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1. INTRODUCTION

We develop a method for estimating oligopoly strategies subject to restrictions implied

by a game-theoretic model. We illustrate our new method by estimating the pricing strategies

of American and United Airlines.

Unlike most previous empirical applications, we do not assume that firms use a single

pure strategy nor do we make the sort of ad hoc assumptions used in conjectural variations

models.1 Our method allows firms to use either pure or mixed (or distributional) strategies

consistent with game theory.

First, we approximate a firm’s continuous action space (such as price, quantity, or

advertising) with a discrete grid. Then, we estimate the vector of probabilities — the mixed

or pure strategies — that a firm chooses an action within each possible interval in the grid.

We use these estimated strategies to calculate the Lerner index of market structure.

The main advantage of our method is that it can flexibly estimate firms’ strategies

subject to restrictions implied by game theory. The restrictions we impose are consistent with

a variety of assumptions regarding the information that firms have when making their

decisions. Firms may use different pure or mixed strategies in each state of nature. Firms

may have private or common knowledge about the state of nature, which is unobserved by the

econometrician. For example, a firm may observe a random variable that affects its marginal

profit and know the distribution (but not the realization) of the random variable that affects its

rival’s marginal profit. Each firm may choose a pure strategy in every state of nature and

1 Breshnahan (1989) and Perloff (1992) survey conjectural variations and other structural
and reduced-form "new empirical industrial organization" studies.
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regard its rival’s action as a random variable. Alternatively, there may be no exogenous

randomness, but the firm uses a mixed strategy. To the econometrician, who does not

observe the firm’s information or state of nature, the distribution of actions looks like the

outcome of a mixed strategy in either case. The econometrician is not able to determine the

true information structure of the game. Nevertheless, the equilibrium conditions for a variety

of games have the same form, and by imposing these conditions we can estimate strategies

that are consistent with theory.

There have been few previous studies that estimated mixed or pure strategies based on

a game-theoretic model. These studies (Bjorn and Vuong 1985, Bresnahan and Reiss 1991,

and Kooreman 1994) involve discrete action spaces. For example, Bjorn and Vuong and

Kooreman estimate mixed strategies in a game involving spouses’ joint labor market

participation decisions using a maximum likelihood (ML) technique. Our approach differs

from these studies in three important ways. First, they assume that there is no exogenous

uncertainty. Second, in order to use a ML approach, they assume a specific error distribution

and likelihood function. Third, they allow each agent a choice of only two possible actions.

Despite this limited number of actions, their ML estimation problems are complex.

Our problem requires that we include a large number of possible actions so as to

analyze oligopoly behavior and allow for mixed strategies. To do so using a ML approach

would be extremely difficult. Instead, we use a generalized-maximum-entropy (GME)

estimator. An important advantage of our GME estimator is its computational simplicity.

With it, we can estimate a model with a large number of possible actions while imposing

inequality and equality restrictions implied by the equilibrium conditions of the game. In
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addition to this practical advantage, the GME estimator does not require strong, arbitrary

distributional assumptions, unlike ML estimators.

In the next section, we present a game-theoretic model of firms’ behavior. In the third

section, we describe a GME approach to estimating this game. The fourth section contains

estimates of the strategies of United and American Airlines, and sampling experiments that

illustrate the small sample properties of our GME estimator. In the final section, we discuss

our results and possible extensions.

2. OLIGOPOLY GAME

Our objective is to estimate the strategies of oligopolistic firms using time-series data

on prices, quantities, and, when available, variables that condition the demand or cost

relations. We assume that two firms,i and j, play a static game in each period of the sample.

(The generalization to several firms is straightforward.)

Firm i (and possibly Firmj), but not the econometrician, observes the random variable

εi(t) in period t. For notational simplicity, we suppress the time variablet. The set ofK

possible realizations, {ε1, ε2, ..., εK}, is the same every period and for both firms. This

assumption does not lead to a loss of generality because the distribution may be different for

the two firms. The firms — but not the econometrician — know the distributions ofεk. We

consider three possible stochastic structures: (1) Firms face no exogenous randomness (K =

1); (2) εk is private information for Firmi; (3) εk is common-knowledge for the firms. Be-

cause the econometrician does not observeεk, even if the firms use a pure strategy in each

period, it appears to the econometrician that they are using a mixed strategy whenever their

actions vary over time.
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2.1 Strategies

The set ofn possible actions for either firm is {x1, x2, ..., xn}. The assumption that

the action space is the same for both firms entails no loss of generality because the profit

functions can be specified so that certain actions are never chosen. The notationxi
s means

that Firm i chooses actionxs. We now describe the problem where the random state of nature

is private information and then discuss alternative assumptions of a single state of nature or

common information.

In determining its own strategy, Firmi forms a prior,βi
sk, about the probability that

Firm j will pick action xj
s when i observesε i

k. If the firms’ private information is correlated,

it is reasonable for Firmi to base its beliefs aboutj’s actions onε i
k. If the private informa-

tion is uncorrelated, Firmi form priors that are independent ofε i
k. We do not, however,

assume independence. In statek, Firm i’s strategy isαk = (α i
k1, α i

k2, ..., α i
kn), whereα i

ks is

the probability that Firmi chooses actionxi
s. If Firm i uses a pure strategy,α i

ks is one for a

particulars and zero otherwise.

The profit of Firm i is πi
rsk = πi(xj

r, xi
s, ε i

k), wherer indexes the strategies of Firmj and

s indexes the actions of Firmi. In statek, Firm i choosesαk to maximize expected profits,

Σr βi
rkπrsk, where the expectation is taken over the rival’s actions. IfYi

k is Firm i’s maximum

expected profits whenε i
k occurs, thenLi

sk ≡ Σr βi
rkπrsk - Y i

k is Firm i’s expected loss of using

actionxi
s in k. BecauseYi

k is the maximum possible expected profit, the expected loss when

Firm i uses actions must be nonpositive,

(2.1) L
i
sk ≤ 0.
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For αk to be optimal, the product of the expected loss and the corresponding probability must

equal zero:

(2.2) L
i
sk α i

sk 0.

Equation 2.2 says that there is a positive probability that Firmi will use actions only if the

expected profits when actions is used are equal to the maximum expected profit.

This problem may have more than one pure or mixed strategy. Our estimation method

selects a particular pure or mixed strategy consistent with these restrictions and the data.

2.2 Econometric Implications

Our objective is to estimate the firms’ strategies subject to the constraints implied by

optimization, Equations 2.1 and 2.2. We cannot use these constraints directly, however,

because they involve the unobserved random variablesε i
k. By taking expectations, we

eliminate these unobserved variables and obtain usable restrictions.

Using the expectations operator Ek, we defineβi
r ≡ Ek βrk, Yi ≡ Ek Yi

k, αi
s ≡ Ek αi

sk, πi
rs

≡ Ek πi
rsk, and Ek Li

sk ≡ Li
s. If we defineθi

sk ≡ Li
sk - (Σrβ

i
rπ

i
rs - Yi) and take expectations, then

Ek θi
sk = Σr cov(βi

rk, πi
rsk) ≡ θi

s. Thus,Li
s ≡ Ek Li

sk = Σr βi
rπ

i
rs - Yi + θi

s. Taking expectations

with respect tok of Equation 2.1, we obtain

(2.3)
r

βi
r πi

rs Y i θi
s ≤ 0.

Taking expectations with respect tok of Equation 2.2, we find that
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(2.4) 





r

βi
r πi

rs Y i αi
s δ i

s 0 ,

whereδi
s ≡ θi

sα
i
s + cov(θi

sk, αi
sk). We can estimate the observable (unconditional) strategy

vectorsαi, i = 1, 2, subject to the conditions implied by Firmi’s optimization problem, Equa-

tions 2.3 and 2.4.

For the general case of private information, we cannot determine the sign ofθi
s andδi

s.

However, if Firm i does not condition its beliefs about Firmj’s actions on its own private

information (as would be reasonable if the private information is uncorrelated), thenβi
rk is

constant overk. Here,θi
s = 0 andδi

s = cov(θi
sk, αi

sk) = cov(Li
sk, αi

sk) ≥ 0. This last relation

holds with strict inequality if and only if the number of states in which it is optimal for Firm

i to use actionxi
s, with positive probability, is greater than 1 (so thatαi

s > 0) and less thanK

(so thatLi
s < 0). If firms have no exogenous uncertainty but use mixed strategies, thenθi

s =

δi
s = 0. Thus, private, uncorrelated information impliesθi

s = 0 andδi
s ≥ 0, whereas the

absence of exogenous uncertainty impliesθi
s = 0 andδi

s = 0.

If the information that is unobserved by the econometrician is common knowledge to

the firms, Firmi’s beliefs and actions may be conditioned on the random variableε j
m that

Firm j faces. If so,βi
rk is replaced byβi

rkm, andαi
sk is replaced byαi

skm, but restrictions 2.1

and 2.2 are otherwise unchanged. Taking expectations overk andm, we obtain restrictions of

the same form as Equations 2.2 and 2.3. Again, in general we cannot signθi
s andδi

s.
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We have assumed that the econometrician observes the actions that firms choose, but

not the information they use to condition these actions,ε i
k. This assumption simplifies the

estimation problem, because it means that the strategies,αi, are numbers.2

We view 2.3 and 2.4 as stochastic restrictions that hold approximately due to an

additive error in each equation. We already have additive parameters (θi
s andδi

s), so we are

able to estimate the sum of those parameters and any additive error, but we cannot identify

the two components. Thus, for notational simplicity, we call the sum of the systematic and

random componentsθi
s andδi

s (rather than add new random variables). We also include an

additive error, µis ∈ [-1, 1], associated withαi
s. That is, we replace 2.4 with

(2.5) 





r

βi
r πi

rs Yi αi
s µi

s δi
s 0 .

We have an analogous set of restrictions for Firmj.

The Nash assumption is that agents’ beliefs about their rival’s actions are correct so

that

for i ≠ j. We henceforth maintain the Nash assumption.

(2.6) βi
r α j

r ,

2 If the firms’ strategies are conditioned on a variableζ that the econometrician ob-
serves, the econometrician may need to estimate functionsαi(ζ) rather than numbers,αi.
Suppose, however, that Firmi’s profits can be written as fi(ζ)πi

rsk, where fi is a positive func-
tion. For example, Firmi chooses pricepi, and faces demandDi(pi, pj)fi(ζ). Given this
multiplicative form, fi(ζ) merely rescales the restrictions 2.3 and 2.4 [we can divide each
restriction by fi(ζ)], and the equilibrium strategies,αi, are independent ofζ. Throughout the
rest of this paper, we assume that any variables such asζ enter the profit functions multipli-
catively so that restrictions 2.3 and 2.4 are correct.
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If we tried to estimate this model — Equations 2.3, 2.5 and 2.6 — using traditional

techniques, we would run into several problems. First, with conventional sampling theory

estimation techniques, we would have to specify arbitrarily an error distribution. Second,

imposing the various equality and inequality restrictions from our game-theoretic model

would be very difficult if not impossible with standard techniques. Third, as the problem is

ill posed in small samples (there are more parameters than observations), we would have to

impose additional assumptions to make the problem well posed. To avoid these and other

estimation and inference problems, we propose an alternative approach.

3. GENERALIZED-MAXIMUM-ENTROPY ESTIMATION APPROACH

We use generalized maximum entropy (GME) to estimate the firms’ strategies. In this

section, we start by briefly describing the traditional maximum entropy (ME) estimation

procedure. Then, we present the GME formulation as a method of recovering information

from the data consistent with our game. This GME method is closely related to the GME

multinomial choice approach in Golan, Judge, and Perloff (1996). Unlike ML estimators, the

GME approach does not require explicit distributional assumptions, performs well with small

samples, and can incorporate inequality restrictions.

3.1 Background: Classical Maximum Entropy Formulation

The traditional entropy formulation is described in Shannon (1948), Jaynes (1957a;

1957b), Kullback (1959), Levine (1980), Jaynes (1984), Shore and Johnson (1980), Skilling

(1989), Csiszár (1991), and Golan, Judge, and Miller (1996). In this approach, Shannon’s

(1948) entropy is used to measure the uncertainty (state of knowledge) we have about the
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occurrence of a collection of events. Lettingx be a random variable with possible outcomes

xs, s = 1, 2, …,n, with probabilitiesαs such thatΣs αs = 1, Shannon (1948) defined the

entropyof the distributionα = (α1, α2, ..., αn)’, as

(3.1) H ≡
s

αs ln αs ,

where 0 ln 0≡ 0. The functionH, which Shannon interprets as a measure of the uncertainty

in the mind of someone about to receive a message, reaches a maximum whenα1 = α2 = …

= αn = 1⁄n. To recover the unknown probabilitiesα, Jaynes (1957a; 1957b) proposed maxi-

mizing entropy, subject to available data consistency relations, such as moments from the

observed data, and adding up constraints.

To use this approach for our game problem, we need to incorporate the data from our

sample. Letni
s be the number of timesxi

s is observed, out ofT total observations. The

observed frequency in the sample isn*s ≡ ns/T. [We henceforth suppress the firm superscript

for notational simplicity whenever possible.] For each firm, the observed frequency equals

the true strategy probability,αs, plus an error term:

(3.2) ns ≡
ns

T
αs es,

where the noise termes ∈ [-1, 1].

The traditional ME approach setses in Equation (3.2) equal to zero,

(3.3) ns αs
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and maximizes the Shannon measure (3.1) subject to Equation 3.3. The solution to this

problem is trivial in the sense that the constraint 3.3 completely determines the parameter

estimate. This ME estimator is identical to the ML estimator, when thex’s have a multinom-

ial distribution.

3.2 The Basic Generalized Maximum Entropy Formulation

The GME formulation, which uses restriction 3.2, is a more general version of the ME

formulation, which uses restriction 3.3. We obtain the basic GME estimator by maximizing

the sum of the entropy corresponding to the strategy probabilities,α, and the entropy from the

noise, e, in consistency condition 3.2 subject to that data consistency condition.

In general, the GME objective is a dual-criterion function that depends on a weighted

sum of the entropy from both the unknown and unobservableα ande = (e1, e2, ..., e)’. By

varying the weights, we can put more weight on estimation (accuracy of theα coefficients) or

prediction (assignment of observations to a category). The ME estimator is a special case of

the GME, in which no weight is placed on the noise component, so that the estimation

objective is maximized (thus maximizing the likelihood function). As a practical matter, our

GME objective weights theα ande entropies equally because we lack any theory that

suggests other weights.

The arguments of the entropy measures must be probabilities. The elements ofα are

probabilities, but the elements ofe range over the interval [-1, 1]. To determine the entropy

of e, we reparameterize its elements using probabilities. We start by choosing a set of

discrete points, called the support space,v = [v1, v2, ..., vM]’ of dimensionM ≥ 2, that are at

uniform intervals, symmetric around zero, and span the interval [-1, 1]. Each error pointes



11

has corresponding unknown weights ws = [ws1, ws2, ..., wsM]’ that have the properties of

probabilities: 0≤ wsm ≤ 1 andΣm wsm = 1. We reparameterize each error element as

es Σ
m

vmws m.

For example, ifM = 3, thenv = (-1, 0, 1)’, and there existsw1, w2, andw3 such that each

noise component can be written ases = w1(-1) + w3(1). Given this reparameterization, we

can rewrite the GME consistency conditions, Equation 3.2, as

(3.4) n α e α Wv ,

where rows of the matrixW is the vector of probabilitiesws, andv, the support space, is the

same for alls.

No subjective information on the distribution of probabilities is assumed. It is

sufficient to have two points (M = 2) in the support ofv, which converts the errors from

[-1, 1] into [0, 1] space. This estimation process recoversM - 1 moments of the distribution

of unknown errors, so a largerM permits the estimation of more moments. Monte-Carlo

experiments show a substantial decrease in the mean-square-error (MSE) of estimates whenM

increases from 2 to 3. Further increases inM provides smaller incremental improvement.

The estimates hardly change ifM is increased beyond 7 (Golan, Judge, Perloff, 1996; Golan,

Judge, Miller, 1996).

If we assume that the actions,x, and the errors,e, are independent and definew ≡

vec(W), the GME problem for each firm is
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(3.5) max
α, w

H α , w α′ ln α w′ ln w,

subject to the GME consistency conditions, Equation 3.4, and the normalization constraints

(3.6a,b) 1 α 1 1 w
s

1

for s = 1, 2, …,n.

3.3 Generalized Maximum Entropy Formulation of the Nash Model

We can also use the GME approach to estimate the strategies subject to the game-

theoretic restrictions. Here, we require the estimates to satisfy the optimality conditions,

Equations 2.3 and 2.5, and the Nash condition, Equation 2.6.3 Thus, our objective is to

recover the strategies,α, for each firm given theT observations and our knowledge of the

economic generating process. Here we assume that the econometrician knows the parameters

of πi
rs. Appendix 1 shows how to estimate these parameters jointly with other unknowns.

Equation 2.3 includes the noise componentsθi, and Equation 2.5 includes the noise

components µi andδi, i = 1, 2. Our first step is to reparameterize these six vectors in terms

of probabilities. Letvd be a vector of dimensionJ d ≥ 2 with corresponding unknown

weightsωd
k such that

3 Equations 2.3 and 2.4 are not standard econometric restrictions, as each includes an
additional unknown parameter:θi

s in Equation 2.3 andδi
s in Equation 2.4. Therefore, it might

appear that the added degree of freedom caused by the new parameter cancels the added
information in the restriction. However, when these restrictions are imposed, the parameters
θi

s andδi
s appear in the criterion function. As a result, imposing these restrictions causes the

estimates of all the parameters to change and improves the estimates, as we show below.
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(3.7)
j

ωd
sj 1,

(3.8) v d ωd
s

ds,

for d = µi, θi, andδi, i = 1, 2. The support spaces vd are defined to be symmetric around

zero for alld. The natural boundaries for the errors µi and µj are [-1, 1]. We do not have

natural boundaries forθi or δi, so we use the "three-sigma rule" (Pukelsheim, 1994; Miller

1994; Golan, Judge, and Miller 1996) to choose the limits of these support spaces, where

sigma is the empirical standard deviation of the discrete action space of prices or quantities.

To simplify the notation, letn* = (n*i ’, n*j ’)’, α = (αi’, αj’)’, w = (wi’, wj’)’, and

As above, we assume independence between theω (ωµi
, ωµj

, ωθi
, ωθ j

,ωδi
, ωδ j

) ′.

actions and the errors. The GME-Nash problem is

(3.9) Max
α,w,ω

H α, w, ω α′ ln α w′ ln w ω ln ω

subject to the data consistency conditions 3.4, the necessary economic conditions 2.3 and 2.5,

the Nash condition 2.6, and the normalizations forα, w, andω. The errorsθi
s, µi

s, andδi
s in

2.3 and 2.5 are defined by Equations 3.8 and 3.9. Solving this problem yields estimatesα̃, w̃,

and ω̃.

3.4 Properties of the Estimators and Normalized Entropy

All three different estimators, the ME-ML, GME, and GME-Nash, are consistent, but

they differ in efficiency and information content. The ML estimator is known to be
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consistent. Because the ME and ML estimators are identical, as we noted above, the ME

estimator is also consistent. Under the assumption that a solution to the GME-Nash

estimation problem exists for all samples and given an appropriate choice of the bounds of

the error in the data consistency constraint 3.2, we show in Appendix 2 that the GME and

GME-Nash estimators are also consistent.

We can compare the different estimators empirically using the normalized entropy

(information) measureS(α) = -(Σs αs ln αs)/(ln n), which measures the extent of uncertainty

about the unknown parameters. If there is no uncertainty,S(α) = 0. If there is full igno-

rance, in the sense that all actions are equally likely,S(α) = 1. All else the same, additional

information reduces the uncertainty in the data analyzed, resulting in a lower normalized

entropy

measure. Thus, to the degree that the constraints 2.3, 2.5, and 2.6 bind, the GME-Nash

normalized entropy measure is lower than is the GME measure:S(α̃) ≤ S(ᾰ).

4. AIRLINES

We estimate the strategic pricing behavior of American and United Airlines using the

ME-ML, GME, and GME-Nash approaches, and compare results. We allow for the possibili-

ty that American and United provide differentiated services on a given route and assume that

the demand curve facing Firmi is

(4.1) qi ai bi pi di pj ui ,
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whereai anddi are positive,bi is negative, andui is an error term.4 In Appendix 1, we

show how to reparametrize 4.1 so that it can be estimated along with the other parameters in

the GME-Nash model.

If firms choose prices, the necessary conditions 2.3 and 2.5 are

(4.2)
r

βi
r p

i
s c i q

i
r s Y i θi

s ≤ 0,

(4.3)








r

βi
r p

i
s c i q

i
r s Y i (αi

s µi
s ) δi

s 0 .

The Nash condition 2.6 is unchanged.

The data include price and quantity and cost data for 15 quarters (1984:4-1987:4,

1988:2, 1988:4) for various routes between Chicago and other cities.5 We calculated

marginal costs using the formula in Oum, Zhang, and Zhang (1993), and we used the average

of these for the parametersci. The nominal data are deflated using the Consumer Price

Index.

We restrict our attention to two city pairs, Chicago-Providence and Chicago-Wichita,

where United and American Airlines had no (or trivial) competition from other firms. On

these two routes, the average marginal cost was lower than observed prices and the estimated

4 We experimented with including various additional right-hand-side variables such as
measures of income, population, or economic conditions. None of these variables, however,
affected the fit of the equation or the parametersai, bi, anddi substantially.

5 The data were generously provided by James A. Brander and Anming Zhang. They
used these data in: Brander and Zhang (1990, 1993) and Oum, Zhang, and Zhang (1993).
These papers describe the data.
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demand curves were consistent with economic theory: The demand curves slope down,bi < 0,

and the services are substitutes,di > 0.

4.1 The Airline Model Specification

We first specify the upper and lower bound of the price space. The lower bound is

the smallest observed price for both airlines minus 10% and the upper bound is the largest

observed price for both airlines plus 10%. We then divide the price space into 20 equal

increments.

Because we do not know the true demand curve parameters, we simultaneously

estimate linear demand curves for each firm and a price-strategic choice model. We do not

estimateci since we have a measure of the average marginal costs.

4.2 Airline Estimates

In the GME-Nash model, the correlation between the actual and estimated quantities in

the demand equations are 0.1 for the American demand equation and 0.2 for the United

equation for Providence and 0.5 for both Wichita equations. For Providence, the demand

coefficients (ai, bi, anddi) are 1,865.8 (with an asymptotic standard error of 373.4), -12.1

(5.1), 4.7 (1.6) for American Airlines and 1,571.7 (456.2), -10.2 (5.6), 4.8 (6.2) for United

Airlines. Given these parameters, the own-demand elasticities at the sample mean are -2.6 for

American and -2.1 for United, and both the cross-elasticities are 0.95.

In Wichita, the demand coefficient are 637.7 (345.7), -3.7 (4.4), and 2.6 (4.0) for

American and 810.4 (238.9), -6.2 (2.8), and 3.6 (3.1) for United. The own-demand elastici-

ties are -1.5 for America and -2.1 for United, and the cross-price elasticities are 0.9 in the
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American equation and 1.2 in the United equation. Estimating these demand curves using

ordinary least squares yields estimates of the same sign and magnitude.

The estimated strategy parameters,α, are shown in Figure 1a for American Airlines

and in Figure 1b for United Airlines for the Providence route. Figures 2a and 2b show the

corresponding distributions for Wichita. The ME-ML estimates are the observed frequencies.

The GME distribution is more uniform than that of the ME-ML model because the

GME consistency conditions 3.2 allow the estimates to differ from the actual frequency. In

attempting to maximize entropy, the GME estimator pushes the probability estimates toward

uniformity.

The GME-Nash distribution is smoother than the other two models and has one peak

for American and two peaks for United in both cities. The global maximum of the GME-

Nash distribution is closer to the average price based on a standard Bertrand model than to a

Cournot or Collusive model. [The Cournot — $216 for American and $185 for United —

and collusive — $285 and $223 — means are too large to appear in Figure 2 for Wichita.]

The normalized entropy measure,S(α), for Providence is 0.66 for American and 0.67

for United for the ME-ML model. Consequently, the goodness of fit measures, pseudo-R2

(see Appendix 2), are 0.34 for American and 0.33 for United. The corresponding normalized

entropy measures (R2 measures) are both 0.90 (0.10) for the GME model and 0.61 (0.39) and

0.65 (0.35) for the GME-Nash model. The normalized entropy measures for Wichita are,

respectively, 0.73 (0.27) and 0.77 (0.23) for the ME-ML, 0.93 (0.07) and 0.94 (0.6) for the

GME, and 0.71 (0.29) and 0.66 (0.33) for the GME-Nash model. The drop in the entropy
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measure when we switch from the GME to the GME-Nash shows that the theoretical

restrictions contain substantial information.

The estimated expected rents,Ỹ, are $420,000 per quarter for American and $435,000

for United on the Providence route, and $435,000 for American and $449,000 for United on

the Wichita route. These rent calculations are based on the assumption that the average cost

equals the marginal cost. These numbers do not include fixed costs. Unless the fixed costs

are large, these number suggest that the airlines made positive profits during this period. The

estimated expected rents are consistent with the magnitudes of the prices and quantities

observed.

For both airlines for both cities, the average value ofθ̃ is practically zero. The

average value ofδ̃ is positive. For example, in Providence, only 2 out of the 40 values ofδ̃

were negative. This sign pattern is consistent with firms having private, uncorrelated

information. This pattern is inconsistent with the hypothesis that firms use mixed strategies

despite the absence of exogenous randomness.

4.3 Comparing Estimators

How does our approach compare to traditional methods?6 For the purposes of

comparison, we estimated a traditional conjectural variations (CV) model given our heteroge-

6 We cannot directly compare our results to those in Brander and Zhang (1990, 1993)
and Oum, Zhang, and Zhang (1993), because they assume that the services of the two airlines
are homogeneous, whereas we estimate demand curves based on differentiated services.
Moreover, they estimate pure strategy models in two of their papers, where we permit mixed
or pure strategies. In their other paper, Brander and Zhang (1993) estimate a supergame
(trigger price) model. If there are punishment periods during the sample, our estimates may
show two or more peaks in the distribution ofα. However, if the firms are using such
supergames, we should modify our repeated single-period game model accordingly.
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nous demand equations. The CV model consists of four equations: the two demand curves

and two optimality (first-order) conditions.7

Figures 3a and 3b show how the conjectural variations distribution compares to the

GME-Nash and ME-ML for Providence. The CV distribution has multiple peaks, with its

global maximum slightly higher than the GME-Nash. The CV distribution is significantly

different than the ME-ML for United on the Chicago-Providence route based on a

Kolmogorov-Smirnov test. Similarly, for United on the Chicago-Wichita route, the CV

distribution differs from the GME-Nash strategy distribution.

The estimated market power of these firms is similar for the different estimators.

Table 1 shows how the expected Lerner Index of market power (the difference between price

and marginal cost as a percentage of price) for the different estimators. The ME-ML Lerner

Index is identical to the index based on the observed data. The GME indexes are virtually

the same or slightly lower than the ME-ML indexes. The average GME-Nash and CV esti-

mates are virtually identical and slightly higher than the sample-based index.

Using the demand parameters from the GME-Nash model, we also calculated the

average Bertrand, Cournot, and collusive Lerner Indexes. The average Bertrand index is

virtually the same as the average GME-Nash and CV indexes. The Cournot and collusive

indexes are much higher.

7 When we tried to estimate the four equations simultaneously using standard ML
techniques, some of the demand parameters took on theoretically incorrect signs. Conse-
quently, we estimated the demand curves and then estimated the optimality conditions treating
the estimated demand parameters as exact. Both approaches produced similar estimates of the
conjectures. Figures 3a and 3b use the second set of estimates where we used the marginal
cost in each period to generate a distribution of estimates.
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4.4 Hypothesis Tests

Using our estimates, we can test various market-structure hypotheses. We start by

considering two "pretest" hypotheses. We strongly reject the competitive market hypothesis

that the expected price equals the expected marginal cost (first row of Table 2) using a

standardχ2 test.

In contrast, for three out of the four cases we do not reject the hypothesis that the

distribution of the marginal cost is the same as the distribution of the prices for three out of

four cases (second row of Table 2). That is, the prices and marginal costs "move together" as

we expect.

Next, we examine whether the airlines use identical strategies in the GME-Nash

model. We fail to reject (at the 0.05 level) the hypothesis that both airlines have the sameα̃

distribution in Providence, but we reject this hypothesis in Wichita.

We then examine the key hypotheses that firms maximize single-period profits and

that the Nash restriction holds. We use entropy-ratio tests, which are analogous to likelihood-

ratio tests (Appendix 2). To test whether a particular restriction holds, we compare the

entropy measures from a restricted estimator and from an unrestricted estimator. We fail to

reject that firms maximize single-period expected profits (Equations 2.3 and 2.5). We

similarly fail to reject that they use Nash equilibrium strategies to maximize single-period

expected profits (Equations 2.6, 2.3, and 2.5). That is, our GME-Nash model is consistent

with the data.

Although the data are consistent with our game-theoretical restrictions, these restric-

tions affect the estimated strategies significantly. Based on a standardχ2 test, we reject the
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hypothesis in three out of four cases that the estimatedα distribution is the same for the

GME (which lacks the maximizing and Nash restrictions) and the GME-Nash models. Not

surprisingly, we strongly reject the hypothesis that the estimates of the ME-ML model are the

same as those for the GME-Nash model.

4.5 Sample Size Sensitivity Experiments

The squared-error loss of each of our three estimators differs as sample size changes.

We can demonstrate these properties using sensitivity experiments, where we assume that the

estimated demand equations for the Chicago-Wichita route hold with an error term that is

distributed N(0, 1). We assume that Firmi has informationεi about its marginal cost and that

this information is private and uncorrelated (as is consistent with our estimates), so that Firm

i’s beliefs,βi
r, do not depend onε i

k. The marginal cost for each firm in each period is drawn

from a normal distribution N(60, 5), which closely approximates the distribution of marginal

costs for Wichita. We approximate this continuous distribution using a finite grid and use the

probabilities associated with the resulting discrete distribution,ρk, to determine the Nash

restriction that beliefs are correct in equilibrium. This restriction requires thatΣk αj
rkρk = βi

r.

We then generate Nash equilibrium strategiesα using this restriction and the necessary condi-

tions 2.1 and 2.2. (We establish by means of sensitivity studies that this equilibrium is

unique.) We use the resulting equilibrium probabilitiesα to generate samples of actions by

drawing a uniform random number on the unit interval and using that to assign an action for

each observation. We generated 200 samples forT (the number of observations in each

sample) = 10, 20 and 40, withn (the number of possible actions for each firm) = 20.
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The GME estimator ofα has smaller variance than the ME-ML estimator.8 Given

that the game-theoretic constraints are correct, the possible solution space for GME-Nash

estimate ofα is a subset of the solution space of the GME estimate ofα. Thus, we

conjecture that the GME-Nash estimator has a smaller variance than the GME.

The superior finite sample properties of the GME-Nash and GME over the ME-ML

are confirmed by our sampling experiments. Table 3 reports the empirical mean square error

(MSE(α̃i) = Σs,t (α̃i
st - αi

s)
2/200 (where the indext denotes the sample) and the correlation

coefficient between the estimated and trueαi
s for each of the models. The table shows two

sets of results depending on whether the econometrician knows the demand coefficients or has

to estimate them. In the latter case, we generate quantities demanded by adding a N(0, 1)

term to the demand equation.

The ME-ML and GME perform better (in terms of MSE and correlations) as the

number of observations increases. The GME-Nash, however, performs well (relative to the

other estimators) for a small number of observations, and the GME-Nash estimates do not

improve as the number of observations increases beyond 20. This latter result is very

attractive if, as usual, one has relatively few time-series observations. Finally, the GME-Nash

estimator yields superior estimates even when the demand coefficients are unknown, without

assuming knowledge of the error distributions.

8 The proof is analogous to the one given in Golan, Judge, and Perloff (1996).
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5. CONCLUSIONS

Our generalized-maximum-entropy-Nash (GME-Nash) estimator can estimate firms’

strategies consistent with game theory and the underlying data generation process. It is free

of parametric assumptions about distributions and ad hoc specifications such as those used in

conjectural-variations models.

Our simplest approach to estimating strategies is to use the maximum-likelihood (ML)

or maximum-entropy (ME) estimators. These approaches produce the same estimates, which

are the observed frequencies in the data. These estimators do not make use of demand or

cost information and do not impose restrictions based on theory.

We also estimate two GME models. The basic GME estimator allows greater

flexibility than the ML-ME estimator, but does not use demand, cost, or game-theoretic

information. We show that this GME estimator is more efficient than the ME-ML estimator

in terms of mean-square error, correlation, and other measures of variance. The GME-Nash

estimator uses all available data, and game-theoretic information. In our sampling experi-

ments, the GME-Nash estimator is more efficient than the basic GME and ME-ML estima-

tors.

On the basis of our hypothesis tests, we find that the static game-theoretic restrictions

are consistent with the data. Nonetheless, the restrictions have bite: The estimates of firms’

strategies based on the model with theoretical restrictions imposed differ from those based on

the unrestricted model.

In Golan, Karp, Perloff (1996), we examine a version of this model where strategies

may vary with variables the econometrician observes and allow firms to choose both price
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and advertising. In future papers, we plan two other generalizations of our approach. First,

we will examine whether a price-choice or quantity-choice model is appropriate. Second, we

will extend the model to allow for dynamic games.

Our approach to estimating games can be applied to many problems in addition to

oligopoly, such as wars and joint decisions by husbands and wives. To do so only requires

replacing profits with some other criterion.
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Appendix 1: Technical Details

A1.1 The Solution to Equation (3.5)

The Lagrangean to the GME problem is

(A1.1)

L λ , ρ , η
s

αs ln αs
s m

wsm ln wsm

s
λs ns αs v w

s
ρ (1 1 α )

s
ηs (1 1 w

s
) .

whereλ, ρ, andη are Lagrange multipliers. Solving this problem, we obtain the GME

estimators

(A1.2) ᾰs

exp λ̆s

j
exp λ̆j

≡
exp λ̆s

Ω λ̆
,

and

(A1.3) w̆sm

exp λ̆s vm

m
exp λ̆s vm

≡
exp λ̆s vm

Ψs λ̆
,

(A1.4) ĕ W̆v .

The Hessian is negative definite (the firstn elements on the diagonal are -1/αs, the rest are

-1/wsm, and the off-diagonal elements are 0) so the solution is globally unique.
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Following Agmon et. al (1979), Miller (1994), and Golan et al. (1996), we can

reformulate the GME problem as a generalized-likelihood function, which includes the

traditional likelihood as a special case:

(A1.5)

L λ
s

αs λ ln αs λ
s m

wsm λ ln wsm λ

s
λs ns αs v w

s

s
αs λ λs ln Ω λ

s m
ws m λ λs vm ln Ψs λ

s
λs ns αs v w

s

s
λs ns ln Ω λ

s
ln Ψs λ .

Minimizing Equation 3.11 with respect toλ — setting the gradient,∆L(λ) = n* - α - e, equal

to zero — yields the same estimates as from the original formulation, Equation A.2. One

advantage of this dual formulation, Equation A.5, is that it is computationally more efficient.

A1.2 GME-Nash with Unknown Demand Coefficients

We now show how to simultaneously estimate the profit or demand parameters and

the strategy parameters using GME estimation procedures. We need to modify the objective

function 3.10 by adding the profit (or demand) functions for each firm as additional con-

straints. We estimate the demand curves simultaneously with the rest of the model. For

example, let the demand curve facing Firmi be

(A1.6) qi a i b i p i d i p j u i ≡ X i φ i u i ,
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whereqi is the quantity vector,pi is the price vector,ai anddi are positive scalars,bi is a

negative scalar,ui is a vector of error terms,Xi is a matrix, andφi is a vector of parameters.

To use an entropy approach, we need to map the unknown parametersφi andui into

probability space. Following Golan, Judge, and Miller (1996), we model these unknown

parameters as discrete random variables with finite supports. For simplicity, we drop the

firm’s superscript for the rest of this Appendix.

Let φ be in the interior of an open, bounded hyperrectangle,Z ⊂ ℜK, and, for eachφk,

let there be a discrete random variablezk, with M ≥ 2 possible realizationszk1,..., zkM and

corresponding probabilitiespk1,..., pkM such that

(A1.7) φk

M

m 1
pkmzkm.

Letting Z be theM-dimensional support forzk, any φ ∈ Z can be expressed as

(A1.8) φ Z p





















z
1

0 . 0

. z
2

. 0

. . . .

0 0 . z
K





















p
1

p
2

.

p
k

,

whereZ is a (K × KM) matrix andp is a KM-vector of weights such thatpK >> 0 andpK 1M

= 1 for each demand parameter fork = 1, 2, 3. The upper and lower bounds ofzk, zk1 and

zkM, are far apart and known to containφk. Further, we use our knowledge of the signs of

the unknown parameters from economic theory when specifying the support spaceZ.
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The unknown and unobservable errors,uit, are treated similarly. For each observation,

the associated disturbance,uit, is modelled as a discrete random variable with realizations

vu
1,..., vu

J ∈ vu with corresponding probabilitiesωu
t1,..., ωu

tJ. That is, each disturbance may be

modelled as

(A1.9) uit

J

j 1
ωu

t j v
u

j ,

for eacht = 1,...,T. The elements of the vectorvu form an evenly spaced grid that is

symmetric around zero.

Given a sample of dataqi, a simple way to determine the upper and lower bound ofvu

is to use the three-sigma rule together with the sample standard deviationσq. For example, if

J = 3, thenvu = (-3σq, 0, 3σq).

Having reparametrized the system of demand equation in this manner, the GME-Nash

model with unknown demand parameters is

(A1.10) max
α, w,p,ω

H (α, w, p, ω) α ln α w ln w p ln p ω ln ω ,

subject to the consistency conditions 3.4, the necessary economic conditions 2.3 and 2.5, the

Nash conditions 2.6, the two demand equations for Firmsi and j, Equations A1.6, and the

normalizations forα, w, p, andω, where Theω (ωµi
, ωµj

, ωθi
, ωθ j

,ωδi
, ωδ j

,ωu i
,ωu j

) ′ .

bounds of the error supports for the demand equations ±3σq.
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Appendix 2: The GME-Nash Estimator

A2.1 Consistency

Call the GME-Nash estimates of the strategiesα̃, the GME estimatesᾰ, and the ME-

ML estimatesα̂. We make the following assumptions:

Assumption 1: A solution of the GME-Nash estimator (α̃, w̃, ω̃) exists for any

sample size.

Assumption 2: The expected value of each error term is zero, its variance is

finite, and the error distribution satisfies the Lindberg condition (Davidson and

MacKinnon, 1993, p. 135).

Assumption 3: The true value of each unknown parameter is in the interior of

its support.

We want to prove

Proposition: Given assumptions 1-3, and lettingall the end point of the error

support spaces vand vd be normed by , plim(α̃) = plim(ᾰ) = plim(α̂) = α.T

When the profit parametersφ are unknown, the GME-Nash estimatesφ̃ are

consistent.

According to this proposition, the GME-Nash estimates,α̃, GME basic estimates,ᾰ, and the

ME-ML estimates,α̂, are equal to each other and to the true strategies in the limit as the

sample size becomes infinite,T → ∞. That is, all the estimators are consistent.



34

Proof:

i) The ME-ML estimates are the observed frequencies: AsT → ∞, the observed

frequencies converge to the population frequencies, so the ME-ML estimates are consistent:

plim α̂T = α.

ii) The GME is consistent: Let the end points of the error supports ofv, v1 andvm,

be - and respectively. AsT → ∞, ψs → 1 for all s in the dual-GME, Equation1 / T 1 / T

A.5. Thus,Σs ln ψs(λ) → 0 and plimᾰT = α.

iii) The GME-Nash with known profit parameters is consistent: By Assumption 1,

after we have added the restrictions 2.3 and 2.5, we still have a solution. The argument in

(ii) together with Assumption 2 implies that plimα̃T = α.

iv) The GME-Nash with unknown profit parameters is consistent: Given Assumption

3, the GME is a consistent estimator ofφ in the linear Equation A2.1 (Golan, Judge, and

Miller, 1996, Ch. 6; Golan and Judge, 1996; Mittelhammer and Cardell, 1996): plimφ̃T = φ.

By the argument in (iii), plimα̃T = α. These asymptotic properties can also be established

using the empirical likelihood approach (Owen, 1990; Qin and Lawless, 1994; and Golan and

Judge, 1996).

A2.2 Hypothesis testing

On the basis of the consistency of the estimators, we can define an "entropy ratio

statistic" which has a limitingχ2 distribution. We use this statistic to test hypotheses. In

general, letλ* be the vector of Lagrange multiplies forall the model’s constraints. Let

HM(λ*0) be the entropy value of the constrained problem whereλ* = 0, or equivalently all the

parameters (strategies as well as demand coefficients) are constrained to be zero (or at the
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centerof their supports). Thus,HM(λ*0) is the maximum value of the joint entropies

(objective function). It can be obtained by maximizing Equation (3.9) subject to no con-

straints (except for the requirement that all distributions are proper). Doing so yields the total

entropy value of the three sets of discrete, uniform distributionsα, w, andω. Now, let

Hu(λ̃*) be the objective (total entropy) value for the full GME-Nash model — the optimal

value of Equation (3.9) — whereλ* is the set of estimated values (that is, they are not forced

to equal zero).

The entropy-ratio statisticfor testing the null hypothesisH0 that all parameters are

zero is

(parameters 0) 2HM (parameters 0) 2Hu(α̃ , w̃, ω̃ ) .

Under the mild assumptions we made above (or the assumptions of Owen, 1990 and Qin and

Lawless, 1994), asT → ∞ when H0 is true andK is the number(parameters 0) → χ2
K

of restrictions. The approximateα-level confidence intervals for the estimates are obtained

by setting , whereCα is chosen so that Pr(χ2
K < Cα) = α. Similarly, we can test( ) ≤ Cα

any other hypothesis of the formH0: α = α0 for all, or any subset, of the parameters. We

use these entropy-ratio statistics to test whether the economic and Nash restrictions are

consistent with the airline data.

We use the same line of reasoning as above (each constraint, or data point, represents

additional potential information that may lower the value of the objective function but can

never increase it) to derive a "goodness of fit" measure for our estimator:
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R 1
Hu(λ̃ )

HM (λ̃ 0)
,

whereR* = 0 implies no informational value of the data set, andR* = 1 implies perfect

certainty or perfect in-sample prediction.

The small-sample approximated variances can be computed in a number of ways. We

discuss two simplest approaches here. First, for each equation (say the two sets of demand

equations), we calculate

σ̂2
i

1
T t

ũ
2
it ,

where and for each parameterφ i
k. Similarly, for eachũi t ≡

j
ω̃u

t j v
u

j vâr (φi
k) ≅ σ̃2

i (X X ) 1

set of equations, the relevantσ2 is estimated.

Because our model is a system of a large number of equations, the elements of the

asymptotic variance-covariance matrix,Ω, for the error terms of the entire system are

estimated in the traditional way, taking into account all the data and all the restrictions

(Equations 2.3, 2.5, 2.6, and A.6).

Finally, we note the relationship between the entropy objective and theχ2 statistic.

This relationship is used for comparison of various estimated strategies and various estimated

distribution. The cross-entropy measures is defined as
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(A2.1) I (α , α o)
k

αk ln (αk/α
o
k ) ,

whereαo is a proper prior probability distribution. Now, let {αk} be a set ofK observed

frequencies (strategies) over a set ofK observed prices. Let the null hypothesis beH0: α =

αo, then

χ2
(k 1)

k

1

αo
k

(αk αo
k )2.

A second-order approximation of (A2.1) is

I (α , α o) ≅ 1
2 k

1

αo
k

(αk αo
k )2 ,

which is the entropy-ratio statistic (for evaluatingα̃ versusα̃o) that we previous discussed.

We conclude by noting that two times the entropy-ratio statistic corresponds (at the limit) to

χ2
(k-1).
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Table 1: Average Lerner Indexes, (p - MC)/p

Providence Wichita

American United American United

ME-ML: Observed 0.35 0.37 0.62 0.62

GME 0.34 0.35 0.62 0.61

GME-Nash 0.37 0.40 0.64 0.59

Conjectural Variation 0.37 0.40 0.65 0.64

Bertrand 0.37 0.40 0.64 0.59

Cournot 0.40 0.43 0.72 0.68

Collusive 0.45 0.48 0.78 0.74
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Table 2: Hypothesis Tests(Entropy-Ratio Statistics)

Null Hypothesis Providence Wichita

Competitive Market Hypothesis

i
α̃i pi MC

rejected (at any

significance level)

rejected (at any

significance level)

Distribution of MC = Distribution of

Prices (14 df)

AA: 0.17 fail to reject

UA: 0.12 fail to reject

AA: 21.1 fail to reject

UA: 29.2 reject

Distribution of α̃ is the same for both

airlines (19 df)

15.0 fail to reject 96.1 reject

Maximizing behavior (Eq. 2.3, 2.5)

(121 df)

27.0 Fail to reject 40.5 Fail to reject

Nash (Eq. 2.3, 2.5, 2.6) 0.0 Fail to reject 0.7 Fail to reject

Distribution of α̃ is the same for GME

and GME-Nash models (19 df)

AA: 79.6 reject

UA: 36.4 fail to reject

AA: 55.8 reject

UA: 128.0 reject

Distribution of α̃ is the same for

ME-ML and GME-Nash models (19

df)

AA: 206.0 reject

UA: 308.5 reject

AA: 56.0 reject

UA: 128.0 reject
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Table 3: Sample Size Sampling Experiment(n = 20)

MSE(α1) MSE(α2)
Correlation,

Firm 1
Correlation,

Firm 2

T = 10

ME-ML .285 .145 .68 .79

GME .137 .068 .66 .77

GME-Nash1 .086 .037 .79 .89

GME-Nash2 .110 .060 .66 .76

T = 20

ME-ML .263 .104 .69 .84

GME .132 .050 .66 .81

GME-Nash2 .075 .023 .77 .91

T = 40

ME-ML .245 .091 .70 .86

GME .124 .049 .67 .80

GME-Nash2 .075 .026 .78 .90

1 Known demand coefficients.
2 Unknown demand coefficients.
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Figure 1a: Price Strategy of American Airlines, Chicago-Providence
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Figure 1b: Price Strategy of United Airlines, Chicago-Providence
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Figure 2a: Price Strategy of American Airlines, Chicago-Wichita
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Figure 2b: Price Strategy of United Airlines, Chicago-Wichita
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Figure 3a: Strategy and Conjectural Variation Models for American Airlines, Chicago-Providence
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Figure 3b: Strategy and Conjectural Variation Models for United Airlines, Chicago-Providence




