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3 Department of Neurology, Division of Brain Mapping
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Abstract. We propose an extended graph-shifts algorithm for image segmenta-
tion and labeling. This algorithm performs energy minimization by manipulating
a dynamic hierarchical representation of the image. It consists of a set of moves
occurring at different levels of the hierarchy where the types of move, and the
level of the hierarchy, are chosen automatically so as to maximally decrease the
energy. Extended graph-shifts can be applied to a broad range of problems in
medical imaging. In this paper, we apply extended graph-shifts to the detection
of pathological brain structures: (i) segmentation of brain tumors, and (ii) de-
tection of multiple sclerosis lesions. The energy terms in these tasks are learned
from training data by statistical learning algorithms. We demonstrate accurate re-
sults, precision and recall in the order of 93%, and also show that the algorithm
is computationally efficient, segmenting a full 3D volume in about one minute.

1 Introduction

Automatic detection of pathological brain structures is a problem of great practical
clinical importance. From the computer vision perspective, the task is to label regions
of an image into pathological and non-pathological components. This is a special case
of the well-known image segmentation problem which has a large literature in computer
vision [1,2,3] and medical imaging [4,5,6,7,8,9,10]

In previous work [11], we developed a hierarchical algorithm called graph-shifts
which we applied to the task of segmenting sub-cortical structures formulated as energy
function minimization. The algorithm does energy minimization by iteratively trans-
forming the hierarchical graph representation. A big advantage of graph-shifts is that
each iteration can exploit the hierarchical structure and cause a large change in the seg-
mentation, thereby giving rapid convergence while avoiding local minima in the energy
function. The algorithm was limited, however, because it required the number of model
labels to be fixed and the number of model instances to be known. For example, ev-
ery brain has a single ventricular system. Nevertheless it was effective for segmenting
sub-cortical structures in terms of accuracy and speed. However, such an assumption is
not practical in the case of pathological structures, i.e., the number of multiple sclerosis
lesions is never known a priori.

In this paper, we present a generalization which we call the extended graph-shifts
algorithm. This is able to dynamically create new model instances and hence deal with

N. Ayache, S. Ourselin, A. Maeder (Eds.): MICCAI 2007, Part I, LNCS 4791, pp. 985–993, 2007.
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Fig. 1. An intuitive example of the extended graph-shifts algorithm. It shows a spawn shift being
selected (middle panel, double-circle) and then the process of updating the graph hierarchy with
the new root-level model node (right panel).

situations where the number of structures in the image is unknown. Hence we can ap-
ply extended graph-shifts to the detection of pathological structures. We formulate these
tasks as energy function minimization where statistical learning techniques [12,13] are
used to learn the components of the energy functions. As we will show, extended graph-
shifts is also a computationally efficient algorithm and yields good results on the detec-
tion of brain tumors and multiple sclerosis lesions.

The hierarchy is structured as a set of nodes on a series of layers. The nodes at the
bottom layer form the image lattice. Each node is constrained to have a single parent.
All nodes are assigned a model label which is required to be the same as its parent’s
label. There is a neighborhood structure defined at all layers of the graph. A graph shift
is a transformation of the hierarchical structure and thus, the model labeling on the
image lattice. There are two types of graph-shifts: (1) changing the parent of a node to
the parent of a neighbor with a different model label thus altering the model label of the
node and its descendants, and (2) spawning a new sub-graph from a node to the root-
level that creates a new model instance. We refer the reader to [11] for a discussion of
the first type of shift and restrict the discussion in this paper to the new spawn shift. The
spawn shift is illustrated in figure 1, which shows a node being selected to spawn a new

Fig. 2. Extended graph-shifts
can detect small structures.
Left-col.: image and labels.
Middle-col.: initialization.
Top-right: no spawning
(graph-shifts), bottom-right:
with spawning.

instance of model m2 and then the creation of the new
root-level model node. Figure 2 shows a synthetic ex-
ample comparing the original graph-shifts with the ex-
tended algorithm to demonstrate the importance of the
spawn-shift to detect small, detached structures. In this
case, without spawning, only one of four small structures
is detected properly. The extended graph-shifts algorithm
minimizes a global energy function and at each iteration
selects the shift that maximally decreases the energy.

We apply this algorithm to brain tumor (glioblastoma
multiforme, GBM) and multiple sclerosis detection and
segmentation. Due to the clinical importance of automatic
detection for both diagnosis and treatment, each of these
applications has received much attention. Clark et al. [4]
integrate knowledge-based techniques and multi-spectral
histogram analysis to segment GBM tumors in a multi-
channel feature space. Corso et al. [5] extend the Segmentation by Weighted Aggrega-
tion (SWA) algorithm [3] to integrate Bayesian model classification into the bottom-up
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aggregation process to rapidly detect GBM tumors. Fletcher-Heath et al. [6] take a fuzzy
clustering approach to the segmentation followed by 3D connected components to build
the tumor shape. Prastawa et al. [7] present a detection/segmentation algorithm based
on learning voxel-intensity distributions for normal brain matter and detecting outlier
voxels, which are considered tumor.

Akselrod-Ballin et al. [8] present a sequential approach to segmentation and classi-
fication by using the aggregates from the SWA algorithm as features in a decision tree-
based classification for multiple sclerosis. Van Leemput et al. [9] and Dugas-Phocion
et al. [10] each use a probabilistic model outlier detection algorithm using a generative
i.i.d. model of the normal brain for multiple sclerosis analysis. We next describe the ex-
tended graph shifts algorithm, and then we report the experimental results in section (3).

2 Extended Graph-Shifts

First, we discuss the hierarchical graph structure in section (2.1). Then in section (2.2),
we review the recursive energy formulation that makes it possible to evaluate graph
shifts at any level in the hierarchy. Finally, we present the extended graph-shifts algo-
rithm in section (2.3), the pseudo-code for which is in figure 4.

2.1 The Hierarchical Graph Structure

We define a graph G to be a set of nodes μ ∈ U and a set of edges. The graph is
hierarchical and composed of multiple layers. The nodes at the lowest layer are the
elements of the lattice D and the edges are defined to link neighbors on the lattice. The
coarser layers are computed recursively, as will be described in section (2.3). Two nodes
at a coarse layer are joined by an edge if any of their children are joined by an edge.

The nodes are constrained to have a single parent (except for the nodes at the top
layer) and every node has at least one child (except for nodes at the bottom layer). We
use the notation C(μ) for the children of μ, and A(μ) for the parent. A node μ on the
bottom layer (i.e. on the lattice) has no children, and hence C(μ) = ∅. We use the
notation N(μ, ν) = 1 to indicate that nodes μ, ν on the same layer (or lattice D) are
neighbors, with N(μ, ν) = 0 otherwise.

m1

m1 m1

m2

m2m2

Spawn

Spawn Connections

Fig. 3. Example of graph-structure in-
cluding the connections to the spawn
node

At the top of the hierarchy, we define a spe-
cial root layer of nodes comprised of a single
node for each of the K model labels. We write
μk for these root nodes and use the notation mk

to denote the model variable associated with it.
Each node is assigned a label that is constrained
to be the label of its parent. Since, by construc-
tion, all non-root nodes can trace their ancestry
back to a single root node, an instance of the
graph G is equivalent to a labeled segmentation
{mμ : μ ∈ D} of the image. Finally, we add a
spawning node which is the neighbor of all nodes in the forest except the root layer
nodes. The spawning node can take any model label. It is used to enable a node to
switch to any model, and does not make a direct contribution to the energy function.
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Such a construct is used to simplify the representation of potential shifts: both types of
shifts are now simply edges in the graph.

2.2 The Energy Models

The input image I is defined on a lattice D of pixels/voxels. For the medical image
applications being studied this is a three-dimensional lattice. The lattice has the standard
6-neighborhood structure. The task is to assign each voxel μ ∈ D to one of a fixed set
of K models mμ ∈ {1, ..., K}. This assignment corresponds to a segmentation of the
image into K , or more, connected regions.

We want the segmentation to minimize an energy function criterion:

E[{mω : ω ∈ D}] =
∑

ν∈D

E1(φ(I)(ν), mν ) +
1
2

∑

ν∈D,μ∈D:
N(ν,μ)=1

E2(I(ν), I(μ), mν , mμ).

(1)
This energy represents is a hybrid discriminative-generative model and is related to
the popular conditional random fields models [14]. The first term E1 is a unary term
which gives local evidence that the pixel μ takes model mμ, where φ(I)(μ) denotes
a nonlinear filter of the image evaluated at μ. In this paper, we set E1(μ, mμ) =
− logP (mμ|φ(I)(μ)) where P (mμ|φ(I)(μ)) is the probability distribution for the la-
bel mμ at voxel μ ∈ D conditioned on the response of a nonlinear filter φ(I)(μ). This
filter φ(I)(μ) depends on voxels within a local neighborhood of μ, and hence takes lo-
cal image context into account. φ(I) is learned from training data from a set of features
using boosting techniques [12,13,15]. We discuss the feature-set and learning in more
detail in section 3. The second term E2 is a pairwise term which penalizes the length of
the segmentation boundaries. It is written as, where δ is the standard delta function:
E2(I(ν), I(μ), mν , mμ) = 1 − δmν ,mμ . We don’t use the intensities I(·) in the binary
term in this formulation but suggest potential variations in [11].

We now recursively assign an energy to all nodes, and neighboring node pairs in
the hierarchy. This enables us to rapidly compute the changes in energy caused by
extended graph-shifts at any level of the hierarchy, and will be used in the definition of
the extended graph-shifts algorithm.

The unary term for assigning a model mμ to a node μ is defined recursively by:

E1(μ, mμ) =

⎧
⎪⎨

⎪⎩

E1 (φ(I)(μ), mμ) if C(μ) = ∅∑

ν∈C(μ)

E1(ν, mμ) otherwise . (2)

The pairwise energy term E2 between nodes μ1 and μ2, with models mμ1 and mμ2 is
defined recursively by:

E2(μ1, μ2, mμ1 , mμ2) =
⎧
⎪⎪⎨

⎪⎪⎩

E2(I(μ1), I(μ2), mμ1 , mμ2) if C(μ1) = C(μ2) = ∅∑

ν1∈C(μ1), ν2∈C(μ2) :
N(ν1,ν2)=1

E2(ν1, ν2, mμ1 , mμ2) otherwise (3)

where E2(I(μ1), I(μ2), mμ1 , mμ2) is the edge energy for pixels/voxels in equation (1).
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2.3 Extended Graph-Shifts

We first initialize the graph hierarchy using a stochastic algorithm which recursively
coarsens the graph. The coarsening proceeds in three stages. First, we sample a binary
edge activation variable eμν ∼ γU({0, 1}) + (1 − γ) exp [−α |I(μ) − I(ν)|], for all
neighbors μ, ν s.t. N(μ, ν) = 1 in the current graph layer Gt. (U is the uniform dis-
tribution and γ is a fixed weight). Second, we compute connected components to form
node-groups. The size of a connected component is constrained by a threshold τ , which
governs the relative degree of coarsening between two graph layers. Third, we create a
node at the next graph layer for each component. Nodes in this new layer are connected
if any two of their children are connected. The algorithm executes this coarsening pro-
cedure until the number of node in the layer GT falls below a threshold β (related to
the number of models). Finally we add a model layer GM directly above layer GT so
that each node in GT is the child of its best fit node in GM (using the recursive unary
energy E1(μ, mμ) from (2)). We do not need to enforce the constraint that each node
in GM has at least one child in GT because the new spawn shift makes it possible to
create new (connected) nodes on GM for any model type.

The extended graph-shifts algorithm enables a node μ to change its label to any
model. This is an extension of the graph-shifts algorithm [11], which allowed a node to
change its model only to the model of one of its neighboring nodes (the children of the
node must also change to the same model). This original type of shift is straightforward
in the hierarchical structure since it corresponds to allowing node μ to change its parent
to the parent A(ν) of a neighboring node ν. In the original graph-shifts algorithm, a list
of potential shifts (between nodes having different models only) is maintained. After
each shift is taken, this list is quickly updated (the number of updates is logarithmic in
the size of the voxel lattice). Thus, graph-shifts can rapidly do the minimization.

In this extension, we permit a node to switch to any other model while maintaining this
ability to rapidly and deterministically manage the potential shifts by modifying the graph
structure. We create a new spawning node to which all nodes in the graph are connected
(see figure 3). This spawning node can take the label of any model in the set, and when
evaluating the shift on the edge connecting a node to the spawning node, all possible
models are evaluated. But, the spawn node contributes nothing to the energy function. A
node μ taking a spawning graph shift causes a new sub-graph to be dynamically created.
The new sub-graph is a chain of nodes from μ to the top of the hierarchy, i.e., a new
ancestry chain A(μ) is created that terminates at a new model level node on GM .

Each change of node model will correspond to a change of energy (because the de-
scendant nodes, including the lattice nodes, are also required to make the same change).
We need to efficiently compute the change of energy for all nodes and for all changes
of models in order to select the best shift to make in the hierarchy. Fortunately, these
shift-gradients can be computed efficiently using the recursive formulae given above in
equations (2) and (3). For example, the change in energy due to node μ changing from
model mμ to model m̂μ is given by:

ΔE(mμ → m̂μ) = E1(μ, m̂μ) − E1(μ, mμ) +
∑

η:N(μ,η)=1

[E2(μ, η, m̂μ, mη) − E2(μ, η,mμ, mη)] . (4)
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We maintain both the original and the spawning shifts in a single list. Computing the
shift gradient is equivalent for both types, but effecting a spawn shift, while still loga-
rithmic in order, has a higher computational cost in creating the new sub-graph. When
computing a potential graph-shift, we first evaluate the shift-gradient for all of the
node’s neighbors. Next, we evaluate the shift-gradient to the spawn node, only con-
sidering those models for which there was no neighbor. We store those shifts which
have negative gradients in an unsorted list (only the best potential shift is stored per
node). The size of this list is generally small (empirically about 2% of those possible),
very few neighbors in the graph have different models and a spawn shift more often
increases the energy than decreases due to the additional boundary energy cost.

Extended graph-shifts proceeds by selecting the steepest shift-gradient in the list and
makes the corresponding shift in the hierarchy. This changes the labels in the part of the
hierarchy where the shift occurs, but leaves the remainder of the hierarchy unchanged.

EXTENDED GRAPH-SHIFTS
Input: Volume I on lattice D.
Output: Label volume L on lattice D.
0 Initialize graph hierarchy.
1 Compute exhaustive set of potential shifts S.
2 while S is not empty
3 s ← the shift in S that best reduces the energy.
4 Apply shift s to the graph.
5 if (s is a spawn)
6 Build new subgraph and create model.
7 Recompute affected shifts and update S.
8 Compute label volume L from final hierarchy.

Fig. 4. Extended graph-shifts pseudo-code

If the shift is a spawn, then a
new sub-graph is dynamically gen-
erated. Neighbor connectivity for a
newly generated node up the graph
is inherited from the node that ini-
tiated the spawn. The algorithm re-
computes the shift-gradients in the
changed part of the hierarchy and
updates the weight list. We re-
peat the process until convergence,
when the shift-gradient list is empty
(i.e. all shift-gradients are positive
or zero). The algorithm tends to ini-
tially prefer shifts at coarse levels
since those typically alter the labels
of many nodes on the lattice and cause large changes in energy. As the algorithm con-
verges, it tends to select shifts at finer levels, but this trend is not monotonic, see exam-
ples in [11].

3 Detection of Pathological Brain Structures

We apply extended graph-shifts to detecting and segmenting brain tumors and multiple
sclerosis lesions. For the task of modeling the different pathologies, we build a cascade
of boosted discriminative classifiers [12,13,15]. Each classifier in the cascade is trained
using a set of about 3000 features including the standard location and Harr-based filters
but also some novel features including inter-channel box-filters and gradients, local in-
tensity curve-fitting, and morphology filters. The filters are combined to define the unary
term in equation (1). As we demonstrate below, the combination of the boosting-based
discriminative modeling and the extended graph-shifts algorithm provides a powerful,
general approach to pathology detection and segmentation.
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3.1 Segmenting Tumors

We work with a set of 20 expert annotated GBM scans. Each scan is comprised of T1
(with and without contrast), Flair and T2 weighted low-resolution MR scans (about
1 × 1 × 10 on average); this is a common instance for diagnostic brain tumor imaging.
All sequences from each patient are co-registered (to the T1 with contrast sequence),
skull-stripped, and intensity standardized using the standard FSL tools [16]. We learn
models of three separate classes: brain-and-background, tumor (including enhancing
and necrotic regions), and edema; half of the dataset was arbitrarily selected for training
and the other half for testing.

In table 1(a), we give quantified volume scores for the segmentation accuracy on the
dataset. Let T be the true positive, Fp be the false positive, and Fn be the false negative.
The Jaccard score is T/(T + Fp + Fn), the precision is T/(T + Fn), and the recall is
T/(T +Fp). To the best of our knowledge, these scores are superior to the current state-
of-the-art in tumor and edema segmentation. However, we note that a direct comparison
is difficult due to different data, manual raters, and others. The Jaccard scores for Clark
et al. [4] are about 70%, for Prastawa et al. [7] are 80% (both on very limited datasets
with seven and three patients respectively), and Corso et al. [5] is 85% (on training
data with of five cases) The extended graph-shifts algorithm is also the fastest among
these taking about a minute to perform the segmentation on each of these scans (pre-
processing takes about five minutes). We show some examples in figure 5.

Manual Graph-Shifts Manual Graph-Shifts

Fig. 5. An example of the brain tumor segmentation. Left case is from the training set and right
case is from the testing set. Edema is outlined in red and tumor in green. Top row is the contrast-
enhanced T1 weighted sequence, and bottom row is the flair sequence. The results are obtained
automatically. Please view in color.

3.2 Detecting MS Lesions

We work with a set of 12 high-lesion-load multi-sequence MR scans. The voxel res-
olution of these scans is 1 × 1 × 3. In this case, we train a two-class discriminative
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probability model for lesion/not-lesion using the manually annotated dataset. Again,
the dataset was split in half for training and testing. Table 1(b) gives the detection rate

Fig. 6. Extended graph-shifts detects small lesions.
Left: manual, middle: no spawning, right: with
spawning. Please view in color.

for the lesion. The detection rate (re-
call) stresses the importance of pick-
ing up most of the lesion mass. Due
to its diffuse nature, there is high-
variability in expert raters, and de-
tecting each lesion “kernel” is most
important. These scores are compa-
rable to the state-of-the-art in auto-
matic lesion detection (#Hit is 80%-
85% in [8] and [9] give graphs with
varying thresholds showing scores in
the 70%s through 90%s). In figure
6 we show some qualitative results
comparing the original graph-shifts to the extended algorithm; the benefit of the spawn-
ing functionality is clear from these images. Many smaller lesions are missed by the
original algorithm.

Table 1. Quantified accuracy of the extended graph-shifts algorithm on two pathologies

(a) Brain Tumor

Training Set Testing Set
Jaccard Precision Recall Jaccard Precision Recall

Tumor 87% 93% 92% 86% 95% 90%
Edema 87% 90% 96% 88% 89% 98%

(b) Multiple Sclerosis

Lesion
Detection Rate

Training Set 86%
Testing Set 81%

4 Conclusion

In this paper, we define the extended graph-shifts algorithm for segmenting and label-
ing image data. Extended graph-shifts is a hierarchical energy minimization algorithm.
It has potential application in a broad range of problems where the components of the
energy functions can be learned from labeled training data using techniques from sta-
tistical learning. This extension generalizes our recent graph-shifts algorithm so that it
can now deal with an unknown number of model instances. Hence, the algorithm can
be applied to the task of detecting pathological structures, where the number of regions
is unknown in advance. Extended graph-shifts retains the advantages in speed and ro-
bustness to local minima which were demonstrated for the graph-shifts algorithm. We
applied extended graph-shifts to the tasks of detecting brain tumors and multiple scle-
rosis lesions. Our results were accurate (precision and recall on the order of 93%) and
fast (segmenting an entire 3D volume, 256 × 256 × 50, in about a minute).

Acknowledgement. This work was funded by the National Institutes of Health through
the NIH Roadmap for Medical Research, Grant U54 RR021813 entitled Center for
Computational Biology (CCB).
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