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Abstract 
 
The human breast undergoes lifelong remodeling in response to estrogen and progesterone, but 
hormone exposure also increases breast cancer risk. Here, we use single-cell analysis to identify distinct 
mechanisms through which breast composition and cell state affect hormone signaling. We show that 
prior pregnancy reduces the transcriptional response of hormone-responsive (HR+) epithelial cells, 
whereas high body mass index (BMI) reduces overall HR+ cell proportions. These distinct changes both 
impact neighboring cells by effectively reducing the magnitude of paracrine signals originating from HR+ 
cells. Because pregnancy and high BMI are known to protect against hormone-dependent breast cancer 
in premenopausal women, our findings directly link breast cancer risk with person-to-person 
heterogeneity in hormone responsiveness. More broadly, our findings illustrate how cell proportions and 
cell state can collectively impact cell communities through the action of cell-to-cell signaling networks. 
 
Introduction 
 
The rise and fall of estrogen and progesterone with each menstrual cycle and during pregnancy controls 
cell growth, survival, and tissue morphology in the human breast. The impact of these changes is 
profound, and lifetime exposure to cycling hormones is a major modifier of breast cancer risk (1). In 
addition to the dynamics observed within individuals in response to changing hormone levels, there is 
also a high degree of heterogeneity between individuals in epithelial architecture (2), cell composition (3), 
and hormone responsiveness (4-6), and these differences are thought to impact breast cancer 
susceptibility. However, because the breast is both highly variable between women and undergoes 
dynamic changes over time, it has been difficult to link differences in breast cancer risk with specific 
biological mechanisms in the breast. 
 
While links between cancer risk and specific changes in breast composition, signaling state, or structure 
are lacking, epidemiological studies have provided clear links between breast cancer risk and several 
biological variables.  Reproductive history and body mass index (BMI) are two such factors that strongly 
influence breast cancer risk. Pregnancy has two opposing effects: it increases short-term risk by up to 
25% (7) but decreases lifetime risk by up to 50%, particularly for women with a first pregnancy early in 
life (8). Obesity has opposing effects on risk before versus after menopause: it increases risk in 
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postmenopausal women by around 30% (9) but decreases risk in premenopausal women by up to 45% 
(10, 11). The protective effects of both pregnancy against breast cancer and high BMI against 
premenopausal breast cancer are strongest for estrogen- and progesterone-receptor positive (ER+/PR+) 
tumors (11, 12), suggesting that altered hormone signaling is one mechanism contributing to the 
protective effect of these two factors. The mechanistic link between pregnancy and the reduction in long-
term breast cancer risk remains an open question, but it has been speculated that the effects of 
pregnancy-induced alveolar differentiation—such as changes in the epithelial architecture of the 
mammary gland or a general decrease in the hormone responsiveness of the epithelium—may contribute 
to reduced risk (2, 8). While estrogen production by adipose tissue is a major mechanism proposed to 
contribute to the increased risk of postmenopausal breast cancer in obese women (13), far less is known 
about the underlying mechanisms that link obesity and the decreased risk of ER+/PR+ breast cancer in 
premenopausal women. 
 
One challenge for understanding the relationship between hormone signaling, pregnancy, and BMI in the 
healthy human breast is that many of the effects of ovarian hormones within the breast are indirect. The 
estrogen and progesterone receptors (ER/PR) are expressed in only 10-15% of cells within the epithelium 
(14), and most of the effects of hormone receptor activation are mediated by a complex cascade of 
paracrine signaling from these hormone-responsive (HR+) luminal cells to other cell types in the breast. 
Thus, mechanisms for decreased hormone responsiveness in the parous breast could include either: 1) 
a change in the hormone signaling response of HR+ luminal cells—due to either changes in HR+ luminal 
cells themselves or non-cell autonomous changes in hormone levels or availability—and/or 2) a reduction 
in the proportion of HR+ luminal cells, leading to dampened paracrine signaling to other cell types 
downstream of ER/PR activation. Single-cell analysis tools such as RNA sequencing (scRNAseq) are 
particularly well-suited for investigating this problem, since they enable unbiased classification of the full 
repertoire of cell types within the human breast together with their transcriptional state. 
 
Here, we use scRNAseq of twenty-eight premenopausal reduction mammoplasty tissue specimens, 
together with FACS and immunostaining in an expanded cohort (table S1, N = 44 total samples), to 
directly measure sample-to-sample variability in cell proportions and cell signaling state in the human 
breast (Fig. 1A). We develop a computational approach that leverages the inter-sample transcriptional 
heterogeneity in our dataset to identify coordinated changes in transcriptional states across multiple cell 
types in the breast. Based on this, we identify a set of correlated gene expression programs in HR+ 
luminal cells and other cell types representing the paracrine signaling networks activated in response to 
hormones. Second, we find that prior history of pregnancy is associated with striking changes in epithelial 
composition, and we propose that these changes are consistent with the protective effect of pregnancy 
on lifetime breast cancer risk. Finally, we show that paracrine signaling from HR+ luminal cells to 
neighboring cells depends on both the magnitude of the hormone-signaling transcriptional response and 
the overall abundance of HR+ cells. Pregnancy and obesity both lead to decreased hormone 
responsiveness in the breast through these two distinct mechanisms: pregnancy directly affects hormone 
signaling in HR+ luminal cells whereas obesity reduces the proportion of HR+ luminal cells. Overall, these 
results provide a comprehensive map of the cycling human breast and identify cellular changes that 
underlie breast cancer risk factors. 
 
Results 
 
Inter-sample variability in epithelial cell proportions and transcriptional cell state in the human breast 
 
To identify inter-individual differences in cell composition and cell state in the human breast, we 
performed scRNAseq analysis on 86,136 cells from reduction mammoplasties in 28 premenopausal 
donors (Fig. 1A and table S1). To obtain an unbiased snapshot of the epithelium and stroma, we collected 
live/singlet cells from all samples. For a subset of samples, we also collected purified epithelial cells or 
purified luminal and basal/myoepithelial cells (fig. S1A, table S2). We used MULTI-seq barcoding and in 
silico genotyping for sample multiplexing to minimize technical variability between samples (fig. S1B, 
methods) (15, 16). 
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Fig. 1. Sample-to-sample variability in epithelial cell proportions and transcriptional cell state in the 
human breast. (A) Single-cell transcriptional analysis links breast cancer risk factors (parity, BMI, 
hormones) with person-to-person heterogeneity in cell state, cell proportions, and paracrine signaling. 
scRNAseq workflow: Reduction mammoplasty samples were processed to epithelial-enriched tissue 
fragments, followed by processing to single cells and MULTI-seq sample barcoding, FACS isolation, and 
library preparation. (B) UMAP dimensionality reduction and unsupervised clustering of the combined data 
from twenty-eight samples identifies the major epithelial and stromal cell types in the breast. (C) Stacked 
bar plot of the proportion of epithelial cells (HR+ luminal; secretory luminal; basal/myoepithelial) across 
breast tissue samples. (D) Density plots highlighting the transcriptional cell state of HR+ luminal cells from 
individuals with at least 100 cells in this cluster. 

 
Sorted basal and luminal cell populations were well-resolved by uniform manifold approximation and 
projection (UMAP) (fig. S1C). Unsupervised clustering identified one basal/myoepithelial cluster (cluster 
1), two luminal clusters (clusters 2-3), and six stromal clusters (clusters 4-9) (Fig. 1B). Based on the 
expression of known markers, the two luminal clusters were annotated as hormone-responsive (HR+) 
and secretory luminal cells, and the six stromal clusters were annotated as fibroblasts, vascular 
endothelial cells, lymphatic endothelial cells (“lymphatic”), smooth muscle cells/pericytes (“vascular 
accessory”), lymphocytes, and macrophages (Fig. 1B and fig S2A-B). The luminal populations described 
here closely match those identified as “hormone-responsive/L2” and “secretory/L1” in a previous 
scRNAseq analysis of the human breast (17), as well as microarray data for sorted EpCAM+/CD49f– 
“mature luminal” and EpCAM+/CD49f+ “luminal progenitor” populations (18). Here, we use the 
nomenclature “hormone-responsive/HR+” and “secretory” to refer to these two cell types. The HR+ 
cluster was enriched for the hormone receptors ESR1 and PGR (fig. S2C), and other known markers 
such as ANKRD30A (fig. S2A-B) (17). Consistent with previous studies demonstrating variable hormone 
receptor expression across the menstrual cycle (19), expression of ESR1 and PGR transcripts were 
sporadic and often non-overlapping. Within the HR+ luminal cluster, 22% of the cells had detectable 
levels of ESR1 or PGR, with only 2% of cells expressing both transcripts (fig. S2D).  
 
Beyond identifying the major cell types, single-cell analysis additionally resolved two sources of inter-
sample variability in the human breast. First, while cells from different individuals were represented 
across all clusters (cluster entropy = 0.93, methods) (fig. S3A), the proportions of epithelial cell types 
were highly variable between samples (Fig. 1C). Across individuals, epithelial cell proportions in the 
live/singlet and epithelial sort gates ranged from 2-80% for basal/myoepithelial cells, 7-89% for HR+ 
luminal cells, and 9-70% for secretory luminal cells (fig. S3B). Second, independent of variation in cell 
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proportions, individuals displayed distinct transcriptional signatures within cell types (Fig. 1D and fig 
S3C). This variation in cell state was not due to technical variability across batches, as cells from the 
same sample were more similar to each other than cells from different samples, regardless of the day of 
processing (fig. S3, D and E, table S2, and methods).  
 
Parity is associated with an increased proportion of basal/myoepithelial cells in the epithelium 
 
The breast undergoes a major expansion of the mammary epithelium during pregnancy, followed by a 
regression back towards the pre-pregnant state after weaning in a process called involution. However, 
the epithelial architecture remains distinct from that of women without prior pregnancy, consisting of 
larger terminal ductal lobular units (TDLUs) containing greater numbers of acini. At the same time, 
individual acini are reduced in size (2). We hypothesized that these architectural changes following 
pregnancy would contribute to differences in epithelial cell proportions between samples.  
 
We focused our initial analysis on the 63,583 cells in the live/singlet and epithelial sort gates to get an 
unbiased view of how the epithelial composition of the breast changes with pregnancy. The proportion of 
basal/myoepithelial cells in the epithelium was approximately two-fold higher in women with prior history 
of pregnancy (parous) relative to women without prior pregnancy (nulliparous) (Fig. 2A and fig. S4A; FDR 
< 0.02, Wald test). We confirmed these results in an expanded cohort of samples using three additional 
methods. First, we measured basal cell proportions by flow cytometry analysis of EpCAM and CD49f (fig. 
S1A). Consistent with clustering results, parity was associated with an increase in the average proportion 
of EpCAM–/CD49f+ basal cells from 12% to 39% of the epithelium (Fig. 2B; p < 0.0001, Mann-Whitney 
test). The proportion of basal cells did not vary with other discriminating factors such as BMI, race, or 
hormonal contraceptive use, but was weakly associated with age (R2 = 0.20, p < 0.04, Wald test) (fig. 
S4B). To determine the relative effect of each factor, we performed multiple linear regression analysis 
and found that the basal cell fraction positively correlated with pregnancy history (p < 2e-05, Wald test), 
but not age (p = 0.17, Wald test) (Table S3; R2 = 0.77, p < 8e-6). Next, as FACS processing steps may 
affect tissue composition, we performed two further analyses. We reanalyzed two previously published 
microarray datasets of total RNA isolated from core needle biopsies from either premenopausal (n = 71 
parous/42 nulliparous) or postmenopausal (n = 79 parous/30 nulliparous) women (20, 21), and confirmed 
a significant increase in the basal/myoepithelial markers KRT5, KRT14, and TP63 relative to luminal 
markers in parous samples (fig. S4C). Finally, we performed immunostaining and confirmed an 
approximately 2-fold increase in the ratio of p63+ basal cells to KRT7+ luminal cells in intact tissue 
sections (Fig. 2C; p < 0.001, Mann-Whitney test). Notably, immunostaining demonstrated that this change 
in epithelial proportions was specific to TDLUs rather than ducts (fig. S5A). We hypothesized that the 
increased frequency of basal/myoepithelial cells observed in parous women could be explained, in part, 
by changes in TDLU architecture. To test this, we performed a morphometric comparison of TDLUs 
between parous and nulliparous samples in our dataset. Consistent with previous reports (2), we 
observed a marked decrease in the average diameter of individual acini in parous women (fig. S5B; p < 
0.002, Mann-Whitney test). Additionally, we found that the average thickness of the luminal cell layer was 
linearly associated with acinus diameter (fig. S5C; R2 = 0.89, p < 0.0001) and reduced in parous women 
(fig. S5D; p < 0.002, Mann-Whitney test).  
 
To determine how these parameters influence the relative proportions of each cell type, we implemented 
a simple geometric model (Fig. 2D, methods). Surprisingly, when normalized to cross-sectional area (for 
luminal cells) or perimeter (for basal cells), there was no change in luminal cell density or basal cell 
coverage between parous versus nulliparous samples (Fig. 2E and fig. S5E). Across all samples, the 
number of basal or luminal cells per acinus was proportional to the space available for each cell type (fig. 
S5F; p < 0.0001, Wald test). However, geometric modeling accurately predicted the relationship between 
the luminal area and outer perimeter for individual acini (mean absolute percentage error loss = 9.5%) 
and demonstrated that as individual acini increased in size, the space available for luminal cells (luminal  
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Fig. 2. Prior history of pregnancy is associated with an increased proportion of basal cells in the 
mammary epithelium. (A) UMAP plot of sorted live singlet and epithelial cells from nulliparous and parous 
samples, with the percent of luminal and basal/myoepithelial cells highlighted. (B) Representative FACS 
analysis of the percentage of EpCAM–/CD49f+ basal cells within the Lin– epithelial population, and 
quantification of the percentage of basal cells in parous (P) versus nulliparous (NP) women (n = 18 samples; 
p < 0.0001, Mann-Whitney test). (C) Immunostaining for the basal/myoepithelial marker p63 and pan-
luminal marker KRT7, and quantification of the ratio of p63+ basal/myoepithelial cells to KRT7+ luminal 
cells for samples with or without prior history of pregnancy (NP = nulliparous, P = parous; n = 13 samples; 
p < 0.001, Mann-Whitney test). Scale bars 50 µm. (D) Two-dimensional geometric model of the relative 
space available for basal cells (outer perimeter of the luminal layer, P) and luminal cells (area of the luminal 
layer, A) within individual acini. Acini were modeled as hollow circles with a shell thickness proportional to 
their diameter. Scale bars 15 µm. (E) Quantification of the average basal cell coverage (nuclei per μm of 
luminal perimeter) in acini from terminal ductal lobular units (TDLUs) in nulliparous (NP) versus parous (P) 
samples (p = 0.66, Mann-Whitney test). (F) Results of geometric modeling depicting the relative area and 
perimeter of the luminal layer as a function of acinus diameter. Dots represent measurements of individual 
acini from TDLUs in parous (n=53 acini from 7 samples) or nulliparous (n=29 acini from 7 samples) women 
as indicated (mean absolute percentage error = 9.5%). 
 

area) increased at a faster rate than the space available for basal cells (luminal perimeter) (Fig. 2F). 
Thus, the observed differences in epithelial cell proportions between parous and nulliparous samples are 
not due to a change in basal/myoepithelial coverage, but rather a change in the overall morphology of 
the luminal layer and relative surface area of individual acini in parous women. 
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Obesity is associated with a reduction in the proportion of HR+ luminal cells 
 
While parity was associated with a decreased overall proportion of luminal cells in the epithelium, the 
proportions of individual HR+ and secretory subtypes within the luminal compartment were highly 
variable. Consistent with previous work (5, 22), we observed reduced frequencies of HR+ luminal cells 
in parous women (fig. S4A; FDR < 0.03, Wald test with post hoc multiple-comparisons test). However, 
the proportion of secretory luminal cells was not associated with parity (fig. S4A). Together, these data 
suggested that additional factors influence the relative proportion of HR+ versus secretory cells within 
the luminal compartment. We therefore performed multiple comparison analysis to test for the effects of 
parity, BMI, race, age, and hormonal contraceptive use on the proportions of HR+ versus secretory 
luminal cells. We found that the relative proportion of HR+ luminal cells was reduced in obese women 
(BMI ≥ 30) (Fig. 3A; FDR < 0.0002, Wald test with post hoc multiple-comparisons test) and did not vary 
significantly with other discriminating factors such as age, reproductive history, hormonal contraceptive 
use, or race (fig. S6A; Wald test with post hoc multiple-comparisons test). On a continuous scale, each 
12 units of BMI was associated with a 2-fold reduction in the proportion of HR+ cells in the luminal 
compartment (fig. S6B; FDR < 0.001, Wald test with post hoc multiple-comparisons test). We observed 
similar results using clustering analysis from the 10,795 cells in the luminal sort gate (fig. S6C). 
 
One limitation of the reduction mammoplasty dataset was that all samples classified as non-obese were 
from nulliparous women less than 24 years old, whereas obese samples were more likely to be from 
parous and older age women (table S1, fig S7A). Therefore, we performed scRNAseq analysis on an 
independent set of breast core biopsies from healthy premenopausal women who donated tissue to the 
Komen Tissue Bank (KTB) (fig. S7, B-E; table S2). In contrast with the reduction mammoplasty cohort, 
the KTB cohort consisted of older (37-47 years) parous samples with BMI in the normal or overweight 
range (BMI 20.7-28.3) (table S1, fig. S7A). Using the reduction mammoplasty cohort as a training set, we 
accurately predicted the proportion of HR+ luminal cells in the KTB cohort as a function of BMI with a 
mean absolute percentage error of 14.8% (Fig. 3B). 
 
To verify these results in tissue sections, we performed immunostaining for ER and PR. There was a 
trend toward decreased expression of PR with increasing BMI, but the change was not statistically 
significant (p = 0.11, Wald test; fig. S8A). Notably, ER and PR protein expression was variable and partly 
non-overlapping, ranging from 11-71% overlap (fig. S8B). As we had previously also observed 
heterogeneous expression of ESR1 and PGR transcripts within the HR+ luminal cell cluster (fig. S2, C 
and D), we hypothesized that the variability in staining was due to changes in ER/PR expression, stability, 
and nuclear localization that have all been previously observed based on hormone receptor activation 
status (19, 23, 24). Based on this, we predicted that ER/PR transcript and protein levels would co-vary 
across samples due to the overall proportion of HR+ luminal cells and their hormonal microenvironment, 
but would be stochastically expressed in individual cells at any one time due to fluctuations in mRNA and 
protein expression, localization, and stability. To test this, we performed co-immunostaining and RNA-
FISH and confirmed that although ER transcript and protein levels correlate across tissue sections (R2 = 
0.60, p < 0.01), they do not correlate on a per-cell basis (p = 0.63, Wilcoxon signed-rank test)—on 
average, only 31% of cells expressing ESR1 transcript also expressed ER protein (fig. S8C). Importantly, 
expression of ESR1 or PGR transcript was highly specific for cells in the HR+ luminal cluster, although 
the sensitivity of each transcript for the HR+ cluster was low and varied across individuals (fig. S8D). 
Thus, these data demonstrate that immunostaining for nuclear hormone receptors underestimates the 
fraction of cells in the HR+ lineage and that lack of ER/PR expression cannot be used to reliably define 
a cell as part of the secretory versus HR+ luminal cell lineages.  
 
On the basis of these results, we sought to identify another marker to distinguish between luminal 
subpopulations, and identified keratin 23 (KRT23) as highly enriched in the secretory luminal cell cluster 
(Fig. 3C), as was also reported by a previous scRNAseq study (17). Immunohistochemistry for KRT23 
and PR or ER confirmed that these proteins are expressed in mutually exclusive luminal populations (Fig. 
3D, and fig. S9, A and B; p < 0.001 and p < 0.01, Mann-Whitney test). The proportion of KRT23+ luminal 
cells in each sample was also highly correlated with the proportion of secretory luminal cells identified by  
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Fig. 3. Obesity is associated 
with a decreased proportion of 
hormone-responsive cells in the 
luminal compartment. (A) Left: 
UMAP plot of sorted live/singlet 
and epithelial cells from non-obese 
(BMI < 30) and obese (BMI ≥ 30) 
samples, highlighting hormone-
responsive (HR+) and secretory 
luminal cells. Right: Quantification 
of the proportion of HR+ or 
secretory cells in the luminal 
compartment of obese versus non-
obese samples (n = 16 samples; 
FDR < 0.0002, Wald test).  (B) A 
quasi-Poisson regression model 
accurately predicts the proportion 
of HR+ cells in the luminal 
compartment as a function of BMI 
in an independent cohort of Komen 
Tissue Bank core biopsy samples 
(mean absolute percentage error = 
14.8%; see also fig. S6B). (C) Left: 
UMAP depicting log normalized 
expression of KRT23. Right: Dot 
plot depicting the log normalized 
average and frequency of KRT23, 
ESR1, and PGR expression 
across luminal cell types. (D) Co-
immunostaining of PR, KRT23, 
and the pan-luminal marker KRT7, 
and quantification of the 
percentage of PR+ cells within the 
KRT23- and KRT23+ luminal cell 
populations (n = 16 samples; p < 
0.001, Mann-Whitney test). (E) Co-
immunostaining of KRT23 and 
KRT7 and linear regression 
analysis of the percentage of 
KRT23+ luminal cells versus BMI 
(n = 10 samples; R2 =0.71, p < 
0.003, Wald test). Scale bars 50 
µm. (F) Summary of changes in 
epithelial cell proportions with 
pregnancy and obesity. 

 
 
scRNAseq (fig. S9C; R2 = 0.71, p < 0.0001, Wald test). KRT23 thus represents a discriminatory marker 
between the two luminal populations. Staining in intact tissue sections confirmed that the proportion of 
KRT23+ secretory luminal cells increased by about 17% for every 10-unit increase in BMI (Fig. 3E; R2 = 
0.71, p < 0.003). Together, these data demonstrate that there are two independent effects of reproductive 
history and body weight on cell proportions in the mammary epithelium: parity affects the ratio of basal 
to luminal cells whereas BMI affects the ratio of HR+ versus secretory luminal cells (Fig. 3F).  
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Hormone signaling is a primary axis of transcriptional variability in HR+ luminal cells 
 
Beyond differences in cell proportions, we found that transcriptional cell state within clusters was a 
second source of inter-sample variability in our dataset (Fig. 1D, and fig. S3, C and E). Since estrogen 
and progesterone are master regulators of breast development, and the levels of these hormones 
fluctuate across the menstrual cycle, we hypothesized that hormone signaling would represent a major 
source of transcriptional heterogeneity across samples. Consistent with this, we previously observed a 
high degree of sample-to-sample variation in ER/PR expression (fig. S8D) within the HR+ luminal cell 
cluster, which has been shown to vary based on hormone receptor activation state (19, 23, 24). 
 
To quantify cell state in HR+ luminal cells, we first performed principal component (PC) analysis on this 
population. Analysis of ranked gene loadings demonstrated that variation across PC1 in HR+ cells was 
driven by genes involved in the response to hormone receptor activation, including the essential PR target 
genes WNT4 and TNFSF11 (RANKL) (6, 25) (Fig. 4A). Of the 20 genes with the highest loadings in PC1, 
12 have been previously described as associated with either estrogen signaling, progesterone signaling, 
or the luteal phase of the menstrual cycle when progesterone is at its peak (fig. S10A, table S4) (6, 26-
35). Thus, transcriptional changes associated with hormone signaling state (PC1) are a dominant source 
of variation in HR+ luminal cells (fig. S10B). 
 
As PC analysis seeks to maximize the variance of a projected dataset, it may combine gene signatures 
from multiple transcriptional states into a single component (fig. S10A) (36). Therefore, we performed 
non-negative matrix factorization (NMF) to identify a specific gene signature of hormone signaling, and 
identified 9 distinct gene expression programs, or “metagenes” in HR+ luminal cells (Fig. 4B, and fig. 
S10, C and D) (37, 38). Cell embedding in PC1 was highly correlated with expression of metagene 8 
(Pearson correlation = 0.79, fig. S10E). Analysis of ranked gene loadings demonstrated that this 
“hormone signaling” metagene comprised a similar gene expression program as PC1, including the PR 
targets WNT4 and TNFSF11 (RANKL) and the ER target TFF3 (Fig. 4B). The hormone signaling 
metagene was highly enriched for genes upregulated during the luteal phase of the menstrual cycle (Fig. 
4C; p < 1e-9) (29), and for transcripts in the Molecular Signatures Database Hallmark “early estrogen 
response” (p < 0.006) and “late estrogen response” (p < 0.007) gene sets (fig. S10F) (39). Thus, NMF 
identified a distinct transcriptional signature for hormone receptor activation in HR+ luminal cells, 
representing both known hormone-responsive genes as well as new markers of the hormone response 
specifically in the HR+ luminal cell population. 
 
The hormone signaling response of HR+ luminal cells is reduced in parous women 
 
Previous epidemiologic analyses have demonstrated that the protective effect of parity against breast 
cancer is specific for ER+/PR+ tumors (12). Decreased hormone responsiveness following pregnancy is 
one proposed mechanism for this effect (8). Supporting this, previous studies demonstrated decreased 
expression of the PR effector WNT4 following pregnancy (5, 22). Moreover, in an explant culture model, 
estrogen consistently induced expression of the ER target gene AREG only in nulliparous women (4). As 
the effects of hormones in the breast are primarily mediated by paracrine signaling from HR+ luminal 
cells, this decreased hormone responsiveness could be caused by either: 1) a change in the magnitude 
of paracrine signals produced by each HR+ luminal cell, and/or 2) a reduction in the overall proportion of 
HR+ luminal cells leading to a “dilution” of paracrine signals following ER/PR activation. It has been 
difficult to distinguish between these mechanisms using bulk tissue-level analyses. By probing the single-
cell transcriptional landscape of the HR+ luminal cell population, NMF analysis provided a means to 
directly interrogate whether parity influences the per-cell hormone signaling response of HR+ luminal 
cells.  
 
To quantify variation in hormone signaling in HR+ luminal cells, we first measured the similarity between 
each sample’s single-cell distribution across metagene 8. Hierarchical clustering identified two sets of 
samples, representing high or low hormone signaling (fig. S11A). Based on this, we found that while the  
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Fig. 4. Hormone signaling is a primary axis of transcriptional variability in HR+ luminal cells. (A) PCA 
plot of HR+ luminal cells depicting expression of WNT4 and TNFSF11 (RANKL) in log normalized counts. 
(B) Non-negative matrix factorization identifies a specific gene signature of hormone signaling in HR+ 
luminal cells. Heatmap depicting the top 20 genes expressed in each HR+ cell metagene, highlighting 
marker genes in HR+ metagene 8. (C) Gene set enrichment analysis of HR+ cell metagene 8, showing 
enrichment of genes shown to be upregulated during the luteal phase of the menstrual cycle (NES = 2.16, 
p < 1e-9) (29). (D) Ridge plots depicting the distribution of HR+ metagene 8 (hormone signaling) expression 
in HR+ luminal cells across samples, and quantification of the average expression of metagene 8 in 
nulliparous (NP) versus parous (P) samples (n = 22 samples, p = 0.04, Mann-Whitney test). (E) 
Immunostaining for TCF7, p63, and KRT7, and quantification of the percentage of TCF7+ cells within the 
p63+ basal/myoepithelial cell compartment for nulliparous (NP) versus parous (P) samples (n=15 samples; 
p < 0.002, Mann-Whitney test). 
 

 
level of hormone signaling in HR+ luminal cells varied between nulliparous women, likely reflecting 
differences in hormone levels across the menstrual cycle or due to hormonal contraceptive use, per-cell 
hormone signaling in HR+ luminal cells was significantly reduced in parous women (p < 0.04, Mann-
Whithney test; Fig. 4D, and fig. S11B). Importantly, equal numbers of individuals from each cohort were 
using hormonal birth control (n = 4 out of 11 nulliparous or parous individuals, table S1). For women not 
using hormonal birth control (n = 7 out of 11 nulliparous or parous individuals), we modeled the expected 
number of samples with high hormone signaling based on a binomial distribution using average menstrual 
cycle phase lengths (40). The number of nulliparous samples with high hormone signaling matched the 
expected modal number of samples in the luteal phase (3 of 7 samples, P = 0.29), whereas the number 
of parous samples with high hormone signaling was significantly lower than expected based on the 
average length of the follicular and luteal phases of the menstrual cycle (0 of 7 samples, P = 0.02) (fig. 
S11C). Thus, the decreased per-cell hormone signaling seen in HR+ luminal cells from parous women 
cannot be explained by differences in hormonal contraceptive use or random sampling across the 
menstrual cycle.  
 
To identify differentially expressed genes between nulliparous and parous women with high sensitivity, 
we generated a pseudo-bulk dataset of aggregated HR+ luminal cells from each sample (methods) and 
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confirmed that parous women had decreased expression of the canonical hormone-responsive genes 
AREG, WNT4, PGR, TNFSF11 (RANKL), and TFF1 (fig. S11D, table S5). Notably, the progesterone 
receptor itself is an ER target gene (41). Staining for the progesterone receptor and K23 confirmed that 
PR expression was reduced in the HR+ luminal cell subpopulation (K7+/K23-) of parous samples (fig. 
S11E). Finally, we confirmed that paracrine signaling downstream of PR activation was specifically 
reduced in parous samples by assessing the effects of one of these genes, WNT4. As WNT4 from HR+ 
luminal cells has been shown to signal to basal cells (25), we performed co-immunostaining for the WNT 
effector TCF7 and basal/myoepithelial cell marker p63 and found that TCF7 expression was markedly 
decreased in parous samples (p < 0.002, Mann-Whitney test; Fig. 4E). This decrease was not due to 
differences in epithelial architecture, as TCF7 staining in ducts versus TDLUs within the same samples 
was unchanged (fig. S11F). Together, these data demonstrate that transcriptional variation among HR+ 
luminal cells is primarily related to hormone signaling, that transcription along this axis (HR+ metagene 
8) is reduced in women with prior history of pregnancy, and that these transcriptional changes coincide 
with a reduction in downstream paracrine signaling to basal/myoepithelial cells. 
 
Identification of coordinated changes in signaling states across cell types in the breast downstream of 
hormone signaling 
 
As the effects of estrogen and progesterone on other cell types in the breast are controlled by paracrine 
signaling from HR+ luminal cells, we reasoned that hormone receptor activation in HR+ luminal cells 
would be correlated with transcriptional changes in other cell types, representing the downstream 
paracrine response. To identify putative transcriptional signatures of the paracrine response, we 
developed a computational framework that leverages the person-to-person transcriptional heterogeneity 
observed within cell types to find coordinated changes in cell signaling states across samples. This 
approach builds upon previous studies that used heterogeneous expression of individual genes across 
tissue regions (42) or small cell populations (43, 44) to identify co-regulated transcripts. However, rather 
than identifying individual genes that co-vary either spatially or within cell populations, we instead identify 
distinct transcriptional cell states (metagenes) within cell types that co-vary across samples. First, we 
decomposed each cell type into sets of gene expression programs, or “metagenes”, using NMF as 
described above (fig. S10, C and D, and fig. S12, A and B). We then quantified the average expression 
of each cell type-specific metagene for each sample and constructed a weighted network of coordinated 
gene expression programs based on the pair-wise Pearson correlations between metagenes (fig. S12C, 
methods). Finally, we identified modules of highly correlated gene expression programs using the 
infomap community detection algorithm (45). Using this approach, we identified three major modules—
annotated here as “resting state”, “paracrine signaling”, and “involution” modules—comprising highly 
interconnected transcriptional states across cell types in the breast (Fig. 5A).  
 
The “resting state” module consisted of gene expression programs that were negatively correlated with 
hormone signaling in HR+ luminal cells (Fig. 5A, and fig. S13A). Metagenes in this module were primarily 
enriched for pathways involved in ribosome biogenesis and RNA processing (fig. S14B). The “paracrine 
signaling” module comprised gene expression programs that were positively correlated with hormone 
signaling in HR+ luminal cells (Fig. 5A, and fig. S14A). As expected based on the central role HR+ cells 
play in the response to estrogen and progesterone, the HR+ hormone signaling metagene (HR+ 
metagene 8) had the greatest influence on information flow within this module, as measured by 
betweenness centrality (fig. S14A). Our analysis revealed that high levels of hormone signaling in HR+ 
cells coincided with the emergence of a second transcriptional state—HR+ metagene 5—in a distinct 
subpopulation of HR+ luminal cells (fig. S14B). Marker analysis and gene set enrichment analysis 
demonstrated that HR+ metagene 5 was characterized by upregulation of a hypoxia gene signature and 
pro-angiogenic factors such as VEGFA and ANGPTL4 (fig. S14C). The identification of this “hypoxia” 
gene signature is consistent with a previous study using microdialysis of healthy human breast tissue, 
which found that VEGF levels increased in the luteal phase of the menstrual cycle (46). As estrogen 
response elements have been identified in the untranslated regions of VEGFA (47), our results suggest 
that this increased expression may be, in part, a direct effect of hormone signaling to this subpopulation 
of HR+ cells. 
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We next investigated gene expression programs in other epithelial and stromal populations that were 
highly correlated with hormone signaling in HR+ luminal cells. NMF and network analysis identified a 
subpopulation of proliferative secretory luminal cells within the paracrine signaling module (fig. S14D). 
This “proliferation” metagene was highly enriched for cell-cycle related genes (fig. S14D) previously found 
to be upregulated during the luteal phase of the menstrual cycle (fig. S14E) (29). Moreover, similar to 
HR+ cells, basal/myoepithelial cells in samples with high levels of hormone signaling had enrichment of 
transcripts involved in hypoxia and angiogenesis such as VEGFA and ANGPTL4 (fig. S14F). Gene set 
enrichment analysis demonstrated that variation across this basal cell “paracrine response” metagene 
was driven by genes involved in epithelial-mesenchymal transition, cell adhesion, cell motility, and 
extracellular matrix (ECM) organization (fig. S14F), suggesting that changes in basal/myoepithelial cell 
motility, cell-cell, and cell-ECM interactions underlie the previously reported morphological changes 
observed in the breast epithelium across the menstrual cycle (48). We observed similar morphological 
changes by H&E staining in samples classified as having high versus low hormone signaling, including 
the emergence of more distinct luminal and myoepithelial cell layers (fig S14G). Finally, previous studies 
have identified alterations in stromal organization and ECM composition across the menstrual cycle (49, 
50). Consistent with this, hormone signaling in HR+ luminal cells correlated with two distinct gene 
expression programs in fibroblasts: a “tissue remodeling” metagene characterized by upregulation of 
ECM proteins including collagens (COL3A1, COL1A1, COL1A2) and fibronectin (FN1), and a 
“proinflammatory” gene expression program representing upregulation of cytokines and growth factors 
such as IL6 and TGFB3 (fig. S14H).  
 
Finally, gene set enrichment analysis of the third module uncovered a transcriptional signature in HR+ 
and secretory luminal cells that was similar to that identified during post-lactational involution (fig. S15, A 
and B) (51, 52). These “involution” metagenes were characterized by high expression of death receptor 
ligands such as TNFSF10 (TRAIL) and genes involved in the defense and immune response, including 
interferon-response genes (fig. S15, B and C). The involution signature in secretory luminal cells was 
also characterized by expression of major histocompatibility complex class II (MHCII) molecules and the 
phagocytic receptors CD14 and MARCO (fig. S15B), suggesting that these cells play a role as non-
professional phagocytes in the clearance of apoptotic cells, similar to what has been described during 
post-lactational involution (53). Previous data have demonstrated that the fraction of apoptotic cells in 
the mammary epithelium peaks between the late luteal and early follicular phases of the menstrual cycle 
(54). Notably, TGFB3 signaling is a major signaling molecule involved in post-lactational involution that 
enhances phagocytosis by mammary epithelial cells (55), suggesting that TGFB3 secreted by fibroblasts 
at the end of the luteal phase (fig. S14H) activates a subset of secretory luminal cells during the late 
luteal/early follicular phase that go on to express “involution” markers including phagocytic receptors.  
 
Together, these results demonstrate how the underlying sample-to-sample variability in scRNAseq data 
can be used to infer functional connections between cell types in paracrine signaling networks. Using this 
computational framework, we find that variation in hormone signaling in HR+ luminal cells is linked to 
transcriptional variability across all major cell types in the breast. Strikingly, many of these changes 
closely mimic those seen during the pregnancy/involution cycle that have been linked to a transient 
increased breast cancer risk following pregnancy (56, 57). 
 
The proportion of HR+ luminal cells predicts basal cell paracrine signaling state  
 
Previously, we demonstrated that parity was associated with a change in the per-cell hormone signaling 
response of HR+ luminal cells (Fig. 4D), whereas increased BMI was associated with a reduction in the 
proportion of HR+ cells in the luminal compartment (Fig. 3). As the effects of ER/PR activation are 
controlled by paracrine signaling from HR+ luminal cells to other cell types, we reasoned that the overall 
proportion of HR+ luminal cells in the epithelium was a second mechanism that could affect the hormone 
responsiveness of the breast. While the downstream effects of hormone receptor activation in HR+ 
luminal cells are controlled by a complex set of signaling networks, previous work has shown that HR+ 
cells signal directly to basal cells via WNT (25). Since WNT proteins generally form short-range signaling 
gradients (58), we predicted that the paracrine response in basal cells would be particularly sensitive to  
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Fig. 5. Identification of coordinated changes in signaling states across cell types in the breast. (A) 
Left: Network graph of correlated gene expression programs in the human breast. Nodes represent distinct 
metagenes in the indicated cell types, and edges connect highly correlated metagenes (Pearson correlation 
coefficient > 0.5, p < 0.05). Modules of correlated gene expression programs were identified using the 
infomap community detection algorithm. The “hormone signaling” metagene in HR+ cells (HR+ metagene 
8) is highlighted in yellow. Right: Heatmap depicting Pearson correlation coefficients between metagenes 
in the three major modules. (B) Linear regression analysis of basal cell state across metagene 10 (paracrine 
response) versus HR+ luminal cell state across metagene 8 (hormone signaling) (R2 = 0.57, p < 3e-6, Wald 
test). Dots represent the average expression of each metagene within a sample, colored by the proportion 
of HR+ luminal cells in the epithelium for that sample. (C) Summary of multiple linear regression analysis 
with three predictors: HR+ cell hormone signaling (HR+ metagene 8), the frequency of HR+ cells in the 
epithelium, and an interaction term representing the combined effects of HR+ signaling and frequency 
(Signaling × Frequency). (D) Ridge plots depicting the distribution of basal cell metagene 10 (paracrine 
response) expression across samples, and quantification of the average expression in obese (BMI ≥ 30) 
versus non-obese (BMI < 30) samples (n = 16 samples, p < 0.003, Mann-Whitney test). (E) Ridge plots 
depicting the distribution of basal cell metagene 10 (paracrine response) expression across samples, and 
quantification of the average expression in nulliparous (NP) versus parous (P) samples (n = 22 samples, p 
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< 0.003, Mann-Whitney test). (F) Network subgraph of the “paracrine signaling” module with node sizes 
proportional to the mean expression of each metagene in: samples with low hormone signaling (n = 17, see 
fig. S11A), samples with high hormone signaling and < 40% HR+ luminal cells in the epithelium (n = 5), or 
samples with high hormone signaling and ≥ 40% HR+ luminal cells in the epithelium (n = 5). Nodes 
represent distinct metagenes in the indicated cell types, and edges connect highly correlated metagenes 
(Pearson correlation coefficient > 0.5; p < 0.05). (G) Schematic depicting how parity and obesity lead to 
decreased hormone signaling in the breast through distinct mechanisms. Parity directly affects the per-cell 
hormone response in HR+ luminal cells, whereas BMI leads to a reduction in the proportion of HR+ luminal 
cells in the epithelium. 
 

 
reductions in the proportion of HR+ luminal cells. Consistent with this idea, while the basal cell “paracrine 
response” metagene was linearly associated with the hormone signaling state of HR+ luminal cells (R2 = 
0.57, p < 3e-6, Wald test), positive outliers tended to have a greater proportion of HR+ luminal cells and 
negative outliers tended to have a lower proportion of HR+ luminal cells in the epithelium (Fig. 5B). 
 
To formally test this prediction, we modeled the basal cell paracrine response as a linear response to 
three variables: HR+ cell hormone signaling (HR+ metagene 8), the frequency of HR+ cells in the 
epithelium, and an interaction term representing the combined effects of HR+ signaling and frequency 
(Signaling × Frequency). This combined model accounted for over 75% of the sample-to-sample variation 
across the paracrine response metagene in basal cells (R2 = 0.76, p < 3e-8; Fig. 5C, fig. S16A, and table 
S6). Importantly, only the interaction term (Signaling × Frequency) was a significant predictor of basal 
cell transcriptional state (p < 0.002, Wald test; Fig. 5C and table S6), demonstrating that the basal cell 
paracrine response requires both hormone signaling in HR+ cells and an appreciable abundance of HR+ 
cells in the epithelium. Together, these results are consistent with a model in which the proportion of HR+ 
luminal cells in the epithelium influences the magnitude of paracrine signaling to basal/myoepithelial cells 
downstream of estrogen and progesterone. 
 
Based on these results, we predicted that BMI would influence paracrine signaling from HR+ luminal cells 
to basal/myoepithelial cells, since HR+ luminal cells are reduced in obese women (Fig. 3). Confirming 
this, we found that while direct hormone signaling in HR+ cells was not significantly affected by obesity 
(p = 0.31, Mann-Whitney test; fig. S16B), the downstream basal cell paracrine response was significantly 
reduced in obese samples (p < 0.003, Mann-Whitney test; Fig. 5D). Consistent with the reduced hormone 
signaling previously observed in HR+ cells from parous women (Fig. S4D), parity was also associated 
with a reduction in the basal cell paracrine response (p < 0.003, Mann-Whitney test; Fig. 5E). 
 
Gene set enrichment analysis demonstrated that variation in the basal cell “paracrine signaling” 
metagene was driven by genes involved in contractility and cell motility (fig. S14F). To determine whether 
these genes were differentially expressed in obese and/or parous women, we generated a “pseudo-bulk” 
dataset of basal cells from each sample. Of the 195 genes significantly downregulated in parous samples 
and 148 genes significantly downregulated in obese samples, 68 were reduced across both groups (fig. 
S16C and table S7). Both parous and obese samples had decreased expression of contractility-related 
genes including ACTA2, ACTG2, CNN1, MYH11, MYL9, and MYLK, as well as the basement membrane 
proteins COL4A1 and COL14A1 (fig. S16C and table S7). Finally, consistent with the idea that parity and 
obesity reduce the paracrine response of basal cells to hormone signaling, expression of the WNT target 
genes SPP1 and WLS were also reduced in both subsets. Overall, these results support a model in which 
paracrine signaling downstream of hormone receptor activation depends on both the magnitude of 
signaling from HR+ luminal cells and their overall abundance (Fig. 5F). Moreover, parity and BMI affect 
the hormone responsiveness of the breast through these two distinct mechanisms: parity directly alters 
the per-cell hormone signaling response in HR+ luminal cells, whereas BMI indirectly affects hormone 
signaling by reducing the proportion of HR+ luminal cells in the mammary epithelium (Fig. 5G). 
Importantly, both mechanisms have a common effect on the breast microenvironment by determining the 
relative intensity of the paracrine response in neighboring cell types (Fig. 5, D-F). 
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Discussion 
 
In this study, we combine single-cell analyses, immunostaining, and computational modeling to 
deconstruct the major sources of sample-to-sample heterogeneity in the human breast. We identify inter-
sample variation in epithelial cell proportions, hormone sensitivity, and transcriptional state across the 
breast microenvironment, and link these patterns of heterogeneity to biological variables known to 
modulate breast cancer risk. By using single-cell measurements, we separate out the effects of variation 
in cell proportions from variation in transcriptional state. We then developed a computational pipeline that 
leverages the inter-sample transcriptional heterogeneity in our dataset to identify coordinated changes in 
cell signaling states across cell types. Using this approach, we identify a set of highly correlated gene 
expression programs representing the in situ response to hormone receptor activation in HR+ cells and 
the effects of downstream paracrine signaling in other cell types. Furthermore, we show that person-to-
person heterogeneity in hormone responsiveness in the breast is directly linked to two factors known to 
modulate premenopausal breast cancer risk—reproductive history and BMI.  
 
Pregnancy has a pronounced protective effect against breast cancer, with up to a 50% reduction in breast 
cancer risk for women with multiple full-term pregnancies at a young age (8). Our analysis revealed that 
parity is associated with a stark increase in the proportion of basal and/or myoepithelial cells within the 
breast epithelium. Previous work has described two tumor-protective features of myoepithelial cells: they 
are resistant to malignant transformation (59, 60) and also act as a natural and dynamic barrier that 
prevents tumor cell invasion (61, 62). Thus, our data suggest that pregnancy protects against breast 
cancer risk both by decreasing the relative frequency of luminal cells—the tumor cell-of-origin for most 
breast cancer subtypes (63-65)—and by suppressing progression to invasive carcinoma. 
 
Lifetime hormone exposure is another major determinant of breast cancer risk (1). Here, we use matrix 
decomposition and network analysis to map the coordinated changes in cell state that occur in response 
to paracrine signaling from HR+ luminal cells. Strikingly, many of these changes closely mimic those 
seen during the pregnancy/involution cycle that have been linked to a transient increased breast cancer 
risk following pregnancy (56, 57, 66). First, we identify a proliferative gene signature in secretory luminal 
cells that is highly correlated with hormone signaling in HR+ luminal cells, consistent with previous studies 
demonstrating that TNFSF11 (RANKL) and WNT control progesterone-mediated epithelial proliferation 
(67). Second, previous studies have shown that the fraction of apoptotic cells in the epithelium peaks 
between the late luteal and early follicular phases (54). Consistent with this, we identify subpopulations 
of HR+ and secretory luminal cells in the cycling premenopausal breast enriched for genes known to be 
upregulated during post-lactational involution (51, 52). Notably, we also observe upregulation of hypoxic 
gene signatures in multiple epithelial and stromal cell types that are highly correlated with hormone 
signaling in HR+ cells. A previous study identified these same pathways as highly enriched following 
involution in the mouse mammary gland. More importantly from the perspective of breast cancer risk, this 
“hypoxia/pro-angiogenic” signature identified breast cancers with increased metastatic activity (68), 
suggesting that these pathways support a permissive tumor microenvironment. 
 
Finally, we find that paracrine signaling from HR+ cells to basal cells depends on both the per-cell 
transcriptional response of HR+ cells to hormones and the overall proportion of HR+ cells in the 
epithelium. Notably, prior pregnancy and obesity are specifically associated with a reduced risk of 
ER+/PR+ breast cancer in premenopausal women (11, 12), and our data support the idea that these 
biological variables lead to reduced paracrine signaling downstream of estrogen and progesterone via 
two distinct mechanisms. First, parity leads to a reduced per-cell hormone signaling response in HR+ 
luminal cells. Second, we identify a marked decrease in the ratio of HR+ cells relative to secretory luminal 
cells with increasing BMI. Both changes are associated with a reduced paracrine signaling response in 
basal/myoepithelial cells. 
 
In summary, these results provide a comprehensive, systems-level view of the cellular and transcriptional 
variation within the disease-free human breast which profoundly affects the response to hormones and 
breast cancer risk. This single-cell analysis establishes a link between hormone signaling and tumor-
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promoting changes in cell state across multiple cell types. Furthermore, we identify tumor-protective 
changes in epithelial cell proportions and hormone responsiveness with pregnancy and increased BMI. 
As the breast is one of the only human organs that undergoes repeated cycles of morphogenesis and 
involution, this study serves as a roadmap to the cell state changes associated with hormone dynamics 
in the human breast. Finally, it provides a foundation for similar systems-level studies dissecting how the 
paracrine communication networks downstream of hormone signaling are altered during ER+/PR+ breast 
cancer progression. 
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Materials and Methods 

Tissue samples and preparation 
Reduction mammoplasty tissue samples were obtained from the Cooperative Human Tissue Network 
(CHTN, Vanderbilt University Medical Center, Nashville, TN) and Kaiser Permanente Northern California 
(KPNC, Oakland, CA). Core biopsy samples were provided by the Susan G. Komen Tissue Bank (KTB). 
Tissues were obtained as de-identified samples and all subjects provided written informed consent. When 
possible, medical reports or other patient data were obtained with personally identifiable information 
redacted. Use of breast tissue specimens to conduct the studies described above were approved by the 
UCSF Committee on Human Research under Institutional Review Board protocols 16-18865 and 10-
01532. A portion of each sample was fixed in formalin and paraffin-embedded using standard procedures. 
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The remainder was dissociated mechanically and enzymatically to obtain epithelial-enriched tissue 
fragments. Tissue was minced, followed by enzymatic dissociation with 200 U/mL collagenase type III 
(Worthington CLS-3) and 100 U/mL hyaluronidase (Sigma H3506) in RPMI 1640 with HEPES (Corning 
10-041-CV) plus 10% (v/v) dialyzed FBS, penicillin, streptomycin, amphotericin B (Lonza 17-836E), and 
gentamicin (Lonza 17-518) at 37 °C for 16 h. For KTB samples, the resulting cell suspension containing 
single cells and stroma was frozen and maintained at -180 °C until use. For reduction mammoplasty 
samples, the cell suspension was centrifuged at 400 x g for 10 min and resuspended in RPMI 1640 plus 
10% FBS. Digested tissue fragments enriched for epithelial cells and closely-associated stroma were 
collected after serial filtration through 150 µm and 40 µm nylon mesh strainers. Following centrifugation, 
tissue fragments and filtrate were frozen and maintained at -180 °C until use. 
 
Dissociation to single cells 
The day of sorting, epithelial-enriched tissue fragments from the 150 µm fraction, or total banked material 
for the KTB samples, were thawed and digested to single cells by trituration in 0.05% trypsin for 2 min, 
followed by trituration in 5 U/mL dispase (Stem Cell Technologies 07913) plus 1 mg/mL DNase I (Stem 
Cell Technologies 07900) for 2 min. Single-cell suspensions were resuspended in HBSS supplemented 
with 2% FBS, filtered through a 40 µm cell strainer, and pelleted at 400 x g for 5 min. The pellets were 
resuspended in 10 mL of complete mammary epithelial growth medium with 2% v/v FBS without GA-
1000 (MEGM; Lonza CC-3150). Cells were incubated at 37 °C for 1 h, rotating on a hula mixer, to 
regenerate surface antigens.  
 
MULTI-seq sample barcoding 
Single-cell suspensions were pelleted at 400 x g for 5 min and washed once with 10 mL mammary 
epithelial basal medium (MEBM; Lonza CC-3151). For each sample, one million cells were aliquoted, 
washed a second time with 200 μL MEBM, and resuspended in 90 μL of a 200 nM solution containing 
equimolar amounts of anchor lipid-modified oligonucleotides (LMOs) and sample barcode 
oligonucleotides in phosphate buffered saline (PBS). Following a 5-minute incubation on ice with anchor-
LMO/barcode, 10 uL of 2 μM co-anchor LMO in PBS was added to each sample (for a final concentration 
of 200 nM), and wells were mixed by gentle pipetting and incubated for an additional 5 min on ice. 
Following incubation, cells were washed twice in 200 μL PBS with 1% BSA and pooled together into a 
single 15 mL conical tube containing 10 mL PBS/1% BSA. All subsequent steps were performed on ice. 
 
Sorting for scRNAseq 
Cells were pelleted at 400 x g for 5 min and resuspended in PBS/1% BSA at a concentration of 1 million 
cells per 100 μL, and incubated with primary antibodies. Cells were stained with Alexa 488-conjugated 
anti-CD49f to isolate basal/myoepithelial cells, PE-conjugated anti-EpCAM to isolate luminal epithelial 
cells, and biotinylated antibodies for lineage markers CD2, CD3, CD16, CD64, CD31, and CD45 to 
remove hematopoietic (CD16/CD64-positive), endothelial (CD31-positive), and leukocytic 
(CD2/CD3/CD45-positive) lineages by negative selection (Lin-). Sequential incubation with primary 
antibodies was performed for 30 min on ice in PBS/1% BSA, and cells were washed with cold PBS/1% 
BSA. Biotinylated primary antibodies were detected with a streptavidin-Brilliant Violet 785 conjugate. After 
incubation, cells were washed once and resuspended in PBS/1% BSA plus 1 ug/mL DAPI for live/dead 
discrimination. Cell sorting was performed on a FACSAria II cell sorter. Live/singlet (DAPI-), luminal 
(DAPI-/Lin-/CD49f-/EpCAM+), basal/myoepithelial (DAPI-/Lin-/CD49f+/EpCAM-), or total epithelial 
(pooled luminal and basal/myoepithelial) cells were collected for each sample as specified in table S2 
and resuspended in PBS/1% BSA at a concentration of 1000 cells/µL. For Batch 4, an aliquot of MULTI-
seq barcoded cells were separately stained with biotinylated-CD45/streptavidin-Brilliant Violet 785 to 
enrich for immune cells, and sorted CD45+ cells were pooled with the Live/singlet fraction as specified in 
table S2. 
 
Antibodies and dilutions used (µL/million cells) were as follows: FITC-EpCAM (1.5 µL; BD 550257, clone 
AD2), APC-CD49f (4 µL; Stem Cell Technologies 10109, clone VU1D9), Biotin-CD2 (8 µL; BioLegend 
313636, clone GoH3), Biotin-CD3 (8 µL; BD 55325, clone RPA-2.10), Biotin-CD16 (8 µL; BD 55338, 
clone HIT3a), Biotin-CD64 (8 µL; BD 555526, clone 10.1), Biotin-CD31 (4 µL; Invitrogen MHCD31154, 
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clone MBC78.2), Biotin-CD45 (1 µL; BioLegend 304004, clone HI30), BV785-Streptavidin (1 µL; 
BioLegend 405249). 
 
scRNAseq library preparation 
cDNA libraries were prepared using the 10X Genomics Single Cell V2 (CG00052 Single Cell 3’ Reagent 
Kit v2: User Guide Rev B) or Single Cell V3 (CG000183 Single Cell 3’ Reagent Kit v3: User Guide Rev 
B) standard workflows as specified in table S2. Library concentrations were quantified using high 
sensitivity DNA Bioanalyzer chips (Agilent, 5067-4626) and Qubit dsDNA HS Assay Kit (Thermo Fisher 
Q32851). Individual libraries were sequenced on a lane of a HiSeq4500 or NovaSeq, as specified in table 
S2, for an average of ~150,000 reads/cell. 
 
Expression library pre-processing 
Cell Ranger (10x Genomics) was used to align sequences, filter data and count unique molecular 
identifiers (UMIs). Data were mapped to the human reference genome GRCh37 (hg19). The resulting 
sequencing statistics are summarized in table S2. For each experimental batch, the cellranger aggr 
pipeline (10X Genomics) was used to normalize read depth across droplet microfluidic lanes. 
 
Cell calling 
For V2 experiments, cell-associated barcodes were defined using Cell Ranger. For V3/MULTI-seq 
experiments, cells were defined as barcodes associated with ≥600 total RNA UMIs and ≤20% of reads 
mapping to mitochondrial genes. We manually selected 600 RNA UMIs and 20% mitochondrial genes to 
exclude low-quality cell barcodes. 
 
MULTI-seq barcode library pre-processing 
Raw barcode FASTQs were converted to barcode UMI count matrices as described previously (16). 
Briefly, FASTQs were parsed to discard reads where: 1) the first 16 bases of read 1 did not match a list 
of cell barcodes generated as described above, and 2) the first 8 bases of read 2 did not align with any 
reference barcode with less than 1 mismatch. Duplicated UMIs, defined as reads with the same cell 
barcode where bases 17-28 (V3 chemistry) of read 2 exactly matched, were removed to produce a final 
barcode UMI count matrix. 
 
Sample demultiplexing 
Barcode UMI count matrices were used to classify cells using the MULTI-seq classification suite (16). In 
Batch 3, sample RM192 was poorly labeled for the lane of cells from the epithelial cell sort gate. 
Therefore, to reduce spurious doublet calls in this dataset, we manually set UMI counts which were <10 
for this barcode to zero. For all experiments, raw barcode reads were log2-transformed and mean-
centered, the top and bottom 0.1% of values for each barcode were excluded, and a probability density 
function (PDF) was constructed for each barcode. Next, all local maxima were computed for each PDF, 
and the negative and positive maxima were selected. To define a threshold between these two maxima, 
we iterated across 0.02-quantile increments and chose the quantile maximizing the number of singlet 
classifications, defined as cells surpassing the threshold for a single barcode. Multiplets were defined as 
cells surpassing two or more thresholds, and unlabeled cells were defined as cells surpassing zero 
thresholds. Unclassified cells were removed and the procedure was repeated until all remaining cells 
were classified.  
 
To classify cells that were identified as unlabeled by MULTI-seq, we used the souporcell pipeline (15) to 
assign cells to different individuals based on single nucleotide polymorphisms (SNPs). For each dataset, 
we set the number of clusters (k) to the total number of samples in that experiment. To avoid local minima, 
souporcell restarts clustering multiple times and takes the solution that minimizes the loss function. For 
Batch 3, we chose the number of restarts that produced less than a 1.5% misclassification rate between 
MULTI-seq and souporcell singlet sample classifications (Live singlet: 30 restarts/1.2% mismatch rate; 
Epithelial: 75 restarts/1.5% mismatch rate). Souporcell classification performed more poorly across 
parameters for Batch 4 (Live singlet plus CD45+: 50 restarts/8.1% mismatch rate, 75 restarts/4.8% 
mismatch rate; Epithelial: 50 restarts/8.6% mismatch rate, 75 restarts/14.9% mismatch rate, 100 
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restarts/4.1% mismatch rate). Therefore, for these datasets we used sample classifications that were 
consistent across two restarts (Pooled live singlet/ CD45+: consistent calls across 50 and 75 
restarts/0.4% overall mismatch rate; Epithelial: consistent calls across 50 and 100 restarts/1% overall 
mismatch rate) to identify high-confidence singlets.  
 
Quality control, dataset integration, and cell type identification using Seurat 
Cell type identification was performed using the Seurat package (version 3.1.5) in R (69). To identify and 
remove doublets from the same sample that would not be identified by MULTI-seq or souporcell, we 
filtered each lane to remove cells with greater than 20% of reads mapping to mitochondrial genes and 
ran DoubletFinder (version 2.0) on each data subset (70), using parameters identified by the 
‘paramSweep_v3’ function. Aggregated data for singlet cells for each batch was filtered to remove cells 
that had fewer than 200 genes and genes that appeared in fewer than 3 cells. Cells with a Z score of 4 
or greater for the total number of genes expressed were presumed to be doublets and removed from 
analysis. The remaining cells were log transformed and scaled to a total of 1e4 molecules per cell, and 
the top 2000 most variable genes based on variance stabilizing transformation were identified for each 
batch (71). Data from all four batches were integrated using the standard workflow and default 
parameters from Seurat v3 (69). This data integration workflow identifies pairwise correspondences 
between cells across datasets and uses these anchors to transform datasets into a shared expression 
space. Following dataset integration, the resulting batch-corrected expression matrix was scaled, and 
principal component (PC) analysis was performed using the identified integration genes. The top 28 
statistically significant PCs as determined by visual inspection of elbow plots were used as an input for 
UMAP visualization and k-nearest neighbor (KNN) modularity optimization-based clustering using 
Seurat’s FindNeighbors and FindClusters functions.  
 
Quantification of sample-to-sample heterogeneity: cluster entropy and similarity score 
To measure how well-mixed cells from different samples were across cell type clusters, we quantified the 
normalized relative cluster entropy for our dataset, weighted by cluster size (72). A cluster entropy value 
of 1 represents complete intermixing of samples across clusters. To measure transcriptional variation in 
cell state within cell types between cells from the same versus different batches and/or samples, we 
measured the pairwise alignment between each sample/batch (73), where batches consisted of sets of 
samples processed on the same day (table S2). This “similarity score” examines the local neighborhood 
of each cell in a particular sample/batch, asks how many of its k nearest neighbors belong to a second 
sample/batch, and averages this over all cells. We chose k to be 1% of the total number of cells within a 
cluster. The result was normalized by the expected number of cells from each sample/batch. Notably, for 
repeat measurements, samples run across multiple batches were highly similar. 
 
Testing for changes in cell type proportions and predictive modeling 
We modeled the detected number of each cell type in each sample as a random count variable using a 
quasi-Poisson process to allow for overdispersion, with the condition being tested (e.g. parity, BMI, 
obesity) as a predictor and the total number of detected epithelial or luminal cells in each sample as an 
offset variable (74). To account for uncertainty due to variable numbers of profiled cells in each sample, 
we used bootstrap resampling to estimate confidence intervals associated with detection of each cell 
type (75). Results from 1000 bootstrap replicates were pooled using the mice::pool function in R, and the 
model was fit using a quasi-Poisson generalized linear model from the ‘stats’ R package. Tests for 
statistical significance were performed using a Wald test on the regression coefficient. Multiple hypothesis 
correction was controlled using the false discovery rate. For the Komen Tissue Bank (KTB) data set, a 
quasi-Poisson model was trained on the reduction mammoplasty cohort as described above, and the 
‘predict’ function in the ‘stats’ R package was used to predict the proportion of HR+ luminal cells in the 
KTB samples based on BMI. 
 
PC analysis within HR+ luminal cells 
To perform principal component analysis on HR+ luminal cells, we subset out this cluster from the 
integrated dataset and repeated the standard workflow from Seurat v3 to identify integration genes 
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specific to this cell type. The resulting batch-corrected expression matrices were scaled, and PC analysis 
was performed using the identified integration genes.  
 
Non-negative matrix factorization of individual cell types 
To identify gene expression signatures, or “metagenes” within individual cell types, we subset out raw 
counts data from each of the four most abundant clusters (HR+ luminal cells, secretory luminal cells, 
basal/myoepithelial cells, and fibroblasts) and performed matrix factorization. We chose to perform matrix 
factorization independently on each cell type rather than on the combined dataset, as preliminary 
analyses demonstrated that the number of metagenes identified for each cell type was highly dependent 
on the relative sizes of each cluster in the combined dataset. To account for batch differences, we used 
the LIGER package in R to perform integrative NMF (37, 38), and performed all subsequent analyses on 
shared, rather than batch-specific, metagenes. To avoid identification of gene signatures dominated by 
highly-expressed transcripts, we normalized the raw counts matrix for each cell based on its total 
expression, multiplied by a scale factor of 1e4, and log-transformed and scaled the result without 
centering. The resulting dataset was decomposed using the standard workflow and default parameters 
from LIGER. To estimate the optimum choice of rank K (i.e. number of NMF components) for each cell 
type, we used the suggestK function in the LIGER package to calculate the Kullback-Leibler (KL) 
divergence of metagene loadings across a range of K values, and identified the elbow point on this curve. 
 
Jensen-Shannon distance to quantify sample-to-sample variability in hormone signaling 
To quantify variation in expression of the “hormone signaling” metagene in HR+ luminal cells (HR+ 
metagene 8), we performed the following workflow. First, we used the cell loadings across HR+ metagene 
8 for each sample to compute kernel density estimations using the ‘density’ function in the ‘stats’ R 
package. We excluded sample RM172 from this analysis as it had fewer than 50 HR+ luminal cells; thus, 
the resulting kernel density estimation was highly sensitive to individual outliers. Second, we used the 
‘JSD’ function in the ‘philentropy’ R package (76) to measure the pairwise Jensen-Shannon divergence 
between samples. Third, we converted this to a distance metric (Jensen-Shannon Distance, JSD) by 
taking the square root and performed hierarchical clustering using the ‘hclust’ function in the ‘stats’ R 
package, using ‘ward.D2’ linkage. The similarity between samples was plotted on a heatmap as (1-JSD).  
 
Metagene network analysis 
To identify sets of gene expression programs that co-varied across samples, we first decomposed each 
cell type into a set of distinct gene expression programs, or “metagenes”, using NMF as described above. 
We then quantified the average expression of each metagene in each sample and constructed a weighted 
network of coordinated gene expression programs based on the pair-wise Pearson correlations between 
metagenes. To account for correlations driven by outlier samples, we used bootstrap resampling to 
estimate confidence intervals associated with each correlation coefficient. The resulting Pearson 
correlation matrix was transformed into a weighted adjacency matrix by setting all Pearson correlation 
coefficients less than 0.5 or with p-values greater than 0.05 to zero. Finally, we identified modules of 
highly correlated gene expression programs using the infomap community detection algorithm in the 
‘igraph’ package in R (45). We chose this flow-based community detection algorithm in order to maximize 
information flow within clusters. Results using the modularity-based Louvain clustering algorithm were 
identical except that a small community consisting of three metagenes was merged with the “involution” 
module. 
 
Gene set enrichment analysis 
To identify marker genes statistically associated with each metagene, we used multiple least squares 
regression of normalized (z-scored) gene expression against the cell loading matrix for each metagene 
(77). This results in a vector of regression coefficients representing the strength of the relationship 
between expression of a particular metagene and scaled expression of each gene. The resulting ranked 
gene lists were analyzed by gene set enrichment analysis, using the ‘fgsea’ package in R (78).  
 
Fluorescent Immunohistochemistry 
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For immunofluorescent staining, formalin-fixed paraffin-embedded tissue sections were deparaffinized 
and rehydrated using standard methods. Endogenous peroxides were blocked using 3% hydrogen 
peroxide in PBS, and antigen retrieval was performed in 0.1 M citrate buffer pH 6.0. Sections were 
blocked for 5 min at room temperature using Lab Vision Ultra-V block (Thermo TA-125-UB) and rinsed 
with TNT wash buffer (1X Tris-buffered saline with 5 mM Tris-HCl and 0.5% TWEEN-20). Primary 
antibody incubations were performed for 1 hour at room temperature or overnight at 4°C. Sections were 
washed three times for 5 min each with TNT wash buffer, incubated with Lab Vision UltraVision LP 
Detection System HRP Polymer (Thermo Fisher TL-060-HL) for 15 min at room temperature, washed, 
and incubated with one of three colors of tyramide signal amplification amplification (TSA) reagent at a 
1:50 dilution. After TSA, antibody complexes were removed by boiling in citrate buffer, followed by 
blocking and incubation with additional primary antibodies as above. Finally, sections were rinsed with 
deionized water and mounted using Vectashield HardSet Mounting Media with DAPI (Vector H-1400). 
Immunofluorescence was analyzed by spinning disk confocal microscopy using a Zeiss Cell Observer 
Z1 equipped with a Yokagawa spinning disk and running Zeiss Zen Software. 
 
Antibodies, TSA reagents, and dilutions used are as follows: p63 (1:2000; CST 13109, clone D2K8X), 
KRT7 (1:4000; Abcam AB68459, clone EPR1619Y), KRT23 (1:2000; Abcam AB156569, clone 
EPR10943), ER (1:4000; Thermo Scientific RMM-9101-S, clone SP1), PR (1:3000; CST 8757, clone 
D8Q2J), TCF7 (1:2000; CST 2203, clone C63D9), FITC-TSA (2 min; Perkin Elmer NEL701A001KT), 
Cy3-TSA (3 min; Perkin Elmer NEL744001KT), Cy5-TSA (7 min; Perkin Elmer NEL745E001KT). 
 
Morphometric analysis and geometric modeling 
Formalin-fixed paraffin-embedded tissue sections were immunostained for the pan-luminal marker KRT7, 
counterstained with DAPI and imaged as described above. Images containing lobular tissue were 
acquired randomly, and the area and perimeter of the KRT7-positive luminal layer of each acinus was 
analyzed in ImageJ. To reduce noise and remove small gaps in KRT7 fluorescence, we applied a closing 
filter from the MorphoLibJ plugin with a 2-pixel (1.33 μm) radius disk (79). The resulting image was 
smoothed by applying a Gaussian filter with sigma 5 pixels (3.33 μm), and binarized using the default 
thresholding algorithm in ImageJ. Finally, individual acini with visible lumens were manually selected and 
the area (A), perimeter (P), and circularity of the KRT7-positive region was measured for each structure. 
To estimate the average diameter (d) and luminal thickness (w) of each acinus, we used area and 
perimeter measurements to fit a circle containing a hollow lumen to each structure. Based on these 
results, we implemented a geometric model in which each acinus was represented as a hollow circle with 
shell thickness that was linearly related to diameter (d). Since basal cells form a monolayer along the 
luminal surface, we represented the space available for basal cells as the outer perimeter of the luminal 
layer, and the space available for luminal cells as the area of the luminal layer. To estimate the linear 
relationship between w and d, we performed linear regression analysis using measurements from all 
structures with a circularity greater than 0.75 (n = 55 acini from 15 samples).  
 
Pseudo-bulk differential gene expression analysis 
To identify genes differentially expressed between samples from parous and nulliparous or obese and 
non-obese individuals in specific cell types, we constructed pseudo-bulk datasets consisting of the 
summed raw read counts across all single HR+ luminal cells or basal/myoepithelial cells for each batch 
and sample. We restricted our analysis to samples/batches that had at least 100 cells of the cell type of 
interest. Each dataset was then randomly down-sampled to the lowest library size, and differential 
expression analysis was performed using DESeq2 (version 1.18.1) to test for genes differentially 
expressed between samples from obese (BMI ≥ 30) and non-obese (BMI < 30) or parous and nulliparous 
individuals, using batch as a covariate (80). As certain samples were sequenced across more than one 
batch (table S2), replicates of the same sample from different batches were combined using the 
collapseReplicates function. False discovery rate corrected p-values were calculated using the 
Benjamini-Hochberg procedure (81). 
 
RNA FISH analysis of ESR1 transcripts 
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Combined RNA FISH and immunofluorescence analysis of estrogen receptor transcript (RNAscope 
Probe Hs-ESR1; ACD 310301) and protein (anti-ER; Thermo RMM-9101-S, clone SP1) was performed 
using the RNAscope in situ hybridization kit (RNAscope Multiplex Fluorescent Reagent Kit V2, ACD 
323100) according to the manufacturer’s instructions and fluorescent immunohistochemistry protocol 
outlined above with the following modifications. Immunostaining for ER was performed prior to in situ 
hybridization, using the hydrogen peroxide and antigen retrieval solutions supplied with the RNAscope 
kit and the mildest recommended conditions. After ER immunostaining and tyramide signal amplification, 
in situ hybridization for ESR1 was performed according to the manufacturer’s instructions, followed by 
immunostaining for KRT7 as described above. For all RNA FISH experiments, we used positive (PPIB) 
and negative controls (DAPB) to verify staining conditions and probe specificity. 
 
Data availability 
Submission of raw gene expression and barcode count matrices to the Gene Expression Omnibus is in 
process. For inquiries about data, code, or materials, contact authors.  
 
 
Supplemental Figures and Tables 
 
Tables S1-S7 
Figures S1-S16 
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Supplemental Figures and Tables 
 
Table S1. Donor information for reduction mammoplasty samples and list of samples used for scRNAseq, 
FACS, and immunostaining experiments.  
 
Table S2. Summary statistics for single-cell RNA sequencing of twenty-eight reduction mammoplasty 
samples (RM) and seven Komen Tissue Bank samples (KTB). 
 
Table S3. Multiple linear regression analysis of the percentage of basal cells in the epithelium as 
measured by flow cytometry analysis. 
 
Table S4. Association of the 20 highest-loading genes in PC1 for HR+ luminal cells with estrogen 
signaling, progesterone signaling, or the luteal phase of the menstrual cycle. 
 
Table S5. Canonical hormone-responsive genes differentially expressed in HR+ luminal cells between 
parous and nulliparous samples.  
 
Table S6. Multiple linear regression analysis of the basal paracrine response (metagene 10) in response 
to three predictors: HR+ cell hormone signaling (HR+ metagene 8), the frequency of HR+ cells in the 
epithelium, and an interaction term representing the combined effects of HR+ signaling and frequency 
(Signaling × Frequency) 
 
Table S7. Genes differentially expressed in basal/myoepithelial cells between parous versus nulliparous 
samples or obese (BMI ≥ 30) versus non-obese (BMI < 30) samples. 
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Fig. S1. Sorting strategy and MULTI-seq barcoding for scRNAseq experiments. (A) FACS plots 
depicting sort gates used for sequencing. (B) TSNE dimensionality reduction of the normalized barcode 
count matrices and final sample classification for MULTI-seq experiments (Batches 3 and 4). (C) UMAP 
dimensionality reduction of the combined data from twenty-eight samples for each sort population.  
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Fig. S2. Marker analysis of cell type clusters for scRNAseq experiments. (A) Heatmap highlighting 
marker genes used to identify each cell type. For visualization purposes, we randomly selected 100 cells 
from each cluster. (B) UMAPs depicting expression of selected markers in log normalized counts. (C) 
Dot plot depicting the log normalized average and frequency of ESR1 and PGR expression across cell 
type clusters. (D) Venn diagram highlighting the frequency of ESR1 and PGR expression and percent 
overlap in the HR+ luminal cell cluster. 
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Fig. S3. Quantification of inter-sample variability in the breast. (A) UMAP for each sample 
highlighting cell types identified by unsupervised clustering. Cells from different individuals are 
represented across all clusters (cluster entropy = 0.93, methods). (B) Quantification of the proportion of 
epithelial cells (basal/myoepithelial; HR+ luminal; secretory luminal) in each sample, with the cross-
sample median and range for each cell type (n = 28 samples). (C) Density plots highlighting the 
transcriptional cell state of basal/myoepithelial cells, secretory luminal cells, or fibroblasts from samples 
with at least 100 cells in each cluster. (D) UMAP of samples that were run as repeat measurements 
across multiple batches, highlighting cells from each batch. See table S2 for sample and batch 
information. (E) Quantification of the pairwise alignment—or “similarity score”—between cells from the 
same or different sample and batch for the indicated cell types. See table S2 for sample and batch 
information. The dashed line represents the expected similarity score for random mixing. 
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Fig. S4. Prior pregnancy is associated with changes in epithelial cell proportions. (A) Quantification 
of the proportion of basal/myoepithelial cells (Basal), HR+ luminal cells (HR+), and secretory luminal cells 
(Secretory) in the mammary epithelium of nulliparous (NP) versus parous (P) samples, as identified by 
scRNAseq clustering (n = 28 samples; Wald test). (B) Quantification of the percentage of EpCAM–/CD49f+ 
basal cells identified by FACS analysis versus age (n = 23; R2 = 0.20; p < 0.04, Wald test), body mass 
index (n = 21; R2 = 0.03; p = 0.44, Wald test), race (Caucasian = C, African American = AA; n = 23; p = 
0.55, Mann-Whitney test), or hormonal contraceptive use (n = 23; p = 0.50, Kruskal-Wallis test). (C) 
Microarray differential expression analysis for selected genes from Santucci-Periera et al. and Peri et al. 
(20, 21). 
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 25, 2020. ; https://doi.org/10.1101/430611doi: bioRxiv preprint 



 34 

 
 
 
Fig. S5. Prior pregnancy is associated with changes in epithelial architecture. (A) Immunostaining 
for the basal/myoepithelial marker p63 and pan-luminal marker KRT7, and quantification of the ratio of 
p63+ myoepithelial cells to KRT7+ luminal cells in the terminal ductal lobular units (TDLUs) or ducts for 
parous (P) versus nulliparous (NP) samples (n = 14 samples; Mann-Whitney test). Scale bars 50 µm. 
Inset scale bars 15 µm (B) Quantification of the average acinar diameter in TDLUs from nulliparous (NP) 
versus parous (P) samples (n = 14 samples; p < 0.002, Mann-Whitney test). (C) Linear regression 
analysis of the width of the luminal layer versus acinus diameter for individual acini with circularity greater 
than 0.75 (n = 56 acini from 15 samples; R2 = 0.89, p < 0.0001, Wald test). (D) Quantification of the 
average thickness of the luminal layer in acini from TDLUs in nulliparous (N) versus parous (P) samples 
(n = 14 samples; p < 0.002, Mann-Whitney test). (E) Quantification of the average luminal cell density 
(nuclei per μm2 of luminal area) in acini from TDLUs in nulliparous (NP) versus parous (P) samples (p = 
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0.43, Mann-Whitney test). (F) Left: Linear regression analysis of the perimeter of the luminal layer versus 
the number of p63+ basal cells for individual acini (n = 72 acini from 13 samples; R2 = 0.55, p < 0.0001, 
Wald test). Right: Linear regression analysis of the area of the luminal layer versus the number of KRT7+ 
luminal cells for individual acini (n = 72 acini from 13 samples; R2 = 0.81, p < 0.0001, Wald test). 
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Fig. S6. The proportion of HR+ luminal cells is reduced in obese women and does not vary with 
other discriminating factors. (A) Proportion of HR+ luminal cells in each sample (dots) stratified by 
age, reproductive history, hormonal contraceptive (HC) use, or race (C = Caucasian, AA = African 
American; Wald test). (B) Quasi-Poisson regression model of the proportion of HR+ cells in the luminal 
compartment as a function of BMI (FDR < 0.001, Wald test). (C) UMAP plot of sorted luminal cells from 
non-obese (BMI < 30) and obese (BMI ≥ 30) samples, highlighting hormone-responsive (HR+) and 
secretory luminal cells. 
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Fig. S7. Summary of scRNAseq analysis of samples from the Komen Tissue Bank. (A) Scatter plots 
highlighting differences in body mass index (BMI), reproductive history, and age between the Komen 
Tissue Bank (KTB) and reduction mammoplasty cohorts (see also table S1). Trendline depicts the 
positive association of BMI with age in the reduction mammoplasty cohort. (B) TSNE dimensionality 
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reduction of the normalized barcode count matrices and final sample classification for MULTI-seq 
barcoding. (C) UMAP dimensionality reduction and unsupervised clustering of the combined data from 
seven KTB samples identifies the major epithelial and stromal cell types in the breast. (D) UMAPs 
depicting expression of selected markers in log counts. (E) Heatmap highlighting marker genes used to 
identify each cell type. For visualization purposes, we randomly selected 50 cells from each cluster. 
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Fig. S8. Hormone receptor expression is highly variable. (A) Top: Co-immunostaining of PR and 
KRT7 and linear regression analysis of the percentage of PR+ luminal cells versus BMI (n = 10 samples; 
R2 =0.29, p = 0.11, Wald test). Bottom: Co-immunostaining of ER and KRT7 and linear regression 
analysis of the percentage of ER+ luminal cells versus BMI (n = 8 samples; R2 =0.06, p = 0.56, Wald 
test). Scale bars 50 µm. (B) Venn diagram highlighting the average percent overlap between ER and PR 
as measured by immunostaining (n = 5 samples, range = 11-71%). (C) Multiplexed in situ hybridization 
of estrogen receptor transcript (ESR1) and immunostaining for estrogen receptor protein (ER) and KRT7. 
Scale bars 25 µm. Right: Plots depicting the expression of ESR1 and ER across multiple tissue sections 
(R2 = 0.6, p < 0.01, Wald test) or within individual cells (p = 0.63, Wilcoxon matched pairs signed-rank 
test). (D) Table and bar plot depicting the sensitivity and specificity for ESR1 or PGR transcript expression 
in the HR+ luminal cell versus secretory luminal cell cluster based on scRNAseq analysis.  
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Fig. S9. Keratin 23 is a specific marker of cells in the secretory luminal cell lineage. (A) 
Representative images of co-immunostaining of PR, KRT23, and the pan-luminal marker KRT7. (B) Co-
immunostaining of ER, KRT23, and the pan-luminal marker KRT7 and quantification of the percentage 
of ER+ cells within the KRT7+/KRT23- and KRT7+/KRT23+ luminal cell populations (n = 5 samples; p < 
0.01 Mann-Whitney test). Scale bars = 50 µm. (C) Linear regression analysis of the percentage of luminal 
cells in the secretory lineage identified by scRNAseq clustering versus the percentage of KRT23+ luminal 
cells identified by immunostaining (n = 15 samples; R2 =0.71, p < 0.0001, Wald test). 
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Fig. S10. Matrix decomposition analysis of HR+ luminal cells. (A) Heatmap highlighting the 20 genes 
with the highest (top) and lowest (bottom) loadings in PC1, annotated by their association with estrogen 
signaling, progesterone signaling, or the luteal phase of the menstrual cycle. HR+ luminal cells are 
ordered by their cell loadings in PC1. (B) Barchart depicting the proportion of variance explained by each 
of the top 20 principal components. (C) Parameter selection for non-negative matrix factorization based 
on KL divergence (methods). (D) Heatmap of cell loadings across each metagene for HR+ luminal cells. 
(E) PCA plot of HR+ luminal cells depicting the relative expression of HR+ metagene 8. (F) Gene set 
enrichment analysis of HR+ cell metagene 8, showing the top pathways identified from the Molecular 
Signatures Database Hallmark and GO gene sets. 
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Fig. S11. Parity is associated with a decrease in the per-cell hormone signaling response of HR+ 
luminal cells. (A) Heatmap showing the similarity between each sample’s single-cell expression 
distribution across HR+ cell metagene 8, measured as (1 - Jensen-Shannon distance). Hierarchical 
clustering identifies two sets of samples representing high or low expression of the “hormone signaling” 
metagene (ward D2). (B) PCA plot of HR+ luminal cells in nulliparous or parous women depicting 
expression of HR+ cell metagene 8. (C) Binomial probability distribution for the number of samples with 
high hormone signaling. The binomial probability of high hormone signaling is modeled as the average 
length of the luteal phase of the menstrual cycle, in days, divided by the average total length of the 
menstrual cycle (P = 0.44) (40). (D) Volcano plot highlighting the differential expression of canonical 
hormone-responsive genes between parous and nulliparous samples in HR+ luminal cells. (E) 
Immunostaining for PR, KRT23, and KRT7, and quantification of the percentage of PR+ cells within the 
KRT23-/KRT7+ luminal cell compartment for nulliparous (NP) versus parous (P) samples (n=15 samples; 
p < 0.03, Mann-Whitney test). (F) Immunostaining for p63, TCF7, and KRT7 in ducts versus TDLUs, and 
quantification of the percentage of TCF7+ cells within the p63+ basal/myoepithelial cell compartment (n 
= 14 samples; p = 0.64, Wilcoxon signed-rank test). 
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Fig. S12. Matrix decomposition analysis of secretory luminal cells, basal/myoepithelial cells, and 
fibroblasts. (A) Parameter selection for non-negative matrix factorization based on KL divergence 
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(methods). (B) Heatmap of cell loadings across each metagene for the indicated cell types. (C) Left: 
Network graph of coordinated gene expression programs in the human breast. Nodes represent distinct 
metagenes in the indicated cell types, and edges connect highly correlated metagenes (Pearson 
correlation coefficient > 0.5 and p < 0.05). Modules of highly correlated gene expression programs were 
identified using the infomap community detection algorithm. The “hormone signaling” metagene in HR+ 
cells (HR+ metagene 8) is highlighted in yellow. Right: Heatmap depicting Pearson correlation 
coefficients between all metagenes. 
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Fig. S13. The “Resting State” module consists of metagenes negatively correlated with hormone 
signaling in HR+ luminal cells. (A) Network subgraph of the “resting state” module, and heatmap 
depicting Pearson correlation coefficients between the indicated metagenes and levels of significance (* 
p < 0.05, ** p < 0.01, *** p < 0.001). (B) Gene set enrichment analysis for the indicated metagenes, 
showing the top pathways identified from GO gene sets. 
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Fig. S14.  The “Paracrine Signaling” module consists of metagenes positively correlated with 
hormone signaling in HR+ luminal cells. (A) Network subgraph of the “paracrine signaling” module, 
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and heatmap depicting Pearson correlation coefficients between the indicated metagenes and levels of 
significance (* p < 0.05, ** p < 0.01, *** p < 0.001). Right: Betweenness centrality for the indicated 
metagenes within the paracrine signaling module. (B) Left: Linear regression analysis of HR+ cell state 
across metagene 8 (“hormone signaling”) versus metagene 5 (“hypoxia”) (R2 = 0.37, p < 0.0004, Wald 
test). Dots represent the average expression of each metagene within a sample. Right: Scatter plot of 
HR+ cell expression of metagene 8 versus metagene 5. Dots represent the expression of each metagene 
within individual HR+ luminal cells. (C) Left: Heatmap depicting the top 20 genes expressed in each HR+ 
cell metagene, highlighting metagene 5. Right: Gene set enrichment analysis for HR+ metagene 5, 
showing the top pathways identified from the Molecular Signatures Database Hallmark and GO gene 
sets. (D) Left: Heatmap depicting the top 20 genes expressed in each secretory luminal cell metagene, 
highlighting metagene 8. Right: Gene set enrichment analysis for secretory cell metagene 8, showing the 
top pathways identified from the Molecular Signatures Database Hallmark and GO gene sets. (E) Gene 
set enrichment analysis of secretory luminal cell metagene 8, showing enrichment of genes upregulated 
during the luteal phase of the menstrual cycle (NES = 2.38, p < 2e-30) (29). (F) Left: Heatmap depicting 
the top 20 genes expressed in each basal cell metagene, highlighting metagene 10. Right: Gene set 
enrichment analysis for basal cell metagene 10, showing the top pathways identified from the Molecular 
Signatures Database Hallmark, GO, and Canonical Pathways gene sets. (G) Representative images of 
H&E stained sections. Scale bars 100 µm. (H) Left: Heatmap depicting the top 20 genes expressed in 
each fibroblast metagene, highlighting metagenes 5 and 7. Right: Gene set enrichment analysis for 
fibroblast metagenes 5 and 7, showing the top pathways identified from the Molecular Signatures 
Database Hallmark and GO gene sets. 
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Fig. S15.  The “Involution” module consists of metagenes enriched for genes upregulated during 
post-lactational involution. (A) Network subgraph of the “involution” module, highlighting the two 
metagenes most closely associated with an “involution-like” gene signature. (B) Heatmap depicting the 
top 20 genes expressed in each HR+ cell or secretory cell metagene, highlighting “involution-like” 
metagenes. Right: Gene set enrichment analysis of the indicated metagenes, showing enrichment of 
genes upregulated during the postlactational involution (HR+ metagene 3: NES = 1.65, p < 0.008; 
Secretory cell metagene 2: NES = 1.97, p < 2e-6) (51). (C) Gene set enrichment analysis for the indicated 
metagenes, showing the top pathways identified from the Molecular Signatures Database Hallmark and 
GO gene sets. 
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Fig. S16. Paracrine signaling to basal cells depends on the hormone signaling state of HR+ 
luminal cells and the proportion of HR+ luminal cells in the epithelium. (A) Plot depicting the 
observed basal cell state across metagene 10 (“paracrine response”) for each sample versus the 
predicted values based on multiple linear regression analysis with three predictors: HR+ cell hormone 
signaling (HR+ metagene 8), the frequency of HR+ cells in the epithelium, and an interaction term 
representing the combined effects of HR+ cell signaling and frequency (Signaling × Frequency). (B) 
Ridge plots depicting the distribution of HR+ cell metagene 8 (“hormone signaling”) expression across 
samples, and quantification of the average expression in obese (BMI ≥ 30) versus non-obese (BMI < 30) 
samples (n = 16 samples, p < 0.31, Mann-Whitney test). (C) Volcano plot and venn diagram highlighting 
genes downregulated in basal/myoepithelial cells in both parous and obese samples. 
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