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ABSTRACT OF THE DISSERTATION 

Mechanisms of robustness and competition in transcriptional control  

By 

Rachel Victoria Waymack 

Doctor of Philosophy in Developmental and Cell Biology 

University of California, Irvine, 2021 

Assistant Professor Zeba Wunderlich, Chair 

 

 During normal development, organisms must establish and maintain precise patterns of 

gene expression that are also robust to internal and external perturbations. The key cell fate 

decisions made during early development that establish the organism’s body plan rely on these 

precise gene expression patterns and even relatively minor deviations can cause significant 

defects. This precision and robustness must be achieved in the context of the inherently noisy 

process of transcription, which is controlled by the stochastic molecular interactions between 

DNA, transcription factors (TFs), and the other pieces of the transcriptional machinery. While 

the question of how regulatory regions of DNA, such as enhancers, accurately interact with TFs 

to control gene expression has been the topic of many studies, there is still much we do not know 

about how enhancers and TFs combine to regulate gene expression.  

 Here, I investigate novel mechanisms of gene expression regulation by enhancers and 

TFs. In Chapter 2, I show that shadow enhancers, groups of seemingly redundant enhancers, are 

able to buffer fluctuations in upstream regulators by separating TF inputs between individual 

enhancers in a case study of the shadow enhancers regulating Kruppel expression during early 

embryonic Drosophila development. In Chapter 3, I investigate competition observed between 

transcriptional reporters and find that transgenic reporters compete with one another and an 

endogenous gene for TF activation, likely due to the non-homogenous nature of the nucleus. 



 ix  
 

Then, complementing my findings in Chapter 2, I analyze the TF regulation of a large set of 

Drosophila shadow enhancers and show that these groups of enhancers display a wide range of 

regulatory logic configurations in Chapter 4. In Chapter 5, I discuss a proposed project to 

investigate the relationship between TF dynamics and enhancer-controlled transcription during 

NF-kB signaling in the immune response. Taken together, these projects inform our 

understanding of how gene expression is regulated by enhancers and TFs in early development 

and novel regulatory mechanisms that likely apply more broadly throughout the genome and life 

stages.      
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Chapter 1 

Introduction: Transcription factors and enhancers interact to regulate gene expression 
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1. Investigation of enhancer-driven transcription 

Proper regulation of gene expression, in both time and space, is critical for organismal 

development and survival. Such spatiotemporal control of gene expression is achieved by cis-

regulatory regions of DNA called enhancers, which regulate the activity of one or more target 

genes. Enhancers consist of binding sites for transcription factors (TFs), whose binding 

determines the activity of the enhancer and consequent expression of the target gene. The 

interactions between enhancers and TFs to precisely control gene expression is critical for all 

aspects of life, from early development to proper functioning of adult tissues to immune 

response.  

 In this thesis, I investigate the mechanisms by which enhancers and TFs work together to 

regulate gene expression during early development. In Chapter 2, I study how the configuration 

of TF regulation of a pair of seemingly redundant enhancers impacts expression noise driven by 

the enhancers. In Chapter 3, I investigate how competition for TF binding between enhancers 

regulates gene expression and suggest that this competition depends on the non-uniform 

environment of the nucleus. In Chapter 4, I perform computational analysis on a large set of 

Drosophila shadow enhancers to assess the different forms of TF regulatory logic used. Lastly, 

in Chapter 5, I propose a study of TF and enhancer dynamics in the immune system to 

understand how regulatory rules do or do not differ in a system facing very different demands on 

gene expression. Taken together, this work furthers our understanding of how enhancers and TFs 

combine to control gene expression within the reality of a developing organism subject to the 

inherent perturbations, constraints, and uncertainties of life. This study therefore stands to inform 

studies of how development is robust and the circumstances under which this robustness breaks 

down.    
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1.1 Shadow enhancers in development 

To establish a properly formed organism, gene expression during early development must be 

both precise and robust. One mechanism organisms use to meet these demands are groups of 

seemingly redundant enhancers, called shadow enhancers. Here I discuss shadow enhancers and 

their role in regulating gene expression during early development. I connect this brief review of 

shadow enhancers to the findings presented in Chapter 2 and how these findings help fill holes in 

our understanding of shadow enhancer function. 

1.1.1 Developmental systems establish precise patterns of gene expression 

The precise gene expression patterns formed during early development, both in terms of time and 

space, are critical for establishing cell and tissue fates and ensuring proper development of the 

overall organism. Examples of this precision are perhaps best studied in the developing 

Drosophila embryo. The concentration of Bicoid (Bcd), a key TF expressed in a decreasing 

gradient from the anterior to the posterior of the embryo, is reproducible to within the width of 

one nucleus across a population of embryos 1. This precision is maintained through development, 

with expression boundaries of the Bcd-regulated gap genes also differing between embryos by 

less than the width of a single nucleus 2.     

1.1.2 Developmental systems must be robust to internal and external fluctuations  

Contrary to what one may expect based on the reproducible gene expression levels and 

boundaries measured across developing embryos, transcription itself is an inherently noisy 

process. For the majority of investigated genes across a range of organisms, transcription occurs 

in series of random bursts of activity interspaced by periods of relative silence 3-7. How 

transcriptional bursting is regulated is still an area of active investigation, and different 



 4  
 

regulation strategies have different effects on resulting gene expression noise 3,8-12. Regardless of 

the mode of modulation, the bursting process of transcription carries inherent noise that has 

meaningful implications for an organism, as much of the variance in protein levels can be 

explained by variance in transcript levels 13. Genes encoding key regulatory proteins, such as TFs 

or RNA polymerase II, are also transcribed in bursts 6,14 and the resulting fluctuations of these 

factors can drive noise in the expression of downstream targets 15,16. In addition to the noise 

inherent in the process of transcription, developmental systems also must contend with potential 

environmental and genetic perturbations that can impact gene expression 17-20.   

 Organisms have evolved multiple mechanisms to meet the developmental demands of 

precision and robustness in the face of fluctuating internal and external environments. Temporal 

and spatial averaging of transcripts have been studied as potential mechanisms of coping with 

variable inputs 21,22. Redundancy in TF function 23 as well as in the identity of TF binding sites 

within individual enhancers 24 further act to ensure precise and robust gene expression. Shadow 

enhancers are increasingly appreciated as another mechanism of redundancy that safeguards 

against genetic and environmental perturbations. 

1.1.3 Shadow enhancers are widespread and often associated with developmental genes 

Shadow enhancers are groups of two or more enhancers that drive the same or similar pattern of 

expression of the same target gene 25. While such seemingly redundant enhancers had been 

identified many times prior, these examples were often overlooked until 2008 when Mike Levine 

and colleagues introduced the term “shadow enhancer”. In that study, redundant enhancers were 

designated either as ‘primary’ (the enhancers closest to the core promoter) or ‘shadow’ (the 

enhancers located at a greater distance from the core promoter) 26. This distinction was later 

revised owing to a lack of functional differences between primary and shadow enhancers 25,27. 
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The revised definition of shadow enhancers, as sets of enhancers that regulate a common target 

gene and drive expression patterns that partially or completely overlap in space and time, has 

become increasingly accepted in the gene regulation community 24-35.  

Prior to the coining of the term “shadow enhancers”, enhancers with redundant activity 

have been described for more than 30 years, with examples from plants 36,37, flies 38–45, zebrafish 

46, mice 47-50 and humans 51–54. These individual gene locus studies showed that shadow 

enhancers are found in a broad set of multicellular organisms, but within a single genome the 

prevalence of shadow enhancers was unknown. Since these studies were often focused on 

enhancers that control important developmental regulators, it was also not clear whether shadow 

enhancers are associated with other classes of genes. Substantial increases in the throughput of 

enhancer identification and characterization (reviewed in 55-57) have allowed researchers to 

determine the prevalence of shadow enhancers genome-wide.  

Genome-wide enhancer predictions based on chromatin features, such as chromatin 

accessibility, histone modifications, and TF binding, have suggested that shadow enhancers 

might be common in animal genomes. Using a combination of mesodermal TF chromatin 

immunoprecipitation (ChIP) data and computational models, Cannavo et al. generated an 

exhaustive catalogue of muscle development enhancers in D. melanogaster 28. They found that 

nearly two-thirds of examined muscle developmental genes were controlled by shadow 

enhancers, and the majority of these genes had three or more predicted shadow enhancers 28. A 

genome-wide analysis combining ENCODE transcriptomic and epigenomic data from multiple 

mouse tissues showed ample enhancer redundancy among developmentally regulated genes 58,59. 

Whereas housekeeping genes are typically controlled by one enhancer, developmentally 

regulated genes can have 10 or more shadow enhancers 60,28,58. 
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In human cells, ChIP-based profiling of TFs, cofactors, chromatin regulators and 

enhancer-associated histone modifications revealed that hundreds of key cell identity genes are 

regulated by large clusters of putative transcriptional enhancers (super-enhancers and stretch 

enhancers), which could be clusters of shadow enhancers 61–66. Many mammalian enhancers 

including human enhancers are actively transcribed, and the presence of enhancer-derived RNAs 

(eRNAs) was suggested to be predictive of enhancer activity 67-69. Profiling of eRNAs using cap 

analysis of gene expression (CAGE) across hundreds of human cell lines and tissues revealed 

that ~80% of 2,206 examined genes were associated with two or more co-transcribed enhancers 

67, suggesting that enhancer redundancy is common in the human genome. Computational 

approaches have also found widespread evidence for shadow enhancers in the human genome, 

particularly in association with developmental and disease-causing genes 70.  

Most chromatin and TF profiling methods are based on indirect measures of enhancer 

activity, which is why they have to be followed by functional testing. Large-scale transgenic 

enhancer-reporter screens have verified that bona fide redundant enhancers are common in the D. 

melanogaster and Caenorhabditis elegans genomes. An analysis of nearly 8,000 enhancer 

fragments during D. melanogaster embryogenesis revealed that many developmentally regulated 

genes are controlled by two or more enhancers with overlapping activities 71. Single-neuron 

imaging data from hundreds of enhancer-reporter constructs in C. elegans demonstrated that 

shadow enhancers control nearly all 23 studied pan-neuronal genes 72. Even within a single cell 

type, massively parallel reporter assays (MPRAs) have shown that hundreds of genes in D. 

melanogaster cell lines are potentially controlled by two or more redundant enhancers 60. Taken 

together, these studies indicate that enhancers driving overlapping expression patterns are 
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common in organisms from worms to insects to mammals and are preferentially, albeit not 

exclusively, associated with the control of developmental genes. 

1.1.4 Shadow enhancers confer robustness  

Several early studies in Drosophila demonstrated that shadow enhancers are required to drive 

normal development under conditions of stress, but they may be dispensable in ‘ideal’ 

conditions. For example, the TF Snail is required for normal gastrulation, and its expression in 

mesoderm is controlled by two shadow enhancers. Deletion of either of snail’s shadow 

enhancers caused no apparent gastrulation defect under ideal conditions73. However, individual 

shadow enhancer deletion led to abnormal gastrulation under elevated temperatures or in a 

sensitized genetic background where the dosage of an upstream regulator, Dorsal, was reduced 

73. Similarly, a deletion of three of six epidermal shadow enhancers of shavenbaby had no 

phenotype under normal conditions but caused a decrease of trichome numbers under 

temperature or genetic stress conditions 74. 

Advances in genome editing have enabled the efficient introduction of multiple mutations 

in mice75–77, enabling experiments to test whether shadow enhancers similarly provide 

developmental robustness in vertebrates. Whereas single shadow enhancer deletions in mice 

typically show either mild or no observable phenotypes, double enhancer deletions show severe 

phenotypes, often comparable to complete gene loss-of-function in relevant tissues 78,58,79,64,80. 

Together, these observations indicate that both enhancers regulate the gene, and at least one 

shadow enhancer is required for normal development in ideal conditions (Figure 1.1). Despite 

driving similar expression patterns, the individual shadow enhancers are not strictly redundant. 

In a sensitized genetic background with a reduced dosage of the target gene, single enhancer 

deletions show abnormal phenotypes, indicating that shadow enhancers can confer robustness to 
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genetic perturbations (Figure 1.1). This pattern has been demonstrated for Pax6, a gene required 

for early eye lens morphogenesis 78, Shh in developing teeth 79 and several limb development loci 

58. 

1.1.5 Potential mechanisms of action of shadow enhancers  

Taken together, both fruit fly and mouse studies emphasize that, while ostensibly 

redundant in the expression patterns they drive, the necessity of shadow enhancers is revealed 

when enhancer-deficient organisms are placed in stressful conditions. How shadow enhancers 

provide this robustness remains an area of open investigation and more than one mechanism may 

be at play. One potential scenario is that each enhancer alone can drive sufficient levels of gene 

expression for normal development, similar to the haplosufficiency of many developmental 

genes. By having multiple enhancers the probability that at least one is active increases, 

improving the chance for normal development 24,25. Shadow enhancers have also been implicated 

in establishing or maintaining so-called “transcriptional hubs”. These hubs are large nuclear sub-

regions formed by a high concentration of TFs, components of the core transcriptional machinery 

81,82 and RNA polymerase II 83,84 and may explain why some enhancers activate promoters even 

in the absence of close enhancer–promoter proximity 85,86. The hub model suggests that shadow 

enhancers and their target promoter can simultaneously participate in the same 

microenvironment, forming a multi-enhancer hub. The observation of transcriptional coactivator 

condensates on super-enhancer-associated genes provides support for this model 61,81,82 Recent 

work on the D. melanogaster shavenbaby locus showed that deleting one of the shadow 

enhancers results in decreased local density of the key activating TFs, suggesting that shadow 

enhancers are critical for maintaining high concentrations of TFs within the transcriptional hub 

(Figure 1.2) 87. Through the formation of multi-enhancer transcriptional hubs with high 
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concentrations of TFs, transcriptional coactivators and RNA polymerase II, shadow enhancers 

may improve phenotypic resilience to stress by buffering against environmental and genetic 

perturbations.  

In Chapter 2, I investigate another potential mechanism by which shadow enhancers 

achieve robust gene expression. Due to their overlapping expression patterns, it has largely been 

assumed that groups of shadow enhancers are regulated by the same sets of TFs. In fact, 

scanning genomic sequences for clusters of similar TF binding sites has been used to identify 

novel potential shadow enhancers 26,28. Breaking with this assumption, I ask whether differential 

TF regulation between a pair of shadow enhancers enables them to drive stable and robust gene 

expression. An investigation of over 800 mesodermal enhancers in the Drosophila embryo 

suggests that independent regulation of shadow enhancers may be a widespread, potentially 

functional, feature 28 (Figure 4.1). By responding to different sets of TFs, but converging on a 

single output, shadow enhancers could provide a mechanism to buffer against not only mutations 

in their sequences but, more importantly, perturbations in one of their upstream TFs (Figure 1.3).  

1.2 Molecular competition 

Much of our understanding of enhancers and their role in controlling gene expression has come 

from the use of transgenic reporters. While used frequently and extensively, little work has 

addressed potential effects of transgenic reporters on the systems in which they are placed. In 

Chapter 3, I investigate the molecular competition that is revealed by transgenic reporters. Here I 

provide a brief overview of the concept of transgenic reporters and the existing knowledge on 

their impact on endogenous systems.   

1.2.1 Transgenic reporters enable investigation of enhancer activity  
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Transgenic reporters are DNA sequences in which the expression of measurable reporters, such 

as fluorescent proteins or LacZ, are placed under the control of cis-regulatory elements, such as 

enhancers. These sequences are incorporated into a living organism, through genomic integration 

or extrachromosomal arrays, to enable observation of the element’s activity in different life 

stages, tissue types, and experimenter-chosen conditions. Like the endogenous cis-regulatory 

elements, these transgenic reporters bind a specific combination of TFs and related co-factors to 

drive expression of their target, in this case the reporter as opposed to the endogenous gene 

product, in a particular time and or space. Transgenic animals have been used extensively in the 

study of enhancers and have greatly improved our catalog of identified enhancers and our 

understanding of how these enhancers function 56,88-91. We now have multiple metrics by which 

to predict enhancers genome-wide, although no technique is fully predictive and our 

understanding of the cis-regulatory code is far from complete 55,92,93. Consequently, transgenic 

reporter measurements have long been the gold standard in the functional validation of potential 

enhancers 55,94. While continuously improving genome-editing techniques have enabled 

investigations of enhancer function in the endogenous locus 95-97, transgenic reporters continue to 

be widely used to test the sufficiency of genomic regions to drive expression and for their 

relative simplicity.    

1.2.2 Few studies address the impact of transgenes on endogenous systems  

Despite the widespread use of transgenic reporters, very few studies have investigated the 

potential effects of these sequences on the endogenous systems in which they are placed. As 

discussed above, transgenic reporters work by interacting with the same pool of TFs, co-factors, 

and other pieces of the transcriptional machinery that bind and regulate the expression of 

endogenous sequences. This raises the possibility of competition for one or many of these 
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molecular factors between the transgenic sequence and the surrounding endogenous sequences. 

Although many TFs and other pieces of the transcriptional machinery are present at high copy 

number, for example 150,000 Grainyhead TF molecules per nucleus in the Drosophila embryo 

98,99 (BNID 106848) or over 80,000 RNAP molecules in human cells 99,100 (BNID 112321), 

competition for these molecules can occur.  In mice and flies, repetitive DNA sequences have 

been shown to sequester TF molecules and consequently reduce expression of genes regulated by 

those TFs 101,102. Experimental and computational approaches have demonstrated that both the 

overall levels as well as noise in expression of a gene regulated by a particular TF are influenced 

by the number of other targets for that TF in the cell 103,104. Repetitive sequences of “decoy” TF 

binding sites in yeast can not only decrease expression of the TF-targeted gene, but also alter the 

input-output response pattern of the gene to TF levels 106. Whether or not frequently used 

transgenic reporters induce such molecular competition has yet to be systematically investigated.  

 A study by Laboulaye and colleagues investigated the effect of transgenic reporters on 

endogenous gene expression in mice 107. Using three mouse lines with three different reporters 

inserted at three different locations in the genome, the authors measured the expression of the 

endogenous gene closest to each transgene. In all three cases, endogenous gene expression was 

decreased in the presence of the transgene, compared to mice lacking the transgene. 

Additionally, the authors found that this transgene effect depends on the distance between the 

reporter and the endogenous gene; the genes closer to the respective reporter showed a larger 

decrease in expression than did the genes further removed from the reporter. Expression of each 

reporter was also correlated to the expression of the closest endogenous gene, further suggesting 

interactions between the transgenic and endogenous sequences. As few other studies have 

mentioned effects of transgenic reporters on endogenous gene expression 107, the question 
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remains regarding the mechanisms behind the observed effect on endogenous gene expression 

and if such effects are limited to certain reporters or organisms. In Chapter 3, I investigate 

molecular competition that underlies transgenic reporter and endogenous gene interactions in the 

Drosophila embryo.      

1.3 Conclusions 

By integrating the input of multiple TFs, enhancers enable the regulation of gene expression 

across time and space that is necessary for organismal survival. Enhancers and TFs function 

together to control gene expression across all stages of life and in biological systems with 

distinct purposes from early development to immune responses. Understanding how these 

interactions are integrated across multiple enhancers, in the context of the 3D nucleus, and in 

various biological processes is needed for a full understanding of gene regulation. Therefore, the 

overall goal of my work has been to further our understanding of how enhancers interpret and 

integrate TF inputs in the context of a living organism.  

 In Chapter 2, I investigate the pair of shadow enhancers controlling Kruppel expression 

in the early Drosophila embryo. Using live imaging of transcription, I show that the separation 

of TF inputs between the two Kruppel enhancers enables the combined pair to drive lower 

expression noise than duplicated enhancers and that this noise buffering ability is robust to a 

wide range of temperatures. With collaborators, we develop a model of this system, which shows 

that the separation of TF inputs between the Kruppel enhancers is sufficient to explain the lower 

expression noise seen with the pair of enhancers relative to duplicated enhancers. This work was 

published in the journal eLife in August, 2020.  
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 In Chapter 3, I study the effect of transgenic reporters on the expression of other reporters 

as well as endogenous genes in the Drosophila embryo. I combine live imaging, quantitative 

gene expression measurements, and thermodynamic modeling to show that our enhancer 

reporters compete with one another and endogenous genes for TFs. My modeling indicates a role 

for so-called TF hubs in regulating this competition and consequently gene expression. This 

work has been posted onto BioRxiv.    

 In Chapter 4, I analyze the TF regulatory patterns of a large dataset of Drosophila 

developmental shadow enhancers. Through computational analysis of TF binding sites, I show 

that a slight majority of shadow enhancers have less similar TF inputs than expected by chance. 

My analysis indicates the potential wide use of the separated TF inputs discussed in Chapter 2, as 

well as the possible existence of different “classes” of shadow enhancers that likely serve 

different functions.  

 In Chapter 5, I propose and discuss the beginnings of a study to investigate TF signal 

integration at enhancers in the immune system. The immune system serves a very different 

function and consequently faces very different demands than the developmental system. 

Therefore, comparison of enhancer activity in these two systems will help us determine global as 

well as context-specific rules regulating enhancer function.  

 Lastly, in Chapter 6, I discuss some of the overall conclusions of my work and remaining 

questions. While our understanding of specific enhancers and our ability to edit the genome has 

come quite far, a full understanding of the non-coding regions of genomes that enables 

prediction of function from sequence is still a long way off. Future studies that integrate both the 

contributions of DNA sequence and the surrounding nuclear environment will be needed for a 

full understanding of gene expression.  
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Figure 1.1 - Shadow enhancers confer phenotypic robustness in mammals. In mice, many 

individual shadow enhancer deletions yield no observable phenotypes. However, either the 

deletion of individual shadow enhancers in a sensitized background or the deletion of pairs of 

shadow enhancers leads to observable phenotypes. Schematics of perturbations (left) and 

resulting phenotypes in mice (right) are shown for two gene loci: Gli3 58 and Pax6 30,108. GLI3 is 

critical for proper limb development, and its knockout causes the formation of extra digits 

(among other phenotypes) 109. Skeletal phenotypes in the absence of individual Gli3 shadow 

enhancers, pairs of shadow enhancers, or an individual shadow enhancer in a sensitized 

background are shown (center). Red asterisks indicate the presence of extra digits. Pax6-

deficient mice have arrested eye development and no lens formation 110,111. A schematic diagram 

of an eye section showing a developing lens in the absence of individual PAX6 shadow 

enhancers, pairs of shadow enhancers, or an individual shadow enhancer in a sensitized 

background is shown (center-right). A schematic of gene dosage in the mutants is shown on the 

right. Figure adapted with permission from58. 
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Figure 1.2 – Shadow enhancers function in the formation of transcriptional hubs. Multiple 

shadow enhancers may aid in the formation of transcriptional hubs by recruiting a high local 

amount of a master regulator TF (pink). Such transcription hubs can buffer against 

environmental stress and genetic perturbations 87. 
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Figure 1.3 - Independent TF inputs to shadow enhancers lead to more robust 

transcriptional output. Shared and separated TF inputs to the individual shadow enhancers can 

have different effects on gene expression noise. In case of separated inputs, shadow enhancers 

regulating the same target gene do not share any of the same TF regulators (top left), while in 

case of shared inputs, shadow enhancers are regulated by the same set of TFs (top right). Below 

these two different models, we show the corresponding target gene expression dynamics in 

single cells as a function of time. Lower expression noise is seen with shadow enhancers with 

separated TF inputs than with shadow enhancers using shared TF inputs. 
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Chapter 2 

Shadow enhancers can suppress input transcription factor noise through distinct 

regulatory logic 

 

2.1 Abstract 

Shadow enhancers, groups of seemingly redundant enhancers, are found in a wide range of 

organisms and are critical for robust developmental patterning. However, their mechanism of 

action is unknown. We hypothesized that shadow enhancers drive consistent expression levels by 

buffering upstream noise through a separation of transcription factor (TF) inputs at the individual 

enhancers. By measuring transcriptional dynamics of several Kruppel shadow enhancer 

configurations in live Drosophila embryos, we showed individual member enhancers act largely 

independently. We found that TF fluctuations are an appreciable source of noise that the shadow 

enhancer pair can better buffer than duplicated enhancers. The shadow enhancer pair is uniquely 

able to maintain low levels of expression noise across a wide range of temperatures. A stochastic 

model demonstrated the separation of TF inputs is sufficient to explain these findings. Our 

results suggest the widespread use of shadow enhancers is partially due to their noise suppressing 

ability.   

 

2.2 Introduction 

The first evidence that transcription occurred in bursts, as opposed to as a smooth, continuous 

process, was observed in Drosophila embryos, where electron micrographs showed that even 

highly transcribed genes had regions of chromatin lacking associated transcripts between regions 

of densely associated nascent transcripts1. As visualization techniques have improved, it is 

increasingly clear that transcriptional bursting is the predominant mode of expression across 
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organisms from bacteria to mammals2–6. These bursts of transcriptional activity, separated by 

periods of relative silence, have important implications for cellular function, as mRNA numbers 

and fluctuations largely dictate these quantities at the protein level7,8. Such fluctuations in 

regulatory proteins, like TFs and signaling molecules, can propagate down a gene regulatory 

network, significantly altering the expression levels or noise of downstream target genes9.  

Given that protein levels fluctuate and that these fluctuations can cascade down 

regulatory networks, this raises the question of how organisms establish and maintain the precise 

levels of gene expression seen during development, where expression patterns can be 

reproducible down to half-nuclear distances in Drosophila embryos10,11. Many mechanisms that 

buffer against expression noise, either inherent or stemming from genetic or environmental 

variation, have been observed12–14. For example, organisms use temporal and spatial averaging 

mechanisms and redundancy in genetic circuits to achieve the precision required for proper 

development12–15. Here, we propose that shadow enhancers may be another mechanism by which 

developmental systems manage noise16. 

Shadow enhancers are groups of two or more enhancers that control the same target gene 

and drive overlapping spatiotemporal expression patterns16,17. Shadow enhancers are found in a 

wide range of organisms, from insects to plants to mammals, particularly in association with 

developmental genes18–21. While seemingly redundant, the individual enhancers of a shadow 

enhancer group have been shown to be critical for proper gene expression in the face of both 

environmental and genetic perturbations19,22,23. Such perturbations may exacerbate fluctuations in 

upstream regulators24,25. Although shadow enhancers are shown to be pervasive in 

developmental systems and necessary for robust gene expression, their precise mechanism of 

action is still unknown. One proposed mechanism puts forth that having multiple enhancers 
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controlling the same promoter reduces the effective “failure rate” of the promoter and ensures a 

critical threshold of gene expression is reached26,27. An alternative, but not mutually exclusive, 

possibility is that shadow enhancers ensure robust expression by buffering noise in upstream 

regulators. Several studies suggest that individual enhancers of a shadow enhancer group tend to 

be controlled by different sets of TFs, which we call a “separation of inputs”18,28,29. We 

hypothesize that this separation of inputs allows shadow enhancers to buffer against fluctuations 

in upstream TF levels.  

The Drosophila gap gene Kruppel (Kr) provides a useful system in which to address the 

mechanisms of action of shadow enhancers. During early embryogenesis, Kr is controlled by the 

activity of two enhancers, proximal and distal27, that drive overlapping expression in the center 

of the embryo (Figure S2.1). We call the two individual enhancers together the shadow enhancer 

pair. Previous experiments have shown that each enhancer is activated by different TFs28 (Figure 

2.1A). Here we focus on differences in activation, as the key repressors of Kr, Knirps and Giant, 

are likely to regulate both enhancers. Kr expression during this time is critical for thorax 

formation, and like the other gap genes in the Drosophila embryo, has quite low noise10,30. By 

measuring live mRNA dynamics, we can use the Kr system in Drosophila embryos to assess 

whether and how shadow enhancers act to buffer noise and identify the sources of noise in the 

developing embryo.  

To test our hypothesis, we measured live mRNA dynamics driven by either single Kr enhancer, 

duplicated enhancers, or the shadow enhancer pair and compared the dynamics and noise 

associated with each. We showed that the individual Kr enhancers can act largely independently 

in the same nucleus, while identical enhancers display correlated activity. We constructed a 

simple mathematical model to describe this system and found that TF fluctuations are necessary 
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to reproduce the correlated activity of identical enhancers in the same nucleus. The shadow 

enhancer pair drives lower noise than either duplicated enhancer, and using the model, we found 

that this is a natural consequence of the separation of TF inputs. Additional experiments, 

including simultaneous measurements of TF levels and expression and a decomposition of noise 

sources, further demonstrate that the shadow enhancer pair is less sensitive to fluctuations in TF 

levels than is a single enhancer. Additionally, the shadow enhancer pair is uniquely able to 

maintain low levels of expression noise across a wide range of temperatures. We suggest that this 

noise suppression ability is one of the key features that explains the prevalence of shadow 

enhancers in developmental systems. 

2.3 Results 

2.3.1 Individual enhancers in the shadow enhancer pair act nearly independently within a 

nucleus 

To test our hypothesis that the separation of inputs between Kruppel’s (Kr) shadow enhancers 

provides them with noise-buffering capabilities, we needed to first test the ability of each 

enhancer to act independently. In previous work, we found that the individual enhancers in the 

shadow enhancer pair are controlled by different activating TFs28. These experiments established 

that the enhancers responded differently to perturbations in key TFs, indicating that each 

enhancer uses a distinct regulatory logic. The proximal enhancer is activated by Hunchback (Hb) 

and Stat92E, and the distal enhancer is activated by Bicoid (Bcd) and Zelda (Zld) (Figure 2.1A). 

Given this separation of inputs, the shadow enhancer pair could provide a form of noise 

buffering if variability in gene expression is driven primarily by fluctuations in upstream factors. 

Conversely, variability in upstream regulators may be low enough in the developing embryo that 
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these fluctuations are not the primary driver of downstream expression noise. If this were the 

case, the separation of inputs is unlikely to be a key requirement of shadow enhancer function.  

To investigate these possibilities, we measured and compared the correlation of allele 

activity in homozygous or heterozygous embryos that carry two reporter genes. Proximal 

homozygotes contained the proximal enhancer driving a reporter, inserted in the same location on 

both homologous chromosomes, and distal homozygotes similarly had the distal enhancer driving 

reporter expression on both homologous chromosomes (Figure 2.1B). We also made 

heterozygous embryos, called shadow heterozygotes, which had one proximal and one distal 

reporter, again in the same location on both homologous chromosomes. To measure live mRNA 

dynamics and correlations in allele activity, we used the MS2-MCP reporter system (Figure 

2.1C, D). This system allows the visualization of mRNAs that contain the MS2 RNA sequence, 

which is bound by an MCP-GFP fusion protein31. In the developing embryo, only the site of 

nascent transcription is visible, as single transcripts are too dim, allowing us to measure the rate 

of transcription32,33. In blastoderm-stage embryos with two MS2 reporter genes, we can observe 

two distinct foci of fluorescence corresponding to the two alleles (Figure 2.1D; Videos 1-6), in 

line with previous results that suggest there are low levels of transvection at this stage34,35. To 

confirm our ability to distinguish the two alleles, we imaged transcription in embryos 

hemizygous for our reporter constructs, which only show one spot of fluorescence per nucleus. 

Our counts of active transcription sites in homozygous embryos correspond well to the expected 

value calculated from hemizygous embryos (Figure S2.2). Therefore, we are able to measure the 

correlation of allele activity, though we cannot identify which spot corresponds to which 

reporter. 
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We predicted that if variability in gene expression is driven by fluctuations in input TFs, 

we would observe lower correlations of allele activity in shadow heterozygotes than in either the 

proximal or distal homozygotes. However, if global factors affecting both enhancers dominate, 

there would be no difference in allele activity correlations. During the ~1 hour of nuclear cycle 

14 (nc14) we found that allele activity is more than twice as correlated in both proximal and 

distal homozygotes than in shadow heterozygote embryos at 47-57% egg length, which 

encompasses the central region of Kr expression during this time period (Figure 2.1). The 

difference in our ability to measure allele correlation in the more anterior and posterior regions 

of the embryo stems from the slightly different expression patterns driven by the proximal and 

distal enhancers (Figure S2.1 & S2.3). The lower allele correlation in shadow heterozygote 

embryos indicates not only that the individual member enhancers of the shadow enhancer pair 

can act largely independently in the same nucleus, but that differential TF inputs are likely the 

primary determinants of transcriptional bursts in this system. Notably, heterozygotes still show 

marginal allele correlation, indicating that some correlation is induced by either shared input TFs 

or factors that affect transcription globally. The independence of individual Kr enhancers allows 

for the possibility that shadow enhancers can act to buffer noise by providing distinct inputs to 

the same gene expression output. 

2.3.2 Transcription factor fluctuations are required for the observed differences in the 

correlations of enhancer activity 

To explore the conditions needed for the two Kr enhancers to act nearly independently within the 

same nucleus, we generated a simple model of enhancer-driven dynamics. We considered an 

enhancer Ei that interacts with a transcription factor Ti, which together bind to the promoter to 

form the active promoter-enhancer complex Ci (Figure 2.2A). When the promoter is bound by 
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the enhancer, it drives the production of mRNA. Since the MS2 system only allows us to observe 

mRNA at the site of transcription, we modeled the diffusion of mRNA away from the 

transcription site as decay. The transcription factor Ti is produced in bursts of ni molecules at a 

time, and it degrades linearly. For simplicity, the transcription factor Ti is an abstraction of the 

multiple activating TFs that interact with the enhancer, and Ti corresponds to a different set of 

TFs for the proximal and distal enhancer. This nonlinear model generalizes the linear model by 

Bothma et al.36 by explicitly taking into account the presence of TFs.  

We estimated some model parameters directly from experimental data and others by 

fitting using simulated annealing. The mRNA degradation parameter α and production parameter 

r were measured directly from fluorescence data without any input from the model (see Methods 

for details). The remaining parameters were first estimated using mathematical analysis, then 

fine-tuned using simulated annealing. We found separate parameter sets for the proximal and 

distal enhancers that, when used to simulate transcription, fit the experimentally measured 

characteristics of the transcriptional traces, including transcription burst size, frequency, and 

duration, as well as the total mRNA produced (Figure S2.4).  

We hypothesized that a model that lacks fluctuations in the input TFs could not 

recapitulate the high correlation of transcriptional activity in homozygotes versus the low 

correlation in heterozygotes. To test this hypothesis, we generated another model of TF 

production. We call our original model described above bursting TFs. The other model is one in 

which TF numbers are constant over time, which we call constant TFs and is equivalent to the 

model in36. If the difference in transcription correlation between homozygotes and heterozygotes 

is due to fluctuating numbers of TFs, we expected that the bursting TFs model will recapitulate 

this behavior, while the constant TFs model will not. However, if the constant TFs model is also 
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able to recapitulate the observed difference in correlations, then the correlations are likely a 

consequence of the identical enhancers simply being regulated by the same set of TFs. 

For each model, we used the 10 best parameter sets to simulate transcriptional activity in 

homozygote and heterozygote embryos and analyzed the resulting allele correlations. We found 

that the bursting TFs model always produced results in which both homozygote allele 

correlations are significantly higher than the heterozygote, which qualitatively mirrors the 

experimental observations (Figure 2.2B). None of the best fitting parameter sets for the constant 

TF model were able to produce the experimentally-observed behavior and always resulted in 

near zero correlations for both the homozygote and heterozygote embryos (Figure 2.2C). 

Notably, using the bursting TFs model, all the simulated allele correlations were lower than the 

experimentally observed values, e.g. the simulated heterozygote allele correlation was near zero, 

while the experimental value was 0.14 at the embryo’s midpoint. We hypothesized that this 

discrepancy was because the model assumes complete independence of the proximal and distal 

enhancer input TFs, while in reality, there may be some degree of shared inputs, either of known 

TFs or a general component of the transcriptional machinery. To test this hypothesis, we 

generated a model that added a common TF to the bursting TFs model and attempted to fit the 

model parameters. Some of the best parameter sets recapitulated the nonzero correlation of the 

heterozygote embryos, indicating that a shared factor may play a role in this system, however 

this behavior was inconsistent from one parameter set to the next (Figure S2.5). Therefore, we 

concluded that the simpler bursting TFs model, which consistently recapitulated the key features 

of the allele correlation data, was more suitable for subsequent analysis. 

In conclusion, in our minimalist model of enhancer-driven transcription, the presence of 

TF fluctuations is required for the observed differences in allele correlation. These results also 
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demonstrate the advantage of using a single generic TF for each enhancer. By abstracting away 

TF interactions, we reduced the complexity and number of parameters in the model, which 

allowed us to explore the relationship between TF production and allele correlation.  

2.3.4 The shadow pair’s activity is less sensitive to fluctuations in Bicoid levels than is the 

activity of a single enhancer 

Both the experimental measurements of allele correlation and the computational model suggest 

that input TF fluctuations are an appreciable source of noise for enhancer activity. Further, 

previous experimental work28 and the low correlation of transcriptional activity in heterozygotes 

(Figure 2.1E) indicates that each individual Kr enhancer receives different TF input signals. This 

suggests that the shadow enhancer pair will be less sensitive to an input TF fluctuation than a 

single enhancer, because the shadow enhancer pair’s activity is dependent on a broader range of 

TF inputs. To directly observe the relationship between input TF levels and enhancer output, we 

simultaneously tracked bcd levels and enhancer activity in individual nuclei (Figure 2.3; Supp. 

Movies 7-8). We measured this relationship for both the distal enhancer, which is activated by 

bcd, and the shadow enhancer pair, and predicted that the distal enhancer’s transcription 

dynamics are more strongly influenced by fluctuations in bcd levels. 

To allow for tracking of both Bcd levels and enhancer activity, we crossed female flies 

that express eGFP-tagged Bcd in the place of endogenous Bcd37 (called Bcd-GFP from here on) 

and MCP-mCherry with male flies homozygous for either the shadow pair or distal enhancer 

reporter. As the Bcd-GFP transgene was inserted in a Bcd null background, the resulting 

embryos should receive roughly WT levels of Bcd. The females flies were heterozygous for the 

maternally-deposited Bcd-GFP, and therefore, we estimate that roughly half of the Bcd proteins 
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were labeled. Given previous work demonstrating the normal function and expression levels of 

tagged Bcd, we expect the Bcd-GFP levels to be a representative sample of total Bcd37.   

Higher activator TF levels increase enhancer activity. We therefore measured the 

correlation of nuclear Bcd-GFP levels to the slope of MS2 signal. When the enhancer is active, 

MS2 signal has a positive slope, when the enhancer is inactive, slope is negative. If the shadow 

enhancer pair is less sensitive than the distal enhancer to fluctuations in Bcd levels, we would 

predict higher correlation between Bcd-GFP levels and the activity of the distal enhancer than 

that of the shadow enhancer pair. We find that the transcription dynamics driven by the distal 

enhancer are indeed significantly more correlated to nuclear Bcd-GFP levels (median r = 0.18) 

than the dynamics driven by the shadow pair (median r = 0.14; Figure 2.3F; p-value = 6.1 x 10-

3), though both correlations are modest (see Discussion). The lower correlation indicates that 

transcription driven by the shadow pair is less sensitive to Bcd level fluctuations than is the distal 

enhancer. Our modeling recapitulates this finding, showing that the separated TF inputs of the 

shadow pair are sufficient to explain the observed decreased sensitivity to TF fluctuations 

(median r = 0.14 for the distal enhancer; 0.11 for the shadow pair; p-value = 2.2 x 10-2; Figure 

2.3G).  These findings indicate that the shadow enhancer pair is better able to buffer fluctuations 

in a single activating TF than a single enhancer, likely due to the shadow enhancer pair’s 

separation of TF inputs.  

2.3.5 The shadow enhancer pair drives less noisy expression than enhancer duplications 

We wanted to further test whether the shadow enhancer pair drives less noisy gene expression 

output than a simple enhancer duplication. We compared the noise in expression driven by the 

shadow enhancer pair to that driven by two copies of either the distal or proximal enhancer 
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(Figure 2.4). If the shadow enhancer pair drives lower noise, this suggests that having two 

independently acting enhancers is a critical feature of shadow enhancers’ ability to 

reduce      variability and mediate robustness. Alternatively, if duplicated enhancers drive similar 

levels of expression noise, this suggests that enhancer independence is not critical for shadow 

enhancer’s function and that shadow enhancers mediate robustness through a different 

mechanism, such as ensuring a critical threshold of expression is met26,27. 

We tracked transcriptional activity in embryos expressing MS2 under the control of the 

shadow enhancer pair, a duplicated proximal enhancer, or a duplicated distal enhancer (Figure 

2.4). To measure noise associated with each enhancer, we used these traces to calculate the 

coefficient of variation (CV) of transcriptional activity across nc14. CV is the standard deviation 

divided by the mean and provides a unitless measure of noise to allow comparisons among our 

enhancer constructs. We then grouped these CV values by the embryo position of the 

transcriptional spots and found the average CV at each position for each enhancer construct. All 

of the enhancer constructs display the lowest expression noise at the embryo position of their 

peak expression (Figure 2.4A), in agreement with previous findings of an inverse relationship 

between mean expression and noise levels38 (Figure S2.8). The shadow enhancer pair’s 

expression noise is ~ 30% or 15% lower, respectively, than that of the duplicated proximal or 

distal enhancers in their positions of maximum expression (Figure .4C).  

 If the primary function of shadow enhancers is only to ensure a critical threshold of 

expression is reached, we would not expect to also see the lower expression noise associated 

with the shadow enhancer pair compared to either duplicated enhancer. Furthermore, this 

decreased expression noise is not simply a consequence of higher expression levels, as the 

shadow enhancer pair produces less mRNA than the duplicated distal enhancer during nc14 
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(Figure 2.4B).  The lower expression noise associated with the shadow enhancer pair suggests 

that it is less susceptible to fluctuations in upstream TFs than multiple identical enhancers.  

2.3.6 Modeling indicates the separation of input TFs is sufficient to explain the low noise driven 

by the shadow enhancer pair 

To explore which factors drive the difference in CVs between the duplicated and shadow 

enhancer constructs, we extended our model to have a single promoter controlled by two 

enhancers (Figure 2.5A). To do so, we assumed that either or both enhancers can be looped to 

the promoter and drive mRNA production. The rate of mRNA production when both enhancers 

are looped is the sum of the rates driven by the individual enhancers. We assumed that some 

parameters, e.g. the TF production rates and mRNA decay rate, are the same as the single 

enhancer case. We allowed the parameters describing the promoter-enhancer looping dynamics 

(the kon and koff values) to differ, depending on the enhancer’s position in the construct relative to 

the promoter and whether another enhancer is present. To fit the kon and koff values, we used the 

medians of the 10 best single enhancer parameter sets as a starting point and performed 

simulated annealing to refine them.  

This approach allowed us to examine how the model parameters that describe promoter-

enhancer looping dynamics change when two enhancers are controlling the same promoter. We 

compared the koff and kon values for each enhancer in the two enhancer constructs to their values 

from the single enhancer model. We generally found that koff values increased and kon values 

decreased (Figure 2.5B). The effect is most pronounced in the duplicated distal enhancer, with 

large changes to the koff and kon values for the enhancer in the position far from the promoter 

(position 2). Given that our model assumes that enhancers act additively and only allows for 

changes in the koff and kon values, these observed effects may indicate that either the presence of a 
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second enhancer interferes with promoter-enhancer looping or that the promoter can be 

saturated. Our model cannot distinguish between these two possibilities, but these observations 

are consistent with our (Figure S2.9) and previous results indicating that the Kr enhancers can act 

sub-additively39. Additionally, the dramatic changes in koff and kon values in the duplicated distal 

enhancer are consistent with a previous assertion that enhancer sub-additivity is most 

pronounced in cases of strong enhancers36. 

We used these models to simulate transcription and predict the resulting CVs from the 

duplicated enhancer and shadow pair constructs. In line with experimental data, we found the 

model predicts that the shadow pair construct drives lower noise than the duplicated distal or 

duplicated proximal enhancer constructs in the middle of the embryo (Figure 2.5C). This is 

particularly notable, as we did not explicitly fit our model to reproduce the experimentally 

observed CVs. There is only one fundamental difference between the shadow pair and duplicated 

enhancer models, namely the use of separate TF inputs for the shadow pair. Therefore, in our 

simplified model, we can conclude that the separation of input TFs is sufficient to explain the 

lower noise driven by the shadow enhancer pair construct. 

2.3.7 The shadow enhancer pair buffers against intrinsic and extrinsic sources of noise 

To further understand the sources of noise the shadow enhancer pair is able to buffer, we 

compared the extrinsic and intrinsic noise associated with the shadow enhancer pair to that 

associated with either single or duplicated enhancers. To do so, we measured the transcriptional 

dynamics of embryos with two identical reporters in each nucleus and calculated noise sources 

using the approach of Elowitz, et al.40. Intrinsic noise corresponds to sources of noise, such as TF 

binding and unbinding, that affect each allele separately. It is quantified by the degree to which 

the activities of the two reporters in a single nucleus differ. Extrinsic noise corresponds to global 
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sources of noise, such as TF levels, that affect both alleles simultaneously. It is measured by the 

degree to which the activities of the two reporters change together. Intrinsic and extrinsic noise 

are defined such that, when squared, their sum is equal to total noise2, which corresponds to the 

CV2 of the two identical alleles in each nucleus in our system (see Methods). Because our data 

do not meet one key assumption needed to measure extrinsic and intrinsic noise with the two-

reporter approach (see Discussion; Figure S2.10), we use the terms inter-allele noise and 

covariance in place of intrinsic and extrinsic noise.  

Based on our separation of inputs hypothesis and CV data, we expected the total noise 

associated with the shadow enhancer pair to be lower than that associated with the duplicated 

enhancers. We predicted that the shadow enhancer pair will mediate lower total expression noise 

through lower covariance, as the two member enhancers are regulated by different TFs. Given 

the complexity of predicting inter-allele noise from first principles (Methods; Figure S2.11), we 

predicted that constructs with two enhancers will have lower inter-allele noise than single 

enhancer constructs but did not have a strong prediction regarding the relative inter-allele noise 

among the different two-enhancer constructs. Comparisons of noise between the single and 

duplicated enhancer constructs would further allow us to discern whether reductions in noise are 

generally associated with two-enhancer constructs or whether this is a particular feature of the 

shadow enhancer pair.   

Neither the duplicated proximal nor distal enhancers drive significantly lower total noise 

than the corresponding single enhancers, indicating that the addition of an identical enhancer is 

not sufficient to reduce expression noise in this system (Figure 2.6A). The shadow enhancer pair 

drives lower total expression noise than either single or duplicated enhancer, consistent with the 

temporal CV data in Figure 2.4. The median total expression noise associated with the duplicated 



 39  
 

distal and duplicated proximal enhancers is 1.4 or 2.4 times higher, respectively, than that 

associated with the shadow enhancer pair (Figure 2.6A). Note that for measurements of noise, 

our distal construct places the enhancer at the endogenous spacing from the promoter, as we 

wanted to control for positional effects on expression and noise39 (Figure S2.12).  

In line with our expectations, the shadow enhancer pair has significantly lower 

covariance levels than either single or duplicated enhancer (Figure 2.6B). The shadow enhancer 

pair also has lower inter-allele noise than all of the other constructs, though these differences are 

only marginally significant (p = 0.13) when compared to the duplicated distal enhancer. 

Covariance makes a larger contribution to the total noise for the duplicated distal enhancer and 

the shadow enhancer pair, while inter-allele noise is the larger source of noise for the single 

distal enhancer and the single or duplicated proximal enhancers (Figure 2.6B).   

The lower total noise and covariance of the shadow enhancer pair support our hypothesis 

that, by separating regulation of the member enhancers, the shadow enhancer pair can buffer 

against upstream fluctuations. The lower inter-allele noise associated with the shadow enhancer 

pair warrants further investigation. A simple theoretical approach predicts that two enhancer 

constructs will have lower inter-allele noise (Figure S2.11). Given that this is not universally 

observed in our data, this suggests that there is still much to discover about how inter-allele noise 

changes as additional enhancers control a gene’s transcription.    

2.3.8 The shadow enhancer pair drives low noise at several temperatures 

We showed the Kr shadow enhancer pair drives expression with lower total noise than either 

single or duplicated enhancer, yet previous studies have generally found individual member 

enhancers of a shadow enhancer set are dispensable under ideal conditions19,22,27. However, in 
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the face of environmental or genetic stress, the full shadow enhancer group is necessary for 

proper development19,22,27. We therefore decided to investigate whether temperature stress causes 

significant increases in expression noise and whether the shadow enhancer pair or duplicated 

enhancers can buffer these potential increases in noise.  

Similar to our findings at ambient temperature (26.5°C), the shadow enhancer pair drives 

lower total noise than all other tested enhancer constructs at 32°C (Figure 2.7B). At 32°C, the 

duplicated distal and duplicated proximal enhancers display 35% or 52%, respectively, higher 

total noise than the shadow enhancer pair. At 17°C, the shadow enhancer pair has approximately 

46% lower total noise than either the single or duplicated proximal enhancer, 21% lower total 

noise than the single distal enhancer, and is not significantly different than the duplicated distal 

enhancer (Figure 2.7A). As seen by the variety of shapes in the temperature response curves 

(Figure 2.7C), temperature perturbations have enhancer-specific effects, suggesting input TFs 

may differ in their response to temperature change. The low noise driven by the shadow 

enhancer pair across conditions is consistent with previous studies showing shadow enhancers 

are required for robust gene expression at elevated and lowered temperatures22,23.  

2.4 Discussion 

Fluctuations in the levels of transcripts and proteins are an unavoidable challenge to precise 

developmental patterning8,41,42. Given that shadow enhancers are common and necessary for 

robust gene expression19,22,23, we proposed that shadow enhancers may function to buffer the 

effects of fluctuations in the levels of key developmental TFs. To address this, we have, for the 

first time, extensively characterized the noise associated with shadow enhancers critical for 

patterning the early Drosophila embryo. By either tracking biallelic transcription or 

simultaneously measuring input TF levels and transcription, we tested the hypothesis that 
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shadow enhancers buffer noise through a separation of TF inputs to the individual member 

enhancers. Our results show that TF fluctuations play a significant role in transcriptional noise 

and that a shadow enhancer pair is better able to buffer both extrinsic and intrinsic sources of 

noise than duplicated enhancers. Using a simple mathematical model, we found that fluctuations 

in TF levels are required to reproduce the observed correlations between reporter activity and 

that the low noise driven by the shadow enhancer pair may be a natural consequence of the 

separation of TF inputs to the member enhancers. Lastly, we showed that a shadow enhancer pair 

is uniquely able to buffer expression noise across a wide range of temperatures. Together, these 

results support the hypothesis that shadow enhancers buffer input TF noise to drive robust gene 

expression patterns during development.  

2.4.1 Temporal fluctuations in transcription factor levels drive expression noise in the embryo 

When measured in fixed embryos, the TFs used in Drosophila embryonic development show 

remarkably precise expression patterns, displaying errors smaller than the width of a single 

nucleus10,11,43,44. It therefore was unclear whether fluctuations in these regulators play a 

significant role in transcriptional noise in the developing embryo. By measuring the temporal 

dynamics of the individual Kr enhancers, each of which is controlled by different transcriptional 

activators, we show that TF fluctuations do significantly contribute to the noise in transcriptional 

output of a single enhancer. Within a nucleus, expression controlled by the two different Kr 

enhancers is far less correlated than expression driven by two copies of the same enhancer, 

indicating that TF inputs, as opposed to more global factors, are the primary regulators of 

transcriptional bursting in this system. Our current findings leave open the possibility that 

additional mechanisms, such as differences in 3D nuclear organization between different 

reporters, may also contribute to the differences in noise that we see.   
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We also showed that activity driven by the Kr shadow enhancer pair is less sensitive to 

levels of a single TF than is activity driven by an individual Kr enhancer. While prior work has 

shown that changes in TF levels precede changes in target transcription45, the sensitivity of 

individual enhancers to changes in TF levels had not been previously quantified. The correlation 

between Bcd levels and activity of the distal enhancer is modest, and we expect that this reflects 

both the influence of additional TF inputs and nuclear heterogeneity that causes the local Bcd 

levels available to the enhancer to differ from total nuclear levels46. We suspect that the 

correlation between the activity of the distal enhancer and Bcd levels in the microenvironment 

surrounding the enhancer is higher than what we were able to measure here. New and emerging 

technologies will likely allow for live measurements of multiple TF inputs at higher spatial 

resolution, enabling further insights into the dynamics of expression regulation.  

 The finding that the Kr shadow enhancer pair is less sensitive to TF levels helps reconcile 

our finding that the individual Kr enhancers are influenced by fluctuations in input TFs with 

previous studies showing that endogenous Kr expression patterns are rather reproducible43. 

Previous work has cited the role of spatial and temporal averaging, which buffers noisy nascent 

transcriptional dynamics to generate more precise expression levels. Shadow enhancers operate 

upstream of this averaging, driving less noisy nascent transcription than either single enhancers 

or enhancer duplications. 

2.4.2 A stochastic model underscores importance of transcription factor fluctuations 

We developed a stochastic mathematical model of Kr enhancer dynamics and mRNA production 

that recapitulates our main experimental results. This model is based on that by36, but it is 

expanded to include the dynamics of a TF that regulates each enhancer.  We placed a strong 

emphasis on the simplicity of this model, e.g. by using a single abstract TF for each enhancer. 
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This choice both avoids a combinatorial explosion of parameters and makes the model results 

and parameters easier to interpret. One of the most notable features of the model is that it 

recreates the differences in noise between shadow and duplicated enhancer constructs without 

any additional fitting, indicating that these differences in the model system are a direct result of 

the separation of input TFs to the proximal and distal enhancers.  

Future versions of this model can include refinements. For example, in the current model, 

we do not include the influence of repressive TFs or consider the multiple modes of action used 

by activating TFs. Future experiments and models can also be designed to identify the 

mechanism of enhancer non-additivity: changes in promoter-enhancer looping, saturation of the 

promoter, or other mechanisms. 

2.4.3 Noise source decomposition suggests competition between reporters 

In our investigation of sources of noise, we decomposed total noise into extrinsic and intrinsic 

components as in40. In that study, the authors showed that the activity of one reporter did not 

inhibit expression of the other reporter, and therefore their calculations assumed no negative 

covariance between the reporters’ expression output. In our system, we found a small amount of 

negative covariance between the activity of two alleles in the same nucleus (Figure S2.10). For 

this reason, we called our measurements covariance and inter-allele noise. The negative 

covariance we observe indicates that activity at one allele can sometimes interfere with activity 

at the other allele, suggesting competition for limited amounts of a factor necessary for reporter 

visualization. The two possible limiting factors are MCP-GFP or an endogenous factor required 

for transcription. If MCP-GFP were limiting, we would expect to see the highest levels of 

negative covariance at the center of the embryo, where the highest number of transcripts are 

produced and bound by MCP-GFP. Since the fraction of nuclei with negative covariance is 
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highest at the edges of the expression domain (Figure S2.10), the limiting resource is likely not 

MCP-GFP, but instead a spatially-patterned endogenous factor, like a TF. 

Currently, the field largely assumes that adding reporters does not appreciably affect 

expression of other genes. However, sequestering TFs within repetitive regions of DNA can 

impact gene expression47,48, and a few case studies show that reporters can affect endogenous 

gene expression49,50. If TF competition is responsible for the observed negative covariance 

between reporters, a closer examination of the effects of transgenic reporters on the endogenous 

system is warranted. In addition, TF competition may be a feature, not a bug, of developmental 

gene expression control, as modeling has indicated that molecular competition can decrease 

expression noise and correlate expression of multiple targets51. 

2.4.4 Additional functions of shadow enhancers and outlook 

There are likely several features of shadow enhancers selected by evolution outside of their 

noise-suppression capabilities. Preger-Ben Noon, et al. showed that all shadow enhancers of 

shavenbaby, a developmental TF gene in Drosophila, drive expression patterns in tissues and 

times outside of their previously-characterized domains in the larval cuticle52. This suggests that 

shadow enhancers, while seemingly redundant at one developmental stage, may play separate, 

non-redundant roles in other stages or tissues. Additionally, a recent study investigating shadow 

enhancer pairs associated with genes involved in Drosophila embryonic development found that 

CRISPR deletions of the individual enhancers result in different phenotypes, suggesting each 

plays a slightly different role in regulating gene expression53. In several other cases, both 

members of a shadow enhancer pair are required for the precise expression pattern generated by 

the endogenous locus27,54–57. These sharpened expression patterns achieved by a shadow 
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enhancer pair may reflect enhancer dominance or other forms of enhancer-enhancer interaction 

and are likely another important function of shadow enhancers54. 

In the case of Kr, the endogenous expression pattern is best recapitulated by the shadow 

enhancer pair, with the individual enhancers driving slightly more anterior or posterior patterns 

of expression54 (Figure S2.1). Additionally, the early embryonic Kr enhancers drive observable 

levels of expression in additional tissues and time points, but these expression patterns overlap 

those driven by additional, generally stronger, enhancers, suggesting that the primary role of the 

proximal and distal enhancers is in early embryonic patterning58. Therefore, while we cannot rule 

out the possibility that the proximal and distal enhancers perform separate functions at later 

stages, it seems that their primary function, and evolutionary substrate, is controlling Kr 

expression pattern and noise levels during early embryonic development. 

Here, we have investigated the details of shadow enhancer function for a particular 

system, and we expect that some key observations may generalize to many sets of shadow 

enhancers. Shadow enhancers seem to be a general feature of developmental systems18,19, but the 

diversity among them has yet to be specifically addressed. While we worked with a pair of 

shadow enhancers with clearly separated TF activators, shadow enhancers can come in much 

larger groups and with varying degrees of TF input separation between the individual 

enhancers18,19. To discern how expression dynamics and noise driven by shadow enhancers 

depend on their degree of TF input separation, we are investigating these characteristics in 

additional sets of shadow enhancers with varying degrees of differential TF regulation. Our 

current results combined with data gathered from additional shadow enhancers will inform fuller 

models of how developmental systems ensure precision and robustness. 
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2.5 Materials and Methods 

2.5.1 Generation of transgenic reporter fly lines 

The single, duplicated, or shadow enhancers were each cloned into the pBphi vector, upstream of 

the Kruppel promoter, 24 MS2 repeats, and a yellow reporter gene as in (Fukaya, et al., 2016). 

We defined the proximal enhancer as chromosome 2R:25224832-25226417, the distal enhancer 

as chromosome 2R:25222618-25223777, and the promoter as chromosome 2R:25226611-

25226951, using the Drosophila melanogaster dm6 release coordinates. The precise sequences 

for each reporter construct are given in Supplemental File 4.  For the allele correlation 

experiments, each enhancer was cloned 192 bp upstream of the Kr promoter, separated by the 

endogenous sequence found between the proximal enhancer and the promoter. For 

transcriptional noise experiments, the distal enhancer was placed at its endogenous spacing, 2835 

bp upstream of the promoter, and the proximal enhancer sequence was replaced by a region of 

the lambda genome that is predicted to have few relevant TF binding sites. In the shadow 

enhancer pair or duplicated enhancer constructs, the two enhancers were separated by the 

sequence separating the proximal and distal enhancers in the endogenous locus.  

Using phiC31-mediated integration, each reporter construct was integrated into the same site on 

the second chromosomes by injection into yw; PBac{y[+]-attP-3B}VK00002 (BDRC stock 

#9723) embryos by BestGene Inc. (Chino Hills, CA). To produce embryos with biallelic 

expression of the MS2 reporter, female flies expressing RFP-tagged histones and GFP-tagged 

MCP (yw; His-RFP/Cyo; MCP-GFP/TM3.Sb) were crossed with males containing one of the 

enhancer-MS2 reporter constructs. Virgin female F1 offspring were then mated with males of the 

same parental genotype, except in the case of shadow heterozygous flies, which were mated with 

males containing the other single enhancer-MS2 reporter.  



 47  
 

2.5.2 Sample preparation and image acquisition  

Live embryos were collected prior to nc14, dechorionated, mounted on a permeable membrane, 

immersed in Halocarbon 27 oil, and put under a glass coverslip as in (Garcia, et al., 2013). 

Individual embryos were then imaged on a Nikon A1R point scanning confocal microscope 

using a 60X/1.4 N.A. oil immersion objective and laser settings of 40uW for 488nm and 35uW 

for 561nm. To track transcription, 21 slice Z-stacks, at 0.5um steps, were taken throughout the 

length of nc14 at roughly 30 second intervals. To identify the Z-stack’s position in the embryo, 

the whole embryo was imaged after the end of nc14 at 20x using the same laser power settings. 

Later in the analysis, each transcriptional spot’s location is described as falling into one of 42 

anterior-posterior (AP) bins, with the first bin at the anterior of the embryo. Unless otherwise 

indicated, embryos were imaged at ambient temperature, which was on average 26.5°C. To 

image at other temperatures, embryos were either heated or cooled using the Bioscience Tools 

(Highland, CA) heating-cooling stage and accompanying water-cooling unit.  

2.5.3 Burst calling and calculation of transcription parameters 

Tracking of nuclei and transcriptional spots was done using the image analysis Matlab pipeline 

described in Garcia, et al., 2011 (Garcia, et al., 2011). For every spot of transcription imaged, 

background fluorescence at each time point is estimated as the offset of fitting the 2D maximum 

projection of the Z-stack image centered around the transcriptional spot to a gaussian curve, 

using Matlab lsqnonlin. This background estimate is subtracted from the raw spot fluorescence 

intensity. The resulting fluorescence traces across the time of nc14 are then subject to smoothing 

by the LOWESS method with a span of 10%. The smoothed traces were used to measure 

transcriptional parameters and noise. Traces consisting of fewer than three time frames were 

removed from calculations. To calculate transcription parameters, we used the smoothed traces 
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to determine if the promoter was active or inactive at each time point. A promoter was called 

active if the slope of its trace (change in fluorescence) between one point and the next was 

greater than or equal to the instantaneous fluorescence value calculated for one mRNA molecule 

(FRNAP , described below).  Once called active, the promoter is considered active until the slope 

of the fluorescence trace becomes less than or equal to the negative instantaneous fluorescence 

value of one mRNA molecule, at which point it is called inactive until another active point is 

reached. The instantaneous fluorescence of a single mRNA was chosen as the threshold because 

we reasoned that an increase in fluorescence greater than or equal to that of a single transcript is 

indicative of an actively producing promoter, while a decrease in fluorescence greater than that 

associated with a single transcript indicates transcripts are primarily dissociating from, not being 

produced from, this locus. Visual inspection of fluorescence traces agreed well with the burst 

calling produced by this method (Figure S2.7).  

Using these traces and promoter states, we measured burst size, frequency and duration. Burst 

size is defined as the integrated area under the curve of each transcriptional burst, from one 

“ON” frame to the next “ON” frame, with the value of 0 set to the floor of the background-

subtracted florescence trace (Figure S2.7 C). Duration is defined as the amount of time occurring 

between the frame a promoter is determined active and the frame it is next determined inactive 

(Figure S2.7 F). Frequency is defined as the number of bursts occurring in the period of time 

from the first time the promoter is called active until 50 minutes into nc14 or the movie ends, 

whichever is first (Figure S2.7 E). The time of first activity was used for frequency calculations 

because the different enhancer constructs showed different characteristic times to first 

transcriptional burst during nc14. For these, and all other measurements, we control for the 

embryo position of the transcription trace by first individually analyzing the trace and then using 
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all the traces in each AP bin (anterior-posterior; the embryo is divided into 41 bins each 

containing 2.5% of the embryo’s length) to calculate summary statistics of the transcriptional 

dynamics and noise values at that AP position.  

All Matlab codes used for burst calling, noise measurements, and other image processing are 

available at the Wunderlich Lab GitHub 

(https://github.com/WunderlichLab/KrShadowEnhancerCode)  

2.5.4 Simultaneous tracking of Bcd-GFP and enhancer activity 

To compare the sensitivity of the activity of the shadow pair and distal enhancer to Bcd levels, 

we tracked the fluorescence of Bcd-GFP and MCP-mCherry in individual nuclei across the time 

of nc14. To obtain embryos for simultaneous tracking, we crossed female flies heterozygous for 

Bcd-GFP and MCP-mcherry with male flies homozygous for either the shadow pair or distal 

enhancer reporter. Bcd-GFP and MCP-mCherry are maternally deposited and thereby allow us to 

measure levels of Bcd and enhancer activity in individual nuclei of the resulting 

embryos.  Embryo collection and preparation was performed as described above. The same 

microscope, objective, and Z-step profile were used as described above, but laser settings were 

switched to 40uW for 561nm and 35uW for 488nm. Analysis of transcriptional activity was 

performed as described above. Time traces of Bcd-GFP levels in individual nuclei were 

subjected to background correction by subtracting the average fluorescence of the regions of the 

image not containing a nucleus at each time point from the raw Bcd-GFP fluorescence. The 

resulting Bcd-GFP time traces were then subjected to smoothing by the MATLAB smooth 

function, using the LOWESS method with a span of 10%. To measure the sensitivity of enhancer 

activity to Bcd levels, we correlated the slope of MS2 traces to the corresponding Bcd-GFP 

levels in the same nucleus. Slope was calculated between the MS2 values at consecutive time 

https://github.com/WunderlichLab/KrShadowEnhancerCode
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points and compared to the Bcd-GFP value at the earlier of the two time points. This process was 

done for all time points through 50 minutes into nc14.   

2.5.5 Conversion of integrated fluorescence to mRNA molecules 

To put our results in physiologically relevant units, we calibrated our fluorescence measurements 

in terms of mRNA molecules. As in (Lammers, et al., 2020), for our microscope, we determined 

a calibration factor, α, between our MS2 signal integrated over nc13, FMS2,and the number of 

mRNAs generated by a single allele from the same reporter construct in the same time interval, 

NFISH, using the hunchback P2 enhancer reporter construct (Garcia et al., 2013). Using this 

conversion factor, we can calculate the integrated fluorescence of a single mRNA (F1) as well as 

the instantaneous fluorescence of an mRNA molecule (FRNAP). With our microscope, FRNAP is 

379 AU/RNAP and F1 is 1338 AU/RNAP∙min. With these values, we are able to convert both 

integrated and instantaneous fluorescence into total mRNAs produced and number of nascent 

mRNAs present at a single time point, by dividing by F1 and FRNAP, respectively.   

2.5.6 Calculation of noise metrics 

To calculate the temporal CV each transcriptional spot i, we used the formula: 

CV(i) = standard deviation(mi(t))/mean(mi(t)) 

where mi(t) is the fluorescence of spot i and time t. 

We also decomposed the total noise experienced in each nucleus to inter-allele noise and co-

variance, analogous to the approach of (Elowitz, et al., 2002).  

Inter-allele noise is calculated one nucleus at a time. It is the mean square difference between the 

fluorescence of the two alleles in a single nucleus: 
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 𝜂𝐼𝐴
2 =

〈(𝑚1(𝑡)−𝑚2(𝑡))
2

〉

2〈𝑚1(𝑡)〉〈𝑚2(𝑡)〉
 

where m1(t) is the fluorescence of one allele in the nucleus at time t, and m2(t) is the fluorescence 

of the other allele in the same nucleus and the angled brackets indicate the mean across the time 

of nc14. 

Covariance is the covariance of the activity of the two alleles in the same nucleus across the time 

of nc14: 

𝜂𝐶𝑉
2 =

〈𝑚1(𝑡)𝑚2(𝑡)〉 − 〈𝑚1(𝑡)〉〈𝑚2(𝑡)〉

〈𝑚1(𝑡)〉〈𝑚2(𝑡)〉
 

The inter-allele and covariance values are defined such that they sum to give the total 

transcriptional noise displayed by the two alleles in a single nucleus.  

𝜂𝑡𝑜𝑡
2 =

〈𝑚1(𝑡)2+𝑚2(𝑡)2〉 − 2〈𝑚1(𝑡)〉〈𝑚2(𝑡)〉

2〈𝑚1(𝑡)〉〈𝑚2(𝑡)〉
 

This total noise value is equal to the coefficient of variation of the expression of the two alleles 

in a single nucleus across the time of nc14.  

2.5.7 Statistical methods 

To determine any significant differences in total noise, covariance, or inter-allele noise values 

between the different enhancer constructs, we performed Kruskal-Wallis tests with the 

Bonferroni multiple comparison correction.  

2.5.8 Description of the single enhancer model and associated parameters 

We constructed a model of enhancer-driven transcription based on the following chemical 

reaction network, 
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                                             kon r 

T + E  C + R 

              koff 

 

 

where E is an enhancer that interacts with a transcription factor T, which together bind to the 

promoter at a rate kon to form the active promoter-enhancer complex C. When the promoter is in 

this active form, it leads to the production of mRNA denoted by R, which degrades by diffusion 

from the gene locus at a rate α. Transcription is interrupted whenever the complex C 

disassociates spontaneously at a rate koff. In the bursting TFs model, the transcription factor T 

appears at a rate β1 and degrades at a rate β−1. To recapitulate Kruppel expression patterns, the 

value of β1 was assumed to be given by 

1.  , 

 

where x is the percentage along the length of the egg and c is a scaling constant. Since Kruppel 

activity peaks near the center of the egg, we chose µ = 50, while c and σ were fitted along with 

the other parameters. Lastly, n was assumed to be fixed across the length of the egg. 

We also generated a constant TF model, which is an adaptation of the model in (Bothma et al., 

2015). This model implicitly assumes that TF numbers are constant and, therefore, are 

incorporated into the value of kon as described by the reactions 

 

C 
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    koff 

          α 

R  ∅ 

In this case, the value for T was fitted for each bin in a similar way to β1, i.e. the constant number 

of TFs was assumed to be described by equation (1) (values were rounded to the nearest integer). 

To simulate the transcriptional traces, we implemented a stochastic approach. Individual 

chemical events such as enhancer-promoter looping take place at random times and are 

influenced by transcription factor numbers. Individual trajectories of chemical species over time 

were calculated using the Gillespie algorithm (Gillespie, 1976), and these trajectories are 

comparable to the experimentally measured transcriptional traces. Since the enhancer is either 

bound or not bound to the promoter, we imposed the constraint that C + E = 1 when simulating 

model dynamics. 

 

2.5.9 Estimation of model parameters from experimental data 

To yield a starting estimate for the kon and koff parameters, we defined the start and end of a burst 

as the time when the reactions 𝐸 𝑘𝑜𝑛 →  𝐶  and 𝐶 𝑘𝑜𝑓𝑓 →  𝐸  occur, respectively. The length of 

the ith burst was defined as the range of [bi,pi] where bi corresponds to the time of the ith instance 

of the reaction 𝐸 𝑘𝑜𝑛 →  𝐶  and pi 
 to the time of the ith instance of the reaction 𝐶 𝑘𝑜𝑓𝑓 →  𝐸. The 

time between the ith burst and the i + 1th burst is [pi,bi+1]. The Gillespie algorithm dictates that the 

time spent in any given state is determined by an exponentially distributed random variable with 

a rate parameter equal to the product of two parts: the sum of rate constants of the outgoing 

reactions, and the number of possible reactions. If the enhancer is either bound or unbound, we 
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have that C = 1 or E = 1, respectively. Therefore, by letting tb be the average time between bursts 

and td be the average duration of a burst, we can write 

 

 

and 

 

 

where N is the number of bursts for spot j, bij and pij denote the beginning and end of burst i in 

spot j respectively, and M denotes the total number of spots in the egg. The right-hand sides are 

given by the expected value of the exponential distribution and the assumption that, on average, 

T is close to 1. While this may not be the case for T, the assumption provides a convenient upper 

bound for the average time between bursts, which is likely not to have a much smaller value for a 

lower bound. (A low enough value of tb would imply nearly constant fluorescence intensity 

instead of bursts.) Finally, the average duration of a burst td can be calculated directly from the 

data and used to obtain koff by calculating 1/td. Similarly, the average time between bursts tb is 

readily available from the data giving us kon ≈ 1/tb. 

We were able to directly estimate mRNA production and degradation rates from the 

experimental data. To estimate α, we focused on periods of mRNA decay; i.e. periods where no 

active transcription is taking place and are thus described by 

R’ = −αR, 
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which in turn can be solved to be 

2. R = ce−tα, 

where c is a constant of integration. Taking the derivative of equation 2 yields 

3. R’(t) = −αce−tα, 

 

which corresponds to the slope of the decaying burst. We define the interval of decay of the ith 

burst as [pi,bi+1]. For some point t0 ∈ (pi,bi+1), let R0 = R(t0) = ce−t0α. Solving this expression for c 

gives that c = R0e
t0α. Substituting for c in equation 3 evaluated at t0 results in R’(t0) = 

−αR0e
t0αe−t0α = −αR0. Then, it follows that 

(4)  

 

In other words, the rate of decay of mRNA fluorescence can be calculated from any trace by 

taking the ratio of the slope during burst decay and its intensity at a given time t0 ∈ (pi,bi+1). 

Adjacent measurements of fluorescence intensity from the single enhancer systems were used to 

approximate the slope at each point in the traces. Then, equation 4 was applied to each point. A 

histogram of all calculated values was generated (Figure S2.6). In this figure, there was a clear 

peak, which provided us with an estimate of α ≈ 1.95. 

The estimation of r was done for periods of active transcription, which are also accompanied by 

simultaneous mRNA decay. By noting that C = 1 during mRNA transcription, we can 

approximate these periods as the zeroth order process 
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The differential equation associated with this system is given by 

5. R’ = r − αR, 

and has steady state R∗ = r/α. Equation 5 can be solved explicitly for R by choosing 

, 

where c is a constant of integration. For two adjacent measurements at times t1 and t2 we can 

write their respective measured amounts of mRNA as 

6. , 

 

and 

7. . 

 

Solving for c1 and c2 gives 

 

The short-term fluctuations of mRNA from R1 to R2 between two adjacent discrete time points in 

the stochastic system can be approximated by equations 6 and 7. This implies that 

, 

which in turn gives 
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. 

Therefore, the estimation of r can be computed given two adjacent measurements of fluorescence 

and the time between them. Finally, we used a similar approach as done with α to calculate 

values of r from fluorescence data. However, unlike α, r was calculated for each bin to account 

for differences in transcriptional efficiency across the length of the embryo. 

2.5.10 Parameter fitting with simulated annealing 

Simulations and parameter fitting were done with MATLAB®. Optimization in fitting was done 

by minimizing the sum of squared errors (SSE) between the normalized vectors of burst 

properties and allele correlations of the experimental and simulated data. In particular, a vector y 

of experimental data was created by concatenating the following vectors: burst size, integrated 

fluorescence, frequency, duration, and allele correlation across the length of the embryo. The 

vector y was subsequently normalized by dividing each burst property by the largest element in 

their respective vectors (except correlation which by definition is unitless between -1 and 1). A 

vector x was created in an analogous fashion to y but using simulated instead of experimental 

data. However, x was normalized using the same elements that were used to normalize y. Then, 

the discrepancy between the experimental and simulated data was measured by 

SSE = ∑𝑛
𝑖=1 (𝑦𝑖 −  𝑥𝑖)2 .  

We used a high-performance computing cluster to compute 200 independent runs of parameter 

fitting with simulated annealing for each model variant. The algorithm requires an initial guess 

of the parameter set P0, an initial temperature Γ0, a final temperature Γ’, the number of iterations 

per temperature N, and a cooling factor µ. Then, each iteration is as follows: 
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1. If the current iteration i is such that i > N, then update the current temperature Γk = µkΓ0 to 

µk+1Γ0 and set i = 0. Otherwise, set i to i + 1. 

2. Check if Γk < Γ’. If so, return the current parameter set Pj and terminate. 

3. Choose a parameter randomly from Pj and multiply it by a value sampled from a normal 

distribution with a mean equal to 1. The standard deviation of such distribution should be 

continuously updated to be Γk. The result of this step is the newly generated parameter set 

Pj+1. 

4. Calculate ∆E as the difference in SSE between the data generated by Pj and that generated 

by Pj+1. Update Pj to Pj+1 if ∆E < 0 or with probability p < e∆E/Γk where p is a uniformly 

distributed random number. 

5. Repeat all steps until termination. 

 

To generate our results, we chose Γ0 = 1, Γ’ = Γ0/10, N = 30, and µ = 0.8. We observed an 

improvement in the quality of the fittings by using analysis-derived parameter values as initial 

guesses instead of values given through random sampling. The sampled space ranged from 10−3 

to 103 for all parameters, except n, which was sampled from 100 to 102, and σ, which was 

randomly chosen to be an integer between 1 and 20. Equal numbers of parameter values were 

sampled at each order of magnitude. The analysis in the section above was used to estimate the 

parameters in P0. Parameters that were not estimated in the previous section were given the 

following initial guesses: n = 10, β−1 = 1, σ = 6, and c = 40. Initial guesses for c and σ were based 

on the experimental observation that there is little transcription outside of 20-80% egg length. 

Based on this observation, simulations were limited to this egg length range, as well. For the 

constant TFs model, both analysis-derived and random initial parameter values were used to 
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maximize the likelihood of finding any parameter set capable of recapitulating the observed 

allele correlation. 

2.5.11 Generation of simulated experimental data 

Parameter sets resulting from fitting were sorted in ascending order based on their sum of 

squared errors, and the 10 lowest error parameter sets are what we called the 10 best parameter 

sets. For all figures, we simulated 80 spots per bin and simulated each bin 5 times to generate 

error bars. Data for the distal enhancer at the proximal location was used to reproduce simulated 

allele correlations in all cases. 

Gillespie simulations update the counts of each chemical species at random time intervals. 

However, for ease of parameter fitting and to better recapitulate the experiments, we generated 

data in two distinct timescales: one consisting of 30 second intervals after which mRNA counts 

were recorded, and another consisting of random time intervals generated by the algorithm after 

which chemical counts were updated. The former one was used for all parameter fitting rounds 

and generation of figures. 

2.5.12 Description of two enhancer model, parameter estimation, and fitting 

To explore two enhancer systems, we expanded our previous model to include an additional 

enhancer. First, we considered duplicated enhancer systems, which consist of either two 

proximal or two distal enhancers. Enhancers were denoted by E1 and E2, which correspond to two 

identical enhancers that exist in different locations relative to the promoter. They are activated by 

the same transcription factors as described by the reactions 
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Without loss of generality, we used E1 to denote the enhancer at the proximal location and E2 to 

denote the enhancer at the distal location. This model describes independent enhancer dynamics; 

i.e. the behavior of one enhancer does not affect the behavior of the other, and, as such, both 

enhancers can be simultaneously looped to the promoter. Consequently, to account for potential 

enhancer interference or competition for the promoter, we assumed distinct kon and koff values for 

each enhancer in the duplicated enhancer constructs. We also used distinct values of r for each 

distal enhancer in the duplicated distal construct since fluorescence data was available for this 

enhancer at the proximal and endogenous location. For proximal enhancers, we assume r1 = r2. 

To describe the dynamics of the shadow enhancer pair, we denoted the activators for E1 (the 

proximal enhancer) and E2 (the distal enhancer) by T1 and T2, respectively: 

    

The production rate of T2, γ1, was calculated in the same way as production rate of T1, β1, but 

differed in the values of c and σ. The two enhancer models were also used to calculate allele 

correlation between homozygotes and heterozygotes because a distinction between the mRNA 
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produced by C1 and C2 was made. This approach works because, e.g., when considering the 

homozygote embryos, each single enhancer resides in the same nucleus and is therefore affected 

by the same fluctuating TF numbers. In the duplicated enhancer model, each enhancer E1 or E2 is 

affected by the same fluctuations in the number of transcription factor T. An analogous logic 

applies to the heterozygotes. 

To fit the two enhancer models to experimental data, we retained several parameters from the 

single enhancer models. Parameters r and α were directly calculated from the data, and, as such, 

did not vary across models. We assume that parameters concerning transcription factors (β1, β−1, 

γ1, γ−1, n1, and n2) are not affected by the presence of an additional enhancer. Therefore, in our 

model, only kon and koff are free to change. To fit the values of kon1, kon2, koff1, and koff2, we set the 

other model parameters to the median values of the 10 best parameter sets in the respective 

single enhancer model. We then used a similar simulating annealing approach to fit the kon and 

koff values. We used the resulting values to simulate transcriptional traces and to calculate the 

predicted CV values shown in Figure 2.5. 

2.5.13 Theoretical modeling of inter-allele noise 

To make a prediction about the expected change in inter-allele noise between single and 

two enhancer reporter constructs, we used the theory put forth in (Sánchez and Kondev, 2008; 

Sanchez et al., 2011). This formalism can be used to calculate the expected mean and variance of 

the transcriptional output of a promoter, given the possible states of the promoter, transition rates 

between states, and the rate of transcription resulting from each state. In these papers, the authors 

apply their formalism to different promoter architectures. Here, we generate a simpler model, in 

which we abstract away the individual transcription factor (TF) binding configurations, which 

would be numerous and poorly parametrized, and simply define states by whether an enhancer is 
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looped to the promoter and activating transcription. Since these models do not account for 

fluctuations that would contribute to extrinsic noise, e.g. fluctuations in TF or RNA polymerase 

levels, they can predict the dependence of intrinsic noise on enhancer arrangement. 

To apply this model to our system, we used these parameters: γ, degradation rate of 

mRNA; p, production rate of mRNA; k, on rate for enhancer-promoter looping; l, off rate for 

enhancer-promoter looping. We generated 5 models that represent different configurations of 

either one or two enhancers controlling a single promoter. Key assumptions are that the 

parameters describing this system are independent of both the position of the enhancer relative to 

the promoter and the presence of a second enhancer controlling the same promoter. In Model 1, 

there is a single enhancer controlling one promoter. There are two states, when the enhancer and 

promoter are not looped (mRNA production rate of 0), and when the enhancer and promoter are 

looped (mRNA production rate of p). In Model 2 (OR model) there are two enhancers 

controlling one promoter, transcription is activated if either enhancer is looped, and both 

enhancers can’t be bound at the same time. In Model 3 (additive model), there are two enhancers 

controlling one promoter, transcription is activated if either enhancer is looped, and, if both 

enhancers are bound, transcription occurs at twice the rate of single enhancer looping states. In 

Model 4 (synergistic model), there are two enhancers controlling one promoter, transcription is 

activated if either enhancer is looped, and, if both enhancers are bound, transcription occurs at 

three times the rate of single enhancer looping states. In Model 5 (XOR model), there are two 

enhancers controlling one promoter, transcription is activated if either enhancer is looped, and, if 

both enhancers are bound, no transcription occurs. Results of these models are shown in Figure 

S2.11. 
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Figure 2.1: Dual allele imaging shows the individual Kruppel enhancers drive largely 

independent transcriptional dynamics. A. Schematic of the endogenous Kruppel locus with 

distal (blue) and proximal (orange) shadow enhancers driving Kr (teal) expression in the central 

region of the embryo. Known transcriptional activators of the two enhancers are shown. B. 

Schematics of single enhancer reporter constructs driving expression of MS2 sequence and a 

yellow reporter. When transcribed, the MS2 sequence forms stem loops that are bound by GFP-

tagged MCP expressed in the embryos. Proximal embryos have expression on each allele 

controlled by the 1.5kb proximal enhancer at its endogenous spacing from the Kr promoter, 

while distal embryos have expression on each allele controlled by the 1.1kb distal enhancer at the 

same spacing from the Kr promoter. Shadow heterozygote embryos have expression on one 

allele controlled by the proximal enhancer and expression on the other allele controlled by the 

distal enhancer. C. Still frame from live imaging experiment where nuclei are red circles and 

active sites of transcription are green spots. MCP-GFP is visible as spots above background at 

sites of nascent transcription (Garcia, et al., 2013). D. The fluorescence of each allele in 

individual nuclei can be tracked across time as a measure of transcriptional activity. Graph 

shows a representative trace of transcriptional activity of the two alleles in a single nucleus 

across the time of nc14. These traces are used to calculate the Pearson correlation coefficient 

between the transcriptional activity of the two alleles in a nucleus across the time of nc14. 

Correlation values are grouped by position of the nucleus in the embryo and averaged across all 

imaged nuclei in all embryos of each construct. E. Graph of average correlation between the two 

alleles in each nucleus as a function of egg length. 0% egg length corresponds to the anterior 

end. Error bars indicate 95% confidence intervals. The shadow heterozygotes have much lower 

allele correlation than either homozygote, demonstrating that the individual shadow enhancers 

drive nearly independent transcriptional activity and that upstream fluctuations in regulators are a 

significant driver of transcriptional bursts. The total number of nuclei used in calculations for 

each construct by anterior-posterior (AP) bin are given in Supplemental file 1. 
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Figure 2.2: Model of enhancer-driven dynamics demonstrates TF fluctuations are required 

for correlated reporter activity. To investigate the factors required for the observed correlated 

behavior of identical enhancers and largely independent behavior of the individual enhancers, we 

developed a simple stochastic model of enhancer-driven transcription. A. Schematic of model of 

transcription driven by a single enhancer (the bursting TFs model). For each enhancer, we 

assume there is a single activating TF, Ti, that appears in bursts of size ni molecules at a rate β1, 

which varies by the position in the embryo. TFs degrade linearly at rate β-1. When present, Ti can 

bind the enhancer, Ei, to form a transcriptionally active complex, Ci, at a rate kon and dissociates at 

rate koff. This complex then produces mRNA at an experimentally determined rate r that degrades 

at an experimentally determined rate, α. B. The bursting TFs model is able to recapitulate the 

experimentally observed pattern of allele correlation. We plot the correlation between the two 

alleles in a nucleus as a function of egg length. Simulated data is created using the lowest energy 

parameter set for each enhancer. The data shown is the average of five simulated embryos that 

have 80 transcriptional spots per AP bin. In B and C simulated data are shown by solid lines, 

experimental data are shown by dotted lines. C. The constant TFs model fails to recapitulate the 

experimentally observed pattern of allele correlation. Without TF fluctuations, both heterozygous 

and homozygous embryos display independent allele activity. Error bars and shaded regions in B 

and C represent 95% confidence intervals. 
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Figure 2.3: Activity of Kr shadow pair is less correlated with Bcd levels than is activity of 

single distal enhancer. 

To assess whether fluctuations in enhancer activity across time are associated with fluctuations 

in TF levels, we simultaneously measured Bcd levels and enhancer-driven transcription in 

individual nuclei. A. To track Bcd levels and enhancer activity in the same nuclei, we crossed 

flies expressing a Kr enhancer-MS2 transgene to flies expressing Bcd-GFP and MCP-mCherry. 

In the resulting embryos, Bcd levels can be measured by GFP fluorescence and enhancer reporter 

activity can be measured by mCherry fluorescence. B. Schematic of the enhancer reporters used 

for simultaneous tracking of TF levels and enhancer activity. As in Figure 2.1, the transcribed 

MS2 sequence forms stem loops that are bound by MCP, which is here tagged with mCherry.  C. 

Bcd-GFP expression forms a gradient from the anterior to posterior of the embryo, whereas the 

Kr enhancer reporters drive expression in the center region of the embryo. The magnified section 

of the embryo shows a still frame from live imaging indicating nuclei (green) and active 

transcription spots (red). D. Bcd levels and enhancer activity can be simultaneously tracked in 

individual nuclei. Graph shows a representative trace of Bcd-GFP levels (in green) and distal 

enhancer transcriptional activity (in red) in a nucleus across the time of nc14. E. Activator TF 

levels regulate enhancer activity, so to assess the sensitivity of our enhancer constructs to input 

TF fluctuations, we compare the levels of nuclear Bcd-GFP to the slope of MS2 fluorescence 

across the time of nc14. Positive slope values indicate an increase in enhancer activity while 

negative values indicate a decrease in enhancer activity. The graph shows nuclear Bcd-GFP 

levels (as in D), in solid green line, and MS2 slope values (of the MS2 trace shown in D), in 

dashed red line, across the time of nc14. Horizontal grey line indicates a slope value of 0. F. 

Changes in the shadow pair’s activity are significantly less correlated with Bcd-GFP levels than 

are changes in the distal enhancer’s activity. Shown are violin plots of the distribution of 

correlation values between Bcd-GFP levels and MS2 slopes in individual nuclei for either the 

shadow pair or distal enhancer. Circles correspond to the correlation values of individual nuclei 

and the horizontal lines indicate the median. This correlation is significantly higher for the distal 

enhancer than it is for the shadow pair (median r values are 0.18 and 0.14, respectively. p-value 

= 6.1 x 10-3 from Kruskal-Wallis pairwise comparison.) The total number of nuclei used in 

calculations for each construct by AP bin are given in Supplemental file 2. G. Our enhancer 

model recapitulates the lower correlation between Bcd-GFP levels and enhancer activity seen 

with the shadow pair than with the distal enhancer. Graph is as in F, but showing the distribution 

of correlation values in simulated nuclei, using 100 nuclei per AP bin. Median r values for 

simulation are 0.14 for the distal enhancer and 0.11 for the shadow pair. p-value = 2.2 x 10-2 from 

Kruskal-Wallis pairwise comparison of correlations.  
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Figure 2.4: Shadow enhancer pair produces lower expression noise than duplicated 

enhancers. To investigate whether the shadow enhancer pair drives less noisy expression, we 

calculate the coefficient of variation (CV) associated with the shadow enhancer pair or either 

duplicated enhancer across time of nc14. A. The shadow enhancer pair displays lower temporal 

expression noise than either duplicated enhancer. Graph is mean coefficient of variation of 

fluorescence traces across time as a function of embryo position. The grey rectangle in A and B 

highlights the region of endogenous Kr expression (boundaries where 33% maximal expression 

occurs). B. The shadow enhancer pair shows the lowest expression noise, but not the highest 

expression levels, indicating that the lower noise is not simply a function of higher expression. 

Graph is average total expression during nc14 as a function of embryo position. Error bars in A 

and B represent 95% confidence intervals. Total number of transcriptional spots used for graphs 

are given in Supplemental file 3 by construct and AP bin. C. Violin plot of distribution of CV 

values at AP bin of peak expression for each enhancer construct (corresponding to 50% egg 

length for shadow pair and duplicated proximal, 52.5% egg length for duplicated distal), 

horizontal bar indicates median. Y-axis limited to 99th percentile of the construct with highest 

expression noise (duplicated proximal). The shadow pair drives significantly lower expression 

noise than either duplicated enhancer (p-value = 1.5 x10-6 for duplicated distal and shadow pair. 

p-value = 2.0 x10-44 for duplicated proximal and shadow pair). p-values calculated using Kruskal 

Wallis pairwise comparison with Bonferroni multiple comparison correction.  



 68  
 

 

Figure 2.5: The two enhancer model recapitulates low expression noise associated with the 

shadow enhancer pair. To assess whether the separation of input TFs mediates the lower 

expression noise driven by the shadow enhancer pair, we expanded our model to incorporate two 

enhancers driving transcription. A. Schematic of the two enhancer model. We assume that when 

two enhancers control a single promoter, either or both can loop to the promoter and drive 

transcription. We defined model parameters as in Figure 2.2, and only allowed the kon and koff 

values to vary from the single enhancer model. B. To understand the effect of adding a second 

enhancer, we examined how the kon and koff values vary from those in the single enhancer model. 

We plotted the distribution of the values for kon and koff for each enhancer in the three different 

constructs measured. The distribution shows the values derived from the 10 best-fitting 

parameter sets, and the black star in each column indicates the kon or koff value from the 

corresponding single enhancer model.  In general, the koff values increased relative to the single 

enhancer model, and the kon values decreased, indicating that the presence of a second enhancer 

inhibits the activity of the first. C. Graph of average coefficient of variation of simulated (solid 

lines) or experimental (dotted lines) transcriptional traces as a function of egg length. The model 

is able to recapitulate the lower expression noise seen with the shadow enhancer pair with no 

additional fitting, indicating that the separation of TF inputs to the two enhancers is sufficient to 

explain this observation. Error bars of simulated data and shaded region of experimental data 

indicate 95% confidence intervals. 
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Figure 2.6: Shadow enhancer pair achieves lower total noise by buffering global and allele-

specific sources of noise. To determine how the shadow enhancer pair produces lower 

expression noise, we calculated the total noise associated with each enhancer construct and 

decomposed this into the contributions of covariance and inter-allele noise. Covariance is a 

measure of how the activities of the two alleles in a nucleus change together and is indicative of 

global sources of noise. Inter-allele noise is a measure of how the activities of the two alleles 

differ and is indicative of allele-specific sources of noise. A. The shadow enhancer pair has 

lower total noise than single or duplicated enhancers. Circles are total noise values for individual 

nuclei in AP bin of peak expression for the given enhancer construct. Horizontal line represents 

the median. The y-axis is limited to 75th percentile of the proximal enhancer, which has the 

largest noise values. The shadow enhancer pair has significantly lower total noise than all other 

constructs. B. The shadow enhancer pair displays significantly lower covariance than either 

single or duplicated enhancer and significantly lower inter-allele noise than both single 

enhancers and the duplicated proximal enhancer. The left half of each violin plot shows the 

distribution of covariance values of nuclei in the AP bin of peak expression, while the right half 

shows the distribution of inter-allele noise values. Horizontal lines represent median. The y-axis 

is again limited to the 75th percentile of enhancer with the largest noise values, which is 

duplicated proximal. The lower covariance and inter-allele noise associated with the shadow 

enhancer pair indicates it is better able to buffer both global and allele-specific sources of 

noise.  C. p-value table of Kruskal-Wallis pairwise comparison of the total noise values of each 

enhancer construct. p-value gradient legend applies to C and D. D. p-value table of Kruskal-

Wallis pairwise comparison of covariance (on left) and inter-allele noise (on right) values for 

each enhancer construct. Bonferroni multiple comparison corrections were used for p-values in C 

and D. Total number of nuclei used in noise calculations are given in Supplemental file 1.  
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Figure 2.7: Shadow enhancer pair maintains lower total noise across temperature 

perturbations. To test the ability of each enhancer construct to buffer temperature perturbations, 

we measured the total expression noise associated with each for embryos imaged at 17°C or 

32°C. A. The shadow enhancer pair displays significantly lower total noise than the single or 

duplicated proximal enhancer and the single distal enhancer at 17°C. Circles are total noise 

values for individual nuclei in AP bin of peak expression for the given enhancer construct and 

horizontal bars represent medians. The y-axis is limited to 75th percentile of construct with 

highest total noise at 17°C (single proximal). B. The shadow enhancer pair has significantly 

lower total noise than all other constructs at 32°C. The y-axis is limited to 75th percentile of the 

enhancer construct with highest total noise at 32°C (duplicated proximal). C. Temperature 

changes have different effects on the total noise associated with the different enhancers. The 

median total noise value at the AP bin of peak expression at the three measured temperatures is 

shown for each enhancer construct. Within each enhancer, the median total noise values are 

shown left to right for 17°C, 26.5°C, and 32°C. D. p-value table of Kruskal-Wallis pairwise 

comparison of the total noise values of each enhancer construct at 17°C. p-value gradient legend 

applies to D and E. E. p-value table of Kruskal-Wallis pairwise comparison of the total noise 

values of each enhancer construct at 32°C. Bonferroni multiple comparison corrections were 

used for p-values in D and E. 
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Figure S2.1:  Fraction of nuclei transcribing as a function of embryo position. The different 

enhancer constructs display different spatial and temporal patterns of activity. Shown in all 

graphs are the fraction of nuclei actively transcribing as a function of embryo position at each 

indicated time point into nc14. A. 10 minutes into nc14. B. 20 minutes into nc14. C. 30 minutes 

into nc14. D. 40 minutes into nc14. Error bars are 95% confidence intervals. We note that 

differences in the individual Kr enhancers become more pronounced throughout progression of 

nc14. The more anterior pattern driven by the proximal enhancer in the second half of nc14 

mimics the anterior shift previously observed for the Kr expression domain (Jaeger, et al., 2004; 

El-Sherif & Levine, 2016). 
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Figure S2.2: Correspondence of observed and expected number of spots. To ensure that we 

can accurately measure two spots of expression in the embryo, we compared the number of 

transcriptional spots seen in embryos hemizygous or homozygous for each construct. Our 

rationale was that in the absence of transvection, the number of transcriptional spots in 

homozygous embryos should be twice the number in embryos expressing the reporter on only 

one allele. The number of transcriptional spots tracked during nc14 in the AP bin of maximum 

expression was counted for all embryos imaged for each homozygous and hemizygous construct. 

The graph shows the average of this value for homozygous embryos, divided by double the value 

observed in the corresponding hemizygous construct. Assuming no transvection occurs, this 

value should be close to 1. The ratio of observed to expected number of spots is close to 1 for all 

of our enhancer constructs, indicating we are reliably able to track the two individual spots of 

transcription in single nuclei. 
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Figure S2.3: Expression across time at different embryo positions. The activity levels of the 

different enhancer constructs vary both across time and space. Shown in each graph is the mean 

fluorescence of all transcriptional traces of the indicated enhancer construct as a function of time 

into nc14 at the indicated position in the embryo. The earlier activation of the shadow pair and 

distal enhancer compared to the proximal enhancer at 50% and 60% egg length may stem from 

the input of the pioneer TF Zelda (Zld) to the distal and shadow pair. Error bars are 95% 

confidence intervals. 
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Figure S2.4: Single enhancer models recreate observed transcriptional bursting properties. 

To investigate whether our model is accurately simulating our experimental system, we 

compared the transcriptional burst properties produced by model simulations of transcription to 

those observed experimentally (see Figure S2.7 for description of burst properties). A. Graphs of 

average values of transcriptional burst properties, total mRNA produced during nc14, burst 

frequency, burst duration, and burst size associated with the proximal enhancer as a function of 

egg length. In A and B, simulated data are represented with solid lines and experimental data are 

shown with dotted lines. B. Graphs of average values of transcriptional burst properties as in A, 

associated with the distal enhancer. For both the proximal and distal enhancers, our model is 

largely able to recapitulate the experimentally observed transcriptional burst properties 

associated with each enhancer. C. The median and CV values of the model parameters for the 

proximal enhancer in the top 10 performing parameter sets. D. The median and CV values of the 

model parameters for the distal enhancer in the top 10 performing parameter sets. Explanations 

of model parameters are given in the Methods. Error bars represent 95% confidence intervals. 
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Figure S2.5: Incorporating a common TF into the model yields nonzero heterozygote allele 

correlations. To determine whether the observed nonzero heterozygote correlation can be 

explained by common TF activity, we incorporated into our model a TF that can bind to both the 

proximal and distal enhancers. A. Schematic of a model that includes an additional TF denoted 

T* which can bind to both the proximal and distal enhancers. The production of T* occurs at a 

rate ω1 which varies across the embryo in a similar manner to β1. T* degrades linearly at a rate 

ω-1 and appears in bursts of size n*. The presence of both the enhancer-specific TF Ti and the 

common TF T* are necessary to initiate transcription. B. The addition of a common TF does not 

hinder the model from recapitulating the experimentally observed burst properties of single 

enhancer constructs. Simulated data is created using the second-best parameter set for each 

enhancer. The data shown is the average of five simulated embryos that have 80 transcriptional 

spots per AP bin. In B, C, and D simulated data are shown by solid lines, experimental data are 

shown by dotted lines. C. The addition of the common TF T* consistently produces nonzero 

heterozygote allele correlations. However, some of the best parameter sets do not conserve the 

experimental relationship between homozygote and heterozygote correlations. Other parameter 

sets do not match the experimental data well suggesting that the model accepts a narrower range 

of parameter combinations than the bursting TF model. Error bars in B and C represent 95% 

confidence intervals. 

 

 

 

 

 



 78  
 

 

Figure S2.6: mRNA production and decay rates can be directly estimated from 

experimental data. The mRNA degradation parameter α and production parameter r were 

measured directly from fluorescence data without any input from the model. A. To estimate α, 

we used adjacent measurements of fluorescence intensity to approximate the slope at each point 

in the fluorescence traces. These values are compared with an exponential rate of mRNA decay 

(see Methods) and the resulting predicted values are shown in the histogram. Periods of mRNA 

production have negative α values and periods of decay have positive values. The histogram 

shows a distinct peak for α > 0, which provided us with an estimate of α ≈ 1.95. B. A similar 

computational approach was used to calculate values of r from fluorescence data (see Methods). 

We calculated different values of r for each bin to account for differences in transcriptional 

efficiency across the length of the embryo due to factors that are not explicitly included in the 

model. For example, different combinations of TF bound to the enhancer may give rise to 

different mRNA production rates. Different values of r were found for the proximal and distal 

enhancers.  Notice that distal r values shown correspond to the distal enhancer at the proximal 

location. 
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Figure S2.7: Visual inspection of burst calling algorithm. To extract the bursting parameters 

examined (burst size, frequency, and duration), individual fluorescence traces were first 

smoothed using the LOWESS method with a span of 0.1. Our burst calling algorithm then 

determined the periods of promoter activity or inactivity based on the slope of the fluorescence 

trace. A. Representative example of smoothing of transcriptional traces. B. Representative 

fluorescence trace of a single spot across the time of nc14. Black open circles indicate time 

points where the promoter is switched to being called “on”, red filled circles indicate time points 

where the promoter is switched to being called “off”. C. A representative transcriptional trace 

with shading representing the area under the curve used to calculate the size of the first burst. 

This area is calculated using the trapz function in MATLAB and is done for each burst, from the 

time point the promoter is called “on” until the next time it is called “on”. D-F show additional 

representative fluorescence traces of single transcriptional spots across the time of nc14. D. A 

trace with shading representing the area under the entire curve during nc14 used to calculate the 

total amount of mRNA produced. This area is calculated using the trapz function in MATLAB 

and is done from the time the promoter is first called active until 50 minutes into nc14 or the 

movie ends, whichever comes first. E. Burst frequency is calculated by dividing the number of 

bursts that occur from the time the promoter is first called active until 50 minutes into nc14 or 

the movie ends, whichever comes first. F. Burst duration is defined as the amount of time 

between when the promoter is called active and it is next called inactive.  
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Figure S2.8: Temporal CV as a function of mean fluorescence. To investigate the relationship 

between our noise measurement of temporal CV and the mean activity of each construct, we 

plotted the temporal CV of each transcription spot as a function of its mean fluorescence. A. 

Distal; B. Proximal; C. 2x Proximal; D. 2x Distal; E. Shadow pair. With all constructs, we find 

the general trend that CV decreases with increasing average expression, flattening out at a 

baseline noise level specific to each enhancer construct. 
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Figure S2.9: Individual Kr enhancers display sub-additive behavior. To assess the way input 

from two enhancers is integrated at the Kr promoter, we compared the experimentally observed 

mRNA production of duplicated enhancers to that predicted from additive behavior of the single 

enhancers. A. The duplicated distal enhancer displays sub-additive behavior. The solid line is the 

experimentally observed total mRNA produced by the duplicated distal enhancer during nc14 as 

a function of egg length and the dotted line is that expected by doubling the total mRNA 

produced by the single distal enhancer. B. The duplicated proximal enhancer also acts sub-

additively. The solid line is the experimentally observed total mRNA produced by the proximal 

enhancer during nc14 as a function of egg length and the dotted line is that expected by doubling 

the total mRNA produced by the single proximal enhancer. These results, along with the 

observation that koff values increased and kon values decreased in our model with the addition of a 

second enhancer, suggests that the Kr enhancers compete with each other for interactions with 

the promoter.  Error bars represent 95% confidence intervals. 
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Figure S2.10: Fraction of nuclei with negative covariance of allele activity. To identify the 

likely cause of the observed negative covariance between allele activity in some nuclei, we 

calculated the fraction of nuclei displaying negative covariance out of all nuclei that had active 

reporter transcription. Graphs show the fraction of transcribing nuclei with negative covariance 

as a function of egg length for each reporter construct, with a black circle indicating the position 

along the embryo of maximal expression for that construct. A. Distal; B. Proximal; C. 2x 

Proximal; D. 2x Distal; E. Shadow pair. Note that for all constructs, the highest rates of negative 

covariance are outside of the region of maximal reporter expression. MCP-GFP is expressed 

uniformly along the length of the embryo and we would therefore expect if MCP-GFP were the 

limiting factor, we would see the highest rates of negative covariance in the center of the 

expression pattern, where the highest number of transcripts are produced. Instead, the highest 

rates of negative covariance are seen at the edges of the Kr expression pattern, suggesting a 

spatially patterned factor, such as a TF, may be what is limiting. 
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Figure S2.11: In most cases, two enhancer models drive lower noise than the single 

enhancer model. To explore the behavior of CV in these different models, we use several 

approaches. A. We plot the mean expression level versus CV for the five models above and one 

set of parameters, k  = l  = 1, p  = 1, γ = 0.1. The single enhancer model (dark purple) drives the 

highest CV, indicating that, under the assumptions of our models, adding an additional enhancer 

generally lowers intrinsic noise. Except for XOR model (yellow), all other models produce more 

mRNA than the single enhancer model. The other colors are: blue, OR model; green, additive 

model; brown, synergistic model. B. Here we plot the CV as a function of l, the rate of promoter-

enhancer dissociation, for the five models above and vary l from 0.1 to 10 on a logarithmic scale 

with k   = 1, p  = 1, γ = 0.1. With the exception of the XOR model with low l, the single enhancer 

model drives a higher CV than the models with two enhancers for the same value of l. These 

results show that, under the simplifying assumptions that the production rates and on-off rates of 

enhancers are independent of the position and number of enhancers, the addition of a second 

enhancer generally lowers the predicted intrinsic noise. In our experimental data (Figure 2.6), we 

only observe a significant decrease in interallele noise for the shadow enhancer pair compared to 

the single distal or single proximal enhancer. Duplications of either the proximal or distal 

enhancer do not have significantly lower noise than their respective single enhancer constructs. 

Therefore, we expect that the simple addition of an identical enhancer likely does not fulfill the 

simplifying parameter assumptions used here and suggests that further investigation is needed to 

understand the complexity of the relationship between interallele noise and the numbers of 

enhancers controlling a promoter.    
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Figure S2.12: Position-dependent effects on distal enhancer. To best mimic the endogenous 

system, we looked at expression driven by the distal enhancer at its endogenous spacing from the 

promoter for our noise calculations. In this construct we replaced the sequence of the proximal 

enhancer with sequence of the same length from the lambda phage genome predicted to have low 

number of Drosophila TF binding sites. This increased distance from the promoter had 

observable effects on the transcriptional dynamics and noise associated with the distal enhancer. 

A. Comparison of total transcriptional expression mediated by the distal enhancer at its 

endogenous spacing or proximal to the promoter. The distal enhancer at its endogenous spacing, 

shown as the solid line, produces significantly more total mRNA in the center region of 

expression than the distal enhancer proximal to the promoter, shown as the dotted line. B. 

Comparison of the average number of transcripts produced per transcriptional burst by each 

distal enhancer configuration as a function of egg length. C. Average burst frequency associated 

with either distal enhancer configuration as a function of egg length. D. Average burst duration 

associated with either distal enhancer configuration as a function of egg length. E. Coefficient of 

variation of transcriptional activity across nc14 for each distal enhancer configuration as a 

function of egg length. F. Total expression noise associated with either distal enhancer 

configuration at the AP bin of that construct’s peak expression. The total noise distribution for 

the distal enhancer proximal to the promoter is on the left and that for the distal enhancer at its 

endogenous spacing from the promoter is on the right. The distal enhancer at its endogenous 

spacing displays significantly higher total noise (p = 0.018) than the distal enhancer proximal to 

the promoter.  Each circle represents the total noise of an individual nucleus and the horizontal 

bar marks the median total noise value. Y-axis limited to the 75th percentile of the construct with 

the highest total noise values (distal promoter at endogenous spacing).  Error bars in A-E 

represent 95% confidence intervals. 
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CHAPTER 3 

Molecular competition can shape enhancer activity in the Drosophila embryo 

3.1 Summary 

Transgenic reporters allow the measurement of regulatory DNA activity in vivo and 

consequently have long been useful tools in the study of enhancers. Despite the utility of 

transgenic reporters, few studies have investigated the potential effects these reporters have on 

the expression of other transgenic reporters or endogenous genes. A full understanding of the 

impacts transgenic reporters have on expression is required for both the accurate interpretation of 

transgenic reporter data and the characterization of gene regulatory mechanisms. Here, we 

investigate the impact transgenic reporters have on the expression of other transgenic reporters 

and endogenous genes. By measuring the expression of Kruppel (Kr) enhancer reporters in live 

Drosophila embryos that contain either one or two copies of identical reporters, we find reporters 

have an inhibitory effect on one another’s expression. Further, expression of a nearby 

endogenous gene is decreased in the presence of a Kr enhancer reporter. Through the use of 

competitor transcription factor (TF) binding site arrays, we present evidence that reporters, and 

potentially endogenous genes, are competing for TFs. Increasing numbers of competitor binding 

sites decrease both peak levels and the spatial extent of expression. To understand how small 

numbers of added TF binding sites could significantly impact gene expression, we develop a 

simple thermodynamic model of our system. Our model predicts competition of the measured 

magnitude specifically if TF binding is restricted to distinct nuclear subregions, underlining an 

unexpected role of the non-homogenous nature of the nucleus in regulating gene expression.   

3.2 Introduction 
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An organism’s ability to precisely control gene expression is dependent on the activity of 

enhancers. Through the binding of specific combinations of transcription factors (TFs), which 

can be activating or repressive, enhancers are able to control the expression of their target genes 

in time and space. Enhancers control gene expression across all aspects of organismal 

functioning, from the immune system to the nervous system, and play a particularly important 

and well-studied role in the process of embryonic development1,2. During this period, enhancers 

regulate the expression of genes that determine critical cell fate decisions underlying patterning 

and organogenesis.  

A significant amount of our understanding of enhancers and other cis-regulatory elements 

has come from the use of transgenic reporter lines. These transgenic animals have measurable 

reporters, such as fluorescent proteins or LacZ, under the control of cis-regulatory elements to 

enable observation of that element’s activity in living organisms in different life stages, tissue 

types, or conditions3,4. Studies of transgenic animals have enabled the discoveries of previously 

unknown enhancers, the modularity of enhancers, and the importance of the arrangement of TF 

binding sites or enhancer “grammar”, among others5–9.  

Despite the remarkable utility of transgenic reporters, or perhaps in part because of it, 

little work has been done to look at the effect of these reporters on expression of other reporters 

or endogenous genes. Although reporters are exogenous regions of DNA that can originate from 

completely different species than the host animal, once integrated into the genome, these 

transgenes rely on the same pool of transcription factors, polymerases, and other molecular 

factors required for gene expression as endogenous genes. Given that most of these factors are 

present at relatively high copy numbers in the cell, for example 250,000 Zld TF molecules per 

nucleus in the Drosophila embryo10,11 or over 80,000 RNAP molecules per nucleus in human 
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cells11,12, it is commonly assumed that adding an additional enhancer would have little impact on 

the availability of key expression machinery. However, a couple of examples suggest that there 

may be competition between transgenic reporters and endogenous genes. A study by Laboulaye, 

et al. measured the effect of three different transgenic reporters on endogenous gene expression 

in mice13. The authors found that the transgenic reporters all decreased the expression of the 

closest endogenous gene. Thompson & Gasson noted that endogenous protein levels may be 

slightly decreased in Saccharomyces cerevisiae and Lactococcus lactis expressing transgenic 

reporters, but the results were inconclusive14. These examples suggest that transgenic reporters 

may decrease endogenous gene expression but leave open the questions of the mechanisms 

behind these decreases and whether such an effect is limited to certain organisms or reporters. 

 Like much of the field, we often used transgenic reporters under the assumption that they 

had no effect on the expression of other genes until we saw evidence to the contrary in our own 

data. In a study investigating gene expression noise in Drosophila embryos, we observed 

evidence of competition between identical copies of transcriptional reporters integrated on 

homologous chromosomes15. We were surprised to find that homozygous reporter embryos 

produced less mRNA per reporter allele than hemizygous embryos, with a reporter present on 

only one of the two homologous chromosomes (Figure 3.1). We suspected this could have 

important implications not only for the use of transgenic reporters, but also for our understanding 

of the balance between the supply of and demand for transcriptional machinery within the 

nucleus. 

Here we track the activity of multiple configurations of transgenic reporters in 

Drosophila embryos to assess the impact of these reporters on one another and endogenous 

genes. We measured live mRNA dynamics driven by the embryonic enhancers of the gap gene 
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Kruppel (Kr) in the presence or absence of a second transcriptional reporter or a competitor TF 

binding array. We find that enhancer reporter expression is lower not only in the presence of a 

second reporter, but also in the presence of non-transcribing TF binding arrays, suggesting that 

there is competition for locally limited levels of certain TFs. This effect is not restricted to 

reporters; expression of a nearby endogenous gene is also decreased in transgenic embryos. To 

understand how the addition of the relatively small number of TF binding sites present in our 

constructs can measurably decrease reporter expression, we developed a thermodynamic model 

of our system. We predict reduced expression of the magnitude observed in transgenic embryos 

if we assume TF binding is restricted to so-called “hub” regions, but not if we assume TFs have 

access to the whole genome. This work reconciles the question of how tens of TF binding sites in 

a transgenic reporter construct can impact the available supply of tens of thousands of TF 

molecules. We suggest that the TF supply relevant to a particular enhancer is limited to a smaller 

pool of the TFs in a nucleus. 

   

3.3 Results  

3.3.1 Homozygous reporters display evidence of competition 

To test whether transgenic reporters affect the expression of other alleles, we compared the 

expression output in embryos either homozygous or hemizygous for different reporter constructs. 

In the absence of reporter interactions, we will see the same levels of mRNA production per 

allele in hemizygous embryos and homozygous embryos. Conversely, if the reporters do affect 

one another’s expression, then expression levels per allele will differ in hemizygous vs 

homozygous embryos, depending on the nature of this interaction. A synergistic interaction, 
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perhaps through a mechanism such as increasing the local concentration of a key TF, would lead 

to higher levels of transcription in homozygous embryos than hemizygous embryos (Figure 3.1B 

upper half). An antagonistic interaction, such as competition for a limited shared resource, would 

lead to lower levels of transcription in homozygous embryos than hemizygous embryos (Figure 

3.1B lower half).  

 To assess the nature of potential reporter interactions, we measured transcriptional output 

of different enhancers in living embryos using the MS2 reporter system. When transcribed, the 

MS2 sequence forms stem loops that are then bound by an MCP-GFP fusion protein expressed in 

the embryo, enabling us to visualize sites of nascent transcription16 (Figure 3.1A). We can track 

these individual transcriptional spots across the time of nuclear cycle 14 (nc14), when these 

enhancers are most active, to measure total transcriptional output and dynamics. As a test case, 

we used different combinations of the two Kruppel (Kr) embryonic shadow enhancers. The Kr 

shadow enhancer pair, together or individually, drives a stripe of expression in the central 20% 

of the embryo (Figure 3.1A). We generated transgenic flies with each individual enhancer, the 

shadow enhancer pair, and each enhancer duplicated in tandem driving an MS2 reporter (Figure 

3.1B). Despite the similar pattern of expression driven by the two individual enhancers, the distal 

and proximal enhancers are each activated by different sets of TFs17. We previously showed that 

this separation of TF inputs plays an important role in suppressing gene expression noise15. Here, 

this separation of TF inputs allows us to investigate whether the reporter interactions we observe 

are influenced by specific regulatory factors or are more general consequences of having two 

reporters present.   

 In the majority of cases, hemizygous embryos produce more mRNA per allele than do 

homozygous embryos (Figure 3.1B). To calculate the mRNA produced by each reporter, we 
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integrate the area under the fluorescence traces of activity measured during nc14 at the anterior-

posterior position in the embryo of peak expression (Figure S3.1). The single and duplicated 

distal constructs produce 62% and 40%, respectively, more mRNA per allele in hemizygous 

embryos than in homozygous embryos.  The shadow pair and proximal enhancer reporters 

produce 27% and 22% more mRNA per allele at their respective regions of peak expression in 

hemizygous embryos than in homozygous embryos. The duplicated proximal construct drives the 

same level of expression in hemizygous and homozygous embryos. By comparing the 

competition exhibited by duplicated and single enhancers, we do not find evidence that longer 

reporter sequences drive stronger reporter competition (Figure 3.1B inset). We suspect this trend 

may arise because duplicated enhancers with a large array of similar binding sites can recruit a 

larger pool of TFs18 or because there can be synergy between the enhancers in promoter 

activation19. In sum, when two reporters are present in the same nucleus, neither typically 

transcribes to its full potential, suggesting that there is some form of competition between the 

two reporters. We hypothesized that the reporters are competing for one or more molecular 

factors required for reporter transcription or visualization.  

 

3.3.2 Reporter competition is not an artifact of imaging system 

To assess whether reporter competition is the result of a biological phenomena, such as limiting 

levels of a TF, or an artifact of our reporter system, such as limiting levels of MCP-GFP, we 

measured reporter output in the presence of a second non-transcribing transgenic construct. We 

produced a version of our distal enhancer construct that lacks both a promoter and the MS2 

cassette. This construct therefore can bind the same regulatory TFs as the original distal 

construct but will not drive transcription. Therefore, it should not interact with promoter-bound 
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factors, such as RNA polymerase, or the MCP-GFP coat protein. If the observed competition is 

for MCP-GFP or is dependent on transcription, we expect to see no effect on reporter expression 

when the enhancer-only construct is present on the homologous chromosome. Conversely, if one 

or more regulatory factors binding the enhancer is limiting, we expect to see a decrease in 

reporter expression, similar to the lower expression of homozygous versus hemizygous embryos 

(Figure 3.1B).  

In the presence of the distal enhancer-only construct, the distal enhancer reporter drives 

11% lower levels of expression at its region of peak expression than in the hemizygous 

configuration (Figure 3.1C). While significant (t-test p-value = 0.02), this decrease is not as large 

as the one we see when a second transcribing distal enhancer reporter is present on the 

homologous chromosome. We suspect the smaller effect of the non-transcribing distal enhancer 

construct is due to differences in the exact composition and levels of factors that are recruited to 

transcriptionally active versus inactive enhancers20–22. To further rule out that the observed 

reporter competition is a result of limiting levels of the MCP-GFP reporter, we looked at the 

pattern of reporter competition across the length of the embryo. The MCP-GFP coat protein is 

expressed ubiquitously across the length of the embryo, while many of the TFs regulating the Kr 

enhancers are spatially patterned. If reporters are competing for limited levels of MCP-GFP, we 

would expect to see the highest rates of competition in the center of the embryo where 

expression driven by our reporters is highest (Figure S3.2B). Instead, with all of our reporter 

constructs we find that rates of competition are highest outside of the region of peak expression 

(Figure S3.22C-E), strongly suggesting that reporters are not competing for limited levels of 

MCP-GFP.  Instead, this pattern of competition rates combined with the finding that a non-
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transcribing enhancer construct can reduce reporter activity suggest that our reporters are 

competing for an endogenous factor required for transcription.  

3.3.3 Reporters are competing for transcription factors 

While reporter competition seems to be independent of the MS2 system or weakly dependent 

on  transcription itself, it does depend on the identity of the enhancer driving reporter expression 

(Figure 3.1B). The presence of a second identical reporter has a large effect on expression driven 

by the shadow construct and an even larger effect on the duplicated distal construct, while it has 

no significant effect on the duplicated proximal construct (Figure 3.1B). Since the Kr distal and 

proximal enhancers are regulated by separate sets of TFs17, we hypothesized that reporters may 

be competing for one or more of these TFs and that this may underlie the difference in 

competition levels between constructs. To test this hypothesis, we measured the effect of TF 

binding site arrays on the activity of the reporters. As the level of competition is not significantly 

different between the single and duplicated enhancer constructs, we focused on the two 

duplicated enhancers and the shadow pair, which are similar lengths and therefore have similar 

numbers of TF binding sites. We created DNA sequences consisting of six strong TF binding 

sites for each of the key activating TFs of the Kr enhancers and inserted them into the identical 

site on the homologous chromosome opposite one of the enhancer-MS2 reporters (Figure 3.2A). 

Critically, these TF binding site arrays lack promoter and MS2 sequences. We reasoned that 

these TF binding site arrays would function to sequester TF molecules without affecting factors 

specifically involved in transcript production (such as RNAP) or reporter visualization (i.e. 

MCP-GFP). Therefore, any changes in transcriptional output by the enhancer-MS2 reporter 

observed in the presence of a TF binding site array should stem from decreased levels of 

available TF, not higher demand for basal transcriptional machinery or MCP-GFP.  
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 Specifically, we created four binding site arrays corresponding to the four key TF 

activators of the shadow pair (Bicoid (Bcd), Hunchback (Hb), Stat92E, and Zelda (Zld); Figure 

3.2A), which each contain six binding sites for the respective TF across 236bp. As the shadow 

pair is the only construct known to be regulated by all four TFs, we first assessed the impact of 

these binding site arrays on the activity of the shadow pair reporter. We find that the binding site 

arrays for the Zld and Stat92E each reduce the activity of the shadow pair down to the levels 

seen in hemizygous embryos, while the Bcd and Hb binding site arrays do not have a significant 

effect on the shadow pair’s activity (Figure 3.2B). We suspect that the Stat92E and Zld binding 

arrays may have the largest effect on the shadow pair’s activity due to their essential roles in 

early gene activation23,24.  

As we observe a stark difference in the levels of competition in the duplicated distal 

versus duplicated proximal constructs, we asked whether the Bcd binding site array affects 

expression of either construct. Bcd is a key activator of the distal enhancer, but not the proximal 

enhancer (Figure 3.2A). In line with this, the duplicated distal reporter’s activity is reduced 37% 

compared to hemizygous levels at their regions of peak activity in the presence of the Bcd 

binding site array (Figure 3.2C), while the activity of the duplicated proximal enhancer is not 

significantly changed (Figure 3.2D). The large effect the Bcd array (from here on called 1xBcd) 

on the duplicated distal reporter is striking, as the TF binding site array is less than one-fifth the 

size of either Kr enhancer and contains only six, albeit strong, binding sites for Bcd. The 

specificity of the 1xBcd array in reducing expression only of the Bcd-activated duplicated distal 

reporter, but not of the duplicated proximal reporter, suggests that the effect we observe is 

specific to sequestering Bcd molecules, and not a general effect of inserted DNA sequences.  

3.3.4 Reporters show dosage-dependent response to increasing number of Bcd competitor sites 
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 As a whole, these experiments suggest that limiting levels of TFs play an important role 

in reporter competition. When comparing the effects of the 1xBcd array across constructs, the 

expression of the duplicated distal reporter is dramatically reduced in the presence of the array, 

while the expression of the duplicated proximal and shadow pair constructs are unaffected. 

Given that the shadow pair is regulated by more TF inputs beyond Bcd than is the duplicated 

distal reporter, we hypothesized that the shadow pair may be less sensitive to Bcd competition. 

To test this hypothesis, we attempted to sequester larger amounts of Bcd and measure the effect 

on the shadow pair’s activity.  We measured the activity of the shadow pair reporter in the 

presence of larger binding site arrays consisting of three (3xBcd; 3 x 6 copies = 18 Bcd binding 

sites) or six (6xBcd; 6 x 6 = 36 Bcd binding sites) copies of the original Bcd binding site array.  

In line with our hypothesis, we find that the shadow pair reporter activity decreases with 

increasing number of Bcd binding sites in the competitor array. Peak expression is reduced 1% in 

the presence of the 1xBcd array, 21% with the 3xBcd array, and 38% with the 6xBcd array 

relative to expression in hemizygotes (Figure 3.3A). We also measured expression of the 

duplicated distal enhancer with the larger Bcd binding arrays and find a non-linear effect of 

increasing the number of competitor Bcd binding sites (Figure S3.3A; Discussion). To assess 

whether the reduction in mRNA output in the presence of the Bcd array is specific to the Kr 

enhancers or a general phenomenon, we measured the expression driven by the hunchback (hb) 

P2 Bcd-responsive enhancer in the presence or absence of the 1xBcd and 6xBcd arrays. Similar 

to our findings with the Kr enhancers, the Bcd binding arrays decrease the expression of the hb 

P2 enhancer (Figure 3.3B). Relative to hemizygous levels, peak expression of the hb P2 

enhancer is decreased 44% with the 1xBcd array and 49% with the 6xBcd array. We suspect that 

the relatively modest effect of larger numbers of Bcd competitor sites on reporter activity stems 
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from an upper limit to the amount of Bcd molecules that can be effectively sequestered away 

from the enhancers at our binding site arrays along with the activating function of other TFs . 

Since TFs can control both the level and pattern of enhancer activity, we measured how 

the expression boundaries of our reporters changed in response to the Bcd binding arrays. Bcd is 

expressed in a gradient from the anterior to the posterior of the embryo. Even though Bcd is 

present at high levels in the anterior of the embryo, Kr enhancers do not drive expression there 

because of repression by Giant (Gt), Knirps (Kni), and Hb, which can act as both an activator 

and a repressor25–27. Therefore, we expected little effect on the anterior boundary by the Bcd 

binding site arrays. In contrast, since the posterior boundary is partially set by the decreasing 

levels of Bcd, if our Bcd arrays functionally reduce Bcd levels available for enhancer activation, 

we would expect to see a larger effect at the posterior boundary. We find that the posterior 

boundary of the shadow pair’s expression domain moves towards the anterior in response to 

increasing number of competitor Bcd binding sites (Figure 3.3C). Relative to the homozygous 

configuration, the posterior border of shadow pair expression shifts anteriorly 2.5% of embryo 

length in the presence of the 3xBcd array and 5% in the presence of the 6xBcd array. Similar to 

peak expression levels, the 1xBcd array does not change the expression boundaries of the 

shadow pair reporter. We see similar anterior shifts of the duplicated distal expression pattern 

with the Bcd binding arrays that qualitatively match the decrease in peak expression seen with 

each array (Figure S3.3B). We note that the anterior boundary shifts towards the posterior in the 

presence of the 3xBcd and 6x Bcd arrays, which we suspect stems from the balance of activity 

between Bcd and the repressive TFs in this region27–30. 

3.3.5 Competition occurs at another genomic site and with an endogenous gene  
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Based on our findings thus far suggesting that reporter competition stems from competition for 

Bcd and other TFs, we reasoned that this competition should occur at other genomic insertion 

sites and with endogenous genes reliant on the same TFs. To first assess whether the observed 

reporter competition occurs at other genomic insertion sites, we measured the expression of the 

reporters in homozygous versus hemizygous configurations when inserted into a different 

chromosome (chromosome 3). Similar to our findings at the chromosome 2 insertion site (Figure 

3.1), expression levels driven by the duplicated distal and shadow pair reporters are significantly 

lower in the presence of a second identical reporter (Figure 3.4A, B). On chromosome 3, 

expression in homozygous embryos is 82% and 75% of expression in hemizygous embryos for 

the duplicated distal and shadow pair reporters, respectively. With both of these reporters, the 

degree of competition is consistent between the two insertion sites, indicating that the observed 

competition occurs at different genomic locations (Figure 3.4 A and B insets).  

 Based on previous work in the mouse, we suspected that the reporter-induced 

competition would be limited to endogenous genes that are a short linear distance from the 

reporter insertion site13. To assess whether this is true, we measured the expression of three 

genes likely to be regulated by Bcd at varying linear distances from the chromosome 2 insertion 

site. We measured the expression of Piezo (22kb from insertion site), Mcr (58kb from insertion 

site), and Btk29A (160kb from insertion site) via qPCR in embryos with or without two copies of 

the duplicated distal transgene. All three of these genes are predicted to be regulated by Bcd, 

based on both previously measured expression patterns and Bcd binding near these genes in the 

early embryo31,32 (Figure S3.4). In transgenic embryos, expression of the gene closest to the 

insertion site, Piezo, is significantly reduced to 60% of the levels seen in embryos of the same 

genetic background but lacking the transgene (Figure 3.4B). The expression levels of Mcr and 
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Btk29A, which are further removed from the transgenic insertion site, are not significantly 

changed in transgenic embryos (Figure 3.4B). This potential distance-dependent effect of our 

transgene on endogenous gene expression is consistent with our finding that, in homozygous 

reporter embryos, there is more competition in nuclei in which the MS2 spots are physically 

closer together (Figure S3.5B). 

3.3.6 A hub-based model of TF-enhancer interactions predicts TF competition 

We were initially surprised to find that a reporter construct, with a length less than 0.001% of the 

genome, can have measurable effects on the expression of both other reporters and a nearby 

endogenous gene. Even more surprising is our finding that Bcd binding site arrays, which do not 

themselves drive any expression and have as few as six binding sites, also significantly reduce 

the expression of our Bcd-regulated enhancer reporters (Figure 3.2 & 3.3). This suggests that 

competition for Bcd can be induced by the addition of a relatively small number of binding sites, 

despite the fact that Bcd copy numbers vary between approximately 1500 and 3000 molecules 

per nucleus in the region of Kr expression10,33. To better understand how the addition of a small 

sequence could induce competition for TFs, we developed a simple thermodynamic model of our 

system. The goal of our modeling effort is not to fit parameters such that the model precisely 

recapitulates our experimental data, but rather to see if our experimental observations are 

sensible by generating ballpark estimates of molecular competition using models that only rely 

on measured biophysical parameters. 

Our model predicts the probability of a TF being bound to a target site, such as one of the 

binding sites that exist in an enhancer (Figure 3.5). For simplicity, we assume that TF binding at 

the target site is proportional to enhancer activity34,35. In reality, enhancer activity depends on the 

combined occupancy of many TF binding sites36. The simplifying assumption that enhancer 
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activity is proportional to binding site occupancy allows us to avoid the need to test multiple 

models with different components, such as cooperative TF binding or activation behavior. In 

addition to the target site, TF molecules can bind to specific or non-specific competitor sites. 

Since most TFs have sequence-independent affinity for DNA37, the number of non-specific 

binding sites, N, is set to 1x108, roughly the size of the Drosophila melanogaster genome. The 

number of specific competitor sites, C, is varied. To maintain the simplicity of the model, the 

binding energy of specific competitor sites, Es, is equal to the binding energy of the target site, 

while the binding energy of all non-specific sites is represented as Ens. Since the specific binding 

energy is representing that of multiple binding sites, which may differ in their affinities, we vary 

the difference between specific and non-specific binding energies. Lastly, to allow for 

comparisons with our experimental data and to measure the effect of TF levels on binding, we 

vary the levels of our input TF T as a function of embryo length, l, in accordance with the 

measured Bcd gradient33.  In this way, we can look at how the probability of TF binding to a 

single target site, p(bound; T(l)),  changes as a function of number of specific competitor sites, 

binding strength relative to non-specific binding, and TF abundance. 

𝑝(𝑏𝑜𝑢𝑛𝑑; 𝑇(𝑙))

=
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(1) 

As we vary the parameters, we find that p(bound; T(l)) changes in a qualitatively intuitive 

way. p(bound; T(l)) decreases as a function of increasing competitor sites, decreasing difference 

in specific and non-specific binding strength, and decreasing TF levels (Figure S3.6). To test the 

accuracy of our model, we compared our experimental measurements of expression changes as a 
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function of additional Bcd binding sites to predicted changes in p(bound; T(l)) as a function of 

added competitor sites. In our model, we assume there are 2000 specific competitor sites, based 

on experimental measurements of genome-wide Bcd binding in nc14 embryos32, and then add 

additional competitor sites to mimic the addition of a reporter of Bcd binding site array. Our 

findings are similar even if we do not assume these “background” sites exist (Figure S3.6). We 

recognize that the relationship between TF binding at an enhancer and gene transcription is 

complex38–40 and do not expect our predicted p(bound; T(l)) values to exactly predict gene 

expression levels. Still, gene expression is dependent on TF binding41,42 and so our p(bound; 

T(l)) values provide useful ballpark estimates of how gene expression is expected to change as 

new competitor sites are introduced. 

  We compared our model predictions to the experimentally measured changes in activity 

of the hbP2 reporter. The hbP2 enhancer is a well-studied, Bcd-responsive enhancer and 

therefore makes a useful point of comparison for our model of Bcd binding43–45. For simplicity, 

we compared our experimental data and model predictions at one position in the embryo, 27% 

egg length, where the hbP2 enhancer drives peak levels of expression in homozygous embryos. 

This means we hold l, and consequently T, constant and therefore refer to our model output as 

p(bound) from here on. To observe the effect specifically of introducing new specific competitor 

binding sites, we also used experimental measurements to estimate the difference between Es 

and Ens and held this constant (see Methods). In our experimental data, we see a 28% reduction 

in activity driven by the hbP2 reporter when a second reporter is present on the homologous 

chromosome. In contrast, our model predicts a 0.0003% decrease in p(bound) from the addition 

of 6 specific competitor sites, which is the number of known Bcd sites within the hbP2 

reporter46. With this model, over 6,000 competitor sites are needed to get a 28% reduction in 
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p(bound) (Figure 3.5C). Similarly, while we observe a 49% decrease in hbP2 expression in the 

presence of the 6xBcd array, which contains 36 Bcd binding sites, our model predicts only a 

0.002% decrease in p(bound) with this number of added competitor sites. Based on model 

predictions, 14,100 specific competitor sites need to be added to achieve a 49% reduction in 

p(bound). Thus, a simple thermodynamic model of molecular competition produces estimates a 

couple of orders of magnitude different from experimental measurements. 

We suspected that the large discrepancy between our measured decreases in reporter 

activity and our model’s predictions of decrease in p(bound) are partially due to the model’s 

assumption that any Bcd molecule in the nucleus can bind the target site. Growing evidence 

indicates that TFs and other pieces of the transcriptional machinery are not distributed evenly 

throughout the nucleus, but instead tend to cluster in regions of high density, called hubs, 

separated by low density regions18,41,47–49. This non-homogenous distribution seems functional, 

as transcription itself is also associated with these hubs18,47,50. Compared to the whole nucleus, 

hubs have a higher concentration of TFs and a lower number of specific and non-specific binding 

sites. We predicted that the addition of a small number of binding sites, similar to the numbers 

found in our reporter constructs, may have a sizable impact on p(bound) in the context of 

individual TF hubs.  

To test this, we modified our previous model (genome model) to look at the probability of 

TF binding at the same target site, assuming all TF binding happens within hubs (hub model). In 

our hub model, we divide the nucleus into 1000 hub-sized regions, based on the size of 

Drosophila embryonic nuclei and previous estimates of the distance between enhancers 

associated with the same TF hub18 (see Methods). Based on the measured distribution of 

distances between transcriptional spots in homozygous embryos, it is likely that reporters and TF 
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binding site arrays transiently co-localize to the same hub-sized region (Figure S3.7). Within 

each region, we assume there are 100,000 non-specific binding sites, which is the number of 

non-specific sites in the genome model (1x108) divided by 1000. The number of specific 

competitor sites is varied from 0 to 100. Based on previous measurements ,the number of Bcd 

TFs present in a hub, Thub, is held constant at 20 molecules per hub, but the number of total Bcd 

molecules per nucleus, T(l), follows the Bcd gradient along the embryo41. Regions that are not a 

hub are assumed to have 0 Bcd molecules. Consequently, the p(bound) value in our hub model is 

found by multiplying the p(bound) value calculated using the same formula as the genome model 

(equation 1) by the probability that a given region is a TF hub (p(hub; T(l)); equation 2). As in 

our genome model, we varied the difference between specific and non-specific binding energies. 

𝑝(ℎ𝑢𝑏;  𝑇(𝑙)) =  

𝑇(𝑙)
𝑇ℎ𝑢𝑏

1000
 

(2) 

In comparison to the genome model, the hub model shows far better agreement with our 

experimental data. As with the genome model, we assume that some specific competitor sites 

already exist and ask how p(bound) changes as additional specific competitor sites are added. In 

the hub model, we assume the 2000 specific competitor sites of the genome model are evenly 

distributed throughout the genome and consequently two specific competitor sites are present in 

each sub-region of the nucleus. We again focus on one position in the embryo, 27% egg length, 

and therefore hold T(l) constant. Experimentally, we see a 28% decrease in the activity of the 

hbP2 reporter with the addition of a second hbP2 reporter. The hub model predicts a 5% decrease 

in p(bound) from the addition of the 6 Bcd binding sites in the hbP2 reporter (Figure 3.5D). 

Unlike the genome model, which requires over 6000 competitor sites for a 28% reduction in 



 110  
 

p(bound), this magnitude reduction is achieved by 22 competitor sites in the hub model. With 36 

competitor sites, the number of Bcd binding sites in the 6xBcd array, the hub model predicts a 

46% decrease in p(bound) compared to the 49% decrease in hbP2 reporter expression we 

measure in the presence of the 6xBcd array.  

It is notable the hub model better predicts the effect of a 6xBcd array than the second 

hbP2 reporter. While there are many simplifying assumptions in the model, for example, 

assuming p(bound) is proportional to expression output, there also is a key difference between 

the two experimental measurements. The 6xBcd array lacks a promoter, while the hbP2 reporter 

actively drives transcription. The model assumes that the only effect of adding the hbP2 reporter 

is the addition of competitor Bcd binding sites, but this reporter may also siphon away other key 

pieces of transcriptional machinery, which may explain why the measured effect of adding the 

hbP2 reporter is larger than predicted by either model. 

3.4 Discussion    

Since the discovery of enhancers 40 years ago51,52, transgenic reporters have been invaluable 

tools to study the principles governing cis-regulatory regions. With a few exceptions, it has 

largely been assumed that transgenic reporters do not meaningfully affect the expression of other 

genes. Here we challenge this assumption and investigate the observed competition between 

transgenic transcriptional reporters in developing Drosophila embryos. Using reporters 

controlled by different configurations of the Kruppel shadow enhancers, we show that expression 

of a single reporter is decreased in the presence of a second identical reporter. We further show 

that this effect is not limited to transgenic reporters, but that the expression of a nearby 

endogenous gene is also decreased in transgenic embryos. Using non-transcribing arrays of TF 

binding sites, we find evidence that decreased reporter expression is due in part to decreased 
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availability of key activating TFs of the Kr enhancers. Focusing on enhancer competition for the 

TF Bcd, we show that competitor Bcd binding arrays specifically affect the expression of Bcd-

regulated enhancers, have a dosage-dependent effect on these enhancers, and shrink the width of 

the expression pattern of the enhancers. By developing a simple thermodynamic model, we 

predicted that the introduction of tens of additional Bcd binding sites can appreciably decrease 

gene expression, but only when TF binding is assumed to be limited to nuclear subregions.      

3.4.1 Transgenic reporters can affect the expression of other reporters and an endogenous gene  

 Due to the widespread use of transgenic reporters, we were surprised to find that our 

small reporters reduce the expression of not only other reporters, but a nearby endogenous gene. 

A deeper search of literature revealed that Laboulaye, et al., also found a distance-dependent 

decrease in endogenous gene expression in mice that is similar to our own results13. While 

further systematic investigation is needed, these similar results in these distantly related 

organisms suggest that decreased endogenous gene expression may be a common consequence 

of transgenic reporters. 

At first glance, our findings are also reminiscent of the transgene silencing previously 

reported in Drosophila53–55. Pioneering studies found that flies containing multiple copies of a 

transgene showed reduced expression of the transgene as well as the corresponding endogenous 

gene56,57. This silencing was shown to depend on Polycomb-mediated repression in the case of 

transgenes, and post-transcriptional RNAi mechanisms in the case of the endogenous gene55. 

While our findings share some similarities with transgene silencing, and may well rely on related 

mechanisms, numerous differences lead us to believe we are observing a distinct phenomenon. 

Unlike these previous studies, our transgenic flies, which contain a mini-white marker, do not 

show lighter eye color in homozygotes compared to hemizygotes (Figure S3.8). This suggests 
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that overall expression from our transgenic insertion sites is not being ubiquitously repressed. If 

our observations were only the consequence of silencing mechanisms, triggered by increased 

amounts of transgenic DNA, we would expect to see larger reporter competition effects with our 

duplicated enhancer constructs compared to the single enhancer versions. Instead, for both the 

distal and proximal enhancers, we see a trend of larger decreases in homozygous expression 

levels compared to hemizygous expression levels with the single enhancer constructs (Figure 

3.1B). Further, unlike the findings of Pal-Bhadra, our transgenic reporter decreases expression of 

an endogenous gene with which it does not share sequence homology55.        

3.4.2 Reporters and non-transcribed DNA sequences can induce competition for TFs 

 In addition to the studies described above, which describe how a transgene can alter the 

expression of genes, there are several studies that describe how the presence of non-transcribing 

pieces of DNA can alter expression. Work in flies and mouse cells showed that highly repetitive 

genomic sequences can alter gene expression, likely by binding and sequestering TF molecules 

away from their target genes58,59. In yeast, repetitive sequences of “decoy” tetO TF binding sites 

can change the relationship between tetO levels and the expression of a gene regulated by tetO60, 

and individual competitor binding sites in bacteria also have a similar effect61. These studies 

underscore the regulatory importance of repetitive non-coding DNA sequences, which make up 

the majority of many genomes, by titrating available TF levels.   

The repetitive sequences investigated in these studies are much longer (6Mb of major 

satellite DNA in mice, 7Mb of satellite V DNA in flies) than our transgenic constructs, which all 

contain less than 5kb of regulatory sequence and 10s of TF binding sites59,62. The large effect our 

transgenic constructs have on gene expression levels are therefore initially surprising. It is easier 

to imagine how very large, repetitive DNA sequences could sequester meaningful amounts of 
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TFs than small sequences containing as few as six TF binding sites. In particular, this 

competition is surprising because we observe it even in the peak regions of the reporter 

expression patterns, where we expect activating TF levels to be high. For example, there are 

250,000 molecules of the TF Zld per nucleus in the embryo11,63, yet we see evidence of 

competition by introducing only six new strong Zld binding sites. 

We suspect that the effect of our reporters and binding site arrays on expression levels, as 

well as the effect of large repetitive sequences, partially stems from the non-uniform distribution 

of TFs in the nucleus. Although heterogeneity in the nucleus has been long observed with 

DNA64,65, recent studies revealed that TFs and other pieces of the transcriptional machinery are 

also distributed unevenly throughout the nucleus18,41,47–49. There are several potential 

consequences of the organization of TFs into hubs. First, if our competitive binding arrays end 

up outside of a so-called TF “hub” with the enhancer reporter (or nearby endogenous genes), TF 

levels functionally available to the enhancer may be low enough to disrupt reporter activity. 

Second, if our binding arrays and reporters are found in the same hub, they may be competing 

for a fairly small pool of TFs. Previous measurements suggest there are roughly 20 Bcd 

molecules per hub66. Lastly, the presence of a binding array may affect the properties of the hubs 

themselves. Another study showed that the deletion of TF-recruiting enhancers can decrease TF 

hub size and therefore lower gene expression18. In addition, Zld plays a key role in the formation 

of Bcd hubs41, suggesting that our Zld binding site arrays may sequester both Zld and Bcd 

molecules.   

Several aspects of our data support the hypothesis of local competition. First, reporters 

that spend more time in close physical proximity in the nucleus compete more than reporters that 

are further apart (Figure S3.5). Similarly, the endogenous gene Piezo, whose expression is 
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decreased in the presence of the duplicated distal reporter, is within the same topologically 

associating domain (TAD) as the insertion site of the transgene during nc1467 (Figure S3.9). This 

suggests that Piezo and the reporter likely inhabit the same nuclear subregion and have access to 

the same local pool of TFs. 

3.4.3 Thermodynamic model of TF binding implicates TF hubs in competition 

In line with our experimental data, our modeling results suggest that local competition for 

TFs is consistent with the observed decrease in expression levels. To rationalize how the addition 

of a small number of competitor TF binding sites could meaningfully decrease expression levels, 

we developed two simple thermodynamic models of TF binding. Our hub model, which assumes 

all TF binding is restricted to nuclear subregions matches our experimental data more closely 

than the genome model, which assumes that all TF molecules have access to the whole genome. 

Our findings suggest an unexplored consequence of TF hubs. Previous studies have shown that 

TF hubs help to increase local concentration of TFs to increase gene expression18,50. Here, we 

show the flip side of this coin -- the non-uniform distribution of TFs can also induce competition 

among binding sites. We note that we have used only strong binding sites in our competitor 

arrays and plan to test the effect of binding arrays consisting of non-optimal TF binding sites, as 

enhancers containing sub-optimal binding sites have been shown to be important for establishing 

TF hubs18. There may be a balance between sequestering TFs, as we see here, and recruiting TFs 

to a local region that could depend on the affinity of the binding sites present. 

Our goal in developing a simple model of our system was to generate ballpark predictions 

about the behavior of the system, using experimentally measured parameters and minimal 

assumptions. While our hub model better matches our experimental findings than the genome 

model, we recognize that it is a simplification of reality and as such cannot fully describe our 
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system. For example, we assume that existing specific competitor sites are evenly distributed 

throughout the genome, but in reality, chromatin accessibility and the clustering of TF binding 

sites in cis-regulatory regions alters the distribution of available binding sites63,68. The “true” 

number of specific competitor sites in any given sub-nuclear region will vary and consequently 

p(bound) of a given target site will depend on the surrounding sequences in the same region 

(Figure S3.10). With these simplifying assumptions, come an incomplete ability to explain some 

experimental data. We find that expression levels driven by the duplicated distal reporter 

significantly decrease in the presence of the smallest and largest of our Bcd binding site arrays, 

but, unexpectedly, are not affected by the presence of the intermediate sized array (Figure S3.3). 

We do not fully understand this observation, but suspect that it has to do with the exact 

recruitment of TFs and other molecular factors mediated by this combination of DNA 

sequences.  

3.4.4 Implications for transgenic reporters and underlying biology 

 Our work adds to the evidence that transgenic reporters can have measurable effects on 

endogenous gene expression13,56 and also builds on our understanding of the mechanisms behind 

this phenomenon. We note that our transgenic fly lines develop without any gross phenotypic 

defects in ideal laboratory conditions, making it tempting to assume that any effects of transgenic 

reporters are negligible. While much about the mechanisms and effects of reporters on 

endogenous gene expression remains to be discovered, our findings provide some practical 

lessons for using transgenic reporters. First, investigators should use caution in interpreting 

changes in expression levels or patterns when comparing assays using one reporter to those using 

multiple reporters simultaneously. We find clear evidence that our reporters compete with one 

another when present in the same nucleus and as this seems to be mediated by competition for 
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TFs, we suspect this finding is true beyond our specific reporters and system. Additionally, 

potential effects of reporters on nearby endogenous gene expression should be considered in 

study design and data interpretation.  

Beyond the implications for the use of transgenic reporters, our findings suggest that the 

distribution of TF binding sites, both in the genome and in 3D space, is a potential tuning 

mechanism for dose-response relationships between TF levels and target genes. Previous studies 

in bacteria and yeast have shown that competitor TF binding sites can modulate the dose-

response relationship of TF levels and gene expression, and that this modulation depends on the 

relative affinity of competitor versus gene-regulating TF binding sites60,61. This effect may 

generate an unappreciated selection pressure to either retain or eliminate TF binding sites that are 

not directly regulating a specific target gene. The observations of TF sequestration across a wide 

range of organisms suggest that this phenomenon is conserved and likely plays a functional role 

in regulating gene expression. 
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3.5 Methods 

3.5.1 Generation of transgenic fly lines 

Transgenic fly lines containing an enhancer-MS2 reporter were generated by phiC31-mediated 

insertion into the second or third chromosome, as described in Waymack, et al., 202015. Unless 

otherwise indicated, all reporter constructs and TF binding site arrays were integrated into the 

same site on the second chromosome via phiC31-mediated integration. These constructs were 

injected into y[1] w[1118]; PBac{y[+]-attP-3B}VK00002 (BDRC stock #9723) embryos by 

BestGene Inc (Chino Hills, CA). For the reporter constructs inserted into chromosome 3, 

plasmids were injected into y[1] w[1118]; PBac{y[+]-attP-3B}VK00033 (BDRC stock #9750) 

embryos by BestGene Inc (Chino Hills, CA). The Kruppel enhancer reporters contained a single, 

duplicated, or shadow enhancer pair and the Kruppel promoter upstream of 24 MS2 repeats and a 

yellow reporter gene cloned into the pBphi vector16. These are the same enhancer-MS2 reporters 

as used and described in Waymack, et al., 2020. The hunchback P2 enhancer reporter is that used 

in Garcia, et al., 2013 and consists of the hunchback P2 enhancer and P2 promoter upstream of 

24 MS2 repeats and a lacZ reporter16. Exact genomic sequences used in each reporter construct 

are given in Supplementary file 1. 
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  Hemizygous embryos were generated by crossing male flies homozygous for an enhancer-MS2 

reporter to females expressing RFP-tagged histones and MCP-GFP16. Homozygous embryos 

were generated by crossing virgin females of the F1 hemizygous offspring just described with 

males homozygous for the same enhancer-MS2 reporter. Embryos with one copy of an enhancer 

reporter and one copy of a TF binding site array were generated by crossing the virgin female 

hemizygous offspring (i.e. containing one enhancer-MS2 reporter allele) with males homozygous 

for the corresponding TF binding site array.   

3.5.2 Generation of TF binding site arrays 

To generate our competitor binding site arrays for the four different TFs investigated, we started 

with the sequence of the hb P2 enhancer, which is well known to be Bcd responsive and contains 

six Bcd binding sites43–45. This 236bp sequence was our 1xBcd array and the starting point for 

our other binding site arrays. To generate the Hb, Zld, and Stat92E arrays used we modified the 

six Bcd binding sites of the hb P2 enhancer to be the consensus motif for the corresponding TF 

(while retaining the same 236bp total length of the array) and had these sequences synthesized 

by Integrated DNA Technologies Inc (San Diego, CA). Previously defined consensus motifs 

were used for Zld69, Hb30, and Stat92E70. To generate the 3x and 6xBcd arrays we performed 

Golden Gate assembly to ligate three or six copies of the 1xBcd array together with 10bp random 

sequences between each repeat, to avoid potential repeat removal during transformations. All of 

the described TF binding site arrays were inserted into the same plasmid backbone, which was a 

modified version of the pBphi vector used for our enhancer-MS2 reporters, which lacks any 

enhancers, promoters, or MS2 sequence. We generated this vector by removing the Kr distal 

enhancer, Kr promoter, MS2 cassette, yellow sequence, and termination sequence from our distal 

MS2 reporter through digestion with NotI and XbaI. We then used Gibson assembly to ligate in 
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the appropriate TF binding site array to this backbone. Sequences for the TF binding site arrays 

are provided in Supplemental File 1.     

3.5.3 Embryo preparation and image acquisition 

Living embryos were collected and dechorinated before being mounted onto a permeable 

membrane in halocarbon 27 oil and placed under a glass coverslip as in Garcia, et al., 2013. 

Individual embryos were then imaged as described in Waymack, et al., on a Nikon A1R point 

scanning confocal microscope using a 60X/1.4 N.A. oil immersion objective and laser settings of 

40uW for 488nm and 35uW for 561nm15. To track transcription, 21 slice Z-stacks, at 0.5um 

steps, were taken throughout the length of nc14 at roughly 30s intervals. To identify the imaged 

position in the embryo, the whole embryo was imaged after nc14 prior to gastrulation at 20X 

using the same laser power settings. This whole embryo image was used to assign each 

transcription spot into one of 42 bins across the anterior-posterior (AP) axis of the embryo. The 

first bin corresponds to the anterior end of the embryo.   

3.5.4 Measurement of transcriptional reporter activity 

Tracking of nuclei and MCP-GFP bound MS2 transcriptional spots was done using the image 

analysis Matlab pipeline described in Garcia et al., 2013, which can be accessed at the Garcia lab 

Github (https://github.com/GarciaLab/mRNADynamics). Calling of transcriptional bursts to use 

for analysis was done as in Waymack et al., 2020. In short, transcriptional traces captured during 

nc14 consisting of at least three points were used for analysis. To measure total mRNA produced 

by all of our reporter configurations, we integrated the area under the curve of the transcriptional 

spot’s fluorescence across the time of nc14 (Figure S3.1).    
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For every tracked spot of transcription, background fluorescence at each time point is estimated 

as the offset of fitting the 2D maximum projection of the Z-stack image centered around the 

transcriptional spot to a gaussian curve, using Matlab lsqnonlin. This background estimate is 

subtracted from the raw spot fluorescence intensity. The resulting fluorescence traces across the 

time of nc14 are then subject to smoothing by the LOWESS method with a span of 10%. The 

smoothed traces were used to measure transcriptional parameters and noise. Traces consisting of 

fewer than three time frames were removed from calculations. The area under each smoothed 

transcriptional trace is integrated using the Matlab trapz function, which gives the total 

integrated fluorescence value for that transcriptional spot. This integrated fluorescence is 

proportional to the number of transcripts produced by an enhancer reporter16,71. We group all 

transcriptional spots of a given reporter configuration by AP bin (position in the embryo) and 

calculate the average total integrated fluorescence value in each AP bin. For each reporter 

configuration we identify the AP bin with the highest average integrated fluorescence value as 

the region of peak expression. In the text, unless otherwise indicated, the integrated fluorescence 

or peak expression values correspond to the average integrated fluorescence value at this AP bin 

(Figure S3.1).  

3.5.5 qRT-PCR to measure expression of endogenous genes in varying genetic backgrounds 

Flies were allowed to lay eggs on molasses plates for 2.5 hours, so that most embryos collected 

were in nc14. Flies were either homozygous for the duplicated distal reporter on chromosome 2 

or of the same genetic background (BDSC #9723) but did not have the transgene. The embryos 

collected from each plate were pooled and total RNA was extracted and purified using TRIzol 

(Thermo Fisher Scientific) and the Direct-zol RNA Miniprep kit (Zymo Research). cDNA was 

generated using SuperScript III RT Kit (Thermo Fisher Scientific). qPCR amplification was then 
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done using the TaqMan Gene Expression Master Mix (Thermo Fisher Scientific). The data for 

each group, transgenic or non-transgenic, is from three separate biological replicates (i.e. the 

colored circles in Figure 3.4C are biological replicates), each done in technical triplicates. 

Relative RNA levels of each measured gene was calculated using the 2-ddC(t) method, using RpII140 

as the reference gene. The TaqMan FAM probes used for each gene were DM01803576_g1 for 

Piezo, Dm01825813_g1 for Mcr, Dm01803642_g1 for Btk29A, and DM02134593_g1 for 

RpII140   

3.5.6 Description of the genome model of TF binding  

We developed a simple thermodynamic model that looks at the probability of a TF molecule 

being bound at a single target site. For simplicity, we assume all TF molecules are bound either 

specifically or non-specifically. The probability of TF being bound at the target site, p(bound), is 

then determined by the number of TF molecules, T(l), the number of non-specific competitor 

binding sites, N, the number of specific competitor sites, C, and the difference in specific versus 

non-specific binding energies, Es and Ens respectively. The number of TF molecules, T(l), follows 

the Bcd gradient33 and is determined by position in the embryo, l, with a maximum value of 

20,000 at the anterior tip of the modeled embryo10. For ease of comparison with our 

experimental data, we only consider binding probability at one position (l = 27% egg length) and 

thereby hold T constant, unless otherwise indicated. We hold the number of non-specific binding 

sites, N, constant at 1x108. Using statistical mechanics, we first enumerated the possible states of 

our system and their associated Boltzman weights34. In these states, x indicates the number of 

TFs that are bound at specific competitor sites.  
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TF binding configuration State Statistical weight 

Non-specific binding only 𝑁𝑇

𝑇!
 

𝑒−𝑇𝐸𝑛𝑠  

Competitor sites and non-specific binding 

∑

𝐶

𝑥=0

𝑁𝑇−𝑥

(𝑇 − 𝑥)!

×
𝐶!

𝑥! (𝐶 − 𝑥)!
 

𝑒−[(𝑇−𝑥)𝐸𝑛𝑠+𝑥𝐸𝑠] 

Target site, competitor sites and non-

specific binding 

∑𝐶
𝑥=0

𝑁𝑇−1−𝑥

(𝑇−1−𝑥)!
×

𝐶!

𝑥!(𝐶−𝑥)!
    𝑒

−[(𝑇−1−𝑥)𝐸𝑛𝑠+𝑥𝐸𝑠+𝐸𝑠] 

 

With all of the possible states of the system and the associated statistical weights, we can 

calculate p(bound) by dividing the statistical weight of the state with TF bound at the target site 

by the combined statistical weights of all possible states: 

 𝑝(𝑏𝑜𝑢𝑛𝑑) =
∑𝑐

𝑥=0
𝑁𝑇−1−𝑥

(𝑇−1−𝑥)!
×

𝐶!

𝑥!(𝐶−𝑥)!
×𝑒−[(𝑇−𝑥)×𝐸𝑛𝑠+(1+𝑥𝐸𝑠)]

∑𝑐
𝑥=0

𝑁𝑇−1−𝑥

(𝑇−1−𝑥)!
×

𝐶!

𝑥!(𝐶−𝑥)!
×𝑒−[(𝑇−𝑥)×𝐸𝑛𝑠+(1+𝑥𝐸𝑠)]+∑𝑐

𝑥=0
𝑁𝑇−𝑥

(𝑇−𝑥)!
×

𝐶!

𝑥!(𝐶−𝑥)!
×𝑒−[(𝑇−𝑥)×𝐸𝑛𝑠+𝑥𝐸𝑠+ 

𝑁𝑇

𝑇!
×𝑒−𝑇𝐸𝑛𝑠  

 

           (1) 

With this equation we can calculate the probability of a TF molecule being bound at the target 

site for a given number of TF molecules, specific competitor sites, and difference in binding 

affinity at specific vs non-specific sites. In the main text (Figure 3.5), we assume 2,000 

background competitor sites already exist and span a range of 0 to 100,000 added specific 

competitor sites. To facilitate comparison with our experimental data, we looked at binding 

probability at one position in the embryo by holding l and consequently T constant. We focus on 
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the effect of adding specific competitor binding sites and as such hold the difference between Ens 

and Es , and T(l) constant. Ens is held at 0kBT and Es is held at -10kBT, based on previously 

measured differences in specific vs non-specific DNA binding34,72. Specifically, the formula 

∆𝐸 = 𝑘𝐵𝑇𝑙𝑛(
𝑘𝑠

𝑘𝑛𝑠
) was applied to the measured binding affinities, from Jung, et al., of TFs to 

their consensus sequence and highly mutated consensus sequences72. T(l) is held at 5468, 

corresponding to 27% egg length in the modeled embryo. In Supplemental Figure 3.6, we 

explore how p(bound) changes as a function of our other parameters (i.e. T(l), the difference 

between Ens and Es, or the number of background specific competitor sites).  

3.5.7 Description of the hub model of TF binding 

Calculation of p(bound) in the hub model is similar to the genome model but assumes all TF 

molecules are restricted to “hub” regions (sub-regions of the nucleus containing a high 

concentration of TFs) and therefore takes into account the probability that the nuclear sub-region 

containing the target site is a TF hub. In the hub model, each nucleus is divided into 1000 equal-

sized regions with a radius of 256nm. This estimate for the size of nuclear regions was based on 

the average distance between interacting loci found by Tsai, et al.18, of approximately 360nm, the 

approximate volume of Drosophila embryonic nuclei of 70um3, and an estimation of the amount 

of DNA contained within a TF hub of the size seen in Tsai, et al. The nuclear volume of 70um3 

was reached by estimating the nucleus to be a sphere and using the formula V = 43πr3 with r = 

2.5um (estimated from imaging data).  

As the nucleus is divided into 1000 hub regions, we set the number of non-specific binding sites, 

N, to 100,000, which is 1/1000th of the value in the genome model (108). For simplicity, we 

assume that DNA is distributed uniformly in the nucleus and as such the amount of DNA in each 
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region is the same, which also allows us to have the same number of total non-specific binding 

sites per nucleus as in the genome model (105 x 1,000 hubs = 108). To maintain the same number 

of total specific competitor sites as the genome model, we assume 2 background specific 

competitor sites per region and vary the number of added specific competitor sites per region 

from 0 to 100. These values were reached by dividing the number of background or added 

specific competitor sites from the genome model by 1,000 (2,000 / 1,000 = 2 and 100,000 / 1,000 

= 100). Based on the observation of Mir, et al.,66 that the number of Bcd molecules per hub did 

not change along the Bcd gradient, we hold T constant at 20 if a region is a TF hub or 0 if it is 

not a TF hub. To account for this additional condition of whether the target site is within a TF 

hub or not, we calculate the probability that the region containing the target site is a TF hub: 

𝑝(ℎ𝑢𝑏) =  

𝑇(𝑙)

𝑇ℎ𝑢𝑏

1000
                      

(2)                    

Where Thub is 20 TF molecules found in a hub and T(l) is the total number of TFs in the nucleus, 

as determined by the Bcd gradient33. To obtain the final p(bound) value from the hub model the 

p(hub) value of equation 2 is multiplied by the value obtained using the above parameters in 

equation 1.  

3.5.8 Plotting p(bound) as a function of added specific competitor sites 

To best simulate our experimental system, where we add transgenic constructs containing Bcd 

binding sites into a genome that already contains Bcd binding sites, we focused on how p(bound) 

changes as a function of added specific competitor sites. We therefore hold l, and consequently 

nuclear TF levels T, constant. Similarly, we hold constant the difference in binding energy 
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between specific and non-specific sites by setting Es to -10 and Ens to 0. To account for specific 

Bcd binding sites that already exist in the Drosophila genome, we set the p(bound) value when a 

set number of “background” competitor sites exist as our reference maximum p(bound) value. 

We estimated the total number of true Bcd binding sites in nc14 embryos to be 2,000 based on 

the number of genome-wide Bcd ChIP-seq peaks reported by Hannon, et al32. Therefore for the 

genome model, the graph shown in Figure 3.5B depicts how p(bound) changes as a function of 

additional specific competitor sites beyond 2,000. For the hub model, we assume that these 2,000 

Bcd binding sites are equally distributed throughout the genome and consequently there are two 

specific Bcd binding sites per nuclear region (2,000 / 1,000 = 2) . The graph in Figure 3.5D 

shows how p(bound) changes as a function of additional specific competitor sites per nuclear 

region beyond the baseline two.     

3.5.9 Statistical Methods 

To determine statistical differences in levels of competition (Figures 3.1 and 3.4) and expression 

boundaries (Figure 3.3 and Supplemental Figure 3) between reporters we performed 

bootstrapping to estimate 95% confidence intervals. To do so, we randomly sampled with 

replacement the integrated fluorescence values of all of the transcriptional spots tracked in the 

AP bin of peak expression for both the hemizygous and homozygous configurations of the 

respective enhancer reporters. We averaged this value for the hemizygous configuration and for 

the homozygous configuration and then divided this average homozygous expression by the 

hemizygous expression to get our competition value (i.e. % hemizygous expression). This was 

done 1,000 times and each time the difference between the competition value found using the 

original real data set and that found using the randomly resampled data was calculated. We then 
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took the top and bottom 2.5 percentiles of these differences as our upper and lower error bounds, 

respectively.  

We estimated the error in expression boundaries in a similar fashion. We again perform 1,000 

rounds of bootstrapping by randomly sampling, with replacement, the integrated fluorescence 

values from rows of transcriptional spots along the AP embryo axis for a given enhancer 

construct. Each column corresponds to a single AP bin in the embryo. We randomly sampled 

rows equal to the total number of rows in the original data set and using these found the anterior-

most and posterior-most AP bins that produce greater than or equal to 50% of the maximum 

expression measured in the hemizygous configuration of that reporter. Empirical 95% confidence 

intervals were calculated as above by finding the 2.5th and 97.5th percentiles of the distribution 

of differences between the expression boundaries found using the original data and those found 

using each iteration of resampled data.  

To determine whether the distal enhancer reporter produces significantly lower expression levels 

in the presence of a non-transcribing distal enhancer (Figure 3.1C) we performed a t-test 

comparing the integrated fluorescence values recorded in the region of peak expression of the 

two configurations.        
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Figure 3.1 – Differences in mRNA production in homozygous and hemizygous embryos 

suggest competition between reporters. A. This panel is adapted from Waymack, et al.15. (Top) 

Kr expression in the early embryo is controlled by the activity of a pair of shadow enhancers, 

termed proximal and distal based on their location relative to the Kr promoter, that are each 

activated by different transcription factors (TFs). (Middle) The expression pattern driven by this 

pair of shadow enhancers is a stripe in the center 20% of the embryo. We use the MS2 system to 

image active transcription driven by enhancer reporters in living embryos. The cut out from 

embryo shows a still frame of a movie where red circles are nuclei and green spots are sites of 

active transcription. To test whether transgenic reporters affect each other’s expression, we 

generated embryos that are either homozygous or hemizygous for a particular reporter construct. 

(Bottom) Hemizygous embryos have the enhancer-MS2 reporter inserted on only one 

homologous chromosome and therefore display one transcriptional spot per nucleus. 

Homozygous embryos have the same enhancer-MS2 reporter inserted at the same location on 

both homologous chromosomes and therefore display two transcriptional spots per nucleus. B. 

mRNA production from homozygous reporter constructs compared to production from 

hemizygous constructs suggests competition between reporters. The graph shows total mRNA 

produced per allele in homozygous embryos as a function of total mRNA produced per allele in 

hemizygous embryos for the reporter construct indicated. The dashed diagonal line represents 

expected expression assuming independent activity of the two reporters in homozygous embryos. 

Points falling above this line display synergy in the activity of the two reporters in homozygotes 

and points falling below display competition. Error bars indicate 95% confidence intervals. Inset 

shows the percent higher expression in hemizygous versus homozygous embryos for each 

reporter construct. Error bars represent 95% confidence intervals from 1000 rounds of 

bootstrapping. C. To rule out reporter competition being an artifact of our imaging system, we 

measured expression of the distal enhancer MS2 reporter in the presence of a non-transcribing 

distal enhancer on the homologous chromosome. The second distal enhancer is identical to the 

reporter, but lacks both a promoter and MS2 sequence. The graph shows expression driven by 

the distal enhancer reporter is significantly reduced in the presence of the non-transcribing distal 

enhancer (p-value = 0.02, t-test). The top (solid) horizontal line indicates expression driven by 

the distal enhancer reporter in the hemizygous configuration and the bottom (dashed) horizontal 

line indicates peak expression per allele driven in the homozygous configuration. Error bars and 

shading represent 95% confidence intervals.   
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Figure 3.2 - Competitor TF binding sites on homologous chromosome decrease reporter 

activity. To test whether limiting levels of one or more activating TFs contribute to the reporter 

competition we observe, we measured the activity of our reporters in the presence of TF binding 

site arrays. A. (Top) The Kr shadow enhancers are activated by different sets of TFs. (Bottom) A 

schematic of TF binding site arrays that are intended to act as sinks for TF molecules. The arrays 

are each 236bp long, contain six binding sites for the indicated TF, and are inserted at the same 

genomic site as enhancer-MS2 reporters on the homologous chromosome. The binding site 

arrays do not contain a promoter or MS2 sequence. B. The activity of the shadow pair reporter is 

reduced in the presence of some TF binding site arrays. Graph shows the peak expression of the 

shadow pair in the presence of the indicated TF binding site array on the homologous 

chromosome. In B-D, the horizontal solid line indicates the peak expression level in hemizygous 

embryos of the indicated reporter construct and the horizontal dashed line indicates the peak 

expression level per allele in homozygous embryos. C. The activity of the duplicated distal 

reporter is reduced to homozygous levels when the Bcd binding array is present on the 

homologous chromosome. D. Activity of the duplicated proximal reporter, which is not activated 

by Bcd, is not reduced when the Bcd binding array is present on the homologous chromosome. 

Note that the homozygous and hemizygous peak expression levels (dashed and solid horizontal 

lines) overlap for the duplicated proximal reporter. Error bars and shading in B-D indicate 95% 

confidence intervals.  
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Figure 3.3 – Competitor Bicoid binding sites decrease and shift the activity of shadow pair 

reporter. To assess whether limiting levels of the activating TF Bicoid (Bcd) cause the apparent 

competition between reporters observed, we measured the transcriptional output of the shadow 

pair construct in the presence of Bcd binding site arrays of increasing length on the homologous 

chromosome. The 1xBcd binding site array consists of six Bcd binding sites but lacks a promoter 

or MS2 cassette. The 3xBcd and 6xBcd binding site arrays are three and six repeats, respectively, 

of the 1xBcd array and therefore contain a total of 18 and 36 Bcd sites, while also both lacking a 

promoter or MS2 cassette. These binding site arrays were inserted into the same location on 

Chromosome 2 as the enhancer reporters. A. Peak expression per allele driven by the shadow 

pair reporter decreases as the number of competitor Bcd binding sites increases. The horizontal 

lines mark the peak total expression per allele driven by the shadow pair reporter as hemizygotes 

(top solid line) or homozygotes (bottom dashed line). Shading and error bars indicate 95% 

confidence intervals. B. Competitor Bcd binding site arrays decrease the expression of an 

unrelated Bcd-responsive enhancer. To test if the effect of the Bcd binding arrays is specific to 

the Kr enhancers, we measured expression driven by the hunchback P2 (hbP2) enhancer, which 

is also activated by Bcd, in the presence of the 1x and 6xBcd binding site arrays. The graph 

shows the peak expression driven by the hbP2 reporter in the presence of the indicated Bcd 

binding site arrays. Shading and error bars in A and B indicate 95% confidence intervals. C. 

(Left) Bcd is expressed in a gradient from the anterior of the embryo (0% egg length) to the 

posterior (100% egg length). The Kr expression domain is indicated by dashed vertical lines. 

Schematics above the embryo diagram show the 1x, 3x, or 6xBcd arrays used with the enhancer 

reporters. (Right) Expression patterns driven by the shadow pair reporter in the presence of 

increasing numbers of competitor Bcd binding sites. Graph shows the range of the expression 

pattern of each configuration to 50% of peak expression levels of the homozygous configuration, 

whose boundaries are indicated with dashed vertical lines. Error bars represent 95% confidence 

intervals found from 1000 rounds of bootstrapping.  
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Figure 3.4 – Competition occurs at an additional location and gene.  Based on our data 

suggesting that reporters are competing for limited levels of TFs, we suspected this competition 

would also occur at other transgenic insertion sites and with endogenous genes. A. Reporter 

competition occurs at multiple genomic insertion sites. Graph shows the peak expression levels 

per allele in homozygous embryos as a function of the peak expression levels in hemizygous 

embryos for the shadow pair reporter inserted in either chromosome 2L or 3L. The data for 

chromosome 2 are the same as in Figure 1B.  Diagonal line marks expected values for 

homozygous expression if reporters do not interact and instead display independent expression. 

Error bars represent 95% confidence intervals. Inset shows the peak expression levels in 

homozygous embryos relative to hemizygous embryos with the shadow pair reporter inserted on 

either chromosome 2 or chromosome 3. Error bars in inset represent 95% confidence intervals 

from 1000 rounds of bootstrapping. B. The graph is as in A with the duplicated distal reporter 

inserted on chromosome 2 or chromosome 3. C. To determine the effect, if any, of transgene’s 

use of resources on endogenous genes’ expression, we compared the expression levels of three 

endogenous genes likely to be Bcd-regulated at increasing genetic distances from the transgenic 

insertion site in embryos with or without the duplicated distal transgene. Graph shows the fold 

change in expression of Piezo, Mcr, and Bkt29A in embryos homozygous for the duplicated 

distal transgene compared to WT embryos as measured by qPCR. Error bars represent 95% 

confidence intervals and black circles indicates the mean. Schematic below graph shows the 

genetic distance of the three measured genes (indicated with a blue, red, or yellow vertical line) 

from the attP site (VK000002) on chromosome 2L (marked with green line and star) where all 

transgenic constructs, unless otherwise specified, were inserted.  
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Figure 3.5 - Modeling the impact of competitor binding sites on TF-enhancer binding. To 

understand how small transgenic sequences could induce the competition for TFs we observe, we 

created a thermodynamic model of TF binding at a single site as a function of TF levels, 

competitor sites, and binding strengths. A. Schematic of the parameters of the genome model 

where the whole genome is considered for TF binding. The probability of a TF molecule being 

bound at the target site, p(bound), is determined by the parameters shown. The number of 

available TFs, T, varies as a function of embryo position l to match the measured Bcd gradient33. 

We assume that all TF molecules are bound and can be bound to either the target site or 

competitor sites, which are divided into specific and non-specific sites. The number of non-

specific sites, N, is held constant at 1x108 while the number of specific competitor sites, C, is 

varied. TF molecules bind the target site and specific competitor sites with binding energy Es and 

bind non-specific sites with binding energy Ens. Ens is held constant at zero and Es is varied. With 

each set of parameters, p(bound) is calculated using equation 1 from the text. B. The fraction of 

maximum p(bound) as a function of number of added competitor sites using the genome model. 

Es is held constant at 10 and l is held constant at 27% embryo length. Model predictions are in 

black. Experimental data of the fraction of maximum hemizygous hbP2 reporter expression as a 

function of the number of Bcd binding sites in the transgene on the homologous chromosome is 

shown in red. Data points indicate the fraction of maximum hbP2 expression with a second hbP2 

reporter, which contains 6 Bcd binding sites, or the 6xBcd array on the homologous 

chromosome, measured at 27% egg length. Dashed lines indicate the number of additional 

competitor sites predicted by the genome model to be required to produce the experimentally 

observed decrease in expression. The inset shows the same data on a linear x-axis.  C. Schematic 

of the parameters of the hub model where TF binding is assumed to only occur within nuclear 

subregions. Each nucleus is divided into 1000 equally-sized regions, one of which contains the 

target site. As in the genome model, the output of the model is the probability of a TF molecule 

being bound at the target site, p(bound). Based on previous measurements, the number of 

available TFs, T, is held constant at 20 for hub regions and 0 for non-hub regions66. Instead, the 

probability that a region in a nucleus is a hub is a function of embryo position l to match the Bcd 

gradient and we call this probability p(hub; T(l)) (equation 2 in the text). As in the genome 

model, we assume all TFs are bound at the target site, competitor sites, or non-specific sites. In 

each region, the number of non-specific competitor sites, N, is 100,000 while the number of 

specific competitor sites, C, varies.  The binding strength parameters Es and Ens are the same as 

those used in the genome model. p(bound) is calculated as in the genome model using equation 1 

from the text and multiplying the resulting value by p(hub;T(l)). This product is the final 

p(bound) value. D. Results of the hub model. The graph is as in B, with the fraction of maximum 

p(bound) as a function of the number of added competitor sites where the black line is the 

prediction of the hub model. As in B, Es is held at 10 and l is held constant at 27% egg length. 

Red points are the same experimental data as in B. Dashed lines indicate the number of 

additional competitor sites predicted by the hub model to be needed to produce the 

experimentally observed decrease in expression. E. Model results can be compared to 

experimentally measured decreases in reporter expression. The schematic shows how our models 

relate to our experimental system. The target site in the models is analogous to the enhancer-

MS2 reporters in our experimental system. The added specific competitor sites of the models 
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represent the TF binding site arrays or second reporter introduced on the homologous 

chromosome opposite the enhancer reporter. Although the exact relationship is not known, TF 

binding at enhancers is related to enhancer activity so the p(bound) output of our models is 

related to our measured enhancer reporter activity.   
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Figure S3.1 – Total enhancer activity is measured by integrating the area under 

fluorescence time trace curves at the region of peak expression. To measure the activity of 

our enhancer reporters, we track individual spots of transcription across the time of nc14. Our 

enhancer reporters drive expression of 24 repeats of MS2 sequence that when transcribed forms 

stem loops that are bound by the fluorescently tagged coat protein, MCP-GFP. This enables us to 

visualize and track sites of nascent transcripts as spots of fluorescence above background16. A. 

Transcriptional traces are first smoothed using the Lowess method (see Methods for more 

details). Integrated fluorescence, which is proportional to total mRNA produced and hence 

indicative of enhancer activity, is measured by calculating the area under the fluorescence curve. 

This area is calculated with the trapz function in Matlab using the fluorescence points recorded 

during the first 50 minutes of nc14. B. Total expression for each enhancer reporter is calculated 

at the position of that reporter’s peak expression levels along the anterior-posterior axis of the 

embryo. We divide the embryo along the anterior-posterior axis into 41 equally sized bins that 

each encompass 2.5% of the embryo and calculate the average total reporter expression per bin. 

Schematic shows the Kr expression pattern during nc14 as the green stripe at the center of the 

embryo. Within this stripe, the different enhancer reporters have slightly different regions of 

peak expression as indicated by the darker green rectangles. The enhancer reporter or reporters 

that drive peak expression in each region is indicated below the corresponding bin. The 

duplicated proximal reporter shows peak expression at 47.5% egg length (0% corresponding to 

the anterior tip of the embryo), the proximal and shadow pair reporters at 50% egg length, and 

the single and duplicated distal reporters at 52.5% egg length.    
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Figure S3.2 – Patterns of negative covariance suggest competition for spatially-patterned 

factor. To assess whether the differences in reporter expression levels observed between 

homozygous and hemizygous embryos stem from competition for factors required for reporter 

visualization, we measured the covariance of the activity of identical reporters in individual 

nuclei. A fraction of nuclei display negative covariance, which is indicative of an antagonistic 

relationship between the activities of the two reporters. A. Still image from a live imaging movie 

where nuclei are colored in red and sites of active transcription are green spots. Insets show 

zoomed-in example nuclei that display negative covariance (top) or do not (bottom). The graphs 

to the right show the transcriptional activity of the two reporters in each nucleus across the time 

of nc14. B. Schematics of expression patterns of different possible limiting factors and the 

corresponding expected patterns of negative covariance. The MCP-GFP reporter is expressed 

ubiquitously across the length of the embryo, while an endogenous factor may be expressed 

ubiquitously or in a spatial pattern. Graphs to the right show expected spatial pattern of negative 

covariance rates if reporters are competing for limiting levels of MCP-GFP (top), a spatially 

patterned endogenous factor (middle), or a ubiquitously expressed endogenous factor (bottom). 

C-E.  The fraction of nuclei that display negative covariance as a function of egg length. Grey 

highlight indicates the region of 75% max expression for that reporter construct. C. Duplicated 

distal. D. Duplicated proximal. E. Shadow pair.   
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Figure S3.3 - Competitor Bicoid binding sites decrease and shift the activity of the 

duplicated distal reporter. To assess the effect of increasing number of competitor Bcd sites on 

the activity driven by the duplicated distal enhancer construct, we measured its expression in the 

presence of larger Bcd binding site arrays (the same as used in Figure 3). A. Duplicated distal 

reporter expression changes non-linearly with increasing number of Bcd binding sites. Graph 

shows the total expression driven by the duplicated distal reporter at its region of peak 

expression in the presence of Bcd binding arrays with the indicated number of Bcd binding sites. 

Horizontal lines indicate peak expression levels per allele in hemizygous (top) and homozygous 

(bottom) embryos. Error bars and shading indicate 95% confidence intervals. In the presence of 

the 1xBcd array, peak expression of the duplicated distal reporter is decreased 37% relative to 

hemizygous levels and is further reduced 46% relative to hemizygous levels in the presence of 

the 6xBcd array. Interestingly, with the 3xBcd array the duplicated distal reporter’s activity is not 

significantly affected, which we do not fully understand but propose may be due to the molecular 

composition of the microenvironment created around the duplicated distal reporter with the 

3xBcd array. B. The expression domain of the duplicated distal reporter shifts in the presence of 

competitor Bcd binding arrays and these shifts qualitatively match changes in peak expression 

levels. The graph shows the range of the expression pattern of the indicated construct to 50% of 

peak expression levels of the homozygous configuration, whose boundaries are indicated with 

dashed vertical lines. Error bars represent 95% confidence intervals from 1000 rounds of 

bootstrapping. 
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Figure S3.4 – Bcd binding surrounding genes near chromosome 2 transgenic insertion site. 

To assess the potential effect of our enhancer-MS2 transgenes on endogenous gene expression, 

we measured the expression of Piezo, Mcr, and Btk29A in embryos with or without the 

duplicated distal transgene inserted on chromosome 2. We looked at these three genes due to 

their proximity to the transgenic integration site (Figure 4) and the observation that they are all 

likely regulated by Bcd. All three genes have expression patterns in the early embryo that are 

consistent with activation by Bcd and previous Chip-seq in nc14 embryos indicates Bcd binding 

surrounding these genes32. Figure shows UCSC genome browser window of 300kb centered on 

the Piezo transcription start site. Top line shows genomic coordinates, black peaks indicate Bcd 

binding as measured in Hannon, et al., 2017, and bottom in blue indicates gene annotations. 

Green star marks site of chromosome 2 attP insertion site. Circles mark the transcription start 

sites of the three endogenous genes where Piezo is blue, Mcr is red, and Btk29A is yellow.  
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Figure S3.5 – Average distance between reporters is negatively correlated with 

competition. To test the hypothesis that reporters are competing for locally limited TFs, we 

compared the average distance between our reporters in a nucleus with the degree of competition 

that reporter shows. A. Graph shows the average projected distance between identical reporters 

in the same nucleus for the indicated reporters. Each colored circle represents the average 

distance between the two reporters in a single nucleus across the time of nc14. The duplicated 

distal and shadow pair reporters, which show significant competition (Figure 1A) on average are 

much closer together in the nucleus than are the duplicated proximal reporters, which do not 

show significant competition. Horizontal lines indicate medians. Significance determined by 

Kruskal-Wallis test with Bonferroni correction. B. Graph shows the distributions of projected 

distances between identical reporters in a nucleus broken down into nuclei with or without 

negative covariance, which is indicative of reporter competition. The left, lighter colored half of 

each violin plot shows the distribution of average reporter distance during nc14 in nuclei that do 

not show negative covariance. Right half of each violin plot shows this distribution in nuclei with 

negative covariance. Horizontal lines indicate medians. In all three reporter constructs, nuclei 

whose reporters display negative covariance, which is indicative of competition, have reporters 

that are on average significantly closer together than are reporters that do not display negative 

covariance. Significance determined by Kolmogorov-Smirnov test.    

 

 

 

 

 

 



 142  
 

Figure S3.6 – How p(bound) changes with varying parameters. To get a sense for how our 

model behaves, we looked at how p(bound) changes as a function of our three parameters (TF 

levels, binding energy difference, and number of specific competitor sites) for both our genome 

and hub models. A. In the genome model, p(bound) decreases with decreasing levels of TF. 

Graph shows model prediction of p(bound) as a function of embryo position, l,  which 

determines TF levels following the Bcd gradient. We set the maximum Bcd level to 20,000 at the 

anterior of the embryo10 and use this value with the measured Bcd gradient33 to estimate TF 

levels at each point along the embryo. 0% egg length corresponds to the anterior of the embryo. 

Number of specific competitor sites is held constant at 2,000 and the difference in specific vs 

non-specific binding energies is held constant at 10. B. In the genome model, binding probability 

increases as the difference between specific and non-specific binding energies increases. Graph 

shows genome model prediction of the fraction of maximum binding probability as a function of 

the difference between specific and non-specific binding energies. Non-specific binding energy 

is held constant at 0 while specific binding energy is decreased. Here the number of TFs is held 

constant at 5,468 (corresponding to l = 27% egg length) and the number of specific competitor 

sites is held constant at 2,000. C. The sensitivity of binding probability to added competitor sites 

in the genome model is dependent on the number of pre-existing or “baseline” specific 

competitor sites. Graph shows the fraction of maximum binding probability as a function of 

added specific competitor sites. The different colored lines show model predictions depending on 

the number of baseline specific competitor sites. Red points show experimental data of the 

fraction of peak hemizygous expression for the hbP2 reporter as homozygotes (top point) or with 

the 6xBcd array (bottom point). The number of TFs is held constant at 5,468 (corresponding to l 

=  27% egg length) and the difference in specific versus non-specific binding energies is held 

constant at 10. D. Binding probability predicted by the hub model decreases along the length of 

the embryo. The graph shows the fraction of maximum binding probability of the hub model as a 

function of embryo position, which in the hub model determines the probability of a nuclear 

subregion being a TF hub. The number of specific competitor sites is held constant at 2 and the 

difference in binding energies between specific and non-specific sites is held constant at 10. E. 

Graph as in B, showing the predictions of the hub model. Like with the genome model, binding 

probability increases with increasing difference between specific and non-specific binding 

energies. Non-specific binding energy is held constant at 0 while specific binding energy is 

decreased. Here embryo position l, and consequently p(hub;T(l)), is held constant at 27% egg 

length and the number of specific competitor sites per region is held constant at 2. G. As with the 

genome model, the sensitivity of binding probability to added competitor sites in the hub model 

is dependent on the number of pre-existing specific competitor sites. Graph is as in C for 

predictions of the hub model depending on the indicated number of baseline specific competitor 

sites. Red points are the same experimental data as in C. Here, embryo position l, and 

consequently p(hub;T(l)), is held constant at 27% egg and the difference in binding energies 

between specific and non-specific competitor sites is held constant at 10.     
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Figure S3.7 – Distribution of all measured distances between transcriptional reporters. To 

assess whether enhancer reporters were close enough to be accessing the same “hub” region 

within the nucleus, we looked at the distribution of reporter distances in homozygous embryos of 

the three indicated reporter constructs. Violin plots show the distribution of projected distances 

between transcriptional spots for every time point in nc14 where two transcriptional spots were 

tracked in a nucleus, across all measured nuclei in each of the indicated constructs. Gray dashed 

line indicates the 512nm diameter of nuclear regions in our hub model. For all three constructs, 

the two copies of the reporter are within the same hub-sized region in between 7% and 8% of all 

recorded time points, based on estimates of TF hub size18 (see Methods for more details). 
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Figure S3.8 – Comparison of homozygous and hemizygous fly eye color. Unlike previous 

observations of transgene silencing56, flies homozygous for our enhancer reporters, which 

contain a mini-white marker, do not show lighter eye color than hemizygous flies. The three flies 

on the left are hemizygous for the shadow pair reporter on chromosome 2 and the three flies on 

the right are homozygous for this same reporter. On both sides, the top two flies are female and 

the bottom-most fly is male.  
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Figure S3.9 – Transgenic insertion site and affected endogenous gene fall within the same 

TAD. Ours and previous data suggest that transgenes have a larger effect on the expression of 

endogenous genes closer to the transgene on a linear piece of DNA13. As the genome is 

organized three dimensionally, we suspect that the distance between transgenes and endogenous 

genes in 3D space is important in determining the effect of a transgenic reporter on endogenous 

gene expression. As such, we used previously published Hi-C data from nc14 embryos to ask 

whether our transgene is likely contained within the same TAD as the measured endogenous 

genes. The figure shows a UCSC genome browser window with our transgenic insertion site 

marked as a green star and the three measured endogenous genes, Piezo, Mcr, and Btk29A, 

indicated as the blue, red, and yellow circles, respectively. The closest TAD boundaries as 

measured in Hug, et al., 2017 are indicated as black rectangles67. The transgenic insertion site 

and all three endogenous genes are contained within the same TAD during nc14.   
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Figure S3.10 – Bcd binding surrounding the two transgenic insertion sites. Our hub model 

predicts that TF competition is in part dependent on the number of existing TF binding sites 

within the same nuclear subregion. In our hub model we assume that all existing TF binding sites 

are distributed uniformly throughout the genome, but in reality, this is not the case. This can be 

seen with the Bcd binding surrounding our two transgenic insertion sites. A. UCSC genome 

browser window of 100kb centered on the attP insertion site used on chromosome 2. Top line 

shows genomic coordinates and black peaks indicate Bcd ChIP-seq reads from Hannon, et al., 

201732. B. UCSC genome browser as in A, but centered on the attP insertion site used on 

chromosome 3. Green star in A and B indicates the genomic coordinates of the respective 

insertion sites. 
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Chapter 4 

Large-scale investigation of shadow enhancer transcription factor input patterns 

 

Enhancers are critical for proper regulation of gene expression in a variety of systems 

facing very different demands. As the general mechanism by which organisms regulate gene 

expression in both time and space, enhancers in different systems will likely be under selection 

for different features. In Chapter 2, I discuss how a separation of transcription factor (TF) inputs 

is critical for the stable gene expression driven by a pair of developmental shadow enhancers. In 

this shorter chapter, I provide a brief investigation into the regulatory logic of developmental 

enhancers more broadly to assess if the findings of Chapter 2 are a general feature of shadow 

enhancers.  

4.1 Transcription factor regulation of developmental shadow enhancers 

 As discussed in Chapter 2, shadow enhancers are groups of two or more enhancers that 

drive overlapping expression patterns of the same target gene 1–3. Shadow enhancers are largely 

associated with developmental genes and have been shown to be critical for robust gene 

expression4–8. In Chapter 2, I detail our findings that the pair of shadow enhancers regulating 

Kruppel (Kr) expression in the early Drosophila embryo, which are each activated by different 

sets of TFs9, drive more stable gene expression across time than do single or duplicated 

enhancers. With this pair of shadow enhancers we showed that a separation of transcription 

factor (TF) inputs between the enhancers makes the pair uniquely able to buffer against multiple 

sources of noise across a wide range of temperatures10. From these findings, we hypothesized 

that a separation of TF inputs among the individual enhancers of a shadow enhancer group may 

be a general mechanism by which shadow enhancers mediate robust gene expression.  
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 To assess how widespread the use of separate TFs is among shadow enhancers, we 

sought out a large dataset of shadow enhancers. Cannavo and colleagues identified a set of over 

1,000 predicted shadow enhancers involved in Drosophila mesoderm development11. These 

groups of shadow enhancers, many of which consisted of well over two individual enhancers, 

allowed us to examine the regulatory logic of shadow enhancers more broadly beyond the Kr 

shadow enhancers.  

To determine whether separation of TF inputs among shadow enhancers is a common 

feature, we compared the predicted TF regulators of enhancers within a shadow enhancer group 

to that of randomly grouped enhancers. TF regulators of each individual enhancer were predicted 

via motif analysis of the enhancer sequences defined in the Cannavo dataset11. We focused on 

the key muscle TFs, Bap, Bin, Tin, Twi, Sna, and Dl. For each enhancer, we summed the 

predicted strengths of all binding sites for a given TF to have a total predicted regulatory score 

for that TF and did this for all 6 investigated TFs to have a total regulatory profile for each 

enhancer. Then the pairwise correlation of regulatory profiles between all enhancers of a shadow 

enhancer group was calculated. A higher correlation score indicates the individual enhancers of 

the shadow enhancer group are predicted to be more similarly regulated by TFs while a lower 

correlation score indicates the individual enhancers are predicted to be more differently regulated 

by TFs. To assess whether shadow enhancers tend to have more similar or dissimilar TF inputs, 

we performed the same correlation analysis on randomly grouped mesodermal enhancers. For 

each real set of shadow enhancers, we randomly selected (without replacement) the same number 

of individual enhancers from the total list of enhancers and then performed TF input correlation 

analysis as done with the real groups of shadow enhancers. We did this random selection and 

analysis 1,000 times.  
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 We find that TF inputs tend to be more dissimilar among the individual enhancers of a 

shadow enhancer group than among randomly grouped mesoderm enhancers (Figure 4.1A). 

Specifically, shadow enhancers are more likely to be negatively correlated than are randomly 

grouped enhancers, but this difference is not significant (Figure 4.1B).  After each of the 1,000 

instances of randomly grouping enhancers and calculating the pairwise regulatory correlations of 

each group, we found the overall median correlation score to compare to the overall median 

correlation score of the true shadow enhancer groups. Out of the 1,000 trials of randomly 

grouping enhancers, 51% percent have a higher median regulatory correlation scores than the 

true shadow enhancer group (median regulatory correlation score of 0.67; Figure 4.1C). This 

indicates that while a slight majority of shadow enhancers have less similar TF inputs than 

expected by chance, many other shadow enhancers do have similar TF inputs. While the general 

trend of shadow enhancer groups displaying differing degrees of TF input separation likely 

holds, the fact that these shadow enhancers were predicted in part from similar TF binding 

motifs11 suggests that additional shadow enhancers, with less similar TF inputs, may have been 

missed from this analysis. 

Our findings suggest that a separation of TF inputs, as discussed in Chapter 2, is a common 

feature of many, but not all, shadow enhancers. The degree to which a group of shadow 

enhancers is regulated by similar or dissimilar TFs is likely determined by the exact role of 

individual enhancers, which can be different for even seemingly redundant enhancers12 and can 

change across developmental time13.   

4.2 Methods 

Analysis of TF regulation similarity among enhancers 
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To assess whether individual enhancers of a shadow enhancer group are more likely than chance 

to be regulated by different TFs, we compared the correlation of TF inputs between enhancers of 

a shadow enhancer group to that between randomly grouped enhancers. We did this on a large 

dataset (> 1,000) of predicted shadow enhancers in Drosophila mesoderm development14 . First, 

binding sites of six key mesoderm TFs; Twi, Bap, Bin, Tin, Sna, and Dl, were predicted in each 

individual enhancer using Patser15 and position weight matrices (PWM) from FlyFactor 

Survey16. The cutoffs for p-values of binding sites are determined as in17  where Patser scores the 

aligned sequences that informed the PWMs and the top scoring 75% of the aligned sequences are 

considered “true” binding sites. For each TF, the predicted strength of each binding site was 

summed to get a total regulatory score by that TF for each enhancer. This means each individual 

enhancer has a six value (corresponding to the six TFs) regulatory score. To assess the similarity 

of TF regulation between individual shadow enhancers, we calculated the pairwise Pearson 

correlation of regulatory scores between all individual enhancers in a shadow enhancer group. 

For our randomly grouped comparison, we maintained the same number of individual enhancers 

per group as in the real shadow enhancer groups (i.e. if there were five groups of three enhancers 

in the real data, there will be five groups of three enhancers in the randomly grouped data), but 

randomly shuffle the individual enhancers. We then calculated the pairwise correlation of 

regulatory scores between all individual enhancers in a random enhancer group, as done with the 

true shadow enhancer groups. We did this random grouping 1000 times. The Python code used 

to calculate and compare the pairwise correlations of TF regulatory scores between shadow 

enhancers or randomly grouped enhancers is available at 

https://github.com/rvwaymack/ShadowEnhancer_TFRegulation_Analysis.  

 

https://github.com/rvwaymack/ShadowEnhancer_TFRegulation_Analysis
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Figure 4.1 – Shadow enhancers have less correlated TF inputs than randomly grouped 

enhancers. To assess whether the separation of TF inputs among shadow enhancers studied in 

Chapter 2 (Waymack, et al., 2020) is a general feature of shadow enhancers, we assessed the 

predicted TF regulators of Drosophila mesoderm shadow enhancers. Using the groups of shadow 

enhancers predicted by Cannavo and colleagues we calculated the predicted regulatory strength 

of 6 mesoderm TFs for each individual enhancer. Within each shadow enhancer group, we then 

calculate the pairwise correlation of TF regulatory strengths between all enhancers. As a 

comparison, we perform the same correlation calculation for randomly grouped enhancers. The 

randomly grouped enhancers are chosen from the same list of mesoderm enhancers and the 

number of enhancers per group is the same as in the real shadow enhancer groups. A. 

Comparison of the distribution of pairwise correlation scores of shadow enhancers (top, blue) 

and randomly grouped enhancers (bottom, orange). The randomly grouped enhancers are a 

representative result of one instance of randomly grouping the over 1,000 mesoderm enhancers. 

B. To ease comparison, pairwise enhancer correlation scores were divided into three categories: 

negative (correlation less than or equal to 0), low (correlation between 0 and 0.5), and high 

(correlation greater than or equal to 0.5). Graph shows the fraction of pairwise comparisons in 

each group for the real shadow enhancer groups (blue) and the randomly grouped enhancers 

(orange) from all 1,000 instances of randomly grouping enhancers. The ratio of enhancer groups 

in each correlation category was not significantly different between real shadow enhancers and 

randomly grouped enhancers (p-value = 0.16 for negative correlation, 1 for low correlation, and 

1 for high correlation; p-value from t-test with Bonferroni multiple testing correction). C. 

Distribution of median correlations across all groups (i.e. the median of all pairwise correlation 

scores) for all 1,000 instances of randomly grouping enhancers, where the black box indicates 

the first through third quartiles and the white circles indicates the median. The dashed vertical 

line indicates the median correlation of the true shadow enhancer groups.   
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 Chapter 5  

Assessment of transcription factor and enhancer dynamics in a non-developmental system 

 

As mentioned in the previous chapter, enhancers are critical for gene expression 

regulation in a variety of systems each facing different demands. As the primary determinants of 

gene expression, differences in enhancer activities likely underlie these differences, but this has 

yet to be thoroughly studied. In this short chapter, I provide a brief introduction to a project to 

uncover the regulatory logic of enhancers controlling the immune response.  

5.1 Enhancers in the immune system     

The bulk of this work has focused on enhancers regulating transcription in early 

development, but enhancers are used in systems well beyond development. The demands placed 

on enhancers for proper gene expression control may be quite different outside of development, 

for example in the immune system. Unlike development, which requires precise gene expression 

to reliably produce viable organisms, the immune system needs to be able to respond to the wide 

range of potential pathogens an organism may encounter. In line with these different needs, a 

large degree of expression variation is seen with gene targets of the immune system1,2. To 

investigate the role of enhancers in a system where greater gene expression variability is 

tolerated, I propose studies of how differences in NF-kB nuclear translocation dynamics translate 

into different transcriptional responses of immune target genes. These proposed experiments will 

shed light on if and how NF-kB dynamics are interpreted by enhancers to regulate gene 

expression during immune response. Further, by comparing these data with TF-enhancer input-

output relationships measured during development we can gain an understanding of to what 

degree the principles governing enhancer function are universal or system-specific. Historically, 
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the study of enhancers has been biased towards those regulating developmental genes3 so our 

understanding of how enhancers function may similarly be biased towards development-specific 

mechanisms. 

5.1.1 The transcription factor NF-kB regulates the expression of immune-responsive genes 

One specific pathway that provides a good model system in which to investigate the 

function and dynamics of enhancers in the immune system is that of NF-kB and its downstream 

target genes in response to immune stimulation4,5. NF-kB is the generic term for members of a 

family of TFs that prior to stimulation are sequestered in the cytoplasm, but upon immune 

stimulation translocate to the nucleus to regulate expression of a large number of immune-

responsive genes6,7. This regulation is mediated by NF-kB, and other immune-responsive TFs, 

binding to enhancer and promoter regions of target genes8–10. In both the mammalian and 

Drosophila systems, these targets include genes encoding inhibitors of NF-kB6,11. This negative 

feedback results in the well-documented oscillations in mammalian cells of NF-kB in and out of 

the nucleus in response to immunological stimuli12,13. Significant variation is seen in these 

oscillations; when a population of cells is treated with the same continuous stimulus, these 

oscillations quickly become desynchronized14. Recent work has shown that differences in NF-kB 

dynamics across a population treated with the same stimulus are associated with different 

transcriptional responses15, but a clear mechanism for this relationship has not been established.  

5.1.2 Drosophila NF-kB signaling pathways provide a model system of innate immunity  

There is a high degree of conservation between the NF-kB pathways in mammals and 

Drosophila and consequently Drosophila have been established as a highly informative model 

system for investigating pathways and functions of innate immunity7,16. Drosophila have two 
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NF-kB signaling pathways, the Toll and Imd pathways, that each are activated by different 

pathogens and use different NF-kB factors, Dorsal/Dif and Relish, to regulate activity of a 

distinct but overlapping set of immune-responsive genes17. While NF-kB oscillations in response 

to immune stimulation have not been explicitly studied in Drosophila, the NF-kB factor Dorsal 

also functions in early embryonic patterning and has been shown to move in and out of the 

nucleus during this process18. These pathways provide simpler, yet comparable, systems in 

which to investigate mechanisms of gene expression regulation that may well be generalizable to 

higher organisms, including humans19.  

 I propose using the Drosophila innate immune response as a system in which to study the 

dynamics of NF-kB signaling and how these are translated into different transcriptional immune 

responses. I hypothesize that differential activation of immune-responsive enhancers by different 

NF-kB signals is involved in this transfer of information. An improved understanding of how 

NF-kB dynamics are translated into transcriptional control of immune-responsive genes will 

potentially shed light on how the innate immune system mounts pathogen-specific responses as 

well as what kind of mutations or perturbations may cause NF-kB signaling to go awry. 

Additionally, findings that different NF-kB signal dynamics stimulate different enhancer activity 

will spur further study into the molecular mechanisms underlying these differences. 

5.1.3 Study of the relationship between NF-kB signaling and transcriptional response of immune 

genes 

As the number of identified immune-responsive enhancers in Drosophila is currently lacking 

(although ongoing work in the lab aims to help address this), a pilot study should first be done 

using anti-microbial peptide (AMP) genes with known enhancer regions that are activated by 

NF-kB. Drosophila S2* cells, which are an immune-responsive cell line, combined with 
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fluorescent microscopy will allow the measurement of how NF-kB dynamics affect enhancer 

activity. These measurements will provide a useful starting point to compare the dynamics of 

enhancer-driven transcription in the immune system, which may need to respond only transiently 

to a wide range of signals, to those in the developmental system, which needs to reliably produce 

very accurate patterns of gene expression. 

The first step in this project will be to determine the best way to stimulate NF-kB 

signaling in S2* cells. As Drosophila have two NF-kB pathways each activated by different 

types of pathogens, there are different possible ways to stimulate immune response in S2* cells4. 

To assess the response of cells to different kinds of immune stimuli, the endogenous NF-kB’s 

(Dif or Relish) corresponding to the different NF-kB pathways (Toll and Imd) will be 

fluorescently labeled with GFP through CRISPR-based editing. With this system, one can 

compare the response of immune stimulation through both qPCR of known target genes of the 

two NF-kB pathways20 and imaging of NF-kB translocations into and out of the nucleus. The 

Toll pathway can be activated by treating cells with cleaved Spatzle protein or using S2* cells 

that possess a Toll receptor that is constitutively active upon induction with copper21. The Imd 

pathway can be activated by treating cells with heat-killed bacteria or DAP-type peptidoglycan 

and ecdysone22. The optimal NF-kB pathway and mode of induction will be that which 

stimulates both a robust induction of AMP target genes and variable NF-kB dynamics across the 

cell population.   

To measure the impact of NF-kB dynamics on enhancer activity, target enhancers must 

be chosen and tagged with aptamers. RNA aptamers, such as mango, work by integrating a 

sequence encoding a small RNA stem loop into the region of interest. The aptamer is then bound 

by a fluorescent dye that can be applied to the cells, which has negligible intrinsic fluorescence 
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but high intensity fluorescence upon binding the aptamer sequence23. Depending on the NF-kB 

pathway being used, the activity of different enhancers, which are only or preferentially activated 

by the respective NF-kB pathway, will be measured. For this small case study, comparing 

enhancers associated with genes preferentially activated by one pathway or the other will provide 

insight into whether differential enhancer activation plays a role in establishing the specificity or 

synergy of the Toll and Imd responses 16,24,25. With the Toll pathway, the known enhancer region 

of Drosomycin, an AMP gene preferentially regulated by the this pathway makes a good readout 

of enhancer activity10,20. For the Imd pathway, the known enhancer region of the Imd AMP 

target Diptericin can be tracked9,10. With either pathway, the activity of the known enhancer 

region of Attacin A, an AMP gene induced by both Toll and Imd signaling, will also be used10,24. 

This enhancer that is activated by both signaling pathways will provide a comparison to 

distinguish between TF-enhancer dynamics that are involved in generating a pathway-specific 

response and those that are involved in generating a general immune response.  

Once the above cell lines are established for tracking both NF-kB dynamics and enhancer 

activity in the same cell, an imaging procedure and analysis pipeline needs to be established. The 

goal of this imaging will be to simultaneously track NF-kB nuclear translocations (via GFP) and 

enhancer-driven transcription (via RNA aptamers) in single cells across a population of cells. 

Imaging populations of cells on 96 well plates should be straightforward and existing image 

processing codes12,26,27 can be modified to separate and track individual cells and their 

corresponding fluorescence across time. 

While this project is still in very early stages, much stands to be learned from these 

studies. Currently, I have stably transformed an S2* cell line to express a copper-inducible GFP-

tagged Relish (NF-kB). With stable integration of the RNA aptamer reporters described above to 
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measure activity of Diptericin and Attacin A, a simple imaging system will enable analysis of the 

relationship between NF-kB dynamics and enhancer activity in response to any range of immune 

stimuli. With this system one can begin to ask questions such as does the same enhancer respond 

differently to different NF-kB signals, or do different enhancers respond differently to the same 

NF-kB signal? Further, these data can be compared to my own and others’ of enhancer-driven 

transcription in the context of development to gain an understanding of universal or system-

specific principles of enhancer activity.   

5.2 Methods 

5.2.1 Establishment of stable Rel-GFP cell line 

To enable visualization of NF-kB dynamics in response to immune stimulation and in relation to 

enhancer dynamics, a cell line stably expressing GFP-tagged Relish (Rel) was generated. 

Drosophila S2* cells were transfected with Rel-GFP under the control of a copper inducible 

promoter (kindly provided by Dr. Edan Foley)28 via electroporation. 4 million cells were 

transfected with 8.3ug of plasmid DNA and 1.7ug of a blasticidin resistance plasmid (pCoBlast; 

Invitrogen, Carlsbad CA) using the SF Cell Line 4D-Nucleofector X kit (Lonza, Basel, 

Switzerland) and the DG-137 transfection setting on a 4D-Nucleofector (Lonza, Basel, 

Switzerland). Following transfection, cells were returned to complete Schneiders media and 

allowed to grow for two days. Cells were then collected and resuspended in complete Schneiders 

media containing 5ug/mL of blasticidin every 3-4 days for 2 weeks to select for stably 

transfected cells. 

5.2.2 Generation of aptamer-tagged enhancer expression plasmids 
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To enable visualization of immune-responsive enhancer activity in relation to NF-kB signaling, 

plasmids were generated containing Mango aptamer sequences23 and a Luciferase reporter under 

the control of the Attacin A enhancer29. DNA sequence of the Mango IV, III, II, and I23,30 

sequences each separated by 30bp of lambda phage DNA, to minimize repeat removal, was 

synthesized by IDT (San Diego, CA). The Attacin A enhancer, a minimal eve promoter, and the 

Mango sequences were integrated into the pGL3 basic plasmid (Promega, Madison, WI), which 

contains an optimized firefly luciferase sequence. To ensure proper translation of the luciferase 

protein, a second identical enhancer sequence and minimal eve promoter drive luciferase 

expression. Similar plasmids can be constructed using the enhancer sequences of other immune-

responsive genes (i.e. Drosomycin, Diptericin)29. These plasmids can be stably integrated into 

S2* cells stably expressing GFP-Rel (such as those described above), or with GFP tagging of 

endogenous Relish, using the same co-transfection with the pCoBlast plasmid as described 

above.   
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Chapter 6 

Future Directions 

In the preceding chapters, I discussed my work investigating the details of how 

transcription factors (TFs) and enhancers work together to regulate gene expression. In Chapter 

2, I first showed that a separation of TF inputs enables the Kruppel shadow enhancers to buffer 

noise and drive stable levels of gene expression. I then in Chapter 3 examined how local 

competition for TFs can regulate enhancer activity and the implications this has for our 

understanding of nuclear organization. In Chapter 4, I analyzed a large dataset of Drosophila 

developmental shadow enhancers and found that these enhancers display a range of TF 

regulatory logic arrangements. Lastly, in Chapter 5 I discuss a proposed study of NF-kB 

signaling and enhancer dynamics in the immune system to improve our understanding of the 

rules regulating the relationship between TFs and enhancers in a very different system than 

development. While my work has provided insight into the complicated ways TFs and enhancers 

can interact to control gene expression, much still remains to be discovered. In this final chapter I 

discuss some remaining questions and areas the field should explore.  

6.1 Deciphering the cis-regulatory code 

 Although we have long known about enhancers and other regulatory regions of DNA, a 

continued but still unreached goal of the field is the ability to predict the function or activity of a 

regulatory region from its sequence, much as we do with protein-coding sequences. This goal 

may not be fully achievable, due in part to factors such as the 3D organization of the nucleus as 

discussed later, but is still a meaningful one to work towards. Numerous studies have implicated 

mutations in or loss of enhancers in developmental defects and disease1–4. The importance of 
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enhancers and other regulatory DNA elements in human health and disease is made clear by the 

ever-growing number of GWAS studies implicating non-coding sequences in diseases5. In 

theory, an ability to predict enhancer function from sequence would greatly improve our ability 

to predict, diagnose, and potentially treat (via genome-editing based methods) such diseases. 

This is complicated by the fact, as discussed in Chapter 1, that many genes that are associated 

with human diseases are regulated by multiple enhancers. Further, my findings in Chapter 2 

indicate that predicting the combined activity of multiple enhancers from the activity of the 

individual enhancers is not always straightforward. Although the goal of accurately predicting 

gene expression from enhancer DNA sequence alone may or may not ever be feasible, it is still a 

worthwhile pursuit. Our ability to simply identify enhancers within genomes, which is currently 

still a challenge6,7, would be vastly improved with an improved understanding of a sequence-

function relationship of enhancers.  

 In Chapters 2 and 4, I discuss the TF regulatory logic controlling shadow enhancers and 

the implications this has for shadow enhancer functions. I first showed that the pair of Kruppel 

(Kr) embryonic shadow enhancers are able to buffer against both global and stochastic sources of 

noise through a separation of TF inputs between the two enhancers. This separation of TF inputs 

enables the shadow enhancer pair to drive more stable gene expression across a range of 

environmental conditions than can a simple enhancer duplication. Such a finding suggests that 

separated TF inputs may be a general mechanism by which shadow enhancers mediate robust 

gene expression. My findings in Chapter 4 in part support this idea, as many enhancers in a large 

dataset of shadow enhancers display greater TF separation than expected by chance, but they 

also indicate that shadow enhancers vary widely in their degree of TF separation. This suggests 

(perhaps intuitively) that shadow enhancers serve a wide range of functions and consequently do 
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not all face the same selective pressure to evolve certain features, such as a separation of TF 

inputs. In addition to driving robust gene expression, many shadow enhancers have been shown 

to be important for refining gene expression patterns8–10, and a recent study found deletions of 

individual shadow enhancers result in different phenotypes11. This suggests that the individual 

enhancers play distinct roles in regulating gene expression. It is likely that different TF 

regulation strategies help enable different groups of shadow enhancers to serve these different 

functions. 

  An obvious next step for this work is to explore the extent of TF separation among 

shadow enhancers in different organisms, such as mice12, and measure the expression noise 

associated with shadow enhancers with varying degrees of TF separation. These studies will give 

us insight into how widespread differential TF regulation of shadow enhancers is, whether this 

regulation is always a functional characteristic that enables buffering of upstream noise, and how 

adjustable this characteristic is. Further, in combination with experimental validation (i.e. 

measurements of expression noise associated with shadow enhancers), machine learning 

approaches seem potentially well suited to help elucidate the patterns of TF regulation of shadow 

enhancers and how these relate to shadow enhancer activity. With this understanding, we can 

begin to better understand shadow enhancers function from the individual enhancer sequences, 

as well as refine our ability to identify shadow enhancers as current methods have often included 

looking for clusters of similar TF binding sites13,14.    

6.2 Synthesizing studies of cis and trans regulators to understand how gene expression is 

controlled in the 3D nucleus 

 An exciting topic the field should continue to explore is the idea of the nucleus as a 3D 

space in which DNA and the transcriptional machinery are not uniformly distributed, but must 



 176  
 

organize and find one another and the impact this has on gene expression. In Chapter 3, I 

uncover competition for TFs that can modulate gene expression levels and patterns. Our 

thermodynamic modeling suggests that such competition is dependent on the non-uniform 

distribution of TFs in the nucleus. In that chapter, I discuss how our findings have implications 

not only for the use of transgenic reporters, but for our understanding of transcriptional 

regulation more broadly. It has been increasingly shown that TFs and other pieces of the 

transcriptional machinery cluster in regions of high local concentration, or hubs15–18. How 

exactly the formation and dynamics of these hubs are regulated will continue to be an active area 

of interest, as my work and that of others indicates these hubs play a critical role in controlling 

gene expression16,17,19. A recent study showed that shadow enhancers of the gene shavenbaby 

(svb) in Drosophila are critical for establishing high local TF concentrations that seem to be 

required for normal levels of gene expression16. This raises the question of whether the 

establishment of high concentration TF hubs is a general feature of shadow enhancers that 

underlie their ability to drive robust gene expression. One could imagine this working in concert 

with the noise buffering ability explored in Chapter 2, where shadow enhancers facilitate the 

formation of TF hubs but also can have built-in features to buffer against fluctuations in the exact 

size and composition of these hubs as they have been shown to be quite dynamic17,19,20.  

 My findings in Chapter 3 in the context of other studies of TF hubs indicate a complex 

relationship between these hubs and transcriptional regulation. While most previous studies 

focused on the association between TF hubs and high levels of transcription19–22, our findings 

indicate that the non-uniform distribution of TFs in the nucleus can also produce competition 

among genomic targets for TF activation. Studies simultaneously tracking TF concentrations and 

the transcriptional activity of two or more target enhancers will help further elucidate the 
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relationship between TF hubs and enhancer activity. Ideally, one would want to simultaneously 

track the position of large regions of DNA (i.e. whole TADs or shadow enhancers), TF levels, 

and transcriptional output of TF targets. This would enable us to address many currently open 

questions. How much DNA is typically interacting within a hub and how important is the 

identity of this DNA sequence in hub formation or duration? We know that the hubs of TFs and 

other proteins are dynamic and relatively short-lived. Does the associated DNA follow similar 

dynamics, perhaps moving with (or causing!) the shifting hubs? Lastly and most importantly, 

how do the composition and dynamics of these hubs affect gene expression? Have genomes 

evolved to ensure that the most critical, or sensitive, genes are preferentially found in the most 

stable hubs? While serious technological advances in our ability to visualize and track multiple 

molecular species in living cells will be needed to answer these questions, recent studies provide 

glimpses of the promise such advances would bring16.   
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