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ABSTRACT
Imaging has become a prevalent tool in the diagnosis
and treatment of many diseases, providing a unique in
vivo, multi-scale view of anatomic and physiologic
processes. With the increased use of imaging and its
progressive technical advances, the role of imaging
informatics is now evolving—from one of managing
images, to one of integrating the full scope of clinical
information needed to contextualize and link
observations across phenotypic and genotypic scales.
Several challenges exist for imaging informatics,
including the need for methods to transform clinical
imaging studies and associated data into structured
information that can be organized and analyzed. We
examine some of these challenges in establishing
imaging-based observational databases that can support
the creation of comprehensive disease models. The
development of these databases and ensuing models
can aid in medical decision making and knowledge
discovery and ultimately, transform the use of imaging to
support individually-tailored patient care.

INTRODUCTION
A key goal of imaging informatics research is in sup-
porting medical knowledge discovery from the
wealth of routinely acquired clinical imaging and
associated data, resulting in systems that can better
inform, individualize, and optimize patient care. We
briefly present one perspective, largely from the
viewpoint of radiology, toward this objective
through the creation of imaging-based observational
databases that can enable disease modeling and
drive applications. Indeed, a longstanding pursuit of
biomedical informatics has been the automated cre-
ation of observational databases.1 2 Efforts like
STRIDE and i2b2 have helped establish clinical
repositories that have been used in a number of
applications, including cohort identification, detec-
tion of drug interactions, and population-level ana-
lyses.3 4 Analogous applications are envisioned atop
imaging-based observational databases, such as simi-
larity search (for cohort identification), knowledge
discovery, and population-level studies. But just as
clinical data warehouses have encountered issues
with data standardization and the need for common
representations (along with appropriate mapping
methods), an imaging-based observational database
faces similar issues. Imaging data and its acquisition
pose a unique set of requirements and challenges,
mainly around the need for rich interpretive context
(potentially from other data sources) to properly
understand findings. While a number of infrastruc-
ture tools exist for storing and sharing imaging data-
sets (eg, Extensible Neuroimaging Archive Toolkit

(XNAT),5 the National Cancer Imaging Archive
(NCIA), Transfer of Images and Data (TRIAD)),
these tools do not directly address challenges that
affect the formal, automated analysis of available
images. Markedly, the incomplete recording of the
‘context’ surrounding clinical observations impedes
the application of more advanced computational
techniques and the secondary use of these collected
data. An ongoing issue is the discrepancy between
our growing capacity to gather patient data without
a similar increase in our ability to analyze, under-
stand, and act rationally on this information.6 These
problems can be overcome by imaging informatics
developments, transforming the data into informa-
tion that can enable scientific-quality models. In
turn, these integrative imaging-based models can be
instantiated to empower decision-making tailored
for each individual. This idea motivates figure 1 and
the sections below, which extend a (simplified)
imaging workflow to illustrate how novel
informatics-based methods can be used to better
characterize patient data and construct an observa-
tional database.

CHALLENGES IN BUILDING IMAGING-BASED
OBSERVATIONAL DATABASES
Improving image/study characterization
Traditionally, imaging interpretation has been the
purview of the radiologist, providing an under-
standing based on the identification of visual pat-
terns in relation to the patient’s presentation and
clinical history. In an abstract manner, the radiolo-
gist mentally constructs an anatomic/physiologic
representation of the individual from a projectional
or cross-sectional study, implicitly considering the
quality of the study and prior imaging findings; and
comparing radiographic features against a working
knowledge of similar cases.7 The radiologist’s
undertaking is part visual search, part diagnostic
reasoning.8 The bottom of figure 1 illustrates steps
toward structuring and making image content com-
parable, facilitating contextualization and auto-
mated understanding:
1. Normalizing images: The first step is the calibra-

tion of values obtained from study image acqui-
sition. Such standardization is necessary so that
observed changes between images (eg, in the
same individual to periodically assess thera-
peutic response; among subjects from studies
conducted at different institutions) are attribut-
able to morphologic/physiologic change rather
than acquisition differences (eg, scanner varia-
tions, environment). Normalization involves
signal correction (eg, histogram equalization,
T1/T2 re-estimation from magnetic resonance
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(MR) parameters, standardized uptake values for fluoro-
deoxyglucose positron emission tomography (PET)), image
processing (eg, denoising), and spatial regularization (eg,
intra-subject registration). Importantly, as new types of
imaging and protocols are introduced, methods must be in
place to properly adjust observed values to accepted stan-
dards. Noteworthy efforts toward protocol and image stand-
ardization include: the workshop convened by the National
Institute of Standards and Technology, examining measure-
ment uncertainties inherent to biomarkers derived from
medical images9; and the American College of Radiology’s
Uniform Protocols for Imaging in Clinical Trials (UPICT),
which is developing a standardized template for representing
and sharing imaging protocols.10 Other efforts, such as the
Lung Imaging Database Consortium (LIDC), the National
Lung Screening Trial (NLST), and the Alzheimer’s Disease
Neuroimaging Initiative (ADNI)11–13 have established stand-
ard protocols for specific domains and/or targeted tasks (eg,
lung nodule detection). Nevertheless, these efforts have pri-
marily focused on protocols for clinical trials or controlled
data collection; standards have yet to be established that
would ensure reproducibility across different institutions’

routine clinical environments. Alternatively, techniques that
can automatically remap voxel-level values to calibrated
references can also provide a means to normalize clinical
studies across routine acquisitions.

2. Analyzing images: The next step entails characterizing fea-
tures and identifying higher-level abstractions within images.
While radiologists learn to perceive and assign the import-
ance of a given set of image features, the development of
image analysis algorithms that can handle the subtleties
arising in clinical imaging remains an open area of
research.14 Image analysis spans a gamut, from shape and
texture analyses, which derive quantitative metrics; to more
sophisticated segmentation and classification schemes that
attach semantic labels with regions of interest. The results of
this step are objective, structured measures describing image
findings. Multimodal imaging and image fusion is also con-
sidered in this step, wherein the combination of different
imaging modalities provides extra feature characterization
and context (eg, MR- or CT-PET).15 The applications of
these imaging features are limited without the ability to
share and repeat such measures across different scanners and
institutions. The variation introduced by (automated)

Figure 1 A high-level framework for the construction of imaging-based observational databases. Central to the development of such a database is
the improved contextualization of the imaging study and related patient data. The bottom half illustrates steps necessary to make imaging studies
structured, including normalization, quantitative/semantic analysis, and subsequent population-based imaging constructs to facilitate comparisons.
The top half of shows that information must be extracted from associated clinical (text) reports. Collectively, an integrated database can then be
instantiated, from which disease models and applications can be built.
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measurements (eg, by different algorithms assessing the same
object) and feature extraction algorithms need to be cap-
tured to recognize potential limitations, biases, and errors;
and to further comparison and reproducibility. Annotation
Image Markup (AIM)16 and DICOM (Digital Imaging and
Communication in Medicine) Structured Reporting
(DICOM-SR)17 exemplify continuing efforts to improve the
interoperability of radiological findings generated by various
imaging toolkits and workstations.

3. Generating population-based imaging models: Radiologists
successfully derive conclusions across dissimilar studies every
day by comparing images against a mental construct they
have learned over time, assessing new studies against those
seen previously.18 Similarly, computational models are
needed to perform population-based comparisons of values
generated from imaging analyses. Aggregate shape models
and atlases are demonstrative, providing contemporary
understandings in targeted cohorts19–21; however, additional
efforts are required to provide coverage across different dis-
eases and populations.
Critically, these techniques must be made practical in the clinical

setting, which is prone to non-ideal acquisition and real-world
constraints of limited scan time and variable imaging platforms.
These techniques must also be computationally tractable, running
in a timely manner so physicians can act on results. Underlying
data standards, such as DICOM, may need further updating to
fully enable the above steps, addressing the current limitations
given the introduction of new imaging and data types, and increas-
ing data sizes. Through this framework, algorithms to assess image
differences can affect the transition from subjective interpretations
to objective, reproducible characterization of findings and patient
state.22

Placing findings and the patient into context
Image structuring must be paralleled by methods for related
data that add insight into a patient’s condition, as depicted by
the top half of figure 1. The preponderance of non-imaging
observations remains in free-text reports. For example, having
information about active medications that a patient is taking and
other past interventions (eg, surgical resection for a tumor) is
imperative in assessing treatment response as quantified from
follow-up imaging studies. Often, the interpretation of an
imaging finding is influenced by documented patient history,7 18

with information coming not only from prior radiology reports
but also from a range of clinical notes including admission/dis-
charge summaries, surgical reports, specialty consults (eg, oncol-
ogy, neurology, urology, etc.), and pathology reports. While
structured reporting23–26 and the use of controlled vocabularies
(eg, Unified Medical Language System, RadLex) have been
pursued, including to enable secondary usage of clinical docu-
ments, the majority of report generation is still designed to
accommodate the physician and the natural expression of lan-
guage. At its core, the extraction and linking of patient context
from these reports requires identification and contextualization
of semantic concepts within documents. Markedly, medical
natural language processing (NLP) has been applied to different
medical reports to extract and structure information,27 which
can be used to inform image interpretation. Though well-known
approaches (eg, regular expressions, rule-bases, statistical
models, linguistic operations) have been applied to uncover con-
cepts in clinical text, establishing contextual models of patients
and disease will require moving beyond document-level infor-
mation extraction. Continuing challenges in medical NLP for
(but not limited to) radiology include co-reference resolution

(eg, tracking image findings over time)28 29; temporal topic
modeling (eg, monitoring changing patterns of semantic
themes)30 31; and entailment (eg, recognizing that the mention
of a resection cavity implies prior surgery).32 Complementary to
NLP efforts are methods for the logical representation of obser-
vations, inferences, interventions, and recommendations found
in clinical text.33 34 These efforts are seen in the definition of
semantic relations; and situational and domain-specific ontolo-
gies. Curation of these ontologies can be assisted by NLP, data
mining, and topic modeling approaches.35 36

Bringing it together
Once image content is characterized and associated data recast
into a standardized representation, it becomes feasible to
combine the information into a database supporting deeper inte-
gration of a patient’s symptoms, findings, treatment, and long-
term outcomes. If we consider the physical resolution of one
voxel (figure 2) from a radiographic imaging study, it typically
consists of an assortment of thousands of cells, which in turn
are the product of expressed genetic material. It is at this point
where imaging becomes a gateway to multi-scale models of
disease, relating phenotypic presentation with molecular, cellu-
lar, and other physiologic findings.

Linking across biological scales: imaging biomarkers
In the past decade there has been rising interest in the develop-
ment of imaging-based biomarkers.37 As suggested in figure 1
by the dashed arrow, there is reciprocal value in determining the
relationships between image-derived features and disease indica-
tors at the cellular and genetic levels. Functional imaging (eg,
PET, dynamic contrast-enhanced MR, MR spectroscopy, perfu-
sion) is being explored across biological scales and diseases.
Features from such studies have been correlated with properties
at the cellular (eg, proliferation, angiogenesis) and genetic (eg,
gene expression, single nucleotide polymorphism) levels.38–40

Quantitative imaging biomarkers can be incorporated into para-
metric maps summarizing the spatial differences related to gene
expression, local environment, and cellular function.41 These
maps yield knowledge about disease pathophysiology and treat-
ment response in neurological disorders and oncology.42–45

Despite these important insights, the clinical application of
imaging biomarkers has been limited. Given the number of com-
parisons performed and the potential for erroneous associations,
new imaging biomarkers often meet with skepticism.46

Consortia such as the NCIA, Enhancing NeuroImaging Genetics
through Meta-Analysis (ENIGMA), Osteoarthritis Initiative
(OAI), and Quantitative Imaging Network (QIN) have amassed
large numbers of imaging studies to validate and reproduce find-
ings.10 47–50 Concerted efforts such as The Cancer Genome
Atlas (TCGA) and projects with biospecimen repositories (eg,
NLST) that acquire genomic and related information (clinical,
imaging) are beginning to generate important insights.51

However, the richness of associated clinical history varies
greatly (eg, a single outcome is reported in the dataset, or only a
single time point over the course of disease; limited information
captured by a study case report form), thereby decreasing the
opportunity to fully mine results. Indeed, variability arising
from these datasets’ origins (eg, routine imaging exams versus
clinical trials) contributes to the difficulty of transforming this
data into clinically useful applications. This challenge under-
scores the need to improve on current methods for imaging and
study characterization and provide a means for integrating infor-
mation across data sources and biological scales.
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Constructing a disease model
Given a database of structured imaging and patient data, models
can be assembled to organize and explain observations (figure 3),
and serve as the basis for prognostic tools. Clinical and imaging
data sources can be combined to create models that elucidate the
underlying mechanisms of a disease: the generation of quantita-
tive maps from imaging modalities (eg, PET, diffusion weighted
imaging) provide estimates of biological processes like cell prolif-
eration.38 52 53 Information from these quantitative features may
further be incorporated into a model that predicts overall survival
or disease progression using logistic regression or machine learn-
ing methods (eg, neural networks, random forests, support

vector machines).54 For instance, one such modeling formalism is
the Bayesian belief network (BBN),55–57 which is a directed
acyclic graph of nodes representing random variables and edges
indicating conditional dependence (figure 3C). By way of illustra-
tion, a BBN for predicting lung cancer based on screening data
might comprise variables capturing image features (eg, nodule
size, texture features), demographics and social history (eg,
smoking history, family history of cancer), genetics (eg, markers
associated with lung cancer), and related conditions (eg, other
pulmonary diseases that increase risk for lung cancer); links
between these variables indicate influence or causal relations.
From the integrated database, it becomes possible to: define the

Figure 3 Integrating imaging and clinical information to construct a disease model. (A) Features are computed from normalized imaging studies.
In this case, a lung cancer is identified on a CT imaging study (top image), and a corresponding positron emission tomography study (bottom
image) is performed to assess the level of tumor activity. (B) An integrated data model creates the basis for combining image data with additional
information from the patient’s medical record, thereby providing context to the imaging study interpretation. For instance, information on the
patient’s smoking history, results of thoracic tumor biopsies, and current (and past) treatments lend insight into an individual’s status. (C) A
multi-scale disease model can be populated from this imaging-based observational database to establish a population-based perspective on the
condition (a partial model is shown). Conversely, if a disease model has been vetted for a given population, then the model can be used as a
prognostic tool for a given individual, offering tailored recommendations. Knowledge from published scientific studies and other resources can also
be embedded within the disease model.

Figure 2 Spatially, a pixel or voxel in an imaging study represents the combination of several different structural and physiologic elements. For
instance, a single image in an axial CT study has a field of view of ∼50 cm; and a single voxel within this image has typical dimensions of
0.6×0.6×1 mm3, in which thousands of cells may be represented. New types of imaging are elucidating sub-cellular and cellular processes. As such,
imaging provides a multi-scale perspective on a disease.

1056 Bui AAT, et al. J Am Med Inform Assoc 2013;20:1053–1058. doi:10.1136/amiajnl-2012-001340

Perspective



scope of variables of (clinical) interest that are pertinent to a
given disease; infer a network topology (or establish one given
expert knowledge) for the BBN; and calculate the conditional
probabilities needed per network node. The resultant BBN
embodies the joint distribution across the set of observations for
a population, providing a representation that can be queried to
facilitate medical decision-making tasks, including optimizing a
given individual’s care. To date, however, few models have been
widely adopted; notably, difficulties lie in the generalized applica-
tion of these models. Although such models may leverage a large
population, the findings may still be site- and/or population-
specific. Also, we increasingly see studies that span time, particu-
larly when long-term outcomes are involved; as such, the nature
of observations and interventions can change, especially with
introduction of new interventional or therapeutic means (eg,
approval for a new surgical device or chemotherapy). Hence,
these integrative models need to begin reflecting time to enable a
complete understanding of patients and the environs in which
decisions are made.

Connecting biomedical research
Observational databases provide a foundation on which to
construct disease models, but remain potentially limited to
the characteristics of populations and standards of care of the
institution(s) from which the data originate. In contrast, the
scientific literature affords insight into variables and pathways
across institutional cultures. But as noted by a recent Institute of
Medicine report, overwhelming amounts of medical informa-
tion are continuously published via clinical trials, journals, and
other vetted resources; it is the role of informatics to provide
real-time access to this knowledge.58 Such efforts pose their
own challenges of standardization, as the circumstances, exter-
nal validity, and description of reported populations vary.59 As
with imaging and clinical documentation, the contents of bio-
medical literature must be mapped into a formal representa-
tion.60 Having structured this information, a disease model that
integrates this evidence in a principled manner can be realized
to help clinicians.61

DISCUSSION
This perspective has touched on how different parts of imaging
and informatics pursuits can be brought together to create an
imaging-based observational database from clinical data. The
described issues shape some of the enduring and future research
challenges for imaging informatics. Admittedly, with the breadth
of research and development in the many areas comprising
imaging informatics, we have only been able to touch on some
of the issues and provide a few examples. And while radiologic
imaging has been our focus, the cited challenges are germane to
other domains employing imaging, like pathology.

Though elements of past and current imaging informatics
efforts separately address some issues in focused domains, it is
important that a synergistic, common framework come about—
much like with the origins of the Insight Toolkit (ITK),62 which
pulled together multiple groups under the auspices of one
coordinating entity to create a shared vision and set of open
tools—to support dissemination and a broader user community.
While such efforts have occurred to some extent in the above
cited works, a more generalized approach is now warranted. At
the same time, while data standards such as DICOM have
attempted to keep pace with data representational issues, it is
often after the fact; a forward-looking revision of this and other
related standards should take into account the information
requisite to support image and image feature normalization,

consolidating lessons learned, current approaches, and best prac-
tices together. The imaging informatics community plus vendors
need to quickly implement this change. Such a framework
would allow a continuous stream of imaging cases to be used
for characterization of normal and diseased populations. Groups
such as the Society for Imaging Informatics in Medicine (SIIM)
and the American College of Radiology Imaging Network
(ACRIN), which have long advocated for core imaging informat-
ics standards and projects, can play a central role in such an
endeavor along with federal funding agencies like the National
Institutes of Health (NIH). Many of the issues highlighted in
transforming data into normalized forms are to alleviate barriers
to comparison and secondary data use. Currently, informatics-
based techniques are applied after the fact in an attempt to
impose structure and restore context: if full study characteriza-
tion and structuring occurs upfront, many issues could be
resolved and the construction of disease models fostered. We
are only at the technical cusp of realizing the full promise of
imaging repositories and the electronic medical record, with
databases that can support evidence-based medicine and person-
alize treatment through a range of applications including more
sophisticated content-based image retrieval; computer-aided
detection/diagnosis; and knowledge discovery via imaging to
differentiate disease subtypes.63–66

Imaging informatics is evolving: while aspects have focused on
its exclusive role within radiology to improve image processing
and workflow, the field and its research has an opportunity to
become the nucleus for organizing, analyzing, and communicat-
ing the breadth of information involved in diagnosis and treat-
ment. And ultimately, the potential for imaging informatics is
vast: as a nexus for information across clinical domains, it is one
of the few frameworks that can provide a multi-scale, in vivo per-
spective on a given patient’s condition and outcome.67–69

Essential to this transformation is a holistic view of imaging
informatics, appreciating its intersection with developments from
other disciplines. In turn, this change will help reinvent the role
of radiology as a collaborative activity that guides and impacts
patient healthcare.70
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