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ABSTRACT  

To address the issues of large volume change and low conductivity of silicon (Si) materials, carbon 

coatings have been widely employed as surface protection agent and conductive medium to 

encapsulate the silicon materials, which can improve the electrochemical performance of Si-based 

electrodes. There has been a strong demand to gain a deeper understanding of the impact of 

efficient carbon coating over the lithiation and de-lithiation process of Si materials. Here, we report 

the first observation of the extended two-phase transformation of carbon-coated Si nanoparticles 

(Si/C) during electrochemical processes. The Si/C nanoparticles were prepared by sintering Si 

nanoparticles with polyvinylidene chloride precursor. The Si/C electrode underwent a two-phase 

transition during the first 20 cycles at 0.2C, but started to engage in solid solution reaction when the 

ordered compact carbon coating began to crack. Under higher current density conditions, the 

electrode was also found to be involved in solid solution reaction, which, however, was due to the 

overwhelming demand of kinetics property rather than the breaking of the carbon coating. In 

comparison, the Si/C composites prepared by sucrose possessed more disordered and porous carbon 

structures, and presented solid solution throughout the entire cycling process.  
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Introduction   

Due to the high theoretical capacity (3579 mAh g-1), low discharge potential (<0.5 V vs. Li/Li+), 

abundant resource, and low cost, silicon (Si) material has been widely considered as one of most 

attractive candidates for next generation anode materials for lithium-ion batteries.1,2 However, the 

commercial application of Si material is hindered by its poor conductivity and significant volume 

change that occurs during the formation of Li-Si alloy.3,4 To address these challenges, carbon 

coatings5-10 have been utilized to encapsulate Si materials (Si/C composite), simultaneously serving 

as conductive medium and buffering agent that could absorb the dramatic volume change.11,12 For 

example, Fang et al.13 reported a stable Si/C anode material where Si nanoparticles were inserted 

into hollow carbon nanofibers, delivering a capacity of 874 mA h g-1 at 0.8 A g-1 with a mass 

loading of 0.7 mg. Wu et al. 14 investigated the in situ polymerization of polyaniline (PANi) to attain 

conformal carbon structure to host Si materials. Such Si/C material with uniform coating layers on 

the surface of Si nanoparticles could provide superior performance of about 550 mA h g-1 after 5000 

cycles at the current density of 6.0 A g-1 with a mass loading of 0.2–0.3 mg cm-2. To understand the 

alloying mechanism of Si materials, the lithiation and de-lithiation processes of Si anodes have been 

extensively investigated by many in situ technologies, such as XRD,15,16 TEM,17,18 and NMR.19,20 



 

 

However, there still remains a strong demand to gain deeper understanding of the impact of an 

efficient protective carbon coating on the lithiation and de-lithiation process of Si/C anode 

electrode.  

Here, we report a compact and ordered carbon coating for Si electrodes prepared from 

polyvinylidene chloride (PVDC) precursor. The impact of this effective carbon coating over the 

solid-state transformation of Si electrode during electrochemical process is examined and discussed. 

To the best of our knowledge, this is the first report of extended two-phase transformation of 

carbon-coated Si nanoparticles (Si/C) during electrochemical processes. 

 

Methods 

Preparation of the Si/C composites 

0.1 g Si particles (~50-70 nm, Nanostructured & Amorphous materials, Inc) and 0.8 g PVDC 

(polyvinylidene chloride, Sigma Aldrich Co.) were well dispersed in 20 mL tetrahydrofuran (THF, 

99.9%, Sigma-Aldrich Co.) by being sonicated for 1 hour (Si). The mixture was then stirred for 12 

hours at room temperature. After removal of volatile components under reduced pressure, the 

residual solid was collected and sintered at 800 °C for 2 hours (with a ramp rate of 1 °C min-1) in 

argon atmosphere to obtain the final product (Si/C-P). The final mass ratio of silicon:carbon was 1:2 

in Si/C-P sample. It was experimentally verified that the decomposition of PVDC precursors leads 

to a 1/4 carbon mass retention. Therefore, the Si:C ratio in final Si/C-P composite was controlled by 

the mass ratio of silicon and precursor. The Si/C-S sample was prepared in a similar manner with 

sucrose (Sigma-Aldrich). The silicon:sucrose mass ratio was 1:8 (1/8 carbon mass retention ratio 

for sucrose precursor), and the sample was sintered at 500 °C for 2 hours (with a ramp rate of 4 °C 

min-1).The final mass ratio of silicon:carbon was 1:1 for Si/C-S sample. 



 

 

 

Electrochemical evaluation  

The Si/C composite particles, carbon black and PAA-Li binder were mixed at a mass ratio of 8:1:1 

in deionized water to prepare the uniform slurry which was coated onto a copper foil as the working 

electrode. The electrolyte solution was purchased from BASF, which consists of 90% (w) of 1 M 

LiPF6 solution (1 mol L-1) in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) 

(1:1 w/w) and 10% (w) fluoroethylene carbonate (FEC). Celgard 2400 separator was obtained from 

Celgard. The 2025 coin cells were used to assemble cells and the performances of these cells were 

evaluated with Maccor Series 4000 Battery Test system in a thermal chamber at 30 °C. The 

theoretical capacity of 1,000 mAh g–1 for Si/C composite materials was used to calculate 

charge/discharge currents. In the formation step, the cells were discharged and charged with one 

cycle in constant current-constant voltage (CC-CV) mode at 0.1C in a potential window of 0.01-2.0 

V vs Li/Li+. And then the cells were tested in constant current mode in a range of 0.01-1.0 V. 

 

Materials characterization 

Transmission electron microscopy (TEM, Tecnai) instrument from National Center for Electron 

Microscopy (NCEM) was performed at 200 kV to characterize the microstructure of the electrode. 

The cycled anode material was collected from the electrode that was washed by DEC in glove box. 

Fresh and cycled anode materials were dispersed in acetone and dropped on the copper grid (300 

mesh). Scanning electron microscopy (JSM-7500F) was used at 10 kV to characterize the 

morphology of the electrode. In this test, the cycled electrode was washed by DEC in glove box and 

transferred by a sealed box into the instrument. Raman spectroscopy was performed to characterize 

the carbon structure of the Si/C composite. The Si/C composite material was compacted on the 



 

 

clean glass slide and tested on an iHR 500 instrument with a He-Ne laser at 633 nm wavelength. 

Fourier Transforms Infrared Spectroscopy (FTIR) was conducted to characterize the structure of 

composite. The composite powder was mixed well with KBr powder and pressed into pellet. After 

dring at 40 °C overnight, the sample was measured on a Niclet-is50 instrument in the wavenumber 

range of 500-3500 cm-1 by 32 scans and the resolution setting of 4 cm-1. 

Results and Discussion  

Si/C electrode with compact and ordered carbon coating was prepared with polyvinylidene chloride 

(Si/C-P electrode), and Si/C electrode with loose and porous carbon coating was made with sucrose 

(Si/C-S electrode) for comparison. The cells of the Si/C electrodes were cycled at 0.2C between 

1.00 V and 0.01 V after a formation step at 0.1C. All the reported capacities in this paper are based 

on the total mass of Si/C composites. Figure 1a presents the cycling performance and Coulombic 

Efficiency (CE) of Si/C-P and Si/C-S. The initial Coulombic Efficiency (ICE) of Si/C-P (72.7%) is 

much higher than that of Si/C-S (56.1%). The compact carbon structure in Si/C-P sample can 

protect the silicon nanoparticles from direct exposure to the electrolyte, and thus lead to improved 

ICE.21 After the formation step, the CE of Si/C-P electrode increases to above 99.0% after 10 cycles 

and to 99.5% after 20 cycles. On the other hand, the CE of Si/C-S electrode stays below 99.0%. 

This contrast demonstrates that Si/C-P electrode has enhanced kinetic properties comparing to 

Si/C-S electrode due to the presence of a compact carbon coating. Si/C-P electrode exhibits a 

specific charge capacity of 1219.6 mAh g-1 with the capacity retention of 98.1% after 20 cycles at 

0.2C, which is higher than those of Si/C-S electrode, 692.7 mAh g-1 and 77.0 %, respectively. At 

the 25th cycle, the CE of Si/C-P electrode experiences a sharp decrease, dropping from 99.8 % to 

98.6 %, which is rationalized as a consequence of the fracture of the carbon coating (observed in 

Figure 3c). After the fracture of the carbon coating, the CE of the Si/C-P electrode drops to about 



 

 

98%, which is very similar to that of Si/C-S electrode. This significant drop of CE indicates that the 

Si/C-P electrode no longer has good kinetic properties after breakdown of carbon coating. During 

the 30-50th cycle, the Si/C-P electrode presents a gradually decreasing capacity from 1149.5 to 

1078.0 mAh g-1, and the capacity retention ratio of Si/C-P electrode during these 20 cycles is 93.8% 

(it is 98.1% retention for the first 20 cycles). These results indicate that the more compact carbon 

coating of the Si/C-P material helps to decrease interface reaction and increase cell life. In addition, 

after the break-down of the carbon coating on the Si/C-P sample, the interface stability of the 

Si/C-P sample begins to decay.    

To better understand the electrochemical behavior of the Si/C-P electrode during lithiation and 

de-lithiation process, the voltage profiles of Si/C-P electrode from the 2nd-50th cycles are 

examined in Figure 1b. There is a major plateau at 0.43 V for the 2nd-20th de-lithiation curves, 

which disappears beyond the 30th cycle where the carbon coating is fractured. The disappearance of 

the voltage plateau at 0.43V indicates a significant bulk structure change during lithiation and 

de-lithiation processes due to the carbon coating fracturing. This is the first observation of the 

influence of compact and ordered carbon coating on bulk Si particle structure transformation during 

electrometrical process. 

Figure 1c shows dQ/dV plots for Si/C-P electrode for 2nd-50th cycles. During the 2nd lithiation 

cycle, three different processes are observed. The first discharge process at ~250 mV is associated 

with the gradual lithiation of the a-Si to form Li~2.0Si, a structure that still presents extended Si 

networks and large Si-Si clusters.22,23 The second process at ~80 mV is related to the further 

lithiation of Li~2.0Si to Li~3.5Si. At this stage, large Si-Si clusters broke into smaller Si clusters and 

isolated Si anions. The third process at ~35 mV corresponds to the formation of the crystalline 

phase, c-Li3.75Si, from a-LixSi.15,24,25 The formation of c-Li3.75Si phase indicates that the outstanding 



 

 

kinetic performance of compact carbon coating of the Si/C-P electrode leads to smooth and 

reversible lithiation/de-lithiation reaction. The third process is not observed beyond the 30th cycle. 

As for the de-lithiation process, there is a strong and sharp peak at ~430 mV for the 2nd-20th cycles, 

which is associated with the two-phase transition from c-Li3.75Si to LixSi (x=0-2.0).19 In this case, 

the x value is approaching 0 to reflect the dominating two-phase transition from Li3.75Si to almost 

de-lithiated amorphous Si, with minor transition from LixSi to a-Si phase. However, beyond the 

30th cycle, where the carbon coating is fractured, two broad peaks at ~280 mV and ~500 mV are 

observed instead (no sharp peak at ~430 mV), which is indicator of solid solution reaction.26 This 

observation demonstrates that the formation of c-Li3.75Si is no longer the dominating process and 

that there is no direct transformation from c-Li3.75Si to amorphous Si particles. To be more specific, 

the two broad peaks are associated with the de-lithiation process of LixSi (x=3.5-3.75) to Li~3.5Si 

(~280 mV) and Li~3.5Si to Li~2.0Si (~500 mV).19 The two-phase transformation demands good 

conductivity and uniform evolution of the Si materials. The role of the compact and intact carbon 

coating is to improve the conductivity of Si materials and to promote the formation of the small Si 

clusters and isolated Si anions with uniformly dispersed silicon particles. These effects lead to 

enhanced alloying kinetics, which allows the Si/C-P electrode to continuously and completely 

generate c-Li3.75Si during lithiation process. Without effective carbon coating (fractured beyond 

30th cycle as shown in Figure 3c), c-Li3.75Si can no longer be the dominating lithiation product and 

thus other less lithiated phases are formed, along with a decreased CE. The dQ/dV curves of Si/C-S 

sample (Figure S1) present a solid solution reaction from the 2nd cycle, indicating that carbon 

coating prepared by sucrose can hardly improve the alloying kinetics of the electrode to allow 

two-phase transitions. This is because the Si/C-S has a looser carbon coating, which cannot 

effectively confine the Si materials to realize good conductivity and uniform lithiation/de-lithiation 



 

 

processes.  

 

 

 

Figure 1. (a) Cycling performances and Columbic efficiencies of Si/C-P and Si/C-S electrodes at 

0.2C, from 1.00V to 0.01V; (b) Galvanostatic discharge/charge profiles of Si/C-P electrode from 

2nd to 50th cycles at 0.2C, from 1.00V to 0.01V; (c) Differential capacity vs. potential curves of 

Si/C-P electrode from 2nd to 50th cycles at 0.2C, from 1.00V to 0.01V (1C=1,000 mAh g-1). 

 

To understand how the carbon coating affects the electrochemical performance of the Si/C electrode 

at higher current densities, the Si/C-P electrode was discharged and charged in 5 cycles at various 

current densities. After the formation step, the Si/C-P electrode was cycled from 0.4C to 4C, and 

then back to 0.4C. As the rate increases (Figure 2a), the Si/C electrode shows a decreasing capacity, 



 

 

from 1205.3 mAh g-1 at 0.4C to 926.1 mAh g-1 at 4C. When the rate is restored to 0.4C, the Si/C-P 

electrode shows a capacity of 1199.4 mAh g-1, fully recovering its initial capacity. Also, the CE of 

the Si/C-P electrode exhibits a gradual increase without an outstanding drop. The recoverable 

specific capacity and increased CE indicates that the carbon coating remained intact under the high 

rate cycling process.      

Figure 2b presents dQ/dV plots for Si/C-P electrode ranging from 0.4C to 4C. The two-phase 

transition of c-Li3.75Si and a-Li~2.0Si can also be readily observed at 0.4C, indicating that the 

effective carbon coating in Si/C-P sample can provide sufficient kinetics capability to satisfy the 

demand of fast and uniform Li+ migration and alloying reaction mediated by the carbon coating up 

to 0.4C. As the rate increases to 1C, the two-phase transition is still observed, although the intensity 

of the peak at ~430 mV drops dramatically, indicating that the formation of c-Li3.75Si becomes 

more difficult under 1C. When the rate reaches 2C and higher, the peak at 430 mV disappears 

entirely and the peaks at 280 mV and 500 mV emerge instead, indicating that the de-lithiation 

becomes a solid solution reaction. Remarkably, when the rate returns to 0.4C, the 430 mV peak 

re-appears and the Si/C-P material again presents the two-phase transition that is almost identical as 

the initial scenario at 0.4C. This result demonstrates the absence of the formation of the c-Li3.75Si 

for Si/C-P electrode at 2C and 4C is due to the overwhelming demand of the fast Li+ migration and 

alloying kinetics for the electrode under high current density, rather than the break-down of the 

carbon coating.  

 



 

 

 
 

Figure. 2 (a) The rate capability and CE of Si/C-P electrode from 0.4C to 4C in the potential 

window of 1.00-0.01V; (b) The corresponding differential capacity vs. potential curves of Si/C-P 

electrode. 

 

Scanning electron microscopy (SEM) was performed to investigate the morphology of the Si/C-P 

and Si/C-S materials before and after cycling. As shown in Figure 3a and d, both fresh Si/C-P and 

Si/C-S materials present Si nanoparticles well enclosed in a carbon matrix, forming micron-sized 

secondary particles. Figure 3b and c show that the Si/C-P materials still maintain the initial 

morphology of carbon coating after 10 cycles. After 50 cycles, the Si/C-P material presents cracked 

matrix and exposed Si particles (marked by red circle). These results indicate carbon coating has 

partially broken in the Si/C-P sample after 50th cycles. As shown in Figure 3e, a lot of broken 

carbon areas and agglomerated particles are observed in Si/C-S electrode after 50 cycles. To further 

understand the different morphologies of carbon coating by different precursors on the Si materials, 

TEM is used to analyze the Si and carbon interface structure. The nanostructures and the 

carbon/silicon structures in Si/C-P and Si/C-S samples before and after cycling were further 

characterized. As shown in Figure 3f and i, the silicon nanoparticles with a diameter of ~50 nm are 

well dispersed in compact carbon coating in fresh Si/C-P sample, while the carbon structure in fresh 



 

 

Si/C-S sample is loose. In Figure 3g and h, the carbon coating maintains intact after 10 cycles in 

Si/C-P sample while the carbon edge becomes uneven with a few ~200 nm agglomerated particles 

(marked by red circle) observed after 50 cycles. From Figure 3j, some agglomerated particles 

attached with carbon fragments are observed for the Si/C-S electrode after 50 cycles. The SEM and 

TEM results confirm that the carbon structure in Si/C-P sample maintains compact and intact for 

the first 10 cycles. When the carbon coating began to crack (from 25th cycle), silicon particles in 

the broken carbon areas agglomerate to form large Si-Si cluster, resulting in the inhomogeneity of 

the Si/C structure. Such a change poses a negative influence on the alloying kinetics of the Si/C-P 

electrode due to the extra difficulties for Li+ ion migration caused by the broken carbon coating. The 

TEM and SEM images described above provide direct support for the argument that effective 

carbon coating is essential for the good kinetic performance of Si/C-P. This explanation is 

consistent with the electrochemical observation that the Si/C-P electrode with intact and compact 

carbon coating could maintain the two-phase transition between 2nd and 20th cycle, but the carbon 

coating fracture that occurs beyond 25th cycle leads to a solid solution reaction. The breakdown of 

the compact carbon coating renders the carbon structure of Si/C-P composite looser and more 

porous, which can no longer allow two-phase transition. On the other hand, the Si/C-S electrode 

engages in solid solution reaction throughout the entire cycling process, indicating that Si/C-S has 

looser and more porous carbon structures than Si/C-P.  

 



 

 

 

 

Figure 3. SEM images of the Si/C-P electrodes (a) fresh, (b) after 10 cycles, (c) after 50 cycles and 

Si/C-S electrode (d) fresh, (e) after 50 cycles at a current density of 0.2C. TEM images of the 

Si/C-P electrode (f) fresh, (g) after 10 cycles, (h) after 50 cycles and Si/C-S electrode (i) fresh, after 

(j) 50 cycles at a current density of 0.2C. 

 

FTIR and Raman spectroscopy were performed to retrieve carbon bonding information of Si/C-S 

and Si/C-P samples. As shown in Figure 4a, only the C-C bond at 1250 cm-1
 is observed for the 

Si/C-S sample, while there are two strong characteristic peaks at 2300 cm-1 and 1589 cm-1 for the 



 

 

Si/C-P sample, which correspond to -C=C=C- and -C=C- bonds, respectively. These unsaturated 

carbon chains tend to undergo chain–chain cross-linking reaction, readily yielding ordered and 

compact sp2-sp3 hybrid carbon structures.27,28 Also, the existence of the unsaturated carbon-carbon 

bonds can improve the conductivity of the Si/C composite. The compact and ordered carbon 

structure in Si/C-P sample was confirmed by the Raman spectra (Figure 4b). Both Si/C-P and 

Si/C-S samples exhibit two bands for carbon structure: the first at 1331 cm-1, a D band, which is 

associated with disordered carbon structure, and the second at 1584 cm-1, a G band, which is 

associated to ordered carbon structure.29,30 The ratio of the G to D band intensities (IG /ID) of the 

Si/C-P sample is relatively high at 2.02, comparing to that of Si/C-S at 0.92. This contrast supports 

the conclusion that Si/C-P composite possesses a more ordered and compact carbon coating 

structure than Si/C-S composite. 

 

 

 

Figure. 4 (a) The FTIR spectra of Si/C-P and Si/C-S materials; (b) Raman spectra of Si/C-P and 

Si/C-S materials. 

 



 

 

Conclusions 

A compact and ordered carbon coating has been prepared from PVDC to encapsulate silicon 

nanoparticles. The Si/C-P electrode shows excellent electrochemical performance and improved CE, 

which reached above 99% only after 10 cycles. When the carbon coating was intact, there was a 

two-phase transition in Si/C-P electrode during lithiation and de-lithiation process. The carbon 

coating in Si/C-P electrode began to crack at 25th cycle, resulting in the decreased CE and 

eliminated formation of c-Li3.75Si (solid solution reaction). In addition, as the current density 

increased, the c-Li3.75Si formation became more challenging. When the rate increased to 2C, the 

electrode underwent a solid solution reaction, which was a result of the limited kinetic properties of 

the electrode rather than the fracture of carbon coating. The Si/C-S sample prepared by sucrose 

presented a loose carbon structure where only solid solution reaction happened during cycling 

process at 0.2C. These results indicate that a compact and ordered carbon coating can improve the 

Li+ migration efficiency and help maintain the integrity of the electrode, which facilitates the 

two-phase transition during discharge and charge process. 
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