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Abstract: Sun-induced chlorophyll fluorescence (SIF) has proven to be advantageous in estimating
gross primary production, despite the lack of a stable relationship. Satellite-based SIF measurements
at Level 2 offer comprehensive global coverage and are available in near real time. However, these
measurements are often limited by spatial and temporal sparsity, as well as discontinuities. These
limitations primarily arise from incomplete satellite trajectories. Additionally, variability in cloud
cover and periodic issues specific to the instruments can compromise data quality. Two families of
methods have been developed to address data discontinuity: (1) machine learning-based gap-filling
techniques and (2) geostatistical techniques (various forms of kriging). The former techniques utilize
the relationships between ancillary data and SIF, while the latter usually rely on the available SIF
data recordings and their covariance structure to provide estimates at unsampled locations. In this
study, we create a synthetic approach for SIF gap filling by hybridizing the two approaches under the
umbrella of kriging with external drift. We performed leave-one-out cross-validation of the OCO-2
SIF retrieval aggregates for the entire year of 2019, comparing three methods: ordinary kriging,
ML-based estimation using ancillary data, and kriging with external drift. The Mean Absolute
Error (MAE) for ML, ordinary kriging, and the hybrid approach was found to be 0.1399, 0.1318, and
0.1183 mW m2 sr−1 nm−1, respectively. We demonstrate that the performance of the hybrid approach
exceeds both parent techniques due to the incorporation of information from multiple resources. This
use of multiple datasets enriches the hybrid model, making it more robust and accurate in handling
the spatio-temporal variability and discontinuity of SIF data. The developed framework is portable
and can be applied to SIF retrievals at various resolutions and from various sources (satellites), as
well as extended to other satellite-measured variables.

Keywords: kriging with external drift; machine learning; solar-induced chlorophyll fluorescence
(SIF); gap-filling techniques; remote sensing; geostatistics; satellite data analysis; SIF level 2 data

1. Introduction

Without the ability to precisely define CO2 dynamics, understanding ecosystem–climate
interactions is very difficult [1,2]. Gross primary production (GPP) is the primary driver
of land CO2 sink, removing approximately one-quarter of annual anthropogenic CO2
emissions [3]. The signal of sun-induced chlorophyll fluorescence (SIF) is a promising
predictor of vegetation function [4]. It directly reflects the photosynthetic activity of plants
and can be used as a remote sensing index for estimating photosynthetic energy conversion
and carbon absorption [1,5]. Using multiple available platforms, global spatio-temporal
patterns of SIF can be easily monitored from space [6–13]. While SIF can be used as a proxy
for intra- and inter-annual global and regional patterns in GPP [7,14–16], its relationship to
GPP is biome- [5,13] and scale-dependent [1,13].

Despite the promising potential of SIF as a proxy for GPP, limitations in the current
satellite SIF Level 2 data hinder our understanding of the GPP-SIF relationship at various
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scales. For clarity, ‘SIF Level 2 data’ refers to satellite-retrieved SIF data that retain the
original satellite viewing geometry and have undergone basic quality control and calibra-
tion but lack global coverage due to the satellite’s orbital path and cloud cover. Ideally,
these data would be available at high resolutions and provide global, contiguous coverage,
which, unfortunately, is seldom the case. As a result, a variety of methodologies have
been developed to generate contiguous Level 3 SIF data, sometimes at resolutions different
from the native Level 2 data, thereby addressing some of the shortcomings mentioned
above. Level 2 data represent a higher level of processed information compared to Level 1
data, which typically include raw or minimally processed sensor data. Level 2 SIF satellite
data undergo additional processing steps, such as radiometric and geometric corrections,
atmospheric corrections, and calibration. These processes aim to remove various artifacts
and correct for known errors or biases in the raw data, resulting in more accurate and
usable information. Typically, Level 3 processing refers to the aggregation and averaging of
satellite data over larger spatial and temporal scales, which implies coarser resolution of
the Level 3 datasets, usually gap-free. This aggregation helps to reduce noise and improve
the overall accuracy and reliability of the data. Geostatistics and multiple machine learning
techniques [17] used so far for this purpose demonstrated the possibility of creating Level 3
datasets matching or even exceeding the spatio-temporal supports of the Level 2 datasets.
An example of such a high-resolution dataset is GOSIF, derived from OCO-2 satellite obser-
vations, Moderate Resolution Imaging Spectroradiometer (MODIS), and meteorological
reanalysis data, which significantly enhances our ability to monitor global photosynthesis
and assess ecosystem health and functionality, as in a study by [18].

Broadly, the spectrum of the created approaches can be divided into two groups:
(1) ML-based approaches and (2) geostatistical approaches. The former group of methods
exploits the relationships between SIF and ancillary data, which broadly represent various
covariates informative of the SIF value (e.g., NDVI), aiming to reconstruct the SIF value
at unsampled locations, while the latter group leverages the observed/modeled autoco-
variance structure within available data and then utilizes measurements and modeled
covariance structure to reconstruct the data at unsampled locations. Both approaches
have been successfully deployed so far to improve, downscale, or fill gaps in SIF satellite
SIF measurements. For example, refs. [19,20] recently used a convolutional neural net-
work (CNN) and Extreme Gradient Boosting (XGBoost), together with high-resolution
ancillary data, to downscale SIF retrievals from a TROPOspheric Monitoring Instrument
(TROPOMI) on board the satellite Sentinel-5P by a factor of up to 500 m and 0.05◦, respec-
tively. Refs. [21,22] harmonized GOME-2 and SCIAMACHY SIF datasets using ML with
a moderate-resolution imaging spectroradiometer (MODIS) to downscale SIF products.
Ref. [23] created a high-resolution OCO-2 Level 3 SIF dataset using ML constrained by
physiological understandings, and ref. [24] did the same using high-resolution ancillary
data. Ref. [22] recently downscaled the GOME-2 SIF Level 2 dataset using the Random
Forest (RF) model. Ref. [25] downscaled OCO-2 SIF data to a super-fine resolution of
0.0005◦ using convolutional neural networks. Examples of the application of geostatistics to
improve Level 2 satellite data are numerous, and some of the previous efforts were focused
on SIF Level 2 data. In our previous studies [26,27], we gap filled GOME-2 SIF Level 2 data
and provided a framework for upscaling and harmonizing the data to a higher resolution
to create contiguous Level 3 datasets. The approach was based on modeling the covariance
structure of Level 2 SIF data and employing spatial [27] or spatio-temporal covariance
models [26] to estimate SIF at unsampled locations using the block kriging methodology.
This methodology allows for the estimation of SIF values at locations not covered by gen-
uine Level 2 data while also accounting for the change in support compared to the original
Level 2 data. In a recent study, we further improved the modeling approach that can be
used to process SIF data [28]. Interestingly, despite the common goals and similar outputs,
these two groups of methods have never been directly compared or evaluated together, nor
has the potential of creating a synthetic approach been exploited.
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In this study, we venture beyond the existing methods and explore the potential of a
hybrid model that integrates kriging and machine learning-based approaches. Our goal
is to assess whether this hybridization could yield superior accuracy in SIF estimates by
capitalizing on the strengths of both methodologies. Before the study, we expected that the
hybrid technique’s accuracy would outperform both approaches separately due to synergy,
given that the two techniques rely on different types of inputs, namely the relationship of
the primary variable with ancillary data and the spatio-temporal covariance structure of the
primary variable, in this case, SIF data. We chose universal kriging, also known as kriging
with external drift, as the geostatistical component of our hybridization framework. This
choice was inspired by its successful use in a similar context, where it helped reconstruct
the spatial distribution pattern of the CO2 mixing ratio [29]. For the machine learning
component, instead of creating a model and dataset from scratch, we opted to use a
publicly available, recently created contiguous Level 3 OCO-2 SIF dataset created using
neural networks [24] as a covariate in the hybrid approach; thus, the properties of the used
dataset, including the SIF bands used, spatio-temporal resolution, etc., match the ones
from that study. These resources, we believe, provide a solid foundation for our hybrid
model due to their proven effectiveness in similar applications. We deployed the moving
window ordinary kriging technique as a paradigmatic geostatistical approach, mimicking
the approach from [27]. This method has already been used to estimate GOME-2 SIF at
native and upscaled resolution. To evaluate the accuracy of both the parent techniques
and the newly created hybrid, we employed a validation method known as ‘leave-one-out
cross-validation’. In simpler terms, this method involves using one data point from the
dataset as a ‘test’ case and the rest of the dataset for ‘training’. This process is repeated for
each data point in our dataset, which consists of the entire 2019 year of OCO-2 SIF retrieval
aggregates, containing over 400,000 data points (see Section 2.2).

2. Methods

Our research is underpinned by the assumption that both geostatistical and machine
learning (ML) methodologies for quantifying solar-induced chlorophyll fluorescence (SIF)
can achieve enhanced effectiveness when synergistically combined within a hybrid model.
To test this hypothesis, we use a combination of aggregated SIF retrieval data and ML-based
SIF estimates as inputs to the hybrid technique, which are built within the kriging with
the external drift framework. The ML-based estimates are derived from a continuous SIF
(CSIF) dataset published by [24], where the authors introduced a novel application of a
multi-layer perceptron (MLP) type of ANN for generating a spatio-temporally continuous
Level 3 SIF dataset based on ancillary data obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument. The resulting CSIF product has a spatial resolu-
tion of 0.05 degrees (equivalent to approximately 5.6 km × 5.6 km at the equator) and a
temporal resolution of four days, which aligns with the MODIS climate model grid (CMG)
resolution and the resolution of the ancillary variables used in the original ML technique.
The SIF estimates generated by this method will be validated with the aggregated SIF mea-
surements from the Orbiting Carbon Observatory-2 (OCO-2) satellite at the corresponding
geolocations (grid cells) of the CMG, where both the target SIF measurements and the
ancillary variable measurements were recorded.

2.1. Data

OCO-2 is a NASA satellite that was launched in July 2014. The instrument possesses a
three-channel grating spectrometer, with a spectral resolving power of λ

∆λ > 17, 000 [6,30],
centered around the oxygen A band at 0.765µm and carbon dioxide bands at 1.61 and
2.06 µm. The instrument conducts eight measurements across tracks, with swath widths
of ~10 km. Its spatial resolution at the nadir is 1.3 km × 2.25 km. It has a 98.8 min orbit,
with a 13:36 nodal crossing time and a 16 d ground-track repeat cycle [31]. OCO-2 SIF
retrievals were validated by comparison to airborne measurements using the Chlorophyll
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Fluorescence Imaging Spectrometer [13,32]. Figure 1 shows the flight trajectory of the
OCO-2 satellite on the world map and the measured SIF values.
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Figure 1. (a) Global OCO-2 SIF retrievals (mW m2 sr−1 nm−1; at 740 nm) and (b) the same for Europe,
collected over the entire year 2019, showing the degree of sparsity of the Level 2 OCO-2 SIF data.

When utilizing data as inputs for a hybrid data analysis technique like kriging with
external drift, the spatial resolution must be carefully considered. In this study, the main
variable (SIF retrievals) and the support variable (ML-based estimates) must have the same
spatial resolution to produce accurate results. The optimal resolution is determined by
the lower resolution of the two inputs, which, in this case, is the resolution of the CMG.
Therefore, the support of the main variable must be spatially aligned with the grid cells
to maintain consistency. To ensure this consistency, the Level 2 OCO-2 SIF retrievals were
brought to a uniform 0.05-degree resolution using the process of aggregation. This involved
selecting all SIF soundings within the bounds of a specific grid cell, as well as choosing
only recoveries classified as clear-sky in the OCO-2 dataset. The remaining retrievals were
then aggregated by calculating their mean, following the approach outlined by [33]. As a
final step, grid cells containing less than five clear-sky retrievals were removed from the
pseudo-retrieval SIF dataset.

The measured values of solar-induced fluorescence (SIF) are subject to variations that
are primarily influenced by several factors, each of which contributes differently based on
the environment and context of observation. The challenges of upscaling SIF measurement
to daily average values are discussed in detail in a recent study [34]. The impacts of solar-
view geometry and canopy structure were analyzed in [35] and the impact of growth and
environmental factors in [36]. In addition, vegetation physiology and stress can cause
variations ranging from 5% in controlled agricultural settings to more than 50% in natural
ecosystems under environmental stress [36,37]. Additionally, the viewing geometry of the
satellite and its orbital characteristics can introduce variability in SIF measurements by
5–20%, depending on the sensor and orbit specifics [38].

2.2. Generating Continuous SIF Estimates by Using an ML Model

In a study by [24], a neural network architecture composed of five input variables and
one output variable was used to precisely estimate clear-sky solar-induced chlorophyll
fluorescence (SIF) values at specific coordinates. The input variables, which were selected
based on their informative value, were obtained from the Nadir Bidirectional reflectance
distribution Adjust Reflectance (NBAR) product of the MODIS (Moderate Resolution
Imaging Spectroradiometer) dataset (MCD43C4 V006). In particular, the first four bands
of MODIS were utilized to extract the reflectance data, which center at wavelengths of
645 nm, 858 nm, 469 nm, and 555 nm, as previously suggested [39]. These particular bands
were chosen due to their known influence on the variation in SIF and their inclusion of
significant vegetation-related information [40]. It is important to highlight that the selection,
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rationale, and justification, as well as any potential constraints, regarding the training data
utilized in the development of the machine learning (ML) model by [24], were beyond the
control of the authors of the current study. While it could be argued that the incorporation
of additional variables, such as supplementary vegetation indices or meteorological data,
might alter or enhance the performance of the ML model, it is pertinent to note that the
neural network-generated dataset is publicly available and serves an as input for our
study. Therefore, providing an extensive elaboration on the decisions made during the
development of that dataset is beyond the scope of this study. The output variables used
for training the neural network were derived from the OCO-2 dataset and consisted of
sounding-based SIF retrievals at 757 nm. The output data were subsequently processed by
averaging and filtering, and the CMG resolution was adjusted to align with the resolution
of the input data.

To accurately estimate the values of solar-induced chlorophyll fluorescence (SIF) using
a hybrid method, data were collected from the OCO-2 SIF dataset for the entirety of 2019.
This period was selected to account for any intra-annual and seasonal variations in the
SIF signal and any potential correlations between SIF and other variables. This study is
confined to 2019, despite the availability of data beyond this timeframe, as its primary
focus lies in method development rather than providing updated or expanded datasets.
The resulting dataset served as a reference, against which the performance of the machine
learning (ML), geostatistical, and hybrid approaches was compared using the leave-one-out
cross-validation scheme (detailed in Section 2.5). The fraction of the CSIF product used
for the development of the hybrid method also includes data from the entire year of 2019.
This specific year was chosen due to the availability of the most recent version of the CSIF
product, with a full year’s data. This allows for the alignment of the collection of the ground
truth data with the best-available ML-based SIF estimates in support of the hybrid method.
An R2 analysis was performed on the CSIF and OCO-2 data, specifically for the year 2019,
to ensure the data’s validity. The OCO-2 data were initially aggregated for each grid cell,
creating pseudo-retrievals, a term referred to in the subsequent sections, following the
methodology introduced by [24]. This approach considers only clear-sky values and grid
cells with more than 5 clear-sky observations. The resulting plot is illustrated in Figure 1a.
The achieved R2 score is 0.80, comparable to values reported in the original study.

2.3. Moving Window Ordinary Kriging

The ordinary kriging method used in the present study builds on the previous work
of [27,41]. We perform the three-step mapping for each estimation location using obser-
vations collected on the same day. These steps are as follows: (1) subsampling of the
observations, (2) characterization of the local spatial covariance structure, and (3) inter-
polation at the native spatial resolution. The kriging scheme that does not allow for the
change of support is chosen because the supports for the pseudo-retrievals and ML-derived
estimates have been previously harmonized. The goal of the subsampling strategy is to
put more weight on the observations in the vicinity of a given estimation location, for both
the characterization of the local spatial covariance structure and interpolation step, so that
the mapped value and the associated uncertainty are representative of local values and
variability. This is accomplished by selecting the minimum number of observations (N) that
need to be present within the distance (‘moving window’; D) from the estimation location
for the mapping to be performed. N is selected to be large enough to yield a representative
sample. We do not constrain the upper bound of N, because all Ns encountered in this use
case were computationally feasible to process. For the present study, N was set to 20 and
D to 500 km. The preliminary step of the modeling is variography. For each estimation grid
cell, a raw variogram is calculated based on the subsampled observations:

γ(h) =
1
2
[y(xi)− y(xj)]

2 (1)
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where γ is the raw variogram value for a given pair of observations y(xi) and y(xj), and
h is the great circle distance between the locations (x i and xj) of these observations. The
exponential theoretical variogram model with a nugget effect is fitted to the raw variogram
using non-linear least squares, mimicking [27]:

γ(h) =


0, f or h = 0

σ2(1 − exp
(
−h

l

)
) + σ2

nug, f or h > 0
(2)

where σ2 and l are the variance and correlation length of the quantity mapped quantity,
and σ2

nug is the nugget variance, typically representative of retrieval errors.
The variogram parameters are used to define a corresponding local spatial

covariance structure:

q(h) = σ2 exp
(
−h

l

)
(3)

The matrix representing the measurement and retrieval error covariance structure (the
nugget effect) is:

R(h) =

{
σ2

nug, f or h = 0

0, f or h > 0
(4)

After modeling covariance parameters for each estimation location, the linear system
of equations is solved to obtain the N weights λ assigned to the subsampled observations:[

Q + R 1
1T 0

][
λ
−ν

]
=

[
q
1

]
(5)

where Q is an N × N covariance matrix among the N subsampled observations, as defined
in Equation (3), R is an N × N diagonal retrieval error covariance matrix among the N
observations, as defined in Equation (4), 1 is an N × 1 unity vector, T denotes the vector
transpose operation, and q is an N × 1 vector of the spatial covariances between the
estimation location and the N observation locations.

λ and the Lagrange multiplier ν are obtained by solving the system in Equation (5). They
are subsequently used to define the estimate (ẑ) and estimation uncertainty variance (σ2

ẑ):

ẑ = λTy (6)

σ2
ẑ = σ2 − λT q + ν (7)

where y is the N × 1 vector of subsampled observations, and σ is the variance in the SIF, as
shown in Equation (3).

2.4. Hybrid Approach: Kriging with External Drift

Universal kriging, also known as kriging with external drift, is a technique used
for data with a significant trend [42]. The mathematical machinery of universal kriging
is very similar to that of ordinary kriging (see Equations (5)–(7) in [43]). In many cases
encountered in environmental sciences, the trend is described as a function of spatial or
spatio-temporal coordinates. However, the universal kriging framework is indifferent to
the origins of the trend component, which allows for the use of machine learning (ML) SIF
estimates as the source of the trend. The resulting approach combines kriging, which relies
on spatial covariance structure analysis, with ML, which relies on the relationship between
the primary variable (SIF) and ancillary data. It is generally accepted that the inclusion of
secondary variables improves the accuracy of the kriging-based predictions [43], and this
method also allows for the inclusion of non-linearities in kriging through the use of ML SIF
covariates, making the hybrid technique more flexible. Alternatively, instead of introducing
ML predictions as covariates into kriging machinery, one could use a regression kriging
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approach, i.e., first, ML predictions are used as the model of the trend, followed by kriging
the residuals using ordinary kriging. However, these two approaches are mathematically
equivalent and produce identical results [44].

Furthermore, the ML-based SIF estimates are employed as ancillary data (1) in the
universal kriging scheme (2), along with the Level 2 SIF data (4) and covariance model
parameters (6) derived through variography based on the Level 2 SIF data (5), Figure 2.
These three inputs undergo universal kriging to generate hybrid SIF estimates, which ex-
hibit superior performance compared to both ML-based estimates and purely geostatistical
estimates without ancillary data.
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By incorporating both ML-based and geostatistical techniques, the hybrid method
leverages the strengths of each approach, leading to improved SIF estimates. The utilization
of ancillary data, including ML-based estimates and Level 2 SIF data, contributes to the
enhanced accuracy and reliability of the hybrid SIF estimates.

This hybrid approach utilizes machine learning (ML)-derived solar-induced fluores-
cence (SIF) estimates as an external drift in the kriging with external drift model, effectively
exploiting the detailed spatial patterns and relationships captured by ML together with the
spatial interpolation strength of kriging. The methodological integration aims to mitigate
the limitations inherent in each approach when used independently, thereby offering a
more robust and accurate estimation of SIF.

Combining machine learning models with geostatistical methods, this hybrid approach
leverages the strengths of both methodologies: the capacity of machine learning to handle
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complex, non-linear relationships within large datasets, and the efficacy of geostatistical
methods in incorporating spatial autocorrelation and addressing spatial data anomalies.
Through this integration, our objective is to enhance prediction accuracy and reliability
beyond what could be achieved using individual methods, particularly in spatial contexts
where environmental variables exhibit strong spatial dependencies.

While SIF measurements and predictions were utilized to illustrate the current ap-
proach, it is essential to note that the applicability of this methodology is not limited to SIF
alone. We aim to establish a potential general framework for the hybridization of ML and
geostatistical approaches in other domains.

2.5. Method Evaluation: Leave-One-Out Cross-Validation

The performance of the mapping method was tested in terms of (1) accuracy (the
difference between estimates and true values) and (2) bias (the mean of the difference
between estimates and true values). Leave-one-out cross-validation technique on the entire
dataset was used for the assessment. Estimates were given at satellite native supports,
allowing for direct comparison of estimates and retrievals. Model data mismatch was
assessed for every extracted coordinate using all retrievals within that same day (except the
one obtained at the actual estimation location). Mapping steps were repeated ab initio for
every cross-validation location. The statistics were built upon a comparison of estimates
and measurements (retrievals).

3. Results
3.1. Performance Comparison

Figure 3 shows the degree of correlation between OCO-2 SIF pseudo-retrievals and
SIF generated using three different methodologies: the original ML-based approach [24],
SIF generated using moving window ordinary kriging, and SIF values generated by the
newly developed hybrid approach. The highest correlation was found in the case of
the hybrid approach (R2 = 0.8523), followed by ordinary kriging (R2 = 0.8111) and the
machine learning approach (R2 = 0.7981). There are two notable features in Figure 3a:
(1) there is a drop in the correlations between ML-generated SIF values and pseudo-
retrievals for SIF values larger than 2 (mW m2 sr−1 nm−1), and (2) there is a lack of
variability around ML-generated SIF values close to zero, resulting in the formation of a
vertical line pattern. ML-generated predictions may have different origins and properties,
but they do not necessarily represent artifacts. The noise from the pseudo-retrievals affects
both moving window ordinary kriging and the hybrid approach and can artificially increase
the predictions above the realistic values limited by the maximum density of plant biomass
(chlorophyll) that can be packed on the Earth’s surface at multiple points. The ML-based
approach could effectively filter out such cases and limit the SIF values by imposing a
cut-off threshold around a value of 2, acting as an anchor and reinforcing the hypothesis
that the hybrid approach could benefit from both parent methods. The second feature can
be explained by analyzing the distribution of SIF per biome type, as shown in Figure 4a.
For three biome types, barren or sparsely vegetated (BSV), bare ground tundra (BGT),
and snow or ice (SOI), the ML-generated SIF values show a reduced variability compared
to pseudo-retrievals, in addition to being close to zero. The three types of biomes are
unlikely to exhibit significant plant activity due to their distinct characteristics. We argue
that the ML-generated predictions are more aligned with common sense and that the
artificial variability in pseudo-retrievals (which is propagated both in ordinary kriging and
in predictions based on a hybrid approach) is likely due to retrieval errors and represents
an artifact. Biome distribution is presented in Figure 4b; the image was generated based on
data from MODIS Land Cover Type/Dynamics [45].
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Figure 4. (a) Box plot showing 2019 OCO-2 SIF pseudo-retrievals, ML-generated SIF, and SIF ob-
tained from ordinary kriging and hybrid approach (mW m2 sr−1 nm−1), broken down by biome type.
(b) Biome distribution on the world map. UBL = Urban and Built-Up Land, DCP = Dryland Cropland
and Pasture, ICP = Irrigated Cropland and Pasture, MDI = Mixed Dryland/Irrigated Cropland and
Pasture, CGM = Cropland/Grassland Mosaic, CWM = Cropland/Woodland Mosaic, GRL = Grassland,
SHR = Shrubland, MSG = Mixed Shrubland/Grassland, SAV = Savanna, DBF = Deciduous Broadleaf
Forest, DNF = Deciduous Needleleaf Forest, EBF = Evergreen Broadleaf Forest, ENF = Evergreen Needle-
leaf Forest, MFR = Mixed Forest, DES = Desert, HRW = Herbaceous Wetland, WET = Wooded Wetland,
BSV = Barren or Sparsely Vegetated, HRT = Herbaceous Tundra, WOT = Wooded Tundra, BMT = Mixed
Tundra, BGT = Bare Ground Tundra, SOI = Snow or Ice.
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3.2. Prediction Accuracy and Bias

In Table 1, we present several performance measures of the three analyzed methods.
The accuracy of the three mapping approaches was checked by calculating the average
(a) Mean Absolute Error (MAE) and (b) Root Mean Squared Error (RMSE) in leave-one-out
cross-validation.

Table 1. The cross-validation results of the SIF dataset using multiple performance measures for all three
predictive methodologies: Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square
Error (RMSE), R2, and bias. The performance measures for SIF are given in (mW m2 sr−1 nm−1).

MAE MSE RMSE R2 Bias

ALL
Machine learning 0.1399 0.0332 0.1823 0.8004 0.0103
Ordinary kriging 0.1318 0.0307 0.1752 0.8129 −0.0003
Hybrid approach 0.1183 0.0242 0.1556 0.8523 −0.0002

Spring
Machine learning 0.1420 0.0345 0.1858 0.7532 0.0189
Ordinary kriging 0.1354 0.0324 0.1801 0.7622 −0.0001
Hybrid approach 0.1222 0.0258 0.1607 0.8107 −0.0002

Summer
Machine learning 0.1462 0.0370 0.1924 0.8330 0.0111
Ordinary kriging 0.1397 0.0351 0.1872 0.8413 −0.0002
Hybrid approach 0.1220 0.0256 0.1600 0.8840 −0.0002

Autumn
Machine learning 0.1318 0.0300 0.1733 0.8037 −0.0017
Ordinary kriging 0.1227 0.0264 0.1625 0.8202 −0.0006
Hybrid approach 0.1127 0.0220 0.1482 0.8503 0.0000

Winter
Machine learning 0.1318 0.0300 0.1733 0.7548 0.0121
Ordinary kriging 0.1249 0.0274 0.1655 0.7694 −0.0005
Hybrid approach 0.1148 0.0229 0.1514 0.8072 −0.0002

Based on the error statistics calculated and presented in Table 1, the hybrid approach
outperformed all four performance measures, with the lowest errors, the highest percentage
of variance explained (R2), and the smallest bias.

The synergy between geostatistical and ML-based approaches is apparent in Figure 5,
which shows the bias values. Within the cross-validation framework, the bias of all three
methods was calculated as the average difference between estimates and measurements.
Perfectly unbiased estimates would have zero bias. The average daily biases, shown in
Table 1, were 0.0103, −0.0003, and −0.0002 mW m2 sr−1 nm−1 for the ML-based approach,
ordinary kriging, and hybrid approach, respectively. These values show that the estimates
are virtually unbiased. Although all three approaches were shown to be unbiased, the
hybrid approach outperformed the others. Error histograms for the two parent methods
and the hybrid approach are shown in Figure 5. All three methods provide virtually
unbiased estimates, but the magnitude of the model data mismatches, as represented by
the histogram, is lowest for the hybrid approach, although the variances in the model
data mismatch values for the two parent methods are similar, even though they rely on
substantially different estimation frameworks.
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4. Discussion

The limitations of the presented approaches are evident in the discrepancies observed
in error statistics and correlation coefficients among the three methods. A notable decline
in correlation is observed in machine learning (ML)-generated solar-induced fluorescence
(SIF) values beyond a certain threshold, along with a reduction in variability, a phenomenon
known as a loss of variance, particularly evident in low SIF values. This phenomenon points
to intrinsic constraints in the ML approach in handling extremes, well recognized beyond
the boundaries of this study. Specifically, the machine learning model tends to compress the
range of predicted SIF values, resulting in a vertical line pattern for low values and a cut-off
effect for high values. This behavior implies a potential underestimation of variability in
areas with minimal vegetation and an artificial cap on SIF predictions, which may fail to
capture the highest levels of photosynthetic activity adequately. While the hybrid approach
partially mitigates these issues by incorporating geostatistical methods, acknowledging and
addressing these limitations in machine learning predictions are essential for enhancing the
accuracy and reliability of SIF estimation across diverse vegetation types and conditions.

In light of the observed properties of the hybrid method and indications suggest-
ing its relative outperformance compared to both parent methods, we posit that further
enhancements in the absolute performance of both the hybrid and parent methods are
conceivable. The inherent accuracy of machine learning (ML)-derived predictions funda-
mentally depends on two factors: the nature and quality of ancillary data inputs and the
efficacy of the specific ML model architecture tailored to the current use case. While the
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selection of ancillary data is contingent upon the specific use case, potentially unrelated to
solar-induced fluorescence (SIF) specifically, ML model architectures remain subject to on-
going evolution. We foresee that the adoption of convolutional network-based approaches,
expanding the scope of ancillary data inputs to encompass a broader spatio-temporal
neighborhood, holds promise for enhancing the accuracy of ML-based techniques and
their resulting predictions [19]. On the geostatistical front, sophisticated hyperdimensional
approaches exploiting spatio-temporal correlation fields and data from a wider spatio-
temporal neighborhood have demonstrated superior performance over traditional spatial
kriging methods [28]. Additionally, the proposed hybridization scheme employing kriging
with external drift represents merely one feasible approach. Alternatively, geostatistical
predictions, combined with ancillary data, could serve as inputs for an ML model, poten-
tially yielding even greater accuracy. We advocate for the exploration of these possibilities
in future research endeavors.

5. Conclusions

In this research, we successfully developed and assessed a novel hybrid methodology
for estimating solar-induced chlorophyll fluorescence (SIF) at locations where direct sam-
ples are not available. This methodology integrates two foundational approaches—ordinary
kriging within a moving window and machine learning—into a cohesive framework using
kriging with external drift.

Our evaluation, conducted through leave-one-out cross-validation on the global OCO-
2 SIF dataset from 2019, reveals that our hybrid method consistently matches or surpasses
the parent techniques in terms of accuracy, variance explained, and bias reduction. A
distinctive advantage of our hybrid approach is its adaptive weighting mechanism, which
intelligently allocates more weight to proximal sampled locations and increasingly leans
on machine learning covariates as the distance to the nearest sample extends beyond the
decorrelation length. Additionally, we offer a quantification of SIF estimate uncertainty,
which is inherent to kriging methodologies.

The chosen resolution in our study aligns with the spatial support of the employed
datasets, showcasing the adaptability of our method to meet the resolution requirements
of various applications. This adaptability, combined with the assumption of stationarity
in the relationship between ancillary data and solar-induced fluorescence (SIF) values,
suggests the potential extension of our methodology into a downscaling technique within
the geostatistical domain. The methodological groundwork for this extension has already
been laid out; as previously mentioned, machine learning (ML) has been successfully
employed for downscaling SIF data [25], and a geostatistical framework for downscaling
SIF and other data is provided in the area-to-point subset of methods within the kriging
family [46]. Our results are promising and indicate that the developed hybrid approach
is not confined to SIF estimation but is applicable to a broader range of satellite datasets
that exhibit similar characteristics. Furthermore, the machine learning component of our
framework is flexible, allowing for the future integration of more comprehensive ancillary
data or alternative model architectures, with no fundamental alterations to the method.

Expanding upon this innovative hybrid methodology for solar-induced fluorescence
(SIF) estimation, several practical applications emerge, underscoring its versatility across di-
verse fields. For instance, in precision agriculture, this approach can accurately map spatial
variability in crop health at a resolution sufficient for informing targeted intervention strate-
gies, ultimately boosting yields and reducing input costs. Similarly, in forest management,
the methodology’s capability to integrate and analyze satellite datasets can aid in the early
detection of areas under stress from drought or disease, facilitating timely conservation
efforts and mitigating potential losses. Urban planners could utilize the refined SIF data to
monitor the health of urban green spaces, contributing to strategies aimed at improving
air quality and enhancing the urban environment for residents. Additionally, in climate
research, the framework’s ability to provide accurate and high-resolution SIF estimation
enables more precise modeling of carbon fluxes, offering insights into the impacts of climate
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change on terrestrial ecosystems and informing global carbon management policies. These
examples underscore the broad applicability and potential impact of the developed hybrid
methodology on environmental management and sustainability efforts worldwide.

The versatility and robustness of the proposed framework mark a significant ad-
vancement in the field of remote sensing and geospatial analysis. We anticipate that the
methodology will not only enhance the precision of SIF estimation but also serve as a
template for the development of similar hybrid models in related domains. Future research
will focus on exploring the potential application of this framework to various types of
satellite data. Specifically, in reference to solar-induced fluorescence (SIF), we target data ob-
tained from the Fluorescence Explorer (FLEX) mission. The high resolution and specificity
of FLEX’s fluorescence measurements are expected to provide detailed and accurate SIF
estimations. This will enable the enhancement of predictive models and the investigation
of subtle photosynthetic dynamics across diverse vegetation types. The proposed method
facilitates a straightforward implementation of advanced and emerging machine learning
techniques, thereby fostering the development of more robust and versatile models.
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26. Tadić, J.M.; Qiu, X.; Miller, S.; Michalak, A.M. Spatio-temporal approach to moving window block kriging of satellite data v1.0.
Geosci. Model. Dev. 2017, 10, 709–720. [CrossRef]
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