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Abstract
We develop a generalized maximum entropy estimator that can estimate pure and
mixed strategies subject to restrictions from game theory. This method avoids distributional
assumptions and is consistent and efficient. We demonstrate this method by estimating the
mixed strategies of duopolistic airlines.
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1. INTRODUCTION

We develop a method for estimating oligopoly strategies subject to restrictions implied
by a game-theoretic model. We illustrate our new method by estimating the pricing strategies
of American and United Airlines.

Unlike most previous empirical applications, we do not assume that firms use a single
pure strategy nor do we make the sort of ad hoc assumptions used in conjectural variations
models! Our method allows firms to use either pure or mixed (or distributional) strategies
consistent with game theory.

First, we approximate a firm’s continuous action space (such as price, quantity, or
advertising) with a discrete grid. Then, we estimate the vector of probabilities — the mixed
or pure strategies — that a firm chooses an action within each possible interval in the grid.
We use these estimated strategies to calculate the Lerner index of market structure.

The main advantage of our method is that it can flexibly estimate firms’ strategies
subject to restrictions implied by game theory. The restrictions we impose are consistent with
a variety of assumptions regarding the information that firms have when making their
decisions. Firms may use different pure or mixed strategies in each state of nature. Firms
may have private or common knowledge about the state of nature, which is unobserved by the
econometrician. For example, a firm may observe a random variable that affects its marginal
profit and know the distribution (but not the realization) of the random variable that affects its

rival’'s marginal profit. Each firm may choose a pure strategy in every state of nature and

1 Breshnahan (1989) and Perloff (1992) survey conjectural variations and other structural
and reduced-form "new empirical industrial organization" studies.
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regard its rival’s action as a random variable. Alternatively, there may be no exogenous
randomness, but the firm uses a mixed strategy. To the econometrician, who does not
observe the firm’s information or state of nature, the distribution of actions looks like the
outcome of a mixed strategy in either case. The econometrician is not able to determine the
true information structure of the game. Nevertheless, the equilibrium conditions for a variety
of games have the same form, and by imposing these conditions we can estimate strategies
that are consistent with theory.

There have been few previous studies that estimated mixed or pure strategies based on
a game-theoretic model. These studies (Bjorn and Vuong 1985, Bresnahan and Reiss 1991,
and Kooreman 1994) involve discrete action spaces. For example, Bjorn and Vuong and
Kooreman estimate mixed strategies in a game involving spouses’ joint labor market
participation decisions using a maximum likelihood (ML) technique. Our approach differs
from these studies in three important ways. First, they assume that there is no exogenous
uncertainty. Second, in order to use a ML approach, they assume a specific error distribution
and likelihood function. Third, they allow each agent a choice of only two possible actions.
Despite this limited number of actions, their ML estimation problems are complex.

Our problem requires that we include a large number of possible actions so as to
analyze oligopoly behavior and allow for mixed strategies. To do so using a ML approach
would be extremely difficult. Instead, we use a generalized-maximum-entropy (GME)
estimator. An important advantage of our GME estimator is its computational simplicity.
With it, we can estimate a model with a large number of possible actions while imposing

inequality and equality restrictions implied by the equilibrium conditions of the game. In
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addition to this practical advantage, the GME estimator does not require strong, arbitrary
distributional assumptions, unlike ML estimators.

In the next section, we present a game-theoretic model of firms’ behavior. In the third
section, we describe a GME approach to estimating this game. The fourth section contains
estimates of the strategies of United and American Airlines, and sampling experiments that
illustrate the small sample properties of our GME estimator. In the final section, we discuss

our results and possible extensions.

2. OLIGOPOLY GAME

Our objective is to estimate the strategies of oligopolistic firms using time-series data
on prices, quantities, and, when available, variables that condition the demand or cost
relations. We assume that two firmsandj, play a static game in each period of the sample.
(The generalization to several firms is straightforward.)

Firm i (and possibly Firnj), but not the econometrician, observes the random variable
si(t) in periodt. For notational simplicity, we suppress the time variablel'he set ofK
possible realizations,gf, €,, ..., £}, is the same every period and for both firms. This
assumption does not lead to a loss of generality because the distribution may be different for
the two firms. The firms — but not the econometrician — know the distributiong ofWe
consider three possible stochastic structures: (1) Firms face no exogenous randdfrmess (
1); (2) g, is private information for Firm; (3) g, is common-knowledge for the firms. Be-
cause the econometrician does not obsegyeven if the firms use a pure strategy in each
period, it appears to the econometrician that they are using a mixed strategy whenever their

actions vary over time.
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2.1 Strategies

The set ofn possible actions for either firm isx{, x,, ..., X,}. The assumption that
the action space is the same for both firms entails no loss of generality because the profit
functions can be specified so that certain actions are never chosen. The neltatieans
that Firmi chooses action,. We now describe the problem where the random state of nature
is private information and then discuss alternative assumptions of a single state of nature or
common information.

In determining its own strategy, Firmforms a prior,Bisk, about the probability that
Firm j will pick action xjswheni observesli(. If the firms’ private information is correlated,
it is reasonable for Firni to base its beliefs abojis actions orel. If the private informa-
tion is uncorrelated, Firnh form priors that are independent qj We do not, however,
assume independence. In staéFirm i’'s strategy isay = (@}q, O, ..., AL, Whereal is
the probability that Firm chooses actio;xis. If Firm i uses a pure strategy,i(S is one for a
particulars and zero otherwise.

The profit of Firmi is Ty, = (X, x., €}), wherer indexes the strategies of Firjrand
s indexes the actions of Firm In statek, Firm i chooseqx, to maximize expected profits,
S, Bl T Where the expectation is taken over the rival’s actionsYj Ifs Firm i's maximum
expected profits whes,, occurs, therL,, = = Bl - Y| is Firmi's expected loss of using
actionxiS in k. Becausé{,i( is the maximum possible expected profit, the expected loss when

Firm i uses actiors must be nonpositive,

(2.1) Lec< 0.
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For a, to be optimal, the product of the expected loss and the corresponding probability must

equal zero:
2.2 ii
(2.2) Loy Oy = O.
Equation 2.2 says that there is a positive probability that Fimill use actions only if the
expected profits when actiamnis used are equal to the maximum expected profit.
This problem may have more than one pure or mixed strategy. Our estimation method

selects a particular pure or mixed strategy consistent with these restrictions and the data.

2.2 Econometric Implications

Our objective is to estimate the firms’ strategies subject to the constraints implied by
optimization, Equations 2.1 and 2.2. We cannot use these constraints directly, however,
because they involve the unobserved random vari&iﬁlesBy taking expectations, we
eliminate these unobserved variables and obtain usable restrictions.

Using the expectations operatog, Bve definep! = E, B, Y = E, Y, Gis = E, cxisk, TErS
=k, T[‘;.Sk, and g L,isk = L;. If we defineegk = L,isk - (ZrBirn"rS -'Y') and take expectations, then
= isk = %, cov(Bl,, Tﬂsk) = eis. Thus,LiS = E, Lgk =2, Birn"rs Y+ 6; Taking expectations

with respect tdk of Equation 2.1, we obtain

(2.3) YR -Yi+e <o.
r

Taking expectations with respect kaof Equation 2.2, we find that



(2.4) S B, - Yk + 8= 0,

whered| = 8lal + cov@l,, al)). We can estimate the observable (unconditional) strategy
vectorsa', i = 1, 2, subject to the conditions implied by Fiirs optimization problem, Equa-
tions 2.3 and 2.4.

For the general case of private information, we cannot determine the s@gﬁaﬂﬂ 6is.
However, if Firmi does not condition its beliefs about Fiffs actions on its own private
information (as would be reasonable if the private information is uncorrelated)Btpe’m
constant ovek. Here,. = 0 andd, = cov@l,, al)) = cov(Ll, al) > 0. This last relation
holds with strict inequality if and only if the number of states in which it is optimal for Firm
i to use actiorxg, with positive probability, is greater than 1 (so th}d;t> 0) and less thaiK
(so thatLiS < 0). If firms have no exogenous uncertainty but use mixed strategiesﬁi;.hen
L= 0. Thus, private, uncorrelated information impligls= 0 and3. > 0, whereas the
absence of exogenous uncertainty impBés= 0 anda. = 0.

If the information that is unobserved by the econometrician is common knowledge to
the firms, Firmi's beliefs and actions may be conditioned on the random varigblhat
Firm j faces. If so,Birk is replaced b}Birkm, andox;k is replaced b}aiskm, but restrictions 2.1
and 2.2 are otherwise unchanged. Taking expectationskosed m, we obtain restrictions of

the same form as Equations 2.2 and 2.3. Again, in general we cann(ﬂigimd 62.
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We have assumed that the econometrician observes the actions that firms choose, but
not the information they use to condition these actimﬁs,This assumption simplifies the
estimation problem, because it means that the strate_tgiieare numbers.

We view 2.3 and 2.4 as stochastic restrictions that hold approximately due to an
additive error in each equation. We already have additive paramé{gand3.), so we are
able to estimate the sum of those parameters and any additive error, but we cannot identify
the two components. Thus, for notational simplicity, we call the sum of the systematic and
random component&iS and 6is (rather than add new random variables). We also include an

additive error, 1] [-1, 1], associated witlu. That is, we replace 2.4 with

(2.5) %: [3irT[irS—YHO(iS+uiS +6is=0.
ar O

We have an analogous set of restrictions for Fjrm

The Nash assumption is that agents’ beliefs about their rival’s actions are correct so

that

(2.6) B:' = ol

r
fori #j. We henceforth maintain the Nash assumption.

2 |f the firms’ strategies are conditioned on a variaBléhat the econometrician ob-

serves, the econometrician may need to estimate functit{gy rather than numbersy'.
Suppose, however, that Firits profits can be written as(£)m,, where f is a positive func-
tion. For example, Firm chooses pricg', and faces demand'(p', p))f'(¢). Given this
multiplicative form, f(¢) merely rescales the restrictions 2.3 and 2.4 [we can divide each
restriction by f(2)], and the equilibrium strategies,, are independent af. Throughout the
rest of this paper, we assume that any variables suéheaer the profit functions multipli-
catively so that restrictions 2.3 and 2.4 are correct.
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If we tried to estimate this model — Equations 2.3, 2.5 and 2.6 — using traditional
techniques, we would run into several problems. First, with conventional sampling theory
estimation techniques, we would have to specify arbitrarily an error distribution. Second,
imposing the various equality and inequality restrictions from our game-theoretic model
would be very difficult if not impossible with standard techniques. Third, as the problem is
ill posed in small samples (there are more parameters than observations), we would have to
impose additional assumptions to make the problem well posed. To avoid these and other

estimation and inference problems, we propose an alternative approach.

3. GENERALIZED-MAXIMUM-ENTROPY ESTIMATION APPROACH
We use generalized maximum entropy (GME) to estimate the firms’ strategies. In this
section, we start by briefly describing the traditional maximum entropy (ME) estimation
procedure. Then, we present the GME formulation as a method of recovering information
from the data consistent with our game. This GME method is closely related to the GME
multinomial choice approach in Golan, Judge, and Perloff (1996). Unlike ML estimators, the
GME approach does not require explicit distributional assumptions, performs well with small

samples, and can incorporate inequality restrictions.

3.1 Background: Classical Maximum Entropy Formulation
The traditional entropy formulation is described in Shannon (1948), Jaynes (1957a;
1957b), Kullback (1959), Levine (1980), Jaynes (1984), Shore and Johnson (1980), Skilling
(1989), Csiszéar (1991), and Golan, Judge, and Miller (1996). In this approach, Shannon’s

(1948) entropy is used to measure the uncertainty (state of knowledge) we have about the
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occurrence of a collection of events. Lettirgpe a random variable with possible outcomes
Xy $=1, 2, ...,n, with probabilitiesag such thatz a, = 1, Shannon (1948) defined the

entropyof the distributiona = (a4, a5, ..., a,)’, as

(3.1) H=-Y aglnag,
S

where 0 In 0= 0. The functionH, which Shannon interprets as a measure of the uncertainty
in the mind of someone about to receive a message, reaches a maximunoyvhen, = ...
=a, = 1n. To recover the unknown probabilities Jaynes (1957a; 1957b) proposed maxi-
mizing entropy, subject to available data consistency relations, such as moments from the
observed data, and adding up constraints.

To use this approach for our game problem, we need to incorporate the data from our
sample. Len! be the number of times. is observed, out of total observations. The
observed frequency in the samplenis = n/T. [We henceforth suppress the firm superscript
for notational simplicity whenever possible.] For each firm, the observed frequency equals

the true strategy probabilityy,, plus an error term:

(3.2 nc=_°=q_+e

where the noise terrg [ [-1, 1].

The traditional ME approach set¢gin Equation (3.2) equal to zero,

(3.3) - a
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and maximizes the Shannon measure (3.1) subject to Equation 3.3. The solution to this
problem is trivial in the sense that the constraint 3.3 completely determines the parameter
estimate. This ME estimator is identical to the ML estimator, whenxtednave a multinom-

ial distribution.

3.2 The Basic Generalized Maximum Entropy Formulation

The GME formulation, which uses restriction 3.2, is a more general version of the ME
formulation, which uses restriction 3.3. We obtain the basic GME estimator by maximizing
the sum of the entropy corresponding to the strategy probabildieand the entropy from the
noise, e, in consistency condition 3.2 subject to that data consistency condition.

In general, the GME objective is a dual-criterion function that depends on a weighted
sum of the entropy from both the unknown and unobservabddde = (e, e,, ..., €)". By
varying the weights, we can put more weight on estimation (accuracy a teefficients) or
prediction (assignment of observations to a category). The ME estimator is a special case of
the GME, in which no weight is placed on the noise component, so that the estimation
objective is maximized (thus maximizing the likelihood function). As a practical matter, our
GME objective weights the ande entropies equally because we lack any theory that
suggests other weights.

The arguments of the entropy measures must be probabilities. The elementsef
probabilities, but the elements efrange over the interval [-1, 1]. To determine the entropy
of e, we reparameterize its elements using probabilities. We start by choosing a set of
discrete points, called the support space, [v4, Vs, ..., V]’ of dimensionM > 2, that are at

uniform intervals, symmetric around zero, and span the interval [-1, 1]. Each erroregoint
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has corresponding unknown weights w[wgq, Wgo, ..., W' that have the properties of

probabilities: 0< wy,,< 1 andZ,, w,,,= 1. We reparameterize each error element as

For example, ifM = 3, thenv = (-1, 0, 1)’, and there exist&;, w,, andws such that each
noise component can be written @s= w;(-1) + wg(1). Given this reparameterization, we

can rewrite the GME consistency conditions, Equation 3.2, as

(3.4) nx=a +e=0a + Wy,

where rows of the matrixW is the vector of probabilities,, andy, the support space, is the
same for alls.

No subjective information on the distribution of probabilities is assumed. It is
sufficient to have two pointsM = 2) in the support of/, which converts the errors from
[-1, 1] into [0, 1] space. This estimation process recowdrs 1 moments of the distribution
of unknown errors, so a largéd permits the estimation of more moments. Monte-Carlo
experiments show a substantial decrease in the mean-square-error (MSE) of estimat& when
increases from 2 to 3. Further increasedvirprovides smaller incremental improvement.
The estimates hardly changeNf is increased beyond 7 (Golan, Judge, Perloff, 1996; Golan,
Judge, Miller, 1996).

If we assume that the actions, and the errorsg, are independent and defime=

vec\W), the GME problem for each firm is



(3.5) maxH(a,w) = -a' Ina - w' Inw,

(3.6a,b) 7a =1 1w =1

fors=1, 2, ...,n.

3.3 Generalized Maximum Entropy Formulation of the Nash Model

We can also use the GME approach to estimate the strategies subject to the game-
theoretic restrictions. Here, we require the estimates to satisfy the optimality conditions,
Equations 2.3 and 2.5, and the Nash condition, Equatior?r Zlbws, our objective is to
recover the strategies, for each firm given thé observations and our knowledge of the
economic generating process. Here we assume that the econometrician knows the parameters
of Tlf.rs. Appendix 1 shows how to estimate these parameters jointly with other unknowns.

Equation 2.3 includes the noise compone@itsand Equation 2.5 includes the noise
components_iuandgi, I =1, 2. Our first step is to reparameterize these six vectors in terms
of probabilities. Let\_/OI be a vector of dimensiod® > 2 with corresponding unknown

weightswf such that

3 Equations 2.3 and 2.4 are not standard econometric restrictions, as each includes an
additional unknown parametefag in Equation 2.3 andig in Equation 2.4. Therefore, it might
appear that the added degree of freedom caused by the new parameter cancels the added
information in the restriction. However, when these restrictions are imposed, the parameters
B, and & appear in the criterion function. As a result, imposing these restrictions causes the
estimates of all the parameters to change and improves the estimates, as we show below.
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(3.7) Z wgj = 1,
j
(3.8) vl = d
— —s s
ford= J,j, 6, andd,i=1,2. The support space_g are defined to be symmetric around

zero for alld. The natural boundaries for the errqjsand_ﬁ are [-1, 1]. We do not have
natural boundaries foG_Bi or§i, so we use the "three-sigma rule" (Pukelsheim, 1994; Miller
1994; Golan, Judge, and Miller 1996) to choose the limits of these support spaces, where
sigma is the empirical standard deviation of the discrete action space of prices or quantities.

To simplify the notation, let* = (n"’, n7"y, a = (@", ), w= W", W'y, and

i/ i/ i/ i/ i/ i/ .
W=, o, o, o o, & ). Asabove, we assume independence between the

actions and the errors. The GME-Nash problem is

(3.9) Max H(a,w, @) = -a'Ina -w'Inw - & In w
a,wW,w

subject to the data consistency conditions 3.4, the necessary economic conditions 2.3 and 2.5,
the Nash condition 2.6, and the normalizationsdow, andw. The errorsdl, |, and3L in
2.3 and 2.5 are defined by Equations 3.8 and 3.9. Solving this problem yields estimaies

and &.

3.4 Properties of the Estimators and Normalized Entropy
All three different estimators, the ME-ML, GME, and GME-Nash, are consistent, but

they differ in efficiency and information content. The ML estimator is known to be
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consistent. Because the ME and ML estimators are identical, as we noted above, the ME
estimator is also consistent. Under the assumption that a solution to the GME-Nash
estimation problem exists for all samples and given an appropriate choice of the bounds of
the error in the data consistency constraint 3.2, we show in Appendix 2 that the GME and
GME-Nash estimators are also consistent.

We can compare the different estimators empirically using the normalized entropy
(information) measur&a) = -(Z4 ag In a)/(In n), which measures the extent of uncertainty
about the unknown parameters. If there is no uncertai{ty) = 0. If there is full igno-
rance, in the sense that all actions are equally lik8{gr) = 1. All else the same, additional
information reduces the uncertainty in the data analyzed, resulting in a lower normalized
entropy
measure. Thus, to the degree that the constraints 2.3, 2.5, and 2.6 bind, the GME-Nash

normalized entropy measure is lower than is the GME mea§(@i¢:< Sa).

4. AIRLINES
We estimate the strategic pricing behavior of American and United Airlines using the
ME-ML, GME, and GME-Nash approaches, and compare results. We allow for the possibili-
ty that American and United provide differentiated services on a given route and assume that

the demand curve facing Firimis

(41) ql = ai + bl pl + dl pJ + Ui,
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wherea, andd; are positivep; is negative, ands is an error ternf. In Appendix 1, we
show how to reparametrize 4.1 so that it can be estimated along with the other parameters in
the GME-Nash model.

If firms choose prices, the necessary conditions 2.3 and 2.5 are

(4.2) Zﬁi(p;—ci)qris—YHeL_ < 0,
r
(4.3) %:Bi(pi—ci)qi —Yiﬁai+pis)+6i=0.
il r S rs i S S

The Nash condition 2.6 is unchanged.

The data include price and quantity and cost data for 15 quarters (1984:4-1987:4,
1988:2, 1988:4) for various routes between Chicago and other Citide calculated
marginal costs using the formula in Oum, Zhang, and Zhang (1993), and we used the average
of these for the paramete(é The nominal data are deflated using the Consumer Price
Index.

We restrict our attention to two city pairs, Chicago-Providence and Chicago-Wichita,

where United and American Airlines had no (or trivial) competition from other firms. On

these two routes, the average marginal cost was lower than observed prices and the estimated

4 We experimented with including various additional right-hand-side variables such as
measures of income, population, or economic conditions. None of these variables, however,
affected the fit of the equation or the paramet&ts;, andd; substantially.

5 The data were generously provided by James A. Brander and Anming Zhang. They
used these data in: Brander and Zhang (1990, 1993) and Oum, Zhang, and Zhang (1993).
These papers describe the data.
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demand curves were consistent with economic theory: The demand curves slopebdevan,

and the services are substitutds> O.

4.1 The Airline Model Specification
We first specify the upper and lower bound of the price space. The lower bound is
the smallest observed price for both airlines minus 10% and the upper bound is the largest
observed price for both airlines plus 10%. We then divide the price space into 20 equal
increments.
Because we do not know the true demand curve parameters, we simultaneously
estimate linear demand curves for each firm and a price-strategic choice model. We do not

estimatec' since we have a measure of the average marginal costs.

4.2 Airline Estimates

In the GME-Nash model, the correlation between the actual and estimated quantities in
the demand equations are 0.1 for the American demand equation and 0.2 for the United
equation for Providence and 0.5 for both Wichita equations. For Providence, the demand
coefficients &, b,, andd,) are 1,865.8 (with an asymptotic standard error of 373.4), -12.1
(5.1), 4.7 (1.6) for American Airlines and 1,571.7 (456.2), -10.2 (5.6), 4.8 (6.2) for United
Airlines. Given these parameters, the own-demand elasticities at the sample mean are -2.6 for
American and -2.1 for United, and both the cross-elasticities are 0.95.

In Wichita, the demand coefficient are 637.7 (345.7), -3.7 (4.4), and 2.6 (4.0) for
American and 810.4 (238.9), -6.2 (2.8), and 3.6 (3.1) for United. The own-demand elastici-

ties are -1.5 for America and -2.1 for United, and the cross-price elasticities are 0.9 in the
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American equation and 1.2 in the United equation. Estimating these demand curves using
ordinary least squares yields estimates of the same sign and magnitude.

The estimated strategy parameta@rsare shown in Figure 1la for American Airlines
and in Figure 1b for United Airlines for the Providence route. Figures 2a and 2b show the
corresponding distributions for Wichita. The ME-ML estimates are the observed frequencies.

The GME distribution is more uniform than that of the ME-ML model because the
GME consistency conditions 3.2 allow the estimates to differ from the actual frequency. In
attempting to maximize entropy, the GME estimator pushes the probability estimates toward
uniformity.

The GME-Nash distribution is smoother than the other two models and has one peak
for American and two peaks for United in both cities. The global maximum of the GME-
Nash distribution is closer to the average price based on a standard Bertrand model than to a
Cournot or Collusive model. [The Cournot — $216 for American and $185 for United —
and collusive — $285 and $223 — means are too large to appear in Figure 2 for Wichita.]

The normalized entropy measun), for Providence is 0.66 for American and 0.67
for United for the ME-ML model. Consequently, the goodness of fit measures, p$78udo-

(see Appendix 2), are 0.34 for American and 0.33 for United. The corresponding normalized
entropy measureﬁ'w’% measures) are both 0.90 (0.10) for the GME model and 0.61 (0.39) and
0.65 (0.35) for the GME-Nash model. The normalized entropy measures for Wichita are,
respectively, 0.73 (0.27) and 0.77 (0.23) for the ME-ML, 0.93 (0.07) and 0.94 (0.6) for the

GME, and 0.71 (0.29) and 0.66 (0.33) for the GME-Nash model. The drop in the entropy
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measure when we switch from the GME to the GME-Nash shows that the theoretical
restrictions contain substantial information.

The estimated expected ren¥,are $420,000 per quarter for American and $435,000
for United on the Providence route, and $435,000 for American and $449,000 for United on
the Wichita route. These rent calculations are based on the assumption that the average cost
equals the marginal cost. These numbers do not include fixed costs. Unless the fixed costs
are large, these number suggest that the airlines made positive profits during this period. The
estimated expected rents are consistent with the magnitudes of the prices and quantities
observed.

For both airlines for both cities, the average valuda$ practically zero. The
average value obd is positive. For example, in Providence, only 2 out of the 40 values of
were negative. This sign pattern is consistent with firms having private, uncorrelated
information. This pattern is inconsistent with the hypothesis that firms use mixed strategies

despite the absence of exogenous randomness.

4.3 Comparing Estimators
How does our approach compare to traditional methdser the purposes of

comparison, we estimated a traditional conjectural variations (CV) model given our heteroge-

6 We cannot directly compare our results to those in Brander and Zhang (1990, 1993)
and Oum, Zhang, and Zhang (1993), because they assume that the services of the two airlines
are homogeneous, whereas we estimate demand curves based on differentiated services.
Moreover, they estimate pure strategy models in two of their papers, where we permit mixed
or pure strategies. In their other paper, Brander and Zhang (1993) estimate a supergame
(trigger price) model. If there are punishment periods during the sample, our estimates may
show two or more peaks in the distribution @f However, if the firms are using such
supergames, we should modify our repeated single-period game model accordingly.
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nous demand equations. The CV model consists of four equations: the two demand curves
and two optimality (first-order) conditions.

Figures 3a and 3b show how the conjectural variations distribution compares to the
GME-Nash and ME-ML for Providence. The CV distribution has multiple peaks, with its
global maximum slightly higher than the GME-Nash. The CV distribution is significantly
different than the ME-ML for United on the Chicago-Providence route based on a
Kolmogorov-Smirnov test. Similarly, for United on the Chicago-Wichita route, the CV
distribution differs from the GME-Nash strategy distribution.

The estimated market power of these firms is similar for the different estimators.
Table 1 shows how the expected Lerner Index of market power (the difference between price
and marginal cost as a percentage of price) for the different estimators. The ME-ML Lerner
Index is identical to the index based on the observed data. The GME indexes are virtually
the same or slightly lower than the ME-ML indexes. The average GME-Nash and CV esti-
mates are virtually identical and slightly higher than the sample-based index.

Using the demand parameters from the GME-Nash model, we also calculated the
average Bertrand, Cournot, and collusive Lerner Indexes. The average Bertrand index is
virtually the same as the average GME-Nash and CV indexes. The Cournot and collusive

indexes are much higher.

7 When we tried to estimate the four equations simultaneously using standard ML
techniques, some of the demand parameters took on theoretically incorrect signs. Conse-
quently, we estimated the demand curves and then estimated the optimality conditions treating
the estimated demand parameters as exact. Both approaches produced similar estimates of the
conjectures. Figures 3a and 3b use the second set of estimates where we used the marginal
cost in each period to generate a distribution of estimates.
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4.4 Hypothesis Tests

Using our estimates, we can test various market-structure hypotheses. We start by
considering two "pretest" hypotheses. We strongly reject the competitive market hypothesis
that the expected price equals the expected marginal cost (first row of Table 2) using a
standardy? test.

In contrast, for three out of the four cases we do not reject the hypothesis that the
distribution of the marginal cost is the same as the distribution of the prices for three out of
four cases (second row of Table 2). That is, the prices and marginal costs "move together" as
we expect.

Next, we examine whether the airlines use identical strategies in the GME-Nash
model. We fail to reject (at the 0.05 level) the hypothesis that both airlines have thedsame
distribution in Providence, but we reject this hypothesis in Wichita.

We then examine the key hypotheses that firms maximize single-period profits and
that the Nash restriction holds. We use entropy-ratio tests, which are analogous to likelihood-
ratio tests (Appendix 2). To test whether a particular restriction holds, we compare the
entropy measures from a restricted estimator and from an unrestricted estimator. We fail to
reject that firms maximize single-period expected profits (Equations 2.3 and 2.5). We
similarly fail to reject that they use Nash equilibrium strategies to maximize single-period
expected profits (Equations 2.6, 2.3, and 2.5). That is, our GME-Nash model is consistent
with the data.

Although the data are consistent with our game-theoretical restrictions, these restric-

tions affect the estimated strategies significantly. Based on a staxaam‘,t, we reject the
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hypothesis in three out of four cases that the estimatedstribution is the same for the
GME (which lacks the maximizing and Nash restrictions) and the GME-Nash models. Not
surprisingly, we strongly reject the hypothesis that the estimates of the ME-ML model are the

same as those for the GME-Nash model.

4.5 Sample Size Sensitivity Experiments

The squared-error loss of each of our three estimators differs as sample size changes.
We can demonstrate these properties using sensitivity experiments, where we assume that the
estimated demand equations for the Chicago-Wichita route hold with an error term that is
distributed N(O, 1). We assume that Fiinhas informatiore' about its marginal cost and that
this information is private and uncorrelated (as is consistent with our estimates), so that Firm
i's beliefs,B!, do not depend og}. The marginal cost for each firm in each period is drawn
from a normal distribution N(60, 5), which closely approximates the distribution of marginal
costs for Wichita. We approximate this continuous distribution using a finite grid and use the
probabilities associated with the resulting discrete distribuignto determine the Nash
restriction that beliefs are correct in equilibrium. This restriction requiresZpatl, p, = Bi.
We then generate Nash equilibrium strategiessing this restriction and the necessary condi-
tions 2.1 and 2.2. (We establish by means of sensitivity studies that this equilibrium is
unique.) We use the resulting equilibrium probabiliteeso generate samples of actions by
drawing a uniform random number on the unit interval and using that to assign an action for
each observation. We generated 200 sample§ fdhe number of observations in each

sample) = 10, 20 and 40, with (the number of possible actions for each firm) = 20.
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The GME estimator ofi has smaller variance than the ME-ML estimatd@iven
that the game-theoretic constraints are correct, the possible solution space for GME-Nash
estimate ofu is a subset of the solution space of the GME estimate.ofThus, we
conjecture that the GME-Nash estimator has a smaller variance than the GME.

The superior finite sample properties of the GME-Nash and GME over the ME-ML
are confirmed by our sampling experiments. Table 3 reports the empirical mean square error
(MSE@) =244 (G(ist - Gis)2/200 (where the index denotes the sample) and the correlation
coefficient between the estimated and tajefor each of the models. The table shows two
sets of results depending on whether the econometrician knows the demand coefficients or has
to estimate them. In the latter case, we generate quantities demanded by adding a N(O, 1)
term to the demand equation.

The ME-ML and GME perform better (in terms of MSE and correlations) as the
number of observations increases. The GME-Nash, however, performs well (relative to the
other estimators) for a small number of observations, and the GME-Nash estimates do not
improve as the number of observations increases beyond 20. This latter result is very
attractive if, as usual, one has relatively few time-series observations. Finally, the GME-Nash
estimator yields superior estimates even when the demand coefficients are unknown, without

assuming knowledge of the error distributions.

8 The proof is analogous to the one given in Golan, Judge, and Perloff (1996).
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5. CONCLUSIONS

Our generalized-maximum-entropy-Nash (GME-Nash) estimator can estimate firms’
strategies consistent with game theory and the underlying data generation process. It is free
of parametric assumptions about distributions and ad hoc specifications such as those used in
conjectural-variations models.

Our simplest approach to estimating strategies is to use the maximume-likelihood (ML)
or maximum-entropy (ME) estimators. These approaches produce the same estimates, which
are the observed frequencies in the data. These estimators do not make use of demand or
cost information and do not impose restrictions based on theory.

We also estimate two GME models. The basic GME estimator allows greater
flexibility than the ML-ME estimator, but does not use demand, cost, or game-theoretic
information. We show that this GME estimator is more efficient than the ME-ML estimator
in terms of mean-square error, correlation, and other measures of variance. The GME-Nash
estimator uses all available data, and game-theoretic information. In our sampling experi-
ments, the GME-Nash estimator is more efficient than the basic GME and ME-ML estima-
tors.

On the basis of our hypothesis tests, we find that the static game-theoretic restrictions
are consistent with the data. Nonetheless, the restrictions have bite: The estimates of firms’
strategies based on the model with theoretical restrictions imposed differ from those based on
the unrestricted model.

In Golan, Karp, Perloff (1996), we examine a version of this model where strategies

may vary with variables the econometrician observes and allow firms to choose both price
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and advertising. In future papers, we plan two other generalizations of our approach. First,
we will examine whether a price-choice or quantity-choice model is appropriate. Second, we
will extend the model to allow for dynamic games.

Our approach to estimating games can be applied to many problems in addition to
oligopoly, such as wars and joint decisions by husbands and wives. To do so only requires

replacing profits with some other criterion.



25

References

Agmon, Noam, Y. Alhassid, and Rafi D. Levine (1979): "An Algorithm for Finding the
Distribution of Maximal Entropy,"Journal of Computational Physic80, 250-9.

Bjorn, P. A. and Q. H. Vuong (1985): "Simultaneous Equations Models for Dummy Endoge-
nous Variables: A Game Theoretic Formulation with an Application to Labor Force
participation,” California Institute of Technology working paper 537.

Brander, James A., and Anming Zhang (1990): "Market Conduct in the Airline Industry: An
Empirical Investigation,'/Rand Journal of Economic21, 567-83.

Brander, James A., and Anming Zhang (1993): "Dynamic Oligopoly in the Airline Industry,"
International Journal of Industrial Organizatioril, 407-35.

Bresnahan, Timothy F. (1989): "Studies of Industries with Market Power," in Richard
Schmalensee and Robert Willig, eddandbook of Industrial OrganizatigriNew
York: North Holland, 1989.

Bresnahan, Timothy F., and Peter C. Reiss (1991): "Empirical Models of Discrete Games,"
Journal of Econometrigs48, 57-81.

Csiszar, 1. (1991): "Why Least Squares and Maximum Entropy? An Axiomatic Approach to
Inference for Linear Inverse Problem3he Annals of Statisticd9, 2032-2066.

Davidson, R., and J. G. MacKinnon (1998stimation and Inference in Econometridéew
York: Oxford University Press.

Golan, Amos, and George Judge, "A Maximum Entropy Approach to Empirical

Likelihood: Estimation and Inference,” Working Paper, U.C. Berkeley, 1996.



26

(Presented at the 1997 Summer Meetings of the North America Econometric
Society).

Golan, Amos, George Judge, and Jeffrey M. Perloff (1996): "Recovering Information from
Multinomial Response DataJournal of the American Statistical Associatj®1(434),
June 1996:841-53.

Golan, Amos, George Judge, and Douglas J. Miller (198@ximum Entropy Econometrics:
Robust Estimation with Limited Dat&ew York: John Wiley & Sons, forthcoming.

Golan, Amos, Larry S. Karp, and Jeffrey M. Perloff (1996): "Estimating Firms’ Mixed Price
and Advertising Strategies: Coke and Pepsi," manuscript.

Jaynes, E. T. (1957a): "Information Theory and Statistical MechanRisySics Reviewl06,
620-630.

Jaynes, E. T. (1957b): "Information Theory and Statistical MechanicsPHySics Review
108, 171-190.

Kooreman, Peter (1994): "Estimation of Econometric Models of Some Discrete Games,"
Journal of Applied Econometric®, 255 - 68.

Kullback, J. (1959)information Theory and Statistichlew York: John Wiley & Sons.

Levine, Rafi D. (1980): "An Information Theoretical Approach to Inversion Problems,"
Journal of PhysicsA, 13, 91-108.

Miller, Douglas J. (1994)Entropy and Information Recovery in Linear Economic Models

Ph.D. thesis, University of California, Berkeley.



27

Mittelhammer, R. C., and N. S. Cardell, "On the Consistency and Asymptotic Normal-
ity of the Data-Constrained GME Estimator in the GLM," Working Paper,
Washington State University, 1997.

Oum, Tae Hoon, Anming Zhang, Yimin Zhang (1993): "Inter-firm Rivalry and Firm Specific
Price Elasticities in Deregulated Airline Marketdg@urnal of Transport Economics
and Policy 27, 171-92.

Owen, A., "Empirical Likelihood Ration Confidence RegionsThe Annals of Statistic49
(1990), 1725-1747.

Perloff, Jeffrey M. (1992): "Econometric Analysis of Imperfect Competition and Implications
for Trade Research,” in lan M. Sheldon and Dennis R. Henderson,ledsstrial
Organization and International Trade: Methodological Foundations for International
Food and Agricultural Market ResearcNC-194 Research Monograph Number 1.

Pukelsheim, F. (1994): "The Three Sigma Rularherican Statistician48, 88-91.

Qin, J., and J. Lawless, "Empirical Likelihood and General Estimating Equations,"

The Annals of Statistic®2 (1994), 300-325.

Shannon, C. E. (1948): "A Mathematical Theory of Communicati@gll System Technical
Journal 27, 379-423.

Shore, J. E., and R. W. Johnson (1980): "Axiomatic Derivation of the Principle of Maximum
Entropy and the Principle of Minimum Cross-EntropyEEE Transactions on

Information TheoryIT-26, 26-37.



28

Skilling, J. (1989): "The Axioms of Maximum Entropy,"” in J. Skilling, etMaximum Entropy
and Bayesian Methods in Science and Engineeridgydrecht: Kluwer Acadmic, 173-

87.



29

Appendix 1: Technical Details
Al.1 The Solution to Equation (3.5)

The Lagrangean to the GME problem is

LA p.n) =-) aglnog -3 ¥ wep In wgp,
s m
/

(A1.1) > ?\s(ns* —ag-viw ) s p( - 1'a)

whereA, p, andn are Lagrange multipliers. Solving this problem, we obtain the GME

estimators
(A1.2) 5, - exp( _)\S_) _ exp(—v)\s)1
Xj:eXp(‘N‘) a(x)
(AL.3) W, = eXp(‘xsv"m) _ eXP<—7\;c,Vm)’
E eXp(—)\SVm) W3<A)
m
and
(A1.4) 6- \7V\_/.

The Hessian is negative definite (the firselements on the diagonal areal/the rest are

-1, and the off-diagonal elements are 0) so the solution is globally unique.
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Following Agmon et. al (1979), Miller (1994), and Golan et al. (1996), we can

reformulate the GME problem as a generalized-likelihood function, which includes the

traditional likelihood as a special case:
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Minimizing Equation 3.11 with respect ® — setting the gradientAL(A) = n* - a - e, equal
to zero — yields the same estimates as from the original formulation, Equation A.2. One
advantage of this dual formulation, Equation A.5, is that it is computationally more efficient.
Al.2 GME-Nash with Unknown Demand Coefficients

We now show how to simultaneously estimate the profit or demand parameters and
the strategy parameters using GME estimation procedures. We need to modify the objective
function 3.10 by adding the profit (or demand) functions for each firm as additional con-
straints. We estimate the demand curves simultaneously with the rest of the model. For

example, let the demand curve facing Firrbe

(Al.6) gi=ai+bi9i+dipj+HiEXigpi+Hi,
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Wheregi is the quantity vector}gi is the price vectora' andd' are positive scalard is a
negative scalan is a vector of error termsX' is a matrix, anogpi is a vector of parameters.
To use an entropy approach, we need to map the unknown parargeamd;gi into
probability space. Following Golan, Judge, and Miller (1996), we model these unknown
parameters as discrete random variables with finite supports. For simplicity, we drop the
firm’s superscript for the rest of this Appendix.

Let @ be in the interior of an open, bounded hyperrectangle, 0K, and, for eachy,,
let there be a discrete random varialle with M > 2 possible realizationg,y,..., 7, and

corresponding probabilitieg, 4,..., P, such that

M
(AL7) &= Y PunZm
m-=1

Letting Z be theM-dimensional support foz,, any @ [ Z can be expressed as

z, O 0 0
iy
. . 0
(L8) 0-zp-5 2 THPH
. L. g
0 (L] E
2 9 2

whereZ is a K x KM) matrix andp is a KM-vector of weights such that, >> 0 andpk 1),
= 1 for each demand parameter for 1, 2, 3. The upper and lower boundszf z ; and
z\» are far apart and known to contajp. Further, we use our knowledge of the signs of

the unknown parameters from economic theory when specifying the support&pace
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The unknown and unobservable erraug, are treated similarly. For each observation,
the associated disturbanae, is modelled as a discrete random variable with realizations
Vi,..., v§ O ¥ with corresponding probabilitie®},..., w{; That is, each disturbance may be
modelled as

J
(Alg) Ui = E 03:;; Vju,

j=1

for eacht = 1,...,,T. The elements of the vectet' form an evenly spaced grid that is
symmetric around zero.
Given a sample of datg, a simple way to determine the upper and lower bound"of
is to use the three-sigma rule together with the sample standard de\dgtiolﬁor example, if
J =3, thenv" = (-30, 0, 3o).
Having reparametrized the system of demand equation in this manner, the GME-Nash

model with unknown demand parameters is

(AL10) max H@wpw=-a'na-winw-p'inp - nw,
o4, Wpw

subject to the consistency conditions 3.4, the necessary economic conditions 2.3 and 2.5, the

Nash conditions 2.6, the two demand equations for Firrausdj, Equations A1.6, and the
normalizations for, w, p, andw, where ¢ = @Hi, Quj, Qei ' er o o o ,QUJ ). The

bounds of the error supports for the demand equatiora%.ifs
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Appendix 2: The GME-Nash Estimator

A2.1 Consistency
Call the GME-Nash estimates of the stratedieshe GME estimates, and the ME-
ML estimatesd. We make the following assumptions:
Assumption 1 A solution of the GME-Nash estimatoéi( W, &) exists for any
sample size.
Assumption 2 The expected value of each error term is zero, its variance is
finite, and the error distribution satisfies the Lindberg condition (Davidson and
MacKinnon, 1993, p. 135).
Assumption 3 The true value of each unknown parameter is in the interior of
its support.
We want to prove

Proposition Given assumptions 1-3, and lettiad) the end point of the error
support spaces and_\F' be normed by\/T , plim) = plim(&) = plim(&) = a.

When the profit parametexg are unknown, the GME-Nash estimatgsre

consistent.
According to this proposition, the GME-Nash estimatisGME basic estimategy, and the
ME-ML estimates, are equal to each other and to the true strategies in the limit as the

sample size becomes infinit&, - . That is, all the estimators are consistent.
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Proof.

i) The ME-ML estimates are the observed frequencies: TAs o, the observed
frequencies converge to the population frequencies, so the ME-ML estimates are consistent:
plim &+ = a.

ii) The GME is consistent: Let the end points of the error supportg &f andv,,,
be -1/,/T and1/,/T respectively. AS - oo, Yg - 1 for all sin the dual-GME, Equation

A5. Thus,>In Y (A) — 0 and plima; = a.

iii) The GME-Nash with known profit parameters is consistent: By Assumption 1,
after we have added the restrictions 2.3 and 2.5, we still have a solution. The argument in
(i) together with Assumption 2 implies that pligi = a.

iv) The GME-Nash with unknown profit parameters is consistent: Given Assumption
3, the GME is a consistent estimator @in the linear Equation A2.1 (Golan, Judge, and
Miller, 1996, Ch. 6; Golan and Judge, 1996; Mittelhammer and Cardell, 1996):{@1imgp.

By the argument in (iii), plimi+ = a. These asymptotic properties can also be established
using the empirical likelihood approach (Owen, 1990; Qin and Lawless, 1994; and Golan and
Judge, 1996).

A2.2 Hypothesis testing

On the basis of the consistency of the estimators, we can define an "entropy ratio
statistic" which has a limiting? distribution. We use this statistic to test hypotheses. In
general, let\* be the vector of Lagrange multiplies fall the model’'s constraints. Let
Hy(A%) be the entropy value of the constrained problem widre 0, or equivalently all the

parameters (strategies as well as demand coefficients) are constrained to be zero (or at the
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centerof their supports). Thug,,(Ag) is the maximum value of the joint entropies
(objective function). It can be obtained by maximizing Equation (3.9) subject to no con-
straints (except for the requirement that all distributions are proper). Doing so yields the total
entropy value of the three sets of discrete, uniform distributopw, andw. Now, let
Hu@*) be the objective (total entropy) value for the full GME-Nash model — the optimal
value of Equation (3.9) — wherg* is the set of estimated values (that is, they are not forced
to equal zero).

The entropy-ratio statistidor testing the null hypothesid, that all parameters are

Zero is

&(parameters= 0) = 2H,, (parameters= 0) - 2H (6, W, ®).

Under the mild assumptions we made above (or the assumptions of Owen, 1990 and Qin and

Lawless, 1994).& (parameters= 0) — Xﬁ a§ - o when H, is true andK is the number

of restrictions. The approximate-level confidence intervals for the estimates are obtained

by setting £(-) < Cy whereC, is chosen so that B(ﬁ < C,) = a. Similarly, we can test

any other hypothesis of the foriM,: a = a, for all, or any subset, of the parameters. We
use these entropy-ratio statistics to test whether the economic and Nash restrictions are
consistent with the airline data.

We use the same line of reasoning as above (each constraint, or data point, represents
additional potential information that may lower the value of the objective function but can

never increase it) to derive a "goodness of fit" measure for our estimator:



whereR" = 0 implies no informational value of the data set, &d= 1 implies perfect
certainty or perfect in-sample prediction.

The small-sample approximated variances can be computed in a number of ways. We
discuss two simplest approaches here. First, for each equation (say the two sets of demand

equations), we calculate

where O, = E (1);’] Vj” andyar ((pik) ] 5i2(x/x )—1 for each parametdg. Similarly, for each
j

set of equations, the relevaaf is estimated.

Because our model is a system of a large number of equations, the elements of the
asymptotic variance-covariance matr, for the error terms of the entire system are
estimated in the traditional way, taking into account all the data and all the restrictions
(Equations 2.3, 2.5, 2.6, and A.6).

Finally, we note the relationship between the entropy objective any{ztmatistic.
This relationship is used for comparison of various estimated strategies and various estimated

distribution. The cross-entropy measures is defined as
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(A2.1) (@, 0% =Y o In(aday),
k

wherea® is a proper prior probability distribution. Now, leti{} be a set ofK observed
frequencies (strategies) over a setkobbserved prices. Let the null hypothesistig a =

a®, then

2 1 0y2
Xk 1) = 2 — (@~ op)”
k oy

A second-order approximation of (A2.1) is

| (a, a°) DEZ i(ak - ap)?,
a 72 e

which is the entropy-ratio statistic (for evaluatifgversusd®) that we previous discussed.

We conclude by noting that two times the entropy-ratio statistic corresponds (at the limit) to

X%k-l)'
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Table 1: Average Lerner Indexes (p - MC)/p

Providence Wichita

American United American United
ME-ML: Observed 0.35 0.37 0.62 0.62
GME 0.34 0.35 0.62 0.61
GME-Nash 0.37 0.40 0.64 0.59
Conjectural Variation 0.37 0.40 0.65 0.64
Bertrand 0.37 0.40 0.64 0.59
Cournot 0.40 0.43 0.72 0.68
Collusive 0.45 0.48 0.78 0.74
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Table 2: Hypothesis TestqEntropy-Ratio Statistics)

Null Hypothesis

Providence

Wichita

Competitive Market Hypothesis

|

Distribution of MC = Distribution of

Prices (14 df)

Distribution of & is the same for both

airlines (19 df)

Maximizing behavior (Eg. 2.3, 2.5)

(121 df)
Nash (Eqg. 2.3, 2.5, 2.6)

Distribution of & is the same for GME

and GME-Nash models (19 df)

Distribution of & is the same for
ME-ML and GME-Nash models (19

df)

rejected (at any

significance level)

AA: 0.17 fail to reject

UA: 0.12 fail to reject

15.0 fail to reject

27.0 Fail to reject

0.0 Fail to reject

AA: 79.6 reject

UA: 36.4 fail to reject

AA: 206.0 reject

UA: 308.5 reject

rejected (at any

significance level)

AA: 21.1 fail to reject

UA: 29.2 reject

96.1 reject

40.5 Fail to reject

0.7 Fail to reject

AA: 55.8 reject

UA: 128.0 reject

AA: 56.0 reject

UA: 128.0 reject
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Table 3: Sample Size Sampling Experimen{n = 20)

Correlation, Correlation,
MSHaY) MSHa?) Firm 1 Firm 2
T=10
ME-ML .285 145 .68 79
GME 137 .068 .66 g7
GME-Nash .086 .037 .79 .89
GME-NasK 110 .060 .66 .76
T=20
ME-ML .263 104 .69 .84
GME 132 .050 .66 .81
GME-Nashk .075 023 77 91
T=140
ME-ML 245 .091 .70 .86
GME 124 .049 .67 .80
GME-NasK 075 .026 .78 .90

1 Known demand coefficients.
2 Unknown demand coefficients.
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Figure 1a Price Strategy of American Airlines, Chicago-Providence
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Figure 1b: Price Strategy of United Airlines, Chicago-Providence
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Figure 2a Price Strategy of American Airlines, Chicago-Wichita
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Figure 2b: Price Strategy of United Airlines, Chicago-Wichita
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Figure 3a Strategy and Conjectural Variation Models for American Airlines, Chicago-Providence
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Figure 3b: Strategy and Conjectural Variation Models for United Airlines, Chicago-Providence
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