Title
Hyperpolarized 13 C magnetic resonance spectroscopy detects toxin-induced neuroinflammation in mice.

Permalink
https://escholarship.org/uc/item/2f18295x

Authors
Le Page, Lydia M
Guglielmetti, Caroline
Najac, Chloé F
et al.

Publication Date
2019-08-22

DOI
10.1002/nbm.4164

Peer reviewed
Hyperpolarized 13C magnetic resonance spectroscopy detects toxin-induced neuroinflammation in mice

Lydia M. Le Page1,2 | Caroline Guglielmetti1,2 | Chloé F. Najac3 | Brice Tiret1,2 | Myriam M. Chaumeil1,2

1 Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
2 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
3 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands

Correspondence
Myriam M. Chaumeil, Ph.D., Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, 1700 4th Street, BH 204, Mission Bay Campus Box 2530, San Francisco, CA 94143.
Email: myriam.chaumeil@ucsf.edu

Funding information
Conrad N. Hilton Foundation, Grant/Award Number: Marilyn Hilton Award for Innovation in MS Research; Dana Foundation, Grant/Award Number: The David Mahoney Neuroimaging program; National Institutes of Health, Grant/Award Numbers: Hyperpolarized MRI Technology Resource Center #P41 and R01NS102156; National Multiple Sclerosis Society, Grant/Award Number: Fellowship FG-1507-05297 (to C.G.); RG-1701-26630; NMSS, Grant/Award Numbers: FG-1507-05297 and RG-1701-26630; NIH Hyperpolarized MRI Technology Resource Center, Grant/Award Number: #P41EB013598; Hilton Foundation – Marilyn Hilton Award for Innovation in MS Research, Grant/Award Number: #17319; Cal-BRAIN, Grant/Award Number: 349087

Lipopolysaccharide (LPS) is a commonly used agent for induction of neuroinflammation in preclinical studies. Upon injection, LPS causes activation of microglia and astrocytes, whose metabolism alters to favor glycolysis. Assessing in vivo neuroinflammation and its modulation following therapy remains challenging, and new noninvasive methods allowing for longitudinal monitoring would be highly valuable. Hyperpolarized (HP) 13C magnetic resonance spectroscopy (MRS) is a promising technique for assessing in vivo metabolism. In addition to applications in oncology, the most commonly used probe of [1–13C] pyruvate has shown potential in assessing neuroinflammation–linked metabolism in mouse models of multiple sclerosis and traumatic brain injury. Here, we aimed to investigate LPS-induced neuroinflammatory changes using HP [1–13C] pyruvate and HP 13C urea.

2D chemical shift imaging following simultaneous intravenous injection of HP [1–13C] pyruvate and HP 13C urea was performed at baseline (day 0) and at days 3 and 7 post-intracranial injection of LPS ($n = 6$) or saline ($n = 5$). Immunofluorescence (IF) analyses were performed for Iba1 (resting and activated microglia/macrophages), GFAP (resting and reactive astrocytes) and CD68 (activated microglia/macrophages). A significant increase in HP [1–13C] lactate production was observed at days 3 and 7 following injection, in the injected (ipsilateral) side of the LPS-treated mouse brain, but not in either the contralateral side or saline-injected animals. HP 13C lactate/pyruvate ratio, without and with normalization to urea, was also significantly increased in the ipsilateral LPS-injected brain at 7 days compared with baseline. IF analyses showed a significant increase in CD68 and GFAP staining at 3 days, followed by increased numbers of Iba1 and GFAP positive cells at 7 days post-LPS injection. In conclusion, we can detect LPS-induced changes in the mouse brain using HP 13C MRS, in alignment with increased numbers of microglia/macrophages and astrocytes. This study demonstrates that HP 13C spectroscopy has substantial potential for providing noninvasive information on neuroinflammation.

KEYWORDS
hyperpolarized 13C MRS, lipopolysaccharide, metabolism, neuroinflammation
Lipopolysaccharide (LPS) is a bacterial endotoxin commonly used to induce neuroinflammation and generate preclinical animal models of the inflammatory response alone, or to help model complex neurological disorders such as Alzheimer’s disease (AD). Upon in vivo injection (intravenous, intraperitoneal or intracranial), LPS causes an inflammatory response, with release of proinflammatory cytokines such as tumor necrosis factor alpha, following immune cell recognition of LPS by their surface receptors (specifically toll-like receptor 4 (TLR4)). Activation of microglia similarly occurs via TLR-4 recognition in AD, in that case due to the presence of the aberrant protein amyloid-β. Studies have shown that intracranial injection of LPS into the mouse brain leads to an increased number and activation of microglia as well as increased astrogliosis. These cellural traits have been observed in the brains of patients with neurodegenerative diseases such as Parkinson’s disease and AD. In Parkinson’s disease, for example, increased cytokine levels and activation of microglia and astrocytes (as induced in models using LPS) have been associated with the disease’s characteristic loss of dopaminergic neurons.

Following LPS-induced activation, both activated microglia and astrocytes demonstrate metabolic reprogramming, in particular a shift towards increased glycolysis. This has been shown in BV-2 mouse microglia by Voloboeva et al., where LPS induced an increase in lactate production and a decrease in mitochondrial oxygen consumption and ATP production, assessed by both biochemical assays and a Seahorse extracellular flux analyzer. Further, Klimaszewska-Lata et al. showed pyruvate dehydrogenase inhibition in the N9 mouse microglial cell line following LPS treatment. Primary astrocytes in culture were similarly activated (by a combinatory LPS/interferon-gamma treatment) by Bal-Price et al. and were shown to produce more lactic acid, as measured by levels in the growth medium.

With the knowledge that neuroinflammation is associated with changes in the metabolism of immune and glial cells, one could use noninvasive, clinically translatable metabolic imaging approaches to enable the longitudinal monitoring of neuroinflammatory status, as well as response to anti-inflammatory therapies. Magnetic resonance (MR) techniques include 1H MR spectroscopy (MRS), and studies using this method have suggested that certain 1H-visible metabolites, such as myoinositol, choline and total creatine, could be linked to inflammation, for example in multiple sclerosis (MS) patients. Increased lactate, as detected by 1H MRS, has also been reported in patients with traumatic brain injury (TBI), and pre-clinical work by Lodygensky et al. showed increased lactate in LPS-injected rat pups. However, to date 1H MRS is only used in a narrow set of clinical pathologies, at those centers with the appropriate expertise to interpret the data. Although optimization of 1H MRS for the assessment of neuroinflammation is ongoing, this methodology is not yet standard clinical procedure, and alternative strategies are needed.

13C MRS holds great promise for assessing in vivo metabolism. It allows identification of steady-state metabolism in the brain after intravenous administration of 13C-labeled substrates over more than 1 hour, and has been applied in the healthy mouse, and human brain, the healthy aging brain and AD. However, these methods require long infusions of substrate and extended scan times, which limits clinical translation. Hyperpolarized (HP) 13C MRS is a rapidly expanding alternative imaging technology for visualizing in vivo metabolism. Acquisition occurs in a matter of minutes, thanks to the 10 000-fold increase in sensitivity over thermal 13C MRS. Thus far, HP 13C MRS has been particularly informative in the conversion of HP [1-13C] pyruvate to [1-13C] lactate via the enzyme lactate dehydrogenase, and there has been a focus on applications in cancer and cardiovascular disease. Applications of HP 13C MRS continue to expand, with a wide range of studies including investigations into bacteria, healthy and diseased liver, kidneys, skeletal muscle and brain. Alongside analysis of enzymatic fluxes, HP probes can be used to assess perfusion. For this purpose, metabolically inactive probes such as HP 13C urea can be injected, as demonstrated in tumor imaging by von Morze et al. Further, if copolarized and administered with HP 13C pyruvate, the combination of HP 13C pyruvate and HP 13C urea can provide a simultaneous readout of metabolism and perfusion, as shown by Lau et al. in the rat heart.

Recently, HP 13C MRS has been demonstrated to be applicable to the detection of neuroinflammation in models of MS and TBI, and more broadly in models of inflammation in the liver and arthritic limb; all of these studies have taken advantage of the inflammation-related increase in production of HP lactate. In a mouse model of MS, HP [1-13C] lactate was increased in the corpus callosum, and was associated with a significant increase in activated microglia in that region. This increase was no longer observed in transgenic mice with a deficiency in their ability to activate microglia. HP 13C MRS has been applied to both a rat and mouse model of TBI. Both studies demonstrated an increase in HP 13C lactate/pyruvate ratio following injury and, in mice, the depletion of microglia prevented this increase from occurring.

In this study, we hypothesized that HP 13C MRS could be used to visualize the effect of intracranially administered LPS in the in vivo mouse brain. Given the reports that LPS increases glycolysis in brain microglia and astrocytes, we hypothesized that the induced increase in lactate production could be measured by MRS following administration of HP [1-13C] pyruvate. We also coadministered HP 13C urea in order to control for any changes in perfusion that occurred as a result of the injection, and carried out our study at the clinically relevant field strength of 3 T.

Our results showed that, following intracranial injection of LPS in the mouse brain, HP [1-13C] lactate levels and corresponding HP 13C lactate/pyruvate ratios were significantly increased at 3 and 7 days post-injection in the ipsilateral (injected) voxel. Moreover, upon normalization to the contralateral side, to the HP 13C urea, or both, increased HP [1-13C] lactate levels and increased HP 13C lactate/pyruvate ratios were systematically observed at the day 7 timepoint in the ipsilateral side of LPS-injected animals. Importantly, the day 7 timepoint corresponded to the maximum levels of Iba1 (resting and activated microglia/macrophages) and glial fibrillary acidic protein GFAP (resting and reactive astrocytes), as detected by immunostaining. Overall, our results show that 13C MRS of HP [1-13C] pyruvate and 13C urea can successfully visualize the effect of LPS on the mouse brain.
2 MATERIALS AND METHODS

2.1 Animals

All animal procedures were approved by the Institutional Animal Care and Use Committee of the University of California, San Francisco.

A total of 28 mice were used in this study. Eleven mice (male C57BL/6 J, aged 10–12 weeks, Jackson Laboratories) underwent the imaging protocol described below prior to surgery (the baseline group). These animals were then injected intracranially with either LPS (n = 6) or saline (n = 5), and the imaging protocol was repeated at 3 and 7 days post-surgery. Separate groups of animals were euthanized at the experimental timepoints (n = 5 baseline, n = 6 at 3 days, n = 6 at 7 days) for histological tissue analysis.

2.2 Intracranial injections

Mice were anesthetized with isoflurane in oxygen (isoflurane: 3% induction, 2% maintenance) and fur was shaved from the tops of their heads. After placement in a stereotactic frame (Stoelting, IL, USA) and on a heating pad, a small incision was made in the skin to expose the skull. Following orientation using the bregma and lambda to ensure the head was flat, a small hole was made in the skull (1.55 mm to the right and 1 mm to the front of the bregma, to a depth of 2.8 mm), and 5 μl of either saline or 1 mg/ml LPS in saline (0.005 mg; from Escherichia coli O111:B4, Sigma Aldrich) was injected automatically into the striatum using a Hamilton syringe (Figure 1A). The syringe was then removed and the wound sutured closed. On removal from the anesthesia, animals were ambulatory after 5–10 minutes.

2.3 MR acquisitions

MR acquisitions were performed on a 3 T horizontal MR system (Bruker Biospec) with a dual-tuned 1H/13C mouse head volume coil (2 cm diameter, Doty Scientific, SC, USA). Animals were anesthetized with isoflurane (2% in O2) and a 27G tail vein catheter placed before the animal was positioned in a home-built cradle inside the MR system. T2-weighted images of the brain were acquired for coregistration of the spectral voxels (field of view [FOV] = 20 x 20 mm, matrix 192 x 192, number of averages [NA] = 4, repetition time [TR] = 2 seconds, echo time [TE] = 60 ms, 9 slices of thickness 1 mm; total acquisition time = 10 minutes 8 seconds). Next, 24 μl [1–13C] pyruvate sample (pyruvic acid, 15mM OX63 trityl radical [Oxford Instruments] and 1.5mM Gad-DOTA) and 55 μl 13C urea (6.4 M urea in glycerol, with 23mM OX63 trityl radical) were copolarized for ~1 hour in a Hypersense polarizer (Oxford Instruments, 3.35 T) and rapidly dissolved in a 4.5 ml heated buffer (80mM NaOH in Tris with EDTA) to give a pH 7 solution of 80mM pyruvate and 78mM urea. Immediately following dissolution, 300 μl of this HP solution was injected via the tail vein catheter over 14 seconds. Data were acquired from the start of intravenous injection every 4.2 seconds using a dynamic 2D chemical shift imaging (CSI) sequence (flip angle = 10°, slice thickness 5 mm, FOV = 24 x 24 mm, matrix 8 x 8, TR = 66.4 ms, TE = 1.24 ms, total acquisition time = 1 minute 25 seconds).

FIGURE 1 A, MRS grid used for acquisition of HP 13C MRSI data overlaid on a T2-weighted MR image, and voxels of interest postvoxel shift used for analysis (C = contralateral; I = ipsilateral). Stack of dynamic HP 13C spectra (gray), with summed spectrum at the rear (black), showing the resonances of HP [1–13C] pyruvate, HP [1–13C] lactate and HP 13C urea. B, T2-weighted MR images and summed HP 13C spectra from ipsilateral voxel at each timepoint, for both LPS (red) and saline (blue) animals.
2.4 | Histological analysis

Animals were euthanized using an overdose of ketamine/xylazine and then perfused with ice-cold phosphate-buffered saline solution (0.9%), followed by an ice-cold paraformaldehyde (PFA, 4%) solution. The brains were removed and submerged in PFA for 2 hours, before being transferred to a sucrose gradient (5% for 2 hours, 10% for 2 hours, 20% overnight). Brains were then frozen in liquid nitrogen and stored at −80°C. Cryosections (10 μm) from the imaging voxels were obtained using a microtome (Leica Biosystems, Germany). Immunofluorescence (IF) staining was carried out using the following antibodies: a primary rabbit anti-GFAP (resting and reactive astrocytes, 1:500 dilution, Z0334, Dako), and a primary rabbit anti-Iba1 (resting and activated microglia/macrophages, 1:500 dilution, 019–19741, Wako), both with secondary antibodies goat anti-rabbit fluorescein isothiocyanate (1:500 dilution, 111–096-144, Jackson ImmunoResearch Lab), and a primary rat anti-mouse CD68 antibody (activated microglia/macrophages, 1:200 dilution, MCA1957, Biorad) with secondary goat anti-rat Alexa-Fluor 555 (1:200 dilution, A21434, Invitrogen). Slides were counterstained using Hoechst 33342 (H3570, 1:2000 dilution; Invitrogen), then sections were mounted using Prolong Gold Antifade (P36930; Invitrogen).

Immunofluorescence image acquisition was performed using an inverted microscope (Ti, Nikon). The images were recorded with an Andor Zyla 5.5 sCMOS camera at 20x magnification. Quantitative analyses of IF images from the striatum posterior to the injection site within the MRS imaging voxel were performed using NIH ImageJ (v. 2.0.0). Quantification was executed based on coverage and expressed as a percentage of the total area.

2.5 | Analysis of hyperpolarized 13C data

For each animal at each timepoint, HP 13C 2D CSI data were analyzed using in-house MATLAB code. First, voxel shifts were applied to the raw data to generate data from ipsilateral (injection site) and contralateral voxels (symmetrical from midline, Figure 1A). Spatial voxel shifting was achieved by applying a linear phase shift to the k-space data prior to Fourier transform. Dynamic spectra over time (shown in grey, Figure 1A) were summed to generate a summed spectrum (shown in black, Figure 1A). HP[1–13C] pyruvate, HP[1–13C] lactate and HP[1–13C] urea levels were estimated using a Lorentzian fit. HP[13C] lactate/pyruvate and HP[1–13C] pyruvate/urca ratios were calculated, and subsequently HP[13C] lactate/(pyruvate/urea) (Figure S1). Heatmaps of individual metabolites’ SNR (HP[1–13C] pyruvate, HP[1–13C] lactate and HP[13C] urea) were generated at each timepoint using in-house MATLAB code and displayed using SIVIC* (Figure 2). In Figure 3, all values (individual metabolites and all ratios) have been normalized to data from the contralateral side of the brain to eliminate intra-animal variability.

2.6 | Statistical analyses

For all CSI data, a repeated measures one-way analysis of variance (ANOVA) with a Tukey multiple comparisons test was used to establish differences within treatment groups over time, for each side of the brain. Histological data were analyzed using two-way ANOVAs with Tukey multiple comparisons tests to establish significant differences between timepoints and sides of the brain. The graphs show standard deviation, and statistical significance was considered when P ≤ 0.05.

3 | RESULTS

Figure 1B shows summed HP 13C spectra at each timepoint of interest (baseline, 3 and 7 days) for an LPS- (red) and a saline-treated (blue) mouse. The resonances of HP[13C] urea (163 ppm), HP[1–13C] pyruvate (171 ppm) and its metabolic product HP[1–13C] lactate (183 ppm) were detected at all experimental timepoints, with increased lactate visible at 7 days in the LPS-treated animal. Figure 2 shows heatmaps of the individual metabolites of HP[1–13C] lactate, HP[1–13C] pyruvate and HP[1–13C] urea from an LPS-injected animal at each timepoint of interest (baseline, 3 and 7 days).

3.1 | HP[1–13C] lactate levels, HP[1–13C] lactate/pyruvate ratio and HP[13C] lactate/(pyruvate/urea) ratio are increased in the ipsilateral voxel following LPS injection

On full quantification, our results show that HP[1–13C] lactate levels were significantly increased in LPS-treated animals in the injected ipsilateral voxel at both 3 and 7 days compared with baseline levels (Figure S1A; 3 days: 175 ± 33% of baseline levels, P = 0.042; 7 days: 195 ± 32% of baseline levels, P = 0.036). In contrast, no changes in HP[1–13C] lactate levels were observed in the contralateral voxel. In the saline-injected group,
HP [1–13C] lactate levels remained unchanged in both contralateral and ipsilateral voxels throughout the experimental period. When looking at HP 13C urea or HP [1–13C] pyruvate levels, no significant changes in the levels of either metabolite were detected over time in either saline- or LPS-injected groups in either contralateral or ipsilateral voxels (Figure S1A).

As shown in Figure S1B, HP13C lactate/pyruvate ratios were significantly increased in the ipsilateral side of the LPS brains at 3 and 7 days compared with baseline (3 days: 165 ± 28% of baseline, \(P = 0.046 \); 7 days: 263 ± 16% of baseline, \(P = 0.001 \)). This ratio was also significantly increased between 3 and 7 days (Figure S1B; 7 days: 159 ± 27% of 3 day data, \(P = 0.043 \)). Further, HP 13C lactate/pyruvate ratios were significantly increased in the contralateral side of the LPS brains at 7 days compared with baseline data (Figure S1B; 167 ± 33% of baseline, \(P = 0.004 \)). In saline-injected animals, no significant changes in HP13C lactate/pyruvate ratios were detected in either ipsilateral or contralateral voxels at any timepoint.

No significant changes were observed in HP 13C pyruvate/urea ratios either in the LPS- or saline-treated animals (Figure S1B).

Finally, our results show that the HP 12C lactate/pyruvate/urea ratios were significantly increased at 7 days compared with baseline in the ipsilateral side of the LPS-injected animals (Figure S1B; 347 ± 30% of baseline, \(P = 0.012 \)). No significant changes in this ratio could be observed in either the contralateral side of LPS-injected animals or the ipsilateral and contralateral voxels in the saline-injected animals.

3.2 | HP [1–13C] lactate levels, HP 13C lactate/pyruvate ratio and HP 13C lactate/(pyruvate/urea) ratio are increased following LPS injection, upon normalization to contralateral data

Following normalization to contralateral data, our results show that HP [1–13C] lactate levels were significantly increased in LPS-treated animals at 7 days compared with baseline levels and levels at 3 days (7 days: 164 ± 19% of baseline, \(P = 0.0007 \); 136 ± 19% of 3 days, \(P = 0.018 \); Figure 3A). In the saline-injected group, HP [1–13C] lactate levels remained unchanged throughout the experimental period. When looking at HP 13C urea or HP [1–13C] pyruvate levels, no significant changes in the levels of either metabolite were detected over time in either saline- or LPS-injected groups (Figure 3A).

As shown in Figure 3B, HP 13C lactate/pyruvate ratios were significantly increased in the LPS brains at 7 days compared with baseline (7 days: 150 ± 28% of baseline, \(P = 0.0097 \)). In saline-injected animals, no significant changes in HP 13C lactate/pyruvate ratios were detected at any timepoint. Figure 3B also shows that we observed no significant changes in HP 13C pyruvate/urea ratios in either LPS- or saline-treated animals.

Finally, our results show that the HP 13C lactate/(pyruvate/urea) ratios were significantly increased at 7 days compared with both baseline and 3 day data (7 days: 169 ± 23% of baseline \(P = 0.026 \); 151 ± 23% of 3 day data, \(P = 0.019 \); Figure 3B). No significant changes in this ratio were observed in the saline-injected animals.
3.2.1 | Iba1, CD68 and GFAP levels are modulated following LPS injection

Figure 4 shows the results for Iba1 (resting and activated microglia/macrophages), CD68 (activated microglia/macrophages) and GFAP (astrogliosis) immunostaining performed in the ipsilateral (I, large square) and the contralateral side (C, small insert) on LPS-injected animals at baseline, 3 and 7 days. All values for immunostaining from saline-injected animals were below 0.16% coverage (data not shown).

As shown in Figure 4A, Iba1 staining was significantly increased in the ipsilateral side of LPS-treated animals at 7 days compared with baseline data (7 days: 1096% of baseline, \(P < 0.0001 \); 363% of day 3 data, \(P = 0.0006 \)). At the 7-day timepoint, Iba1 staining was also significantly increased in the ipsilateral side compared with contralateral (835% of contralateral, \(P < 0.0001 \)). No significant differences between ipsilateral and contralateral sides were observed at baseline or 3 days.

As depicted in Figure 4B, GFAP staining was elevated in the ipsilateral side at 3 days postinjection compared with the ipsilateral side at baseline and 7 days, indicating that monocyte activation reached a maximum level at that timepoint (3 day data: 1752% of baseline, \(P = 0.0008 \); 557% of day 7 data, \(P = 0.003 \)). At the 3 day timepoint, CD68 staining was also significantly increased in the ipsilateral side compared with contralateral (2769% of contralateral, \(P = 0.005 \)). No significant differences between ipsilateral and contralateral sides were observed at baseline or 7 days.
In this study, we demonstrated our ability to image altered brain metabolism following the intracranial injection of LPS. Metabolism was assessed using 13C MRS following an intravenous injection of HP $[1^{-13}$C] pyruvate and HP 13C urea at the clinically relevant field strength of 3 T.

Overall, we observed significant changes over time in the detected HP $[1^{-13}$C] lactate, HP 13C lactate/pyruvate and HP 13C lactate/(pyruvate/urea) only in the LPS-treated animals and not in the saline-injected group. This result is indicative of the fact that the metabolic changes observed at 7 days by HP 13C MRS were linked to the presence of LPS rather than being a side effect of the surgical procedure.

We did not observe any significant changes in either HP $[1^{-13}$C] pyruvate or HP 13C urea at any timepoint at the group level, which indicates that the in situ delivery of HP substrates is not significantly different between groups. Recent work by Miller et al. has questioned our understanding of the cerebral HP signal, and the authors demonstrated a vast increase in metabolic signal when the blood–brain barrier (BBB) is opened by mannitol, allowing more HP $[1^{-13}$C] pyruvate to enter the brain. The literature discussing BBB leakiness as a result of LPS administration is inconclusive, with a review by Varatharaj et al. observing BBB disruption in only 60% of studies considered. Nevertheless, although we have not carried out contrast-enhanced imaging in this study, the fact that we did not observe any significant changes in urea or pyruvate between control and LPS animals suggests that the BBB was not significantly affected by LPS injections.

HP $[1^{-13}$C] lactate alone was significantly increased at 7 and 3 days compared with baseline in the ipsilateral side of the LPS group. On normalization to HP $[1^{-13}$C] pyruvate, which is typically performed to account for variability in pyruvate injection, the change at 7 days was
exacerbated ($P = 0.001$ compared with $P = 0.036$). Not only was ipsilateral HP 13C lactate/pyruvate significantly increased at 7 and 3 days compared with baseline, but further, at 7 days it was increased compared with 3 days. Upon normalization to HP 13C urea, the 3-day increase in HP 13C lactate/pyruvate was no longer significant compared with baseline data. This result may indicate that, although no significant changes were measured when looking at HP 13C urea or [1-13C] pyruvate/urea data in group analyses, animal-specific changes in delivery due to experimental technical variations (eg, injection rate or percentage polarization of the pyruvate) may have contributed to the increased HP 13C lactate/pyruvate ratio observed at the day 3 timepoint. However, at the day 7 timepoint, the observed significant increase in HP [1-13C] lactate production remained following normalization, indicating that the increased HP [1-13C] pyruvate to HP [1-13C] lactate conversion was robust enough to be detected by 13C MRS at 3 T.

HP [1-13C] pyruvate to HP [1-13C] lactate conversion was not expected to be altered in the contralateral side of the brain. We observed no significant changes, except for a significantly increased HP 13C lactate/pyruvate at 7 days compared with baseline. This unforeseen increase may be due to partial volume effects, as the HP 13C lactate/pyruvate ratio is dramatically increased in the adjacent ipsilateral side at that timepoint (263% increase), or experimental variability between injections. Upon normalization to HP 13C urea, the HP 13C lactate/pyruvate/urea ratio was no longer different between baseline and 7 days, which demonstrates the value of co-injecting the HP 13C urea to specifically elucidate metabolic changes, independent of experimental variation in intravenous injections.

To provide an internal normalization, and to account for biological variability between animals, in vivo data were next normalized to the contralateral side of the brain. Once again, significant differences were only observed for HP [1-13C] lactate, HP 13C lactate/pyruvate and HP 13C lactate/([pyruvate]/urea) data in the LPS-treated group, but not in saline-injected animals, indicating that the surgical procedure did not affect brain metabolism. Specifically, upon normalization to contralateral data, differences in HP [1-13C] lactate, HP 13C lactate/pyruvate and HP 13C lactate/([pyruvate]/urea) between 7-day and baseline data remained highly significant. Differences in HP [1-13C] lactate and HP 13C lactate/pyruvate between 3-day and baseline data were no longer observed. For HP [1-13C] lactate and HP 13C lactate/([pyruvate]/urea) parameters, data were significantly different between 3 and 7 days. Overall, data normalized to contralateral brain strengthen the results from the ipsilateral analysis, confirming that HP [1-13C] pyruvate to HP [1-13C] lactate conversion was increased independently of delivery at 7 days compared with baseline.

To confirm the inflammatory response induced by LPS, we carried out histological analysis of animals at each timepoint studied by HP 13C MRS. Iba1 and GFAP staining confirmed a substantial increase in microglia/macrophages and astrocytes at 7 days following LPS injection, respectively (compared with both 7-day contralateral data and baseline/3-day ipsilateral data). This result was in line with several previous studies. Go et al. demonstrated a significant increase in microglia at 7 days following an intrahippocampal LPS injection, and Sharma et al. showed a similar increase, this time following an intracerebroventricular injection, and additionally observed an increase in GFAP-positive astrocytes. Future studies could clarify the homogeneity and extent of the LPS response throughout the brain relative to the injection site. However, such experiments are beyond the scope of the current study, which focuses on comparing ipsilateral vs contralateral voxel for validation of the imaging methods.

When considering the histology alongside our in vivo data, our results show that the time of the maximum HP 13C lactate increase as observed by MRS (7 days) coincided with the time of maximal Iba1 and GFAP staining. An increase in the number or a change in the activation status of these cell types may contribute to the increased HP [1-13C] pyruvate to [1-13C] lactate conversion.

Increased numbers of microglia/macrophages and astrocytes in the ipsilateral LPS-injected brain may be responsible for this increased conversion, given the 1096 and 485500% increases in cell types, respectively, compared with baseline values. Resting microglia express the necessary genes for glycolysis; resting macrophages use both glycolysis and oxidative phosphorylation to produce ATP; and resting astrocytes have been shown to produce lactate in culture. Therefore, the increase in number alone may be sufficient to be responsible for the increased MRS signal, irrespective of activation status.

Activation of these glial cells may also play a role. CD68, one of the most commonly used markers for microglial activation, showed a significant but small increase in the ipsilateral side of the LPS-treated brain at 3 days compared with baseline and 7 days. Interestingly, this timepoint of maximum activation does not coincide with the timepoint of the maximum HP [1-13C] lactate signal. However, it is recognized that assessing microglial/macrophage activation is not trivial, and likely necessitates measurement of a wide range of markers; such biological characterization is largely beyond the scope of this study. Investigation of the association between CD68 levels and glycolysis would be required to conclude further on the contribution of CD68-activated microglia to the detected in vivo HP signal. When considering the contribution of astrocytes, maximum astrogliosis was observed at 7 days (the timepoint of maximum HP [1-13C] lactate). Studies have reported that GFAP levels as measured by IF are linked to reactive astrocytes. It is thus plausible that astrogliosis as observed at 7 days may contribute to the increased HP 13C pyruvate to 13C lactate conversion.

Considering activation and cell number, our data suggest that the large increase in the number of both cell types (as assessed by percentage coverage in IF) is likely the driving factor for the increased HP 13C lactate. However, one cannot distinguish the relative contribution of each cell type to the detected HP [1-13C] lactate signal. Studies using modulations of microglia or astrocytes levels could help elucidate cell-specific contributions to the HP signal. Guglielmetti et al. showed increased mononuclear phagocytes in the brain alongside increased HP 13C lactate/pyruvate in a MS model, and in a TBI model demonstrated that increased HP 13C lactate/pyruvate following injury was no longer
observed upon microglial depletion. Similarly, Lewis et al.60 showed increased lactate production in the heart following a myocardial infarction, which was normalized following monocyte/macrophage depletion. Future bioreactor studies61 of the individual cell types could also be valuable to decipher the contributions of specific cell types.

Only a few HP studies have been carried out on a preclinical, murine-dedicated 3 T system.62,63 This study contributes to the validation of HP acquisitions at this clinically relevant field strength, while taking advantage of the improved gradient strength, leading to higher spatial resolution compared with a clinical 3 T. We opted for a 2D CSI dynamic acquisition instead of a single timepoint to remove potential bias from variability in inter-user injection procedures, which might affect the kinetics of HP [1-13C] pyruvate and HP [1-13C] lactate detected by MRS. In future studies, calculations of rates of conversion (kdp) could be carried out, providing sufficient SNR is achieved, such as in work by Park et al. in the nonhuman primate brain.64

3.4 | CONCLUSION

We have shown that we can successfully detect increased HP [1-13C] lactate production in vivo following LPS injection into the mouse brain, coinciding with an increased number of microglia/macrophages and astrocytes as visualized by histology. Many diseases have inflammatory components, and HP 13C MRS could be a valuable additional tool with which to assess inflammatory status noninvasively and longitudinally.

ACKNOWLEDGEMENTS

This work was supported by research grants: NIH R01NS102156, Cal-BRAIN 349087, NMSS research grant RG-1701-26630, Hilton Foundation - Marilyn Hilton Award for Innovation in MS Research #17319, Dana Foundation: The David Mahoney Neuroimaging program, and the NIH Hyperpolarized MRI Technology Resource Center #P41EB013598. Fellowship from the NMSS FG-1507-05297 (to C.G.).

ORCID

Lydia M. Le Page © https://orcid.org/0000-0002-3807-4772

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Le Page LM, Guglielmetti C, Najac CF, Tiret B, Chaumeil MM. Hyperpolarized 13C magnetic resonance spectroscopy detects toxin-induced neuroinflammation in mice. *NMR in Biomedicine.* 2019;e4164. https://doi.org/10.1002/nbm.4164