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ABSTRACT OF THE DISSERTATION

Advancing Automated Machine Learning:

Neural Architectures and Optimization Algorithms

by

Xiangning Chen

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Cho-Jui Hsieh, Chair

The field of Automated Machine Learning (AutoML) has gained immense attention for its

ability to automate complex machine learning tasks, yet it is still an evolving discipline

requiring nuanced approaches to be fully realized. This thesis, "Advancing Automated

Machine Learning: Neural Network Architectures and Optimization Algorithms," provides a

comprehensive investigation into two foundational pillars: Neural Architecture Search (NAS)

and optimization algorithms.

In the first half of the thesis, we confront the inherent challenges of stability and robustness

in NAS, enhancing its reliability through a perturbation-based regularization scheme. This

allows for more consistent and dependable architecture choices. Furthermore, we extend

the traditional paradigms of NAS by framing it as a distribution learning problem, and

additionally, by applying it to collaborative filtering. These extensions not only broaden the

applicability of NAS but also lead to marked improvements in the efficiency and accuracy of

recommendation systems.

The latter part of the thesis focuses on the role of optimization in achieving high per-
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formance, particularly in transformer architectures. We identify a critical optimization gap

and propose strategies for its mitigation, emphasizing the necessity of a transition from

purely architecture-based search to include optimization techniques. Then we delve into

a groundbreaking approach to optimization algorithm design through symbolic program

discovery. This framework automatically discover new optimization methods that outperform

traditional algorithms, thereby introducing an unprecedented level of automation in the

development of optimization techniques. Our developed Lion algorithm has been widely

adopted by the community. This not only advances the state-of-the-art in optimization

algorithms but also significantly augments the capabilities and reach of AutoML systems.

By addressing these multifaceted challenges in both neural architecture and optimization

algorithm design, this thesis presents a coherent, unified contribution to the advancement of

Automated Machine Learning. It is hoped that these collective insights serve as a robust

foundation for future research in the ever-evolving landscape of AutoML.
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CHAPTER 1

Introduction

In recent years, Automated Machine Learning (AutoML) has emerged as a transformative

discipline that aims to automate the intricate process of constructing machine learning

pipelines. The term "pipeline" here refers to a sequence of stages that transforms raw data

into actionable insights. Traditionally, this involves multiple steps, including but not limited

to, data preprocessing, feature selection, model selection, and optimization. Each of these

steps requires considerable expertise and time, making the end-to-end process labor-intensive

and error-prone. AutoML, therefore, seeks to democratize machine learning by lowering the

barrier to entry and facilitating the development of robust, high-performing models.

Standing at the forefront of these developments is Neural Architecture Search (NAS), an

innovation that marks a watershed moment in the domain of AutoML. Gone are the days

when each architectural element of a neural network model had to be intricately crafted by the

hands of domain experts. NAS brings a sea change by introducing a layer of automation that

revolutionizes this practice. Leveraging a portfolio of sophisticated search algorithms—ranging

from reinforcement learning and evolutionary algorithms to Differentiable Architecture Search

(DARTS)—NAS has the capability to explore the exponentially large design space of neural

network architectures autonomously. This revolution in automation confers dual benefits: it

relieves machine learning professionals from the arduous task of model design, allowing them

to channel their expertise into defining the problem at hand and enhancing data quality;

secondly, it has the potential to significantly shorten the innovation cycles, enabling faster

adaptations and implementations of machine learning solutions.
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It is straightforward to search by reinforcement learning (Zhong et al., 2018; Zoph and

Le, 2017; Zoph et al., 2018) and evolutionary algorithm (Liu et al., 2017; Miikkulainen

et al., 2019; Real et al., 2017; Stanley and Miikkulainen, 2002) due to the discrete nature

of the architecture space. However, these methods usually require massive computation

resources. A variety of approaches are then proposed to reduce the search cost including

one-shot architecture search (Bender et al., 2018; Brock et al., 2018; Pham et al., 2018),

performance estimation (Klein et al., 2017) and network morphisms (Cai et al., 2018a,b;

Elsken et al., 2019). For example, one-shot architecture search methods construct a super-

network covering all candidate architectures, where sub-networks with shared components

also share the corresponding weights. Then the super-network is trained only once, which is

much more efficient. As a particularly popular instance of one-shot methods, DARTS (Liu

et al., 2018b) enables the search process to be performed with a gradient-based optimizer

in an end-to-end manner. It applies continuous relaxation that transforms the categorical

choice of architectures into continuous architecture parameters. The resulting supernet can

be optimized via gradient-based methods, and the operations associated with the largest

architecture parameters are selected to form the final architecture.

Despite being computationally efficient, the stability and generalizability of DARTS have

been challenged recently. Many (Yu et al., 2020; Zela et al., 2020b) have observed that

although the validation accuracy of the mixture architecture keeps growing, the performance

of the derived architecture collapses when evaluation. Such instability makes DARTS converge

to distorted architectures. For instance, Chu et al. (2019) and Liang et al. (2019) find that

parameter-free operations such as skip connection dominate the generated architecture, and

DARTS has a preference towards wide and shallow structures (Shu et al., 2020). To alleviate

this issue, some (Liang et al., 2019; Zela et al., 2020b) propose to early stop the search

process based on handcrafted criteria. However, the inherent instability starts from the

very beginning and early stopping is a compromise without actually improving the search

algorithm. This precarious balance of efficiency and reliability underscores the need for deeper
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investigations aimed at stabilizing the search methods, making them more predictable and

reliable for broader adoption. The first half of the thesis introduces two novel approaches

that enhance the reliability and robustness of differentiable Neural Architecture Search (NAS)

methods. These approaches are built upon the DARTS framework and employ techniques

such as perturbation-based regularization and architecture distribution learning. Additionally,

the first half showcases the practical application of the newly proposed robust NAS techniques

in the domains of recommender systems and knowledge graphs.

The latter portion of the thesis pivots its focus towards the automated discovery of

optimization algorithms, revealing a paradigm shift in machine learning research. This

transition comes in the backdrop of years of academic and industrial investment in developing

novel neural network architectures, particularly Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs). These architectures have demonstrated their effectiveness

in various machine learning applications, spanning from computer vision to natural language

processing. However, with the advent of the Transformer architecture, the academic discourse

has noticeably shifted. No longer is the conversation primarily about building entirely

new architectures; instead, the focus has shifted towards refining and optimizing existing

ones, especially Transformers. This shift is not merely academic; it represents a broader

transformation in machine learning priorities. While architectures like CNNs and RNNs still

find applications across numerous fields, the Transformer has been instrumental in shaping

the current wave of research in large-scale language and multimodal models. This newfound

focus has driven a surge in research into ancillary features that bolster these architectures,

with optimizers emerging as an area of renewed scrutiny and innovation.

Several handcrafted optimizers have been introduced over the past few years, notably

adaptive algorithms that have shown promise in various contexts (Anil et al., 2020; Balles

and Hennig, 2018; Bernstein et al., 2018; Dozat, 2016; Liu et al., 2020; Zhuang et al., 2020).

However, it’s telling that Adam (Kingma and Ba, 2014), especially when augmented with

decoupled weight decay to form AdamW (Loshchilov and Hutter, 2019), along with Adafactor
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featuring factorized second moments (Shazeer and Stern, 2018), continue to be the optimizers

of choice for training state-of-the-art models in language (Brown et al., 2020; Devlin et al.,

2019; Vaswani et al., 2017), vision (Dai et al., 2021; Dosovitskiy et al., 2021b; Zhai et al.,

2021), and in emerging multimodal paradigms (Radford et al., 2021; Saharia et al., 2022; Yu

et al., 2022).

Adding another layer of complexity, some researchers are exploring the feasibility of

automatically discovering optimization algorithms. The Learning-to-Optimize (L2O) frame-

work Chen et al. (2021a) has been at the forefront of this endeavor, attempting to train

parameterized models—typically neural networks—to autonomously generate update rules

for optimization (Andrychowicz et al., 2016; Li and Malik, 2017; Metz et al., 2019, 2022).

Yet, these models, often designed as black-box optimizers, have demonstrated limited general-

izability, particularly when applied to training larger models or longer training steps. Parallel

to this, another subset of research employs techniques like reinforcement learning and Monte

Carlo Sampling to automate the discovery process (Bello et al., 2017; Wang et al., 2022).

However, these methods usually confine their search within predefined boundaries, often

limiting the search space to predefined operands (such as gradients and momentum) and

operators (like unary and binary mathematical operations). As a result, these constrained

approaches usually fall short of unlocking new potential, such as modifying how momentum

is tracked or integrated into the update mechanism.

Drawing inspiration from the ambitious AutoML-Zero project (Real et al., 2020), which

aims to search every component of a machine learning pipeline, the latter half of this thesis

aspires to contribute significantly to the automated discovery of optimization algorithms.

Our motivation is particularly centered around the potential for improving the optimization

landscape of Transformer architectures, which have shown tendencies to converge to sharp,

suboptimal local minima.

To this end, we introduce a novel method that formulates the task of algorithm discovery

as a program search. This approach culminates in the development of a new, highly effective
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optimization algorithm that we have named Lion, an acronym standing for EvoLved Sign

Momentum. Unlike many prevalent adaptive algorithms that track various parameters,

Lion simplifies the process by focusing solely on momentum tracking and leveraging the

sign operation to compute updates. This results in a model that requires less memory

overhead and produces consistent update magnitudes across all dimensions, thus offering a

compelling new direction in the quest for optimization algorithms better suited to modern

neural architectures.
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CHAPTER 2

Stabilize and Robustify Neural Architecture Search

In recent years, Neural Architecture Search (NAS) has attracted lots of attentions for its

potential to democratize deep learning. For a practical end-to-end deep learning platform, NAS

plays a crucial role in discovering task-specific architecture depending on users’ configurations

(e.g., dataset, evaluation metric, etc.). Pioneers in this field develop prototypes based on

reinforcement learning (Zoph and Le, 2017), evolutionary algorithms (Real et al., 2019a)

and Bayesian optimization (Liu et al., 2018a). These works usually incur large computation

overheads, which make them impractical to use. More recent algorithms significantly reduce

the search cost including one-shot methods (Bender et al., 2018; Pham et al., 2018), a

continuous relaxation of the space (Liu et al., 2018b) and network morphisms (Cai et al.,

2018a). In particular, Liu et al. (2018b) proposes a differentiable NAS framework - DARTS,

converting the categorical operation selection problem into learning a continuous architecture

mixing weight. They formulate a bi-level optimization objective, allowing the architecture

search to be efficiently performed by a gradient-based optimizer.

2.1 Problem Settings

Cell-Based Search Space The cell-based search space is constructed by replications of

normal and reduction cells (Liu et al., 2018b; Zoph et al., 2018). A normal cell keeps the

spatial resolution while a reduction cell halves it but doubles the number of channels. Every

cell is represented by a DAG with N nodes and E edges, where every node represents a latent

representation xi and every edge (i, j) is associated with an operations o(i,j) (e.g., max pooling
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or convolution) selected from a predefined candidate space O. The output of a node is a

summation of all input flows, i.e., xj =
∑

i<j o
(i,j)(xi), and a concatenation of intermediate

node outputs, i.e., concat(x2, ...,xN−1), composes the cell output, where the first two input

nodes x0 and x1 are fixed to be the outputs of previous two cells.

Gradient-Based Search via Continuous Relaxation To enable gradient-based opti-

mization, Liu et al. (2018b) apply a continuous relaxation to the discrete space. Concretely,

the information passed from node i to node j is computed by a weighted sum of all operations

alone the edge, forming a mixed-operation ô(i,j)(x) =
∑

o∈O θ
(i,j)
o o(x). The operation mixing

weight θ(i,j) is defined over the probability simplex and its magnitude represents the strength

of each operation. Therefore, the architecture search can be cast as selecting the operation

associated with the highest mixing weight for each edge.

Bilevel-Optimization with Simplex Constraints With continuous relaxation, the

network weight w and operation mixing weight θ can be jointly optimized by solving a

constraint bi-level optimization problem:

min
θ
Lval(w

∗, θ) s.t. w∗ = argmin
w

Ltrain(w, θ),

|O|∑
o=1

θ(i,j)o = 1, ∀ (i, j), i < j, (2.1)

where the simplex constraint
∑|O|

o=1 θ
(i,j)
o = 1 can be either solved explicitly via Lagrangian

function (Li et al., 2020), or eliminated by substitution method (e.g., θ = Softmax(α), α ∈

R|O|×|E|) (Liu et al., 2018b).

2.2 Performance Collapse of DARTS

While current differentiable Neural Architecture Search (NAS) methods, such as DARTS,

have shown promising results, they exhibit several limitations that constrain their practical

applicability.
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First, the stability and generalizability of DARTS are matters of ongoing debate. Nu-

merous studies (Yu et al., 2020; Zela et al., 2020b) have noted that while the validation

accuracy for the mixed architecture consistently improves, the performance of the resulting

architecture deteriorates upon evaluation. This inconsistency leads DARTS to converge on

flawed architectures. For example, works by Chu et al. (2019) and Liang et al. (2019) reveal

that parameter-free operations like skip connection overwhelmingly influence the architecture

that DARTS generates, creating a bias toward wide and shallow structures (Shu et al., 2020).

To mitigate this problem, some researchers (Liang et al., 2019; Zela et al., 2020b) recommend

prematurely terminating the search process based on manually defined criteria. However,

this approach merely sidesteps the underlying issue without enhancing the robustness of the

search algorithm itself.

Second, there is a discrepancy between the search and evaluation phases of DARTS. During

the search phase, proxy tasks are often utilized with smaller datasets or reduced-complexity

networks, largely due to the high memory requirements of differentiable NAS. This practice

further complicates the task of obtaining architectures that are both efficient and effective in

real-world settings.

2.3 Stabilizing Neural Architecture Search via Perturbation-based

Regularization

The stability and generalizability of the DARTS algorithm have been challenged for yielding

deteriorating architectures as the search proceeds. We find that the precipitous validation loss

landscape, which leads to a dramatic performance drop when distilling the final architecture, is

an essential factor that causes instability. Based on this observation, we propose a perturbation-

based regularization, named SmoothDARTS (SDARTS), to smooth the loss landscape and

improve the generalizability of DARTS. In particular, our new formulations stabilize DARTS

by either random smoothing or adversarial attack. The search trajectory on NAS-Bench-
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Figure 2.1: The landscape of validation accuracy regarding the architecture weight A on

CIFAR-10 for DARTS (Left), SDARTS-RS (Middle), and SDARTS-ADV (Right). The X-axis

is the gradient direction ∇ALvalid, while the Y-axis is another random orthogonal direction

(best viewed in color).

1Shot1 demonstrates the effectiveness of our approach and due to the improved stability, we

achieve performance gain across various search spaces on four datasets. Furthermore, we

mathematically show that SDARTS implicitly regularizes the Hessian norm of the validation

loss, which accounts for a smoother loss landscape and improved performance.

2.3.1 Origins of Instability in the DARTS

An important source of the performance collapse in DARTS discussed in Section 2.2 is the

final projection step to derive the actual discrete architecture from the continuous mixture

architecture. There is often a huge performance drop in this projection step, so the validation

accuracy of the mixture architecture, which is optimized by DARTS, may not be correlated

with the final validation accuracy.

As shown in Figure 2.1 (Left), DARTS often converges to sharp regions, so small pertur-

bations will dramatically decrease the validation accuracy, let alone the final projection step

in DARTS. Moreover, the sharp cone in the landscape illustrates that the network weight

w is almost only applicable to the current architecture weight A. Bender et al. (2018) also

discovers a similar phenomenon that the shared weight w of the one-shot network is sensitive
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Figure 2.2: Anytime test error (mean ± std) of DARTS, explicit Hessian regularization,

SDARTS-RS and SDARTS-ADV on NAS-Bench-1Shot1 (best viewed in color).

and only works for a few sub-networks. This empirically prevents DARTS from fully exploring

the architecture space.

To address these problems, we propose two novel formulations. Intuitively, the optimization

of A is based on w that performs well on nearby configurations rather than exactly the current

one. This leads to smoother landscapes as shown in Figure 2.1 (Middle and Right).

2.3.2 Proposed method

Motivation During the DARTS search procedure, a continuous architecture weight A is

used, but it has to be projected to derive the discrete architecture eventually. There is often

a huge performance drop in the projection stage, and thus a good mixture architecture does

not imply a good final architecture. Therefore, although DARTS can consistently reduce

the validation error of the mixture architecture, the validation error after projection is very

unstable and could even blow up, as shown in Figure 2.2 and 2.3.

This phenomenon has been discussed in several recent papers (Liang et al., 2019; Zela

et al., 2020b), and Zela et al. (2020b) empirically finds that the instability is related to
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Figure 2.3: Anytime test error on NAS-Bench-1Shot1 (best viewed in color). From left to

right: Spaces 1 through 3.

the norm of Hessian ∇2
ALvalid. To verify this phenomenon, we plot the validation accuracy

landscape of DARTS in Figure 2.1 (Left), which is extremely sharp – small perturbation

on A can hugely reduce the validation accuracy from over 90% to less than 10%. This also

undermines DARTS’ ability to explore the architecture space: A can only change slightly at

each iteration because the current w only works within a small local region.

Proposed Formulation To address this issue, intuitively we want to force Lval(w̄(A), A+∆)

to be more smooth with respect to the perturbation ∆. This leads to the following two

versions of SDARTS by redefining w̄(A):

min
A

Lval(w̄(A), A), s.t. (2.2)

SDARTS-RS: w̄(A) = argmin
w

Eδ∼U[−ϵ,ϵ]
Ltrain(w,A+ δ)

SDARTS-ADV: w̄(A) = argmin
w

max
∥δ∥≤ϵ

Ltrain(w,A+ δ)

where U[−ϵ,ϵ] represents the uniform distribution between −ϵ and ϵ. The main idea is that

instead of using w that only performs well on the current A, we replace it by the w̄ defined in

(2.2) that performs well within a neighborhood of A. This forces our algorithms to focus on

(w̄, A) pairs with smooth loss landscapes. For SDARTS-RS, we set w̄ as the minimizer of the

expected loss under small random perturbation bounded by ϵ. This is based on the idea of

random smoothing, which randomly averaging the neighborhood of a given function to obtain
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a smoother version (Cohen et al., 2019; Lecuyer et al., 2019). On the other hand, we set w̄ to

minimize the worst-case training loss under small perturbation of ϵ for SDARTS-ADV. This

is based on the idea of adversarial training, which is a widely used technique in adversarial

defense (Madry et al., 2018a).

Algorithm 1 Training of SDARTS

Generate a mixed operation ō(i,j) for every edge (i, j)

while not converged do

Update architecture A by descending ∇ALval(w,A)

Compute δ based on equation (2.3) or (2.4)

Update weight w by descending ∇wLtrain(w,A+ δ)

end while

2.3.3 Search Algorithms

The optimization algorithm for solving the proposed formulations is described in Algorithm 1.

Similar to DARTS, our algorithm is based on alternating minimization between A and w.

For SDARTS-RS, w̄ is the minimizer of the expected loss altered by a randomly chosen δ,

which can be optimized by SGD directly. We sample the following δ and add it to A before

running a single step of SGD on w 1:

δ ∼ U[−ϵ,ϵ]. (2.3)

This approach is very simple (adding only one line of the code) and efficient (doesn’t introduce

any overhead), and we find that it is quite effective to improve the stability. As shown in

Figure 2.1 (Middle), the sharp cone disappears and the landscape becomes much smoother,

which maintains high validation accuracy under perturbation on A.

1We use uniform random for simplicity, while in practice the approach works also with other random
perturbations, such as Gaussian.
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Figure 2.4: Trajectory (mean ± std) of the Hessian norm on NAS-Bench-1Shot1 (best viewed

in color). From left to right: Spaces 1 through 3.

For SDARTS-ADV, we consider the worst-case loss under certain perturbation level, which

is a stronger requirement than the expected loss in SDARTS-RS. The resulting landscape is

even smoother as illustrated in Figure 2.1 (Right). In this case, updating w̄ needs to solve a

min-max optimization problem beforehand. We employ the widely used multi-step projected

gradient descent (PGD) on the negative training loss to iteratively compute δ:

δn+1 = P(δn + lr ∗ ∇δnLtrain(w,A+ δn)) (2.4)

where P denotes the projection onto the chosen norm ball (e.g. clipping in the case of the ℓ∞

norm) and lr denotes the learning rate.

In the next section, we will mathematically explain why SDARTS-RS and SDARTS-ADV

improve the stability and generalizability of DARTS.

2.3.4 Implicit Regularization on Hessian Matrix

It has been empirically pointed out in (Zela et al., 2020b) that the dominant eigenvalue of

∇2
ALval(w,A) (spectral norm of Hessian) is highly correlated with the generalization quality

of DARTS solutions. In standard DARTS training, the Hessian norm usually blows up, which

leads to deteriorating (test) performance of the solutions. In Figure 2.4, we plot this Hessian

norm during the training procedure and find that the proposed methods, including both

SDARTS-RS and SDARTS-ADV, consistently reduce the Hessian norms during the training
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procedure. In the following, we first explain why the spectral norm of Hessian is correlated

with the solution quality, and then formally show that our algorithms can implicitly control

the Hessian norm.

Why is Hessian norm correlated with solution quality? Assume (w∗, A∗) is the

optimal solution of the original DARTS in the continuous space:

min
A

Lval(w
∗(A), A), s.t. w∗ = argmin

w
Ltrain(w,A), (2.5)

while Ā is the discrete solution by projecting A∗ to the simplex. Based on Taylor expansion

and assume ∇ALval(w
∗, A∗) = 0 due to optimality condition, we have

Lval(w
∗, Ā)=Lval(w

∗, A∗)+
1

2
(Ā− A∗)T H̄(Ā− A∗) (2.6)

where H̄ =
∫ Ā

A∗∇2
ALval(w

∗, A)dA is the average Hessian. If we assume that Hessian is stable

in a local region, then the quantity of C = ∥∇2
ALval(w

∗, A∗)∥∥Ā− A∗∥2 can approximately

bound the performance drop when projecting A∗ to Ā with a fixed w∗. After fine tuning,

Lval(w̄, Ā) where w̄ is the optimal weight corresponding to Ā is expected to be even smaller

than Lval(w
∗, Ā), if the training and validation losses are highly correlated. Therefore,

the performance of Lval(w̄, Ā), which is the quantity we care, will also be bounded by C.

Note that the bound could be quite loose since it assumes the network weight remains

unchanged when switching from A∗ to Ā. A more precise bound can be computed by

viewing g(A) = Lval(w
∗(A), A) as a function only paramterized by A, and then calculate its

derivative/Hessian.

Controlling spectral norm of Hessian is non-trivial. With the observation that

the solution quality of DARTS is related to ∥∇2
ALval(w

∗, A∗)∥, an immediate thought is to

explicitly control this quantity during the optimization procedure. To implement this idea,

we add an auxiliary term - the finite difference estimation of Hessian matrix ∇ALval(A+ ϵ)−

∇ALval(A− ϵ) to the loss function when updating A. However, this requires much additional
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memory to build a computational graph of the gradient, and Figure 2.2 suggests that it takes

some effect compared with DARTS but is worse than both SDARTS-RS and SDARTS-ADV.

One potential reason is the high dimensionality – there are too many directions of ϵ to choose

from and we can only randomly sample a subset of them at each iteration.

Why can SDARTS-RS implicitly control Hessian? In SDARTS-RS, the objective

function becomes

Eδ∼U[−ϵ,ϵ]
L(w,A+ δ) (2.7)

≈Eδ∼U[−ϵ,ϵ]

[
L(w,A) + δ∇AL(w,A) +

1

2
δT∇2

AL(w,A)δ

]
(2.8)

=L(w,A) +
ϵ2

6
Tr

{
∇2

AL(w,A)

}
(2.9)

where the second term in (2.8) is canceled out since E[δ] = 0 and the off-diagonal elements of

the third term becomes 0 after taking the expectation on δ. The update of w in SDARTS-RS

can thus implicitly controls the trace norm of ∇2
AL(w,A). If the matrix is close to PSD, this is

approximately regularizing the (positive) eigenvalues of ∇2
ALval(w,A). Therefore, we observe

that SDARTS-RS empirically reduces the Hessian norm through its training procedure.

Why can SDARTS-ADV implicitly control Hessian? SDARTS-ADV ensures that

the validation loss is small under the worst-case perturbation of A. If we assume the Hessian

matrix is roughly constant within ϵ-ball, then adversarial training implicitly minimizes

min
A:∥A−A∗∥≤ϵ

L(w,A) (2.10)

≈L(w,A∗) +
1

2
max
∥∆∥≤ϵ

∆TH∆ (2.11)

when the perturbation is in ℓ2 norm, the second term becomes the 1
2
ϵ2∥H∥, and when the

perturbation is in ℓ∞ norm, the second term is bounded by ϵ2∥H∥. Thus SDARTS-ADV also

approximately minimizes the norm of Hessian. In addition, notice that from (2.10) to (2.11)

we assume the gradient is 0, which is the property holds only for A∗. In the intermediate
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steps for a general A, the stability under perturbation will not only be related to Hessian

but also gradient, and in SDARTS-ADV we can still implicitly control the landscape to be

smooth by minimizing the first-order term in the Taylor expansion of (2.10).

In the following sections, we first track the anytime performance of our methods on NAS-

Bench-1Shot1 in Section 2.3.5, which demonstrates their superior stability and generalizability.

Then we perform experiments on the widely used CNN cell space on CIFAR-10 (Section 2.3.6)

and RNN cell space on PTB (Section 2.3.7). In Section 2.3.8, we present a detailed comparison

between our methods with other popular regularization techniques. At last, we examine the

generated architectures and illustrate that our methods mitigate DARTS’ bias for certain

operations and connection patterns in Section 2.3.9.

2.3.5 Architecture Search on NAS-Bench-1Shot1

Settings NAS-Bench-1Shot1 consists of 3 search spaces based on CIFAR-10, which contains

6,240, 29,160 and 363,648 architectures respectively. The macro architecture of models in all

spaces is constructed by 3 stacked blocks, with a max-pooling operation in between as the

DownSampler. Each block contains 3 stacked cells and the micro architecture of each cell is

represented as a DAG. Besides the operation on every edge, the search algorithm also needs

to determine the topology of edges connecting input, output nodes and the choice blocks.

We refer to their paper (Zela et al., 2020c) for details about the search spaces.

We make a comparison between our methods and state-of-the-art NAS algorithms on

all 3 search spaces. We run every NAS algorithm for 100 epochs (twice of the default

DARTS setting) to allow a thorough and comprehensive analysis on search stability and

generalizability. Hyperparameter settings for 5 baselines are set as their default. For both

SDARTS-RS and SDARTS-ADV, the perturbation on A is performed after the softmax layer.

We initialize the norm ball ϵ as 0.03 and linearly increase it to 0.3 in all our experiments.

The random perturbation δ in SDARTS-RS is sampled uniformly between −ϵ and ϵ. And

we use the 7-step PGD attack under ℓ∞ norm ball to obtain the δ in SDARTS-ADV. Other
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settings are the same as DARTS.

To search for 100 epochs on a single NVIDIA GTX 1080 Ti GPU, ENAS, DARTS,

GDAS, NASP, PC-DARTS requires 10.5h, 8h, 4.5h, 5h, and 6h respectively. Extra time of

SDARTS-RS is just for the random sample, so its search time is approximately the same as

DARTS, which is 8h. SDARTS-ADV needs extra steps of forward and backward propagation

to perform the adversarial attack, so it spends 16h. Notice that this can be largely reduced

by setting the PGD attack step as 1 (FGSM (Goodfellow et al., 2015)), which only brings

little performance decrease according to our experiments.

Results We plot the anytime test error averaged from 6 independent runs in Figure 2.3.

Also, the trajectory (mean ± std) of the spectral norm of ∇2
ALvalid is shown in Figure 2.4.

Noting that ENAS is not included in Figure 2.4 since it does not have the architecture weight

A. We provide our detailed analysis below.

• DARTS generates architectures with deteriorating performance when the search epoch

becomes large, which is in accordance with the observations in (Liang et al., 2019; Zela

et al., 2020b). The single-path modifications (GDAS, NASP) take effects to some extent,

e.g. GDAS prevents to find worse architectures and remains stable. However, GDAS

suffers premature convergence to sub-optimal architectures, and NASP is effective for

the first few search epochs before its performance starts to fluctuate like ENAS. A

potential reason is that the architecture weight A is clipped to the nearest boundary

when it can not satisfy some range constraint. This makes NASP confused when

choosing among operations if their corresponding weights are similar on certain edges.

The partial channel connection introduced by PC-DARTS makes it the best baseline on

Space 1 and 3, but PC-DARTS also suffers severely degenerate performance on Space 2.

• SDARTS-RS outperforms all 5 baselines on 3 search spaces. It better explores the

architecture space and meanwhile overcomes the instability issue in DARTS. SDARTS-

ADV achieves even better performance by forcing w to minimize the worst-case loss
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Figure 2.5: Normal cells discovered by SDARTS-RS (Left) and SDARTS-ADV (Right) on

CIFAR-10.

around a neighborhood of A. Its anytime test error continues to decrease when the

search epoch is larger than 80, which does not occur for any other method.

• As explained in Section 2.3.4, the spectral norm λA
max of Hessian ∇2

ALvalid has strong

correlation with the stability and solution quality. Large λA
max leads to poor generaliz-

ability and stability. In agreement with the theoretical analysis that our methods keep

minimizing λA
max (Section 2.3.4), both SDARTS-RS and SDARTS-ADV anneal λA

max

to a low level throughout the search procedure. In comparison, λA
max in all baselines

continue to increase and they even enlarge beyond 10 times after 100 search epochs.

Though GDAS has the lowest λA
max at the beginning, it suffers the largest growth rate.

The partial channel connection in PC-DARTS can not regularize the Hessian norm, it

has a similar λA
max trajectory to DARTS and NASP, which supports their comparably

unstable performance.

2.3.6 Architecture Search on CNN Standard Space

Settings We employ SDARTS-RS and SDARTS-ADV to search CNN cells on CIFAR-10

following the search space (with 7 operations) in DARTS (Liu et al., 2018b). The macro

architecture is obtained by stacking convolution cells for 8 times, and every cell contains

N = 7 nodes (2 input nodes, 4 intermediate nodes, and 1 output nodes). For the search phase,

we train the mixture architecture for 50 epochs, with the 50K CIFAR-10 dataset be equally
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Table 2.1: Comparison with state-of-the-art image classifiers on CIFAR-10.

Architecture
Test Error

(%)

Params

(M)

Search Cost

(GPU days)

Search

Method

DenseNet-BC (Huang et al., 2017)⋆ 3.46 25.6 - manual

NASNet-A (Zoph et al., 2018) 2.65 3.3 2000 RL

AmoebaNet-A (Real et al., 2019a) 3.34± 0.06 3.2 3150 evolution

AmoebaNet-B (Real et al., 2019a) 2.55± 0.05 2.8 3150 evolution

PNAS (Liu et al., 2018a)⋆ 3.41± 0.09 3.2 225 SMBO

ENAS (Pham et al., 2018) 2.89 4.6 0.5 RL

NAONet (Luo et al., 2018b) 3.53 3.1 0.4 NAO

DARTS (1st) (Liu et al., 2018b) 3.00± 0.14 3.3 0.4 gradient

DARTS (2nd) (Liu et al., 2018b) 2.76± 0.09 3.3 1 gradient

SNAS (moderate) (Xie et al., 2019) 2.85± 0.02 2.8 1.5 gradient

GDAS (Dong and Yang, 2019) 2.93 3.4 0.3 gradient

BayesNAS (Zhou et al., 2019) 2.81± 0.04 3.4 0.2 gradient

ProxylessNAS (Cai et al., 2019)† 2.08 - 4.0 gradient

NASP (Yao et al., 2020b) 2.83± 0.09 3.3 0.1 gradient

PC-DARTS (Xu et al., 2020) 2.57± 0.07 3.6 0.1 gradient

R-DARTS(L2) (Zela et al., 2020b) 2.95± 0.21 - 1.6 gradient

SDARTS-RS 2.67± 0.03 3.4 0.4‡ gradient

SDARTS-ADV 2.61± 0.02 3.3 1.3‡ gradient

⋆ Obtained without cutout augmentation.
† Obtained on a different space with PyramidNet (Han et al., 2017) as the backbone.
‡ Recorded on a single GTX 1080Ti GPU.

split into training and validation set. Following Liu et al. (2018b), the network weight w is

optimized on the training set by an SGD optimizer with momentum as 0.9 and weight decay

as 3× 10−4, where the learning rate is annealed from 0.025 to 1e-3 following a cosine schedule.

Meanwhile, we use an Adam optimizer with learning rate 3e-4 and weight decay 1e-3 to

learn the architecture weight A on the validation set. For the evaluation phase, the macro

structure consists of 20 cells and the initial number of channels is set as 36. We train the final
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architecture by 600 epochs using the SGD optimizer with a learning rate cosine scheduled

from 0.025 to 0, a momentum of 0.9 and a weight decay of 3e-4. The drop probability of

ScheduledDropPath increases linearly from 0 to 0.2, and the auxiliary tower Zoph and Le

(2017) is employed with a weight of 0.4. We also utilize CutOut DeVries and Taylor (2017)

as the data augmentation technique and report the result (mean ± std) of 4 independent

runs with different random seeds.

Results Table 2.1 summarizes the comparison of our methods with state-of-the-art algo-

rithms, and the searched normal cells are visualized in Figure 2.5. We achieve performance

gain compared with DARTS and most of its variants. Moreover, the variance of SDARTS-

RS is considerably better than baselines and SDARTS-ADV achieves even better stability.

PC-DARTS slightly outperforms our methods but has a higher variance. It warm starts w

for the first 15 epochs, and the search epoch is comparably smaller, which may alleviate its

instability issue discussed in Section 2.3.5. Nevertheless, when searching on various simplified

search spaces across 3 datasets, our methods achieve superior stability and test accuracy

compared with PC-DARTS as indicated in Section 2.3.8.

2.3.7 Architecture Search on RNN Standard Space

Settings Besides searching for CNN cells, our methods are applicable to various scenarios

such as identifying RNN cells. Following DARTS (Liu et al., 2018b), the RNN search space

based on PTB contains 5 candidate functions, i.e. tanh, relu, sigmoid, identity and zero. The

macro architecture of the RNN network is comprised of only a single cell consisting of N = 12

nodes. The first intermediate node is manually fixed and the rest nodes are determined by the

search algorithm. When searching, we train the RNN network for 50 epochs with sequence

length as 35. During evaluation, the final architecture is trained by an SGD optimizer, where

the batch size is set as 64 and the learning rate is fixed as 20. These settings are the same as

DARTS.
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Table 2.2: Comparison with language models on PTB (lower perplexity is better).

Architecture
Perplexity(%) Params

(M)valid test

LSTM + SE (Yang et al., 2018)⋆ 58.1 56.0 22

NAS (Zoph and Le, 2017) - 64.0 25

ENAS (Pham et al., 2018) 60.8 58.6 24

DARTS (1st) (Liu et al., 2018b) 60.2 57.6 23

DARTS (2nd) (Liu et al., 2018b)† 58.1 55.7 23

GDAS (Dong and Yang, 2019) 59.8 57.5 23

NASP (Yao et al., 2020b) 59.9 57.3 23

SDARTS-RS 58.7 56.4 23

SDARTS-ADV 58.3 56.1 23

⋆ LSTM + SE has 15 softmax experts.
† We achieve 58.5 for validation and 56.2 for test when training

the architecture found by DARTS (2nd) ourselves.

Results The results are shown in Table 2.2. SDARTS-RS achieves a validation perplexity of

58.7 and a test perplexity of 56.4. Meanwhile, SDARTS-ADV achieves a validation perplexity

of 58.3 and a test perplexity of 56.1. We outperform other NAS methods with similar model

size, which demonstrates the effectiveness of our methods for the RNN space. LSTM + SE

obtains better results than us, but it benefits from a handcrafted ensemble structure.

2.3.8 Comparison with Other Regularization

Our methods can be viewed as a way to regularize DARTS (implicitly regularize the Hessian

norm of validation loss). In this section, we compare SDARTS-RS and SDARTS-ADV with

other popular regularization techniques. The compared baselines are 1) partial channel

connection (PC-DARTS (Xu et al., 2020)); 2) ScheduledDropPath (Zoph et al., 2018) (R-
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Table 2.3: Comparison with popular regularization techniques (test error (%)). The best

method is boldface and underlined while the second best is boldface.

Dataset Space liu2018darts PC-DARTS DARTS-ES R-DARTS(DP) R-DARTS(L2) SDARTS-RS SDARTS-ADV

C10

S1 3.84 3.11 3.01 3.11 2.78 2.78 2.73

S2 4.85 3.02 3.26 3.48 3.31 2.75 2.65

S3 3.34 2.51 2.74 2.93 2.51 2.53 2.49

S4 7.20 3.02 3.71 3.58 3.56 2.93 2.87

C100

S1 29.46 18.87 28.37 25.93 24.25 17.02 16.88

S2 26.05 18.23 23.25 22.30 22.44 17.56 17.24

S3 28.90 18.05 23.73 22.36 23.99 17.73 17.12

S4 22.85 17.16 21.26 22.18 21.94 17.17 15.46

SVHN

S1 4.58 2.28 2.72 2.55 4.79 2.26 2.16

S2 3.53 2.39 2.60 2.52 2.51 2.37 2.07

S3 3.41 2.27 2.50 2.49 2.48 2.21 2.05

S4 3.05 2.37 2.51 2.61 2.50 2.35 1.98

DARTS(DP)); 3) L2 regularization on w (R-DARTS(L2)); 3) early stopping (DARTS-ES (Zela

et al., 2020b)).

Settings We perform a thorough comparison on four simplified search spaces proposed

in (Zela et al., 2020b) across 3 datasets (CIFAR-10, CIFAR-100, and SVHN). All search

spaces utilize the same macro architecture as in Section 2.3.6, the difference is that they only

contain a portion of candidate operations: the first space S1 contains 2 popular operators per

edge, S2 restricts the set of candidate operations on every edge as {3×3 separable convolution,

skip connection}, the operation set in S3 is {3 × 3 separable convolution, skip connection,

zero}, and S4 simplifies the set as {3× 3 separable convolution, noise}.

Results in Table 2.3 are obtained by running every method 4 independent times and pick

the final architecture based on the validation accuracy (retrain from scratch for a few epochs).

Other settings are the same as Section 2.3.6.

Results Our methods achieve substantial performance gains compared with baselines.

SDARTS-ADV is the best method for all 12 benchmarks and SDARTS-RS strikes the second
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Table 2.4: Proportion of parameter-free operations in normal cells found on CIFAR-10.

Space liu2018darts PC-DARTS DARTS-ES SDARTS-RS SDARTS-ADV

S1 1.0 0.5 0.375 0.125 0.125

S2 0.875 0.75 0.25 0.375 0.125

S3 1.0 0.125 1.0 0.125 0.125

S4 0.625 0.125 0.0 0.0 0.0

place on 10 benchmarks. The cell discovered on S3 for CIFAR-10 even achieves higher test

accuracy than all the methods in Table 2.1 (except for ProxylessNAS that searches based on

PyramidNet).

2.3.9 Examine the Searched Architectures

As pointed out in (Liang et al., 2019; Shu et al., 2020; Zela et al., 2020b), DARTS tends to

fall into distorted architectures that converge faster, which is another manifestation of its

instability. So here we examine the generated architectures and see whether our methods can

overcome such bias.

Proportion of Parameter-Free Operations Many have found out that parameter-free

operations such as skip connection dominate the generated architecture (Liang et al., 2019;

Zela et al., 2020b). Though makes architectures converge faster, excessive parameter-free

operations can largely reduce the model’s representation capability and bring out low test

accuracy. As illustrated in Table 2.4, we also find similar phenomenon when searching by

DARTS on 4 simplified search spaces in Section 2.3.8. The proportion of parameter-free

operations even becomes 100% on S1 and S3, and DARTS can not distinguish the harmful

noise operation on S4. PC-DARTS achieves some improvements but is not enough since

noise still appears. DARTS-ES reveals its effectiveness on S2 and S4 but fails on S3 since all

operations found are skip connection. We do not show R-DARTS(DP) and R-DARTS(L2)

here because their discovered cells are not released. In comparison, both SDARTS-RS and
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SDARTS-ADV succeed in controlling the portion of parameter-free operations on all search

spaces.

Connection Pattern Shu et al. (2020) demonstrates, from both empirical and theoretical

aspects, that DARTS tends to favor wide and shallow cells since they often have smoother loss

landscape and faster convergence speed. However, these cells may not generalize better than

their narrower and deeper variants (Shu et al., 2020). Follow their definitions (suppose every

intermediate node has width c), the best cell generated by our methods on CNN standard

space (Section 2.3.6) has width 3c and depth 4. In contrast, ENAS has width 5c and depth 2,

DARTS has width 3.5c and depth 3, PC-DARTS has width 4c and depth 2. Consequently,

we succeed in mitigating the bias of connection pattern.
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CHAPTER 3

Neural Architecture Search as Distribution Learning

In the previous section, we proposed a perturbation-based regularization method within the

DARTS framework to mitigate sharpness issues. Expanding on this concept, this section

generalizes the approach to encompass direct learning of a distribution. By sampling from

this distribution, we are able to derive the final candidate architectures, an innovative process

we have named Dirichlet Neural Architecture Search (DrNAS).

Inspired by the fact that directly optimizing the architecture mixing weight is equivalent

to performing point estimation (MLE/MAP) from a probabilistic perspective, we formulate

the differentiable NAS as a distribution learning problem instead, which naturally induces

stochasticity and encourages exploration. Making use of the probability simplex property of the

Dirichlet samples, DrNAS models the architecture mixing weight as random variables sampled

from a parameterized Dirichlet distribution. Optimizing the Dirichlet objective can thus be

done efficiently in an end-to-end fashion, by employing the pathwise derivative estimators

to compute the gradient of the distribution (Martin Jankowiak, 2018). A straightforward

optimization, however, turns out to be problematic due to the uncontrolled variance of

the Dirichlet, i.e., too much variance leads to training instability and too little variance

suffers from insufficient exploration. In light of that, we apply an additional distance

regularizer directly on the Dirichlet concentration parameter to strike a balance between

the exploration and the exploitation. We further derive a theoretical bound showing that

the constrained distributional objective promotes stability and generalization of architecture

search by implicitly controlling the Hessian of the validation error.
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Furthermore, to enable a direct search on large-scale tasks, we propose a progressive

learning scheme, eliminating the gap between the search and evaluation phases. Based on

partial channel connection (Xu et al., 2020), we maintain a task-specific super-network of

the same depth and number of channels as the evaluation phase throughout searching. To

prevent loss of information and instability induced by partial connection, we divide the

search phase into multiple stages and progressively increase the channel fraction via network

transformation (Chen et al., 2016). Meanwhile, we prune the operation space according to

the learnt distribution to maintain the memory efficiency.

We conduct extensive experiments on different datasets and search spaces to demonstrate

DrNAS’s effectiveness. Based on the DARTS search space (Liu et al., 2018b), we achieve

an average error rate of 2.46% on CIFAR-10, which ranks top amongst NAS methods.

Furthermore, DrNAS achieves superior performance on large-scale tasks such as ImageNet. It

obtains a top-1/5 error of 23.7%/7.1%, surpassing the previous state-of-the-art (24.0%/7.3%)

under the mobile setting. On NAS-Bench-201 (Dong and Yang, 2020), we also set new

state-of-the-art results on all three datasets with low variance.

3.1 The Proposed Approach - DrNAS

In this section, we first briefly review differentiable NAS setups and generalize the formulation

to motivate distribution learning. We then layout our proposed DrNAS and describe its

optimization in section 3.1.1. In section 3.1.2, we provide a generalization result by showing

that our method implicitly regularizes the Hessian norm over the architecture parameter.

The progressive architecture learning method that enables direct search is then described in

section 3.1.5.
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3.1.1 Differentiable Architecture Search as Distribution Learning

Learning a Distribution over Operation Mixing Weight Previous differentiable

architecture search methods view the operation mixing weight θ as learnable parameters that

can be directly optimized (Li et al., 2020; Liu et al., 2018b; Xu et al., 2020). This has been

shown to cause θ to overfit the validation set and thus induce large generalization error (Chen

and Hsieh, 2020; Zela et al., 2020b,c). We recognize that this treatment is equivalent to

performing point estimation (e.g., MLE/MAP) of θ in probabilistic view, which is inherently

prone to overfitting (Bishop, 2016; Gelman et al., 2004). Furthermore, directly optimizing

θ lacks sufficient exploration in the search space, and thus cause the search algorithm to

commit to suboptimal paths in the DAG that converges faster at the beginning but plateaus

quickly (Shu et al., 2020).

Based on these insights, we formulate the differentiable architecture search as a distribution

learning problem. The operation mixing weight θ is treated as random variables sampled

from a learnable distribution. Formally, let q(θ|β) denote the distribution of θ parameterized

by β. The bi-level objective is then given by:

min
β

Eq(θ|β)
[
Lval(w

∗, θ)
]
+ λd(β, β̂) s.t. w∗ = argmin

w
Ltrain(w, θ). (3.1)

where d(·, ·) is a distance function. Since θ lies on the probability simplex, we select

Dirichlet distribution to model its behavior, i.e., q(θ|β) ∼ Dir(β), where β represents the

Dirichlet concentration parameter. Dirichlet distribution is a widely used distribution over

the probability simplex (David M. Blei, 2003; Joo et al., 2019; Kessler et al., 2019; Lee et al.,

2020), and it enjoys nice properties that enables gradient-based training (Martin Jankowiak,

2018).

The concentration parameter β controls the sampling behavior of Dirichlet distribution

and is crucial in balancing exploration and exploitation during the search phase. Let βo

denote the concentration parameter assign to operation o. When βo ≪ 1 for most o = 1 ∼ |O|,

Dirichlet tends to produce sparse samples with high variance, reducing the training stability;
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when βo ≫ 1 for most o = 1 ∼ |O|, the samples will be dense with low variance, leading to

insufficient exploration. Therefore, we add a penalty term in the objective (3.1) to regularize

the distance between β and the anchor β̂ = 1, which corresponds to the symmetric Dirichlet.

In section 3.1.2, we also derive a theoretical bound showing that our formulation addition-

ally promotes stability and generalization of the architecture search by implicitly regularizing

the Hessian of validation loss w.r.t. architecture parameters.

Learning Dirichlet Parameters via Pathwise Derivative Estimator Optimizing

objective (3.1) with gradient-based methods requires back-propagation through stochastic

nodes of Dirichlet samples. The commonly used reparameterization trick does not apply

to Dirichlet distribution, therefore we approximate the gradient of Dirichlet samples via

pathwise derivative estimators (Martin Jankowiak, 2018)

dθi
dβj

= −
∂FBeta

∂βj
(θj|βj, βtot − βj)

fBeta(θj|βj, βtot − βj)
×
(δij − θi
1− θj

)
i, j = 1, ..., |O|, (3.2)

where FBeta and fBeta denote the CDF and PDF of beta distribution respectively, δij is the

indicator function, and βtot is the sum of concentrations. FBeta is the iregularised incomplete

beta function, for which its gradient can be computed by simple numerical approximation.

We refer to (Martin Jankowiak, 2018) for the complete derivations.

Joint Optimization of Model Weight and Architecture Parameter With pathwise

derivative estimator, the model weight w and concentration β can be jointly optimized with

gradient descent. Concretely, we draw a sample θ ∼ Dir(β) for every forward pass, and the

gradients can be obtained easily through backpropagation. Following DARTS (Liu et al.,

2018b), we approximate w∗ in the lower level objective of (3.1) with one step of gradient

descent, and run alternative updates between w∗ and β.

Selecting the Best Architecture At the end of the search phase, a learnt distribution of

operation mixing weight is obtained. We then select the best operation for each edge by the
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most likely operation in expectation:

o(i,j) = argmax
o∈O

E
q(θ

(i,j)
o |β(i,j))

[
θ(i,j)o

]
. (3.3)

In the Dirichlet case, the expectation term is simply the Dirichlet mean β
(i,j)
o∑

o′ β
(i,j)

o′
. Note that

under the distribution learning framework, we are able to sample a wide range of architectures

from the learnt distribution. This property alone has many potentials. For example, in

practical settings where both accuracy and latency are concerned, the learnt distribution can

be used to find architectures under resource restrictions in a post search phase.

3.1.2 The implicit Regularization on Hessian

It has been observed that the generalization error of differentiable NAS is highly related

to the dominant eigenvalue of the Hessian of validation loss w.r.t. architecture parameter.

Several recent works report that the large dominant eigenvalue of ∇2
θL̃val(w, θ) in DARTS

results in poor generalization performance (Chen and Hsieh, 2020; Zela et al., 2020b). Our

objective (3.1) is the Lagrangian function of the following constraint objective:

min
β

Eq(θ|β)
[
Lval(w

∗, θ)
]

s.t. w∗ = argmin
w

Ltrain(w, θ) , d(β, β̂) ≤ δ, (3.4)

Here we derive an approximated lower bound based on (3.4), which demonstrates that our

method implicitly controls this Hessian matrix.

Proposition 1 Let d(β, β̂) = ∥β − β̂∥2 ≤ δ and β̂ = 1 in the bi-level formulation (3.4).

Let µ denote the mean under the Laplacian approximation of Dirichlet. If ∇2
µL̃val(w

∗, µ) is

Positive Semi-definite, the upper-level objective can be approximated bounded by:

Eq(θ|β)(Lval(w, θ)) ≳ L̃val(w
∗, µ) +

1

2
(

1

1 + δ
(1− 2

|O|
) +

1

|O|
1

1 + δ
)tr

(
∇2

µL̃val(w
∗, µ)

)
(3.5)

with:

L̃val(w
∗, µ) = Lval(w

∗, Softmax(µ)), µo = log βo −
1

|O|
∑
o′

log βo′ , o = 1, . . . , |O|.
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which is driven by the Laplacian approximation to the Dirichlet distribution (Akash Srivastava,

2017; MacKay, 1998). The lower bound (3.5) indicates that minimizing the expected validation

loss controls the trace norm of the Hessian matrix. Empirically, we observe that DrNAS

always maintains the dominant eigenvalue of Hessian at a low level (Section 3.3.6). The

detailed proof are shown below in Section 3.1.3.

3.1.3 Proof of Proposition 1

Preliminaries: Before the development of Pathwise Derivative Estimator, Laplace Ap-

proximate with Softmax basis has been extensively used to approximate the Dirichlet Distri-

bution (Akash Srivastava, 2017; MacKay, 1998). The approximated Dirichlet distribution

is:

p(θ(h)|β) = Γ(
∑

o βo)∏
o Γ(βo)

∏
o

θβo
o g(1Th) (3.6)

Where θ(h) is the softmax-transformed h, h follows multivariate normal distribution, and

g(·) is an arbitrary density to ensure integrability (Akash Srivastava, 2017). The mean µ and

diagonal covariance matrix Σ of h depends on the Dirichlet concentration parameter β:

µo = log βo −
1

|O|
∑
o′

log βo′ Σo =
1

βo

(1− 2

|O|
) +

1

|O|2
∑
o′

1

βo′
(3.7)

It can be directly obtained from (3.7) that the Dirichlet mean βo∑
o
′ β

o
′
= Softmax(µ). Sampling

from the approximated distribution can be down by first sampling from h and then applying

Softmax function to obtain θ. We will leverage the fact that this approximation supports

explicit reparameterization to derive our proof.
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Proof: Apply the above Laplace Approximation to Dirichlet distribution, the unconstrained

upper-level objective in (3.4) can then be written as:

Eθ∼Dir(β)

[
Lval(w

∗, θ)
]

(3.8)

≈Eϵ∼N (0,Σ)

[
Lval(w

∗, Softmax(µ+ ϵ))
]

(3.9)

≡Eϵ∼N (0,Σ)

[
L̃val(w

∗, µ+ ϵ)
]

(3.10)

≈Eϵ∼N (0,Σ)

[
L̃val(w

∗, µ) + ϵT∇µL̃val(w
∗, µ) +

1

2
ϵT∇2

µL̃val(w
∗, µ)ϵ

]
(3.11)

=L̃val(w
∗, µ) +

1

2
tr
(
Eϵ∼N (0,Σ)

[
ϵϵT

]
∇2

µL̃val(w
∗, µ)

)
(3.12)

=L̃val(w
∗, µ) +

1

2
tr
(
Σ∇2

µL̃val(w
∗, µ)

)
(3.13)

In our full objective, we constrain the Euclidean distance between learnt Dirichlet concen-

tration and fixed prior concentration ||β−1||2 ≤ δ. The covariance matrix Σ of approximated

softmax Gaussian can be bounded as:

Σo =
1

βo

(1− 2

|O|
) +

1

|O|2
∑
o′

1

βo′
(3.14)

≥ 1

1 + δ
(1− 2

|O|
) +

1

|O|
1

1 + δ
(3.15)

Then (3.8) becomes:

Eθ∼Dir(β)

[
Lval(w

∗, θ)
]

(3.16)

≈L̃val(w
∗, µ) +

1

2
tr
(
Σ∇2

µL̃val(w
∗, µ)

)
(3.17)

≥L̃val(w
∗, µ) +

1

2
(

1

1 + δ
(1− 2

|O|
) +

1

|O|
1

1 + δ
)tr

(
∇2

µL̃val(w
∗, µ)

)
(3.18)

The last line holds when ∇2
µL̃val(w

∗, µ) is positive semi-definite. In Section 3.3.6, we provide

an empirical justification for this implicit regularization effect of DrNAS.

3.1.4 Connection to Variational Inference

In this section, we draw a connection between DrNAS and Variational Inference (David

M. Blei, 2016). We use w, θ, and β to denote the model weight, operation mixing weight, and
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Dirichlet concentration parameters respectively, following the main text. The true posterior

distribution can be written as p(θ|w,D), where D = {xn, yn}Nn=1 is the dataset. Let q(θ|β)

denote the variational approximation of the true posterior; and assume that q(θ|β) follows

Dirichlet distribution. We follow Joo et al. (2019) to assume a symmetric Dirichlet distribution

for the prior p(θ) as well, i.e., p(θ) = Dir(1). The goal is to minimize the KL divergence

between the true posterior and the approximated form, i.e., minβ KL(q(θ|β)||p(θ|w,D)). It

can be shown that this objective is equivalent to maximizing the evidence lower bound as

below (David M. Blei, 2016):

L(β) = Eq(θ|β)
[
log p(D|θ, w)

]
−KL(q(θ|β)||p(θ|w)) (3.19)

The upper level objective of the bilevel optimization under variational inference framework is

then given as:

min
β

Eq(θ|β)
[
− log p(Dvalid|θ, w∗)

]
+KL(q(θ|β)||p(θ)) (3.20)

Note that eq. (3.20) resembles eq. (3.1) if we use the negative log likelihood as the loss

function and replace d(·, ·) with KL divergence. In practice, we find that using a simple l2

distance regularization works well across datasets and search spaces.

3.1.5 Progressive Architecture Learning

The GPU memory consumption of differentiable NAS methods grows linearly with the size

of operation candidate space. Therefore, they usually use a easier proxy task such as training

with a smaller dataset, or searching with fewer layers and number of channels (Cai et al.,

2019). For instance, the architecture search is performed on 8 cells and 16 initial channels in

DARTS (Liu et al., 2018b). But during evaluation, the network has 20 cells and 36 initial

channels. Such gap makes it hard to derive an optimal architecture for the target task (Cai

et al., 2019).

PC-DARTS (Xu et al., 2020) proposes a partial channel connection to reduce the memory

overheads of differentiable NAS, where they only send a random subset of channels to the
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mixed-operation while directly bypassing the rest channels in a shortcut. However, their

method causes loss of information and makes the selection of operation unstable since the

sampled subsets may vary widely across iterations. This drawback is amplified when combining

with the proposed method since we learn the architecture distribution from Dirichlet samples,

which already injects certain stochasticity. As shown in Table 3.1, when directly applying

partial channel connection with distribution learning, the test accuracy of the searched

architecture decreases over 3% and 18% on CIFAR-10 and CIFAR-100 respectively if we send

only 1/8 channels to the mixed-operation.

To alleviate such information loss and instability problem while being memory-efficient, we

propose a progressive learning scheme which gradually increases the fraction of channels that

are forwarded to the mixed-operation and meanwhile prunes the operation space based on the

learnt distribution. We split the search process into consecutive stages and construct a task-

specific super-network with the same depth and number of channels as the evaluation phase at

the initial stage. Then after each stage, we increase the partial channel fraction, which means

that the super-network in the next stage will be wider, i.e., have more convolution channels,

and in turn preserve more information. This is achieved by enlarging every convolution

weight with a random mapping function similar to Net2Net (Chen et al., 2016). The mapping

function g : {1, 2, . . . , q} → {1, 2, . . . , n} with q > n is defined as

g(j) =

 j j ≤ n

random sample from {1, 2, . . . , n} j > n
(3.21)

To widen layer l, we replace its convolution weight W(l) ∈ ROut×In×H×W with a new

weight U(l).

U(l)
o,i,h,w = W(l)

g(o),g(i),h,w, (3.22)

where Out, In,H,W denote the number of output and input channels, filter height and width

respectively. Intuitively, we copy W(l) directly into U(l) and fulfill the rest part by choosing

randomly as defined in g. Unlike Net2Net, we do not divide U(l) by a replication factor here
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Table 3.1: Test accuracy of the derived architectures when searching on NAS-Bench-201 with

different partial channel fraction, where 1/K channels are sent to the mixed-operation.

CIFAR-10 CIFAR-100

K
Test Accuracy

(%)

GPU Memory

(MB)

Test Accuracy

(%)

GPU Memory

(MB)

1 94.36± 0.00 2437 73.51± 0.00 2439

2 93.49± 0.28 1583 68.48± 0.41 1583

4 92.85± 0.35 1159 66.68± 3.22 1161

8 91.06± 0.00 949 55.11± 13.78 949

Ours 94.36± 0.00 949 73.51± 0.00 949

because the information flow on each edge has the same scale no matter the partial fraction

is. After widening the super-network, we reduce the operation space by pruning out less

important operations according to the Dirichlet concentration parameter β learnt from the

previous stage, maintaining a consistent memory consumption. As illustrated in Table 3.1,

the proposed progressive architecture learning scheme effectively discovers high accuracy

architectures and retains a low GPU memory overhead.

3.2 Discussions and Relationship to Prior Work

Early methods in NAS usually include a full training and evaluation procedure every iteration

as the inner loop to guide the consecutive search (Real et al., 2019a; Zoph and Le, 2017;

Zoph et al., 2018). Consequently, their computational overheads are beyond acceptance for

practical usage, especially on large-scale tasks.

Differentiable NAS Recently, many works are proposed to improve the efficiency of

NAS (Bender et al., 2018; Cai et al., 2018a; Liu et al., 2018b; Mei et al., 2020; Pham et al.,

2018; Yao et al., 2020a,b). Amongst them, DARTS (Liu et al., 2018b) proposes a differentiable
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NAS framework, which introduces a continuous architecture parameter that relaxes the

discrete search space. Despite being efficient, DARTS only optimizes a single point on the

simplex every search epoch, which has no guarantee to generalize well after the discretization

during evaluation. So its stability and generalization have been widely challenged (Chen and

Hsieh, 2020; Li and Talwalkar, 2019; Wang et al., 2021; Zela et al., 2020b). Following DARTS,

SNAS (Xie et al., 2019) and GDAS (Dong and Yang, 2019) leverage the gumbel-softmax trick

to learn the exact architecture parameter. However, their reparameterization is motivated

from reinforcement learning perspective, which is an approximation with softmax rather

than an architecture distribution. Besides, their methods require tuning of temperature

schedule (Caglar Gulcehre, 2017; Yan et al., 2017). GDAS linearly decreases the temperature

from 10 to 1 while SNAS anneals it from 1 to 0.03. In comparison, the proposed method

can automatically learn the architecture distribution without the requirement of handcrafted

scheduling. BayesNAS (Zhou et al., 2019) applies Bayesian Learning in NAS. Specifically, they

cast NAS as model compression problem and use Bayes Neural Network as the super-network,

which is difficult to optimize and requires oversimplified approximation. While our method

considers the stochasticity in architecture mixing weight, as it is directly related to the

generalization of differentiable NAS algorithms (Chen and Hsieh, 2020; Zela et al., 2020b).

Memory overhead When dealing with the large memory consumption of differentiable

NAS, previous works mainly restrain the number of paths sampled during the search phase.

For instance, ProxylessNAS (Cai et al., 2019) employs binary gates and samples two paths

every search epoch. PARSEC (Casale et al., 2019) samples discrete architectures according

to a categorical distribution to save memory. Similarly, GDAS (Dong and Yang, 2019)

and DSNAS (Hu et al., 2020) both enforce a discrete constraint after the gumbel-softmax

reparametrization. However, such discretization manifests premature convergence and cause

search instability (Zela et al., 2020c; Zhang et al., 2020). Our experiments in Section 3.3.3

also empirically demonstrate this phenomenon. As an alternative, PC-DARTS (Xu et al.,
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2020) proposes a partial channel connection, where only a portion of channels is sent to the

mixed-operation. However, partial connection can cause loss of information as shown in

section 3.1.5 and PC-DARTS searches on a shallower network with less channels, suffering the

search and evaluation gap. Our solution, by progressively pruning the operation space and

meanwhile widening the network, searches in a task-specific manner and achieves superior

accuracy on challenging datasets like ImageNet (+2.8% over BayesNAS, +2.3% over GDAS,

+2.3% over PARSEC, +2.0% over DSNAS, +1.2% over ProxylessNAS, and +0.5% over

PC-DARTS).

3.3 Experiments

In this section, we evaluate our proposed DrNAS on two search spaces: the CNN search

space in DARTS (Liu et al., 2018b) and NAS-Bench-201 (Dong and Yang, 2020). For

DARTS space, we conduct experiments on both CIFAR-10 and ImageNet in section 3.3.1

and 3.3.2 respectively. For NAS-Bench-201, we test all 3 supported datasets (CIFAR-10,

CIFAR-100, ImageNet-16-120 (Chrabaszcz et al., 2017)) in section 3.3.3. Furthermore, we

empirically study the dynamics of exploration and exploitation throughout the search process

in section 3.3.4.

3.3.1 Results on CIFAR-10

Architecture Space For both search and evaluation phases, we stack 20 cells to compose

the network and set the initial channel number as 36. We place the reduction cells at the 1/3

and 2/3 of the network and each cell consists of N = 6 nodes.

Search Settings We equally divide the 50K training images into two parts, one is used for

optimizing the network weights by momentum SGD and the other for learning the Dirichlet

architecture distribution by an Adam optimizer. Since Dirichlet concentration β must be
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positive, we apply the shifted exponential linear mapping β = ELU(η) + 1 and optimize

over η instead. We use l2 norm to constrain the distance between η and the anchor η̂ = 0.

The η is initialized by standard Gaussian with scale 0.001, and λ in (3.1) is set to 0.001.

The ablation study in Appendix 3.3.7 reveals the effectiveness of our anchor regularizer, and

DrNAS is insensitive to a wide range of λ. These settings are consistent for all experiments.

For progressive architecture learning, the whole search process consists of 2 stages, each

with 25 iterations. In the first stage, we set the partial channel parameter K as 6 to fit the

super-network into a single GTX 1080Ti GPU with 11GB memory, i.e., only 1/6 features are

sampled on each edge. For the second stage, we prune half candidates and meanwhile widen

the network twice, i.e., the operation space size reduces from 8 to 4 and K becomes 3.

Retrain Settings The evaluation phase uses the entire 50K training set to train the

network from scratch for 600 epochs. The network weight is optimized by an SGD optimizer

with a cosine annealing learning rate initialized as 0.025, a momentum of 0.9, and a weight

decay of 3 × 10−4. To allow a fair comparison with previous work, we also employ cutout

regularization with length 16, drop-path (Zoph et al., 2018) with probability 0.3 and an

auxiliary tower of weight 0.4.

Results Table 3.2 summarizes the performance of DrNAS compared with other popular

NAS methods, and we also visualize the searched cells in Appendix 3.3.5. DrNAS achieves

an average test error of 2.46%, ranking top amongst recent NAS results. ProxylessNAS is

the only method that achieves lower test error than us, but it searches on a different space

with a much longer search time and has larger model size. We also perform experiments to

assign proper credit to the two parts of our proposed algorithm, i.e., Dirichlet architecture

distribution and progressive learning scheme. When searching on a proxy task with 8 stacked

cells and 16 initial channels as the convention (Liu et al., 2018b; Xu et al., 2020), we achieve

a test error of 2.54% that surpasses most baselines. Our progressive learning algorithm

eliminates the gap between the proxy and target tasks, which further reduces the test error.

37



Consequently, both of the two parts contribute a lot to our performance gains.

Table 3.2: Comparison with state-of-the-art image classifiers on CIFAR-10.

Architecture
Test Error

(%)

Params

(M)

Search Cost

(GPU days)

Search

Method

DenseNet-BC (Huang et al., 2017)⋆ 3.46 25.6 - manual

NASNet-A (Zoph et al., 2018) 2.65 3.3 2000 RL

AmoebaNet-A (Real et al., 2019a) 3.34± 0.06 3.2 3150 evolution

AmoebaNet-B (Real et al., 2019a) 2.55± 0.05 2.8 3150 evolution

PNAS (Liu et al., 2018a)⋆ 3.41± 0.09 3.2 225 SMBO

ENAS (Pham et al., 2018) 2.89 4.6 0.5 RL

DARTS (1st) (Liu et al., 2018b) 3.00± 0.14 3.3 0.4 gradient

DARTS (2nd) (Liu et al., 2018b) 2.76± 0.09 3.3 1.0 gradient

SNAS (moderate) (Xie et al., 2019) 2.85± 0.02 2.8 1.5 gradient

GDAS (Dong and Yang, 2019) 2.93 3.4 0.3 gradient

BayesNAS (Zhou et al., 2019) 2.81± 0.04 3.4 0.2 gradient

ProxylessNAS (Cai et al., 2019)† 2.08 5.7 4.0 gradient

PARSEC (Casale et al., 2019) 2.81± 0.03 3.7 1 gradient

P-DARTS (Chen et al., 2019) 2.50 3.4 0.3 gradient

PC-DARTS (Xu et al., 2020) 2.57± 0.07 3.6 0.1 gradient

SDARTS-ADV (Chen and Hsieh, 2020) 2.61± 0.02 3.3 1.3 gradient

GAEA + PC-DARTS (Li et al., 2020) 2.50± 0.06 3.7 0.1 gradient

DrNAS (without progressive learning) 2.54± 0.03 4.0 0.4‡ gradient

DrNAS 2.46± 0.03 4.1 0.6‡ gradient

⋆ Obtained without cutout augmentation.
† Obtained on a different space with PyramidNet (Han et al., 2017) as the backbone.
‡ Recorded on a single GTX 1080Ti GPU.
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3.3.2 Results on ImageNet

Architecture Space The network architecture for ImageNet is slightly different from that

for CIFAR-10 in that we stack 14 cells and set the initial channel number as 48. We also first

downscale the spatial resolution from 224× 224 to 28× 28 with three convolution layers of

stride 2 following previous works (Chen et al., 2019; Xu et al., 2020). The other settings are

the same with section 3.3.1.

Search Settings Following PC-DARTS (Xu et al., 2020), we randomly sample 10% and

2.5% images from the 1.3M training set to alternatively learn network weight and Dirichlet

architecture distribution by a momentum SGD and an Adam optimizer respectively. We use

8 RTX 2080 Ti GPUs for both search and evaluation, and the setup of progressive pruning is

the same with that on CIFAR-10, i.e., 2 stages with operation space size shrinking from 8 to

4, and the partial channel K reduces from 6 to 3.

Retrain Settings For architecture evaluation, we train the network for 250 epochs by an

SGD optimizer with a momentum of 0.9, a weight decay of 3× 10−5, and a linearly decayed

learning rate initialized as 0.5. We also use label smoothing and an auxiliary tower of weight

0.4 during training. The learning rate warm-up is employed for the first 5 epochs following

previous works (Chen et al., 2019; Xu et al., 2020).

Results As shown in Table 3.3, we achieve a top-1/5 test error of 23.7%/7.1%, outperforming

all compared baselines and achieving state-of-the-art performance in the ImageNet mobile

setting. The searched cells are visualized in Appendix 3.3.5. Similar to section 3.3.1, we also

report the result achieved with 8 cells and 16 initial channels, which is a common setup for

the proxy task on ImageNet (Xu et al., 2020). The obtained 24.2% top-1 accuracy is already

highly competitive, which demonstrates the effectiveness of the architecture distribution

learning on large-scale tasks. Then our progressive learning scheme further increases the
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top-1/5 accuracy for 0.5%/0.2%. Therefore, learning in a task-specific manner is essential to

discover better architectures.

Table 3.3: Comparison with state-of-the-art image classifiers on ImageNet in the mobile

setting.

Architecture
Test Error(%) Params

(M)

Search Cost

(GPU days)

Search

Methodtop-1 top-5

Inception-v1 (Szegedy et al., 2015) 30.1 10.1 6.6 - manual

MobileNet (Howard et al., 2017) 29.4 10.5 4.2 - manual

ShuffleNet 2× (v1) (Zhang et al., 2018c) 26.4 10.2 ∼ 5 - manual

ShuffleNet 2× (v2) (Ma et al., 2018) 25.1 - ∼ 5 - manual

NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 2000 RL

AmoebaNet-C (Real et al., 2019a) 24.3 7.6 6.4 3150 evolution

PNAS (Liu et al., 2018a) 25.8 8.1 5.1 225 SMBO

MnasNet-92 (Tan et al., 2019) 25.2 8.0 4.4 - RL

DARTS (2nd) (Liu et al., 2018b) 26.7 8.7 4.7 1.0 gradient

SNAS (mild) (Xie et al., 2019) 27.3 9.2 4.3 1.5 gradient

GDAS (Dong and Yang, 2019) 26.0 8.5 5.3 0.3 gradient

BayesNAS (Zhou et al., 2019) 26.5 8.9 3.9 0.2 gradient

DSNAS (Hu et al., 2020)† 25.7 8.1 - - gradient

ProxylessNAS (GPU) (Cai et al., 2019)† 24.9 7.5 7.1 8.3 gradient

PARSEC (Casale et al., 2019) 26.0 8.4 5.6 1 gradient

P-DARTS (CIFAR-10) (Chen et al., 2019) 24.4 7.4 4.9 0.3 gradient

P-DARTS (CIFAR-100) (Chen et al., 2019) 24.7 7.5 5.1 0.3 gradient

PC-DARTS (CIFAR-10) (Xu et al., 2020) 25.1 7.8 5.3 0.1 gradient

PC-DARTS (ImageNet) (Xu et al., 2020)† 24.2 7.3 5.3 3.8 gradient

GAEA + PC-DARTS (Li et al., 2020)† 24.0 7.3 5.6 3.8 gradient

DrNAS (without progressive learning)† 24.2 7.3 5.2 3.9 gradient

DrNAS† 23.7 7.1 5.7 4.6 gradient

† The architecture is searched on ImageNet, otherwise it is searched on CIFAR-10 or CIFAR-100.
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3.3.3 Results on NAS-Bench-201

Recently, some researchers doubt that the expert knowledge applied to the evaluation protocol

plays an important role in the impressive results achieved by leading NAS methods (Li and

Talwalkar, 2019; Yang et al., 2020). So to further verify the effectiveness of DrNAS, we perform

experiments on NAS-Bench-201 (Dong and Yang, 2020), where architecture performance

can be directly obtained by querying in the database. NAS-Bench-201 provides support for

3 dataset (CIFAR-10, CIFAR-100, ImageNet-16-120 (Chrabaszcz et al., 2017)) and has a

unified cell-based search space containing 15,625 architectures. We refer to their paper (Dong

and Yang, 2020) for details of the space. Our experiments are performed in a task-specific

manner, i.e., the search and evaluation are based on the same dataset. The hyperparameters

for all compared methods are set as their default and for DrNAS, we use the same search

settings with section 3.3.1. We run every method 4 independent times with different random

seeds and report the mean and standard deviation in Table 3.4.

As shown, we achieve the best accuracy on all 3 datasets. On CIFAR-100, we even achieve

the global optimal. Specifically, DrNAS outperforms DARTS, GDAS, DSNAS, PC-DARTS,

and SNAS by 103.8%, 35.9%, 30.4%, 6.4%, and 4.3% on average. We notice that the two

methods (GDAS and DSNAS) that enforce a discrete constraint, i.e., only sample a single

path every search iteration, perform undesirable especially on CIFAR-100. In comparison,

SNAS, employing a similar Gumbel-softmax trick but without the discretization, performs

much better. Consequently, a discrete constraint during search can reduce the GPU memory

consumption but empirically suffers instability. In comparison, we develop the progressive

learning scheme on top of the architecture distribution learning, enjoying both memory

efficiency and strong search performance.
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Table 3.4: Comparison with state-of-the-art NAS methods on NAS-Bench-201.

Method
CIFAR-10 CIFAR-100 ImageNet-16-120

validation test validation test validation test

ResNet (He et al., 2016) 90.83 93.97 70.42 70.86 44.53 43.63

Random (baseline) 90.93± 0.36 93.70± 0.36 70.60± 1.37 70.65± 1.38 42.92± 2.00 42.96± 2.15

RSPS (Li and Talwalkar, 2019) 84.16± 1.69 87.66± 1.69 45.78± 6.33 46.60± 6.57 31.09± 5.65 30.78± 6.12

Reinforce (Zoph et al., 2018) 91.09± 0.37 93.85± 0.37 70.05± 1.67 70.17± 1.61 43.04± 2.18 43.16± 2.28

ENAS (Pham et al., 2018) 39.77± 0.00 54.30± 0.00 10.23± 0.12 10.62± 0.27 16.43± 0.00 16.32± 0.00

DARTS (1st) (Liu et al., 2018b) 39.77± 0.00 54.30± 0.00 38.57± 0.00 38.97± 0.00 18.87± 0.00 18.41± 0.00

DARTS (2nd) (Liu et al., 2018b) 39.77± 0.00 54.30± 0.00 38.57± 0.00 38.97± 0.00 18.87± 0.00 18.41± 0.00

GDAS (Dong and Yang, 2019) 90.01± 0.46 93.23± 0.23 24.05± 8.12 24.20± 8.08 40.66± 0.00 41.02± 0.00

SNAS (Xie et al., 2019) 90.10± 1.04 92.77± 0.83 69.69± 2.39 69.34± 1.98 42.84± 1.79 43.16± 2.64

DSNAS (Hu et al., 2020) 89.66± 0.29 93.08± 0.13 30.87± 16.40 31.01± 16.38 40.61± 0.09 41.07± 0.09

PC-DARTS (Xu et al., 2020) 89.96± 0.15 93.41± 0.30 67.12± 0.39 67.48± 0.89 40.83± 0.08 41.31± 0.22

DrNAS 91.55± 0.00 94.36± 0.00 73.49± 0.00 73.51± 0.00 46.37± 0.00 46.34± 0.00

optimal 91.61 94.37 73.49 73.51 46.77 47.31

3.3.4 Empirical Study on Exploration v.s. Exploitation

We further conduct an empirical study on the dynamics of exploration and exploitation in the

search phase of DrNAS on NAS-Bench-201. After every search epoch, We sample 100 θs from

the learned Dirichlet distribution and take the argmax to obtain 100 discrete architectures.

We then plot the range of their accuracy along with the architecture selected by Dirichlet

mean (solid line in Figure 3.1). Note that in our algorithm, we simply derive the architecture

according to the Dirichlet mean as described in Section 3.1.1. As shown in Figure 3.1, the

accuracy range of the sampled architectures starts very wide but narrows gradually during the

search phase. It indicates that DrNAS learns to encourage exploration in the search space at

the early stages and then gradually reduces it towards the end as the algorithm becomes more

and more confident of the current choice. Moreover, the performance of our architectures

can consistently match the best performance of the sampled architectures, indicating the

effectiveness of DrNAS.
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Figure 3.1: Accuracy range (min-max) of the 100 sampled architectures on CIFAR-10 (Left),

CIFAR-100 (Middle), and ImageNet16-120 (Right). Note that the solid line is our derived

architecture according to the Dirichlet mean as described in Section 3.1.1.
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Figure 3.2: Normal (Left) and Reduction (Right) cells discovered by DrNAS on CIFAR-10.

3.3.5 Searched Architectures

We visualize the searched normal and reduction cells in Figure 3.2 and 3.3, which is directly

searched on CIFAR-10 and ImageNet respectively.

3.3.6 Empirical Study on the Hessian Regularization Effect

We track the anytime Hessian norm on NAS-Bench-201 in Figure 3.4. The result is obtained

by averaging from 4 independent runs. We observe that the largest eigenvalue expands

about 10 times when searching by DARTS for 100 epochs. In comparison, DrNAS always

maintains the Hessian norm at a low level, which is in agreement with our theoretical analysis

in Section 3.1.2. Figure 3.5 shows the regularization effect under various λs. As we can see,

DrNAS can keep hessian norm at a low level for a wide range of λs, which is in accordance

to the relatively stable performance in Table 3.6.
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Figure 3.3: Normal (Left) and Reduction (Right) cells discovered by DrNAS on ImageNet.

Figure 3.4: Trajectory of the Hessian norm on NAS-Bench-201 when searching with CIFAR-10

(best viewed in color).

Table 3.5: CIFAR-10 test error on 4 simplified spaces.

s1 s2 s3 s4

DARTS 3.84 4.85 3.34 7.20

R-DARTS (DP) 3.11 3.48 2.93 3.58

R-DARTS (L2) 2.78 3.31 2.51 3.56

DrNAS (ours) 2.74 2.47 2.4 2.59
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Figure 3.5: Trajectory of the Hessian norm under various λs on NAS-Bench-201 when

searching with CIFAR-10 (best viewed in color).

Moreover, we compare DrNAS with DARTS and R-DARTS on 4 simplified space proposed

in (Zela et al., 2020b) and record the endpoint dominant eigenvalue. The first space S1

contains 2 popular operators per edge based on DARTS search result. For S2, S3, and S4, the

operation sets are {3× 3 separable convolution, skip connection}, {3× 3 separable convolution,

skip connection, zero}, and {3× 3 separable convolution, noise} respectively. As shown in

Table 3.5, DrNAS consistently outperforms DARTS and R-DARTS. The endpoint eigenvalues

for DrNAS are 0.0392, 0.0390, 0.0286, 0.0389 respectively. Figure 3.5 shows the Hessian norm

trajectory under various λ.

3.3.7 Ablation Study on Anchor Regularizer Parameter

Table 3.6 shows the accuracy of the searched architecture using different value of λ while

keeping all other settings the same. Using anchor regularizer? for a wide range of value can

boost the accuracy and DrNAS performs quite stable under different λs.
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Table 3.6: Test accuracy of the searched architecture with different λs on NAS-Bench-201

(CIFAR-10). λ = 1e−3 is what we used for all of our experiments.

λ 0 5e−4 1e−3 5e−3 1e−2 1e−1 1

Accuracy 93.78 94.01 94.36 94.36 94.36 93.76 93.76
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CHAPTER 4

Neural Architecture Search in Collaborative Filtering

Collaborative filtering (CF) (Herlocker et al., 1999; Su and Khoshgoftaar, 2009) is an important

topic in both machine learning and data mining. By capturing interactions among rows and

columns in a data matrix, CF predicts the missing entries based on the observed elements.

The most famous CF application is the recommender system (Koren, 2008). The ratings in

such systems can be arranged as a data matrix, where rows correspond to users, columns

are the items, and the entries are ratings collected. Since users usually only interact with a

few items, there will be lots of missing entries in the rating matrix. The task is to estimate

users’ ratings on items they have not yet explored. Due to the good empirical performance of

CF approaches, they also have been used in various other applications as well, e.g., image

in-painting in computer vision (Ji et al., 2010), link prediction in social networks (Kim and

Leskovec, 2011) and topic modeling for text analysis Wang and Blei (2011). More recently,

CF is also extended to tensor data (i.e., higher-order matrices) Kolda and Bader (2009) to

handle side-information, e.g., extra features Karatzoglou et al. (2010) and time (Lei et al.,

2009).

In the last decade, low-rank matrix factorization (Koren, 2008; Mnih and Salakhutdinov,

2008) has been the most popular approach to CF. It can be formulated as the following

optimization problem:

min
U ,V

∑
(i,j)∈Ω

ℓ
(
u⊤

i vj,Oij

)
+

λ

2
∥U∥2F +

λ

2
∥V ∥2F , (4.1)

where ℓ is a loss function, the observed elements are indicated by Ω with values given by the

corresponding positions in matrix O ∈ Rm×n, λ ≥ 0 is a hyper-parameter, and ui ∈ Rk and
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vj ∈ Rk are embedded vectors for user i and item j, respectively. Note that (4.1) captures

interactions between user ui and item vj by the inner product. This achieves good empirical

performance, enjoys sound statistical guarantees (Candès and Recht, 2009; Recht et al., 2010)

(e.g., the data matrix can be exactly recovered when O satisfies certain incoherent conditions

and the missing entries follow some distributions), and fast training (Gemulla et al., 2011;

Mnih and Salakhutdinov, 2008) (e.g., can be trained end-to-end by stochastic optimization).

While the inner product has many benefits, it may not yield the best performance for

various CF tasks due to the complex nature of user-item interactions. For example, the plus

operation, which quantifies the users’ preference based on ui − vj, has been explored in (He

et al., 2017; Hsieh et al., 2017). The motivation is that the embedded vectors obtained from

inner product do not satisfy the triangle inequality, while those from the plus operation can.

Other operations (such as concatenation and convolution) have also outperformed the inner

product on many CF tasks (He et al., 2018; Kim et al., 2016; Rendle, 2012). Due to the

success of deep networks (Goodfellow et al., 2016), the multi-layer perceptron (MLP) is also

recently used as the interaction function (IFC) in CF (Cheng et al., 2016; He et al., 2017;

Xue et al., 2017), and achieves good performance. However, choosing and designing an IFC

is not easy, IFC should also depend on the data sets and tasks. Using one simple operation,

such as the inner product or plus, may not be expressive enough to ensure good performance.

On the other hand, directly using a MLP leads to the difficult and time-consuming task of

architecture selection (Baker et al., 2017; Zhang et al., 2019; Zoph and Le, 2017). Thus, it is

hard to have an objectively best IFC across different tasks and data sets (Dacrema et al.,

2019).

Recently, there have been a lot of interests in automated machine learning (AutoML)

(Hutter et al., 2018), which involves searching for an appropriate network architecture by

reinforcement learning (Baker et al., 2017; Zoph et al., 2017; Zoph and Le, 2017), and the

fine-tuning of a classifier ensemble by Bayes optimization (Feurer et al., 2015). In this chapter,

motivated by the success of AutoML, we consider formulating the search for interaction
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Table 4.1: Popular human-designed interaction functions (IFC) for CF, where H is a

parameter to be trained. SIF searches a proper IFC from the validation set (i.e., by AutoML),

while others are all designed by experts.

IFC operation space predict time recent examples

⟨ui,vj⟩ inner product O((m+ n)k) O(k) MF (Koren, 2008), FM (Rendle, 2012)

ui − vj plus (minus) O((m+ n)k) O(k) CML (Hsieh et al., 2017)

human-designed max (ui,vj) max, min O((m+ n)k) O(k) ConvMF (Kim et al., 2016)

σ ([ui;vj]) concat O((m+ n)k) O(k) Deep&Wide (Cheng et al., 2016)

σ (ui ⊙ vj +H [ui;vj]) multi, concat O((m+ n)k) O(k2) NCF (He et al., 2017)

ui ∗ vj conv O((m+ n)k) O(k log(k)) ConvMF (Kim et al., 2016)

ui ⊗ vj outer product O((m+ n)k) O(k2) ConvNCF (He et al., 2018)

AutoML SIF (proposed) searched O((m+ n)k) O(k) ——

functions (SIF) as an AutoML problem. Inspired by observations on existing IFCs, we

first generalize the CF objective and define the SIF problem. These observations also help

to identify a domain-specific and expressive search space, which not only includes many

human-designed IFCs, but also covers new ones not yet explored in the literature. We further

represent the SIF problem, armed with the designed search space, as a structured MLP. This

enables us to derive an efficient search algorithm based on one-shot architecture search (Liu

et al., 2018b; Xie et al., 2018; Yao et al., 2019). The algorithm can jointly train the embedding

vectors and search IFCs in a stochastic end-to-end manner. We further extend the proposed

SIF, including both the search space and one-shot search algorithm, to handle tensor data.

Finally, we perform experiments on CF tasks with both matrix data (i.e., MovieLens data

sets) and tensor data (i.e., Youtube data set).

Notations

Vectors are denoted by lowercase boldface, and matrices by uppercase boldface. For two

vectors x and y, ⟨x,y⟩ is the inner product, x⊙ y is the element-wise product, x⊗ y is the

outer product, [x;y] concatenates (denoted “concat”) two vectors to a longer one, and x ∗ y
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is the convolution (denoted “conv”). Tr(X) is the trace of a square matrix X, and ∥X∥F

is the Frobenius norm. ∥x∥2 is the ℓ2-norm of a vector x, and ∥x∥0 counts its number of

nonzero elements.

4.1 Existing Interaction Functions (IFCs)

As mentioned above, The IFC is key to CF, with the inner product being the most popular

operation (Candès and Recht, 2009; Koren, 2008; Mnih and Salakhutdinov, 2008). However,

due to the complex interactions among users and items, many CF models other than low-

rank matrix factorization have been proposed. Examples include the factorization machine

(FM) (Rendle, 2012), collaborative metric learning (CML) (Hsieh et al., 2017), convolutional

matrix factorization (ConvMF) (Kim et al., 2016), Deep & Wide (Cheng et al., 2016), neural

collaborative filtering (NCF) (He et al., 2017), and convolutional neural collaborative filtering

(ConvNCF) (He et al., 2018). These models are summarized in Table 4.1, As can be seen,

many operations other than the simple inner product have been used, and have achieved

better performance than matrix factorization on many CF tasks. Moreover, they all have

the same space complexity, which grows linearly w.r.t. m, n and k, but with different time

complexities. While the design of IFCs is very important, this depends highly on the given

data and task, and there is no single model in Table 4.1 that consistently outperforms the

rest across all CF tasks (Aggarwal, 2017; Su and Khoshgoftaar, 2009). Thus, it is of great

importance to select a proper IFC from a set of customized IFC’s designed by humans, or to

design a new IFC which has not been visited in the literature.

4.2 Proposed Method

In Section 4.1, we have witnessed the importance of IFCs, and the difficulty of choosing

or designing one for the given task and data. Similar observations have also been made in
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designing neural networks, which motivates NAS methods for deep networks (Baker et al.,

2017; Zoph and Le, 2017). Moreover, NAS has been developed as a replacement of humans,

which can discover data- and task-dependent architectures with better performance. These

inspire us to search for proper IFCs in CF by AutoML approaches.

4.2.1 Problem Definition

First, we define the AutoML problem here and identify an expressive search space for IFCs,

which includes the various operations in Table 4.1. Inspired by generalized matrix factorization

(He et al., 2017; Xue et al., 2017) and objective (4.1), we propose the following generalized

CF objective:

minF (U ,V ,w) ≡
∑

(i,j)∈Ω
ℓ
(
w⊤f (ui,vj) ,Oij

)
(4.2)

+
λ

2
∥U∥2F +

λ

2
∥V ∥2F , s.t. ∥w∥2 ≤ 1,

where f is the IFC (which takes the user embedding vector ui and item embedding vector vj

as input, and outputs a vector), and w is a learning parameter. Obviously, all the IFCs in

Table 4.1 can be represented by using different f ’s. The following Proposition shows that the

constraint ∥w∥2 ≤ 1 is necessary to ensure existence of a solution.

Proposition 4.2.1 If f is an operation shown in Table 4.1 and the ℓ2 constraint on w is

removed, then F in (4.2) has no nonzero optimal solution when λ > 0.

Proofs of Proposition 4.2.1 Taking f as the inner product function as an example. Let

A = {U ,V ,w} ≠ 0 be an optimal point of F , then

F (A) =
∑

(i,j)∈Ω
ℓ
(
w⊤f (ui,vj) ,Oij

)2
+

λ

2
∥U∥2F +

λ

2
∥V ∥2F . (4.3)

We construct another A′ = {βU , βV , 1
β2w} with β ∈ (0, 1), then

F (A′)=
∑

(i,j)∈Ω

ℓ
(
w⊤f (ui,vj) ,Oij

)2
+
λβ2

2
∥U∥2F +

λβ2

2
∥V ∥2F < F (A),
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which violates the assumption that A ̸= 0 is an optimal solution. The same holds for f being

other operations in Table4.1. Thus the proposition holds.

Based on above objective, we now define the AutoML problem, i.e., searching interaction

functions (SIF) for CF, here.

Definition 4.2.1 (SIF problem) Let M be a performance measure (the lower the better)

defined on the validation set Ω̄ (disjoint from Ω), and F be a family of vector-valued functions

with two vector inputs. The problem of searching for an interaction function (SIF), i.e.,

finding f ∗, is defined as

f ∗ = argmin
f∈F

∑
(i,j)∈Ω̄

M
(
f(u∗

i ,v
∗
j )

⊤w∗,Oij

)
(4.4)

s.t. [U ∗,V ∗,w∗] = argmin
U ,V ,w

F (U ,V ,w),

where u∗
i (resp. v∗

j ) is the ith column of U ∗ (resp. jth column of V ∗).

Similar to other AutoML problems (such as auto-sklearn (Feurer et al., 2015) and NAS

(Baker et al., 2017; Zoph and Le, 2017)), SIF is a bi-level optimization problem (Colson et al.,

2007). On the top level, a good architecture f is searched based on the validation set. On

the lower level, we find the model parameters using F on the training set. Due to the nature

of bi-level optimization, AutoML problems are difficult to solve in general. In the following,

we show how to design an expressive search space (Section 4.2.2), propose an efficient and

one-shot search algorithm (Section 4.2.3), and extend the proposed method to tensor data

(Section 4.2.4).

4.2.2 Designing a Search Space

Because of the powerful approximation capability of deep networks (Raghu et al., 2017),

NCF (He et al., 2017) and Deep&Wide (Cheng et al., 2016) use a MLP as f . SIF then

becomes searching a suitable MLP from the family F based on the validation set, where
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both MLP’s architectures and weights can be searched. However, a direct search of this MLP

can be expensive and difficult, since determining its architecture is already an extremely

time-consuming problem as observed in the NAS literature (Liu et al., 2018b; Luo et al., 2018a;

Zoph et al., 2017). Thus, it is preferable to use a simple but expressive search space that

exploits domain-specific knowledge from experts. Notice that Table 4.1 contains operations

that are:

• element-wise: a possibly nonlinear function operating on individual elements, i.e., the

nonlinear function σ; and

• vector-wise: operators that operate on the whole input vector, e.g., binary operators

like minus and multiplication.

Inspired by previous attempts that divide the NAS search space into micro and macro

level (Liu et al., 2018b; Zoph et al., 2017), we propose to first search for a nonlinear transform

on each single element, and then combine these element-wise operations on the vector level.

Let O be an operator selected from { multi, plus, min, max, concat}, g(β;x) ∈ R be a simple

nonlinear function with input β ∈ R and hyper-parameter x. We construct a search space F

for (4.4), where each f is expressed as:

f(ui,vj) = O(u̇i, v̇j) (4.5)

with

[u̇i]l = g ([ui]l ;p) , and [v̇j]l = g
(
[vj]l ; q

)
,

where [ui]l (resp. [vj]l) is the lth element of ui (resp. [vj]l), and p (resp. q) is the

hyper-parameter of g transforming user (resp. item) embeddings.

Note that we omit the convolution and outer product from O (vector-wise operations) in

(4.5), as they need significantly more computational time and have inferior performance than

the rest (see Section 4.3.4). Besides, we parameterize g with a very small MLP with fixed
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architecture (single input, single output and five sigmoid hidden units) for the element-wise

level in (4.5), and the ℓ2-norms of the weights, i.e., p and q in (4.5), are constrained to be

≤ 1.

Remark 4.2.1 This search space F meets the requirements for AutoML. First, as it involves

an extra nonlinear transformation, it contains operations that are more general than those

designed by experts in Table 4.1. Such expressiveness leads to better performance than human

designed models in the experiments (Section 4.3.2). Second, the search space is much more

constrained than that of a general MLP mentioned above, as we only need to select an operation

for O and determine the weights for a small fixed MLP.

4.2.3 Efficient One-Shot Search Algorithm

Usually, AutoML problems are expensive to search, as full model training is required. In this

section, we propose an efficient algorithm, which only approximately trains the models, to

search the space in an end-to-end and stochastic manner. Our algorithm is motivated by the

recent success of one-shot architecture search.

Continuous representation of the space Note that the search space introduced by

(4.5) contains both discrete (i.e., choice of operations) and continuous variables (i.e., hyper-

parameter p and q for nonlinear transformation), which is generally inefficient to conduct

search. Motivated by differentiable search in NAS (Liu et al., 2018b; Xie et al., 2018), we

propose to relax the choices among operations as a sparse vector in a continuous space.

Specifically, we transform f in (4.5) as

hα(ui,vj) ≡
∑|O|

m=1
αm

(
w⊤

mOm(u̇i, v̇j)
)

s.t. α ∈ C, (4.6)

where α = [αm] and C enforces that only one operation is selected. Since operations may

lead to different output sizes, we associate each operation m with its own wm.
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Figure 4.1: Representing the search space as a structured MLP. Vector-wise: standard linear

algebra operations; element-wise: simple non-linear transformation.

Let T = {U ,V , {wm}} be the parameters to be determined by the training dataset, and

S = {α,p, q} be the hyper-parameters to be determined by the validation set. Combining

hα with (4.4), we propose the following objective:

min
S

H(S,T ) ≡
∑

(i,j)∈Ω̄
M(hα(u

∗
i ,v

∗
j )

⊤w∗
α,Oij) (4.7)

s.t. α ∈ C and T ∗ = argmin
T

Fα(T ;S),

where T ∗ = {U ∗,V ∗, {w∗
m}} and the training objective Fα is

Fα(T ;S) ≡
∑

(i,j)∈Ω
ℓ(hα(ui,vj),Oij) +

λ

2
∥U∥2F +

λ

2
∥V ∥2F ,

s.t. ∥wm∥2 ≤ 1 for m = 1, · · · , |O|.

Moreover, objective (4.7) can be expressed as a structured MLP (Figure 4.1). Compared

with the general MLP mentioned in Section 4.2.2, the architecture of this structured MLP is

fixed and its total number of parameters is very small. After solving (4.7), we keep p and q

for element-wise non-linear transformation, and pick the operation which is indicated by the

only one nonzero position in the vector α for vector-wise interaction. Then, we re-train the

model to obtain the final user- and item-embedded vectors, i.e., U , V and corresponding w

in (4.2).
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Optimization by one-shot architecture search Here, we present a stochastic algorithm

(Algorithm 2) to optimize the structured MLP in Figure 4.1. Overall, Algorithm 2 is inspired

by NASP (Yao et al., 2020b), where the relaxation of operations is defined in (4.6). Again, we

need to keep a discrete representation of the architecture, i.e., ᾱ at steps 3 and 8, but optimize

a continuous architecture, i.e., α at step 5. The difference is that we have extra continuous

hyper-parameters p and q for element-wise nonlinear transformation here. However, they

can still be updated by proximal steps (see step 6), where the closed-form solution is given

by prox∥·∥2≤1 (z) = z/∥z∥2 Parikh and Boyd (2013).

Algorithm 2 Searching Interaction Function (SIF) algorithm.
1: Search space F represented by a structured MLP (Figure 4.1);

2: for epoch t = 1, · · · , T do

3: Select one operation ᾱ = proxC1 (α);

4: sample a mini-batch on validation data set ;

5: Update continuous α for vector-wise operations

α = proxC2 (α− η∇ᾱH(T ,S)) ;

6: Update element-wise transformation

p = prox∥·∥2≤1 (p− η∇pH(T ,S)) ,

q = prox∥·∥2≤1 (q − η∇qH(T ,S)) ;

7: sample a mini-batch on training data set ;

8: Get selected operation ᾱ = proxC1 (α);

9: Update training parameters T with gradients on Fα;

10: end for
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4.2.4 Handling Tensor Data

CF methods have also been used to handle tensor data. For example, low-rank matrix

factorization is extended to tensor factorization, where two types of decomposition formats,

i.e., CP and Tucker (Kolda and Bader, 2009), are popularly used. These two methods are

also based on the inner product. Besides, the factorization machine (Rendle, 2012) is also

recently extended to handle data cube (Blondel et al., 2016). These motivate us to extend

the proposed SIF algorithm for tensor data. In the sequel, we focus on the 3-order tensor.

Higher-order tensors can be handled in a similar way.

For tensors, we need to maintain three embedded vectors, ui, vj and sl. First, we modify

f to take three vectors as input and output another vector, and each candidate in search space

(4.5) subsequently becomes f = O(u̇i, v̇j, ṡl), where u̇i’s are obtained from element-wise MLP

from ui (and similarly for v̇j and ṡl). However, O is no longer a single operation, as three

vectors are involved. O enumerates all possible combinations from basic operations in the

matrix case. For example, if only max and ⊙ are allowed, then O contains max(ui,vj)⊙ sl,

max(max(ui,vj), sl), ui ⊙max(vj, sl) and ui ⊙ vj ⊙ sl. With the above modifications, it is

easy to see that the space can still be represented by a structured MLP similar to that in

Figure 4.1. Moreover, the proposed Algorithm 2 can still be applied. Note that the search

space is much larger for tensor than matrix.

4.3 Empirical Study

4.3.1 Experiments Setup

MovieLens (matrix data) and Youtube (tensor data) are used (Table 4.2). These are

benchmark data sets popularly used in the literature (Gemulla et al., 2011; Lei et al., 2009;

Mnih and Salakhutdinov, 2008). Following (Wang et al., 2015; Yao and Kwok, 2018), we

uniformly and randomly select 50% of the ratings for training, 25% for validation and the rest
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(a) MovieLens-100K. (b) MovieLens-1M. (c) Youtube.

Figure 4.2: Comparison of testing RMSEs between SIF and other CF approaches with

different embedding dimension.

(a) MovieLens-100K. (b) MovieLens-1M. (c) Youtube.

Figure 4.3: Comparison of the convergence between SIF (with searched IFC) and other CF

methods when embedded dimension is 8. FM and HOFM are not shown as their code donot

support a callback to record testing performance.
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Table 4.2: Statistic of data sets used in experiments.

data set (matrix) users items ratings

MovieLens
100K 943 1,682 100,000

1M 6,040 3,706 1,000,209

data set (tensor) rows columns depths non-zeros

Youtube 600 14,340 5 1,076,946

for testing. Note that since the size of the original Youtube dataset Lei et al. (2009) is very

large (approximate 27 times the size of MovieLens-1M), we sample a subset of it to test the

performance (approximately the size of MovieLens-1M). We sample rows with interactions

larger than 20.

The task is to predict missing ratings given the training data set. We use the squared loss

for bothM and ℓ. For performance evaluation, we use (i) the testing RMSE as in (Gemulla

et al., 2011; Mnih and Salakhutdinov, 2008): RMSE = [1/|Ω̃|
∑

(i,j)∈Ω̃(w
⊤f(ui,vj)−Oij)

2]1/2,

where f is the operation chosen by the algorithm, and w, ui’s and vj ’s are parameters learned

from the training set; and (ii) clock time (in seconds) as in (Baker et al., 2017; Liu et al., 2018b).

Except for IFCs, other hyper-parameters are all tuned with grid search on the validation set.

Specifically, for all CF approaches, we can tune the learning rate lr and the regularization

coefficient λ to get the best RMSE since the network architecture is already pre-defined. We

use the Adagrad Duchi et al. (2010) optimizer to perform gradient-based updates and due to

its robustness, lr is not sensitive in our experiments. So we empirically fix a small learning

rate lr in all our experiments. Furthermore, we utilize grid search to get the most suitable λ

for all experiments, where the grid is set as [0, 10−6, 5× 10−6, 10−5, 5× 10−5, 10−4]. When it

comes to AutoML approaches, we use exactly the same lr to search for the architecture and

tune λ using the same grid after the searched architecture is generated.
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4.3.2 Comparison with State-of-the-Art CF Approaches

Here we compare SIF with popular CF approaches.

• For matrix data: The following methods for matrix data are compared: (i) alternative

gradient descent (“AltGrad ”) (Koren, 2008): This is the most popular CF method,

which is based on matrix factorization (i.e., inner product operation). We use gradient

descent for optimization; (ii) factorization machine (“FM ”) (Rendle, 2012): This extends

linear regression with matrix factorization to capture second-order interactions among

features; (iii) Deep&Wide (Cheng et al., 2016): This is a recent CF method, which

first embeds discrete features and then concatenates them for prediction; (iv) Neural

collaborative filtering (“NCF ”) (He et al., 2017): This is another recent CF method,

which models the IFC by neural networks.

• For tensor data: Deep&Wide and NCF can be easily extended to handle tensor data.

Since the rank for the tensor is not uniquely defined, Thus, the following CF methods

for tensor data are considered: Two types of popularly used low-rank factorization of

tensor are used, i.e., “CP ” and “Tucker ” (Kolda and Bader, 2009), and gradient descent

is used for optimization; “HOFM ” (Blondel et al., 2016)”: a fast variant of FM, which

can capture high-order interactions.

Besides, a variant of SIF (Algorithm 2) is also compared, in which the parameter S for IFCs

are optimized with training data (denoted “SIF(no-auto)”).

Effectiveness Comparison on the testing RMSEs is shown in Figure 4.2. First, as the

embedding dimension gets larger, all methods gradually overfit and the testing RMSEs get

higher. SIF(no-auto) is slightly better than the other CF approaches, which demonstrates the

expressiveness of the designed search space. Finally, with the searched IFCs, SIF consistently

obtains lower testing RMSEs than all other CF approaches.
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(a) MovieLens-100K. (b) MovieLens-1M. (c) Youtube.

Figure 4.4: Comparison of testing RMSEs between SIF and other AutoML approaches with

different embedding dimensions. Gen-approx is slow with bad performance, thus is not run

on Youtube.

(a) MovieLens-100K. (b) MovieLens-1M. (c) Youtube.

Figure 4.5: Comparison of search efficiency among SIF and other AutoML approaches when

embedded dimension is 8.

Training efficiency If an IFC is better than another one on capturing interactions among

users’ and items’ embeddings, it can converge faster on testing performance. Thus, we show

the training efficiency with the searched interactions vs human-designed CF methods in

Figure 4.3. As can be seen, the searched IFC can be more efficiently trained, which further

shows the superiority of searching IFCs from the data.
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Table 4.3: Total time (in seconds) comparison between SIF and CF approaches with embedding

dimension being 8.

AltGrad FM Deep&Wide NCF SIF SIF(no-auto)

MovieLens
100K 25.4 43.1 37.9 34.3 159.8 73.4

1M 313.7 324.3 357.0 374.9 745.3 348.7

CP Tucker HOFM Deep&Wide NCF SIF SIF(no-auto)

Youtube 389.8 572.6 428.2 499.0 534.3 987.1 434.9

4.3.3 Comparison with State-of-the-Art AutoML Approaches

The following popular AutoML approaches are compared: (i) “Random”: Both operations

and weights (for the small and fixed MLP) in the designed search space (in Section 4.2.2)

are uniformly and randomly set (specifically, random search (Bergstra and Bengio, 2012) is

used). (ii) Following (Zoph and Le, 2017), we use reinforcement learning (“RL”) (Sutton

and Barto, 1998) to search the designed space; (iii) “Bayes”: the designed search space is

optimized by HyperOpt (Bergstra et al., 2015), which is a popular Bayesian optimization

approach for hyperparameter tuning; and (iv) the proposed Algorithm 2 (denoted “SIF ”) and

(v) its variant in which parameter S for IFCs are also optimized with training data (denoted

“SIF(no-auto)”).

Effectiveness Testing RMSEs of the various AutoML approaches are shown in Figure 4.4.

Note that MovieLens-10M is not tested as other methods (except SIF ) are too slow (Figure 4.5).

SIF(no-auto) is worse than SIF as IFCs is purely searched by the training set. Among all

methods, the proposed SIF is the best. It can find good IFCs, leading to lower testing

RMSEs than all other methods under different embedding dimensions.

Search efficiency Efficiency of the various AutoML approaches are compared in Figure 4.5.

Top-k testing RMSE is reported, i.e., architectures which achieve top k validation performance

62



(a) Operations (vector-wise). (b) Non-linear transformation

(element-wise).

(c) Performance of each single op-

eration.

Figure 4.6: (a-b). Searched IFCs on MovienLens-100K with embedded dimension equals 8.

(c). Performance comparison between SIF and each single operation on MovieLens-100K.

(a) embedding dimension = 4. (b) embedding dimension = 8. (c) embedding dimension = 16.

Figure 4.7: Convergence of various operations on MovieLens-100K data set.

are kept and they are re-trained with RMSE on the testing set is reported. First, due to the

large search space introduced by a general approximator, Gen-approx can be slower than

Random, RL and Bayes. Moreover, since the search space for tensor data is larger than

that for matrix data, all algorithms become slower on Youtube. Besides, SIF is much faster

than all the other methods and has lower testing RMSEs. The gap is larger on the Youtube

dataset. Finally, SIF can find IFCs within 5 times of clock times from humans’ fine-tuning of

existing CFs (Table 4.3).
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Table 4.4: The impact of allowing more selected operations in SIF. MovieLens-100K is used.

embedding dimension = 4 embedding dimension = 8

k: operations RMSE operator RMSE operator

1 0.8448 concat 0.8450 max

2 0.8435 concat, max 0.8440 max, plus

3 0.8442 concat, max, multiply 0.8432 max, plus, concat

4 0.8433 concat, max, multiply, plus 0.8437 max, plus, concat, min

5 0.8432 concat, max, multiply, plus, min 0.8431 max, plus, concat, min, multiply

4.3.4 Case Study: The Searched Interaction Functions (IFCs)

To explain why a lower RMSE can be achieved by the proposed method, we show the searched

IFCs by various AutoML methods. Results on MovieLens-100K are shown in Figure 4.6(a).

We can see that Random, RL, Bayes and SIF generally pick up different operations. Besides,

we also show in Figure 4.6(b) the searched nonlinear transformation for each single element.

We can see that SIF can find more complex transformations than the other methods.

To further demonstrate the need of AutoML and effectiveness of SIF, we show the

performance of each single operation in Figure 4.6(c). It can be seen that while some

operations can be better than others (e.g., plus is better than conv), there is no clear winner

among all operations; and the best operation may depend on the embedded dimensions as

well. These verify the need for AutoML. Besides, SIF consistently achieves lower testing

RMSEs than all single operations, and converges faster as well (see Figure 4.7). Note that

SIF in Figure 4.6(a) may not select the best single operation in Figure 4.6(c), due to the

learned nonlinear transformation (Figure 4.6(b)).

4.3.5 Ablation Study

Here, we carry ablation studies on different perspectives of the proposed AutoML method.

64



Table 4.5: Using a small MLP as element-wise transformation with different activation

function (rows) and number of hidden units (columns). MovieLens-100K is used. Testing

RMSE is reported.

embedding activation number of hidden units

dimension function 1 5 10 15 20

relu 0.8437 0.8388 0.8385 0.8389 0.8396

4 sigmoid 0.8440 0.8391 0.8390 0.8395 0.8399

tanh 0.8439 0.8991 0.8389 0.8393 0.8401

relu 0.8385 0.8372 0.8370 0.8371 0.8374

8 sigmoid 0.8382 0.8375 0.8377 0.8376 0.8378

tanh 0.8386 0.8376 0.8373 0.8375 0.8377

(a) MovieLens-100K. (b) MovieLens-1M. (c) Youtube.

Figure 4.8: Comparison on different search space designs. Embedding dimension is 8.
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Different search spaces First, we show the superiority of search space design in SIF by

comparing with some common designs in the AutoML literature. The following approaches

are compared with SIF:

• Using a MLP as a general approximator (“Gen-approx ”), as described in Section 4.2.2,

to approximate the search space is also compared. The MLP is updated with gradient

descent (Bengio, 2000) using the validation set. Since searching network architectures

is expensive (Zoph et al., 2017; Zoph and Le, 2017), the structure of the MLP is fixed

for Gen-approx.

• Standard NAS approach, using MLP to approximate the IFC f . The MLP is optimized

with the training data set, while its architecture is searched with the validation set. Two

kinds of search algorithms are considered: 1) random search (denoted ‘‘NAS(random)”)

Bergstra and Bengio (2012) 2) reinforcement learning (denoted “NAS(reinforce)”) Zoph

and Le (2017).

We do not compare with the joint optimization of architecture and weights of the MLP

networks, as it is too expensive.

Results are plotted in Figure 4.8. As we can see these general approximation methods are

hard to be searched and much slower than SIF. The proposed search space in Section 4.2.2 is

not only compact, but also allows efficient one-shot search as discussed in Section 4.2.3.

Allowing more operations In Algorithm 2, we only allow one operation to be selected.

Here, we allow more operations by changing C1 to Ck = {α | ∥α∥0 = k} where k ∈ {1, · · · , 5}.

Results are in Table 4.4. We can see that the testing RMSE can slightly get smaller. However,

the model complexity and prediction time can significantly become lager, which should grow

linearly with k.
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Table 4.6: Using MLP instead of the linear predictor in (4.2). MovieLens-100K is used.

MLP linear

dim RMSE operator RMSE operator

2 0.8437 concat 0.8389 min

4 0.8424 concat 0.8429 min

8 0.8407 plus 0.8468 inner

16 0.8413 multiply 0.8467 plus

Element-wise transformation Recall that in Section 4.2.2, we use a small MLP to

approximate an arbitrary element-wise transformation. We inspect the number of hidden

units and activation function in such a small MLP here. Results are in Table 4.5. As can be

seen, the performance is stable w.r.t different choices of activation functions once the number

of hidden units is large enough (i.e., ≥ 5 here). This demonstrates the robustness of our

design in the search space (Figure 4.1).

Changing predictor to MLP In the above, we used the linear predictor, i.e., w in (4.2),

as the predictor to generate the final estimation. Here, we inspect whether changing the

predictor can further boost learning performance. A standard three-layer MLP with 10

hidden units is used here, and results are in Table 4.6. We can see that using a more complex

predictor can generally leads to a lower testing RMSE (i.e., dim = 4, 8, 16). However, the

lowest testing RMSE is still achieved by the linear predictor (i.e., dim = 2). This demonstrates

that the proposed SIF can achieve the desired performance, and designing a proper predictor

is not an easy task.
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CHAPTER 5

Optimization Gap in Transformers: Transitioning from

Architecture to Optimizer Search

The realms of computer vision and natural language processing have long been dominated by

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). These high-

performing and efficient architectures are pivotal across various machine learning pipelines,

prompting a myriad of studies proposing innovative design modifications.

With the advent of Transformers (Vaswani et al., 2017), their prevalence, particularly

in the development of large language models, has seen a notable shift in focus within the

research community. Scholars and practitioners are increasingly leaning towards enhancing

features related to this architecture, such as optimizers, which are integral components in

its refinement. This emphasis on optimizing elements around the existing architectural

framework underscores a broader trend of prioritizing advancements in areas like training

methodologies, attention mechanisms, and parameter efficiency, among others.

In computer vision, there has recently been a surge of interest in end-to-end Transform-

ers (Akbari et al., 2021; Arnab et al., 2021; Bertasius et al., 2021; Dosovitskiy et al., 2021a;

Fan et al., 2021; Liu et al., 2021b; Touvron et al., 2021b) and MLPs (Liu et al., 2021a;

Melas-Kyriazi, 2021; Tolstikhin et al., 2021; Touvron et al., 2021a), prompting the efforts

to replace hand-wired features or inductive biases with general-purpose neural architectures

powered by data-driven training. We envision these efforts may lead to a unified knowledge

base that produces versatile representations for different data modalities, simplifying the

inference and deployment of deep learning models in various application scenarios.
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Despite the appealing potential of moving toward general-purpose neural architectures,

the lack of convolution-like inductive biases also challenges the training of vision Transformers

(ViTs) and MLPs. When trained on ImageNet (Deng et al., 2009) with the conventional

Inception-style data preprocessing (Szegedy et al., 2016), Transformers “yield modest accura-

cies of a few percentage points below ResNets of comparable size” (Dosovitskiy et al., 2021a).

To boost the performance, existing works resort to large-scale pre-training (Akbari et al., 2021;

Arnab et al., 2021; Dosovitskiy et al., 2021a) and repeated strong data augmentations (Tou-

vron et al., 2021b), resulting in excessive demands of data, computing, and sophisticated

tuning of many hyperparameters. For instance, Dosovitskiy et al. (Dosovitskiy et al., 2021a)

pre-train ViTs using 304M labeled images, and Touvron et al. (2021b) repeatedly stack four

strong image augmentations.

In this chapter, we show ViTs can outperform ResNets (He et al., 2016) of even bigger sizes

in both accuracy and various forms of robustness by using a principled optimizer, without

the need for large-scale pre-training or strong data augmentations. MLP-Mixers (Tolstikhin

et al., 2021) also become on par with ResNets.

We first study the architectures fully trained on ImageNet from the lens of loss landscapes

and draw the following findings. First, visualization and Hessian matrices of the loss landscapes

reveal that Transformers and MLP-Mixers converge at extremely sharp local minima, whose

largest principal curvatures are almost an order of magnitude bigger than ResNets’. Such

effect accumulates when the gradients backpropagate from the last layer to the first, and

the initial embedding layer suffers the largest eigenvalue of the corresponding sub-diagonal

Hessian. Second, the networks all have very small training errors, and MLP-Mixers are more

prone to overfitting than ViTs of more parameters (because of the difference in self-attention).

Third, ViTs and MLP-Mixers have worse “trainabilities” than ResNets following the neural

tangent kernel analyses (Xiao et al., 2020).

Therefore, we need improved learning algorithms to prevent the convergence to a sharp

local minimum when it comes to the convolution-free ViTs and MLP-Mixers. The first-order
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optimizers (e.g., SGD and Adam (Kingma and Ba, 2015)) only seek the model parameters

that minimize the training error. They dismiss the higher-order information such as flatness

that correlates with generalization (Chaudhari et al., 2017; Jastrzębski et al., 2019; Keskar

et al., 2017; Kleinberg et al., 2018; Smith and Le, 2018).

The above study and reasoning lead us to the recently proposed sharpness-aware minimizer

(SAM) (Foret et al., 2021b) that explicitly smooths the loss geometry during model training.

SAM strives to find a solution whose entire neighborhood has low losses rather than focus on

any singleton point. We show that the resultant models exhibit smoother loss landscapes,

and their generalization capabilities improve tremendously across different tasks including

supervised, adversarial, contrastive, and transfer learning (e.g., +5.3% and +11.0% top-1

accuracy on ImageNet for ViT-B/16 and Mixer-B/16, respectively, with the simple Inception-

style preprocessing). The enhanced ViTs achieve better accuracy and robustness than ResNets

of similar and bigger sizes when trained from scratch on ImageNet, without large-scale pre-

training or strong data augmentations. Moreover, we demonstrate that SAM can even enable

ViT to be effectively trained with (momentum) SGD, which usually lies far behind Adam

when training Transformers (Zhang et al., 2020).

By analyzing some intrinsic model properties, we observe that SAM increases the sparsity

of active neurons (especially for the first few layers), which contribute to the reduced Hessian

eigenvalues. The weight norms increase, implying the commonly used weight decay may

not be an effective regularization alone. A side observation is that, unlike ResNets and

MLP-Mixers, ViTs have extremely sparse active neurons (see Figure 5.2 (right)), revealing

the potential for network pruning (Akbari et al., 2021). Another interesting finding is that

the improved ViTs appear to have visually more interpretable attention maps. Finally, we

draw similarities between SAM and strong augmentations (e.g., mixup) in that they both

smooth the average loss geometry and encourage the models to behave linearly between

training images.
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5.1 Background of Transformer in Vision

We briefly review ViTs, MLP-Mixers, and some related works in this section.

Dosovitskiy et al. (2021a) show that a pure Transformer architecture (Vaswani et al.,

2017) can achieve state-of-the-art accuracy on image classification by pre-training it on

large datasets such as ImageNet-21k (Deng et al., 2009) and JFT-300M (Sun et al., 2017b).

Their vision Transformer (ViT) is a stack of residual blocks, each containing a multi-head

self-attention, layer normalization (Ba et al., 2016), and a MLP layer. ViT first embeds

an input image x ∈ RH×W×C into a sequence of features z ∈ RN×D by applying a linear

projection over N nonoverlapping image patches xp ∈ RN×(P 2·C), where D is the feature

dimension, P is the patch resolution, and N = HW/P 2 is the sequence length. The self-

attention layers in ViT are global and do not possess the locality and translation equivariance

of convolutions. ViT is compatible with the popular architectures in NLP (Devlin et al.,

2018; Radford et al., 2018) and, similar to its NLP counterparts, requires pre-training over

massive datasets (Akbari et al., 2021; Arnab et al., 2021; Dosovitskiy et al., 2021a) or strong

data augmentations (Touvron et al., 2021b). Some works specialize the ViT architectures for

visual data (Bertasius et al., 2021; Fan et al., 2021; Liu et al., 2021b; Yuan et al., 2021).

More recent works find that the self-attention in ViT is not vital for performance, resulting

in several architectures exclusively based on MLPs (Liu et al., 2021a; Melas-Kyriazi, 2021;

Tolstikhin et al., 2021; Touvron et al., 2021a). Here we take MLP-Mixer (Tolstikhin et al.,

2021) as an example. MLP-Mixer shares the same input layer as ViT; namely, it partitions

an image into a sequence of nonoverlapping patches/tokens. It then alternates between token

and channel MLPs, where the former allows feature fusion from different spatial locations.

We focus on ViTs and MLP-Mixers. We denote by “S” and “B” the small and base model

sizes, respectively, and by an integer the image patch resolution. For instance, ViT-B/16 is

the base ViT model taking as input a sequence of 16× 16 patches.
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Table 5.1: Number of parameters, NTK condition number κ, Hessian dominate eigenvalue

λmax, training error at convergence Ltrain, average flatness LN
train, accuracy on ImageNet, and

accuracy/robustness on ImageNet-C. ViT and MLP-Mixer suffer divergent κ and converge at

sharp regions; SAM rescues that and leads to better generalization.

ResNet-152
ResNet-152-

SAM
ViT-B/16

ViT-B/16-

SAM
Mixer-B/16

Mixer-B/16-

SAM

#Params 60M 87M 59M

NTK κ † 2801.6 4205.3 14468.0

Hessian λmax 179.8 42.0 738.8 20.9 1644.4 22.5

Ltrain 0.86 0.90 0.65 0.82 0.45 0.97

LN
train

⋆ 2.39 2.16 6.66 0.96 7.78 1.01

ImageNet (%) 78.5 79.3 74.6 79.9 66.4 77.4

ImageNet-C (%) 50.0 52.2 46.6 56.5 33.8 48.8

† As it is prohibitive to compute the exact NTK, we approximate the value by averaging over its

sub-diagonal blocks. We average the results for 1,000 random noises when calculating LN
train.

Figure 5.1: Cross-entropy loss landscapes of ResNet-152, ViT-B/16, Mixer-B/16, ViT-B/16-

SAM, and Mixer-B/16-SAM (from left to right). ViT and MLP-Mixer converge to sharper

regions than ResNet when trained on ImageNet with the basic Inception-style preprocessing.

SAM, a sharpness-aware optimizer, significantly smooths the landscapes.
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5.2 ViTs and MLP-Mixers Converge at Sharp Local Minima

The current training recipe of ViTs, MLP-Mixers, and related convolution-free architectures

relies heavily on massive pre-training (Akbari et al., 2021; Arnab et al., 2021; Dosovitskiy

et al., 2021a) or a bag of strong data augmentations (Cubuk et al., 2019, 2020; Tolstikhin

et al., 2021; Touvron et al., 2021b; Yun et al., 2019; Zhang et al., 2018a). It highly demands

data and computing, and leads to many hyperparameters to tune. Existing works report that

ViTs yield inferior accuracy to the ConvNets of similar size and throughput when trained

from scratch on ImageNet without the combination of those advanced data augmentations,

despite using various regularization techniques (e.g., large weight decay, Dropout (Srivastava

et al., 2014), etc.). For instance, ViT-B/16 (Dosovitskiy et al., 2021a) gives rise to 74.6%

top-1 accuracy on the ImageNet validation set (224 image resolution), compared with 78.5%

of ResNet-152 (He et al., 2016). Mixer-B/16 (Tolstikhin et al., 2021) performs even worse

(66.4%). There also exists a large gap between ViTs and ResNets in robustness tests (see

Table 5.2 for details).

Moreover, Chen et al. (2021d) find that the gradients can spike and cause a sudden

accuracy dip when training ViTs, and Touvron et al. (2021b) report the training is sensitive

to initialization and hyperparameters. These all point to optimization problems. In this

chapter, we investigate the loss landscapes of ViTs and MLP-Mixers to understand them

from the optimization perspective, intending to reduce their dependency on the large-scale

pre-training or strong data augmentations.

ViTs and MLP-Mixers converge at extremely sharp local minima It has been

extensively studied that the convergence to a flat region whose curvature is small benefits the

generalization of neural networks (Chaudhari et al., 2017; Chen and Hsieh, 2020; Jastrzębski

et al., 2019; Keskar et al., 2017; Kleinberg et al., 2018; Smith and Le, 2018; Zela et al.,

2020a). Following Li et al. (2018), we plot the loss landscapes at convergence when ResNets,

ViTs, and MLP-Mixers are trained from scratch on ImageNet with the basic Inception-style
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preprocessing (Szegedy et al., 2016). As shown in Figure 5.1, ViTs and MLP-Mixers converge

at much sharper regions than ResNets. Besides, we calculate the training error under Gaussian

perturbations on the model parameters LN
train = Eϵ∼N [Ltrain(w + ϵ)] in Table 5.1, which

reveals the average flatness. Although ViT-B/16 and Mixer-B/16 achieve lower training error

Ltrain than that of ResNet-152, their loss values after random weight perturbation become

much higher. We further validate the results by computing the dominate Hessian eigenvalue

λmax, which is a mathematical evaluation of the worst-case landscape curvature. The λmax

values of ViT and MLP-Mixer are orders of magnitude larger than that of ResNet, and

MLP-Mixer suffers the largest curvature among the three species (see Section 5.3.4 for a

detailed analysis).

Small training errors This convergence at sharp regions coincides with the training

dynamics shown in Figure 5.2 (left). Although Mixer-B/16 has fewer parameters than

ViT-B/16 (59M vs. 87M), it has a smaller training error (also see Ltrain in Table 5.1) but

much worse test accuracy, implying that using the cross-token MLP to learn the interplay

across image patches is more prone to overfitting than ViTs’ self-attention mechanism whose

behavior is restricted by a softmax. To validate this statement, we simply remove the softmax

in ViT-B/16, such that the query and key matrices can freely interact with each other.

Although having lower Ltrain (0.56 vs. 0.65), the obtained ViT-B/16-Free performs much

worse than the original ViT-B/16 (70.5% vs. 74.6%). Its LN
train and λmax are 7.01 and 1236.2,

revealing that ViT-B/16-Free converges to a sharper region than ViT-B/16 (LN
train is 6.66 and

λmax is 738.8) both on average and in the worst-case direction. Such a difference probably

explains why it is easier for MLP-Mixers to get stuck in sharp local minima.

ViTs and MLP-Mixers have worse trainability Furthermore, we discover that ViTs

and MLP-Mixers suffer poor trainabilities, defined as the effectiveness of a network to be

optimized by gradient descent (Burkholz and Dubatovka, 2019; Shin and Karniadakis, 2020;

Xiao et al., 2020). Xiao et al. (2020) show that the trainability of a neural network can
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Figure 5.2: Left and Middle: ImageNet training error and validation accuracy vs. iteration

for ViTs and MLP-Mixers. Right: Percentage of active neurons for ResNet-152, ViT-B/16,

and Mixer-B/16.

be characterized by the condition number of the associated neural tangent kernel (NTK),

Θ(x, x′) = J(x)J(x′)T , where J is the Jacobian matrix. Denoting by λ1 ≥ · · · ≥ λm the

eigenvalues of NTK Θtrain, the smallest eigenvalue λm converges exponentially at a rate

given by the condition number κ = λ1/λm. If κ diverges then the network will become

untrainable (Chen et al., 2021b; Xiao et al., 2020). As shown in Table 5.1, κ is pretty stable

for ResNets, echoing previous results that ResNets enjoy superior trainability regardless of the

depth (Li et al., 2018; Yang and Schoenholz, 2017). However, we observe that the condition

number diverges when it comes to ViT and MLP-Mixer, confirming that the training of ViTs

desires extra care (Chen et al., 2021d; Touvron et al., 2021b).

5.3 A Principled Optimizer for Convolution-Free Architectures

The commonly used first-order optimizers (e.g., SGD (Nesterov, 1983), Adam (Kingma

and Ba, 2015)) only seek to minimize the training loss Ltrain(w). They usually dismiss the

higher-order information such as curvature that correlates with the generalization (Chaudhari

et al., 2017; Dziugaite and Roy, 2017; Keskar et al., 2017). However, the objective Ltrain for

deep neural networks are highly non-convex, making it easy to reach near-zero training error

but high generalization error Ltest during evaluation, let alone their robustness when the test
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sets have different distributions (Hendrycks and Dietterich, 2019; Hendrycks et al., 2020).

ViTs and MLPs amplify such drawbacks of first-order optimizers due to the lack of inductive

bias for visual data, resulting in excessively sharp loss landscapes and poor generalization,

as shown in the previous section. We hypothesize that smoothing the loss landscapes at

convergence can significantly improve the generalization ability of those convolution-free

architectures, leading us to the recently proposed sharpness-aware minimizer (SAM) (Foret

et al., 2021b) that explicitly avoids sharp minima.

5.3.1 SAM: Overview

Intuitively, SAM (Foret et al., 2021b) seeks to find the parameter w whose entire neighbours

have low training loss Ltrain by formulating a minimax objective:

min
w

max
∥ϵ∥2≤ρ

Ltrain(w + ϵ), (5.1)

where ρ is the size of the neighbourhood ball. Without loss of generality, here we use l2 norm

for its strong empirical results (Foret et al., 2021b) and omit the regularization term for

simplicity. Since the exact solution of the inner maximization ϵ⋆ = argmax∥ϵ∥2≤ρ Ltrain(w+ ϵ)

is hard to obtain, they employ an efficient first-order approximation:

ϵ̂(w) = argmax
∥ϵ∥2≤ρ

Ltrain(w) + ϵT∇wLtrain(w) = ρ∇wLtrain(w)/∥∇wLtrain(w)∥2. (5.2)

Under the l2 norm, ϵ̂(w) is simply a scaled gradient of the current weight w. After computing

ϵ̂, SAM updates w based on the sharpness-aware gradient ∇wLtrain(w)|w+ϵ̂(w).

5.3.2 Sharpness-aware optimization improves ViTs and MLP-Mixers

We train ViTs and MLP-Mixers with no large-scale pre-training or strong data augmentations.

We directly apply SAM to the original ImageNet training pipeline of ViTs (Dosovitskiy et al.,

2021a) without changing any hyperparameters. The pipeline employs the basic Inception-style

preprocessing (Szegedy et al., 2016). The original training setup of MLP-Mixers (Tolstikhin
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et al., 2021) includes a combination of strong data augmentations, and we replace it with the

same Inception-style preprocessing for a fair comparison. Note that we perform grid search

for the learning rate, weight decay, Dropout before applying SAM.

Smoother regions around the local minima Thanks to SAM, both ViTs and MLP-

Mixers converge at much smoother regions, as shown in Figure 5.1. Moreover, both the average

and the worst-case curvature, i.e., LN
train and λmax, decrease dramatically (see Table 5.1).

Higher accuracy What comes along is tremendously improved generalization performance.

On ImageNet, SAM boosts the top-1 accuracy of ViT-B/16 from 74.6% to 79.9%, and

Mixer-B/16 from 66.4% to 77.4%. For comparison, the improvement on a similarly sized

ResNet-152 is 0.8%. Empirically, the degree of improvement negatively correlates with the

constraints of inductive biases built into the architecture. ResNets with inherent translation

equivalence and locality benefit less from landscape smoothing than the attention-based

ViTs. MLP-Mixers gain the most from the smoothed loss geometry. In Table 5.3, we further

train two hybrid models (Dosovitskiy et al., 2021a) to validate this observation, where the

Transformer takes the feature map extracted from a ResNet-50 as the input sequence. The

improvement brought by SAM decreases after we introduce the convolution to ViT, for

instance, +2.7% for R50-B/16 compared to +5.3% for ViT-B/16. Moreover, SAM brings

larger improvements to the models of larger capacity (e.g., +4.1% for Mixer-S/16 vs. +11.0%

for Mixer-B/16) and longer patch sequence (e.g., +2.1% for ViT-S/32 vs. +5.3% for ViT-S/8).

Please see Table 5.2 for more results.

SAM can be easily applied to common base optimizers. Besides Adam, we also apply SAM

on top of the (momentum) SGD that usually performs much worse than Adam when training

Transformers (Zhang et al., 2020). As expected, we find that under the same training budget

(300 epochs), the ViT-B/16 trained with SGD only achieves 71.5% accuracy on ImageNet,

whereas Adam achieves 74.6%. Surprisingly, SGD + SAM can push the result to 79.1%,
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which is a huge +7.6% absolute improvement. Although Adam + SAM is still higher (79.9%),

their gap largely shrinks.

Better robustness We also evaluate the models’ robustness using ImageNet-R (Hendrycks

et al., 2020) and ImageNet-C (Hendrycks and Dietterich, 2019) and find even bigger impacts

of the smoothed loss landscapes. On ImageNet-C, which corrupts images by noise, bad

weather, blur, etc., we report the average accuracy against 19 corruptions across five levels.

As shown in Tables 5.1 and 5.2, the accuracies of ViT-B/16 and Mixer-B/16 increase by 9.9%

and 15.0% (which are 21.2% and 44.4% relative improvements), after SAM smooths their

converged local regions. In comparison, SAM improves the accuracy of ResNet-152 by 2.2%

(4.4% relative improvement). We can see that SAM enhances the robustness even more than

the relative clean accuracy improvements (7.1%, 16.6%, and 1.0% for ViT-B/16, Mixer-B/16,

and ResNet-152, respectively).

5.3.3 ViTs outperform ResNets without pre-training or strong augmentations

The performance of an architecture is often conflated with the training strategies (Bello

et al., 2021), where data augmentations play a key role (Chen et al., 2021c; Cubuk et al.,

2019, 2020; Xie et al., 2020; Zhang et al., 2018a). However, the design of augmentations

requires substantial domain expertise and may not translate between images and videos, for

instance. Thanks to the principled sharpness-aware optimizer, we can remove the advanced

augmentations and focus on the architectures themselves.

When trained from scratch on ImageNet with SAM, ViTs outperform ResNets of similar

and greater sizes (also comparable throughput at inference) regarding both clean accuracy

(on ImageNet (Deng et al., 2009), ImageNet-ReaL (Beyer et al., 2020a), and ImageNet

V2 (Recht et al., 2019a)) and robustness (on ImageNet-R (Hendrycks et al., 2020) and

ImageNet-C (Hendrycks and Dietterich, 2019)). ViT-B/16 achieves 79.9%, 26.4%, and 56.6%

top-1 accuracy on ImageNet, ImageNet-R, and ImageNet-C, while the counterpart numbers
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Table 5.2: Performance of ResNets, ViTs, and MLP-Mixers trained from scratch on ImageNet

with SAM (improvement over the vanilla model is shown in the parentheses). We use the

Inception-style preprocessing (with resolution 224) rather than a combination of strong data

augmentations.

Model #params
Throughput

(img/sec/core)
ImageNet ReaL V2 ImageNet-R ImageNet-C

he2016resnet

ResNet-50-SAM 25M 2161 76.7 (+0.7) 83.1 (+0.7) 64.6 (+1.0) 23.3 (+1.1) 46.5 (+1.9)

ResNet-101-SAM 44M 1334 78.6 (+0.8) 84.8 (+0.9) 66.7 (+1.4) 25.9 (+1.5) 51.3 (+2.8)

ResNet-152-SAM 60M 935 79.3 (+0.8) 84.9 (+0.7) 67.3 (+1.0) 25.7 (+0.4) 52.2 (+2.2)

ResNet-50x2-SAM 98M 891 79.6 (+1.5) 85.3 (+1.6) 67.5 (+1.7) 26.0 (+2.9) 50.7 (+3.9)

ResNet-101x2-SAM 173M 519 80.9 (+2.4) 86.4 (+2.4) 69.1 (+2.8) 27.8 (+3.2) 54.0 (+4.7)

ResNet-152x2-SAM 236M 356 81.1 (+1.8) 86.4 (+1.9) 69.6 (+2.3) 28.1 (+2.8) 55.0 (+4.2)

Vision Transformer

ViT-S/32-SAM 23M 6888 70.5 (+2.1) 77.5 (+2.3) 56.9 (+2.6) 21.4 (+2.4) 46.2 (+2.9)

ViT-S/16-SAM 22M 2043 78.1 (+3.7) 84.1 (+3.7) 65.6 (+3.9) 24.7 (+4.7) 53.0 (+6.5)

ViT-S/14-SAM 22M 1234 78.8 (+4.0) 84.8 (+4.5) 67.2 (+5.2) 24.4 (+4.7) 54.2 (+7.0)

ViT-S/8-SAM 22M 333 81.3 (+5.3) 86.7 (+5.5) 70.4 (+6.2) 25.3 (+6.1) 55.6 (+8.5)

ViT-B/32-SAM 88M 2805 73.6 (+4.1) 80.3 (+5.1) 60.0 (+4.7) 24.0 (+4.1) 50.7 (+6.7)

ViT-B/16-SAM 87M 863 79.9 (+5.3) 85.2 (+5.4) 67.5 (+6.2) 26.4 (+6.3) 56.5 (+9.9)

MLP-Mixer

Mixer-S/32-SAM 19M 11401 66.7 (+2.8) 73.8 (+3.5) 52.4 (+2.9) 18.6 (+2.7) 39.3 (+4.1)

Mixer-S/16-SAM 18M 4005 72.9 (+4.1) 79.8 (+4.7) 58.9 (+4.1) 20.1 (+4.2) 42.0 (+6.4)

Mixer-S/8-SAM 20M 1498 75.9 (+5.7) 82.5 (+6.3) 62.3 (+6.2) 20.5 (+5.1) 42.4 (+7.8)

Mixer-B/32-SAM 60M 4209 72.4 (+9.9) 79.0 (+10.9) 58.0 (+10.4) 22.8 (+8.2) 46.2 (12.4)

Mixer-B/16-SAM 59M 1390 77.4 (+11.0) 83.5 (+11.4) 63.9 (+13.1) 24.7 (+10.2) 48.8 (+15.0)

Mixer-B/8-SAM 64M 466 79.0 (+10.4) 84.4 (+10.1) 65.5 (+11.6) 23.5 (+9.2) 48.9 (+16.9)

for ResNet-152 are 79.3%, 25.7%, and 52.2%, respectively (see Table 5.2). The gaps between

ViTs and ResNets are even wider for small architectures. ViT-S/16 outperforms a similarly

sized ResNet-50 by 1.4% on ImageNet and 6.5% on ImageNet-C. MLP-Mixers’ performance

is also significantly improved.
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Table 5.3: Accuracy and robustness of two hybrid architectures.

Model #params
ImageNet

(%)

ImageNet-C

(%)

R50-S/16
34M

79.8 53.4

R50-S/16-SAM 81.0 (+1.2) 57.2 (+3.8)

R50-B/16
99M

79.7 54.4

R50-B/16-SAM 82.4 (+2.7) 61.0 (+6.6)

5.3.4 Intrinsic changes after SAM

We take a deeper look into the models to understand how they intrinsically change to

reduce the Hessian’ eigenvalue λmax and what the changes imply in addition to the enhanced

generalization.

Smoother loss landscapes for every network component In Table 5.4, we break

down the Hessian of the whole architecture into small diagonal blocks of Hessians concerning

each set of parameters, attempting to analyze what specific components cause the blowing

up of λmax in the models trained without SAM. We observe that shallower layers have larger

Hessian eigenvalues λmax, and the first linear embedding layer incurs the sharpest geometry.

This agrees with the finding in (Chen et al., 2021d) that spiking gradients happen early in

the embedding layer. Additionally, the multi-head self-attention (MSA) in ViTs and the

Token MLPs in MLP-Mixers, both of which mix information across spatial locations, have

comparably lower λmax than the other network components. SAM consistently reduces the

λmax of all network blocks.

We can gain insights into the above findings by the recursive formulation of Hessian

matrices for MLPs (Botev et al., 2017). Let hk and ak be the pre-activation and post-

activation values for layer k, respectively. They satisfy hk = Wkak−1 and ak = fk(hk), where
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Table 5.4: Dominant eigenvalue λmax of the sub-diagonal Hessians for different network

components, and norm of the model parameter w and the post-activation ak of block k. Each

ViT block consists of a MSA and a MLP, and MLP-Mixer alternates between a token MLP a

channel MLP. Shallower layers have larger λmax. SAM smooths every component.

Model
λmax of diagonal blocks of Hessian

∥w∥2 ∥a1∥2 ∥a6∥2 ∥a12∥2

Embedding
MSA/

Token MLP

MLP/

Channel MLP
Block1 Block6 Block12 Whole

ViT-B/16 300.4 179.8 281.4 44.4 32.4 26.9 738.8 269.3 104.9 104.3 138.1

ViT-B/16-SAM 3.8 8.5 9.6 1.7 1.7 1.5 20.9 353.8 117.0 120.3 97.2

Mixer-B/16 1042.3 95.8 417.9 239.3 41.2 5.1 1644.4 197.6 96.7 135.1 74.9

Mixer-B/16-SAM 18.2 1.4 9.5 4.0 1.1 0.3 22.5 389.9 110.9 176.0 216.1

Wk is the weight matrix and fk is the activation function (GELU (Hendrycks and Gimpel,

2020) in MLP-Mixers). Here we omit the bias term for simplicity. The diagonal block of

Hessian matrix Hk with respect to Wk can be recursively calculated as:

Hk = (ak−1a
T
k−1)⊗Hk, Hk = BkW

T
k+1Hk+1Wk+1Bk +Dk, (5.3)

Bk = diag(f ′
k(hk)), Dk = diag(f ′′

k (hk)
∂L

∂ak
), (5.4)

where ⊗ is the Kronecker product, Hk is the pre-activation Hessian for layer k, and L is the

objective function. Therefore, the Hessian norm accumulates as the recursive formulation

backpropagates to shallow layers, explaining why the first block has much larger λmax than

the last block in Table 5.4.

Greater weight norms After applying SAM, we find that in most cases, the norm of the

post-activation value ak−1 and the weight Wk+1 become even bigger (see Table 5.4), indicating

that the commonly used weight decay may not effectively regularize ViTs and MLP-Mixers

(see Section 5.4.5 for further verification when we vary the weight decay strength).
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Table 5.5: Data augmentations, SAM, and their combination applied to different model

architectures trained on ImageNet and its subsets from scratch.

Dataset

ResNet-152 ViT-B/16 Mixer-B/16

Vanilla SAM AUG
SAM

+ AUG
Vanilla SAM AUG

SAM

+ AUG
Vanilla SAM AUG

SAM

+ AUG

ImageNet 78.5 79.3 78.8 78.9 74.6 79.9 79.6 81.5 66.4 77.4 76.5 78.1

i1k (1/2) 74.2 75.6 75.1 75.5 64.9 75.4 73.1 75.8 53.9 71.0 70.4 73.1

i1k (1/4) 68.0 70.3 70.2 70.6 52.4 66.8 63.2 65.6 37.2 62.8 61.0 65.8

i1k (1/10) 54.6 57.1 59.2 59.5 32.8 46.1 38.5 45.7 21.0 43.5 43.0 51.0

Sparser active neurons in MLP-Mixers Given the recursive formulation Equation (5.3),

we identify another intrinsic measure of MLP-Mixers that contribute to the Hessian: the

number of activated neurons. Indeed, Bk is determined by the activated neurons whose values

are greater than zero, since the first-order derivative of GELU becomes much smaller when

the input is negative. As a result, the number of active GELU neurons is directly connected

to the Hessian norm. Figure 5.2 (right) shows the proportion of activated neurons for each

block, counted using 10% of the ImageNet training set. We can see that SAM greatly reduces

the proportion of activated neurons for the first few layers of the Mixer-B/16, pushing them

to much sparser states. This result also suggests the potential redundancy of image patches.

ViTs’ active neurons are highly sparse Although Equations (5.3) and (5.4) only involve

MLPs, we still observe a decrease of activated neurons in the first layer of ViTs (but not

as significant as in MLP-Mixers). More interestingly, we find that the proportion of active

neurons in ViT is much smaller than another two architectures — given an input image, less

than 10% neurons have values greater than zero for most layers (see Figure 5.2 (right)). In

other words, ViTs offer a huge potential for network pruning. This sparsity may also explain

why one Transformer can handle multi-modality signals (vision, text, and audio) (Akbari

et al., 2021).
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Figure 5.3: Raw images (Left) and attention maps of ViT-S/16 with (Right) and without

(Middle) sharpness-aware optimization.

Visually improved attention maps in ViTs We visualize ViT-S/16’s attention map

of the classification token averaged over the last multi-head attentions in Figure 5.3 follow-

ing Caron et al. (2021). Interestingly, the ViT model optimized with SAM appears to possess

visually improved attention map compared with the one trained via the vanilla AdamW

optimizer.

5.3.5 SAM vs. strong augmentations

Previous sections show that SAM can improve the generalization (and robustness) of ViTs

and MLP-Mixers. Meanwhile, another paradigm to train these models on ImageNet from

scratch is to stack multiple strong augmentations (Tolstikhin et al., 2021; Touvron et al.,

2021a,b). Hence, it is interesting to study the differences and similarities between the models

trained by SAM and by using strong data augmentations. For the augmentation experiments,

we follow Tolstikhin et al. (2021)’s pipeline that includes mixup (Zhang et al., 2018a) and

RandAugment (Cubuk et al., 2020).

Generalization. Table 5.5 shows the results of strong data augmentation, SAM, and

their combination on ImageNet. Each row corresponds to a training set of a different

fraction of ImageNet-1k. SAM benefits ViT-B/16 and Mixer-B/16 more than the strong data
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Table 5.6: Comparison between ViT-B/16-SAM and ViT-B/16-AUG. R denotes the missing

rate under linear interpolation.

Model λmax Ltrain LN
train R(↓)

ViT-B/16 738.8 0.65 6.66 57.9%

ViT-B/16-SAM 20.9 0.82 0.96 39.6%

ViT-B/16-AUG 1659.3 0.85 1.23 21.4%

augmentations, especially when the training set is small. For instance, when the training set

contains only 1/10 of ImageNet training images, ViT-B/16-SAM outperforms ViT-B/16-AUG

by 7.6%. Apart from the improved validation accuracy, we also observe that both SAM and

strong augmentations increase the training error (see Figure 5.2 (Middle) and Table 5.6),

indicating their regularization effects. However, they have distinct training dynamics as the

loss curve for ViT-B/16-AUG is much nosier than ViT-B/16-SAM.

Sharpness at convergence Another intriguing question is as follows. Can augmentations

also smooth the loss geometry similarly to SAM? To answer it, we also plot the landscape of

ViT-B/16-AUG in Figure 5.4 and compute its Hessian λmax together with the average flatness

LN
train in Table 5.6. Surprisingly, strong augmentations even enlarge the λmax. However, like

SAM, augmentations make ViT-B/16-AUG smoother and achieve a significantly smaller

training error under random Gaussian perturbations than ViT-B/16. These results show that

both SAM and augmentations make the loss landscape flat on average. The difference is that

SAM enforces the smoothness by reducing the largest curvature via a minimax formulation

to optimize the worst-case scenario, while augmentations ignore the worse-case curvature

and instead smooth the landscape over the directions induced by the augmentations.

Interestingly, besides the similarity in smoothing the loss curvature on average, we also

discover that SAM-trained models possess “linearality” resembling the property manually

injected by the mixup augmentation. Following Zhang et al. (2018a), we compute the
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Figure 5.4: Cross-entropy loss landscapes of ViT-B/16, ViT-B/16-SAM, ViT-B/16-AUG,

and ViT-B/16-21k (from left to right). Strong augmentations and large-scale pre-training

can also smooth the curvature.

prediction error in-between training data in Table 5.6, where a prediction y is counted as a

miss if it does not belong to {yi, yj} evaluated at x = 0.5xi + 0.5xj. We observe that SAM

greatly reduces the missing rate (R) compared with the vanilla baseline, showing a similar

effect to mixup that explicitly encourages such linearity.

5.4 Ablation Studies

In this section, we provide a more comprehensive study about SAM’s effect on various vision

models and under different training setups.

5.4.1 When scaling the training set size

Previous studies scale up training data to show massive pre-training trumps inductive

biases (Dosovitskiy et al., 2021a; Tolstikhin et al., 2021). Here we show SAM further enables

ViTs and MLP-Mixers to handle small-scale training data well. We randomly sample 1/4 and

1/2 images from each ImageNet class to compose two smaller-scale training sets, i.e., i1k (1/4)

and i1k (1/2) with 320,291 and 640,583 images, respectively. We also use ImageNet-21k to

pre-train the models with SAM, followed by fine-tuning on ImageNet-1k without SAM. The

ImageNet validation set remains intact. SAM can still bring improvement when pre-trained
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Figure 5.5: ImageNet accuracy (Left) and improvement (Right) brought by SAM.

on ImageNet-21k (+0.3%, +1.4%, and 2.3% for ResNet-152, ViT-B/16, and Mixer-B/16,

respectively).

As expected, fewer training examples amplify the drawback of ViTs and MLP-Mixers’

lack of the convolutional inductive bias — their accuracies decline much faster than ResNets’

(see Figure 5.5 and the corresponding numbers in Table 5.5).

However, SAM can drastically rescue ViTs and MLP-Mixers’ performance decrease on

smaller training sets. Figure 5.5 (right) shows that the improvement brought by SAM over

vanilla SGD training is proportional to the number of training images. When trained on i1k

(1/4), it boosts ViT-B/16 and Mixer-B/16 by 14.4% and 25.6%, escalating their results to

66.8% and 62.8%, respectively. It also tells that ViT-B/16-SAM matches the performance of

ResNet-152-SAM even with only 1/2 ImageNet training data.

5.4.2 When SAM Meets Adversarial Training

Interestingly, SAM and adversarial training are both minimax problems except that SAM’s

inner maximization is with respect to the network weights, while the latter concerns about

the input for defending contrived attack (Madry et al., 2018b; Wong et al., 2020). Moreover,
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similar to SAM, Shafahi et al. (2019) suggest that adversarial training can flatten and smooth

the loss landscape. In light of these connections, we study ViTs and MLP-Mixers under

the adversarial training framework (Madry et al., 2018b; Wu et al., 2020). We use the fast

adversarial training (Wong et al., 2020) (FGSM with random start) with the l∞ norm and

maximum per-pixel change 2/255 during training. All the hyperparameters remain the same

as the vanilla supervised training. When evaluating the adversarial robustness, we use the

PGD attack (Madry et al., 2018b) with the same maximum per-pixel change 2/255. The

total number of attack steps is 10, and the step size is 0.25/255. To incorporate SAM, we

formulate a three-level objective:

min
w

max
ϵ∈Ssam

max
δ∈Sadv

Ltrain(w + ϵ, x+ δ, y), (5.5)

where Ssam and Sadv denote the allowed perturbation norm balls for the model parameter w

and input image x, respectively. Note that we can simultaneously obtain the gradients for

computing ϵ and δ by backpropagation only once. To lower the training cost, we use fast

adversarial training (Wong et al., 2020) with the l∞ norm for δ, and the maximum per-pixel

change is set as 2/255.

Table 5.7 (see Appendices) evaluates the models’ clean accuracy, real-world robustness,

and adversarial robustness (under 10-step PGD attack (Madry et al., 2018b)). It is clear

that the landscape smoothing significantly improves the convolution-free architectures for

both clean and adversarial accuracy. However, we observe a slight accuracy decrease on clean

images for ResNets despite gain for robustness. Similar to our previous observations, ViTs

surpass similar-size ResNets when adversarially trained on ImageNet with Inception-style

preprocessing for both clean accuracy and adversarial robustness.

5.4.3 When SAM Meets Contrastive Learning

In addition to data augmentations and large-scale pre-training, another notable way of

improving a neural model’s generalization is (supervised) contrastive learning (Caron et al.,
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Table 5.7: Comparison under the adversarial training framework on ImageNet (numbers in

the parentheses denote the improvement over the standard adversarial training without SAM).

With similar model size and throughput, ViTs-SAM can still outperform ResNets-SAM for

clean accuracy and adversarial robustness.

Model #params
Throughput

(img/sec/core)
ImageNet Real V2 PGD-10 ImageNet-R ImageNet-C

he2016resnet

ResNet-50-SAM 25M 2161 70.1 (-0.7) 77.9 (-0.3) 56.6 (-0.8) 54.1 (+0.9) 27.0 (+0.9) 42.7 (-0.1)

ResNet-101-SAM 44M 1334 73.6 (-0.4) 81.0 (+0.1) 60.4 (-0.6) 58.8 (+1.4) 29.5 (+0.6) 46.9 (+0.3)

ResNet-152-SAM 60M 935 75.1 (-0.4) 82.3 (+0.2) 62.2 (-0.4) 61.0 (+1.8) 30.8 (+1.4) 49.1 (+0.6)

Vision Transformer

ViT-S/16-SAM 22M 2043 73.2 (+1.2) 80.7 (+1.7) 60.2 (+1.4) 58.0 (+5.2) 28.4 (+2.4) 47.5 (+1.6)

ViT-B/32-SAM 88M 2805 69.9 (+3.0) 76.9 (+3.4) 55.7 (+2.5) 54.0 (+6.4) 26.0 (+3.0) 46.4 (+3.0)

ViT-B/16-SAM 87M 863 76.7 (+3.9) 82.9 (+4.1) 63.6 (+4.3) 62.0 (+7.7) 30.0 (+4.9) 51.4 (+5.0)

MLP-Mixer

Mixer-S/16-SAM 18M 4005 67.1 (+2.2) 74.5 (+2.3) 52.8 (+2.5) 50.1 (+4.1) 22.9 (+2.6) 37.9 (+2.5)

Mixer-B/32-SAM 60M 4209 69.3 (+9.1) 76.4 (+10.2) 54.7 (+9.4) 54.5 (+13.9) 26.3 (+8.0) 43.7 (+8.8)

Mixer-B/16-SAM 59M 1390 73.9 (+11.1) 80.8 (+11.8) 60.2 (+11.9) 59.8 (+17.3) 29.0 (+10.5) 45.9 (+12.5)

2021; Chen et al., 2020; He et al., 2020; Khosla et al., 2020). We couple SAM with the

supervised contrastive learning (Khosla et al., 2020) for 350 epochs, followed by fine-tuning

the classification head by 90 epochs for both ViT-S/16 and ViT-B/16. We train ViTs under

the supervised contrastive learning framework (Khosla et al., 2020). We take the classification

token output from the last layer as the encoded representation and retain the structures of the

projection and classification heads (Khosla et al., 2020). We employ a batch size 2048 without

memory bank (He et al., 2020) and use AutoAugment (Cubuk et al., 2019) with strength

1.0 following Khosla et al. (2020). For the 350-epoch pretraining stage, the contrastive loss

temperature is set as 0.1, and we use the LAMB optimizer (You et al., 2020) with learning

rate 0.001× batch size
256

along with a cosine decay schedule. For the second stage, we train the

classification head for 90 epochs via a RMSProp optimizer (Tieleman and Hinton, 2012) with

base learning rate 0.05 and exponential decay. The weight decays are set as 0.3 and 1e-6 for

88



Table 5.8: Accuracy on downstream tasks of the models pre-trained on ImageNet. SAM

improves ViTs and MLP-Mixers’ transferabilities. ViTs transfer better than ResNets of

similar sizes.

%
ResNet-

50-SAM

ResNet-

152-SAM
ViT-S/16

ViT-S/16-

SAM
ViT-B/16

ViT-B/16-

SAM
Mixer-S/16

Mixer-S/16-

SAM
Mixer-B/16

Mixer-B/16-

SAM

CIFAR-10 97.4 98.2 97.6 98.2 98.1 98.6 94.1 96.1 95.4 97.8

CIFAR-100 85.2 87.8 85.7 87.6 87.6 89.1 77.9 82.4 80.0 86.4

Flowers 90.0 91.1 86.4 91.5 88.5 91.8 83.3 87.9 82.8 90.0

Pets 91.6 93.3 90.4 92.9 91.9 93.1 86.1 88.7 86.1 92.5

Average 91.1 92.6 90.0 92.6 91.5 93.2 85.4 88.8 86.1 91.7

the first and second stages, respectively. We use a small SAM perturbation strength ρ = 0.02.

Compared to the training procedure without SAM, we find considerable performance

gain thanks to SAM’s smoothing of the contrastive loss geometry, improving the ImageNet

top-1 accuracy of ViT-S/16 from 77.0% to 78.1%, and ViT-B/16 from 77.4% to 80.0%. In

comparison, the improvement on ResNet-152 is less significant (from 79.7% to 80.0% after

using SAM).

5.4.4 When SAM Meets Transfer Learning

We also study the role of smoothed loss geometry in transfer learning. We select four

datasets to test ViTs and MLP-Mixers’ transferabilities: CIFAR-10/100 (Krizhevsky and

Hinton, 2009), Oxford-IIIT Pets (Parkhi et al., 2012b), and Oxford Flowers-102 (Nilsback

and Zisserman, 2008). We use image resolution 224× 224 during fine-tuning on downstream

tasks, other settings exactly follow Dosovitskiy et al. (2021a); Tolstikhin et al. (2021) (see

Table 5.9). Note that we do not employ SAM during fine-tuning. We perform a grid search

over the base learning rates on small sub-splits of the training sets (10% for Flowers and

Pets, 2% for CIFAR-10/100). After that, we fine-tune on the entire training sets and report

the results on the respective test sets. For comparison, we also include ResNet-50-SAM and
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Table 5.9: Hyperparameters for downstream tasks. All models are fine-tuned with 224× 224

resolution, a batch size of 512, cosine learning rate decay, no weight decay, and grad clipping

at global norm 1.

Dataset Total steps Warmup steps Base LR

CIFAR-10 10K 500

{0.001, 0.003, 0.01, 0.03}
CIFAR-100 10K 500

Flowers 500 100

Pets 500 100

ResNet-152-SAM in the experiments. Table 5.8 summarizes the results, which confirm that

the enhanced models also perform better after fine-tuning and that MLP-Mixers gain the

most from the sharpness-aware optimization.

5.4.5 Varying Weight Decay Strength

Table 5.10: ImageNet accuracy and curvature analysis for ViT-B/16 when we vary the weight

decay strength in Adam (AdamW).

Model Weight decay ImageNet (%) ∥w∥2 Ltrain LN
train λmax

ViT-B/16

0.2 74.2 339.8 0.51 4.22 507.4

0.3 74.6 269.3 0.65 6.66 738.8

0.4 74.7 236.7 0.77 7.08 1548.9

0.5 74.4 211.8 0.98 7.21 2251.7

ViT-B/16-SAM

0.2 79.9 461.4 0.69 0.72 13.1

0.3 79.9 353.8 0.82 0.96 20.9

0.4 79.4 301.1 0.85 0.98 26.1

0.5 78.7 259.6 0.95 1.33 45.5

In this section, we vary the strength of weight decay and see the effects of this commonly
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used regularization approach. As shown in Table 5.10, weight decay helps improve the

accuracy on ImageNet when training without SAM, the weight norm also decreases when

we enlarge the decay strength as expected. However, enlarging the weight decay aggravates

the problem of converging to a sharper region measured by both LN
train and λmax. Another

observation is that ∥w∥2 consistently increases after applying SAM for every weight decay

strength in Table 5.10, together with the improved ImageNet accuracy and smoother landscape

curvature.
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CHAPTER 6

Optimizer Search as Symbolic Program Discovery

Optimization algorithms, i.e., optimizers, play a fundamental role in training neural networks.

There are a large number of handcrafted optimizers, mostly adaptive ones, introduced in

recent years (Anil et al., 2020; Balles and Hennig, 2018; Bernstein et al., 2018; Dozat, 2016;

Liu et al., 2020; Zhuang et al., 2020). However, Adam (Kingma and Ba, 2014) with decoupled

weight decay (Loshchilov and Hutter, 2019), also referred to as AdamW, and Adafactor

with factorized second moments (Shazeer and Stern, 2018), are still the de facto standard

optimizers for training most deep neural networks, especially the recent state-of-the-art

language (Brown et al., 2020; Devlin et al., 2019; Vaswani et al., 2017), vision (Dai et al.,

2021; Dosovitskiy et al., 2021b; Zhai et al., 2021) and multimodal (Radford et al., 2021;

Saharia et al., 2022; Yu et al., 2022) models.

Another direction is to automatically discover such optimization algorithms. The learning

to optimize (L2O) approach Chen et al. (2021a) proposes to discover optimizers by training

parameterized models, e.g., neural networks, to output the updates (Andrychowicz et al., 2016;

Li and Malik, 2017; Metz et al., 2019, 2022). However, those black-box optimizers, typically

trained on a limited number of small tasks, struggle to generalize to state-of-the-art settings

where much larger models are trained with significantly more training steps. Another line of

methods (Bello et al., 2017; Wang et al., 2022) apply reinforcement learning or Monte Carlo

Sampling to discover new optimizers, where the search space is defined by trees composed

from predefined operands (e.g., gradient and momentum) and operators (e.g., unary and

binary math operations). However, to make the search manageable, they often limit the
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Table 6.1: Accuracy of BASIC-L (Pham et al., 2021) on ImageNet and several robustness

benchmarks. We apply Lion to both vision tower pre-training and vision-language contrastive

training stages. The previous SOTA results on zero-shot and fine-tuning ImageNet accuracy

are 86.3% and 91.0% (Yu et al., 2022).

Optimizer
Zero-shot Fine-tune

ImageNet V2 A R Sketch ObjectNet ImageNet

Adafactor 85.7 80.6 85.6 95.7 76.1 82.3 90.9

Lion 88.3 81.2 86.4 96.8 77.2 82.9 91.1

Figure 6.1: Left: ImageNet fine-tuning accuracy

vs. pre-training cost of ViT models on JFT-300M.

Right: FID of the diffusion model on 2562 image

generation. We use DDPM for 1K steps w/o guid-

ance to decode image. As a reference, the FID of

ADM is 10.94 (Dhariwal and Nichol, 2021).

Program 6.1: Discovered optimizer

Lion. β1 = 0.9 and β2 = 0.99 by default

are derived from Program 6.4. It only

tracks momentum and uses the sign op-

eration to compute the update. The

two gray lines compute the standard

decoupled weight decay, where λ is the

strength.

def train(weight, gradient, momentum, lr):

update = interp(gradient, momentum, β1)

update = sign(update)

momentum = interp(gradient, momentum, β2)

weight_decay = weight * λ

update = update + weight_decay

update = update * lr

return update, momentum
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search space by using fixed operands and restricting the size of the tree, thereby limiting the

potential for discovery. For example, they are unable to modify the tracking of momentum or

how it contributes to the update, which is an essential component of Lion. Consequently, the

algorithms discovered have not yet reached the state-of-the-art. AutoML-Zero (Real et al.,

2020) is an ambitious effort that attempts to search every component of a machine learning

pipeline while evaluating on toy tasks. This work follows the research direction of automatic

discovering optimizers and is in particular inspired by AutoML-Zero, but aims at discovering

effective optimization algorithms that can improve the state-of-the-art benchmarks.

In this chapter, we present a method to formulate algorithm discovery as program search

and apply it to discover optimization algorithms. There are two primary challenges. The

first one is to find high-quality algorithms in the infinite and sparse program space. The

second one is to further select out the algorithms that can generalize from small proxy tasks

to much larger, state-of-the-art tasks. To tackle these challenges, we employ a range of

techniques including evolutionary search with warm-start and restart, abstract execution,

funnel selection, and program simplification.

Our method discovers a simple and effective optimization algorithm: Lion, short for

EvoLved Sign Momentum. This algorithm differs from various adaptive algorithms by only

tracking momentum and leveraging the sign operation to calculate updates, leading to lower

memory overhead and uniform update magnitudes across all dimensions. Despite its simplicity,

Lion demonstrates outstanding performance across a range of models (Transformer, MLP,

ResNet, U-Net, and Hybrid) and tasks (image classification, vision-language contrastive

learning, diffusion, language modeling, and fine-tuning). Notably, we achieve 88.3% zero-

shot and 91.1% fine-tuning accuracy on ImageNet by replacing Adafactor with Lion in

BASIC (Pham et al., 2021), surpassing the previous best results by 2% and 0.1%, respectively.

Additionally, Lion reduces the pre-training compute on JFT by up to 5x, improves training

efficiency on diffusion models by 2.3x and achieves a better FID score, and offers similar or

better performance on language modeling with up to 2x compute savings.
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We analyze the properties and limitations of Lion. Users should be aware that the uniform

update calculated using the sign function usually yields a larger norm compared to those

generated by SGD and adaptive methods. Therefore, Lion requires a smaller learning rate lr,

and a larger decoupled weight decay λ to maintain the effective weight decay strength. For

detailed guidance, please refer to Section 6.4. Additionally, our experiments show that the

gain of Lion increases with the batch size and it is more robust to different hyperparameter

choices compared to AdamW. For limitations, the difference between Lion and AdamW is not

statistical significant on some large-scale language and image-text datasets. The advantage

of Lion is smaller if using strong augmentations or a small batch size (<64) during training.

See Section 6.5 for details.

6.1 Symbolic Discovery of Algorithms

We present an approach that formulates algorithm discovery as program search (Brameier

et al., 2007; Koza, 1994; Real et al., 2020). We use a symbolic representation in the form of

programs for the following advantages: (1) it aligns with the fact that algorithms must be

implemented as programs for execution; (2) symbolic representations like programs are easier

to analyze, comprehend and transfer to new tasks compared to parameterized models such

as neural networks; (3) program length can be used to estimate the complexity of different

programs, making it easier to select the simpler, often more generalizable ones. This work

focuses on optimizers for deep neural network training, but the method is generally applicable

to other tasks.

6.1.1 Program Search Space

We adhere to the following three criteria while designing the program search space: (1)

the search space should be flexible enough to enable the discovery of novel algorithms; (2)

the programs should be easy to analyze and incorporate into a machine learning workflow;

95



Program 6.2: An example training

loop, where the optimization algo-

rithm that we are searching for is

encoded within the train function.

The main inputs are the weight (w),

gradient (g) and learning rate sched-

ule (lr). The main output is the

update to the weight. v1 and v2

are two additional variables for col-

lecting historical information.

w = weight_initialize()

v1 = zero_initialize()

v2 = zero_initialize()

for i in range(num_train_steps):

lr = learning_rate_schedule(i)

g = compute_gradient(w, get_batch(i))

update, v1, v2 = train(w, g, v1, v2, lr)

w = w - update

Program 6.3: Initial pro-

gram (AdamW). The bias

correction and ϵ are omit-

ted for simplicity.

def train(w, g, m, v, lr):

g2 = square(g)

m = interp(g, m, 0.9)

v = interp(g2, v, 0.999)

sqrt_v = sqrt(v)

update = m / sqrt_v

wd = w * 0.01

update = update + wd

lr = lr * 0.001

update = update * lr

return update, m, v

Program 6.4: Discovered

program after search, se-

lection and removing re-

dundancies in the raw Pro-

gram 6.8. Some variables

are renamed for clarity.

def train(w, g, m, v, lr):

g = clip(g, lr)

g = arcsin(g)

m = interp(g, v, 0.899)

m2 = m * m

v = interp(g, m, 1.109)

abs_m = sqrt(m2)

update = m / abs_m

wd = w * 0.4602

update = update + wd

lr = lr * 0.0002

m = cosh(update)

update = update * lr

return update, m, v

(3) the programs should focus on the high-level algorithmic design rather than low-level

implementation details. We define the programs to contain functions operating over n-

dimensional arrays, including structures like lists and dictionaries containing such arrays, in

an imperative language. They are similar to Python code using NumPy / JAX (Bradbury

et al., 2018; Harris et al., 2020) as well as pseudo code of optimization algorithms. The details

of the design are outlined below, with an example representation of AdamW in Program 6.3.

Input / output signature The program defines a train function, which encodes the

optimization algorithm being searched for, where the main inputs are the model weight (w),

96



the gradient (g) and the learning rate schedule value (lr) at the current training step. The

main output is the update to the weight. The program also incorporates extra variables

initialized as zeros to collect historical information during training. For example, AdamW

requires two extra variables to estimate first and second moments. Note that those variables

can be used arbitrarily, we use the name m and v in Program 6.3 just for better readability.

This simplified code snippet in Program 6.2 uses the same signature as AdamW to ensure

that the discovered algorithms have smaller or equal memory footprints. As opposed to

previous optimizer search attempts (Bello et al., 2017; Wang et al., 2022), our method allows

discovering better ways of updating the extra variables.

Building blocks The train function consists of a sequence of assignment statements,

with no restrictions on the number of statements or local variables. Each statement calls

a function using constants or existing variables as inputs, and the resulting value is stored

in a new or existing variable. For the program, we select 45 common math functions, most

of which corresponds to a function in NumPy or an operation in linear algebra. Some

functions are introduced to make the program more compact, such as the linear interpolation

function interp(x, y, a), which is made equivalent to (1 - a) * x + a * y. Preliminary

experiments have investigated the inclusion of more advanced features such as conditional

and loop statements, and defining and calling new functions, but these do not yield improved

results, so we leave them out. We include 43 available functions that can be used in the

program during search. Note that the input of the functions can be one n-dimensional array,

dictionaries or lists of arrays, similar to the pytrees in JAX.

• Basic math functions from NumPy / JAX This includes unary functions like

abs, cos, sin, tan, arcsin, arccos, arctan, exp, log, sinh, cosh, tanh, arcsinh,

arccosh, arctanh, sign, exp2, exp10, expm1, log10, log2, log1p, square, sqrt,

cube, cbrt, sign, reciprocal and binary functions like +, -, *, /, power, maximum,

minimum with the same semantic as the corresponding function in NumPy / JAX.
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• Linear algebra functions commonly used in first-order optimization algo-

rithms This includes: (1) unary function norm that computes the norm of each arrays in

the input; (2) unary function global_norm that computes the global norm by treating

all the numbers in the input as one vector; (3) binary function dot that treats the two

inputs as two vectors and computes their dot product; (4) binary function cosine_sim

that treats the two inputs as two vectors and computes their cosine similarity; (5) binary

clip_by_global_norm (clip) that clips the global norm of the first input to the value

of the second input that is required to be a scalar; (6) ternary function interpolate

(interp) that uses the third argument a, required to be a scalar, to compute a linear

interpolation of the first two arguments x and y with (1 - a) * x + a * y.

• Functions producing commonly used constants This includes get_pi, get_e,

get_eps that generates π, e and ϵ = 10−8 respectively.

When necessary, the types and shapes of the function arguments are automatically cast, e.g.,

in the case of adding a dictionary of arrays to a scalar.

Mutations and redundant statements The design of mutations utilized in evolutionary

search is tightly intertwined with the representation of the program. We include three types

of mutations: (1) inserting a new statement at a random location with randomly chosen

functions and arguments, (2) deleting a random chosen statement, and (3) modifying a

random statement by randomly altering one of its function arguments, which may be either

variables or constants. To mutate an argument, we replace it with an existing variable or

a newly generated constant obtained by sampling from a normal distribution X ∼ N (0 1).

Additionally, we can mutate an existing constant by multiplying it by a random factor 2a,

where a ∼ N (0 1). These constants serve as tunable hyperparameters in the optimization

algorithm, such as the peak learning rate and weight decay in AdamW. Note that we allow a

program to include redundant statements during search, i.e., statements that do not impact

the final program outputs. This is necessary as mutations are limited to only affecting a
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single statement. Redundant statements therefore serve as intermediate steps towards future

substantial modifications in the program.

Infinite and sparse search space Given the limitless number of statements and local

variables, as well as the presence of mutable constants, the program search space is infinite.

Even if we ignore the constants and bound the program length and number of variables, the

number of potential programs is still intractably large. A rough estimate of the number of

possible programs is np = nl
fn

na∗l
v , where nf is the number of possible functions, nv is the

number of local variables, na is the average number of arguments per statement, and l is the

program length. More importantly, the challenge comes from the sparsity of high-performing

programs in the search space. To illustrate this point, we conduct a random search that

evaluates over 2M programs on a low-cost proxy task. The best program among them is still

significantly inferior to AdamW.

Figure 6.2: Left: We run hyperparameter tuning on AdamW and random search, both

with 4x more compute, to get the best results as two baselines (green and red lines). The

evolutionary search, with mean and standard error calculated from five runs, significantly

outperforms both of them. The use of multiple restarts from the initial program is crucial due

to the high variance in the search fitness (blue curves), and restarting from the best program

after 300K progress further improves the fitness (orange curves) when the original search

plateaus. Right: Example curves of search fitness, the cache hit rate, and the percentage of

redundant statements. The cache hit rate and the redundant statements percentage increase

along with the search progress to ∼90% and ∼70%.
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6.1.2 Efficient Search Techniques

We employ the following techniques to address the challenges posed by the infinite and sparse

searching space.

Evolution with warm-start and restart We apply regularized evolution as it is simple,

scalable, and has shown success on many AutoML search tasks (Holland, 1992; Real et al.,

2019b, 2020; So et al., 2019; Ying et al., 2019). It keeps a population of P algorithms that

are gradually improved through cycles. Each cycle picks T<P algorithms at random and

the best performer is chosen as the parent, i.e., tournament selection (Goldberg and Deb,

1991). This parent is then copied and mutated to produce a child algorithm, which is added

to the population, while the oldest algorithm is removed. Normally, evolutionary search

starts with random candidates, but we warm-start the initial population as AdamW to

accelerate the search. By default, we use a tournament size of two and a population size of

1K. To further improve the search efficiency, we apply two types of restart: (1) restarting

from the initial program, which can lead to different local optima due to the randomness

in evolution and encourage exploration. This can be done by running multiple searches

in parallel. (2) restarting from the best algorithm found thus far to further optimize it,

encouraging exploitation. Figure 6.2 (Left) displays the mean and standard error of five

evolutionary search experiments. We run hyperparameter tuning based on AdamW by only

allowing mutations of constants in the evolution, and run random search by sampling random

programs, both with 4x more compute. Our search significantly outperforms the best results

achieved by both baselines, demonstrated as the two dashed lines in the figure. The high

variance in the search fitness necessitates running multiple repeats through restarting from

the initial program. When the search fitness plateaus after ∼300K progress, restarting from

the best program found thus far further improves the fitness shown by the orange curve.
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Pruning through abstract execution We propose to prune the redundancies in the

program space from three sources: programs with syntax or type / shape errors, functionally

equivalent programs, and redundant statements in the programs. Before a program is

actually executed, we perform an abstract execution step that (1) infers variable types and

shapes to detect programs with errors, and keeps mutating the parent program until a valid

child program is generated; (2) produces a hash that uniquely identifies how the outputs

are computed from the inputs, allowing us to cache and look up semantically duplicate

programs (Gillard et al., 2023); (3) identifies redundant statements that can be ignored

during actual execution and analysis. For instance, Program 6.4 is obtained after removing

all redundant statements in Program 6.8. Abstract execution has negligible cost compared to

the actual execution, with each input and function replaced by customized values, e.g., hash.

We outline the specifics of the customized values and abstract execution procedure for three

use cases below.

• Detecting errors with type / shape inference To detect programs containing

errors, we infer the type and shape of each variable in the program through the following

steps: (1) replace each input with an abstract object that only contains type and shape

information, and replace each statement with a type and shape inference function; (2)

iterate through all statements. Instead of executing the original statement, we validate

a function call by checking the function signature and type and shape information of

its arguments. If valid, we compute the type and shape information of the output and

assign it to the new variable; (3) verify the validity of the derived type and shape of

the output. This process essentially performs a static analysis of the program, exposing

errors caused by type and shape mismatch. Note that there are still run-time errors,

such as division by zero, that cannot be detected in this manner. Without such filtering

of invalid programs, the search would be overwhelmed with invalid programs, making it

difficult to achieve meaningful progress.

• Deduplicating with functional hash Among the valid programs that execute without
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errors, there are still lots of duplicates due to functionally equivalent programs that have

different surface forms but the same underlying functionality. To address this issue, we

calculate a functional hash value for every unique computation from the inputs to the

outputs as follows: (1) a unique hash value is assigned to each input and function; (2)

iterate through all statements, calculating the hash value of the outputs by combining

the hash values of the functions and arguments; (3) compute the hash value of program

by combining the hash values of all outputs. We then build a hash table that maps

each unique functional hash value to the fitness of the corresponding program. When a

new program is generated, we first look up its hash value and only perform evaluation

if it is not found or if we want to evaluate it multiple times to reduce measurement

noise. In our experiments, this technique reduces the search cost by ∼10x, as depicted

in Figure 6.2 (Right).

• Identifying redundant statements by tracking dependencies In program evo-

lution, redundant statements are included to enable combining multiple mutations

to make larger program changes. However, these redundant statements increase the

evaluation cost and make program analysis more challenging. To identify redundant

statements, we need to determine the set of statements that the outputs depend on,

which can be computed in a recursive manner using the following steps: (1) replace the

value of each input with an empty set, as they do not depend on any statement; (2)

iterate through each statement. Note that each statement is an assignment that calls

a function and assigns the result to a variable, which in turn depends on the current

statement and all the depending statements of the function arguments. Therefore

we replace the value of the variable with its dependency, i.e., a set of all depending

statements; (3) compute the union of all statements that each output depends on,

which contains all non-redundant statements. By filtering out redundant statements,

we obtain a simplified version of the program that is cheaper to execute and easier to

analyze. In our experiments, this reduces the program length by ∼3x on average, as
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shown in Figure 6.2 (Right).

Preliminary experiments have shown that the search process can become overwhelmed

with invalid programs and cannot make progress without filtering out invalid programs. As

seen in Figure 6.2 (Right), the percentage of redundant statements and cache hit rate both

increase as the search proceeds. Based on five search runs, each covering 300K programs, there

are 69.8± 1.9% redundant statements towards the end, implying that redundant statements

removal makes the program ∼3x shorter on average, thus easier to analyze. The cache hit

rate is 89.1± 0.6%, indicating that using the hash table as cache brings ∼10x reduction on

the search cost.

Proxy tasks and search cost To reduce search cost, we create low-cost proxies by

decreasing the model size, number of training examples, and steps from the target tasks.

Evaluation on the proxies can be completed on one TPU V2 chip within 20min. We use the

accuracy or perplexity on the validation set as the fitness. Each search experiment utilizes

100 TPU V2 chips and runs for ∼72h. There are a total of 200-300K programs generated

during each search experiment. However, the number of programs that are actually evaluated

is around 20-30K, thanks to the use of the cache through abstract execution. To incorporate

restart, we start five repeats of search experiments, followed by another round of search

initializing from the best algorithm found thus far. This results in a total cost of ∼3K TPU

V2 days. The details of proxy tasks are as follows: For vision tasks, we train a ViT with

three layers, 96 hidden units and three heads, on 10% ImageNet for 30k steps with batch

size 64. The image size is 64× 64 and the patch size is 16. For language tasks, we train a

Transformer with two layers, 128 hidden units and two heads on LM1B (Chelba et al., 2013)

for 20K steps with batch size 64, sequence length 32 and vocabulary size 3K. The evaluation

time may vary for different programs, but typically a evaluation can be done on one TPU V2

chip within 20min. The validation accuracy or perplexity is used as the fitness.
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Figure 6.3: Left: The meta-validation (defined in Section 6.1.3) curves of two search runs

measured on a ∼500x larger meta-validation task compared to the proxy. The blue one

meta-overfits at ∼15% of the search progress, while the orange one meta-overfits at ∼90%

and achieves a better metric. Right: Histogram of the search progress when meta-overfitting

happens based on 50 runs. Half of the runs meta-overfit early but a long tail of runs meta-

overfit much later. Blue cross depicts the best meta-validation metric averaged within each

bin, indicating that meta-overfitting happening later leads to programs that generalize better.

6.1.3 Generalization: Program Selection and Simplification

The search experiments can discover promising programs on proxy tasks. We use performance

on meta-validation tasks that are larger than the proxy tasks by increasing the model size

and training steps, to select the programs that generalize beyond proxy tasks then further

simplify them. The phenomenon of meta-overfitting occurs when the search fitness keeps

growing, but the meta-validation metric declines, indicating that the discovered algorithms

have overfit the proxy tasks. Two examples are shown in Figure 6.3 (Left), where the blue

curve represents early meta-overfitting and the orange curve represents later meta-overfitting.

Large generalization gap The discovered algorithms face a significant challenge due

to the substantial gap between the proxy tasks during search and the target tasks. While

proxy tasks can typically be completed within 20min on one TPU V2 chip, target tasks

can be > 104x larger and require days of training on 512 TPU V4 chips. Furthermore, we

expect the optimizer to perform well on different architectures, datasets and even different
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domains, so the discovered algorithms need to show strong out-of-distribution generalization.

The sparse search space and inherent noise in the evolution process further compound this

challenge, leading to inconsistent generalization properties between different runs. Our

observation suggests that evolutionary search experiments that meta-overfit later tend to

uncover optimization algorithms that generalize better. See more details in Figure 6.3 (Right).

Funnel selection To mitigate the generalization gap, we collect promising programs based

on search fitness and add an extra selection step using a series of meta-validation tasks to

select those generalize better. To save compute, we apply a funnel selection process that

gradually increases the scale of the meta-validation tasks. For example, starting with proxy

task A, we create a 10x larger task B by increasing the model size and the training steps.

Only algorithms that surpass the baseline on task B will be evaluated on task C, which

is 100x larger. This approach allows us to gradually filter out algorithms that show poor

generalization performance, ultimately leading to the selection of algorithms that generalize

well to larger tasks.

Simplification Simpler programs are easier to understand and our intuition is that they

are more likely to generalize, so we simplify the programs with the following steps. Firstly,

we remove redundant statements that do not contribute to the final output as identified

through abstract execution. Secondly, we remove statements that are non-redundant but

produce minimal differences when removed. This step can also be achieved through evolution

by disabling the insertion of new statements in the mutation process. Finally, we rearrange

the statements manually, assign clear and descriptive names to variables, and convert the

program into its simpler, mathematically equivalent form.
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Program 6.5: Algorithm

with a better regulariza-

tion. It dynamically calcu-

lates the dot product be-

tween the weight and gra-

dient, before computing

the weight decay.

def train(w, g, m, v, lr):

m = interp(m, g, 0.16)

g2 = square(g)

v = interpolate(v, g2, 0.001)

v753 = dot(g, w)

sqrt_v = sqrt(v)

update = m / sqrt_v

wd = v753 * w

update = sin(update)

update = update + wd

lr = lr * 0.0216

update = update * lr

v = sin(v)

return update, m, v

Program 6.6: Algorithm

that tracks the second mo-

ment without EMA decay

similar to AdaGrad.

def train(w, g, m, v, lr):

m = interp(m, g, 0.1)

g2 = square(g)

g2 = v + g2

v = interp(v, g2, 0.0015)

sqrt_v = sqrt(v)

update = m / sqrt_v

v70 = get_pi()

v = min(v, v70)

update = sinh(update)

lr = lr * 0.0606

update = update * lr

return update, m, v

Program 6.7: Algorithm uses

the difference between gradi-

ent and momentum to track

the second moment, resem-

bling AdaBelief.

def train(w, g, m, v, lr):

m = interp(m, g, 0.1)

g = g - m

g2 = square(g)

v = interp(v, g2, 0.001)

sqrt_v = sqrt(v)

update = m / sqrt_v

wd = w * 0.0238

update = update + wd

lr = lr * 0.03721

update = update * lr

return update, m, v

6.2 Derivation and Analysis of Lion

We arrive at the optimizer Lion due to its simplicity, memory efficiency, and strong performance

in search and meta-validation. Note that the search also discovers other existing or novel

algorithms. By varying the task setting, different types of algorithms can be discovered. For

example, if we reduce the amount of data in the proxy task, we are more likely to discover

algorithms with better regularization (Program 6.5), and if we reduce the search progress, we

are likely to find simple variants of AdamW (Program 6.6 and 6.7). Future work can explore
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this potential to discover optimizers specialized for different tasks.

Program 6.8: Raw program of Lion before

removing redundent statements.

def train(w, g, m, v, lr):

g = clip(g, lr)

m = clip(m, lr)

v845 = sqrt(0.6270633339881897)

v968 = sign(v)

v968 = v - v

g = arcsin(g)

m = interp(g, v, 0.8999999761581421)

v1 = m * m

v = interp(g, m, 1.109133005142212)

v845 = tanh(v845)

lr = lr * 0.0002171761734643951

update = m * lr

v1 = sqrt(v1)

update = update / v1

wd = lr * 0.4601978361606598

v1 = square(v1)

wd = wd * w

m = cosh(update)

lr = tan(1.4572199583053589)

update = update + wd

lr = cos(v845)

return update, m, v

6.2.1 Derivation

The search and funnel selection process lead to Program 6.4, which is obtained by automatically

removing redundant statements from the raw Program 6.8. We further simplify it to get

the final algorithm (Lion) in Program 6.1. Several unnecessary elements are removed from
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Program 6.4 during the simplification process. The cosh function is removed since m would

be reassigned in the next iteration (line 3). The statements using arcsin and clip are

also removed as we observe no quality drop without them. The three orange statements

translate to a single sign function. Although both m and v are utilized in Program 6.4, v

only changes how the momentum is updated (two interp functions with constants ∼0.9 and

∼1.1 is equivalent to one with ∼0.99) and does not need to be separately tracked. Note that

the bias correction is no longer needed, as it does not change the direction. Algorithm 4

shows the pseudocode.

Algorithm 3 AdamW Optimizer
given β1, β2, ϵ, λ, η, f

initialize θ0, m0 ← 0, v0 ← 0, t← 0

while θt not converged do

t← t+ 1

gt ← ∇θf(θt−1)

update EMA of gt and g2t

mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)g
2
t

bias correction

m̂t ← mt/(1− βt
1)

v̂t ← vt/(1− βt
2)

update model parameters

θt ← θt−1− ηt(m̂t/(
√
v̂t+ ϵ)+λθt−1)

end while

return θt

Algorithm 4 Lion Optimizer (ours)
given β1, β2, λ, η, f

initialize θ0, m0 ← 0

while θt not converged do

gt ← ∇θf(θt−1)

update model parameters

ct ← β1mt−1 + (1− β1)gt

θt ← θt−1 − ηt(sign(ct) + λθt−1)

update EMA of gt

mt ← β2mt−1 + (1− β2)gt

end while

return θt
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6.2.2 Analysis

Sign update and regularization The Lion algorithm produces update with uniform

magnitude across all dimensions by taking the sign operation, which is in principle different

from various adaptive optimizers. Intuitively, the sign operation adds noise to the updates,

which acts as a form of regularization and helps with generalization (Chen et al., 2022; Foret

et al., 2021a; Neelakantan et al., 2017). An evidence is shown in Figure 6.9 (Right), where

the ViT-B/16 trained by Lion on ImageNet has a higher training error compared to AdamW

but a 2% higher accuracy on the validation set (as shown in Table 6.2). Additionally, the

results in Section 6.3.6 demonstrate that Lion leads to the convergence in smoother regions,

which usually results in better generalization.

Momentum tracking The default EMA factor used to track the momentum in Lion is

0.99 (β2), compared to the commonly used 0.9 in AdamW and momentum SGD. The current

gradient and momentum are interpolated with a factor of 0.9 (β1) before the sign operation

is applied. This choice of EMA factor and interpolation allows Lion to balance between

remembering a ∼10x longer history of the gradient in momentum and putting more weight

on the current gradient in the update. The necessity of both β1 and β2 is further discussed

in Section 6.3.6.

Hyperparameter and batch size choices Lion is simpler and has fewer hyperparameters

compared to AdamW and Adafactor as it does not require ϵ and factorization-related ones.

The update is an element-wise binary ±1 if we omit the weight decay term, with larger norm

than those produced by other optimizers like SGD and adaptive algorithms. As a result,

Lion needs a smaller learning rate and in turn a larger decoupled weight decay to achieve a

similar effective weight decay strength (lr * λ). Detailed information on tuning Lion can

be found in Section 6.4. Additionally, the advantage of Lion over AdamW enlarges as the

batch size increases, which fits the common practice of scaling up model training through
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data parallelism (Section 6.3.6).

Memory and runtime benefits Lion only saves the momentum thus has smaller memory

footprint than popular adaptive optimizers like AdamW, which is beneficial when training

large models and / or using a large batch size. As an example, AdamW needs at least 16

TPU V4 chips to train a ViT-B/16 with image resolution 224 and batch size 4,096, while Lion

only needs 8 (both with bfloat16 momentum). Another practical benefit is that Lion has

faster runtime (steps / sec) in our experiments due to its simplicity, usually 2-15% speedup

compared to AdamW and Adafactor depending on the task, codebase, and hardware.

Relation to existing optimizers The sign operation has been explored in previous

optimizers (Bernstein et al., 2018; Riedmiller and Braun, 1993). The closest to ours is

the handcrafted optimizer signSGD (Bernstein et al., 2018) (and its momentum variant)

that also utilizes the sign operation to calculate the update but has a different momentum

update rule from Lion. Their focus is to mitigate communication costs between agents in

distributed training, and they observe inferior performance when training ConvNets on image

classification tasks. On the other hand, NAdam (Dozat, 2016) combines the updated first

moment and the gradient to compute the update, but Lion decouples the momentum tracking

and how it is applied to the update through β2. A comparison of Lion with related optimizers

can be found in Section 6.3.5.

6.3 Evaluation of Lion

In this section, we present evaluations of Lion, on various benchmarks. We mainly compare it

to AdamW (or Adafactor when memory is a bottleneck) as it is exceedingly popular and the

de facto standard optimizer on a majority of learning tasks. The result of momentum SGD is

only included for ResNet since it performs worse than AdamW elsewhere. We also benchmark

other popular optimizers in Section 6.3.5, including handcrafted and automatically discovered
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ones. We make sure that every optimizer is well-tuned for each task (see Section 6.4 for

tuning details). By default, the learning rate schedule is cosine decay with 10K steps warmup,

and the momentum is saved as bfloat16 to reduce the memory footprint.

6.3.1 Image Classification

We perform experiments including various datasets and architectures on the image classifica-

tion task. Apart from training from scratch on ImageNet, we also pre-train on two larger

well-established datasets, ImageNet-21K and JFT (Sun et al., 2017a). The image size is

2242 by default otherwise specified by the subscript. Our evaluation covers various bench-

marks: ImageNet, ImageNet ReaL (Beyer et al., 2020b), ImageNet V2 (Recht et al., 2019b),

ImageNet A (Hendrycks et al., 2021b), ImageNet R (Hendrycks et al., 2021a), ImageNet

Sketch (Wang et al., 2019b), ObjectNet (Barbu et al., 2019), CIFAR-100 (Krizhevsky, 2009),

and Oxford-IIIT Pet (Parkhi et al., 2012a).

Train from scratch on ImageNet Following previous works (Dosovitskiy et al., 2021b; He

et al., 2016), we train ResNet-50 for 90 epochs with a batch size of 1,024, and other models for

300 epochs with a batch size of 4,096. As shown in Table 6.2, Lion significantly outperforms

AdamW on various architectures. Empirically, the improvement is more substantial on

models with larger capacity, with accuracy increases of 1.96% and 0.58% for ViT-B/16 and

ViT-S/16, respectively. The performance gaps also tend to enlarger with fewer inductive

biases. When strong augmentations are applied, the gain of Lion over AdamW shrinks, but it

still outperforms AdamW by 0.42% on CoAtNet-3, despite the strong regularization during

training (Dai et al., 2021).

Pre-train on ImageNet-21K We pre-train ViT-B/16 and ViT-L/16 on ImageNet-21K

for 90 epochs with a batch size of 4,096. Table 6.2 shows that Lion still surpasses AdamW

even when the training set is enlarged for 10x. The gaps on larger models are consistently
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Table 6.2: Accuracy on ImageNet, ImageNet ReaL, and ImageNet V2. Numbers in (·) are

from Dai et al. (2021); Dosovitskiy et al. (2021b). Results are averaged from three runs.

Model #Params Optimizer
RandAug

+ Mixup
ImageNet ReaL V2

Train from scratch on ImageNet

ResNet-50 25.56M

SGD

✗

76.22 82.39 63.93

AdamW 76.34 82.72 64.24

Lion 76.45 82.72 64.02

Mixer-S/16 18.53M
AdamW

✗
69.26 75.71 55.01

Lion 69.92 76.19 55.75

Mixer-B/16 59.88M
AdamW

✗
68.12 73.92 53.37

Lion 70.11 76.60 55.94

ViT-S/16 22.05M

AdamW
✗

76.12 81.94 63.09

Lion 76.70 82.64 64.14

AdamW
✓

78.89 84.61 66.73

Lion 79.46 85.25 67.68

ViT-B/16 86.57M

AdamW
✗

75.48 80.64 61.87

Lion 77.44 82.57 64.81

AdamW
✓

80.12 85.46 68.14

Lion 80.77 86.15 69.19

CoAtNet-1 42.23M
AdamW

✓
83.36 (83.3) - -

Lion 84.07 - -

CoAtNet-3 166.97M
AdamW

✓
84.45 (84.5) - -

Lion 84.87 - -

Pre-train on ImageNet-21K then fine-tune on ImageNet

ViT-B/16384 86.86M
AdamW

✗
84.12 (83.97) 88.61 (88.35) 73.81

Lion 84.45 88.84 74.06

ViT-L/16384 304.72M
AdamW

✗
85.07 (85.15) 88.78 (88.40) 75.10

Lion 85.59 89.35 75.84
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Table 6.3: Model performance when pre-trained on JFT then fine-tuned on ImageNet. Two

giant ViT models are pre-trained on JFT-3B while smaller ones are pre-trained on JFT-300M.

The ViT-G/14 results are directly from Zhai et al. (2021).

Model ViT-L/16512 ViT-H/14518 ViT-g/14518 ViT-G/14518

#Params 305.18M 633.47M 1.04B 1.88B

Optimizer AdamW Lion AdamW Lion Adafactor Lion Adafactor Lion

ImageNet 87.72 88.50 88.55 89.09 90.25 90.52 90.45 90.71 / 90.71⋆

ReaL 90.46 90.91 90.62 91.02 90.84 91.11 90.81 91.06 / 91.25⋆

V2 79.80 81.13 81.12 82.24 83.10 83.39 83.33 83.54 / 83.83⋆

A 52.72 58.80 60.64 63.78 - - - -

R 66.95 72.49 72.30 75.07 - - - -

⋆ We observe overfitting in fine-tuning, therefore report both the last and oracle results.

bigger, with +0.52% vs. +0.33% (ImageNet), +0.57% vs. +0.23% (ReaL), and +0.74% vs.

+0.25% (V2) for ViT-L/16 and ViT-B/16, respectively.

Pre-train on JFT To push the limit, we conduct extensive experiments on JFT. We follow

the settings of Dosovitskiy et al. (2021b) and Zhai et al. (2021) for both pre-training and

fine-tuning. Figure 6.1 (Left) and 6.4 present the accuracy of three ViT models (ViT-B/16,

ViT-L/16, and ViT-H/14) under different pre-training budgets on JFT-300M. Lion enables

the ViT-L/16 to match the performance of ViT-H/14 trained by AdamW on ImageNet and

ImageNet V2 but with 3x less pre-training cost. On ImageNet ReaL, the compute saving

further becomes 5x. Another evidence is that even when a ViT-L/16 is trained by AdamW

for 4M steps by Zhai et al. (2021), its performance still lags behind the same model trained

by Lion for 1M steps.

Table 6.3 shows the fine-tuning results, with higher resolution and Polyak averaging. Our

ViT-L/16 matches the previous ViT-H/14 results trained by AdamW, while being 2x smaller.

The advantage is larger on more challenging benchmarks, such as +1.33% (V2), +6.08%

(A), +5.54% (R) for ViT-L/16. After we scale up the pre-training dataset to JFT-3B, the
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Figure 6.4: ImageNet ReaL (Left) and ImageNet

V2 (Right) accuracy after we pre-train ViT models

on JFT-300M then fine-tune on ImageNet.

Table 6.4: Zero-shot accuracy of LiTs

on ImageNet, CIFAR-100, and Oxford-

IIIT Pet. As a reference, the zero-shot

accuracy of CLIP (Radford et al., 2021)

on ImageNet is 76.2%.

Model Optimizer ImageNet C100 Pet

LiT-B/32-B
AdamW 68.78 71.41 86.62

Lion 69.88 71.78 87.36

LiT-B/16-B
AdamW 74.26 72.25 89.83

Lion 75.39 72.49 91.20

LiT-g/14288-L
AdamW 83.43 80.93 94.88

Lion 84.09 81.43 95.86

ViT-g/14 trained by Lion outperforms the previous ViT-G/14 results (Zhai et al., 2021),

with 1.8x fewer parameters. Our ViT-G/14 further achieves a 90.71% accuracy on ImageNet.

6.3.2 Vision-Language Contrastive Learning

This section focuses on the vision-language contrastive training (Radford et al., 2021). We

compare Lion with AdamW (Adafactor) on zero-shot image classification and image-text

retrieval benchmarks. Instead of learning all the parameters from scratch, we initialize the

image encoder with a strong pre-trained model as it is suggested to be more efficient (Zhai

et al., 2022).

Locked-image text Tuning (LiT) We perform a comparison between Lion and AdamW

on LiT (Zhai et al., 2022) by training the text encoder (Zhai et al., 2022) in a contrastive

manner using the same frozen pre-trained ViT. All models are trained for 1B image-text

pairs with a batch size of 16,384. Table 6.4 shows the zero-shot image classification results

on three model scales, with the name specifies the size, e.g., LiT-B/16-B denotes a ViT-B/16
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Figure 6.5: Zero-shot image-text retrieval results on MSCOCO (Top) and Flickr30K

(Bottom) for LiT-B/16-B. Recall@K is calculated based on if the ground truth label of the

query appears in the top-K retrieved examples.

and a base size Transformer as the text encoder. Our method, Lion, demonstrates consistent

improvement over AdamW with gains of +1.10%, +1.13%, and +0.66% on zero-shot ImageNet

accuracy for LiT-B/32-B, LiT-B/16-B, and LiT-g/14288-L, respectively. Figure 6.6 (Left)

depicts an example zero-shot learning curve of LiT-B/16-B. Similar results are obtained on

the other two datasets. The zero-shot image-text retrieval results on MSCOCO (Lin et al.,

2014) and Flickr30K (Plummer et al., 2015) can be found in Figure 6.5. The evaluation

metric is Recall@K, calculated based on if the ground truth label of the query appears in the

top-K retrieved examples. Lion outperforms AdamW on both datasets, with a larger gain in

Recall@1 than Recall@10 on Flicker30K, implying more accurate retrieval results: +1.70%

vs. +0.60% for image → text and +2.14% vs. +0.20% for text → image.

BASIC Pham et al. (2021) propose to scale up batch size, dataset, and model size simultane-

ously, achieving drastic improvements over CLIP. It uses a sophisticated CoAtNet (Dai et al.,

2021) pre-trained on JFT-5B as the image encoder. Furthermore, the contrastive training is
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Figure 6.6: The zero-shot ImageNet accuracy curve of LiT-B/16-B (Left). FID comparison

on 64× 64 (Middle) and 128× 128 (Right) image generation when training diffusion models.

We decode image w/o guidance.

performed on 6.6B image-text pairs with a larger 65,536 batch size. To push the limit, we

only experiment on the largest BASIC-L, and use Lion on both image encoder pre-training

and contrastive learning stages. As illustrated in Table 6.1, we achieve a significant 2.6% gain

over the baseline, striking a 88.3% accuracy on zero-shot ImageNet classification. Note that

this result is 2.0% higher than the previous best result (Yu et al., 2022). The performance

gain is consistent on five other robustness benchmarks. After fine-tuning the image encoder

(CoAtNet-7) in BASIC-L obtained by Lion, we further achieve a 91.1% top-1 accuracy on

ImageNet, which is 0.1% better than the previous SOTA.

6.3.3 Diffusion Model

Recently, diffusion models achieve a huge success on image generation (Dhariwal and Nichol,

2021; Ho and Salimans, 2022; Ho et al., 2020; Saharia et al., 2022; Song et al., 2021). Given

its enormous potential, we test the performance of Lion on unconditional image synthesis

and multimodal text-to-image generation.

Image synthesis on ImageNet We utilize the improved U-Net architecture introduced

in Dhariwal and Nichol (2021) and perform 64×64, 128×128, and 256×256 image generation

on ImageNet. The batch size is set as 2,048 and the learning rate remains constant throughout
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training. For decoding, we apply DDPM (Ho et al., 2020) for 1K sampling steps without

classifier-free guidance.The evaluation metric is the standard FID score. Illustrated by

Figure 6.1 (Right) and 6.6 (Middle and Right), Lion enables both better quality and faster

convergence on the FID score. Note that the gap between Lion and AdamW tends to increase

with the image resolution, where the generation task becomes more challenging. When

generating 256× 256 images, Lion achieves the final performance of AdamW at 440K steps,

reducing 2.3x iterations. The final FID scores are 4.1 (Lion) vs. 4.7 (AdamW), and for

reference, the FID of ADM (Dhariwal and Nichol, 2021) is 10.94.

Text-to-image generation We follow the Imagen (Saharia et al., 2022) setup to train a

base 64× 64 text-to-image model and a 64× 64→ 256× 256 super-resolution model. All

models are trained on a high-quality internal image-text dataset with a batch size of 2,048

and a constant learning rate. Due to computational constraints, our base U-Net has a width

of 192 compared to 512 in the original 2B model, while the 600M super-resolution model is

identical to the original Imagen setup. Along with the training, 2K images are sampled from

the MSCOCO (Lin et al., 2014) validation set for real-time evaluation. We use the CLIP

score to measure image-text alignment and the zero-shot FID-30K to measure image fidelity.

Classifier-free guidance (Ho and Salimans, 2022) with a weight of 5.0 is applied as it has

been shown to improve image-text alignment. Figure 6.7 depicts the learning curve. While

there is no clear improvement on the base 64× 64 model, Lion outperforms AdamW on the

text-conditional super-resolution model. It achieves a higher CLIP score and has a less noisy

FID metric compared to AdamW.

6.3.4 Language Modeling and Fine-tuning

This section focuses on language modeling and fine-tuning. On language-only tasks, we find

that tuning β1 and β2 can improve the quality for both AdamW and Lion. See Section 6.4

for tuning details.
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Figure 6.7: Evaluation of the Imagen text-to-

image 642 (Left) and the 642 → 2562 diffu-

sion models (Right).

Figure 6.8: Log perplexity on Wiki-40B (Left)

and PG-19 (Right). The speedup brought by

Lion tends to increase with the model scale.

The largest model on Wiki-40B is omitted as

we observe severe overfitting.

Autoregressive language modeling We first experiment on two smaller-scale academic

datasets Wiki-40B (Guo et al., 2020) and PG-19 (Rae et al., 2020) following Hua et al.

(2022). The employed Transformer spans three scales: small (110M), medium (336M), and

large (731M). Table 6.9 shows the Transformer architecture details. The dimension of the

feed-forward layer is 4 × dmodel. We use vocabulary size 32K for small-scale and 256K for

large-scale models.

All models are trained with 218 tokens per batch for 125K steps, with a learning rate

schedule of 10K steps warmup followed by linear decay. The context length is set to 512 for

Wiki-40B and 1,024 for PG-19. Figure 6.8 illustrates the token-level perplexity for Wiki-40B

and word-level perplexity for PG-19. Lion consistently achieves lower validation perplexity

than AdamW. It achieves 1.6x and 1.5x speedup when training the medium size model on

Wiki-40B and PG-19, respectively. When the model is increased to the large size, the speedup

on PG-19 further increases to 2x.

Scaling up the scale of language models and pre-training datasets has revolutionized the

field of NLP. So we further perform larger-scale experiments. Our pre-training dataset, similar

to that used in GLaM (Du et al., 2022), consists of 1.6 trillion tokens spanning a wide range
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Table 6.5: One-shot evaluation averaged over three NLG and 21 NLU tasks. The results of

GPT-3 (Brown et al., 2020) and PaLM (Chowdhery et al., 2022) are included for reference.

The LLMs trained by Lion have better in-context learning ability. See Table 6.6 for detailed

results on all tasks.

Task
1.1B 2.1B 7.5B 6.7B

GPT-3

8B

PaLMAdafactor Lion Adafactor Lion Adafactor Lion

#Tokens 300B 300B 780B

Avg NLG 11.1 12.1 15.6 16.5 24.1 24.7 23.1 23.9

Avg NLU 53.2 53.9 56.8 57.4 61.3 61.7 58.5 59.4

of natural language use cases. Following GPT-3 (Brown et al., 2020), we train three models,

ranging from 1.1B to 7.5B parameters, for 300B tokens with a batch size of 3M tokens and a

context length of 1K. We evaluate them on three natural language generative (NLG) and 21

natural language understanding (NLU) tasks. Those tasks include Open-Domain Question

Answering, Cloze and Completion Tasks, Winograd-Style Tasks, Common Sense Reasoning,

In-Context Reading Comprehension, SuperGLUE, and Natural Language Inference.

• NLG: TriviaQA (Joshi et al., 2017), Natural Questions (Kwiatkowski et al., 2019), Web

Questions (Berant et al., 2013).

• NLU: HellaSwag (Zellers et al., 2019), StoryCloze (Mostafazadeh et al., 2016), Wino-

grad (Levesque et al., 2012), Winogrande (Sakaguchi et al., 2020), RACE (Lai et al.,

2017), PIQA (Bisk et al., 2020), ARC (Clark et al., 2018), OpenbookQA (Mihaylov

et al., 2018), BoolQ (Clark et al., 2019), Copa (Gordon et al., 2012), RTE (Dagan et al.,

2006), WiC (Pilehvar and Camacho-Collados, 2019), Multirc (Khashabi et al., 2018),

WSC (Levesque et al., 2012), ReCoRD (Zhang et al., 2018b), CB (de Marneffe et al.,

2019), Adversarial NLI (Nie et al., 2020).

On this massive dataset, we observe no perplexity difference throughout training. Nev-
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Table 6.6: One-shot evaluation on English NLP tasks. TriviaQA, NQs, and WebQs are NLG

tasks and the rest are NLU tasks.

Task
1.1B 2.1B 7.5B 6.7B

GPT-3

8B

PaLMAdafactor Lion Adafactor Lion Adafactor Lion

#Tokens 300B 300B 780B

TriviaQA (EM) 21.5 25.1 32.0 33.4 47.9 48.8 44.4 48.5

NQs (EM) 4.3 4.8 6.3 7.3 12.3 12.1 9.8 10.6

WebQs (EM) 7.5 6.3 8.4 8.7 12.1 13.3 15.1 12.6

HellaSwag 50.7 50.3 59.4 59.3 68.2 68.3 66.5 68.2

StoryCloze 74.8 74.4 78.2 78.3 81.2 81.5 78.7 78.7

Winograd 75.1 80.2 81.3 82.1 85.3 84.2 84.6 85.3

Winogrande 59.7 60.5 64.8 65.7 71.4 71.0 65.8 68.3

RACE-m 52.0 50.8 55.1 53.8 59.1 61.3 54.7 57.7

RACE-h 36.8 35.4 40.3 40.7 44.5 43.9 44.3 41.6

PIQA 69.4 69.9 71.3 72.1 75.5 74.5 76.3 76.1

ARC-e 64.3 62.0 69.5 68.9 72.4 72.7 62.6 71.3

ARC-c 31.2 32.9 37.3 38.0 43.3 42.6 41.5 42.3

OpenbookQA 44.8 48.0 48.4 49.0 51.4 52.4 53.0 47.4

BoolQ 54.3 56.7 64.1 62.9 73.5 73.9 68.7 64.7

Copa 75.0 78.0 83.0 84.0 85.0 87.0 82.0 82.0

RTE 55.6 52.4 49.8 59.2 63.9 62.5 54.9 57.8

WiC 47.6 47.3 46.1 48.1 50.9 48.1 50.3 47.3

Multirc (F1a) 35.9 44.3 45.0 48.8 44.7 59.2 64.5 50.6

WSC 76.5 75.4 79.6 79.3 86.7 85.6 60.6 81.4

ReCoRD 73.4 73.7 77.8 77.7 81.0 81.1 88.0 87.8

CB 46.4 44.6 48.2 44.6 51.8 46.4 33.9 41.1

ANLI R1 33.3 30.1 32.4 31.2 31.5 34.0 31.6 32.4

ANLI R2 29.8 31.8 29.8 30.6 32.4 31.9 33.9 31.4

ANLI R3 29.8 31.8 31.4 31.9 33.6 34.2 33.1 34.5

Avg NLG 11.1 12.1 15.6 16.5 24.1 24.7 23.1 23.9

Avg NLU 53.2 53.9 56.8 57.4 61.3 61.7 58.5 59.4
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Figure 6.9: Left: Validation perplexity when we perform masked language modeling on the

C4 dataset. Right: Training loss of ViT-B/16 on ImageNet.

ertheless, Lion outperforms Adafactor on the average in-context learning ability, as shown

in Table 6.5. Our 7.5B baseline model, trained for 300B tokens, outperforms the 8B PaLM,

trained for 780B tokens, demonstrating the strength of our setup. Lion outperforms Adafac-

tor on both NLG and NLU tasks, particularly on the NLG tasks, with an exact match

improvement of +1.0, +0.9, and +0.6 for the 1.1B, 2.1B, and 7.5B models, respectively.

Masked language modeling We also perform BERT training on the C4 dataset (Raffel

et al., 2020). It requires the language models to reconstruct randomly masked out tokens

in the input sequence. We use the same architectures and training setups as the smaller-

scale autoregressive experiments. Lion performs slightly better than AdamW regarding the

validation perplexity: 4.18 vs. 4.25 (small), 3.42 vs. 3.54 (medium), and 3.18 vs. 3.25 (large).

See Figure 6.9 (Left) for the learning curves.

Fine-tuning We fine-tune Base (220M), Large (770M), and the largest 11B T5 (Raffel

et al., 2020) models on the GLUE benchmark (Wang et al., 2019a). Every model is fine-tuned

for 500K steps with a batch size of 128 and a constant learning rate. Table 6.7 shows the

results on the GLUE dev set. For MRPC and QQP, we report the F1 / Accuracy scores, for

STS-B, we report the Pearson / Spearman correlation, and for the other datasets, we report
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Table 6.7: Fine-tuning performance of the T5 Base, Large, and 11B on the GLUE dev set.

Results reported are the peak validation scores per task.

Model Optimizer CoLA SST-2 MRPC STS-B QQP
MNLI

-m

MNLI

-mm
QNLI RTE Avg

Base
AdamW 60.87 95.18 92.39 / 89.22 90.70 / 90.51 89.23 / 92.00 86.77 86.91 93.70 81.59 87.42

Lion 61.07 95.18 92.52 / 89.46 90.61 / 90.40 89.52 / 92.20 87.27 87.25 93.85 85.56 87.91

Large
AdamW 63.89 96.10 93.50 / 90.93 91.69 / 91.56 90.08 / 92.57 89.69 89.92 94.45 89.17 89.46

Lion 65.12 96.22 94.06 / 91.67 91.79 / 91.60 90.23 / 92.67 89.85 89.94 94.89 90.25 89.86

11B
AdamW 69.50 97.02 93.75 / 91.18 92.57 / 92.61 90.45 / 92.85 92.17 91.99 96.41 92.42 91.08

Lion 71.31 97.13 94.58 / 92.65 93.04 / 93.04 90.57 / 92.95 91.88 91.65 96.56 93.86 91.60

Figure 6.10: Learning curve of ViT-S/16 (Left) and ViT-B/16 (Right) associated with

Table 6.8. The curves of the five adaptive optimizers are similar to each other.

their default metric. On average, Lion beats AdamW across all three model scales. It achieves

10, 12, and 10 wins out of 12 scores for T5 Base, Large, and 11B models, respectively.

6.3.5 Comparison with Other Popular Optimizers

We also employ four popular handcrafted optimizers: AdaBelief (Zhuang et al., 2020),

AMSGrad (Reddi et al., 2018), RAdam (Liu et al., 2020), NAdam (Dozat, 2016), and two

optimizers discovered by AutoML: PowerSign (Bello et al., 2017) and AddSign (Bello et al.,

2017) to train ViT-S/16 and ViT-B/16 on ImageNet (with RandAug and Mixup). We
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Table 6.8: The performance of various optimizers to train ViT-S/16 and ViT-B/16 on

ImageNet (with RandAug and Mixup). Lion is still the best performing one, and there is no

clear winner amongst the baselines.

Model Task AdamW RAdam NAdam
Ada-

Belief
AMSGrad

Power-

Sign

Add-

Sign
Ablation0.9 Ablation0.99 Lion

ViT-S/16

ImageNet 78.89 78.59 78.91 78.71 79.01 77.36 77.37 78.23 78.19 79.46

ReaL 84.61 84.47 84.62 84.56 85.01 83.39 83.36 84.28 84.17 85.25

V2 66.73 66.39 66.02 66.35 66.82 65.17 64.52 66.13 65.96 67.68

ViT-B/16

ImageNet 80.12 80.26 80.32 80.29 79.85 78.95 78.50 79.54 79.90 80.77

ReaL 85.46 85.45 85.44 85.48 85.16 84.76 84.49 85.10 85.36 86.15

V2 68.14 67.76 68.46 68.19 68.48 67.46 65.95 68.07 68.20 69.19

thoroughly tune the peak learning rate lr and decoupled weight decay λ (Loshchilov and

Hutter, 2019) of every optimizer, while other hyperparameters are set as the default values in

Optax.1 As shown in Table 6.8, Lion is still the best performing one. We notice that there is

no clear winner amongst the baselines. AMSGrad performs the best on ViT-S/16 but the

worst on ViT-B/16. The inferior performance of PowerSign and AddSign compared to other

optimizers is consistent with previous observations that automatically discovered optimizers

have difficulty generalizing to real-world learning tasks. Figure 6.10 further shows that the

learning curves of the five adaptive optimizers are pretty similar, whereas Lion has a unique

one that learns faster.

6.3.6 Ablations

Momentum tracking To ablate the effects of both β1 and β2, we compare to a simple

update rule: m = interp(g, m, β); update = sign(m). Two optimizers, Ablation0.9 and

Ablation0.99, are created with β values of 0.9 and 0.99 respectively. Illustrated by Table 6.8,

the two ablated optimization algorithms perform worse than all five compared baselines,

1https://github.com/deepmind/optax
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Figure 6.11: Log perplexity of the small (Left), medium (Middle), and large (Right) size

Transformer on PG-19. Since β1 = 0.95, β2 = 0.98 in Lion when performing language modeling,

we compare to Ablation0.95 and Ablation0.98 with β = 0.95 and β = 0.98, respectively (see

Section 6.3.6 for the definition). Lion is still the best-performing one.

let alone our Lion. Further ablation studies on the language modeling task (as depicted in

Figure 6.11) yield similar conclusions. Those results validate the effectiveness and necessity

of using two linear interpolation functions, letting Lion to remember longer gradient history

meanwhile assign a higher weight to the current gradient.

Effect of batch size Some may question whether Lion requires a large batch size to

accurately determine the direction due to the added noise from the sign operation. To

address this concern, we train a ViT-B/16 model on ImageNet using various batch sizes

while maintaining the total training epoch as 300, and incorporating RandAug and Mixup

techniques. As shown in Figure 6.12 (Left), the optimal batch size for AdamW is 256, while for

Lion is 4,096. This indicates that Lion indeed prefers a larger batch size, but its performance

remains robust even with a small 64 batch size. Furthermore, when the batch size enlarges

to 32K, leading to only 11K training steps, Lion achieves a significant 2.5% accuracy gain

over AdamW (77.9% vs. 75.4%), demonstrating its effectiveness in the large batch training

setting.
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Figure 6.12: Left: Ablation for the effect of batch size. Lion prefers a larger batch than

AdamW. ImageNet accuracy of ViT-B/16 trained from scratch when we vary lr and λ for

AdamW (Middle) and Lion (Right). Lion is more robust to different hyperparameter

choices.

Table 6.9: Architecture details for language

modeling.

Model #Params nlayers dmodel nheads dhead

Small-scale

Small 110M 12 768 12 64

Medium 336M 24 1024 16 64

Large 731M 24 1536 16 96

Large-scale

1.1B 1.07B 24 1536 16 96

2.1B 2.14B 32 2048 16 128

7.5B 7.49B 32 4096 32 128

Table 6.10: Training error Ltrain and

landscape flatness LN
train of ViT-B/16

trained from scratch on ImageNet.

Optimizer AdamW Lion

ImageNet 75.48 77.44

ReaL 80.64 82.57

V2 61.87 64.81

Ltrain 0.61 0.75

LN
train 3.74 1.37
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Analysis of Loss Landscape In this section, we try to understand why our Lion optimizer

achieves better generalization than AdamW from the lens of loss geometry. The convergence to

a smooth landscape has been shown to benefit the generalization of deep neural networks (Chen

and Hsieh, 2020; Chen et al., 2022; Foret et al., 2021a; Keskar et al., 2017). Following Chen

et al. (2022), we measure the landscape flatness at convergence by LN
train = Eϵ∼N [Ltrain(w+ϵ)]

(average over 1K random noises) in Table 6.10. We observe that the ViT-B/16 trained by

AdamW enjoys a smaller training error Ltrain. However, Lion can enable ViT to converge

to flatter regions, as it helps the model retain comparably lower error against Gaussian

perturbations.

6.4 Hyperparameter Tuning

To ensure a fair comparison, we tune the peak learning rate lr and decoupled weight decay λ

for both AdamW (Adafactor) and our Lion using a logarithmic scale. The default values for

β1 and β2 in AdamW are set as 0.9 and 0.999, respectively, with an ϵ of 1e− 8, while in Lion,

the default values for β1 and β2 are discovered through the program search process and set

as 0.9 and 0.99, respectively. We only tune those hyperparameters in Section 6.3.4, where

β1 = 0.9, β2 = 0.99 in AdamW, and β1 = 0.95, β2 = 0.98 in Lion. In our experience, reducing

β2 results in shorter memorization of historical information and enhanced training stability.

Additionally, the ϵ in AdamW is set as 1e− 6 instead of the default 1e− 8 as it improves

stability in our experiments, similar to the observations in RoBERTa (Liu et al., 2019).

The update generated by Lion is an element-wise binary ±1, as a result of the sign

operation, therefore it has a larger norm than those generated by other optimizers. Based

on our experience, a suitable learning rate for Lion is typically 3-10x smaller than that for

AdamW. Note that the initial value, peak value, and end value of the learning rate should

be changed simultaneously with the same ratio compared to AdamW. We do not modify

other training settings such as the learning rate schedule, gradient and update clipping. Since
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the effective weight decay is lr * λ: update += w * λ; update *= lr, the value of λ used

for Lion is 3-10x larger than that for AdamW in order to maintain a similar strength. For

instance,

• lr = 1e − 4, λ = 10.0 in Lion and lr = 1e − 3, λ = 1.0 in AdamW when training

ViT-B/16 on ImageNet with strong augmentations,

• lr = 3e− 5, λ = 0.1 in Lion and lr = 3e− 4, λ = 0.01 in AdamW for diffusion models,

• lr = 1e − 4, λ = 0.01 in Lion and lr = 1e − 3, λ = 0.001 in Adafactor for the 7.5B

language modeling.

Apart from the peak performance, the sensitivity to hyperparameters and the difficulty

in tuning them are also critical for the adoption of an optimizer in practice. In Figure 6.12

(Middle and Right), we alter both lr and λ when training ViT-B/16 from scratch on ImageNet.

Suggested by the heatmaps, Lion is more robust to different hyperparameter choices compared

to AdamW.

6.5 Limitations

Limitations of search Despite the efforts to make the search space less restrictive, it

remains inspired by the popular first-order optimization algorithms, leading to a bias towards

similar algorithms. It also lacks the functions required to construct advanced second-order

algorithms (Anil et al., 2020; Gupta et al., 2018; Martens and Grosse, 2015). The search cost

is still quite large and the algorithm simplification requires manual intervention. Further

reducing the bias in the search space to discover more novel algorithms and improving the

search efficiency are important future directions. The current program structure is quite

simplistic, as we do not find a good usage of more advanced program constructs such as

conditional, loop statements, and defining new functions. Exploring how to incorporate these

elements has the potential to unlock new possibilities.

Limitations of Lion While we endeavour to evaluate Lion on as many tasks as possible,
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the assessment is limited to the chosen tasks. On vision tasks, the discrepancies between

Lion, AdamW, and momentum SGD are pretty small on ResNets, likely due to the fact that

ConvNets are easier to optimize compared to Transformers. The performance gain brought

by Lion decreases when strong augmentations are utilized. There are also several tasks where

Lion performs similarly to AdamW, including: (1) the Imagen text-to-image base model, (2)

the perplexity of autoregressive language model trained on the large-scale internal dataset,

which is arguably a more reliable metric the in-context learning benchmarks, and (3) masked

language modeling on C4. These tasks have a common characteristic in that the datasets

are massive and of high quality, which results in a reduced difference between optimizers.

Another potential limitation is the batch size. Though people often scale up the batch size

to enable more parallelism, it is likely that Lion performs no better than AdamW if the

batch size is small (<64). Additional, Lion still requires momentum tracking in bfloat16,

which can be expensive for training giant models. One potential solution is to factorize the

momentum to save memory.
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CHAPTER 7

Conclusions

This thesis has presented a comprehensive study on two critical domains within the broader

landscape of Automated Machine Learning (AutoML): Neural Architecture Search (NAS)

and the automated discovery of optimization algorithms. We have showcased that both of

these aspects are crucial in realizing the complete potential of AutoML and for its broader

adoption in academia and industry.

In the first part of the thesis, we focused on differentiable NAS methods, specifically

targeting the stability and robustness issues associated with the DARTS framework. Our

novel approaches, built upon perturbation-based regularization and architecture distribution

learning, offer a more reliable and robust framework for architecture search. We demonstrated

the practical utility of these advancements in various applications, such as recommender

systems and knowledge graphs. By enhancing the dependability of differentiable NAS methods,

we pave the way for broader applications of AutoML, especially in domains where stability

and reliability are of paramount importance.

The latter part of the thesis explored a paradigm shift within machine learning re-

search—the automated discovery of optimization algorithms. This shift is reflective of a

larger change in research focus, moving from developing entirely new architectures to refining

and optimizing existing ones. We have argued that the discovery of new optimization algo-

rithms holds as much importance as architecture search, if not more, especially in the era of

Transformer architectures. Our novel method, Lion, is an evolved optimization algorithm

that offers a compelling new direction for the field. It not only simplifies the optimization
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process but also demonstrates effectiveness across diverse neural architectures, underscoring

its potential for broad applicability.

The advances presented in this thesis are steps towards fulfilling the promise of AutoML:

democratizing machine learning and significantly reducing the manual effort and expertise

required in the deployment of robust, high-performing models. Through these contributions,

we aim to accelerate the pace of innovation and enable faster, more efficient solutions to

the complex challenges that machine learning aims to address. Yet, several avenues remain

open for future exploration. In the realm of NAS, further research is needed to expand

our understanding of stability in architecture search methods, potentially incorporating

real-world constraints such as latency and energy efficiency. For optimization algorithms,

extending Lion to cater to a broader range of machine learning tasks will be an interesting

pursuit. Moreover, a hybrid approach that combines both architecture search and optimization

algorithm discovery could offer a holistic solution for constructing high-performing machine

learning pipelines.
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