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Comprehensive Analysis of Hypermutation in Human Cancer

A full list of authors and affiliations appears at the end of the article.

Summary

We present an extensive assessment of mutation burden through sequencing analysis of >81,000 

tumors from pediatric and adult patients, including tumors with hypermutation caused by 

chemotherapy, carcinogens, or germline alterations. Hypermutation was detected in tumor types 

not previously associated with high mutation burden. Replication repair deficiency was a major 

contributing factor. We uncovered new driver mutations in the replication-repair-associated DNA 

polymerases and a distinct impact of microsatellite instability and replication repair deficiency on 

the scale of mutation load. Unbiased clustering, based on mutational context, revealed clinically 

relevant subgroups regardless of the tumors' tissue of origin, highlighting similarities in 

evolutionary dynamics leading to hypermutation. Mutagens, such as UV light, were implicated in 

unexpected cancers, including sarcomas and lung tumors. The order of mutational signatures 

identified previous treatment and germline replication repair deficiency, which improved 

management of patients and families. These data will inform tumor classification, genetic testing, 

and clinical trial design.

Graphical abstract

A large-scale analysis of hypermutation in human cancers provides insights into tumor evolution 

dynamics and identifies clinically actionable mutation signatures.
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Introduction

Mutations in cancer genes can be inherited, spontaneously arise in premalignant cells, or be 

acquired over time during tumor evolution (Stratton et al., 2009). It is often difficult to 

determine, from the sequencing of the diagnostic specimen alone, which mutations arose 

first or whether their order is important in driving tumorigenesis and/or enabling therapeutic 

resistance. The ultimate aggregate mutation count, termed mutation burden, is influenced by 

the tumor type, but is also affected by mutagenic processes shared across cancer types. All 

together, these factors contribute to only modest variations in burden; most tumors have a 

relatively low number of somatic mutations. Yet there is emerging evidence that outliers 

with much higher mutation burdens (hypermutation) do exist for many cancer types. 

Systematic retrospective sequencing efforts, such as those by The Cancer Genome Atlas 

(TCGA) and International Cancer Genome Consortium (ICGC), have confirmed frequent 

hypermutation in melanoma (Akbani et al., 2015), lung (Govindan et al., 2012), and bladder 

cancer (Weinstein et al., 2014) and uncovered rare cases of hypermutation in other cancers. 

These studies have used different thresholds as there is no agreed on definition of 

“hypermutation.” Larger unbiased cohorts are needed to define cut-offs for hypermutation, 

not only to understand its frequency across cancer but also to uncover common mutagenic 

processes associated with hypermutation, whose temporal order is important but usually 

unknown.

A deeper understanding of the forces and dynamics of hyper-mutagenesis would be 

clinically useful. First, there is an urgent need to define driver mutations in cancer genomes. 

This is especially difficult in hypermutant cancers due to the sheer abundance of passenger 

variants that can obscure true drivers. Second, understanding early drivers of hypermutation 

may be useful for predicting the cancer's evolutionary trajectory and accumulation of 

additional mutations. Finally, hypermutation is correlated with response to immune 

checkpoint inhibitors, which can lead to durable remissions in some patients (Bouffet et al., 
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2016; Johanns et al., 2016; Le et al., 2015; Rizvi et al., 2015; Santin et al., 2016; Van Allen 

et al., 2015).

Hypermutation can be caused by environmental factors (extrinsic exposures). UV light is the 

primary cause of the high numbers of mutations in malignant melanoma (Pfeifer et al., 2005; 

Sage, 1993). Similarly, the >60 carcinogens in tobacco smoke are the primary cause of 

hypermutation in tumors in the lung and larynx, as well as other tumors, due to direct 

mutagen exposure (Pleasance et al., 2010). Recently, several intrinsic sources of 

hypermutation have been described. Dysregulation of apolipoprotein B mRNA editing 

enzyme, catalytic polypeptide-like (APOBEC) family members, has been shown to result in 

increased levels of C to T transitions in a wide range of cancers (Roberts et al., 2013). 

Defective DNA replication repair by mutations that compromise proofreading, performed by 

the major replicative enzymes Polε and Polδ1, or DNA mismatch repair, are associated with 

hypermutation in colorectal, endometrial, and other cancers (Kandoth et al., 2013; Muzny et 

al., 2012). DNA replication repair mutations are also found in cancer predisposition 

syndromes, such as constitutional or biallelic mismatch repair deficiency (CMMRD), Lynch 

syndrome, and polymerase proofreading-associated polyposis (PPAP). Although data 

gathered by the International Biallelic Mismatch Repair Deficiency consortium revealed that 

all malignant CMMRD cancers are hypermutant (Bouffet et al., 2016), it is not known if the 

same is true in Lynch syndrome or PPAP. Importantly, replication repair defects can lead to 

acquired resistance to common genotoxic therapies, such as alkylating agents (van Thuijl et 

al., 2015). It would be of utmost importance to utilize tumor sequencing to define the order 

of mutagen exposure or intrinsic processes leading to hypermutation and predict therapy 

resistance.

Mutagenic processes leave imprints on the genome in the form of mutations in a specific 

nucleotide context, forming a unique signature. This is especially true for hypermutant 

cancers whose vast numbers of non-random mutations form a signature that is deeply 

engraved on the genome. The first taxonomic classification of signatures unveiled >20 

signatures in 30 cancer types (Alexandrov et al., 2013). These have since been refined and 

expanded (Morganella et al., 2016; Nik-Zainal et al., 2016). However, the driving forces of 

rarer hypermutation-associated signatures, seen in fewer tumors, are mostly unknown.

To address these issues, we examined 78,452 adult and 2,885 childhood cancers for 

hypermutation. Targeted regions of the genome were deeply sequenced using a validated 

cancer gene panel (Frampton et al., 2013). We analyzed the range and frequency of 

hypermutation between and within cancer types, measured the contribution of intrinsic and 

extrinsic mutators and used mutation signatures to accurately predict past mutagen exposure. 

We then performed exome and/or genome sequencing of patients with CMMRD (Shlien et 

al., 2015) or treatment-induced cancers—whose mutations were acquired in an established 

order—to model mutation dynamics in the tumors. These data have important implications 

for our understanding of how germline and acquired mutagenic forces govern tumorigenesis, 

which have already improved the clinical management of patients with hypermutant cancers 

and their families.
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Results

Hypermutation Is Enriched for Replication Repair Defects in Childhood Cancers

We first wanted to define a minimal threshold for hypermutation, to create a definition that 

could ultimately be used in a clinical setting. We sequenced a cohort of 35 tumor samples 

with low, medium, and high number of substitutions by exome, genome, and two separate 

targeted panel sequencing consisting of 315 and 884 genes covering 1.1 and 3.25 Mb, 

respectively (Table S1). We achieved excellent concordance in burden between modalities 

(R2 = 0.94; Figures S1A and S1B). After carefully considering sequencing depth, the 

mutations' allele fractions, and the total footprint of each method, we found that every 

hypermutated cancer (>10 Mut/Mb) was called by all sequencing methods.

Having validated panel-based hypermutation testing, we examined the mutation burden in 

2,885 pediatric tumors. Mutation frequency ranged from 0–864 Mut/Mb (Figure 1A), with a 

mean and median of 6.78 Mut/Mb and 2.50 Mut/Mb, respectively. Using segmented linear 

regression analysis, we calculated 9.91 and 9.0 Mut/Mb as appropriate thresholds for 

hypermutation in childhood and adult cancers (Figures S1C and S1D; STAR Methods). For 

consistency, we use 10 Mut/Mb to define hypermutation in both cohorts. We also note that 

this coincides with the median mutation burden of patients previously reported to respond to 

checkpoint inhibition (Bouffet et al., 2016; Diaz and Le, 2015; Johanns et al., 2016; Le et 

al., 2015; Rizvi et al., 2015; Santin et al., 2016; Snyder et al., 2014; Van Allen et al., 2015).

While childhood cancer genomes are typically thought of as “quiet,” we found 160 cases 

with >10 Mut/Mb (5.5%). Hypermutation was observed in childhood cancer types not 

typically associated with elevated numbers of mutations, including sarcomas, germ cell 

tumors, nephroblastomas, and neuroblastomas. Importantly, across the whole cohort, 

hypermutant cancers were enriched for defects in mismatch repair pathway genes POLE and 

POLD1, responsible for synthesis of the leading and lagging strand (p ≤ 2.2 × 10−16) (Figure 

1B). Ultra-hypermutated (>100 Mut/Mb) pediatric tumors were universally replication repair 

deficient and included only the three tumor types observed in CMMRD: malignant gliomas, 

colorectal cancers, and leukemias/lymphomas.

Replication Repair Deficiency Drives a Mutator Phenotype in Many Childhood and Adult 
Cancers

Functioning DNA replication repair is required by actively dividing cells. And replication 

errors are responsible for two-thirds of mutations in cancer (Tomasetti et al., 2017). Yet, thus 

far, replication-repair-deficient hypermutation has been mainly observed in gliomas, 

gastrointestinal tract cancers, and endometrial cancers.

We expanded our analysis of hypermutation to 78,452 adult cancers sequenced on the same 

panel. Hypermutation and ultra-hypermutation were observed in 17% and 0.6%, 

respectively, across a wide variety of tissues (Figures 1C and 1D). A close examination of 

these cancers revealed enrichment of replication repair mutations and microsatellite 

instability in 81 tumor types (Figure S2A). These include previously underreported 

hypermutant prostate, cervical, and neuroendocrine tumors (87, 84, and 278 cancers).
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A striking inverse association was observed between micro-satellite instability (MSI), a 

marker of mismatch repair deficiency, and mutation burden. High levels of microsatellite 

instability (MSI-H) was mostly restricted to tumors in the 10–100 Mut/Mb range, whereas 

tumors with >100 Mut/Mb were microsatellite stable and enriched for replicative 

polymerase mutations (Figures 1E and S2B). Thus, while the loss of mismatch repair ability 

alone is mutagenic, its combination with the loss of polymerase proofreading (Shlien et al., 

2015), and the resultant total replication repair deficiency, leads to an ultra-hypermutated 

state with microsatellite stability. These data suggest that tumors with complete replication 

repair deficiency have elevated mutation burdens, acquired with different temporal dynamics 

than MSI tumors.

Detection and Validation of Cancer Drivers Using an “In Vivo Human Mutagenesis Screen”

While clinical sequencing is becoming routine in multiple institutions, accurate 

classification of variants has remained a challenge (both for germline and for somatic). In 

most cases, there is no functional assay available to determine if variants are true pathogenic 

drivers, and thus most are typically classified as “variants of unknown significance.” Here, 

we used hypermutation to catalog driver mutations in the replication repair genes. 

Determining the pathogenicity of mutations in POLE and POLD1, as it is with many large 

genes, is a challenge, especially since they can be mutated without functional impact. 

Indeed, we observed 2,150 and 1,123 distinct variants in POLE and POLD1, including many 

encoding changes at novel positions (Table S2; STAR Methods). As expected, among 

childhood cancers, most POLE and POLD1 mutations were not associated with 

hypermutation (Figure S2C).

We reasoned that we could determine which variants are in fact true drivers by leveraging 

the large size of this cohort. A mutation was classified as a clear driver if it was found in a 

hypermutated tumor and not in those with a low burden (STAR Methods). Using this 

approach, which can be thought of as an “in vivo human mutagenesis screen,” we 

rediscovered every known POLE and POLD1 driver (known to cause hypermutation in 

human tumors with functional validation) (Albertson et al., 2009; Daee et al., 2010; Kane 

and Shcherbakova, 2014). We found 11 new driver mutations that were all consistently 

associated with hypermutation (7 new drivers in POLE and 4 in POLD1; Table S3). This is 

especially important in POLD1, the lagging strand polymerase, for which driver mutations 

are less well characterized. R689W was the most frequent driver in POLD1, which has been 

shown to be a mutator in yeast (Daee et al., 2010). To our knowledge this is the first series of 

primary tumors that validates this in humans. Just as importantly, we determined that many 

mutations are mere passengers, even in tumors with multiple polymerase mutations (Figure 

2A). POLE R446Q, which was observed in a large group of non-hypermutated cancers, is 

one such false positive. Confirming our classification as non-pathogenic, we observed that 

the allelic fraction of the mutation was ∼0.5, suggesting a germline heterozygous SNP 

(Figure S3A). Furthermore, we also found this variant in the germline of non-affected 

individuals (>1/2,000 ExAC) (Lek et al., 2016).

This proved to be a powerful approach for exploring the effects of different missense 

substitutions in the polymerases on genome-wide mutation burden, both for mutations at the 
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exact same residue and for those located in different protein domains. Remarkably, tumors 

with exonuclease mutations at highly conserved motifs of POLD1 (ExoI,II,III) were not 
consistently hypermutant. These variants may be so detrimental to the cell that it requires 

additional suppressor mutations to reduce the burden (Herr et al., 2011). In both POLD1 and 

POLE, driver mutations were uncovered outside the exonuclease domain (Figure 2B), 

suggesting that other domains may be responsible for proofreading. We then used an 

unbiased approach and looked at all driver POLE mutations to compare the impact of 

differing missense substitutions at the same residue. For example, we found that POLE 
V411 is associated with an extremely high mutation burden but only when mutated to 

leucine (we labeled these residues as “invariable” as only a single possible amino acid 

change was found; Figure 2C). Residues S461, Y458, and E978 in POLE seem to be 

insensitive to change, with all amino acid substitutions associated with hypermutation. In 

contrast, at other residues, the mutation load varied depending on the specific amino acid 

change. Leucine 424 is one such “sensitive” residue; it is associated with a strong mutator 

phenotype when replaced with a proline or isoleucine, but is associated with lower mutation 

burden when mutated to a valine or phenylalanine (p = 0.03). To validate this finding, we 

measured the excision rate constants for wild-type POLE, and the L424V and L424I 

mutations using a rapid chemical quench-flow apparatus (Zahurancik et al., 2014; STAR 

Methods). L424I had a 5.7-fold stronger excision effect than L424V, confirming the 

dramatic difference in mutation burden in the primary tumors (Figure S3B). In contrast, 

every D275 mutation mutates an essential active site residue, which coordinates a metal ion 

required for catalysis, and yet we see a 10-fold difference in mutation burden (between 

D275G, D275A, and D275V). The difference between sensitive and insensitive amino acids 

can be related to the structure of the exonuclease and physical/biochemical interactions with 

the mismatches in the DNA.

Using this screen to triage functional variants, we mapped the landscape of driver somatic 

mutation in POLE and POLD1. These observations are key in the precise definition of real 

drivers in POLE and POLD1 cancers and can solve issues raised by recent sequencing 

efforts, which uncovered POLE and POLD1 germline variants of unknown significance in 

children with cancer (Zhang et al., 2016).

Finally, although most POLE and POLD1 driver mutations were restricted to specific tumor 

types with no previously apparent signature (Figure 2D), driver mutations were also 

observed in melanoma and lung cancer, both of which are malignancies with well-described 

extrinsic causes of hypermutation and distinct signatures. These data suggest that 

hypermutation can arise from a variety of sources in a single tumor histotype.

Novel Sub-clustering of Hypermutant Cancer Based on Substitution Signatures

To study the context and footprints of hypermutation across all cancers, we studied 217,086 

mutations in 1,521 hypermutant tumors representing to our knowledge the largest collection 

of hypermutated cancers to be considered together (Table S4; STAR Methods). We classified 

every mutation, whether coding or not, by its nucleotide context (i.e., bases immediately 

preceding and following it, forming a trinucleotide). Then, using the proportion of the 96 

possible trinucleotides, we performed unsupervised clustering of all 1,521 tumors. Taking 
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the whole map into view, several known clusters emerged, including replication repair 

dominated tumors (left in Figure 3A), skin cancers with a distinctive UV-associated 

signature and two tobacco smoking clusters (right in Figure 3A).

The non-replication-repair-deficient cancers comprised four distinct clusters (labeled C4 to 

C8 on the right of Figure 3A). Viewing the overall landscape of these four clusters, they 

were roughly divided by already known mutagenic signatures (Alexandrov et al., 2013): 

tobacco smoke (C4 and C8), alkylating agents (C5), UV light (C6), and the APOBEC 

cytidine deamination signature (C7). These four mutagens “anchor” their clusters, which 

contain the expected cancer types (e.g., C6 has a strong core of UV-associated skin cancers). 

However, our results revealed that the major mutagens act more broadly than previously 

thought and that the canonical mutagen-tumor-type relationships do not always hold or are 

not exclusive. Thus, using an unsupervised approach on a broad range of cancers, we saw 

surprising similarity in signatures between different cancer types, pointing to broadly shared 

driving forces. These unexpected results can impact the management of patients with 

hypermutant cancer.

Lung cancer is one such example (Figure 3C). Of the most abundantly mutated lung cancers 

examined here (STAR Methods), only 40% harbor the signature for tobacco smoke. We find 

that 35% of hypermutated lung tumors have a high proportion of the UV signature (>40% 

contribution) and 5% have evidence for alkylating agent-associated mutations (n = 100). 

Furthermore, the UV-light-associated signature was almost exclusively observed in the 

squamous cell carcinoma subtype (Figures S4A–S4C). This observation was previously 

reported for three hypermutant lung squamous cell carcinomas (Campbell et al., 2016). 

Either these are all misdiagnosed skin cancers with metastasis to the lung, as has previously 

been suggested, or perhaps, when hypermutated they form a distinct group based on a 

nucleotide context that reflects their cell of origin.

Sarcomas – tumors not previously associated with hypermutation—also clustered in an 

unexpected way. Hypermutated sarcomas were primarily in cluster C6—a large proportion 

of cases (70%) had high levels of UV-associated mutations (Figure 3C). We validated this 

finding using available TCGA sarcoma data (exomes; Figure S4D), confirming that most 

hypermutated sarcomas bear the imprint of sun exposure. Cluster C6 is enriched for soft 

tissue angiosarcomas, which usually present on the face and scalp (Dossett et al., 2015), and 

malignant peripheral nerve sheath tumor, which can also arise subcutaneously. Consistent 

with this, the pathology records of TCGA sarcomas cancers with high UV-associated 

mutations were mostly superficial tumors. Thus, through this analysis, we have shown that 

UV light is associated with mutagenesis of mesenchymal cells, not just skin epithelia and 

that these sarcomas may result from sun exposure.

Alkylating agents, such as temozolomide, are known mutagens that leave a specific imprint 

on the genome. One of our clusters, C5, is dominated by brain cancers with overwhelming 

contribution of alkylating-associated mutations (average 72%). Unexpectedly, we observed 

similar signatures in skin cancers (14% of the top-most mutated skin cancers in this cohort), 

lung cancers, pancreatic cancers and leiomyosarcomas (Figure 3C). Hypermutation should 

therefore be considered in any relapsed cancers treated with alkylators, regardless of its cell 
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of origin and cancers with such signatures are inherently resistant to alkylators and should 

be treated with different chemotherapeutic regimens.

Strikingly, within the replication repair associated tumors, one sees at least three sharply 

delineated sub-clusters (C1, C2 and C3 in Figure 3B). The largest group, C2 (n = 523), is 

characterized by high microsatellite instability in a wide range of cancers (43 tumor types 

with >2 examples each). The middle-sized cluster, C3, which includes colorectal, uterine, 

and seven other tumor types, is made up of cancers that are almost completely microsatellite 

stable and POLE mutated (see Figure 1). The last DNA replication repair cluster, C1, 

includes many microsatellite stable brain cancers with mutated POLE. C1 is unique since it 

harbors a higher mutation burden (380.8 versus 277.5 Mut/Mb for C3 (p = 0.017) and 80.4 

Mut/Mb for C2 (p = 8.9E-5) and includes many children. Taken together, these results 

expand the spectrum of cancers associated with DNA replication repair and define three new 

subgroups—based on trinucleotide mutation context alone—with dramatic differences in 

microsatellite stability, polymerase deficiency, and age.

Novel Sub-clustering Identifies Tumors with Significant Differences in Evolutionary 
Dynamics and Survival

We then explored differences in evolutionary dynamics of each cluster to understand how 

mutational burden changed over time and if this was associated with survival. We observed 

three prominent models of mutation accumulation in hypermutant cancer (Figure 4A).

In the first model, one sees a slow and steady accumulation of mutations. In these cancers, 

which include clusters associated with smoking, UV light, or MMR, hypermutation is 

reached over an extended period. The second model of mutation accumulation was found 

only in POLE-driven cancers (C3). Cluster 3 tumors featured a mid-burst of mutations, 

presumably after the polymerase mutation was acquired, followed by a stable rise in 

mutation burden genome-wide (Figures 4A and 4B). Of note, in the third model of 

evolution, one sees a late and explosive burst of mutations. This unique pattern is a result of 

either secondary polymerase mutations on the background of an early mutation burst due to 

germline MMR-deficiency (C1) or treatment-induced replication repair deficiency (C5).

The replication repair-associated clusters (C1, C2, and C3), whose modes of evolution were 

different from one another (Figure 4B), were also associated with dramatic differences in 

patient survival (Figure 4C). Of note, these included multiple tumor types, suggesting that 

the survival differences are independent of the cancer's histotype and are instead determined 

by its mutagen exposure.

Mutational Signatures Mark the History of Cancer Development

These data suggested that the signatures of hypermutation vary depending on the order of 

mutagen exposure. For example, the trinucleotide pattern of C1 resembles those of gliomas 

in CMMRD (Shlien et al., 2015) and would suggest that these patients do in fact also harbor 

germline MMR mutations. If true, the overall trinucleotide composition of C1 represents an 

early constitutional MMR defect, followed by acquired secondary POLE, whereas tumors in 

C3 have acquired POLE followed by MMR. To test this directly, we sequenced a cohort for 

which the temporal order of mutation was known (Figure 5) from the international bMMRD 
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consortium (Table S5). This included (1) cancers with germline MMR mutations plus either 

POLE, POLD1 mutations, or neither, as secondary event; (2) cancers arising in carriers of 

germline POLE mutations; and (3) gliomas whose hypermutation was due to temozolomide 

treatment. We matched the nucleotide context of variants found in these childhood cancers, 

whose mutation order are known, to the clusters (Figure 3), which were derived from an 

unannotated cohort of mostly adult cancers. We did this using the average 96-trinucle-otide 

mutational profile of each group.

Indeed, germline MMRD with secondary polymerase mutations matched cluster C1 whereas 

the cancers from patients with germline MMRD, such as Lynch syndrome or CMMRD 

without secondary polymerase deficiency matched cluster C2 (Figures 5A and B). C3 

matched tumors from patients with germline POLE mutations.

The difference between C2 and C3 suggests that MMR deficiency emerges early in the 

former and late in the latter. This provides an explanation for the unexpected microsatellite 

stable phenotype observed in the POLE ultra-hypermutant, mismatch-repair-deficient tumors 

seen here (Figures 1D and 3B), and in other reports (Muzny et al., 2012; Kandoth et al., 

2013). In microsatellite stable tumors (C3), ultra-hypermutation is driven by an early 

polymerase proofreading defect, whereas mismatch repair, leading to microsatellite 

instability, appears later.

Next, we wanted to determine how the context of mutations changes over the course of each 

tumor's evolution. Using the established signature labels (Alexandrov et al., 2013), we 

ascribed potential causes to several signatures whose etiology is not well established. In 

cases with MMR and secondary POLD1, we observed an enrichment of signature 20. This 

was especially true for POLD1 L606M, a hotspot mutation in motif A of the polymerase 

domain. The mutation signature of POLD1 has not been previously described. Furthermore, 

signatures 14 and 15 were observed in all CMMRD (early) ultra-hypermutant cancers, with 

much higher contribution than all other signatures.

We confirmed that “signature 10” is associated with POLE exonuclease mutation. As 

expected, signature 10 was high in those tumors in which POLE mutated early, from cluster 

C3 (e.g., germline POLE), and low in the late POLE tumors, seen in C1.

It was clear that many hypermutant tumors present with a mix of signatures due to differing 

mutational histories. To separate out early and late signatures, we performed subclonal 

analysis (STAR Methods). First, signature 10, which is associated with POLE mutations, 

was high in those tumors in which POLE mutated early, cluster C3 (e.g., germline POLE, 

Figure 5B, second line, and Figure 5C) and low in the late POLE tumors, cluster C1 (Figure 

5B, first line, and Figure 5D). Similarly, high-depth sequencing enabled us to detect 

subclones in multiple other cancers. For example, we observed late-arising polymerase 

deficiency in a lung cancer, on the background of smoking-associated mutations (Figure 5E), 

and the late emergence of the treatment-associated alkylating agent signature in a skin 

cancer that is otherwise dominated by the UV light signature (Figure 5F).
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Tumor Mutational Signatures Impact the Management of Inherited Replication Repair 
Deficiency Patients

Finally, we tested whether somatic mutation burden combined with signatures—determined 

by tumor-only panel sequencing—could reveal a germline cancer predisposition syndrome. 

We performed signature analysis on all ultra-hypermutant pediatric cancers, incorporating 

clinical genetic information where available. As expected, all pediatric ultra-hypermutant 

cancers harbored mutations in MMR and/or DNA polymerases. Strikingly, a strong 

replication repair signature was observed in all tumors from patients with confirmed genetic 

diagnosis of germline MMR or POLE mutations (Figure S5A). The only pediatric glioma 

without this signature had the alkylator signature (suggesting that the hypermutation was 

treatment induced, as seen in adults). Three tumors exhibited a small but significant 

alkylator signature. These were later found to be recurrent gliomas from CMMRD children 

whose treatment included temozolomide. In all cases, the initial biopsy did not reveal the 

alkylator signature, which confirms the ability of mutational signatures to determine the 

natural history of cancer. These observations were also observed in hypermutant tumors with 

a lower burden (Figure S5B).

Having verified the clinical utility of tumor-only sequencing—combined with mutation 

burden and this novel classification sys-tem—we contacted physicians whose patients' 

tumors were ultra-hypermutant (by the panel, Figure 6A). Our clinical workflow used the 

tumor's mutational burden (Figure 1), the correct classification of drivers (Figure 2), together 

with the identification of early signatures that could be traced to the germline (Figure 4). 

Using this combined signal, we determined which patients were at risk for a germline 

replication repair deficiency. Of 15 individuals for whom our analysis suggested an early 

replication repair defect, all were found to harbor germline mutation in one of the 

corresponding genes (100%) (Figure 6B). Importantly, these patients and family members 

were put on a surveillance protocol for early tumor detection (Tabori et al., 2017), and for 9 

in 15 patients, treatment was changed to immune checkpoint inhibitors, which we have 

previously shown can result in a clinically significant response (Bouffet et al., 2016).

Discussion

Through these analyses a comprehensive landscape of hypermutation across cancer 

emerged, revealing novel drivers and subgroups whose etiology and timing will be of 

immediate clinical relevance to patients and their families. By following the mutational 

imprints left in the cancer genome, one can uncover early (germline) and late (treatment-

related) drivers and processes.

We found hypermutation in ∼1 in 20 childhood and 1 in 6 adult cancers. Of these, we found 

enrichment for replication repair deficiency and continuous long-term exposure to genotoxic 

agents, which can pinpoint tumors for immune checkpoint inhibition. However, for recurrent 

tumors, the treatment itself may be the primary cause of hypermutation. Exposure to 

chemotherapies such as alkylators or thiopurines can lead to replication repair (Nguyen et 

al., 2014; Swann et al., 1996). These recurrent hypermutant cancers will be resistant to 

chemotherapy and other agents, due to an accelerated evolution rate and subsequently an 

increased ability to inactivate genes that are required for cytotoxicity (Swann et al., 1996). 

Campbell et al. Page 10

Cell. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Therefore, defining mutational load, thresholds, and signatures could be used to avoid 

unnecessary treatment, and the use of targeted or immune-based treatments (Topalian et al., 

2016).

Given the new-found prevalence of replication repair deficiency related hypermutation 

across tumor types, correctly identifying drivers has become extremely important. Our 

method for separating the drivers from the many passengers—the in vivo human 

mutagenesis screen—is a robust way of measuring functional consequence of putative 

mutators (more so than conservation analysis or impact predictors). This more than doubled 

the number of POLE and POLD1 driver mutations. Just as importantly, it identified residues 

for which only certain amino acid changes were pathogenic. In addition, other sites were 

always spared from mutation, likely due to their importance to the cell. Mutations in POLE 
and POLD1 have only recently been described (Esteban-Jurado et al., 2017; Shinbrot et al., 

2014), thus our method will be useful for the proper clinical classification. Further research 

and clinical follow-up are required to fully understand why some mutations in the 

exonuclease domain have weak mutagenic effects, yet occasionally mutations in the 

polymerase domain can be associated with hypermutation and putative loss of proofreading 

ability. Importantly, a similar approach may lead to novel insights and clinical applications 

in other DNA repair genes, especially for those with a unique signature (Scarpa et al., 2017).

Considering the size of the genome, many of the somatic mutations in hypermutant cancers 

will likely have no functional consequence. Despite the high amount of noise, the 

“information content” and ability to infer tumor evolution from the passengers in a 

hypermutant tumor may be superior to that of a non-hypermutated cancer. As seen here, 

these passengers (i.e., the “noise”), considered together, bear the imprint of specific 

signatures that can differentiate clinically relevant subgroups (Figure 3).

These signatures also helped to untangle remaining questions about the biological processes 

at work in hypermutant cancers. For example, why are POLE replication repair ultra-

hypermutant cancers microsatellite stable? These data suggest that such tumors (i.e., C1 and 

C3) maintain microsatellite stability because their mismatch repair proficiency is lost late 
(C3), or it is lost when there is insufficient time to accumulate high numbers of insertions or 

deletions, which are a feature of mismatch-repair-driven cancers of adulthood (C2). 

Moreover, the signatures uncovered new tumor types whose primary mutagen was UV light. 

These cancers, such as squamous cell carcinomas of the lung may have originated from 

metastastic skin cancers, or from other epithelioid stem cells that harbor the signature. 

Importantly, different mechanisms of carcinogenesis may produce similar patterns.

We can now study the differing routes tumors took to reach hypermutation. These have clear 

survival implications and can help to tailor therapy, both with respect to which drugs to take 

but also which to avoid. Patients whose cancers display an early burst of hypermutation, 

such as those that are POLE-driven, have improved survival. Perhaps this is because their 

tumors reached a threshold of mutational burden early and are then less efficient and more 

responsive to therapy (Figure 4). In contrast, late-arising signatures of hypermutation often 

mark aggressive cancers or late-acquired resistance to chemotherapies (Figure 4). We 
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appreciate that in rare cases where the relative abundance of signatures are equal, there may 

be ambiguity in determination of chronological order.

Finally, in replication repair deficiency, one can use these signatures to trace the drivers to 

the germline. The cancer genome becomes a powerful new diagnostic aid for underlying 

germline susceptibility. For instance, if a young patient is found to have a hypermutant 

tumor with a signature similar to C1 (Figure 3), their family should be offered genetic 

counseling and testing for CMMRD, an underdiagnosed syndrome without clear warning 

signs (Amayiri et al., 2016; Durno et al., 2015). This is important to ensure surveillance and 

treatment options are appropriately customized.

In summary, the analysis of tumor samples from 81,337 children and adults revealed novel 

subgroups. These form a new taxonomic tree of hypermutant cancers defined by the type 

and order of their exposure to mutagens. Within the branches of this tree, tumors are 

organized by their shared evolutionary history, which are marked by select true driver 

mutations and new signatures. In some patients, these can be traced back to the germline. 

Knowledge of a hypermutant tumor's past yields information that can be acted on in the 

present day, as an aid in diagnosis, a predictor of prognosis, or as an instrument for 

determining rational therapeutic approaches.

Detailed methods are provided in the online version of this paper and include the following:

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Adam Shlien (adam.shlien@sickkids.ca).

Experimental Model and Subject Details

Patient and sample collection for FoundationOne Panel Sequencing

Tumor samples for FoundationOne Panel Sequencing were collected as previously described 

(Frampton et al., 2013). The sex ratios for each tumor-type was similar to previous reports, 

with an overall female:male ratio of 55:45 among all FoundationOne patients whose tumor 

samples are described in this study.

Patient and sample collection for whole genome sequencing, exome sequencing and KiCS 
panel sequencing

A cohort of germline replication-repair deficient patients with known clinical history was 

collected as described previously (Shlien et al., 2015). In brief, patients were registered as a 

part of the International Biallelic Mismatch Repair Consortium, which includes multiple 

centers worldwide. For further information on The International Replication Repair 

Deficiency Consortium, see http://www.sickkids.ca/MMRD/index.html. Following 

Institutional Research Ethics Board approval, all data were centralized in the Division of 

Haematology/Oncology at The Hospital for Sick Children (SickKids). Consent forms were 

obtained from the parents or guardians, or from the patients, where applicable. Family 

history, demographic and clinical data were obtained from the responsible physician and/or 
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genetic counselor at the corresponding centers. Tumor and blood samples were collected 

from the SickKids tumor bank. Detailed information on the SickKids Cancer Sequencing 

Program, KiCS, is available at https://www.kicsprogram.com. The diagnosis of a replication 

repair deficiency-related cancer predisposition syndrome was made when a germline 

biallelic mutation in any of the four MMR genes (MLH1, MSH2, MSH6, PMS2) or a driver 

mutation in POLE, was confirmed by sequencing in a clinically approved laboratory. The 

sequencing of temozolomide-treated tumors was previously described (van Thuijl et al., 

2015).

Method Details

FoundationOne panel sequencing

FoundationOne Panel sequencing was performed for 81,337 tumors as previously described 

(Frampton et al., 2013). In brief, exonic hybridization capture of 315 cancer-related genes 

was applied to a minimum of 50 ng of DNA extracted from formalin-fixed paraffin-

embedded clinical cancer specimens. Pathologic diagnosis of each case was confirmed by 

review of hematoxylin and eosin (H&E) stained slides and samples were excluded if found 

to contain < 20% tumor cells. Libraries were sequenced to high uniform median coverage (> 

500×) and assessed for base substitutions, copy number alterations, and gene fusions/

rearrangements. For the purposes of the findings described in this study pediatric was 

defined as < 25 years of age.

Exome sequencing

High-throughput sequencing, read mapping and identification of mutations was performed at 

the Center for Applied Genomics at the Hospital for Sick Children, as previously described 

(Shlien et al., 2015). Briefly, tumor and matched blood derived DNA were run using 

Agilent's exome enrichment kit (Sure Select V4/V5; with > 50% of baits above 25× 

coverage), on an Illumina HiSeq2500. Base calls and intensities from the Illumina HiSeq 

2500 were processed into FASTQ files using CASAVA and/or HAS. The paired-end FASTQ 

files were aligned to UCSC's hg19 GRCh37 with BWA. Aligned reads were realigned for 

known insertion/deletion events using SRMA and/or GATK. Base quality scores were 

recalibrated using the Genome Analysis Toolkit26 (v1.1-28). Somatic substitutions were 

identified using MuTect (v1.1.4). Mutations were then filtered against common single-

nucleotide polymorphisms (SNPs) found in dbSNP (v132), the 1000 Genomes Project (Feb 

2012), a 69-sample Complete Genomics dataset, and the Exome Sequencing Project (v6500) 

and the ExAc database.

Whole genome sequencing

Whole genome sequencing was performed at The Centre for Applied Genomics on an 

Illumina HiSeq 2500 or Illumina HiseqX at mean coverage > = 30. Read alignment and 

variant calling/filtering were performed as described above for exome sequencing.

KiCS panel sequencing

The SickKids Cancer Sequencing (KiCS) gene panel utilizes the Agilent Sure Select capture 

kit technology, targeting 15,000 exons across 880 genes. Enriched libraries were prepared 
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from both tumor DNA and matched normal (blood or skin) and sequenced on Illumina 

HiSeq2500 sequencers running in rapid mode producing paired end 100 base reads. Reads 

were aligned with BWA-MEM according to GATK best practices with coverage metrics 

meeting greater than 700× mean coverage, with > = 98.5% of bases above 50×, > = 95% of 

bases above 200× coverage, and > = 75% of bases above 500× coverage. Substitution 

mutations were called using MuTect, with variants called above 50× coverage in tumor and 

normal. We achieved > 95% sensitivity and specificity for variants above 5% allele 

frequency.

Clinical genetic information collection for ultra-hypermutant pediatric cancers

Patients with FoundationOne panel results and who were concurrently enrolled in the 

International Biallelic Mismatch Repair Deficiency Consortium underwent germline 

sequencing services in accordance with the Clinical Laboratory Improvement Amendments 

(CLIA) program standards, following a rigorous consent process and genetic counselling 

consultation. Clinical diagnoses of a replication repair deficiency associated syndrome were 

made based on the presence of inherited predicted pathogenic mutations in MMR and 

polymerase genes. Physicians involved in patient care were notified of the diagnosis.

POLE exonuclease excision rate assay

Excision rate constants were measured as described (Zahurancik et al., 2014). Briefly, a pre-

incubated solution of Pol e (100 nM) and 5′-32P-labeled DNA substrate (20 nM) was rapidly 

mixed with Mg2+ (8 mM) in reaction buffer at 37°C. After various incubation times, the 

reaction was quenched with the addition of EDTA. The excision rate constants for Polε 
wild-type and L424V were measured using a rapid chemical quench-flow apparatus. Product 

concentration was plotted versus time and fit to a single-exponential equation, [product] = 

Aexp(-kexot), to yield the excision rate constant, kexo.

Quantification and Statistical Analysis

Determination of hypermutation threshold

To determine a threshold of hypermutation in human cancer, a segmented linear regression 

analysis or “broken-stick analysis” was performed on the mutation burdens from the 

pediatric (n = 2,885) and adult (n = 78,452) FoundationOne panel cohorts. Briefly, using the 

R package Segmented, an iterative process was used to determine segment breakpoints at 

which a statistically significant change in the slope of adjacent regression lines occurred 

(Muggeo, 2003). For the pediatric cohort, the first such breakpoint at which a statistically 

significant change occurred, accompanied by a visually observed uptick in the slope of the 

regression line, was at 9.91 mut/Mb. For the adult cohort, a corresponding change occurred 

at 9 mut/Mb. This threshold was rounded up to 10 mut/Mb to account for statistical 

uncertainty and for the purposes of simplicity.

Microsatellite instability analysis

To determine MSI status, 114 intronic homopolymer repeat loci with adequate coverage on 

the FoundationOne panel are analyzed for length variability and compiled into an overall 

MSI score via principal components analysis (PCA). Among the 1,897 microsatellites, the 
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114 that maximized variability between samples were chosen. Each chosen locus was 

intronic and had hg19 reference repeat length of 10-20bp. This range of repeat lengths was 

selected such that the microsatellites are long enough to produce a high rate of DNA 

polymerase slippage, while short enough such that they are well within the 49bp read length 

of NGS to facilitate alignment to the human reference genome. A detailed description can be 

found at Chalmers et al., (2017).

Detection of POLE and POLD1 driver mutations

To identify polymerase mutations associated with hypermutation we built a model based on 

the following criteria: 1) Tumors harboring the variant must be hypermutant at a 

conservative cut-off of 50 mutations/mb. This number was selected since most POLE mutant 

tumors typically exceed 100 mut/mb (Shinbrot et al., 2014); 2) Variants found in 

hypermutant tumors must not co-occur with an existing known driver mutations in the same 

tumor; 3) Variants that were found both in hypermutant and lowly mutated tumors (< 10 

mut/mb) were excluded. The burden of these samples is shown in Figure S1E; and 4) 

Variants must occur in a minimum of 2 hypermutant tumors. Variant allele fraction and 

tumor purity were also considered, as previously described (Frampton et al., 2013).

Unsupervised clustering and signature analysis

A cohort of hypermutant samples was selected for hierarchal clustering and signature 

analysis by the following criteria.

Exclusion for all:

1. < 50 exonic mutations detected in the FoundationOne panel.

Inclusion for adults (> 25 years):

1. Any colon or uterine with MSI-H

2. Top 100 most-mutated lung cancers

3. Top 100 most-mutated skin cancers

4. For all other tumors, > 50 Mut/Mb and/or > 2 standard deviations above mean 

for that tumor type (provided there were > 50 tumors of that type)

Inclusion for children:

1. Any tumor with > 50 exonic mutations.

This yielded a total of 1,521 tumors (1,491 adult and 30 pediatric) for clustering analysis.

The proportion of mutations corresponding to each of 96 trinucleotide contexts was 

determined for each of the 1,521 samples selected above using the pyrimidine-converted 

single base substitution and the corresponding tri-nucleotide sequence context (i.e., 

reference base at mutation position and its 5′ and 3′ neighbors). Unsupervised hierarchical 

clustering of the hypermutant cohort by trinucleotide context was performed using the diana 

clustering method.

Campbell et al. Page 15

Cell. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The R package DeConstructSigs was used to determine the proportion of COSMIC 

signatures as defined by Alexandrov et al. (2013) (http://cancer.sanger.ac.uk/cancergenome/

assets/signatures_probabilities.txt) (Rosenthal et al., 2016).

Validation of Signature 7 in sarcomas using the TCGA database

Somatic substitution calls (MuTect2) were obtained from 103 TCGA adult sarcoma exome 

samples, with a minimum of 50 substitutions. These samples were analyzed using 

deconstructSigs as described above. Five tumors were found to be hypermutant (> 10 

Mut/Mb) and have significant contributions from Signature 7 (> 0.5). Examination of the 

pathology reports of these tumors revealed all 5 to be located superficially (subcutaneous 

and/or extending into the dermis).

Subclonal analysis

Tumor subclones (early and late) were determined using the R package SciClone (Miller et 

al., 2014) Variant allele fraction and percentage of alternate reads were used to determine the 

order of mutational events. Mutations with variant allele fraction greater than 0.45 were 

excluded from analysis to filter out germline mutations and somatic mutations in regions of 

copy number gain. For the determination of early and late mutations, clusters were limited to 

6. Subclonal mutational signatures were then determined using deconstructSigs as described 

above (Rosenthal et al., 2016).

Data and Software Availability

Whole genome and/or whole exome sequencing data for tumors from patients with germline 

replication repair deficiency have been deposited in the European Genome Phenome Archive 

under study accession number EGAS00001001112.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors 

Brittany B. Campbell1,2,3,49, Nicholas Light1,3,49, David Fabrizio4, Matthew 
Zatzman1,48, Fabio Fuligni1, Richard de Borja1, Scott Davidson1,47, Melissa 
Edwards1, Julia A. Elvin4, Karl P. Hodel5, Walter J. Zahurancik6,7, Zucai Suo6,7, 
Tatiana Lipman1, Katharina Wimmer8, Christian P. Kratz9, Daniel C. Bowers10,11, 
Theodore W. Laetsch10,11, Gavin P. Dunn12, Tanner M. Johanns12,13, Matthew R. 
Grimmer13, Ivan V. Smirnov14,15, Valérie Larouche16, David Samuel17, Annika 
Bronsema18, Michael Osborn19, Duncan Stearns20, Pichai Raman21,22, Kristina A. 
Cole21,22, Phillip B. Storm23, Michal Yalon24, Enrico Opocher25, Gary Mason26, 
Gregory A. Thomas27, Magnus Sabel28, Ben George29, David S. Ziegler30,31, Scott 
Lindhorst32, Vanan Magimairajan Issai33, Shlomi Constantini34, Helen Toledano34, 
Ronit Elhasid37, Roula Farah38, Rina Dvir35,36, Peter Dirks39, Annie Huang2,40,48, 
Melissa A. Galati1, Jiil Chung1, Vijay Ramaswamy40, Meredith S. Irwin40, Melyssa 
Aronson41, Carol Durno41,42, Michael D. Taylor39, Gideon Rechavi45, John M. 

Campbell et al. Page 16

Cell. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cancer.sanger.ac.uk/cancergenome/assets/signatures_probabilities.txt
http://cancer.sanger.ac.uk/cancergenome/assets/signatures_probabilities.txt


Maris21,22, Eric Bouffet40, Cynthia Hawkins2, Joseph F. Costello14, M. Stephen 
Meyn43,44, Zachary F. Pursell5, David Malkin40,46, Uri Tabori1,2,40,50,*, and Adam 
Shlien1,47,48,50,51,*

Affiliations
1Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, 
ON, Canada

2The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick 
Children, Toronto, ON, Canada

3Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, 
ON, Canada

4Foundation Medicine, Inc., Cambridge, MA, USA

5Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane 
University School of Medicine, New Orleans, LA, USA

6The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 
USA

7Department of Chemistry and Biochemistry, The Ohio State University, Columbus, 
OH, USA

8Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria

9Pediatric Hematology and Oncology, Hannover Medical School, Hannover, 
Germany

10Departmentof Pediatrics and Harold C. Simmons Comprehensive Cancer Center, 
University of Texas Southwestern Medical Center, Dallas, TX, USA

11Pauline Allen Gill Center for Cancer and Blood Disorders, Children's Health, 
Dallas, TX, USA

12Department of Neurological Surgery, Center for Human Immunology and 
Immunotherapy Programs, Washington University School of Medicine, St. Louis, 
MO, USA

13Division of Oncology, Department of Medicine, Washington University School of 
Medicine, St. Louis, MO, USA

14Department of Neurological Surgery, University of California, San Francisco, San 
Francisco, CA, USA

15Division of Neuroepidemiology, Department of Neurological Surgery, University of 
California, San Francisco, San Francisco, CA, USA

16Department of Pediatrics, Centre Mère-enfant Soleil du CHU de Québec, CRCHU 
de Qué bec, Université Laval, Quebec City, QC, Canada

17Department of Hematology-Oncology, Valley Children's Hospital, Madera, CA, 
USA

Campbell et al. Page 17

Cell. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18Department of Pediatric Hematology and Oncology, University Medical Center 
Hamburg-Eppendorf, Hamburg, Germany

19Department of Haematology and Oncology, Women's and Children's Hospital, 
North Adelaide, SA, Australia

20Department of Pediatrics-Hematology and Oncology, UH Rainbow Babies and 
Children's Hospital, Cleveland, OH, USA

21Division of Oncology and Center for Childhood Cancer Research, Children's 
Hospital of Philadelphia, Philadelphia, PA, USA

22Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 
USA

23Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 
USA

24Department of Pediatric Hematology-Oncology, Sheba Medical Center, Tel 
Hashomer, Israel

25Pediatric Oncology & Hematology, Azienda Ospedaliera-Universitá degli Studi di 
Padova, Via Giustiniani n.1, Padova, Italy

26Department of Pediatric Hematology-Oncology, Children's Hospital of Pittsburgh 
of UPMC, Pittsburgh, PA, USA

27Division of Pediatric Hematology-Oncology, Oregon Health & Science University, 
Portland, OR, USA

28Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, 
University of Gothenburg & Queen Silvia Children's Hospital, Sahlgrenska 
University Hospital, Gothenburg, Sweden

29Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, 
WI, USA

30Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia

31Children's Cancer Institute, Lowy Cancer Research Centre, University of New 
South Wales, Randwick, NSW, Australia

32Neuro-Oncology, Department of Neurosurgery, and Department of Medicine, 
Division of Hematology/Medical Oncology, Medical University of South Carolina, 
Charleston, SC, USA

33Department of Pediatric Hematology-Oncology, Cancer Care Manitoba; Research 
Institute in Oncology and Hematology (RIOH), University of Manitoba, Winnipeg, 
MB, Canada

34Department of Pediatric Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv 
University, Tel Aviv, Israel

35Department of Pediatric Hematology/Oncology, Schneider Children's Medical 
Center of Israel, Petach Tikva, Israel

Campbell et al. Page 18

Cell. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



36Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

37Department of Hematology-Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, 
Israel

38Department of Pediatrics, Saint George Hospital University Medical Center, Beirut, 
Lebanon

39Department of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada

40Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, 
Canada

41Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, 
Canada

42Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick 
Children, Toronto, ON, Canada

43Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada

44Center for Human Genomics and Precision Medicine, University of Wisconsin, 
Madison, WI, USA

45Cancer Research Center and Wohl Institute for Translational Medicine, Sheba 
Medical Center, Tel Hashomer, Ramat Gan, Israel

46Department of Pediatrics, University of Toronto, Toronto, ON, Canada

47Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, 
Toronto, ON, Canada

48Department of Laboratory Medicine and Pathobiology, University of Toronto, 
Toronto, ON, Canada

Acknowledgments

The SickKids Cancer Sequencing (KiCS) program is supported by the Garron Family Cancer Centre with funds 
from the SickKids Foundation. This research is supported by LivWise, Meagan's Walk (MW-2014-10), the CIHR 
Joint Canada-Israel Health Research Program (MOP – 137899), a Stand Up to Cancer (SU2C) – Bristol-Myers 
Squibb Catalyst Research (SU2C-AACR-CT-07-17), and a SU2C – St. Baldrick's Pediatric Dream Team 
Translational Research Grant (SU2C-AACR-DT1113). SU2C is a program of the Entertainment Industry 
Foundation administered by the AACR. B.B.C. is supported by the Government of Ontario, the Frank Fletcher 
Memorial Fund, and SickKids Research Training Competition. N.L. is supported by the University of Toronto 
MD/PhD program, the McLaughlin Centre, and a CIHR MD/PhD Studentship. D.F. and J.A.E. are employees and 
stockholders of Foundation Medicine. G.M. is an employee of Janssen Pharmaceutical Companies of Johnson & 
Johnson.

References

Akbani R, Akdemir KC, Aksoy BA, Albert M, Ally A, Amin SB, Arachchi H, Arora A, Auman JT, 
Ayala B, et al. Cancer Genome Atlas Network. Genomic classification classification of cutaneous 
melanoma. Cell. 2015; 161:1681–1696. [PubMed: 26091043] 

Albertson TM, Ogawa M, Bugni JM, Hays LE, Chen Y, Wang Y, Treuting PM, Heddle JA, Goldsby 
RE, Preston BD. DNA polymerase epsilon and delta proofreading suppress discrete mutator and 
cancer phenotypes in mice. Proc Natl Acad Sci USA. 2009; 106:17101–17104. [PubMed: 
19805137] 

Campbell et al. Page 19

Cell. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, 
Borg A, Børresen-Dale AL, et al. Australian Pancreatic Cancer Genome Initiative; ICGC Breast 
Cancer Consortium; ICGC MMML-Seq Consortium; ICGC PedBrain. Signatures of mutational 
processes in human cancer. Nature. 2013; 500:415–421. [PubMed: 23945592] 

Amayiri N, Tabori U, Campbell B, Bakry D, Aronson M, Durno C, Rakopoulos P, Malkin D, 
Qaddoumi I, Musharbash A, et al. BMMRD Consortium. High frequency of mismatch repair 
deficiency among pediatric high grade gliomas in Jordan. Int J Cancer. 2016; 138:380–385. 
[PubMed: 26293621] 

Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, Durno C, Krueger J, Cabric 
V, Ramaswamy V, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme 
resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016; 34:2206–2211. 
[PubMed: 27001570] 

Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks 
AN, Murray BA, et al. Cancer Genome Atlas Research Network. Distinct patterns of somatic 
genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 2016; 
48:607–616. [PubMed: 27158780] 

Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, Schrock A, Campbell B, Shlien A, 
Chmielecki J, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor 
mutational burden. Genome Med. 2017; 9:34. [PubMed: 28420421] 

Daee DL, Mertz TM, Shcherbakova PV. A cancer-associated DNA polymerase delta variant modeled 
in yeast causes a catastrophic increase in genomic instability. Proc Natl Acad Sci USA. 2010; 
107:157–162. [PubMed: 19966286] 

Diaz LA Jr, Le DT. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015; 
373:1979.

Dossett LA, Harrington M, Cruse CW, Gonzalez RJ. Cutaneous angiosarcoma. Curr Probl Cancer. 
2015; 39:258–263. [PubMed: 26276214] 

Durno CA, Sherman PM, Aronson M, Malkin D, Hawkins C, Bakry D, Bouffet E, Gallinger S, Pollett 
A, Campbell B, Tabori U. International BMMRD Consortium. Phenotypic and genotypic 
characterisation of biallelic mismatch repair deficiency (BMMR-D) syndrome. Eur J Cancer. 2015; 
51:977–983. [PubMed: 25883011] 

Esteban-Jurado C, Giménez-Zaragoza D, Muñoz J, Franch-Expósito S, Álvarez-Barona M, Ocaña T, 
Cuatrecasas M, Carballal S, López-Cerón M, Marti-Solano M, et al. POLE and POLD1 screening 
in 155 patients with multiple polyps and early-onset colorectal cancer. Oncotarget. 2017; 8:26732–
26743. [PubMed: 28423643] 

Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White J, 
Sanford EM, An P, et al. Development and validation of a clinical cancer genomic profiling test 
based on massively parallel DNA sequencing. Nat Biotechnol. 2013; 31:1023–1031. [PubMed: 
24142049] 

Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, Maher CA, Fulton R, Fulton 
L, Wallis J, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. 
Cell. 2012; 150:1121–1134. [PubMed: 22980976] 

Herr AJ, Ogawa M, Lawrence NA, Williams LN, Eggington JM, Singh M, Smith RA, Preston BD. 
Mutator suppression and escape from replication error-induced extinction in yeast. PLoS Genet. 
2011; 7:e1002282. [PubMed: 22022273] 

Johanns TM, Miller CA, Dorward IG, Tsien C, Chang E, Perry A, Uppaluri R, Ferguson C, Schmidt 
RE, Dahiya S, et al. Immunogenomics of hypermutated glioblastoma: a patient with germline 
POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov. 2016; 6:1230–
1236. [PubMed: 27683556] 

Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, 
Benz CC, et al. Cancer Genome Atlas Research Network. Integrated genomic characterization of 
endometrial carcinoma. Nature. 2013; 497:67–73. [PubMed: 23636398] 

Kane DP, Shcherbakova PV. A common cancer-associated DNA polymerase ε mutation causes an 
exceptionally strong mutator phenotype, indicating fidelity defects distinct from loss of 
proofreading. Cancer Res. 2014; 74:1895–1901. [PubMed: 24525744] 

Campbell et al. Page 20

Cell. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, 
Laheru D, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015; 
372:2509–2520. [PubMed: 26028255] 

Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, 
Hill AJ, Cummings BB, et al. Exome Aggregation Consortium. Analysis of protein-coding genetic 
variation in 60,706 humans. Nature. 2016; 536:285–291. [PubMed: 27535533] 

Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, arXiv:
1303.3997. 2013. https://arxiv.org/abs/1303.3997

Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, Vij R, Tomasson MH, Graubert 
TA, Walter MJ, et al. SciClone: inferring clonal architecture and tracking the spatial and temporal 
patterns of tumor evolution. PLoS Comput Biol. 2014; 10:e1003665. [PubMed: 25102416] 

Morganella S, Alexandrov LB, Glodzik D, Zou X, Davies H, Staaf J, Sieuwerts AM, Brinkman AB, 
Martin S, Ramakrishna M, et al. The topography of mutational processes in breast cancer 
genomes. Nat Commun. 2016; 7:11383. [PubMed: 27136393] 

Muggeo VMR. Estimating regression models with unknown breakpoints. Stat Med. 2003; 22:3055–
3071. [PubMed: 12973787] 

Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, Kovar CL, Lewis LR, 
Morgan MB, Newsham IF, et al. Cancer Genome Atlas Network. Comprehensive molecular 
characterization of human colon and rectal cancer. Nature. 2012; 487:330–337. [PubMed: 
22810696] 

Nguyen SA, Stechishin OD, Luchman HA, Lun XQ, Senger DL, Robbins SM, Cairncross JG, Weiss S. 
Novel MSH6 mutations in treatment-naïve glioblastoma and anaplastic oligodendroglioma 
contribute to temozolomide resistance independently of MGMT promoter methylation. Clin 
Cancer Res. 2014; 20:4894–4903. [PubMed: 25078279] 

Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, Martincorena I, Alexandrov LB, 
Martin S, Wedge DC, et al. Landscape of somatic mutations in 560 breast cancer whole-genome 
sequences. Nature. 2016; 534:47–54. [PubMed: 27135926] 

Pfeifer GP, You YH, Besaratinia A. Mutations induced by ultraviolet light. Mutat Res. 2005; 571:19–
31. [PubMed: 15748635] 

Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, 
Greenman C, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. 
Nature. 2010; 463:184–190. [PubMed: 20016488] 

Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho 
TS, et al. Cancer immunology Mutational landscape determines sensitivity to PD-1 blockade in 
non-small cell lung cancer. Science. 2015; 348:124–128. [PubMed: 25765070] 

Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, 
Carter SL, Saksena G, et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread 
in human cancers. Nat Genet. 2013; 45:970–976. [PubMed: 23852170] 

Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. DeconstructSigs: delineating 
mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of 
carcinoma evolution. Genome Biol. 2016; 17:31. [PubMed: 26899170] 

Sage E. Distribution and repair of photolesions in DNA: genetic consequences and the role of sequence 
context. Photochem Photobiol. 1993; 57:163–174. [PubMed: 8389052] 

Santin AD, Bellone S, Buza N, Choi J, Schwartz PE, Schlessinger J, Lifton RP. Regression of 
chemotherapy-resistant polymerase ε (POLE) ultra-mutated and MSH6 hyper-mutated 
endometrial tumors with nivolumab. Clin Cancer Res. 2016; 22:5682–5687. [PubMed: 27486176] 

Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, Lawlor RT, Johns AL, Miller DK, 
Mafficini A, et al. Australian Pancreatic Cancer Genome Initiative. Whole-genome landscape of 
pancreatic neuroendocrine tumours. Nature. 2017; 543:65–71. [PubMed: 28199314] 

Shinbrot E, Henninger EE, Weinhold N, Covington KR, Göksenin AY, Schultz N, Chao H, 
Doddapaneni H, Muzny DM, Gibbs RA, et al. Exonuclease mutations in DNA polymerase epsilon 
reveal replication strand specific mutation patterns and human origins of replication. Genome Res. 
2014; 24:1740–1750. [PubMed: 25228659] 

Campbell et al. Page 21

Cell. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1303.3997


Shlien A, Campbell BB, de Borja R, Alexandrov LB, Merico D, Wedge D, Van Loo P, Tarpey PS, 
Coupland P, Behjati S, et al. Biallelic Mismatch Repair Deficiency Consortium. Combined 
hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-
hypermutated cancers. Nat Genet. 2015; 47:257–262. [PubMed: 25642631] 

Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, 
Wong P, Ho TS, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N 
Engl J Med. 2014; 371:2189–2199. [PubMed: 25409260] 

Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009; 458:719–724. [PubMed: 
19360079] 

Swann PF, Waters TR, Moulton DC, Xu YZ, Zheng Q, Edwards M, Mace R. Role of postreplicative 
DNA mismatch repair in the cytotoxic action of thioguanine. Science. 1996; 273:1109–1111. 
[PubMed: 8688098] 

Tabori U, Hansford JR, Achatz MI, Kratz CP, Plon SE, Frebourg T, Brugières L. Clinical management 
and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. 
Clin Cancer Res. 2017; 23:e32–e37. [PubMed: 28572265] 

Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer 
prevention. Science. 2017; 355:1330–1334. [PubMed: 28336671] 

Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune 
checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016; 16:275–287. [PubMed: 27079802] 

Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Foppen 
MHG, Goldinger SM, et al. Genomic correlates of response to CTLA-4 blockade in metastatic 
melanoma. Science. 2015; 350:207–211. [PubMed: 26359337] 

van Thuijl HF, Mazor T, Johnson BE, Fouse SD, Aihara K, Hong C, Malmström A, Hallbeck M, 
Heimans JJ, Kloezeman JJ, et al. Evolution of DNA repair defects during malignant progression of 
low-grade gliomas after temozolomide treatment. Acta Neuropathol. 2015; 129:597–607. 
[PubMed: 25724300] 

Weinstein JN, Akbani R, Broom BM, Wang W, Verhaak RG, McConkey D, Lerner S, Morgan M, 
Creighton CJ, Smith C, et al. Cancer Genome Atlas Research Network. Comprehensive molecular 
characterization of urothelial bladder carcinoma. Nature. 2014; 507:315–322. [PubMed: 
24476821] 

Zahurancik WJ, Klein SJ, Suo Z. Significant contribution of the 3′→5′ exonuclease activity to the 
high fidelity of nucleotide incorporation catalyzed by human DNA polymerase E. Nucleic Acids 
Res. 2014; 42:13853–13860. [PubMed: 25414327] 

Zhang J, Nichols KE, Downing JR. Germline mutations in predisposition genes in pediatric cancer. N 
Engl J Med. 2016; 374:1391.

Campbell et al. Page 22

Cell. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Mutation burden analysis reveals new drivers of hypermutation in POLE and 

POLD1

• Timing of replication repair deficiency determines mutation signature 

composition

• Germline replication repair deficiency identified from tumor-only sequencing

• Mutation burden and signatures have value for screening, surveillance, and 

therapy
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Figure 1. The Landscape of Hypermutation across 81,337 Pediatric and Adult Cancers
(A) Mutation burden for 2,885 pediatric cancers. ≥ 10 mut/Mb = hypermutant; ≥ 100 

mut/Mb = ultra-hypermutant.

(B) Hypermutation pediatric cohort by tumor type. The pie chart depicts the proportion of 

tumors with mutations in replication repair genes (MSH2, MLH1, MSH6, PMS2 POLE, and 

POLD1).

(C) Mutation burden range for 78,452 adult tumors with breakdown by tumor type.

(D) Tumor types that show enrichment for MSI-MSI-H tumors cluster in the 10–100 

Mut/Mb range, while tumors with mismatch repair and polymerase proofreading in the same 

types are ultrahypermutant.

(E) Proportion of ultra-hypermutant, hypermutant, and lowly mutated tumors, and their 

correlation with MSI-H and MMR/POL mutations. GI, gastrointestinal; AML, acute 

myeloid leukemia; NBL, neuroblastoma; RMS, rhabdomyosarcoma; STS, soft tissue 

sarcoma; OS, osteosarcoma; EWS, Ewing sarcoma; WLMS, Wilm's tumor; RCC, renal cell 

carcinoma; NP&PNS, nasopharynx and paranasal sinuses undifferentiated carcinoma; and 

MM&MDS, mutiple myeloma and myelodysplastic syndrome.

See also Figures S1 and S2 and Table S1.
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Figure 2. Characterization of Known and Novel POLE and POLD1 Drivers
(A) Examples of tumors with three or more POLE/POLD1 mutations. Other tumors found in 

the entire dataset harboring the same mutations shown below (gray bars represent individual 

tumors and their burden is shown on the y axis). No bars indicate no other tumors identified 

with this mutation. One clear driver emerges in each tumor.

(B) Landscape of drivers (top) and passengers (bottom) in POLE and POLD1. Green circles, 

previously known drivers; yellow circles, novel drivers, first described here.

(C) Codons in POLE with driver mutations, indicating whether they are sensitive to amino 

acid changes. Invariable codons are those at which only one amino acid change was 

detected. Insensitive codons are those in which the mutation burden was high, regardless of 

amino acid change. Sensitive codons are those in which certain amino acid changes would 

abrogate the mutator effect. Green, yellow, and red bars represent strong, moderate, and 

weak mutation burden phenotypes, respectively.

(D) All tumors harboring POLE and POLD1 mutations by tumor type. Green, POLE driver; 

yellow, POLD1 driver; and gray, passenger mutation.

See also Figure S3 and Tables S2 and S3.
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Figure 3. Unsupervised Clustering by Trinucleotide Context Reveals Mutational Etiology of 
Hypermutant Tumors
(A) Top: Hierarchical clustering of 1,521 tumors by trinucleotide context reveals 8 major 

clusters. Middle: Disease type, MSI status. Bottom: Heatmap colored by proportion of 

mutations from each class of mutational signatures.

(B) Top: Range of tumors types found in clusters C1, C2, and C3, size of circle indicates 

number of tumors. Middle: Boxplots displaying mutation burden. Bottom: Proportion of 

tumors in each cluster that are MSI-high, POLE mutant, and arising in children, respectively.

(C) Average proportion of mutations attributed by 4 mutational signature classes, tobacco 

smoke (signature 4), alkylating agents (signature 11), UV Light (signature 7), and APOBEC 

(signatures 2 and 13). Color of circles indicates the cluster that tumors belong to; size 

indicates the number of tumors in this cluster and tumor type; and the y axis indicates the 

average proportion of mutations attributed to each signature.

See also Figure S4 and Table S4.
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Figure 4. Clustering Identifies Tumors with Differences in Evolutionary Dynamics and Survival
(A) Histograms with number of single-nucleotide variants (SNVs) by variant allele fraction 

(VAF) in each of the 8 major clusters (Figure 3). Colors indicate the functional impact of a 

SNV.

(B) VAF versus median cumulative mutation burden plotted for each of the 3 replication 

repair clusters. C1 tumors exhibit an early burst of mutations (∼0.4 VAF) with a second burst 

of mutations later in tumor evolution (∼0.2 VAF). C3 tumors display a single burst of 

mutations ∼0.2 VAF, and C2 tumors exhibit a more gradual accumulation of mutations 

throughout their evolution.

(C) Kaplan-Meier plot of overall survival for tumors with mutational signatures consistent 

with clusters 1, 2, or 3. Cluster 3, n = 27. Cluster 2, n = 168. Cluster 1, n = 22. p < 0.0001.

Campbell et al. Page 27

Cell. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Mutational Context in Hypermutant Tumors Determined by Timing and Etiology of 
Mutation
(A) Left: Average proportion of mutations by trinucleotide context in exomes with known 

germline status/treatment history. Right: Same, but from panel sequencing. Germline status 

and treatment history unknown. N indicates the number of tumor samples.

(B) Example mutational signatures in exomes from tumors with known germline status/

treatment history.

(C–F) Examples of subclonal mutational signatures determined from allelic read depth on 

panel sequencing data. (C) Subclonal mutational signatures in an adult colorectal carcinoma 

with somatic POLE mutation. (D) Subclonal mutational signatures in a pediatric 

glioblastoma. (E) Mutational signatures present in subclonal clusters of mutations in a lung 

adenocarcinoma. (F) Mutational signatures present in 3 subclonal clusters of mutations in 

skin melanoma.

See also Table S5.
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Figure 6. Confirmation of Cancer Predisposition Syndrome and Clinical Interventions following 
Tumor-Only Panel Sequencing
(A) Procedure for diagnosing cancer predisposition syndrome via tumor-only panel 

sequencing. Sequencing results with high-tumor-mutation burden, a driver mutation in a 

replication repair gene, and signatures of replication repair deficiency are specific for 

CMMRD. Clinical interventions include surveillance and immune checkpoint inhibition 

therapy for active tumors.

(B) Left: 15 patients for which only panel sequencing was performed prior to confirmation 

of predisposition syndrome diagnosis. Blue squares, signatures of MMR and the subsequent 

identification of a germline mutation in an MMR gene. Orange, same for POLE. Right: 

Example of a brain tumor found via surveillance. Bottom right: Colorectal cancer 

responding to anti-PD1 therapy after confirmation of germline MMR mutation.

See also Figure S5.

Campbell et al. Page 29

Cell. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Campbell et al. Page 30

Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Catalytic PolE-N140 mutant (L424V) This Paper N/A

Catalytic PolE-N140 mutant (L424I) This Paper N/A

Deposited Data

TCGA database NCI Genomics Data 
Commons

https://portal.gdc.cancer.gov/

ExAC database Broad Institute http://exac.broadinstitute.org/

dbSNP database (v132) NCBI https://www.ncbi.nlm.nih.gov/projects/SNP/

1000 Genomes database The International Genome 
Sample Resource

http://www.internationalgenome.org/data

Whole genome/exome sequencing data https://www.ebi.ac.uk/ega/ EGAS00001000579; EGAS00001001112

Oligonucleotides

Pre-steady state kinetic excision assay primer: 5′-
CGCAGCCGTCCAACCAACTCA-3′

This Paper N/A

Pre-steady state kinetic excision assays template: 
3′-
GCGTCGGCAGGTTGGTTGAGTAGCAGCTAG 
GTTACGGCAGG-5′

This Paper N/A

Software and Algorithms

R 3.3.3 The R Foundation https://www.r-project.org/

deconstructSigs Rosenthal et al., 2016 https://github.com/raerose01/deconstructSigs

ggplot2 The R Foundation https://cran.r-project.org/web/packages/ggplot2/index.html

BWA Li, 2013 https://github.com/lh3/bwa

Genome Analysis Toolkit26 (v1.1-28). Broad Institute https://github.com/broadinstitute/gatk

MuTect Broad Institute https://github.com/broadinstitute/mutect

SciClone The McDonnell Genome 
Institute

https://github.com/genome/sciclone

Reshape2 The R Foundation https://cran.r-project.org/web/packages/reshape2/index.html

Plyr The R Foundation https://cran.r-project.org/web/packages/plyr/index.html
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