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Abstract 

After recalling briefly some basic properties of the quantum group GLq(2), 
we study the quantum spheres;, quantum projective space CPq(N) and quan­
tum Grassmannians as examples of complex (Kahler) quantum manifolds. The 
differential and integral calculus on_these manifolds are discussed. It is shown 
that mimy relations of classical projective geometry generalize to the quantum 
case. For the case of the quantum sphere a comparison is made with A. Connes' 
method. 
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1 INTRODUCTION 

Quantum spheres can be defined in any number of dimensions by normalizing a vector 
of quantum Euclidean space [1]. The differential calculus on quantum Euclidean space 
[2] induces a calculus on the quantum sphere. The case of two-spheres in three-space is 
special in that there are many more possibilities. These have been studied by P. Podles 
[3, 4, 5, 6] who has defined quantum spheres as quantum spaces on which quantum 
SUq(2) coacts. He has also developed a noncommutative differential calculus on them. 
In these lectures we consider, following [7], a special case of Podle$ spheres which is 
one of those special to three space dimensions. In this case the quantum sphere s; is 
the analogue of the classical sphere defined as SU(2)/U(l) or as isomorphic to CP(l). 
We also define a stereographic projection and describe the cpaction of SUq(2) on the 
sphere by fractional transformations on the complex variable in the plane analogous 
to the classical ones. The quantum sphere appears then a.s the quantum deformation 
of the classical two-sphere described as a complex Kahler manifold. We discuss the 
differential and integral calculus on s; and the action of SUq(2) vector fields on jt. 
Finally, fol)owing [8], we show that one can define on braided copies of s; invariant 
anharmonic cross ratios analogous to the classical ones. All this is done in Sec.3, after 
recalling briefly in Sec.2 the basic properties of GLq(2) and SUq(2). 

The above results are generalized in Secs.4 and 5 to quantum CPq(N) and in 
Sec.6 to quantum Grassmannians [9]. These quantum spaces appear as complex Kahler 
quantum manifolds which can be described in terms of homogeneous or inhomogeneous 
coordinates. Differential and integral calculus can be defined on them as well as the 
quantum analogues of projective invariants. For the general case of Grassmannians, we 
do not give explicit formulas for the integral and for the projective invariants. They 
should not be hard to-derive by analogy with the CPq(N) case. 

The type of quantization described here has the property that there exists a spe­
cial quantum (connection) one-form which generates the differential calculus by taking 
commutators or anticommutators of it with functions or forms (see Eq. ( 4. 70) below). 
This one-form is closely related to the Kahler form which can be obtained from it 
by differentiation. In the Poisson limit our quantization gives Poisson brackets not 
only between functions but also between functions and forms and between forms. The 
special one-form generates the calculus by taking Poisson brackets with functions or 
forms and the Kahler form can still be obtained from it by differentiation. Our Poisson 
structure on the manifold is singular and is not the standard one which is obtained 
by taking the Kahler form as symplectic form. Nevertheless, our Poisson structure is 
intimately related to the Kahler form, as just explained. For the algebra of functions 
on the sphere, this singular Poisson structure was already considered in [10]. 

All formulas and derivations of Sec.3 can be easily modified, with a. few changes 
of signs, to describe the quantum unit disk and the coaction of quantum SUq(1, 1) on 
it, as well as the corresponding invariant anharmonic ratios. This provides a quantum 
deformation of the Bolyai-Lobachevskil non-Euclidean plane and of the differential and 
integral calculus on it. The modified equations can be guessed very easily and will not 

3 



be given here. It should be mentioned that the commutation relations between z and z 
for the unit disk are consistent with a representation of z and z as bounded operators 
in a Hilbert space. This is to be contrasted with the case of the quantum sphere where 
z and z must be unbounded operators. The developments of Sec.4 and 6 can similarly 
be modified, again with some changes of signs, to describe a quantum deformation of 
various higher dimensional non-~uclidean geometries. 

Finally, in Appendix A, we try to re-formulate the differential and integral calculus 
on the quantum sphere in a way as close as possible to Connes' formulation of quantum 
Riemannian geometry [27). 

We will use the following notations throughout the paper: 

( 1.1) 

and 
q2n _ 1 

[n]q = 2 . 
q -1 

( 1.2) 

2 GLq(2) AS EXAMPLE OF A QUANTUM GROUP 

The simplest example of a matrix quantum group [11] as a Hopf algebra [12) is GLq(2) 
[1]. lt is a one-parameter deformation of the classical group GL(2). The algebra of 
functions on GL(2) is generated by the elements a, /3, 1, 8 in the fundamental represen­
tation 

7r()- ( a(g) /3(g)) 
g - 1(9) 8(g) (2.1) 

for g E GL(2). The algebra A of functions on GLq(2) has the following Hopf algebra 
structure. 

1. Algebra: 

The multiplication in A is _noncommutative and the commutation relations are 
given compactly as 

(2.2) 

in terms of the quantum matrix 

(2.3) 

and the R-matrix 

u 
0 0 0) R= 
.A 1 0 
1 0 0 ' 
0 0 q ,, 

(2.4) 

where q is a complex number. 
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The classical limit is obtained when the deformation parameter q ~ 1, the R­
matrix becomes the permutation matrix. 

Explicitly the commutation relations are 

cx/3 = qj3cx, cx1 = q1cx, 

/38 = q8/3, 18 = q81, 

/31 = 1/3, cx8- 8cx = ).J3f. 

(2.5) 

(2.6) 
(2. 7) 

The self-consistency of the commutation relations is guaranteed by the quantum 
Yang-Baxter relation 

(2.8) 

2. Coproduct: 

The coproduct of a generator is defined by the matrix multiplication 

( 
.6.(cx) .6.(/3)) = ( cx@cx+/3®1 cx®/3+/3®8) (2.9) 
.6.(1) .6.( 8) 1 ® 8 + 8 ® 1 1 ® /3 + 8 ® 8 . 

This formula is the same as the classical one. The coproduct is a. linear map and 
an algebra homomorphism. Another equivalent way to say that the coproduct is 
an algebra homomorphism is to say that the algebra is covariant under the left 
transformation 

T ~ T" = TT' (2.10) 

or the right transformation 

T ~ T" = T'T, (2.11) 

where T' is another quantum matrix satisfying (2.2) whose entries commute with 
the entries of T. The left- or right-covariance of the algebra means that the 
commutation relations among the entries of T" are the same as those for the 
corresponding entries ofT. 

3. Counit: 

The definition of the counit o.n generators also coincides with the classical case: 

( 
c( ex) c(/3) ) = ( 1 0 ) 
c(!) c(8) 0 1 · (2.12) 

In short, c(T) =I, where I is the identity matrix. For the counit to be an algebra 
homomorphism, we need I to be a quantum matrix. This is true since Ij = 8} 
and the RTT relation (2.2) is trivially satisfied. 
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4. Coinverse: 

The coinverse of the generators is defined so that they form the inverse matrix 
r-1

. It is 

(2.13) 

where detq(T) = a:8- q/31 is called the quantum determinant ofT. The quantum 
determinant is central in A (it commutes with everything in A) and is assumed 
not to vanish. 

This concludes our brief description of the quantum group G Lq (2) as a Hopf alge­
bra. 

Because the quantum determinant is central, it is consistent with the algebra to 
impose an additional condition 

(2.14) 

What we obtain after imposing (2.14) is the deformation of SL(2), naturally named 
SLq(2). . 

A further step can be taken to get SUq(2). We define the *-involution on SLq(2) 
for real q by 

rt = ( a:* '* ) = ( 8 -q-l /3 ) = r-1. 
/3* 8* -q, Ci 

(2.15) 

The commutation relations are covariant under this *-involution. 
The *-involution reverses a product: (! f')* = F* J* and is complex conjugation 

on complex numbers. It corresponds to the Hermitian conjugation when one realizes 
the algebra as the algebra of operators on a Hilbert space. 

Everything we mentioned in this section can be generalized to GLq(N), SLq(N) 
and SUq(N). These and the q-deformation for other classical groups are given in [1]. 

3 THE COMPLEX QUANTUM MANIFOLDs; 

In [3] Podle5 described a family of quantum spheres. They are compact 5 quantum 
spaces with the quantum symmetry SUq(2). That is, the algebra X of functions on the 
quantum spheres is covariant under an SUq(2) transformation. 

By studying the representations of the universal enveloping algebra of SUq(2) as 
in the classical case, one finds the quantum Clebsch-Gordan coefficients [13] which one 
must use to compose or decompose representations. 

A classical sphere can be specified in terms of Cartesian coordinates as x2+y2+z2 = 
r 2

. The vector (e+, e0 , e_) = (~(x + iy), z, h(x- iy)) transforms as a spin-1 repre­

sentation under SU(2). In the deformed case we can use the quantum Clebsch-Gordan 

5 Their classical limit is compact. 

6 



coefficients to find commutation relations covariant under the linear transformation of 
the vector (e+, e0 , e_) as a j = 1 representation of SUq(2). It is [3] 

and 

e.;e_ - e_e+ + Ae~ = 11e0 , 

-1 qeoe+ - q e+eo = f1e+, 
-I qe_e0 - q e0e_ = 11e-

(3.1) 
(3.2) 
(3.3) 

(3.4) 

where f1 E Rand s > 0. We have in addition to q two free parameters f1 and s, where 
s can always be scaled to a fixed number. Only 11labels inequivalent quantum spheres. 
With the *-involution q* = q, e+ = e_ and e~ = e0 , it gives a C*-algebra. 

A particularly interesting case is when this algebra is equivalent to the quotient 
SUq(2)/U(1) [14, 15]. The classical U(1) 6 is represented a$ a subgroup of SUq(2) by 

(3.5) 

where U* = u-1
• It can be checked that this is an SUq(2)-matrix. SUq(2) transforms 

under right multiplication by this matrix as 

( ~ ~ ) ~ ( ~ ~ ) ( ~. U~' ) ' (3.6) 

which is again an SUq(2)-matrix by taking U to commute with o:,(J,,,8. 
The algebra of functions X on the quantum sphere s; = SUq(2)/U(1) is the 

subalgebra of the algebra of functions on SUq(2) which is invariant under this U(1) 
transformation. It is generated by o:(J, fJ1 and 18, which can be related toe+, e_, e0 for 
f1 = A and s = 1 by 

(3. 7) 

and 
e_ = -q-1/2[2]!/2/8. (3.8) 

One can construct a stereographic projection of t?e sphere. Define 

z = -q1/2[2J!I2e+(1- eo)-1 = 0:/-1' 

z = -q1/2[2J!I2(1- eo)-1e_ = -813-1' (3.9) 

which classically is the projection from the north pole of the sphere to the plane tangent 
to the south pole with coordinates z, z. Using (3.9) and the properties of SUq(2), one 
obtains easily the commutation relation 

(3.10) 

6Since U(l) is one-dimensional there are no commutation relations to deform. 
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or equivalently 
(I+ zz) = q-2 (1 + zz); (3.11) 

and the *-involution 
z'" = z. (3.12) 

An equivalent description o.f s; can be obtained from the SUq(2) left-covariant 
complex quantum plane with coordinates {x, x, y, y} satisfying 

xy = qyx, yy = fjy, 

xi) = qf)x, xx = xx - qA.f)y (3.13) 

and their *-involutions, by considering the subalgebra generated by the inhomogeneous 
coordinates 

z = xy-1
, 

- --1-z = y X. 

It is easy to obtain the inverse relation of (3.9). It is 

e0 = 1 - [2]qp-1
, 

e+ = -q-1/2[2J!I2zp-1, 

(3.14) 

e_ = -q-1/2[2J!f2p-1 z, . (3.15) 

where p = 1 + zz. 
The SUq(2) transformation on SUq(2) induces rotations on the sphere. In terms 

of the coordinates z, z it is the fractional transformation: 

z--+ (az + b)(cz + d)-1
, z--+ -(c- dz)(a- bz)-1

, (3.16) 

where (: ~) E SUq(2) and a, b, c, d commute with z and z. Eq.(3.10) is covariant 

under this fractional transformation. 
We will denote the *-algebra generated by z and z as c+. Classically c+ is the 

algebra of functions on the plane. Notice that (3.10) for this plane differs from the 
usual quantum plane by an additional inhomogeneous constant term. 

3.1 Differential Calculus 

In Refs.[4, 5, 6], differential structures on s; are studied and classified. In this section, 
we give a differential calculus on the patch c+ in terms of the complex coordinates z 
and z. Just as the algebra of functions on c+ can be inferred from that of SUq(2), so 
can the differential calculus. 

For SUq(2) there are several forms of differential calculus[16, 17, 18]: the 3D left­
or right-covariant differential calculus, and the 4D+, 4D_ hi-covariant calculi. The 4D 
hi-covariant calculi have one extra dimension in their space of one-forms compared with 
the classical case. The right-covariant calculus will not give a projection on c+ m a 
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closed form in terms of z, z, which are defined to transform from the left. Therefore 
we shall choose the left-covariant differential calculus. 

It is straightforward to obtain the following relations from those for SUq (2): 

zdz = q-2dzz, zdz = q2dzz, 

zdz = q-2dzz, zdz = q2dzz, 

(dz) 2 = (dz) 2 = 0 

and 

dzdz = -q-2dzdz. 

· We can also define derivatives a, [J such that on functions 

d = dza + dz8. 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

From the requirement d2 = 0 and the undeformed Leibniz rule for d together with 
Eqs.(3.17) to (3.19) it follows that: 

az = 1 + q-2za, az = q2za, 

Bz = q-2z8, 8z = 1 + q2z8 

and 

(:3.22) 

(3.23) 

(3.24) 

It can be checked explicitly that these commutation relations are covariant under the 
transformation (3.16) and 

dz--+ (dz)(q- 1cz + d)- 1(cz + d)- 1, 

a--+ (cz + d)(q- 1cz + d)a, 

(3.25) 

(3.26) 

which follow from (3.16) and the fact that ·the differential d is invariant. We hope 
that there is no confusion: ( dz) is the differential of z rather than the. quantum group 
element d times z. 

The *-structure also follows from that of SUq(2): 

(dz)* = dz, 

a* = -q-2[) + (1 + q-2)zp-1' 

[}* = -q2a + ( 1 + q2)p-1 z, 

where the *-involution inverts the order of factors in a product. 

(3.27) 

(3.28) 

(3.29) 

The inhomogeneous terms on the RHS of the Eqs.(3.28) and (3.29) reflect the 
fact that the sphere has curvature. Incidentally, all the commutation relations in this 
section admit another possible involution: 

(dz}* = dz, 

a* = -q2[), 

[}* = -q-2a. 
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This involution is not covariant under the fractional transformations and cannot be 
used for the sphere. However, it can be used when we have a quantum plane defined 
by the same algebra of functions and calculus. We shall take Eqs.(3.17) to (3.29) as 
the definition of the differential calculus on the patch c+. 

It is interesting to note that there exist two different types of symmetries in the 
calculus. The first symmetry is that if we put a bar on all unbarred variables (z, dz, 
a), take away the bar from any barred ones and at the same time replace q by 1/q in 
any statement about the calculus, the statement is still true. 

The second symmetry is the consecutive operation of the two *-involutions above, 
so that 

a__, -q2fr = q4a- q2(1 + q2)P-] z, 
fj __, -q-2a* = q-4fj _ q-2(1 + q-2)zp-I, 

(3 .. 33) 

(:3.34) 

with z, z, dz, dz unchanged. This replacement can be iterated n times and gives a 
symmetry which resembles that of a gauge transformation on a line bundle: 

a__, a(n) 

fj __, fj(n) 

For example, we have 

lna- q2[2n]qp-I z 
q4nlnap-2n, 

q-4n[J- q-2[2n]t;qzp-I 

q-4n p2ntJp-2n. 

Making a particular choice of a, fJ is li.ke fixing a gauge. 

(3.35) 

(3.36) 

(3.37) 

Many of the features of a calculus on a classical complex manifold are preserved. 
Define 8 = dza and 8 = dzfJ as the exterior derivatives on the holomorphic and anti­
holomorphic functions on c+ respectively. We have: 

[8,z] = dz, 

[8, z] = 0, 

[8,z] = o, 
[8, z] = dz, 

The action of 8 and 8 can be extended consistently on forms as follows 

8dz = dz8 = 0, 8dz = dz8 = o ' 
{8,dz} = o, {8, dz} = 0, 

82 = 82 = 0 ' 
{8,8} = 0, 

where { ·, · }, [·, ·] are the a.nticommutator and commutator respectively. 
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3.2 One-form Realization of the Exterior Differential Oper­
ator d 

The calculus described in the previous section has a very interesting property. There 
exists a one-form :=: having the property that 

(3.45) 

where, as usual, the minus sign applies for functions or even forms and the plus sign 
for odd forms. Indeed, it is very easy to check that 

(3.46) 

where 
f= qdzp-1z, (3.47) 

satisfies Eq.(3.45) and 
(3.48) 

It is also easy to check that 
(3.49) 

and 
(3.50) 

Suitably normalized, d=.. is the natural area element on the quantum sphere. Notice 
that :=:2 commutes with all functions and forms, as required for consistency with the 
relation 

(3.51) 

The existence of the form:::: within the algebra of z, z, dz, dz is especially interesting 
because no such form exists for the 3-D calculus on 5Uq(2) [16], from which we have 
derived the calculus on the quantum sphere (a one-form analogous to :::: does exist for 
the two bicovariant calculi on SUq(2), but we have explained before why we didn't 
choose either of them). It is also interesting that d:::: and ::::2 do not vanish (as the 
corresponding expressions do in the bicovariant calculi on the quantum groups or in 
the calculus on quantum Euclidean space). The one-form :::: is regular everywhere on 
the sphere, except at the point z = z = oo, which classically corresponds to the north 
pole. 

3.3 Right Invariant Vector Fields on s; 
First let us recall some well-known facts about the vector fields on SUq(2) (see for 
example Ref.[19]). The enveloping algebra U of SUq(2) is usually said to be generated 
by the left-invariant vector fields H L,XL± which are arranged in two matrices L + and 
L-. The action of these vector fields corresponds to infinitesimal right transform-ation: 
T ~ TT'. What we want now is the infinitesimal version of the left transformation 
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given by Eq.(3.16), hence we shall use the right-invariant vector fields HR,XR±· Since 
only the right-invariant ones will be used, we will drop the subscript R hereafter. 

The properties of the right-invariant vector fields are similar to those of the left­
invariant ones. Note that if an SUq(2) matrix Tis transformed from the right by another 
SUq(2) matrix T', then it is equivalent to say that the SU11q(2) matrix r-1 is trans­
formed from the left by another $U1 jq(2) matrix T'-1. Therefore one can simply write 
down all properties of the left-invariant vector fields and then make the replacements: 
q--. 1/q, T--> y-I and left-invariant fields-->right-invariant fields. 

Consider the matrices of vector fields: 

+ - ( q-H/2 q-1/2 AX+ ) - - ( qH/2 0 ) 
M. - . 0 qH/2 ' M - -ql/2,\X_ q-H/2 . 

The commutation relations between the vector fields are given by, 

R12Mi M{ = M{ M:j" R12, 

R12M:; M; = M; M:; R12, 

R12Mi M1- = M1- Mi R12, 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

while the commutation relations between the vector fields and the elements of the 
quantum matrix in the smash product [19, 20, 21, 22] of U and SUq(2) are 

T1Mi = M:fR12T1, 
T1M:; = M:;R:;1

1T1, 

(3.56) 

(3.57) 

where Tis an SUq(2) matrix, 1? = q-112 Rand R is the GLq(~) R-matrix. Clearly M+, 
and M- are the right-invariant counterparts of L + and L-. The commutation relations 
between the M's and the T's tell us how the functions on SUq(2) are transformed by 
the vector fields H,X+,X_. 

and 

It is convenient to define a different basis for the vector fields, 

Z -X qH/2 +- + ' 
z_ = qH/2 x_ 

?-{ = [H] = q2H_l. 
q q2-1 

They satisfy the commutation relations 

and 

HZ+- q4 Z+H = (1 + q2)Z+, 
z_ H- q4HZ_ = (1 + q2)Z_ 
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Using the expressions of z, z in terms of a, (J, /, 8, one can easily find the action of these 
vector fields on the variables z, z: 

and 

7 z _ q2-z + q1;2_2 
""-'+ - "' + "'' 
Z+z = q-2zZ+ + q-312

, 

1-lz = q4 z1-l + (1 + q2)z, 
1-lz = q-4z1-l- q-4 (1 + q2 )z, 

Z_z = q2zZ_- q112 

It is clear that a *-involution can be given: 

z+ • = z_, 1-l* = 1-l. 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

(3. 70) 

Since all the relations listed above are closed in the vector fields and z, z (this would 
not be the case if we had used the left-invariant fields), we can now take these equations 
as the definition of the vector fields that generate the fractional transformation on s;. 
We shall take our vector fields to commute with the exterior differentiation d. One can 
show that this is consistent for right-invariant vector fields in a left-covariant calculus 
and allows us to obtain the action of our vector fields on the differentials dz and dz, as 
well as on the derivatives 8 and B. For instance (3.64) gives 

(3.'71) 

and 
(3.72) 

It is interesting to see how :=: and d:=: transform under the action of the right 
invariant vector fields or under the coaction of the fractional transformations (3.16). 
Using (3.64) to (3.69) one finds 

Z -=- =z -l/2a +~- ._; + + q z (3. 73) 

and 

1-l:=: = :=: 1-{ 0 (3.74) 

Eqs.(3.73) and (3.74) imply that d:=: commutes with Z± and 1-l, as expected for the 
invariant area element. 

For the fractional transformation (3.16) one finds ~ --+ t where 

(3.75) 
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and a similar formula for (*. The right hand side of (3.75) is a closed one-form, since 
(dz) 2 = 0, so one could write 

(3.76) 

with a suitably defined quantum function log
9

• Because of Eq.(3. 76), ~ can be inter­
preted as a connection. At any rate 

d( = d~-, (3. 77) 

so that the area element two-form is invariant under finite transformations as well. 

3.4 The Poisson Sphere 

The commutation relations of the previous sections give us, in the limit q -+ 1, a 
Poisson structure on the sphere. The Poisson Brackets (P.B.s) are obtained as usual as 
a limit 

(f ) - l" f g ~ g f 
,g - Im h ' h-o 

(3. 78) 

where we use + for J, g both odd and - otherwise. For instance, the commutation 
relation (3.10) gives 

and therefore [10] 7 

Similarly one finds 

and 

(z,z) = p. 

(dz, z) = zdz, (dz, z) = zdz, 

(dz, z) = -zdz, (dz, z) = -zdz 

(dz, dz) = dzdz. 

(3. 79) 

(3.80) 

(3.81) 

(3.82) 

(3.83) 

In this classical limit functions and forms commute or anticommute according to their 
even or odd parity, as usual. The P.B. of two even quantities or of an even and an odd 
quantity is antisymmetric, that of two odd quantities is symmetric. It is 

d(f,g) = (df,g) ± (f,dg), (3.84) 

where the plus (minus) sign applie's for even (odd) f. Notice that we have enlarged 
the concept of Poisson bracket to include differential forms. This is very natural when 
considering the classical limit of our commutation relations. 

7 Note that this Poisson structure is not the one usually considered on the sphere, (z, i) = p2 , which 
is associated with the symplectic structure given by the Kahler (area) form on the sphere. 
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In the classical limit, Eq.(3.45) becomes 

(~,f)= df, (3.85) 

where 
(3.86) 

and 
(3.87) 

are ordinary classical differential forms. Now 

d~ = 2dzdzp-2 (3.88) 

and 
~2 = 0. (3.89) 

Inspired by this example and by those of C Pq ( N) and the Grassmannians given in 
Secs.4 and 6, it is natural to consider the problem of constructing a Poisson structure on 
thealgebra of differential forms so that (3.84), (3.85) and some other natural conditions 
are valid. This is attempted in [23) and interesting results are obtained. 

As before, the variables z and z cover the sphere except for the north pole, while 
w = 1/ z and w = 1/z miss the south pole. It is 

(w,w) = ww(1 + ww). (3.90) 

The Poisson structure is not symmetric between the north and south pole. All P.B.s 
of regular functions and forms vanish at the north pole w = w = 0. Therefore, for 
Eq.(3.85) to be valid, the one-form ~ must be singular at the north pole. Indeed one 
finds 

and 

e = dww - dw 
1 + ww w' 

C = dww -'- dw 
1+ww w 

wdw- wdw 

~- ww(1 + ww)" 

On the other hand the area two-form 

_ dwdw 
d.::. = 2 ( 1 + ww )2 - n 

is regular everywhere on the sphere. 

(3.91) 

(3.92) 

(3.93) 

The singularity of ~ at the north pole is not a real problem if we treat it in the 
sense of the theory of distributions. Consider a circle C of radius r encircliq.g the origin 
of the w plane in a counter-clockwise direction and set 

w- reiB - ' 
- -iB w = re (3.94) 
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Using (:3.91), we have 

J- J wdw - wdw 4 . 
- - - 7r2 
~- 1 + ww . (3.95) 

As r -t 0 the integral in the right hand side tends to zero because the integrand is 
regular a.t the origin. Stokes' theorem can be satisfied even at the origin if we modify 
Eq.(3.93) to read 

E.= n- 41ri5(w)5(w)dwdw. (3.96) 

It is 
(3.97) 

so that 
(3.98) 

as it should be for a compact manifold without boundary. Notice that the additional 
delta function term in (3.96) also has zero P.B.s with all functi~ns and forms as required 
by consistency. 

3.5 Braided Quantum Spheres 

We first review the general formulation [24] for obtaining the braiding of quantum 
spaces in terms of the universal R-matrix of the quantum group which coacts on the 
quantum space. 

3.5.1 Braiding for Quantum Group Comodules 

Let A be the algebra of functions on a quantum group and V an algebra on which A 
coacts from the left: 

f:lL : v -7 A® v 
v f---+, v(l') @ v<2), (3.99) 

where we have used the Sweedler-like notation for flL( v ). 
Let W be another left A-comodule algebra., 

f:lL : w -7 A @ w 
w ~ w(l') @ w< 2 ). (3.100) 

It is known [24] that one can put V and W into a single left A-comodule algebra with 
the multiplication between elements of V and W given by 

(3.101) 

Here R E U ® U is the universal R-matrix for the quantum enveloping algebra U dual 
to A (with respect to the pairing ( ·, ·)) and 

R(a, b)= (R, a® b). (3.102) 
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It satisfies: 

R(J(l )l 9(1) )!{2)9{2) = 9(1)!(1) R(J(2), 9{2)), 

R(J9, h)= R(J, h(l))R(9, h{2)), 

R(J,9h) = R(f{l)' h)R(f(2),9), 

R(1, f)= R(J, 1) = c(J). 

One can check that (3.101) is associative and is left-covariant 8 . 

For A= SUq(2), it is 

(3.103) 

(3.104) 

~(3.105) 

(3.106) 

(3.110) 

R(T~ T1k)=q._ 1 12R~1i (3.111) 
J' J ' 

where R is the GLq(2) R-matrix. 
The braiding formula (3.101) can be used for any number of ordered A-comodules 

{Vn};;'=I so that it holds for v E Vm and w E Vn if m < n. 

Since we know how z, z' and z' transform, we can use (3.101) to derive the braided 
commutation relations [8). We will not repeat the derivation here but will only give 
the results 

(3.112) 

zz' = q2z' z- >..qz'2 , (3.113) 

zz' = q-2z' z- >..q-1
• (3.114) 

For consistency with the *-involution of the braided algebra the braiding order of z, z, z' 
and z1 has to be z < z' < z' < z after we have fixed z < z' and z < z as assumed in [7). It 
is crucial that we braid separately A= ({1,z}) with A' and A', and A= ({1, z}) with 
A' and A' instead of simply braiding the whole algebra ({l,z,z}) with ({l,z',z'}). 
Otherwise we will not be able to have· the usual properties of the *-involution (e.g. 
(f(z)9(z'))* = 9(z')* f(z)*) for the braiding relations. 

An alternative derivation of the same braiding relations proceeds by first comput­
ing the braiding of two copies of the complex quantum plane on which SUq(2) coacts 
and then using the expressions of the stereographic variables z and z in terms of the 
coordinates x, y of the quantum plane 

Z. = xy-1
, z = fj- 1x. (3.115) 

8 If on the other hand, one starts with two right A-comodule algebras, 

LlR:V -+ V®A 
v ........ v(1)0v< 2'), (3.107) 

flR: W -+ W®A 
w ........ w(l) 0 w< 2'), (3.108) 

then the multiplication 
(3.109) 

is associative (under the corresponding assumption), right covariant under LlR and makes V and W 
together a right A-comodule algebra. 
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3.5.2 Anharmonic Ratios 

Let us first review the classical case. The coordinates x, y on a plane transform as 

(3.116) 

by an SL(2) matrix T = (: ! ). (Since here we do not need the complex conjugates 

x and fj, T does not have to be an SU(2) matrix.) The determinant-like object xy 1-yx1 

defined for x, y together with the coordinates of another point X
1

, y' is invariant un~er 
the SL(2) transformation. For each point we define z = xjy so that 

I -1 ( I I) 1-1 z - z = y xy - yx y . (3.117) 

It now follows that with Xi, Yi fori= 1, 2, 3, 4 as coordinates of four points, 

(z2- z1)(z2- z4t1(z3- z4)(z3- zt)-1 

(x1Y2- Y1X2)(x4y2- y4x2t1(x4y3- y4x3)(x1y3- Y1X3t 1 (3.118) 

is invariant because all the factors y;1 cancel and only the invariant parts (xiYi- YiXj) 
survive. Therefore the anharmonic ratio is invariant under the SL(2) transformation. 
(In fact it is invariant forT being a GL(2) matrix.) 

Permuting the indices in the above expression we may get other anharmonic ratios, 
but they are all functions of the one above. For example, 

The coordinates of the SUq(2) covariant quantum plane obey 

xy = qyx, (3.120) 

an equation covariant under the transformation (3.116) with T now being an SUq(2) 
matrix. Braided quantum planes can be introduced by using (3.101). Let V be the i-th 
copy and W be the j-th one, then we have fori < j, 

XiYj = qyjXi + qAXjYi, 

XiXj = q2XjXi, 

YiYi = q2YiYi, 

YiXj = qXjYi· (3.121) 

In the deformed case we have to be more careful about the ordering. Let the deformed 
determinant-like object be 

(ij) = XiYj- qyiXj, (3.122) 

which is invariant under the SUq(2) transformation, and let 

[ . "] -1 -1 ( .. ) -1 ZJ = Zi- Zj = q Yi ZJ Yj ' (3.123) 
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h -1 w ere Zi = XiYi . 
Using the relations 

fori< j and 

Yi( ij) = q( ij)yi, 

( ij)yj = qyj( ij) 

Yi(jk) = lUk)yi, 

(ij)yk = q3 yk(ij) 

for i < j < k, we can see that, for example, 

(3.124) 

(3.125) 

(3.126) 

(3.127) 

(3.128) 

is again invariant. Similarly, B = [12][23]-1 [34](14]-1 as well as a number of others are 
invariant. 

To find out whether these invariants are independent of one another, we now 
discuss the algebra of the [ij]'s. 

Because [ij] = [ik] + [kj] and [ij] = ...:_[ji] the algebra of [ij) for i,j = 1, 2, 3, 4 is 
generated by only three elements [12), [23), [34). It is easy to prove that 

[ij][kl] = q2 [kl][ij] (3.129) 

if i < j ~ k < l. 
It follows that we have 

[ij)[ik)[jk] = q4 [jk][ik][ij] (3.130) 

for i < j < k, and 
[12)[34] + [14)[23] = [12][24] + [24][23]. (3.131) 

Using these relations we can check the dependency between the different anharmonic 
ratios. For example, let C = (13][23]-1 [24][14]-I, and D = [14)[13J-1 [23)[24J-\ both 
invariant, then 

B-1 AC 1 

q2B- n-1 - -1. 

(3.132) 

(3.133) 

In this ·manner it can be checked that all products of four terms [ij), [kl], [mnJ-1, 
[pr]- 1 in arbitrary order, which are invariant, are functions of only one invariant, say, 
A. Namely, all invariants are related and just like in the classical case, there is only one 
independent anharmonic ratio. If one uses the SUq(2) covariant commutation relations 
(3.112) and (3.114), one can check that the anharmonic ratio commutes with all the 
Zi's and so commutes with its *-complex conjugate, which is also an invariant. 

3.6 Integration 

We want to determine the invariant integral (f) of a function f(z, z) over the sphere. 
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3.6.1 Using the Definition 

A left-invariant integral can be defined, up to a normalization constant, by requiring 
invariance under the action of the right-invariant vector fields 

(xf(z, z)) = 0 (3.134) 

for X= Z+, Z_, H. 
Using 1i and Eqs.(3.66) and (3.67) one finds that 

(zkzlg(zz)) = 0, unless k = l. (3.135) 

(Here g is a convergence function such that zkzlg(zz) belongs to the sphere.) Therefore 
we can restrict ourselves to integrals of the form (J(zz)). 

Eqs.(3.64) and (3.65) imply 

(3.136) 

and 
Z+p-l = P-l z+- q-3f2[lh;qzp-l. (3.137) 

From (Z+(zp-1
)) = 0, l ~ 1, one finds easily the recursion formula 

(3.138) 

which gives 
-l 1 

(p ) = [l + 1]q (1), l ~ 0. (3.139) 

Similarly 
zz 1 1 

( ( 1 + z z) l ) = ( [ l] q - [ l + 1] q )( 
1) ' 1 ~ 1. (3.140) 

We leave it to the reader to find the expression for 

( (zz )k ) l k 
(1+zz) 1 ' ~ • 

(3.141) 

Notice that one can also compute the integral by using the "cyclic property" of 
the quantum integral 9 

(J(z, z)g(z, z)) = (g(z, z)f(q- 2 z, q2z)), (3.142) 

which can be derived from the requirement of invariance under the action (3.134) of 
vector fields or from the requirement of invariance under finite fractional transforma­
tion. 

9Similar cyclic properties have been found by H. Steinacker[25] for integrals over higher dimensional 
quantum spheres in quantum Euclidean space. 
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3.6.2 Usirig the Braiding 

Vve can also compute the left-invariant integral by requiring its consistency with the 
braiding relations. 

Since both z 1 and z1 are always on the same side of either variable of their braided 
copy, z or z, in the braiding order (z < z1 < z1 < z), the integration on z1

, z1
, has the 

following property: 
if 

f(z:, i 1)g(z, z) = L 9i(z, z)fi(z 1
, z 1

), (3.143) 

' 
then 

U(z 1
, z1))g(z, .z) = :L 9i(z, .z)Ui(z1

, z1
)), (3.144) 

' 
where (-) is the invariant integral on s;. However, 

f(z 1
, i

1)(g(z, z)) =I L(9i(z, z))fi(z1
, z1

). (3.145) 

The above property (3.144) can be used to derive explicit integral rules. ·For 
example, consider the case of f(z 1,z1

) = z1p1
-n, where p1 = 1 +z1z1 and g(z,z) = z. 

Since 
-1 1-n 2 -1 1-n + 1-2n '([ + 1] [ ] I) 1-n z p z = q zz p q "' n 9 - n 9 p p , n ~ 0, (3.146) 

using (3.144) and (z1p1-n) = 0 we get the recursion relation: 

(3.147) 

This agree with the first method. 

4 · CPq(N) AS A COMPLEX MANIFOLD 

4.1 SUq(N + 1) Covariant Complex Quantum Space 

For completeness, we list here the formulas we shall need to construct the complex 
projective space. Remember that the SU9(N + 1) symmetry can be represented [26] on 
the complex quantum space cr+l with coordinates Xi, xi, i = 0, 1, ... , N, which satisfy 
the relations 

and 

-IR-kl 
XiXj = q ijXkXz, 

xiXj = q(fl-l ))txki 

( 4.1) 

( 4.2) 

-i-i -IR-ii-k-1 (4.3) 
X X = q zkX X. 

Here q is a. real number, R7j is the GL9 (N + 1) R-matrix [1] with indices running from 
0 to N, and xi =xi is the *-conjugate of Xi. The Hermitian length 

L = XiX' ( 4.4) 
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is real and central The R-matrix satisfies the characteristic equation 

(4.5) 

Derivatives Di, D; can be introduced (the usual symbols aa, [Jb are reserved below 
for the derivatives on C Pq( N) ) ~hich satisfy 

and 

Here we have defined 

which satisfies 

Di Dj = q-1 R{1Dk Dl' 

DilJi = q-1~~jiJkDt, 
- - -1 - kl - -
D;Di = q . RiiDkDt. 

i-ii _ R-ii 2(i-1) _ R-ii 2(k-i) 
'i'k[ - lkq - lkq ' 

~ri.(_k-1 )~k = (_k-1 )ri_~~k = 5r 5k 
SJ .z SJ ,z I s 

and (summing over the index k) 

Using 

and 
R-;i _ .R-kz 

k/- ij• 

one can show that there is a symmetry of this algebra: 

x· ~ kq-2iii 
l ' 

Di ~ k-1q2ilJi, 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

( 4.10) 

( 4.11) 

(4.12) 

(4.13) 

( 4.14) 

( 4.15) 

( 4.16) 

( 4.17) 

(4.18) 

where k and l are arbitrary constants. Exchanging the barred and unbarred quantities 
in (4.16)-(4.18), we get another symmetry which is related to the inverse of this one. 

Using the fact that L commutes with x;, i£, a *-involution can be defined for Di 

( 4.19) 

where 
i' = N- i + 1 (4.20) 

22 



for any real number n. The *-involutions corresponding to different n's are related to 
one another by the symmetry of conjugation by L 

Lm L-m a--+- a , 

where a can be any function or derivative and m is the difference in the n's. 

and 

The differentials ~i = dx;, [i = ( ~i )* satisfy 

Xi~j = qRf}~kX[, 
xi~j = q(R-1 )~7~kx 1 

( 4.21) 

(4.22) 

( 4.23) 

( 4.24) 

( 4.25) 

All the above relations are covariant under the right SUq(N + 1) transformation 

x·--+- x·T! 
~ J ~ ' 

where Tj E SUq(N + 1). 10 

-i (T-1)i -j X -t ·X 
J .-' 

( 4.26) 

(4.27) 

(4.28) 

The holomorphic and antiholomorphic differentials 8, 8 satisfy the undeformed 
Leibniz rule, 82 = 82 = 0 and 8x j = x) etc. 

4.2 Algebra and Calculus on CPq(N) 

Define for a= 1, ... , N, 11 

-1 -a -a( -0)-1 Za = Xo Xa, Z =X X . (4.29) 

It follows from (4.1) and (4.2) that 

.,., Z - q-1RA ce- Z 
-a b - ab-<-c e' ( 4.30) 

(4.31) 
' A A 

where Rb~ is the GLq(N) R-matrix with indices running from 1 to N. 

10 Due t.o our conventions of using a right SUq(N + 1) covari~nt quantum space here, (4.1)-(4.3) are 
different. from the left-covariant ones (3.13) in the case of 2-dimensions. And as a consequence, the 
equations (4.30), (4.31) etc. below for the case of N = 1 are also different. from what. we obtained in 
the last section for the sphere s~. 

11 The letters a, b, c, e etc. run from 1 to N, while i, j, k, I run from 0 to N. 
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It follows from ( 4.22) and ( 4.23) that 

-ad- ...!:. -1(R'-1)acd- ;:;e 
Z -"b - q be "'-c"" ' 

dzadZb = -qR~bdzcdZe 

and 

( 4.32) 

( 4.3:3) 

(4.34) 

(4.35) 

The derivatives aa' Ba are defined by requiring E = dzaaa and 8 = dzatJa to be 
exterior differentials. It follows from ( 4.32) and ( 4.33) that 

and 

~a _ $:a + R• ac ~e u Zb- ub q beZcU , 

a a zb = q -1 ( i?_-1 ) ~~ zc ae' 

Bazb = q<f.>b~zcBe, 

Bazb = E! + q-1(R-1 )~~zcae, 
[)baa = q-1 i?_ab ae ac 

ce 

where the <I> matrix is defined by 

n,ca _ R• acq2(c-b) _ R• acq2(d-a) 
'£db - bd - bd . 

( 4.36) 

( 4.37) 

( 4.38) 

( 4.39) 

(4.40) 

( 4.41) 

( 4.42) 

Similarly as in the case of quantum spaces the algebra of the differential calculus 
on CPg(N) has the symmetry: 

Za -+ rq-2a za' 

aa-+ r-1q2afJa, 

Za-+ SZa, 

Ba -+ s-1 aa, 

( 4.43) 

( 4.44) 

( 4.45) 

where rs = q2
• Again we also have another symmetry by exchanging the barred and 

unbarred quantities and q-+ 1/q in the above. 
Also the *-involutions 

z~ = za, ( 4.46) 

dz* = dza a ( 4.4 7) 

and 
[)M _ 2n-2a' n fJ -n 

- -q P aP ' ( 4.48) 

where 
a'= N- a+ 1 ( 4.49) 
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and 
N 

p = 1 + LZaZa, ( 4.50) 
a=l 

can be defined for any n. Corresponding to different n 's they are related with one 
another by the symmetry of conjugation by p to some powers followed by a rescaling 
by appropriate powers of q. 

In particular, the choice n = N + 1 gives the *-involution which has the correct 
classical limit of Hermitian conjugation wit_? the standard measure p-(N+I) of C P( N). 

The transformation ( 4.26) induces a transformation on C Pq( N) 

( 4.51) 

One can then calculate how the differentials transform 

dz -t d Mb dz-a ~ (Mt)abdz-b, a Zb al ~ (4.52) 

where M! is a matrix of functions in Za with coefficients in SUq(N + 1) and (Mt)b = 
(M!)*. Since ~,bare invariant, the transformation on the derivatives follows 

( 4.53) 

The covariance of the CPq(N) relations under the transformation (4.51), (4.52) and 
( 4.53) follows directly from the covariance of C;'+1

. 

4.3 One-Form Realization of Exterior Differentials 

Let us first recall that in Connes' non-commutative geometry [27], the calculus is quan­
tized using the following operator representation for the differentials, 

dw = Fw- ( -1)kwF ( 4.54! 

where w is a k-form and F is an operator such that F* = F and F 2 = 1. 12 In 
the bicovariant calculus on quantum groups [17], there exists a one-form TJ with the 
properties q* = -q, q2 = 0 and 

df = [TJ, !]±, ( 4.55) 

where [a, b]± = ab±ba is the graded commutator with plus sign only when both a and b 
are odd. It is interesting to ask when will such a realization of differentials exist? And 
what will be the properties of this special one-form? Instead of studying the operator 
aspect, we will first consider these questions in the simpler algebraic sense. 

12The appropriate setting is a Fredholm module (1i, F) where all these relations take place in the 
Hilbert space 1i. 
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4.3.1 A Special One-Form 

Let us first look at the example of the SOq(N) covariant quantum space [1, 2]. The 
quantum matrix T of SOq(N) satisfies in addition to 

( 4.56) 

also the orthogonality relations [1] 

( 4.57) 

where the numerical quantum metric matrices g = g;j and g-1 = gij can be chosen 
to be equal g;j = gii. The coordinates x; of the quantum Euclidean space satisfy the 
commutation relations 

(4.58) 

where L = XkXlgk
1 = XkXk and a = l+q}J 2 • The differentials of the coordinates ~; = dx; 

satisfy the commutation relations 

( 4.59) 

It can be verified that 

Lx; = x;L, Ldx; = q2dx;L. (4.60) 

Hence T) = -q-1dLL - 1 satisfies 

>.dj = [TJ, Jl±· ( 4.61) 

Generalizing this idea, we have the following construction: 

Construction 1 Let A be an algebra generated by coordinates x; and (D(A), d) be a 
differential calculus 13 over A. If there exists an element a E A: unequal nonvanishing 
constants r, s such that 

( 4.62) 

then 

>.df = [TJ, fl± (4.63) 

with 
). 1 

T) = / daa- . 
1- S r . 

(4.64) 

The normalization constant>. is introduced so that >.j(l-s/r) is well defined as r, s, q-+ 
1. 

13By this we mean an A-bimodule Sl(A) generated by x;, dx; with commutation relations specified 
such that (dl) = 0, graded Leibniz rule is satisfied and d2 = 0. 
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It is not hard to prove that r1 2 = dTf = 0. As another example, in the GL9(N) 
quantum group [1, 20], the algebra is generated by the elements of the quantum matrix 
T = (Tj)i,j= 1, ... N and the differentials dTj. The quantum determinant .6. = detqT 
satisfies 

(4.65) 

and so in this case 
__ -1di\ A-1 

7]- q L.H...l • (4.66) 

4.3.2 One-form Realization of the Exterior Differential for a *-Algebra 

In the same manner as in the construction in section 1, we have the following: 

Construction 2 (*-Algebra) 
Let A be a *-involutive algebra with coordinates Zi, Zi and differentials dzi = bzi, dzi = 
bzi such that Zi = z;, dzi = ( dzi)*. If there exists a real element a E A and real unequal 
non vanishing constants r, s such that 

( 4.67) 

then, as easily seen, 
). -1 

7] = I baa , 
1- s r 

(4.68) 

). -
ij = I baa- 1 

1- r s 
(4.69) 

and 

( 4. 70) 

where ± applies for odd/even forms f. 

Notice that ( 4.68) and ( 4.69), and therefore ( 4.67), imply that 

raba = sbaa, rbaa = saba. (4. 71) 

It can be proved that Tf* = -ij and so :=:* = -:=:. It holds that 77 2 = ij2 = 0. 
However :=:2 = Tfii + ij7] = >.bij = >.8Tf will generally be nonzero. Note that 

'd= - [= =] - 2=2 
A...._.- ......... , ......... +- .......... ( 4. 72) 

Define 

]{ = bij = 8Tf ( 4.73) 

then 

(4.74) 

27 



It follows that df{ = 0 and /{*=H. Thus in the case I<# 0, we will call it a Kahler 
form and J{n 14 will be non-zero and define a real volume element for an integral 
(invariant integral if f{n is invariant). I< also has the very nice property of commuting 
with everything 

( 4.75) 

Vve see here an example of Connes' calculus [21] of the type F 2 # 0 rather than F 2 = 0. 
We consider a few examples of this construction. In the case of the quantum sphere 

s;' the element p = 1 + zz satisfies 

pz = q2zp, pdz = dzp. 

Therefore, we obtain 
TJ = qdzp- 1 z, r; = -qdzp- 1 z 

and I< is just the area element 

One can introduce the Kahler potential V defined by 

J( = bb'V. 

It is 
oo 2k-1 

V = L( -l)k-1 q[k] :zkzk. 
k=1 q 

( 4.76) 

(4.77) 

(4.78) 

(4.79) 

( 4.80) 

Such a one-form representation for the differential exists on both Ct'+1 and CPq(N). 
For C:'+1

, we saw in the above that 

( 4.81) 

and 

In this case, I< is not the Kahler form one usually assigns to Ct'+1
. Rather, it gives 

Ct'+1 the geometry of C Pq(N) written in homogeneous coordinates. 
Similar relations hold for C Pq( N) in inhomogeneous coordinates. It is 

and therefore 
( 4.84) 

14n = complex dimension of the algebra. We consider only deformations such that the Poincare 
series of the deformed algebra and its classical counterpa,rt match. 
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One can then compute 
f r :f d abd-b \ = 07] = Zag Z 1 ( 4.85) 

where the metric gab is 
( 4.86) 

with inverse gbc 
cii ac >: gbcg = g gc;b = Uab ( 4.87) 

given by 
( 4.88) 

This metric is the quantum deformation of the standard Fubini-Study metric for C P(N). 
It is f{ = bbV, where the Kahler potential Vis 

Notice that under the transformation ( 4.51) 

7]-+ 7] + qf-1bf, f = rg + zbr; 
and so /{ is invariant. From ( 4.52) and ( 4.85), it follows that 

gab-+ (M-1 )~gcd((Mt)-1 ){, 

gba-+ (Mt)~gdcM~. 

One can show that the following form dvx in c~+1 

II_f=o( [i L -1/2)IIf:o(L -1/2 ~;) 
-(N+1)d-N d-1d d (0(-0)-1( )-It p Z • · · Z z1 ·: • ZN · <, X Xo <,0 

is invariant. Using this, one can prove that 

d -(N+1)d-N d-1d d Vz = p Z • • • Z ZJ · · · ZN 

( 4.89) 

(4.90) 

(4.91) 

(4.92) 

( 4.93) 

( 4.94) 

(4.95) 

is invariant also and is in fact equal to ]{ N (up to a numerical factor). The factor 
p-(N+I) justifies the choice n = N + 1 for the involution ( 4.48). 

4.4 Poisson Structures on CP(N) 

The commutation relations in the previous sections give us, in the limit q -+ 1, a 
Poisson structure on CP(N). The Poisson Brackets (P.B.s) are obtained as the limit 
(this definition differs from (3.78) by a factor of two) 

(4.96) 
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It is straightforward to find 

a=Jb 
a=b 

and those following from the *-involution, which satisfies 

(f,g)* = (g*,j*). 

( 4.97) 

( 4.98) 

( 4.99) 

( 4.100) 

(4.101) 

The P.B. of two differential forms f and g of degrees m and n respectively satisfies 

(f,g) = (-1)mn+l(g,J). ( 4.102) 

The exterior derivatives 8, 8, d act on the P.B.s distributively, for example 

d(f,g) = (df,g) ± (f, dg), (4.103) 

where the plus (minus) sign applies for even (odd) f. Notice that ~e have extended 
the concept of Poisson Bracket to include differential forms. 

The Fubini-Study Kahler form 

} , d abd-b \ =_ Za9 Z ( 4.104) 

has vanishing Poisson bracket with all functions and forms and, naturally, it is closed. 

4.5 Integration 

We now turn to the discussion of integration on CPq(N). We shall use the notation _ 
(J(z, z)) for the right-invariant integral of a function f(z, z) o~er CPq(N). It is defined, 
up to a normalization factor, by requiring 

(0 f(z, z)) = 0 ( 4.105) 

for any left-invariant vector field 0 of SUq(N + 1). We can work out the integral by 
looking at the explicit action of the vector fields on functions. This approach has been 
worked out for the case of the sphere but it gets rather complicated for the higher 
dimensional projective spaces. We shall follow a different and simpler approach here. 
First we notice that the identification 

( 4.106) 
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where Tis an SUq(N + 1) matrix, reproduces (4.1)-(4.4). Thus if we define 

(j(z, z)) := (J(z, z)lza=(Ttf)-1Tf,za=(T-1)[v/(T-1)~.)suq(N+I)l ( 4.107) 

where Osuq(N+I) is the Haar measure [11] on SUq(N + 1), then it follows immediately 
that ( 4.105) is satisfied. 15 Next we claim that 

(4.108) 

This is because the integral is invariant under the finite transformation ( 4.51 ). For the 
particular choice Tj = 8}ai, with !ail = 1, n~oai = 1, this gives 

( 4.109) 

and so (4.108) follows. 
In [11], Woronowicz proved the following interesting property for the Haar measure 

(J(T)g(T))suq(N+I) = (g(T)J(DT D))suq(N+I), 

where 
(DT D)) = DiT!Dj 

and 

is the D-matrix for SUq(N + 1). It follows from (4.110) that 

where 

Introducing 

one finds 

and 

(J(z, z)g(z, z)) = (g(z, z)f(Dz, v-1 z)), 

'1""\a _ raq2a · b 1 2 N vb - ub , a, = , , ... , . 

-a -2 ( ) z Za = q Pa -Pa-l no sum . 

Because of ( 4.108), it is sufficient to determine integrals of the form 

(PI-il ... PN-iN). 

( 4.110) 

(4.111) 

(4.112) 

(4.113) 

(4.114) 

( 4.115) 

( 4.116) 

( 4.117) 

( 4.118) 

( 4.119) 

15 A similar strategy of using the "angular" measure to define an integration has been employed by 
H. Steinacker [25] in constructing integration over quantum Euclidean space. 
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The values of the integers ia for (4.119) to make sense will be determined later. 
Consider 

( 4.120) 

where (4.113) is used. Applying (4.116) 

(4.121) 

where we have denoted 
(4.122) 

Using (4.118) we get the recursion formula 

(PI-i1 · · · Pa-I-ia-1 +I Pa -ia · · · PN-iN)[la + a]q 

= (PI-i1 · · · Pa-I-ia- 1 Pa -ia+I · · · PN-iN)[la +a- 1]q- ( 4.123) 

It is obvious then that 

(p -i1 p -ia) _ (p -i1 p -ia-1-ia) [a]q 
I · · · a - I · · · a-I · 

[Ia + a]q 
( 4.124) 

By repeated use of the recursion formula, (PI -i1 --- PN-iN) reduces finally to (PI -i1-i2···-iN) 

and 

(4.125) 

Therefore 

(p -i1 . . . -iN) = (1)I1N (a]q 
I PN a=I[la+a]q. (4.126) 

For this to be positive definite, ia should be restricted such that Ia + a > 0 for a = 
1,---,N. 

4.6 Braided CPq(N) 

As described in [8] and also in section 3.5.1, it is sufficient to know the transformation 
, property of the algebra to derive the braiding. But as demonstrated there, it is already 

quite complicated to obtain explicit formulas in the case of a one dimensional algebra. 
Therefore although we can derive the braiding for the C Pq ( N) using the general frame­
work of 3.5.1, we will follow a different, easier path: first introduce the braiding for 
C{'+I quantum planes and then use it to derive a braiding for CPq(N) expressed in 
terms of inhomogeneous coordinates. 
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4.6.1 Braided eN+! 
q 

Let the first copy of quantum plane be denoted by xi, xi and the second by x~, x'i and 
let their commutation relations be: 

(4.127) 

( 4.128) 

and their *-involutions for arbitrary numbers T, v. These are consistent and covariant, 
as one can easily check. One can choose T = v-1 and the Hermitian length L will be 
central, Lf' = J' L, for any function 1' of x', x'. However, L' does not commute with 
x, x. In the following, we don't need to assume that .T = v-1

• 

By assuming that the exterior derivatives of the two copies satisfy the Leibniz rule 

8'1 = ±18', 1i'1 = ±11i', 
8J' = ±J'8, 1Jj' = ±j'lJ, 

where the plus (minus) signs apply for even (odd) 1 and J', and 

88' = -8'8, 81J' = -8'8, 
1J8' = -8'1J 1J1J' = -1J'1J, . ' 

(4.129) 

( 4.130) 

(4.131) 

(4.132) 

one can derive the commutation relations between functions and forms. Identifying 
8 = dxiDi, 1J = dxi [Ji for both copies, one can derive also the commutation relations 
between derivatives and functions of different copies. We will not write them down 
here. 

4.6.2 Braided CP9(N) 

Using (4.127), (4.128), one can derive.the braiding relations of two braided copies of 
CP9 (N) in terms of the inhomogeneous coordinates 

(4.133) 

(4.134) 

and their *-involutions. Notice that th,ese are independent of the particular choice of 
T and v. Similarly, one can work out the commutation relations between functions 
and forms of different copies following the assumption that their exterior derivatives 
anticommute. We will not list them here. 

5 QUANTUM PROJECTIVE GEOMETRY 

We will show in this section that many concepts of projective geometry have an ana­
logue in the deformed case. We shall study the collinearity conditions in Sec.5.1, the 
deformed anharmonic ratios (cross ratios) in Sec.5.2, the coplanarity conditions in 
Sec.5.3. In Sec.5.4 we will show that the anharmonic ratios are the building blocks 
of other invariants. 
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5.1 Collinearity Condition 

Classically the collinearity conditions for m distinct points in C P( N) can be given in 
terms of the inhomogeneous coordinates { z;t lA = 1, 2, · · · , m; a = 1, 2, · · · , N} as 

(5.1) 

where A =J. B, C =J. D = 1, · · ·, m and a, b = 1, · · ·, N. 
In the deformed case, the coordinates { z;t} of m points must be braided for the 

commutation relations to be covariant, namely, 

A 5: B, (5.2) 

as an extension of ( 4.133). Eq.( 4.134) can also be generalized in the same way, but 
we shall not need it in this section. This braiding has the interesting property that 
the algebra of CPq(N) is self-braided, that is, (5.2) allows the choice A = B. This 
property makes it possible to talk about the coincidence of points. Actually, the whole 
differential calculus for braided C Pq( N) described in Sec.4.6 has this property. 

Another interesting fact about this braiding is that for a fixed index a the com­
mutation relation is identical to that for braided s; 

A 5: B. (5.3) 

Since there is no algebraic way to say that two "points" are distinct in the deformed 
case, the collinearity conditions should avoid using expressions like (z;t- z~t1 , which 
are ill defined. Denote 

[AB]a = z:- z~. (5.4) 

The collinearity conditions in the deformed case can be formulated as 

(5.5) 

and A < B 5: C < D. By (5.2) this equation is formally equivalent to the quantum 
counterpart of ( 5.1 ): 

(5.6) 

where the ordering of A, B, C, D is arbitrary. The advantage of this formulation is 
that (5.5) is a quadratic polynomial condition and polynomials are well defined in the 
braided algebra. 

Therefore the algebra Q of functions of m collinear points is the quotient of the 
algebra A of m braided copies of CPq(N) over the ideal I= {fag: VJ,g E A;Va E 

CC} generated by a which stands for the collinearity conditions (5.5), i.e., a E CC = 
{[AB]a[CD]b- q2 [CD]a[AB]b: A< B 5: C < D}. 

Two requirements have to be checked for this definition Q = A/ I to make sense. 
The first one is that for any f E A and a E CC, 

(5.7) 
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for some fi E A and a; E CC. This condition ensures that the ideal I generated by 
the collinearity conditions is not "larger" than what we want, as compared with the 
classical case. 

The second requirement is the invariance of I under the fractional transformation 
( 4.51 ). It can be checked that both requirements are satisfied. 

5.2 Anharmonic Ratios 

Classically the anharmonic ratio of four collinear points is an invariant of the projective 
mappings, which are the linear transformations of the homogeneous coordinates. In the 
deformed case, the homogeneous coordinates are the coordinates x; of the G Lq ( N + 1 )­
covariant quantum space, and the linear transformations are the G Lq ( N + 1) transfor­
mations which induce the fractional transformations (4.51) on the coordinates Za of the 
projective space C Pq(N). 

We consider the following anharmonic ratio of C Pq( N) for four collinear points 
{z~IA = 1,2,3,4} 

(5.8) 

where A, B = 2, 3. We wish to show that it is invariant. After some calculations and 
denoting r(A) = [1A]a[14];;- 1

, which is independent of the index a according to the 
collinearity condition, we get 

(5.9) 

where 

U(B) = r,o + zBT.e -
0 e 0' 

V(A) = Tg + qzjTl, 
Pa(A) = -[14]bM!(A) 

and 

(5.10) 

(5.11) 
(5.12) 

(5.13) 

Then the anharmonic ratio (5.8) transforms as 

[A1]a[A4]~ 1 [B4]a[B1]~ 1 
__.. U(1)-1 r(A)(1- r(A))-1(1- r(B))r(B)-1U(1) 

r(A)(1- r(A))-1(1- r(B))r(B)- 1 

[A1]a[A4]~ 1 [B4]a[B1]~ 1 , (5.14) 

where we have used z!r(A) = r(A)z! for any A 2: 1, which is true because we can 
represent r(A) as [1A]a[14];;-1 with the same index a and then use z![AB]a = q2 [AB]az!. 

Because of the nice property (5.3), we can use the results about the anharmonic 
ratios of s; (which is a special case of C Pq(N) with N = 1 but no collinearity condition 
is needed there) iQ. Sec.3.5.2. Note that all the invariants as functions of z~ for a. fixed 
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a in CPq(N) are also invariants as functions of zA 

following. Consider the matrix1 Tt defined by 
z;4 in s;. The reason is the 

rg = a, T~ = (:J, 

r; = 1 , r: = b, 

(5.15) 

(5.16) 

where a, /3, 1, 8 are components of an 5Uq(2)-matrix, Tt = 1 for all b =/= 0, a and all other 
components vanishing. It is a GLq(N + 1)-matrix, but the transformation (4.51) of z~ 
by this matrix is the fractional transformation (3.16) on s; with coordinate ZA = Z~. 

Therefore, by simply dropping the subscript a, the anharmonic ratio (5.8) becomes 
an anharmonic ratio of s;. On the other hand, since all other anharmonic ratios of s; 
are functions of only one of them, their corresponding anharmonic ratios of CPq(N) 
(by putting in the subscript a) would be functions of (5.8) and hence are invariant. 
Therefore we have established the fact that all invariant anharmonic ratios of CPq(N) 
are functions of only one of them. 

5.3 Coplanarity Condition 
' In this subsection we will get the coplanarity condition as a generalization of the 

collinearity condition (5.5) .. 
For r + 1 points spanning an r-dimensional hyperplane, we have 

ZB = L O"~ZA, 
AEl 

(5.17) 

where O"~ = ( x~) - 1 v~ x~ and LAEI O"~ = 1. By a change of variables for O"~, and letting 
I= {1,2,··· ,r,r+ 1}, B = 0, it is 

r 

[OlJi = LTj[j(j + 1)]i, (5.18) 
j=1 

where [AB]i = zf - zf and the T's are independent linear combinations of the O"'s. 
Choose a set /{ of r different integers from 1, 2, · · ·, N. Consider the r equations 

(5.18) fori E K. Let f{ = { frJ, a2, · · ·, ar }, M/ = [j(j + 1)]a; and MP = [01]a;· Then 

Mo(M-1)i Tj = i jl j = 1,2,···,r, (5.19) 

where M- 1 is the inverse matrix of (Mj)i,i= 1 . 

Even though M is not a GLq(r)-matrix we define 

(5.20) 

where 
(5.21) 
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for <7 being a permutation of r objects with length /(u) and the t: tensor is 0 otherwise. 
M-1 is then found to be 

(i\1- 1 )j = (-1)·i-1
t:;;2 •.• ;rA(~ ···l'vf}:-IM~:: ···Af[r(deiq(J\!f))- 1

• (5.22) 

Hence by (-5.19) 

(5.23) 

where 
d t (M( ")) _ . . Mo 11f,1 ... 11fj-I uj+I ... Mr e Q ) - tq ···tr il JVj i2 11 !; }VJ <;+1 lr (5.24) 

(so that detq(M(O)) = detq(M)). 
Since this solution ofT is independent of the choice of K, by choosing another set 

!('we have another matrix M' and ( -1)j-1Tj = detq(i\if'(j))(detq(M'(0)))-1. Therefore 
we get the coplanarity condition 

(5.25) 

for all j = 1, · · ·, r and any two sets of indices /( and K'. This is obviously equivalent 
to 

. detq(A1(j))(detq(M(k))t 1 = detq(M'(j))(detq(M'(k)))- 1 (5.26) 

for all j, k = 0, · · ·, r. 
If N 2: 2r then one can choose I< < K', i.e., any element in I< is smaller than any 

element in I<', then one can show that 

(5.27) 

and a polynomial type of coplanarity condition is available: 

detq(M(j))detq(M'(k)) = qr detq(M'(j))detq(M(k)). (5.28) 

The algebra of functions of r + 1 coplanar points is then the quotient of the algebra 
generated by {zA}A=O over the ideal generated by (5.28). 

5.4 Other Invariants 

The anharmonic ratios are important because they are the building blocks of invariants 
in classical projective geometry. For example, in the N-dimensional classical case for 
given 2( N + 1) points with homogeneous coordinates { xf}, inhomogeneous coordinates 
{z~} where A= 1,···,2(N + 1), i = 0,1,-··,N and a= 1,·--,N, we can construct 
an invariant 

det(x1 xz ... xN xN+I)det(xN+2 xN+3 ... x2(N+1)) 
I= ' ' ' ' ' ' ' 

det(x1 x2 ... xN xN+2)det(xN+I xN+3 . . . x2(N+l))' 
' ' ' ' , ' ' 

(5.29) 
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6 

.................. .............. ---

Figure 1 The invariant I as a cross ratio of A, B, 3,4. 

where det(xAo, · · ·, xAN) is the determinant of the matrix .Mj = xJ', i,j = 0, · · ·, N, 
which equals the determinant of the matrix 

( zt" 
1 

l _AN 
"'1 

(5.30) 

Ao _AN 
ZN "'N 

multiplied by the factor x~0 
• • • x~N, which cancels between the numerator and denom­

inator of I. It can be shown that this invariant I is in fact the anharmonic ratio of four 
points z,z',zN+I,zN+2, where z (z') is the intersection of the line fixed by zN+I,zN+2 

with the (N- 1)-dimensional subspace fixed by z1, ... , zN (zN+3, ... , z2(N+1l). 
For the case of N = 2 (see Fig.4.1), I is the ratio of the areas of four triangles: 

which is easily found to be 

I= A3 B4 
A4B3' 

the anharmonic ratio of the four points A, B, 3, 4. 

(5.31) 

(5.32) 

It is remarkable that all this. can also be done in the quantum case. One can 
construct an invariant Iq using the quantum determinant and describe the intersection­
between subspaces of arbitrary dimension spanned by given points. It is shown that 
the invariant Iq is indeed an anharmonic ratio in the same sense as the classical case. 
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6 QUANTUM GRASSMANNIANS G~,N 

In this section, we study the quantum deformation of the Grassmannians. 

6.1 The Algebra 

Let c~, i = 1, 2, 0 0 0 'M, a= 1, 2, 0 0 0 'M + N, be an M X (M + N) rectangular matrix 
satisfying the commutation relations 

~ 'ij k I i j ~ ab 
Rkt CcCd = CaCbRcd' (6.1) 

where RZ/ is a GLq(M) R-matrix, with indices i,j, k, l etc. going from 1 to M and 
R~~ is a GLq(M + N) R-matrix, with indices a, b, c, d etc. going from 1 toM+ N. In 
compact notation, it is 

(6.2) 

and (6.2) is right-covariant under the transformation 

C -t CT, (6.3) 

where Tba is a GLq(M + N) quantum matrix and is also left-covariant under the trans­
formation 

C -t SC, 

where Sj is a GLq(M) quantum matrix. Writing 

C~ =(A~, B~) 

with a= 1, 2, · · ·, N, we have 

R~2AlA2. 
R~2BlB2 

A1B2· 

A1A2R~2 , 
B1B2R~2 , 
R;IB2A1, 

where R~~f3 is a GLq(N) R-matrix, with indices a, /3, /, 8 etc. going from 1 to N. 
Define the coordinates Z~ for the quantum Grassmannians G';·N 

Z is invariant under the transformation (6.4), while under (6.3), it transforms as 

where a, /3, /, 8 are the sub-matrices ofT 

T=(~ ~)-
It follows from (6.6) that Z satisfies 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

R;1Z1Z2 = Z1Z2R~2 - (6.10) 
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6.1.1 *-structure 

We consider q to be a real number. One can introduce the *-conjugate variables ( C~)* 
and impose the commutation relation 

CtR''- 1 C C R'-Ict 
1 12 1 = 2 12 2> 

I.e. 

where (11 )~ = 8~ is the identity matrix. These imply 

zt.R;rzi = z2.R~-; 1 zt- >.1112. 

Explicitly, 

6.2 Calculus 

( 6.11) 

(6.12) 

(6.13) 

(6.14) 

One can introduce the following commutation relation for functions and one-forms 

r.e. 

'1_1 . ' 
R 12 C1dC2 = dC1C2R12, (6.15) 

'I } 

RI; AtdA2 
'I } 

R1; BrdB2 

dA1B2 

A1dB2 

dA1A2R~ 2 , 
dB1B2R~2 , 
R~2 1 B2dA1, 

R;1 ( dB2A1 + >.dA2B1Pt2), (6.16) 

h (p )ij r:ir:i s· zi (4.-I)iBk.. d. w ere 12 kl = vzvk. mce er = . k er> 1t IS easy to enve 

dZ = A-1(dB- dAZ) (6.17) 

and 

(6.18) 

It follows 
(6.19) 

To introduce a *-structure for the calculus, it is consistent to take ( dZ~ )* = d( Z~*). 
In addition we impose a complex structure on the calculus so that d = 8+8, where 8 (8) 
acts only on the holomorphic ( a.ntiholomorphic) part, satisfies Eqs.(3.43) and (3.44 ). 
This implies, after some calculation, 

t'' '"-1 t Z1R21 dZ1 = dZ2R12 Z2 . (6.20) 
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6.3 One-Form Realization 

Introduce the matrix 

It is 

and 

One can show that 

or equivalently, 

R~,1 E1 • £1 = £1 • E1R~,J· 

The bullet product is defined [28] inductively by 

for any I- (1'2' · · · m'), J = (12 · · · n), where 

RI,II (R, A1 0 Au) 
R1 1n · Rl'(n-1) 

· R2'n · R2'(n-1) 

· Rm'n · Rm'(n-1) Rm11, 

R is the universal R-matrix for GL9(M) a.nd 

Hence one can introduce the quantum determinant [28] for the generators £, 

D tE 12···M - E 12···M e t: - (12···M)€ , 

where t:12···M is the t: tensor for GL9 (M). 
Denote 

and one can show that 

,_ 

L = DetE 
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EjL, 
LC 

(6.21) 

(6.22) 

(6.23) 

( 6.24) 

(6.25) 

(6.26) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

(6.33) 



and 
dC L = q-2 LdC. (6.34) 

Using the general procedure stated in Sec.4.3 , we obtain the realization on the algebra 
generated by C~, dC~ and their *-conjugates, 

(6.35) 

To find the one-form .realization for the exterior differential operating on the com­
plex Grassmannians Z, dZ, we introduce 

It is not hard to check that 

(A -1 )7 Ej(A t-1 ){ 

8t + z;(zt)f. 

Since X commutes like the vech>r field Y, the quantum determinant 

p DetX 

X 12···M 
(12···M)t 

is central in the algebra of X. Here, the •-product for X is 

XI. XJ = R~-:/ XIR~JXJ, 

as for the vector field Y. In particular, 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

X(l2:··M) = (R~2 1 R;:/ ... R~/JX1R1~ ... R12) · (~:/ R;~ 1 
... R;/JX2Ruo~1 ... Rz3) 

· · · · (R~-;.)_ 1 )MXM-1R(M-1)M)XM. (6.40) 

Introducing the quantum determinants det( A - 1 ), det( A t-1 ) 

det(A- 1)El2···M 

det(At-1)E12···M 

for A - 1 and A t- 1 satisfying the "RTT" -like relations 

it can be shown that 

A-1A-1k ( -1) 
1 2 12 q ' 

(A t-1 h (A t-1 )zR~2' 

p = det(A- 1 )Ldet(At_,1), 

Zp = q2 pZ 
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(6.41) 

(6.42) 

(6.43) 

(6.44) 

\._ 



and 
dZp = pdZ. (6.45) 

As a result, we have the one-form realization 

(6.46) 

for the exterior derivative acting on the algebra generated by Z~, dZ~ and their *­
conjugates. The Kahler form 

is central as usual. 

6.4 Braided GM,N q 

K = Ert 

Let Z, Z' be two copies of the quantum Grassma.nnians G~,N defined by 

Z = A-1 B, Z' = A'-1 B', 

( 6.4 7) 

(6.48) 

where C~ = (A~, B~), C~i = (A~i, B;) both satisfy the relations (6.2). Let the mixed 
commutation relations be 

Q12C1C~ = C~C2R1z, (6.49) 

where Q is a numerical matrix. For (6.49) to be consistent with (6.2), we can_ take Q 
to be k±1. For either of these two choice, (6.49) is covariant under 

C -+ CT, C' -+ C'T, 

where Tba is a GLq(M + N) quantum matrix and also under the transformation 

C-+ SC, C'-+ SC', 

where Sj is a GLq(M) quantum matrix. We will pick Q =kin the following 

Explicitly, it is 

It follows that 16 

R~zCl c~ = c~ CzR12· 

R~ 2A1A; 
R~ 2 B1B~ 

B1A; 

A1B~ 

A;A1R~ 2 , 

B~B1R~2 , 

R~21 A;Bt, 

R~2 1 B~A1 + >..B1A;P12. 

(6.50) 

(6.51) 

(6.52) 

(6.53) 

(6.54) 

16If we had made the other choice Q = fl'-! in the above, the relations (6.53) would be different, 
but (6.54) would remain the same. 
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One can introduce a *-structure to this braided algebra, the relation 

(6.55) 

is consistent and is covariant under 

G---+ CT, C'---+ C'T J (6.56) 

and 
C ---+ SC, C' ---+ SC' (6.57) 

with the same T, S quantum matrices as explained before. It follows immediately 

(6.58) 

One can also show that the Kahler form ]{ ofthe original copy (6.47) commutes also 
with the Z', z't, dZ', dz't. . 

This concludes our discussion for the quantum Grassmannians, with the case of 
complex projective spaces CP9(N) = G!,N as a special caseY 
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A RELATION TO CONNES' FORMULATION 

Here we make a comment on the relation of our work to Connes' quantum Riemannian 
geometry [27]. We will try to re-formulate the differential and integral calculus on the 
quantum sphere in a way as close to his formulation as possible. We take 0 < q ~ 1. 

To do so we first give the spectral triple (X, H., D) for this case. X is the algebra 
of functions on s;. H. is the Hilbert space on which both functions and differential 
forms are realized as operators. It is chosen to be composed of two parts H.= 1{0 0 V. 
The first part 7-{0 is any Hilbert space representing the algebra X. An example is [3] 

1r(z)ln) 
1r(z)ln) 

(q-2n- 1)1/21n- 1), 

(q-Z(n+I)- 1)112 ln + 1), n = 0, 1, 2, · · ·. (A.1) 

Another example is the Gel'fand-Nalmark-Siegel const:uuction using the integration ( ·) 
introduced in Sec.3.6. The second part V is C 2

, a.s in the classical case. Operators on 

17Notice that forM= 1, the numerical R-matrix becomes a number: R~ 2 = q. 
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H. are therefore 2 x 2 matrices with entries being operators on Ho. Finally, the Dirac 
operator is an anti-self-adjoint operator 18 on H.: 

'D=k( i 7r(~)), 
-1r(z) -z 

(A.2) 

where k is a real number. 
According to Connes we proceed as follows to find the differential calculus on s;. 

The representation 1r of X on H0 is extended to be a representation on H. for the 
universal differential calculus nx by 

7r(ao(dai) ···(dan))= 7r(ao)['D, 1r(ai)] · · · ['D, 7r(an)]. 

In particular, one finds 

1r( dz) 17/J) 
1r( dz) 17/J) 

q-1 Ak7r(p)ri7/J), 
q-1 .Xk7r(p)rti7/J), 17/J) E H., 

(A.3) 

(A.4) 
(A.5) 

where the 1-matrices T = ( ~ ~ ) , rt = ( ~ ~ ) satisfy the deformed Clifford 

algebra qrrt + q-1rtr =I for I= ( 6 ~-1 ) . 

It can be checked that the kernel of the map 1r for one-forms in nx, is generated 
from 

z(dz)- q-2 (dz)z, z(dz)- q-2 (dz)z, (A.6) 

and their *-involutions, by multiplying with functions from both sides. The kernel of 
1r for two-forms is generated from 

(dz)(dz) = 0, (dz)(dz) = 0 (A.7) 

by multiplying with functions and from the kernel of one-forms by multiplying with 
one-froms from both sides. The auxiliary fields form the ideal Aux defined to be the 
sum of the kernels of all degrees and the differential of them. So in our case Aux, in 
addition to the sum of kernels mentioned above, is generated by 

d[z(dz)- q- 2(dz)z] = (dz)(dz) + q-2(dz)(dz). (A.8) 

The other differentials are already contained in the sum. According to Connes, the 
differential calculus is obtained from the spectral triple by 

!1(X) = f!x/Aux. (A.9) 

This gives precisely the same covariant differential calculus described in Sec.3.1. 

181t is a pure convention that we choose V to be anti-self-adjoint rather than self-adjoint like Connes 
usually does. 
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Next we consider the integration on s;. Connes' formula for the integration is 

(A.lO) 

where Trw is the Dixmier's trace [29] and 1 is the Z2-grading operator. Here d is the 
dimension of the quantum space, which, according to Connes, is defined by the series 
of eigenvalues of IVI-1 . In our c~se d determined that way is zero. 

One should expect that Connes' prescription will not gi"ve the same invariant inte­
gration on s; (3.134) because while Connes' integration always has the cyclic property 

(A.ll) 

we know that the SUq(2)-invariant integration does not. Remarkably, if we choose to 
use the classical dimension d = 2 of the two-sphere in the formula (A.lO), we actually 
obtain the invariant integration. This is shown in the following. 

Note that the calculus on s; is Zrgraded by 

7 = k-2.-((dzdZ- dzdz)p- 2
) = ( ~ ~I ) , 

which satisfies 

1 2 =I, 1 t = 1 , 

11r(a) = 1r(a)J \fa EX, 

1v = -v1 . 

We define the integration on s; by the trace 

' 

(A.l2) 

(A.l:3) 

(A.l4) 
(A.l-5) 

(A.l6) 

where Tr is the appropriate trace on the Hilbert space 7-f. (If the Hilbert space of ( A.l) 
is used for 1-{0 ; one should simply use the ordinary trace.) It can be directly checked 
that the integration is compatible with the differential calculus 

j Aux= 0, 

by using the representations of the auxiliary fields 

for any a E X (including 0) and 
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(A.l7) 

(A.l8) 

(A.l9) 



Using the cyclic property of the trace, it follows also that Stokes' theorem 

J do.= 0 (A.20) 

is valid for any one-form a. 

Since Stokes' theorem can l;>e used to derive the recursion relations (3.138), the 
integration (A.16) coincides with the invariant integration on s; up to normalization. 

Note that Eqs.(A.17) and (A.20) are valid for any choice ofH0 , hence the formula 
(A.16) gives the same invariant integration as long as an appropriate trace exists so that 
our selected integrable functions, e.g. p-n for n ~ 0, multiplied by the area element 
(Kahler two-form) have finite integrals. 
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