interface (Figure 1f). The direct current conductivity (σ_0) is extracted from the equation, $I = \sigma_0 A d^{-1} V$, where *d* is the thickness of the BCL and A is the active area. The SnO₂:g-CN BCL $(6.2\times 10^{-5}\,S\,cm^{-1})$ performs higher conductivity than the SnO_2 BCL (5.0 × 10⁻⁵ S cm⁻¹), benefiting from the increased pathways for electron transportation.

To systematically study the film qualities of the perovskites growing onto the SnO₂:g-CN, we performed scanning electron microscopy (SEM) combined with X-ray diffraction (XRD) for surface morphologies and crystallographic information, respectively. In view of that excess PbI₂ in the perovskite film is beneficial for improving the film qualities, we prepared the perovskite precursor with the nonstoichiometric composition of $FA_{0.85}MA_{0.11}Cs_{0.04}PbI_{2.67}Br_{0.33}$ ·xPbI₂ (x = 0%, 2%, 4%, 6%, and 8%) to fabricate polycrystalline films via one-step antisolvent methods.^[7,33] With the increment of introduced PbI₂, the amount of the bright crystallites increases at grain boundaries as shown in Figure 2a and Figure S3, Supporting Information, which have been proved to be the lead halides (PbX₂, X = I, Br) in the literature.^[3] And the increased PbX₂ peak intensities in the corresponding XRD patterns show consistent results with the SEM images (Figure 2c). Interestingly, for the perovskite films fabricated on the SnO2:g-CN BCLs, we cannot find any bright PbX₂ crystallites in perovskites from top-view SEM images and corresponding XRD patterns when the introduced PbI₂ less than 4% (Figure 2b,d). Although the excess PbX₂ begins to be detected when the introduced PbI₂ up to 6%, the bright crystallites in the SnO₂:g-CN sample are still less than their SnO₂ counterpart. We also find that the perovskite grain sizes have slight changes with different contents of excess PbX₂. Therefore, we extracted the full width at half maxima (FWHM) of the (110) peaks, belonging to the α -phase perovskites, to estimate the perovskite crystal sizes (Figure 2e). For the SnO₂-based perovskites, the FWHMs seem to have a positive correlation with the peak intensity of PbX₂, indicating excess PbI₂ could cause a smaller crystal grain of the perovskite film.

Figure 2. a,b) Surface morphologies of the perovskite films with excess PbI2 contents (0%, 2%, 4%, 6%, and 8%) in precursors grown on the a) SnO_2 and b) SnO_2 :g-CN BCLs. Scale bar, 500 nm. c,d) XRD patterns of the perovskite films with excess PbI₂ contents in precursors grown on the c) SnO_2 and d) SnO_2 :g-CN BCLs. e) The peak intensities of the PbX₂ and the FWHMs of the α -phase perovskite (110) peaks extracted from (b,c). f) The PCE distributions of the PSCs based on SnO_2 :g-CN BCLs with excess PbI₂ contents.

However, SnO2:g-CN-based perovskite films present reduced FWHMs of the perovskite films with the increment of introduced PbI₂ from 0% to 4% even though no PbX₂ crystallites performed at the film surface. The smallest FWHM means the largest perovskite grains, and therefore, the 4%-excess-PbI₂ perovskite based on SnO2:g-CN exhibits the best film quality. To validate the improved film quality by the SnO2:g-CN BCL, we further fabricated planar-heterojunction PSCs comprising indium tin oxide (ITO)/SnO₂:g-CN/perovskite/2,2',7,7'-tetrakis(N,N-dipmethoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD)/Au. The statistical distributions of the power conversion efficiencies (PCEs) are shown in Figure 2f and have a tendency consistent with the perovskite quality as demonstrated earlier. The 4%-excess-PbI₂ devices perform the best performance, confirming the superior film quality achieved by moderate amounts of excess PbI₂ in the precursor growing on the SnO₂:g-CN BCL.

To clarify the unique growth of the perovskite film onto the SnO_2 :g-CN BCL, we performed cross-sectional SEM images of

the full devices based on the SnO₂ and SnO₂:g-CN BCLs (**Figure 3**a,b). For the SnO₂:g-CN sample, large perovskite grains are vertically arranged from the buried to top contact layers. In comparison, the SnO₂-based perovskite film is composed of many stacked small grains, which confirms the different growth conditions for the perovskites on these two BCLs. The wettability of the buried contact is proved to change the nucleation and growth of the perovskite film, affecting the film quality and the grain size.^[34] We thus performed the wettability test for the SnO₂, SnO₂:g-CN, and g-C₃N₄, as shown in Figure 3c. We found the slightly worse wettability of the SnO₂:g-CN layer (24.4°) than its SnO₂ counterpart (23.5°), which benefits from the hydrophobic nature of g-C₃N₄ (52.9°) to perovskite precursor, probably leading to the dispersed nucleation and growth for achieving larger perovskite grains.

We further evaluated the vertically compositional distributions of the perovskite layers fabricated on different BCLs. As shown in Figure 3d, the ratios of lead (Pb) to halide (X) were calculated

Figure 3. a,b) Cross-sectional SEM images of the planar-heterojunction PSCs based on a) SnO_2 and b) SnO_2 :g-CN BCLs. Scale bar, 500 nm. c) Wettability measurements for the SnO_2 , SnO_2 :g-CN, and $g-C_3N_4$. The testing solution was the perovskite precursor used for fabricating the perovskite active layer in solar cells. d) Atomic Pb/X ratios at various depths of the perovskite films based on the SnO_2 (SnO_2 \PVSK) and SnO_2 :g-CN (SnO_2 :g-CN

from the cross-sectional EDS measurement on various depths of the perovskite films (Figure 3a,b and S4, Supporting Information). The Pb/X ratio of the SnO₂-based perovskite film shows a slight variation in the range of 0.25-0.28 at different depths (Figure 3d and S5, Supporting Information). However, for the perovskite film grown on the SnO₂:g-CN, the Pb/X ratio has an obvious positive tendency, increasing from 0.23 to 0.39 with the detecting depths. Therefore, Pb-rich species tend to accumulate at the buried interface during the film growth, which could be the main place for the disappeared PbX₂ known as the Pb-rich component (Pb/X ratio = 0.5) in the perovskite film. Fourier transform infrared (FTIR) spectroscopy confirms the existence of the primary amine (-NH2) and secondary amine (=N-H) groups in the g-C₃N₄ nanosheet that could coordinate with Pb-related components in the precursor, promoting the prenucleation of the Pb-related intermediates onto the SnO₂:g-CN BCLs (Figure 3e). The redshifted infrared signal of -NH₂ $(+9 \text{ cm}^{-1})$ in the SnO₂:g-CN/perovskite stack indicates the electron-donor effects of g-C₃N₄ relative to the perovskite films, confirming the chemical interactions between the g-C₃N₄ and the perovskites. Therefore, rich amine groups in the g-C₃N₄ nanosheet have the ability to induce the Pb-rich species first nucleate at the SnO2:g-CN BCL, manipulating the vertical composition and crystallization of the perovskite film.^[5,35-37]

To examine the vertical manipulating effect from the bottom to the top, we further performed the grazing-incidence wide-angle X-ray scattering (GIWAXS) technique to probe the top-surface crystallographic information of the perovskite films with an incidence angle of 0.1° .^[33] All the α -phase perovskite signals could be identified on the scattering patterns, as shown in Figure 3f,g. For the SnO₂:g-CN sample, there is no PbX₂ signal but enhanced α -phase signals in comparison with their SnO₂ counterpart, proving the improved surface crystallization of the perovskite film from the buried SnO2:g-CN contact, which is consistent with the surface morphologies from the SEM results. We draw a schematic for the buried manipulation of the perovskite film in Figure 3h. On the SnO₂ BCL, the poor crystallization of the perovskites combined with abundant grain boundaries and the residual PbX₂ crystallites would inhibit the carrier transportation and even annihilate photogenerated charge carriers. However with the help of the SnO2:g-CN BCL, the vertical crystallization of the perovskite film is efficiently optimized and the excess PbX₂ is eliminated, promoting the vertical transportation of charge carriers to both contacts.

To validate our findings by the photovoltaic performance, we first screened out the best g-C₃N₄ concentration of the buried composite layer by investigating the electrical properties and the optical properties of the corresponding top perovskite films (Figure S6, Supporting Information). Based on the best choice, the current density–voltage (*J*–*V*) curves of the champion planarheterojunction PSCs are shown in **Figure 4**a. The SnO₂:g-CN device realizes an enhanced open-circuit voltage (*V*_{OC}) of 1.19 V, a fill factor (FF) of 0.78, a slightly increased short-circuit current density (*J*_{SC}) of 23.21 mA cm⁻², and a champion PCE of

Figure 4. a) *J*–V curves and corresponding photovoltaic parameters of the champion devices based on the SnO₂ and SnO₂:g-CN BCLs at the reverse scan. b) SPOs and corresponding steady current density outputs for the SnO₂ and SnO₂:g-CN devices. c) Statistical distribution of the PCEs. d) TRPL spectra of perovskite film fabricated on the SnO₂ and SnO₂:g-CN BCLs. e) Electron-only devices for the quantitative measurement of the trap-state density. f) Evolution of the device stabilities for the SnO₂ and SnO₂:g-CN devices stored in ambient conditions at the relative humidity (RH) of \approx 10% and \approx 40%.

21.54% without any posttreatment in comparison with the control device (a V_{OC} of 1.14 V, a FF of 0.78, a J_{SC} of 22.69 mA cm⁻², and a PCE of 19.66%). The enhanced V_{OC} and FF could derive from the improved crystallinity and reduced trap states of the perovskite film, and the increased J_{SC} may benefit from improved photon transmission of the SnO₂:g-CN BCL, which is further confirmed by external quantum efficiencies (EQEs) and corresponding integrated current densities (Figure S7, Supporting Information). Moreover, the stabilized power outputs (SPOs) of the SnO₂ and SnO₂:g-CN devices are 19.2% and 21.1%, respectively, and both devices show negligible hysteresis (Figure 4b and Figure S8, Supporting Information). Statistical results of the device performance are provided as the histogram chart in Figure 4c, confirming a better average efficiency of the SnO₂:g-CN devices.

Time-resolved photoluminescence (TRPL) was used to examine the carrier lifetimes of the perovskite film. The fitted carrier lifetime is 418.32 ns for the SnO₂:g-CN sample, which is about 2.5 times as much as that of the control sample (169.06 ns), as shown in Figure 4d. According to the fitted trap-filled limited voltage (V_{TFL}) of the electron-only devices (Figure 4e), the electronic trap states were calculated to be 0.91×10^{16} and 1.53×10^{16} cm⁻³ for the SnO₂:g-CN and SnO₂ samples, respectively. Therefore, the superior carrier behavior and reduced trap states of the SnO₂:g-CN sample thanks to the enhanced film crystallization via buried manipulation. In addition, the enhanced storage stabilities in various environments of nonencapsulated SnO₂:g-CN devices are also validated (Figure 4f).

In summary, we have developed a new buried composite layer for optimizing vertical crystallization of the polycrystalline perovskites by introducing g-C₃N₄ nanosheets into the SnO₂ layer. We discover that the amine-rich g-C₃N₄ could not only improve the transmission, conductivity, and surface state of the buried transporting layer, contributing to the improved short-circuit current in devices, but also regulate the vertical qualities of the perovskite film, exhibiting superior carrier lifetimes with fewer trap states and thus enhanced device open-circuit voltage. Finally, the resultant devices realize a champion efficiency of 21.5% with all photovoltaic parameters enhanced. Our findings provide a new insight in manipulating the vertical nature of the polycrystalline perovskite films from the buried contact and a strategy to achieve efficient perovskite photovoltaic devices.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

X.Y., L.L., and J.W. contributed equally to this work. This work was funded by National Natural Science Foundation of China (grant nos. 61722501 and 21905111), the Natural Science Foundation of Shaanxi Province, China (grant no. 2020JQ-195), and the China Postdoctoral Science Foundation (grant no. BX20190018). Q.H. thanks the funding support from University of Science and Technology of China (USTC) under grant no. KY2100000109. T.P.R. and Q.H. were supported by the USA Office of Naval Research under contract N00014-15-1-2244. The GIWAXS was performed at beamline 7.3.3 at Advanced Light Source, Lawrence

Berkeley National Laboratory, which was supported by the DOE, Office of Science and Office of Basic Energy Sciences. The authors thank the support for sample preparation at Molecular Foundry, LBNL. Work at Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, the USA Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank C.J.N. from Institute of Functional Nano and Soft Materials at Soochow University for TEM measurement.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

Data available on request from the authors.

Keywords

graphitic carbon nitride nanosheets, high-quality buried composite layers, planar-heterojunction perovskite solar cells, vertical crystallization manipulation

Received: June 28, 2021

Revised: August 28, 2021 Published online: September 9, 2021

- M. Jeong, I. W. Choi, E. M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H. W. Choi, J. Lee, J.-H. Bae, S. K. Kwak, D. S. Kim, C. Yang, *Science* 2020, 369, 1615.
- [2] G. Kim, H. Min, K. S. Lee, D. Y. Lee, S. M. Yoon, S. I. Seok, *Science* 2020, 370, 108.
- [3] D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. Xu, T. Liu, K. Chen, F. Ye, P. Wu, L. Zhao, J. Wu, Y. Tu, Y. Zhang, X. Yang, W. Zhang, R. H. Friend, Q. Gong, H. J. Snaith, R. Zhu, *Science* **2018**, *360*, 1442.
- [4] X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, C. Zhou, Y. Lin, D.-J. Xue, B. Chen, A. K. Johnston, N. Wei, M. N. Hedhili, M. Wei, A. Y. Alsalloum, P. Maity, B. Turedi, C. Yang, D. Baran, T. D. Anthopoulos, Y. Han, Z.-H. Lu, O. F. Mohammed, F. Gao, E. H. Sargent, O. M. Bakr, *Nat. Energy* **2020**, *5*, 131.
- [5] D. Luo, T. Zou, W. Yang, B. Xiang, X. Yang, Y. Wang, R. Su, L. Zhao, R. Zhu, H. Zhou, T. P. Russell, H. Yu, Z.-H. Lu, *Adv. Funct. Mater.* 2020, 30, 2001692.
- [6] X. Yang, Y. Fu, R. Su, Y. Zheng, Y. Zhang, W. Yang, M. Yu, P. Chen, Y. Wang, J. Wu, D. Luo, Y. Tu, L. Zhao, Q. Gong, R. Zhu, *Adv. Mater.* 2020, 2002585.
- Y. Tu, X. Yang, R. Su, D. Luo, Y. Cao, L. Zhao, T. Liu, W. Yang,
 Y. Zhang, Z. Xu, Q. Liu, J. Wu, Q. Gong, F. Mo, R. Zhu, *Adv. Mater.* 2018, 30, 1805085.
- [8] Y. Tu, G. Xu, X. Yang, Y. Zhang, Z. Li, R. Su, D. Luo, W. Yang, Y. Miao, R. Cai, L. Jiang, X. Du, Y. Yang, Q. Liu, Y. Gao, S. Zhao, W. Huang, Q. Gong, R. Zhu, *Sci. China-Phys. Mech. Astron.* **2019**, *62*, 974221.
- [9] D. Ouyang, Z. Huang, W. C. H. Choy, Adv. Funct. Mater. 2018, 1804660.
- [10] M. A. Haque, A. D. Sheikh, X. Guan, T. Wu, Adv. Energy Mater. 2017, 7, 1602803.
- [11] Q. Jiang, X. Zhang, J. You, Small 2018, 1801154.

ADVANCED

www.advancedsciencenews.com

- [12] Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, J. You, Adv. Mater. 2017, 29, 1703852.
- [13] H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W. R. Tress, F. T. Eickemeyer, Y. Yang, F. Fu, Z. Wang, C. E. Avalos, B. I. Carlsen, A. Agarwalla, X. Zhang, X. Li, Y. Zhan, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, L. Zheng, A. Hagfeldt, M. Grätzel, *Science* 2020, *370*, 74.
- [14] Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460.
- [15] J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C. S. Moon, N. J. Jeon, J.-P. Correa-Baena, V. Bulović, S. S. Shin, M. G. Bawendi, J. Seo, *Nature* **2021**, *590*, 587.
- [16] E. H. Jung, B. Chen, K. Bertens, M. Vafaie, S. Teale, A. Proppe, Y. Hou, T. Zhu, C. Zheng, E. H. Sargent, ACS Energy Lett. 2020, 5, 2796.
- [17] J. Wei, F. Guo, X. Wang, K. Xu, M. Lei, Y. Liang, Y. Zhao, D. Xu, Adv. Mater. 2018, 30, 1805153.
- [18] J. Zhou, X. Wei, J. Zhu, X. Yang, H. Niu, L. Wan, P. Jiang, J. Xu, R. Zhou, G. Cao, Sci. China Mater. 2020, 63, 1151.
- [19] F. Guo, X. Sun, B. Liu, Z. Yang, J. Wei, D. Xu, Angew. Chem. Int. Ed. 2019, 58, 18460.
- [20] S. You, H. Zeng, Z. Ku, X. Wang, Z. Wang, Y. Rong, Y. Zhao, X. Zheng, L. Luo, L. Li, S. Zhang, M. Li, X. Gao, X. Li, *Adv. Mater.* **2020**, *32*, 2003990.
- [21] K. Gkini, I. Martinaiou, P. Falaras, Materials 2021, 14, 1679.
- [22] L.-L. Jiang, Z.-K. Wang, M. Li, C.-C. Zhang, Q.-Q. Ye, K.-H. Hu, D.-Z. Lu, P.-F. Fang, L.-S. Liao, Adv. Funct. Mater. 2018, 28, 1705875.
- [23] J.-F. Liao, W.-Q. Wu, J.-X. Zhong, Y. Jiang, L. Wang, D.-B. Kuang, J. Mater. Chem. A, 2019, 7, 9025.

- [24] X. Wei, X. Liu, H. Liu, S. Yang, H. Zeng, F. Meng, X. Lei, J. Liu, Sol. Energy 2019, 181, 161.
- [25] J. Chen, H. Dong, L. Zhang, J. Li, F. Jia, B. Jiao, J. Xu, X. Hou, J. Liu, Z. Wu, J. Mater. Chem. A, 2020, 8, 2644.
- [26] P. Liu, Y. Sun, S. Wang, H. Zhang, Y. Gong, F. Li, Y. Shi, Y. Du, X. Li, S. Guo, Q. Tai, C. Wang, X.-Z. Zhao. J. Power Sources 2020, 451, 227825.
- [27] L. Ge, C. Han, Appl. Catal. B: Environ. 2012, 117, 268.
- [28] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Muller, R. Schlogl, J. M. Carlsson, J. Mater. Chem. 2008, 18, 4893.
- [29] G. Gaggiotti, A. Galdikas, S. Kačiulis, G. Mattogno, A. Šetkus, J. Appl. Phys. 1994, 76, 4467.
- [30] M. Jost, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovsek, J. Krc, L. Korte, D. Neher, B. Rech, M. Topic, ACS Photonics 2017, 4, 1232.
- [31] X. Yang, J. Wu, T. Liu, R. Zhu, Small Methods 2018, 2, 1800110.
- [32] K. Deng, Z. Liu, M. Wang, L. Li, Adv. Funct. Mater. 2019, 29, 1900830.
- [33] X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya, Y. Shen, J. Wu, W. Yang, Y.-H. Chiang, Y. Tu, R. Su, Q. Hu, H. Yu, G. Shao, W. Huang, T. P. Russell, Q. Gong, S. D. Stranks, W. Zhang, R. Zhu, *Adv. Mater.* **2021**, *33*, 2006435.
- [34] C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Nat. Commun. 2015, 6, 7747.
- [35] X. Yang, Y. Ni, Y. Zhang, Y. Wang, W. Yang, D. Luo, Y. Tu, Q. Gong, H. Yu, R. Zhu, ACS Energy Lett. 2021, 6, 2404.
- [36] G. Yang, C. Wang, H. Lei, X. Zheng, P. Qin, L. Xiong, X. Zhao, Y. Yan, G. Fang, J. Mater. Chem. A, 2017, 5, 1658.
- [37] W. Deng, X. Liang, P. S. Kubiak, P. J. Cameron, Adv. Energy Mater. 2018, 8, 1701544.