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A Micro-Mechanically Based Continuum Model For
Strain-Induced Crystallization in Natural Rubber

Sunny J. Mistry, Sanjay Govindjee
University of California, Berkeley

Abstract

Recent experimental results show that strain-induced crystallization can substan-
tially improve the crack growth resistance of natural rubber. While this might suggest
superior designs of tires or other industrial applications where elastomers are used, a
more thorough understanding of the underlying physics of strain-induced crystallization
in natural rubber has to be developed before any design process can be started. The ob-
jective of this work is to develop a computationally-accessible micro-mechanically based
continuum model, which is able to predict the macroscopic behavior of straincrystalliz-
ing natural rubber. While several researchers have developed micro-mechanical models
of partially crystallized polymer chains, their results only give qualitative agreement
with experimental data due to a lack of good micro-macro transition theories or the lack
of computational power. However, recent developments in multiscale modeling in poly-
mers give us new tools to continue this early work. To begin with, a micro-mechanical
model of a constrained partially crystallized polymer chain with an extend-chain crys-
tal is derived and connected to the macroscopic level using the non-affine micro-sphere
model. Subsequently, a description of the crystallization kinetics is introduced using an
evolution law based on the gradient of the macroscopic free energy function (chemical
potential) and a simple threshold function. Finally a numerical implementation of the
model is proposed and its predictive performance assessed using published data.

1 Introduction

The study of strain-induced crystallization (SIC) in natural rubber (NR) dates back almost
a century to Katz (1925). He discovered that NR underwent a transformation from an
initially amorphous solid state to a semi-crystalline state when subjected to strain by means
of x-ray diffraction, a method that is still state of the art. Ever since, SIC in NR has
been a topic within the complex subject of rubber elasticity, not only because NR is widely
used in industrial applications such as tires, seals, and medical devices, but also because its
study might deepen the understanding of the Mullins’ effect (Govindjee and Simo, 1991)
and provide additional insight into the superior crack growth resistance of natural rubber
(Le Cam and Toussaint, 2010). Despite this apparent significance, scant work has been done
in the development of a micro-mechanically based continuum model of SIC in NR.
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This type of modeling task typically includes a combination of three equally important
parts:

1. A micro-mechanical model of a partially crystallized polymer chain.

2. A description of the crystallization kinetics in polymers, i.e. the time evolution of the
degree of crystallinity within the material.

3. A micro-to-macro transition that connects micro-kinematic variables of the single chain
with macroscopic continuum deformation measures.

The cornerstone was laid by Flory’s statistical mechanical theory of extended chain crys-
tallization Flory (1947). In this theory he uses a Gaussian distribution function to model
the partially crystallized polymer chains and assumes that the crystallized part of the chain
is oriented in the direction of stretch. There is no evolution of the degree of crystallinity
involved, since equilibrium crystallization is assumed. All the relations in Flory’s model
are derived for uniaxial loading using an affine deformation assumption, which is known to
result in inaccurate predictions for large deformations. Some years later, Gaylord (1976) and
Gaylord and Lohse (1976) developed an improved theory of SIC with two modified assump-
tions. Unlike Flory, he took chain folding into account, which adds insight about crystal
morphologies and orientation, and he used a non-Gaussian distribution function derived by
Wang and Guth (1952) to model the polymer chains. At the same time another model was
proposed by Smith (1976). He relaxed Flory’s condition that the extended crystal has to be
oriented in the direction of stretch by saying that the direction a chain takes through a crys-
tal is determined by the first few links of a chain entrapped within the crystal itself. Other
than giving good qualitative agreement with experimental data, all of the above mentioned
models have the following three things in common: Firstly, all of them develop a detailed
micro-mechanical model of a partially crystallized polymer chain. Secondly, only equilib-
rium crystallization is assumed and thus the time evolution of crystallinity is not considered.
Thirdly, all of them lack a satisfactory micro-to-macro transition.

Crystallization kinetics itself is a widely studied phenomenon, e.g. in the study of phase
changes in metals. Roughly speaking there are three different approaches. One of the most
extensively used approaches to describe the process of crystallization is the model of Avrami
(1939, 1940, 1941). Based on geometric considerations of nucleation and crystal growth, the
equation of Avrami is given by the exponential law ω ∝ 1− e−kVt , where ω is the degree of
crystallinity, k is the average density of nuclei, and Vt is the volume a crystal would occupy
after a time t. Here Vt depends on the growth rate and the shape of the crystal. Some
years later a similar equation was obtained by Evans (1945) and applied to temperature-
induced crystallization of Nylon 6,6 by Allen (1952). Gent (1954) was the first to extend
the treatment of Avrami to stretched natural rubber vulcanizates and approximate the
time functions governing crystal growth. Another widely used approach is taken by Becker
(1938), Turnbull and Fisher (1949), and Hoffman and Weeks (1962). They use an Arrhenius
equation to describe the crystallization process, ω̇ ∝ exp (−∆F/(kBT )), where ω̇ is the rate
of crystallization and ∆F the free energy change upon crystallization. A third approach
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first discussed for polymer crystallization by Roe and Krigbaum (1965) is based on a micro-
mechanical model of a partially crystallized polymer chain and uses its free energy gradient
(chemical potential) ω̇ ∝ −∂F/∂ω as the driving force for crystallization.

The lack of a satisfactory micro-to-macro transition has also been a challenging topic
within the micro-mechanically based modeling of rubber elasticity. A good overview of con-
stitutive models can be found in Boyce and Arruda (2000). More recently Miehe et al. (2004)
have extended the micro-plane model of Bazant and Oh (1985) to the so-called non-affine
micro-sphere model of rubber elasticity. This is a microscopically motivated finite deforma-
tion model for rubberlike materials. The model combines three special features: Firstly, it
includes a non-affine stretch component, where micro and macro stretches are linked through
a fluctuation field on a micro-sphere. The fluctuation field itself is determined by a minimiza-
tion of the macroscopic free energy. Secondly, polymer cross-links and entanglements are
also considered using the so-called tube model of rubber elasticity, where the movement of a
single chain is restricted by a tube-like constraint (Doi and Edwards, 1986). Thirdly, since
closed-form solutions to the averaging integrals over a sphere are not available, a 21-point
integration scheme, as derived in the original micro-plane model of Bazant and Oh (1985),
is used.

The objective of this work is to leverage these ideas and develop a computationally-
accessible micro-mechanically based continuum model, that is able to predict the macroscopic
behavior of NR. The derivation of this model parallels the steps in Miehe and Goektepe’s
non-affine micro-sphere model with select changes: Firstly, on the microscopic level the free
energy of a partially crystallized unconstrained single chain is considered instead of a fully
amorphous chain. The model used for the chain will be a modified version of Smith (1976),
which provides a way of modeling a semi-crystalline chain with extended crystals (Section
3). The microscopic model is connected to the macroscopic level using the non-affine micro-
sphere model (Section 4). Secondly, on the macroscopic level an evolution law for the degree
of crystallinity based on the macroscopic free energy is introduced, where the free energy
gradient is used as a driving force (Roe and Krigbaum, 1965) (Section 2). Moreover, a
threshold function for the evolution law inspired by phase change evolution in martensitic
alloys (Govindjee and Miehe, 2001) is introduced. Thirdly, the numerical implementation
using a return mapping algorithm is explained in Section 6. Finally in Section 7 the model
is discussed and the predictive performance of the proposed model assessed along with a
comparison to the work of Kroon (2010).

2 Macroscopic setting of model

At the macroscopic scale the model assumes a free energy function that depends on the right
Cauchy-Green deformation tensor C and the internal variable ω, a macroscopic measure of
the degree of crystallinity in the material:

Ψ = Ψ (C;ω) . (1)
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Following the argument that the mechanical dissipation cannot be negative (see e.g. Coleman
and Noll (1963), Truesdell and Noll (1965, §79), or Simo and Hughes (1998))

Dmech =
1

2
S : Ċ − Ψ̇ ≥ 0, (2)

the second Piola-Kirchhoff stress is given by

S = 2
∂Ψ

∂C
, (3)

with the additional condition

−∂Ψ

∂ω
ω̇ ≥ 0. (4)

The evolution of the degree of crystallinity is chosen to be governed by the macroscopic free
energy function by setting the rate of the degree of crystallinity to

ω̇ = −A∂Ψ

∂ω
, A ≥ 0, (5)

where the free energy gradient acts as a driving force for the crystallinity. The condition
A ≥ 0 immediately follows from inserting Eq. (5) into Eq. (4). The degree of crystallinity
however, can only evolve once a certain threshold is reached. In order to incorporate this
into the model, a chemical potential “yield function” of the form

g =

∣∣∣∣∂Ψ

∂ω

∣∣∣∣− (gc + γω) ≤ 0, (6)

is introduced, where gc ≥ 0 (threshold at zero degree of crystallinity) and γ (harden-
ing/softening parameter) are material constants. As long as g < 0, the degree of crystallinity
does not evolve; i.e. Ag = 0.

Following common practice, a decoupling of the free energy function into volumetric and
isochoric parts is introduced by use of the unimodular part of the deformation gradient
(Flory, 1961)

F̄ := J−1/3F , J = detF , (7)

and using the form
Ψ = U(J) + Ψ̄

(
C̄;ω

)
, C̄ = F̄

T
F̄ , (8)

with volumetric and isochoric contributions to the free energy function. Applying (3) to the
decoupled macroscopic free energy leads to the standard result in compressible hyperelasticity
(see e.g. Holzapfel (2000, §6))

S = JU ′(J)C−1 + J−2/3

(
I− 1

3
C−1 ⊗C

)
: 2
∂Ψ̄(C̄;ω)

∂C̄
. (9)

The volumetric response U(J) can be any scalar valued function which is strictly convex,
has unbounded value as J → 0 and J → ∞, and has a unique minimum at J = 1. In
the next two sections, the isochoric response of the material, Ψ̄

(
C̄;ω

)
, is developed by first

considering a micro-mechanical model of a partially crystalline chain and then bridging scales
using the non-affine micro-sphere model.
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3 Micro-mechanical setting of model

In order to develop an expression for the total free energy ψ on the micro-mechanical scale,
two changes have to be made to the classical statistical mechanical treatment of polymers
(see e.g. Weiner (2002, §5)). Firstly, instead of a fully amorphous polymer chain, a semi-
crystalline polymer chain will be considered. Secondly, in order to account for hindrances to
the motion of a single chain within a polymer network, the chain is assumed to be confined
to a tube (Miehe et al., 2004). To this end, an additive split of the total free energy ψ
into a contribution due to the unconstrained partially crystallized single chain ψf , and a
contribution due to the tube constraint ψc

ψ = ψf + ψc, (10)

is assumed. In the following two subsections analytical expressions for the free energy of an
unconstrained partially crystallized single chain ψf and the free energy of the tube constraint
ψc are developed.

3.1 Free energy of an unconstrained partially crystallized single
chain

In order to find the free energy of a fully amorphous single chain, typically its entropy needs
to be calculated first, which in turn needs a probability density for the end-to-end vector r
of the chain. The most common way of finding an approximation to that function is by the
so-called freely jointed chain model (Wang and Guth, 1952), where a real chain is modeled
by a large number of small rigid segments joined together by hinges, which allow complete
freedom of orientation. In other words the problem is simplified to a random walk of N steps
where each step is of length b and the endpoint of each step is uniformly distributed on a
sphere of radius b. The result for the distribution function for r turns out to be a Gaussian
distribution

p(r) =

[
3

2πNb2

] 3
2

exp

{
− 3r2

2Nb2

}
(11)

for r � Nb, where r = |r|. It is well known that a Gaussian distribution will result in a
linear force-extension relation, often referred to as a linear entropic spring. However, at high
levels of stretch the force-extension relation is known to be non-linear, where a characteristic
upturn due to the limited extensibility of polymer chains is observable (Mark, 1981). In order
to capture this stiffening behavior at high stretches, a non-Gaussian distribution function of
the form

p(r) =

[
3

2πNb2

] 3
2

exp

{
− 3r2

2Nb2

}{
1− 3

4N
+

3r2

2N2b2
− 9r4

20N3b4

}
(12)

is derived in Wang and Guth (1952). Given the probability density p(r) of the chain, the
entropy can be calculated from Boltzmann’s equation as

s := k ln p, (13)
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where k is the Boltzmann constant and the free energy is then simply obtained as

ψ := −Ts = −kT ln p, (14)

where T > 0 is the absolute temperature.
In order to set up the free energy of an unconstrained partially crystallized single chain

ψf , an approach from Smith (1976) can be adapted. Crystallization is assumed to happen as
depicted in Fig. 1, where the chain has an extended crystal part, two amorphous subparts,
and is composed of N links each of length b. The amorphous subchains r1 and r2 consist of
N1 and N2 links, and the crystallized part of the chain contains n links, such that |l| = nb
and N1 + N2 = N − n. The free energy is assumed to have two contributions: a pure

Figure 1 Schematic of a partially crystallized chain between two crosslinks with end-to-end
vectors of the two amorphous subchains r1, r2, the crystal vector l, and the chain
end-to-end vector r.

thermodynamic part and an elastic part

ψf := −∆Hu

(
1− T

T 0
m

)
Nω + ∆Fe, (15)

where ∆Hu is the heat of fusion per link, T 0
m is the crystallization temperature, ∆Fe is the

elastic contribution, and the parameter ω is the degree of crystallinity defined as

ω :=
n

N
, ω ∈ [0, 1] . (16)

In order to calculate ∆Fe, the overall probability density pf of the conformation in Fig. 1
is calculated as the product of the two probability densities p1 and p2 of the amorphous
subchains

pf (r1, r2) := p1 (r1) p2 (r2) . (17)

Using the kinematic relation r2 = (r− l)− r1, r2 is eliminated from pf (r1, r2), resulting in

p̂f (r1, r) := pf (r1, (r− l)− r1) . (18)
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Since r1 is unknown, it is eliminated by integrating p̂f (r1, r) over all possible values of r1 for
fixed r and l. Thus, we get

p̃f (r) :=

∫
R3

p̂f (r1, r) dr1. (19)

Here, p̃f is the probability density of the conformation in Fig. 1, irrespective of the values
of r1 and r2 in Eq. (17). Both, the Gaussian (11) and the non-Gaussian (12) probability
densities are considered in what follows. For the Gaussian model, where the probability
densities for the amorphous subchains p1 and p2 are Gaussian, a straightforward calculation
leads to

p̃f (r) =

(
3

2Nb2π (1− ω)

)3/2

exp

[
− 3 (r− l)2

2Nb2 (1− ω)

]
. (20)

Assuming that the crystal l has the same direction as r, the probability density can be
rewritten as

p̄f (λ;ω) =

(
3

2Nb2π (1− ω)

)3/2

exp

−3
(
λ−
√
Nω
)2

2 (1− ω)

 , (21)

where the micro-kinematic stretch λ is defined as

λ :=
r

r0

, r0 =
√
Nb; λ ∈

[
0,
√
N
)
. (22)

Thus, combining Eq. (14) and Eq. (21), the elastic contribution reads

∆Fe = −kT ln (p̄f (λ;ω)) , (23)

and the free energy of an unconstrained partially crystallized chain (15) has the form

ψf (λ;ω) := −∆Hu

(
1− T

T 0
m

)
Nω − 3kT

2

ln

(
3

2Nb2π (1− ω)

)
−

(
λ−
√
Nω
)2

(1− ω)

 . (24)

The derivation of the results for the Non-Gaussian model, where the probability density for
the amorphous subchains is non-Gaussian (12), is more involved and the expression for p̄f
can be found in the Appendix A.

3.1.1 Free energy due to tube constraint

The tube constraint in our model is introduced following Miehe et al. (2004). The probability
density due to the constraint is given by

pc = p0 exp

[
−α
(
r0

d0

)2

ν

]
, (25)
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where p0 is a normalization constant, α is a numerical factor which depends on the tube
geometry, and the dimensionless kinematic variable ν is the micro-kinematic tube area con-
traction and is defined as

ν :=

(
d0

d

)2

, ν ∈ (0,∞) , (26)

with d0 being the initial diameter of the tube and d the current diameter. Using Eq. (14),
the tube constraint free energy reduces to

ψc (ν) = αkTN

(
b

d0

)2

ν + ψ0, (27)

where ψ0 is a constant.

4 Micro-macro transition

Given the analytical expressions for the total free energy on the microscale

ψ (λ, ν;ω) = ψf (λ;ω) + ψc (ν) , (28)

the isochoric contribution to the total macroscopic free energy (8) is calculated next. The
additive split of the microscopic free energy ψ motivates the following macroscopic split
energy

Ψ̄
(
C̄;ω

)
= Ψ̄f

(
C̄;ω

)
+ Ψ̄c

(
C̄
)
. (29)

To connect the two expressions, a relationship between the micro-kinematic variables λ and
ν and macro-kinematic variables like C̄ or F̄ has to be established. It is important to note
here that the internal variable ω is assumed to be a measure of the degree of crystallinity on
the microscale as well as on the macroscale, and thus an identity map for its micro-macro
transition is assumed. In the following two subsections the core result of the non-affine
micro-sphere model (Miehe et al., 2004) is used to find the desired macroscopic free energies.

4.1 Non-affine network model for the partially crystallized chain

The main idea in the non-affine micro-sphere model is to connect the micro-kinematic vari-
ables through an averaging over a unit sphere to macro-kinematic quantities. In the case of
the unconstrained partially crystallized chain the micro-stretches λ are allowed to fluctuate
on the unit sphere

λ = λ̄f(θ, φ), (30)

where θ and φ are coordinates on the sphere, λ̄2 = M · C̄M is the macro-stretch induced on
the undeformed sphere by C̄ in direction of a sphere orientation vector M (and M ·M = 1),
and f is a stretch-fluctuation field defined on the unit sphere. In an affine model the value
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of f would be unity in all unit sphere directions. However, in the non-affine model f needs
to be determined; this is accomplished by requiring the following constraint to hold

〈λ〉p =
〈
λ̄
〉
p
, (31)

where 〈·〉p is the p-root average over the unit sphere S

〈·〉p =

(
1

|S|

∫
S

(·)p dA
) 1

p

, (32)

and p is a model parameter of the micro-macro transition scheme. The macroscopic free
energy for an unconstrained partially crystallized material is then determined by the mini-
mization

Ψ̄f

(
C̄;ω

)
= sup

κ
inf
f

{〈
nDψf

(
λ̄f ;ω

)〉
− κ

(〈
λ̄f
〉
p
−
〈
λ̄
〉
p

)}
, (33)

where 〈·〉 := 〈·〉1 is an integration over the unit sphere, κ a Lagrange multiplier for the
constraint (31), and nD is the number of chains in the polymer network per unit volume.
The necessary condition for the minimization problem is

nD
∂ψf

(
λ̄f ;ω

)
∂λ

− κ
(〈
λ̄f
〉
p

)(1−p) (
λ̄f
)(p−1)

= 0, (34)

which can be rewritten as

κ = nD
∂ψf

(
λ̄f ;ω

)
∂λ

(〈
λ̄f
〉
p

)(p−1) (
λ̄f
)(1−p)

, (35)

where κ is constant on the sphere. Since ω is also assumed to be constant on the unit sphere,
a non-trivial solution can only be derived if λ = λ̄f is constant. Thus, we find the simple
result

λ =
〈
λ̄
〉
p
, (36)

and the macroscopic free energy contribution from the unconstrained partially crystallized
chain reads

Ψ̄f

(
C̄;ω

)
= nDψf

(〈
λ̄
〉
p

;ω
)
. (37)

4.2 Non-affine network model for the tube constraint

In order to introduce a non-affine relationship between the micro-tube area contraction ν as
defined in Eq. (26) and a macro-area stretch on a sphere ν̄ the power law of Miehe et al.
(2004) is used

ν = (ν̄)q , (38)

where ν̄ = N · C̄−1N, and N is a unit normal vector to an area element on the undeformed
sphere. Using the power law the macroscopic energy contribution ends up being

Ψ̄c

(
C̄
)

= 〈nDψc (ν̄q)〉 , (39)

where q is a model parameter.
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5 Macroscopic material response and summary

In this section the derivatives needed for the macroscopic stress-strain response are calcu-
lated and evaluated for the case of the partially crystallized single chain having a Gaussian
probability density (11).

5.1 Derivatives

At this point, the contribution from the partially crystallized chain and the contribution
from the non-affine tube constraint can be assembled into the overall isochoric response of
the material

Ψ̄
(
C̄;ω

)
= nDψf

(〈
λ̄
〉
p

;ω
)

+ 〈nDψc (ν̄q)〉 . (40)

In order to calculate the second Piola-Kirchhoff stress tensor as given in Eq. (9), the following
derivative is needed,

∂Ψ̄(C̄;ω)

∂C̄
=
∂Ψ̄f (C̄;ω)

∂C̄
+
∂Ψ̄c(C̄)

∂C̄
. (41)

It is important to note that the derivative is taken with respect to C̄ at a constant degree
of crystallinity ω. Thus, using the result in Eq. (36), the contribution from the partially
crystallized chain ends up being

∂Ψ̄f

∂C̄
=
∂ψf
∂λ

∂λ

∂λ̄

∂λ̄

∂C̄
= nD

∂ψf
∂λ

λ1−p 〈λ̄p−2M ⊗M
〉
, (42)

and using (38), the non-affine tube constraint contribution results in(
∂Ψ̄c

∂C̄

)
kl

=
∂ψc
∂ν

∂ν

∂ν̄

∂ν̄

∂C̄
= −

〈
nD

∂ψc
∂ν

qν̄q−2 1

4

(
C−1
ik C

−1
lj + C−1

il C
−1
kj

)
NiNj

〉
. (43)

The only derivatives left to evaluate are ∂ψf/∂λ from (42), ∂ψc/∂ν from (43), and ∂Ψ/∂ω
from (5) for the evolution of the internal variable ω. For the simple case of the Gaussian
probability density (11) the derivatives are listed next. The derivatives for the Non-Gaussian
model with the probability density (12) can be calculated using the expression for p̄f given
in Appendix A. Using (24), the partial derivative reads

nD
∂ψf
∂λ

=
3µ

1− ω

(
λ−
√
Nω
)
, µ := nDkT, (44)

where µ, the effective shear modulus is introduced. Using (27)

nD
∂ψc
∂ν

= µNU, U := α

(
b

d0

)2

, (45)
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# Parameter Name Eq. Effect

1 µ := nDkT Shear modulus (44) Ground state stiffness
2 N Number of chain segments (11) Chain locking response
3 p Non-affine stretch parameter (31) 3D locking characteristic

4 U := α (b/d0)2 Tube geometry parameter (45) Additional constraint stiffness
5 q Non-affine tube parameter (38) Shape of constraint stress

6 µD := nD∆Hu Heat of fusion (46) Heat of fusion
7 gC Threshold parameter (5) Threshold at ω = 0
8 γ Threshold evolution parameter (5) Softening/hardening

Table 1 Material parameters of the model.

where U is the effective tube geometry parameter. The gradient in (5) is calculated using
(8), and (40):

∂Ψ(C̄;ω)

∂ω
= nD

∂ψf

(〈
λ̄
〉
p

;ω
)

∂ω

= −µDN
(

1− T

T 0
m

)
− 3µ

2

[
1

1− ω
+

2
√
N(λ− ω

√
N)

1− ω

− (λ− ω
√
N)2

(1− ω)2

]
λ=〈λ̄〉

p

,

(46)

where µD := nD∆Hu is the effective heat of fusion.

5.2 Model summary

The proposed model has a total of eight material parameters, summarized in Table 1, in
addition to the ambient temperature T and the crystallization temperature T 0

m, which are
both used in Eq. (46). Five of the parameters are associated with the non-affine micro-sphere
model and three additional parameters are introduced for the crystallization kinetics: µD is
the heat of fusion (per unit volume); gC is the threshold value the driving force |∂Ψ/∂ω| has
to reach before the crystallization process can start; γ is a hardening/softening parameter,
meaning that if γ > 0, the driving force threshold increases as the degree of crystallinity
goes up. On the other hand if γ < 0, the driving force threshold decreases as the degree of
crystallinity goes up, which in turn means that once the crystallization process has started,
it becomes progressively easier for the crystallization to continue.

6 Return mapping algorithm

In this section the algorithmic setting of the proposed constitutive model for strain-induced
crystallization is explained. The goal of the numerical implementation is to be able to calcu-
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1. Given the deformation Cn+1, compute the trial state (no evolution of crystallinity):

ωtrialn+1 = ωn,
gtrialn+1 = g(Cn+1, ωn),
Strialn+1 = S(Cn+1, ωn).

2. Check consistency of crystallization step:

if gtrialn+1 ≤ 0, then ( · )n+1 := ( · )trialn+1 & EXIT

3. else gtrialn+1 > 0, set

gn+1 =

∣∣∣∣∂Ψ(〈λ̄〉
p
,ωn+1)

∂ω

∣∣∣∣− (gC + γωn+1) = 0,

and solve for ωn+1 using a Newton-Raphson scheme, where a Backward-Euler
scheme is used to integrate the evolution equation:

ωn+1 = ωn −A(tn+1 − tn)(∂Ψ(
〈
λ̄
〉
p
, ωn+1)/∂ω).

4. Calculate the new Sn+1 using the updated ωn+1

Table 2 Implementation of the return mapping algorithm for strain-induced crystallization.

late the evolution of the stress tensor and the degree of crystallinity for a given deformation
cycle.

As a first step of the algorithm a trial stress tensor (9) is calculated assuming no evolution
of crystallinity. In order to do so, the averaging integrals over the unit sphere in (42) and
(43) have to be evaluated. This is done using a 21-point integration scheme as derived in
Bazant and Oh (1986). A very thorough and easy-to-follow description of the algorithm
using the 21-point integration scheme is provided in Miehe et al. (2004) and thus it is not
further discussed here.

Once the trial stress tensor Strialn+1 has been computed, a return mapping algorithm is
proposed in order to determine the evolution of the degree of crystallinity and to correct
the stress computation. The idea is to start with the trial state where the evolution of the
degree of crystallinity is frozen, that is ωtrialn+1 is assumed to be the same as the previous one
ωn. Next gtrialn+1 is evaluated using ωtrialn+1 and the actual Cn+1 as summarized in step 1 of
Table 2. Since the trial state may or may not be a physically admissible state, the value of
the threshold function gtrialn+1 is checked for consistency. If gtrialn+1 ≤ 0, then no evolution of the
degree of crystallinity is allowed and the trial state indeed is a physically admissible state.
However if gtrialn+1 > 0, the trial step cannot be a solution, and there has to be an evolution of
the degree of crystallinity. By numerically solving the equation g(Cn+1, ωn+1) = 0 for ωn+1,
an admissible degree of crystallinity ωn+1 and an updated S(Cn+1, ωn+1) can be computed.

7 Numerical results and discussion

This section uses published X-ray diffraction measurements carried out by Toki et al. (2003)
to test the proposed model. Moreover the proposed model is compared to the recent model
of Kroon (2010) and the differences between them are discussed.
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Gaussian Non-Gaussian
model model

NR-S NR-P IR-S NR-S NR-P IR-S

N [-] 195.95 191.13 199.95 175.95 191.70 191.95
p [-] 1.4692 1.1594 1.4692 1.4692 1.4941 1.46922
µ [MPa] 0.62023 1.0191 1.02023 0.62023 1.0878 1.02023
q [-] 16.933 15.048 16.200 17.053 14.766 16.260
U [-] 3.7578e-8 1.9937e-7 3.7578e-8 3.7578e-8 2.3993e-7 3.7578e-8

µD [MPa] 0.110 0.125 0.210 0.115 0.130 0.205
gC [MPa] 18 34 42 14 34 34
γ [MPa] -65 -140 -260 -45 -120 -205

Table 3 Optimized material parameters for the models with Gaussian and non-Gaussian prob-
ability densities. The ambient temperature is T = 0 ◦C and the crystallization tem-
perature is assumed to be T 0

m = −143.95 ◦C (isoprene).

7.1 Model compared to experiments

In the experiments of Toki et al. (2003), strain-induced crystallization is measured using in
situ synchrotron wide-angle X-ray diffraction on sulfur (NR-S) and peroxide (NR-P) cured
natural rubber as well as sulfur vulcanized synthetic polyisoprene rubber (IR-S). The exper-
iments are conducted at 0 ◦C, where a 25mm sample is uniaxially deformed from a stretch
of 1 to a stretch of 6 and back at 10mm/min. One loading cycle thus takes approximately
25 minutes. The data for the NR-S, NR-P, and IR-S samples are plotted as dotted lines in
Figs. 2, 3, and 4 respectively. Optimized model parameters are found in two steps. In a
first step, the evolution of the degree of crystallinity from the experiments is considered as
given and only the stress-strain curve is fit. An estimate of the five material parameters of
the non-affine micro-sphere model (N, p, µ, q, U) is thus calculated using a least squares fit.
As a next step, the remaining three parameters (µD, gC , γ) are fit by hand with only minor
changes of the other parameters. This is feasible because of a clear meaning of the three
parameters: an increase in µD decreases the maximum degree of crystallinity, and slightly
increases the incipient crystallization stretch; an increase in gC increases the the incipient
crystallization stretch and lowers the maximum degree of crystallinity; and an increase in
γ decreases/delays incipient decrystallization stretch and slightly decreases the maximum
degree of crystallinity. The optimized material parameters for the model curves are listed in
Table 3.

In Fig. 2(a) Toki’s experimental data for the NR-S sample is indicated by the dotted line
and the prediction by the Gaussian model by the solid line. The prediction of the stress-
strain hysteresis is in good agreement up to a stretch of 4. Above a stretch of 4, during
loading, our model under predicts the stress due to the fact that our crystallization flow-rule
is rate independent; this point is supported by the experimental observations of Marchal
(2006). Note, that this rate dependency is independent of whether or not the background
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(b) Non-Gaussian model
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(c) Kroon’s model

Figure 2 Comparison of the sulfur vulcanized NR data (dotted line) to: (a) the Gaussian
model; (b) the non-Gaussian model; and (c) Kroon’s model with (solid line) and
without (dashed line) viscoelasticity. The curve for the degree of crystallinity is only
plotted once because it stays the same for both cases. Optimized parameters for (a)
and (b) can be found in Table 3 under NR-S.

material model is elastic or viscoelastic. The prediction of the crystallization is seen to be
quite good, except for the decrystallization from a stretch of 3 to 1. The prediction there
appears to have some type of “inverse yielding” (necking during unloading) as mentioned in
Albouy et al. (2005) and Trabelsi et al. (2003). Note a negative value of γ is used which
suggests a softening as mentioned in Section 5.2. It is also important to point out that the
predicted value of N ≈ 196 is physically sound. Assuming a monomer length of b = 4Å,
the maximum degree of crystallinity ωmax ≈ 0.15 gives us an estimated crystallite length of
lc ≈ Nωmaxb ≈ 118Å, which falls into the range of reported crystallite lengths of 80Å to 180Å
(Chenal et al., 2007; Trabelsi et al., 2003). Lastly it is noted that no relevant differences are
found between the prediction generated by the Non-Gaussian model in Fig. 2(b) and the
Gaussian model in Fig. 2(a).

In Fig. 3(a) Toki’s experimental data for the NR-P sample is indicated by the dotted
line and the prediction by the Gaussian model by the solid line. The same remarks as made
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(a) Gaussian model

1 2 3 4 5 6
0

2

4

6

8

10

12

Stretch [−]

S
tr

e
s
s
 [

M
P

a
]

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

Stretch [−]

ω
 [

−
]

(b) Non-Gaussian model
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(c) Kroon’s model

Figure 3 Comparison of the peroxide vulcanized NR data (dotted line) to: (a) the Gaussian
model; (b) the non-Gaussian model; and (c) Kroon’s model with (solid line) and
without (dashed line) viscoelasticity. The curve for the degree of crystallinity is only
plotted once because it stays the same for both cases. Optimized parameters for (a)
and (b) can be found in Table 3 under NR-P .

for the quality of the NR-S fit can be made here as well. However in Fig. 4(a) the quality
of the stress-strain hysteresis fit for Toki’s IR-S seems to be better than the quality of the
previous two fits. Deviations are only found on the loading curve between stretches of 4 and
6. Additionally the model is able to fully capture the instant start of the decrystallization
as seen in the unloading part of the crystallization curve. The same also holds true for the
Non-Gaussian model in Fig. 4(b).

7.2 Model compared to Kroon’s model

As mentioned in Section 1 a similar model was recently developed by Kroon (2010). One of
the core differences between the two models is in how they view the increase of the degree
of crystallinity. In the proposed model the increase in crystallinity stems from the growth of
the extended-chain crystallites, which is supported by Chenal et al. (2007). Kroon uses the
idea of Murakami et al. (2002), where the crystallite size is thought to be constant and the
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(a) Gaussian model
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(b) Non-Gaussian model
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(c) Kroon’s model

Figure 4 Comparison of the sulfur vulcanized synthetic polyisoprene rubber data (dotted
line) to: (a) the Gaussian model; (b) the non-Gaussian model; and (c) Kroon’s
model with (solid line) and without (dashed line) viscoelasticity. The curve for the
degree of crystallinity is only plotted once because it stays the same for both cases.
Optimized parameters for (a) and (b) can be found in Table 3 under IR-S.

growth driven by nucleation. However, it is also mentioned in Murakami et al. (2002) that
the induced crystallites are well packed, which can be seen as a growing crystallite provided
the definition of a crystallite is loosened a bit. In any case, researchers do not seem to fully
agree on the mechanism that governs the increase in crystallinity.

Another important point is viscoelasticity. In order to be able to predict the stress-strain
hysteresis, Kroon uses a phenomenological viscoelastic component. However Murakami et al.
(2002) and Trabelsi et al. (2003) clearly note that the hysteresis is entirely due to the
phenomenon of crystallization and not due to viscoelastic effects. Toki’s loading rate is also
observed to be rather slow. Kroon’s predictions with and without the viscoelastic component
are plotted in Figs. 2(c), 3(c), and 4(c). The plots show that without the viscoelastic
component only a slight stress-strain hysteresis is observable. In the proposed model no
viscoelastic component is used. This issue is clearly important if the model is to be utilized
for fracture prediction where energy balance issues are of paramount interest.
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Viscoelasticity No viscoelasticity

NR-P IR-S NR-S NR-P IR-S NR-S

n [-] 22.0 20.0 23.3 22.0 27.6 22.4
nc [-] 9.3 11.0 11.0 9.9 13.1 11.0
N [-] 0.1 0.1 0.1 0.1 0.1 0.1
µc [MPa] 1.05 1.20 0.60 1.00 1.35 0.6
α [MPa] 0 0 0 0 0 0
µnc [MPa] 180 63 170 245 270 200
µv [MPa] 1 1 1 0 0 0
η [MPa min] 0.25 0.12 0.20 - - -
gc [min−1] 0.088 0.047 0.044 0.073 0.066 0.051
ga [min−1] 0.31 0.74 0.50 0.31 0.59 0.48

Table 4 The material parameters used for the reproduced results of Kroon’s model.

Another difference in the models is the evolution law for the degree of crystallinity.
In Kroon’s model a phenomenological Arrhenius equation is implemented to govern the
crystallinity. However in the proposed model it is felt that the approach using the chemical
potential as a driving force is more physical and provides the better predictions for the degree
of crystallinity, especially if compared in the case of IR-S in Fig. 4.

A minor modeling difference is also found in the way the non-affine deformation is in-
troduced. Kroon uses a phenomenological compliance stretch on the microscopic scale to
incorporate non-affine deformation. Numerically it is performed using a penalty constant,
which is used to penalize non-affine deformation. In the proposed model the non-affine de-
formation is derived from a principle of minimum free energy and a simple closed-form result
is obtained (Miehe et al., 2004).

As a last point, the model parameters regarding the crystallite size are mentioned. Kroon
uses a parameter N as the number of participating chains in the crystallite and a parameter
nc as the number of links in the extended-chain crystal. The first value turns out to be
N = 0.1, which is not physical and the second value is around nc = 11, which is physically
quite low. In the proposed model however, the predicted size of the crystallite fully agrees
with experimentally reported values.

Remark. The predictions in Figs. 2(c), 3(c), and 4(c) are reproduced results from Kroon
(2010) and might slightly differ from the original predictions, since here a 21-point integration
scheme (Bazant and Oh, 1986) is used to integrate over a spherical surface instead of the
50-point integration scheme mentioned in Kroon (2010). The material parameters used for
the reproduced results of Kroon’s model curves are listed in Table 4.
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8 Concluding remarks

It has been shown how to develop a simple computationally-accessible micro-mechanically
based continuum model for strain-induced crystallization in natural rubber. As a first step, a
micro-mechanical model of a constrained partially crystallized polymer chain was derived and
subsequently connected to the macroscopic level using the non-affine micro-sphere model.
Furthermore, a description of the crystallization kinetics was introduced using an evolution
law based on the gradient of the macroscopic free energy function (chemical potential) and
a simple threshold function. Key here is the addition of a softening of the critical chemical
potential driving force with advancing crystallization. The predictive performance of the
proposed model was shown by fitting available experimental data for various cured natural
rubber samples, and as a last step the model was compared to a recently developed constitu-
tive model to highlight its physical features. It is seen that both the coarse scale stress-strain
response is reasonably reproduced as is the internal state degree of crystallinity. Further the
fitted model parameters are seen to correctly fit in the physical range seen in experiments.
The good behavior observed occurs despite our most basic crystallization model assumption.
With added experimental work and model fitting even better data matches are envisaged.

A Appendix

The probability density of the conformation in Fig. 1 using the Non-Gaussian probability
density (12) is given as

p̄f (λ;ω) = − 1

3200N4π3/2(−1 + ω)8
√

1
N−Nω

3

√
3

2
e

3(λ−
√
Nω)2

2(−1+ω) (3(243λ8 − 828λ6(−1 + ω)

− 2346λ4(−1 + ω)2 − 900λ2(−1 + ω)3 − 485(−1 + ω)4)− 72
√
Nλ(81λ6

− 207λ4(−1 + ω)− 391λ2(−1 + ω)2 − 75(−1 + ω)3)ω − 5832N7/2λω7

+ 729N4ω8 − 72N5/2λω3(−160 + ω(480 + (−273 + 567λ2 − 47ω)ω))

+ 36N3ω4(−80 + ω(240 + ω(−171 + 567λ2 + 11ω)))− 24N3/2λω(1701λ4ω2

− 30λ2(−1 + ω)(−16 + ω(32 + 53ω))− (−1 + ω)2(1120 + ω(−2240 + 2293ω)))

+ 12N(1701λ6ω2 − 225(−1 + ω)3ω2 − 15λ4(−1 + ω)(−16 + ω(32 + 191ω))

− λ2(−1 + ω)2(1120 + ω(−2240 + 4639ω)))− 2N2(800 + ω(−4800 + ω(18720

− 25515λ4ω2 + 270λ2(−1 + ω)(−32 + ω(64 + 37ω)) + ω(−42880 + ω(55839

+ ω(−38718 + 11039ω))))))),

where N1 and N2 are assumed to be N(1− ω)/2, since the position of the extended crystal
within the chain does not change the result. The probability density p̄f was calculated using
Mathematica.
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