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ABSTRACT OF THE DISSERTATION

Spectrum Analysis of Correlation Matrices with Weak Factors

by

Van Latimer

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2022

Professor Jun Yin, Chair

In this work we study the extreme eigenvalues and eigenvectors of sample correlation ma-

trices arising from Johnstone’s spiked model, or, a factor model. We make the important

assumption that the model has weak factors. Under the assumption of 6 bounded moments

and the assumption that the eigenvalues are comparable and not too close to one another,

we show that the distribution of the spiked eigenvalues of the sample correlation matrix are

close enough to those of the sample covariance matrix to have the same distribution. We

show a similar result for the eigenvectors under the additional assumption that the eigen-

values are bounded. We also show that the non-spiked eigenvalues of the sample correlation

matrix are close to those of an appropriate random sample covariance matrix, which allows

us to establish universal Tracy-Widom statistics if the factors are weak enough. However, we

establish a phase transition, whereby the non-spiked eigenvalues may have asymptotically

Gaussian distribution if the factors are not weak enough.
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CHAPTER 1

Introduction

1.1 The setting and existing results

In this work we investigate correlation matrices arising from the spiked covariance model of

Johnstone [Joh01]. First we will describe the motivation for studying covariance matrices in

general, then we will introduce the intuition behind the spiked model. We will specialize to

the case of spiked models with weak factors, where the terminology comes from the discipline

of factor analysis where the use of the spiked model is ubiquitous. Finally we will introduce

the correlation matrix—the motivation for its use and the difficulty in studying it.

1.1.1 Sample Covariance Matrices

Let M be a large positive integer. Given an M -dimensional real-valued random vector

z = (z1, . . . , zM), a fundamental—even canonical—problem in statistics is to obtain the

covariances between the different entries zi of z, which we call variables.

• How do 200 different markers of students’ academic performance, socio-economic po-

sition, and other quantifiable life circumstances covary with one another?

• How do the prices of 500 different stocks covary?

• How does a customer’s rating of one movie on a streaming service covary with his or

her rating of another?
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We see that the covariances yield valuable understanding in science contexts, which in turn

yields monetizable insights in a business context.

In all of these examples, the covariances cannot be known a priori but at best must be

estimated from iid samples of the random vector z. The covariance Ezizj, being an expec-

tation, may be estimated with the strong law of large numbers: considering N independent

measurements z(µ) of z, we estimate Ezizj as N−1
∑N

µ=1 z
(µ)
i z

(µ)
j , which is called the sample

covariance between zi and zj. See that the matrix of sample covariances may be written(
1

N

N∑
µ=1

z
(µ)
i z

(µ)
j

)
ij

=
N∑
µ=1

z(µ)
(
z(µ)
)∗

where A∗ is the transpose of a matrix or vector.

Now let us further assume, according to the general linear model of statistics, that z is

generated as Sx, where S is an M×M̂ deterministic matrix and where x is a M̂ -dimensional

random vector with independent, centered, variance 1 entries with some tail conditions.

This is on the one hand a very restrictive assumption, but on the other hand ubiquitous

and necessary for much theoretical analysis. In this case, the sample covariance matrix is

constructed as

V :=
1

N

N∑
µ=1

z(µ)(z(µ))∗ =
1

N

N∑
µ=1

Sx(µ)(x(µ))∗S∗ = SXX∗S∗ (1.1)

where the matrix XM×N is defined through Xiµ = N−1/2x
(µ)
i . This formulation is useful

because now all of the randomness is in one quantity X, which has independent, centered,

variance N−1 entries, and all of the covariance structure is in one quantity S. The true

covariance Ezizj is given by (SS∗)ij, so that SS∗ is the population covariance matrix.

Note that only in heuristic discussions about real-world random vectors z will we use the

symbol x for a random vector in this way. Usually x and y will denote generic derterministic

vectors.

Letting N → ∞ therefore, we have (SXX∗S∗)iµ → (SS∗)iµ and we may obtain the

population covariances at some rate depending on the moment assumptions on X—the bare

2



minimum uniform-in-L2 bound on {N1/2Xiµ} gives almost sure convergence, while a uniform-

in-L4 bound would give a rate of N−1/2, and uniform-in-Lp bounds would begin to increase

the probability with which the convergence holds. This regime, in which M is fixed and

N →∞, may be referred to as the regime of classical multivariate statistics.

However, modern applications are not adequately handled by classical multivariate statis-

tics. In the age of big data, we may be interested in random vectors whose dimension M is

not far exceeded by the number of samples N available. For example, in our financial exam-

ple above, we may be interested in how the prices of 500 different stocks covary, and, lest

we go too far into the past when the covariance structure may very well have been different

than it is today, we may only have reliable access to 365 different days on which all these

stocks were recorded.

When N is comparable to M , although the sample covariance matrix SXX∗S∗ is some-

what close to SS∗ in each of its entries, more global quantities calculated from one matrix

or the other may vary drastically. The canonical example is when S is the identity (this is

called the null case, or the uncorrelated case); all of the eigenvalues of SS∗ are then 1. But

the eigenvalues of SXX∗S∗ exhibit a profound difference (see Figure 1.1). Letting y = M/N ,

the non-zero eigenvalues are approximately described by the Marčenko-Pastur law, whose

density is

f(x) =
1

2π

√
(λ+ − x)(x− λ−)

yx
1x∈[λ−,λ+], λ± = (1±√y)2

The regime in which M and N are both large and in which N is comparable to M , or

even exceeded by it, is often referred to as the regime of random matrix theory. Random

matrix theory, or RMT, is most often concerned with the eigenvalues and eigenvectors of

such large random matrices.

The bevavior of the eigenvalues of SXX∗S∗ for general S is well studied. One relevant

form of S is when the eigenvalues of SS∗ are “evenly spread out”, meaning that, for example,

a histogram of the eigenvalues of SS∗ looks like a continuous probability density function,

3



Figure 1.1: The non-zero eigenvalues of XX∗ when M = 1000 are spread out very predictably

according to the Marčenko-Pastur law. Some of the zero eigenvalues in the case M/N = 4

are omitted.

or when SS∗ has finitely many distinct eigenvalues, and the fraction of eigenvalues taking

each distinct value is bounded away from 0 (this is a common toy model; see eg [LP20]). A

very strong result for the distribution of the eigenvalues is possible in this setting. Let µ =

M−1
∑M

i=1 δλi(SXX∗S∗) and %̂ = M−1
∑M

i=1 δλi(SS∗), where λi(A) is the ith largest eigenvalue of

a symmetric matrix A. We define a measure % through its Stieltjes transform s%(z) =
∫ d%(x)

x−z

as follows:
1

s%
= −z + y

∫
x

1 + s%x
d%̂(x) (1.2)

To define the measure % in this way immediately prompts new questions: does a solution to

(1.2) exist, is it unique, and is the solution the Stieltjes transform of a measure? There is in

fact a unique solution s% := s%(z) in H to this z-dependent equation for z ∈ H, where H is

the complex upper half plane; the verification of this is found in [SB95] (only note that the

measure A in that paper is δ0 in our context). That s% is in fact the Stieltjes transform of a

measure is the result of [CS95]. For further discussions of the properties of %, including how

4



to determine its support, and the “square root behavior” of its density in most cases near

the edges of its support, see [CS95] and [KY17].

The introduction of the Stieltjes transform, given the technical nature of the proofs of

the basic questions above, may seem an unnecessary distraction. This could not be farther

from the truth. We will discuss more in Section 1.2 how the Stieltjes transform is a key

ingredient in the powerful “resolvent method” of random matrix theory. Using the resolvent

method, [KY17] proves that for any interval I,

µ(I) = %(I) +O≺(N−1) (1.3)

where the terminology O≺ will be explained later; it communicates a bound up to factors of

N ε with very high probability.

1.1.2 The Spiked Model of Johnstone

Another important form of S was introduced by Johnstone in the seminal paper [Joh01].

Rather than assuming the eigenvalues of SS∗ are “spread out”, we assume that almost all of

them are 1, except for a small handful which are away from (usually greater than) 1. That

is, SS∗ is a bounded rank perturbation of the identity.

Let us introduce a more specialized instance of the spiked model with natural intuitive

motivation and which will be the subject of our analysis. Let s1, . . . , sK be deterministic

vectors in RM , and assume a random vector z is of the form

z = s1x1 + · · ·+ sKxK + x(noise) (1.4)

where x(noise) ∈ RM , where x1, . . . , xK ∈ R, and where x =
(
x1, . . . , xK ,

(
x(noise)

)∗)∗
has

independent, centered, variance 1 entries. Thus we are assuming that z is generated by

a K-dimensional “signal” plus “white noise”. For example, perhaps K = 5, the variables

z1, . . . , zM are M different markers of a student’s academic performance, and x1, . . . , x5 are

the values of the student’s “Big 5 personality traits”: openness, conscientiousness, extro-

version, agreeableness, and neuroticism. To say z is of the form (1.4) is to say that every

5



measure of academic performance has a linear contribution from a student’s level of open-

ness, conscientiousness, etc., as well as some unaccounted for randomness in the form of

white noise.

The above model for z is called a factor model for the data; the terminology comes

from the discipline of factor analysis, which assumes such a model for the data and tries to

estimate the vectors sα. In this context the matrix S is of the form

S =
(
B IM

)
, B =

(
s1 · · · sK

)
where IM is the M -dimensional identity matrix, so that

SS∗ = BB∗ + 1M

The rank K of the signal will be considered fixed as M and N go to infinity together.

Since SS∗ − I has rank K, this is an instance of Johnstone’s spiked model. We note at

this moment that if SS∗ was a finite rank deformation of a diagonal matrix other than the

identity, the model would no longer be referred to as Johnstone’s spiked model, but rather

as a generalized spiked model. It would still, however, be appropriate to refer to such a

model as a factor model. We note that the technique of factor analysis, though widespread,

has a mixed reputation. One of the criticisms leveled against it (see [FMT86]), comparing

it to the related technique of principal component analysis, is that it assumes a model for

the data rather than only focusing on predictive power (similar to the dichotomy between

classical statistics and machine learning, see [Bre01]). This is irrelevant for our random

matrix theoretic analysis; for us, the model is the really interesting thing, and we hope that

our work will be useful in the very common situation where a factor model is assumed to

underlie the data.

There has been a wealth of interest in the spiked model since its introduction; it has

been used as a model in many statistical applications, leading to many papers devoted to its

theoretical properties and vice versa. The difficulty here is different than in the case when the

6



spectrum of SS∗ is “spread out”, as discussed above. The eigenvalue interlacing inequality

readily yields that SXX∗S∗ and XX∗ have the same global spectrum, and an optimal local

eigenvalue law like equation (1.3) was available in [PY14]. Letting K be the rank of SS∗−I,

we are now interested in the K eigenvalues which may not fall in with the global spectrum;

these are called outliers. Important questions include: how large must the eigenvalues of

SS∗− I be before SXX∗S∗ begins to exhibit outliers? What are the distributions of outlier

eigenvalues and their associated eigenvectors? What are the distributions of the leading

non-outlier eigenvalues?

In the highly influential paper [BBP05], for complex Gaussian X, the distribution of the

leading eigenvalue of SXX∗S∗ was computed. For simplicity, assume SS∗ = I+dvv∗ and set

y = M
N

. If d is in a compact subset of (
√
y,∞), then λ1(SXX∗S∗) has Gaussian fluctuations

around

θ(1 + d) = (1 + d)(1 + yd−1),

which is called the classical location of λ1(SXX∗S∗), on the order of N−1/2, while if d is in a

compact subset of [0,
√
y), then λ1(SXX∗S∗) has Tracy-Widom fluctuations around (1+

√
y)2

on the order of N−2/3; this is now know as the BBP phase transition after the authors Baik,

Ben Arous and Péché. This was further refined in [BKY16] for real or complex non-Gaussian

X, where d was allowed to converge to the critical point
√
y: if SS∗ has boundedly many

eigenvalues distinct from 1, and those which differ from 1 satisfy
∣∣λα(SS∗)−

(
1 +
√
y
)∣∣ ≥

N−1/3+ε, then

• each λα(SXX∗S∗) for which λα(SS∗) is below the critical point 1 +
√
y “sticks” very

accurately to the extreme eigenvalues of an appropriately chosen sample covariance

matrix ŜXX∗Ŝ∗ with ŜŜ∗ = 1.

• each λα(SXX∗S∗) for which 1 + d = λα(SS∗) is above 1 +
√
y satisfies

|λα(SXX∗S∗)− θ(1 + d)| ≺ (d−√y)1/2N−1/2

7



Notice that when d is at the critical value
√
y, then θ(1 + d) = (1 +

√
y)2 is precisely the

maximum of the Marchenko-Pastur distribution.

For the eigenvectors of the extreme eigenvalues, [BKY16] observes that when λα(SS∗)

is beyond (or even slightly below) the critical point 1 +
√
y, the associated eigenvector is

biased in the direction of the associated eigenvector uα(SS∗) and is completely delocalized

in all orthogonal directions. All statements about the eigenvectors and about the outlier

eigenvalues in [BKY16] are in the form of large deviation estimates, ie, random quantities

are bounded away from deterministic quantities in the O≺ sense. In [BDW20], distributions

were gotten for the spiked eigenvalues and eigenvectors.

We note briefly that a large deviation result, that is, a result involving O≺ bounds between

random variables and their means, is distinct in content from a distributional statement, in

that neither implies the other. So also are the difficulties in deriving such statements often

distinct.

1.1.3 Weak Factors

We will assume the model S =
(
B I

)
for the entirety of our work. In addition, we will

make the assumption that the factor model SXX∗S∗ has weak factors—that is, we will

assume that the columns sα of B satisfy

‖sα‖∞ ≤ N−εD

for some εD > 0. This is to say that in the vector z in equation (1.4), the signal

s1x1 + · · ·+ sKxK

is an order of magnitude weaker in every element of z than the noise. In particular, this is in

contrast to another common model in eg [MJM21] and [Pau07], in which each of the vectors

sα is supported on span{eα}α∈{1,...,K} ⊆ RM .

When constructing a factor model for data in real applications, to arrive at a model

8



Figure 1.2: The bulk spectrum of SXX∗S∗ and the leading eigenvalue when SS∗ = I+dvv∗.

We choose M = N/4 = 1000 and compute the eigenvalues 100 times. See that when

d = 0.5, the leading eigenvalue no longer appears to be separated from the bulk spectrum.

0.5 =
√
M/N is the critical point at which this happens.

9



Figure 1.3: Verification of the BBP phase transition for y = 0.25. The discrepancy dis-

appears in the large M limit, which is difficult to reproduce on a personal machine. The

dicrepancy agrees with the negative expectation of the Tracy-Widom distribution; see [EP18]

and [Bor10].
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with weak factors would mean that the model would could only explain a small bit of the

variance in every observed variable, and the rest would be unaccounted for randomness. This

would be an unfortunate situation, but not an unrealistic one. Applications from radar to

psychology allow for or even expect the “signal” in the data to be hard to detect because of

the presence of noise.

1.1.4 Sample Correlation Matrices

When studying a random vector z as we have discussed, practitioners oftentimes prefer to

replace the samples z
(µ)
i with the L2 normalized samples

(∑N
ν=1

∣∣∣z(ν)
i

∣∣∣2)−1/2

z
(µ)
i . On the

level of the sample covariance matrix, this means we study

N(SX)N(SX)∗

rather than SXX∗S∗, where N is the operator which normalizes the rows of a matrix in L2.

N(SX)N(SX)∗ is now called the sample correlation matrix. There are several reasons for

performing this normalization:

• The leading principal component u1(SXX∗S∗) is supposed to give some explanatory

power by providing a linear combination of the entries zi of z which has greatest vari-

ance. Heuristically, this means it picks out the entries of z which are “simultaneously

large”. Entries which are simultaneously large covary strongly with one another, so

that the leading principal component reveals a non-trivial covariance or correlation

structure. If however one entry zi of z tends to be much larger than the others, then

u1(SXX∗S∗) will point very strongly in the direction of zi, and thus have less poten-

tial to describe covariances between many different entries of z. Put another way, that

z1 tends to be large may not be of great interest, but that z1 and z2 tend be large

simultaneously would be a useful discovery.

• The sizes of the variables zi may not have any real meaning. On one hand, the variables

zi may each be measured in different units: perhaps in a social science application where
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our factor model for z might be used, one may be the income of a person in dollars and

another the number of years of the person’s education and yet another a standardized

test score. On the other hand, even if the variables have the same units, they may be

measured with uncalibrated instruments—see e.g. [HRP14].

For these reasons, the preference for the correlation matrix over the covariance matrix

when studying factor models is widespread. We remark that whether or not this is advisable

is context specific and a matter of some debate (see [DS74]); the fact that it is common and

that there is a gap in the mathematical implications of this choice is enough to motivate our

investigation.

In contrast to sample covariance matrices, much less is known about sample correlation

matrices, which are the main subject of this dissertation. In [El 09], for fairly general S with

normalized rows and for X with weak moment assumptions, it was shown that the global

spectrum and largest eigenvalue have the same (first-order) limits as the sample covariance

matrix. In [PY12], the largest eigenvalue of the correlation matrix was shown to have Tracy-

Widom (ie, universal) distribution in the null case. The first time that correlation matrices

arising from Johnstone’s spiked model were studied was [MJM21]. Under the assumption

that the spiked space is spanned by boundedly many standard basis vectors (this is, in some

sense, an assumption of very strong factors, as opposed to our assumption of weak factors),

they compute the distribution of the spiked eigenvalues and of the projection of the spiked

eigenvectors onto the population spike space. The most interesting part of their conclusions

is that these distributions are different than they would be for the covariance matrix. We

will discuss their work more in Chapter 2 after we have introduced our own results in more

detail.

This dissertation is devoted to the study of correlation matrices arising from factor models

with weak factors. In Chapters 4 and 6, we extend the results of [MJM21] to the setting

of spiked matrices with “weak factors”. Ours is arguably the more relevant setting for

applications, and our result is qualitatively different: there is no difference between the
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results for the covariance matrix and the correlation matrix. Moreover, our results deal

not only with the distributions of quantities related to the correlation matrix, but rather

with the difference between the same quantity computed from the covariance matrix and the

correlation matrix of the same data. The results of [MJM21] show that our assumption of

weak factors is in some sense necessary for these strong conclusions to hold.

Chapter 5 then treats the non-spiked eigenvalues of spiked correlation matrices. The

first order limit of the non-spiked eigenvalues was shown to be (1 +
√
M/N)2 in [MJM21],

as expected. Just as [MJM21] improves on the first order result of [El 09] by providing

distributions for the spiked eigenvalues, we provide distributional results for the non-spiked

eigenvalues. Our main result is to bound the difference between the non-spiked eigenvalues

of the correlation matrix and the extreme eigenvalues of an appropriate random non-spiked

covariance matrix—random meaning of the form EMXMX
∗
ME

∗
M , where the matrix EM is

random and independent of XM ; of course, the correlation matrix could almost be viewed as

a random covariance matrix, but this would be inappropriate because the population would

not be independent of the randomness. The independence between EM and XM justifies our

speaking of this as a covariance matrix.

1.2 The Resolvent Method

One of the most successful methods that has been used to study the Johnstone spiked model

and other finite rank perturbations of random matrices H is to relate the spiked eigenvalues

and eigenvectors to a “generalized entry” x∗G(x)y of the Green function G(z) = (H − z)−1.

Although random matrix theory is considerably broader, the “resolvent method,” or

the “Green function method,” a collection of techniques involving the Green function, has

occupied a central role in RMT and has been responsible for much of the field’s recent

success.

The function G(z) is a matrix-valued meromorphic function. See [BK18] for an insightful
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overview of some of its useful properties. To list a few of the most relevant,

1. If H =
∑M

i=1 λiviv
∗
i is an eigendecomposition, then G(z) =

∑M
i=1

viv
∗
i

λi−z , ie, G(z) is a

matrix-valued meromorphic function with poles at the eigenvalues of H and whose

residue at a pole λi is the associated spectral projection viv
∗
i . This puts the tools

of complex analysis at our disposal; we have in mind especially the Helffer-Sjöstrand

calculus, see our proof of Lemma 4.2.10.

2. We have that G(z) is the Stieltjes transform of the emperical spectral measure δH =

1
M0

∑
δλi(H) of H, where A is the normalized trace of a square matrix A. In particular,

the function x 7→ =G(x+ iη) is equal to the convolution δH ∗θη, where θη(x) = η−1

(x/η)2+1

is an approximate δ function for small η. So, by fixing the imaginary part at η, which is

then called the “spectral resolution,” the imaginary part of the Green function’s trace

is exactly the spectrum of H “smoothed out” on the scale η. In particular,

(a) If η is much bigger than the typical separation between the eigenvalues of H, then

=G(x+ iη) roughly gives the number of eigenvalues of H in an η-wide interval

around x. Thus, to get precise control of G is to get precise control of the eigen-

values of H. This has been done to optimal (up to logarithmic factors) precision

first in [EYY12] for Wigner matrices and is called a “local eigenvalue law.” An

optimal local eigenvalue law was the first step in the resolution of the famous

Wigner-Dyson-Mehta universality conjecture by Erdős, Schlein, and Yau for the

local statistics of random matrices; see [ESY11]. Similar local laws for polyno-

mials in the Green function were very recently used in [CES21b] and [CES21a]

to prove the “Eigenstate Thermalization Hypothesis” for Wigner matrices, which

says that the eigenvectors of a Wigner matrix are approximately orthonormal

with respect to any reasonable deterministic inner product.

(b) If η is a little smaller than the typical separation of eigenvalues, then =G(x+ iη)

can be be used to study individual eigenvalues and eigenvectors. This is partic-
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ularly feasible at the edge of the spectrum of H, and was used by [KY13a] to

get universality of the joint eigenvalue-eigenvector statistics at the spectral edge.

We use the same idea in Chapter 5 to study the individual extreme non-spiked

eigenvalues of spiked sample correlation matrices.

3. The Green function is in some sense more stable than the individual eigenvalues: for

derivatives of the Green function with respect to the entries of H we have the simple,

easily iterated equation (4.40), whereas the corresponding Hadamard variation for-

mula for the eigenvalues is much more complicated, especially for higher derivatives,

and blows up if the eigenvalues are too close together. For these reasons the Green

function is easier to work with than individual eigenvalues, although it is possible to

get sophisticated results with Hadamard’s formulae; see [TV11], which includes an

alternative proof of the Wigner-Dyson-Mehta conjecture for ensembles matching the

GOE in four moments.

4. The Green function satisfies a collection of identities (see equations (3.13) and (3.14))

which help to quantify the exact dependence of G on certain elements of H (this

viewpoint is fundamental to the polynomialization method), and, with the insight that

the resolvent G should be close to a deterministic matrix Π (this is called a “local law”

for the resolvent), give self-consistent equations that Π would have to satisfy. If H is

for example a Wigner matrix, then Π is isotropic, a multiple m(z) of the identity. The

function m(z) is itself a Stieltjes transform of a compactly supported measure %, the

limiting emperical distribution for the eigenvalues of H. Thus the closeness of G to m

gives, to the the extent that the Stieltjes transform can be inverted, closeness of δH

to %, thus demonstrating more fully the link between the Green function and the local

eigenvalue laws discussed above.

Moreover, if rather H is a sample covariance matrix Σ1/2XX∗Σ1/2, then it was observed

in [KY17] that if one chooses an approprate alternative form for the Green function,
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Figure 1.4: The top 40 eigenvalues of XX∗ when M = 1000, y = 1 and M−1=TrG(z), where

G(z) = (XX∗ − z)−1. This is the imaginary part of the Stieltjes transform of µXX∗ , which

is µXX∗ smoothed out on the scale η = =z.
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then the identities satisfied by the Green function, which are of course a function of

Σ, immediately yield a self-consistent equation satisfied by the deterministic limit Π.

In particular, this gives an elegant derivation of the dependence of % on the matrix Σ

which is an alternative to free probablistic derivations. We draw heavily on the work

[KY17] and discuss this more precisely in Lemma 3.1.1.

So we are well-justified in phrasing our study of spiked correlation matrices in terms of

the Green function. For the non-spiked eigenvalues, we phrase the question as:

Question 1.2.1. How does the Green function of the covariance matrix change upon passing

to the correlation matrix?

To answer this, we expand the difference of Green functions in a geometric series which, we

find, can be treated with the polynomialization method of [BEK14]. The polynomialization

method is a prominent tool from under the umbrella of the resolvent method, and ours is

perhaps a new use for it.

For the spiked eigenvalues and eigenvectors we phrase the question instead as:

Question 1.2.2. Can we get a represention of the change in the eigenvalues and eigenvectors

in terms of the Green function? How can we bound it?

Once we have gotten a Green function representation for the eigenvalue or eigenvector

change, we employ a common technique in RMT: we first treat the case of Gaussian ran-

domness, and then we perform a Green function comparison, whereby the change in the

distribution of a Green function (H − z)−1 is studied as one changes the distribution of H.

Green function comparison arguments are another prominent part of the resolvent method,

and have historically been done via a Lindeberg replacement strategy, whereby the elements

of H are replaced one-by-one. We opt to use a newer and more robust comparison strategy,

introduced in [KY17] and based on a continuous interpolation between two different laws

for H. This strategy was introduced to handle situations where a Lindeberg strategy fails.
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To our knowledge ours is one of the first works since [KY17] to apply this continuous Green

function comparison and further demonstrate its utility.

Much more could be said about the Green function and the powerful machinery developed

for it recently, and we will say more in Chapter 3; no doubt much more will be said about it

in the future. Our work is part of a long line of works using and building on the technology

of the Green function to push back the borders of RMT.
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CHAPTER 2

Model and Main Result

2.1 Main Model

We consider two large integers N and M which satisfy M � N and also a fixed (small)

integer K. We let y := M
N

. We let IN , IM , and IK be index sets which have N , M , and K

elements, respectively. We will use these sets to index matrices. Sometimes we will write

I := IK ∪ IM ∪ IN and also IK+M := IK ∪ IM . We will always use latin letters like i, j for

the elements of IM (and also sometimes for IK) and greek letters like µ, ν for the elements of

IN . For example, a matrix A which is IM ×IN has elements Aiµ for all i ∈ IM and µ ∈ IN .

Unless otherwise noted, all norms ‖A‖ denote the Euclidean norm if A is a vector and

the operator norm induced by the Euclidean norm if A is a matrix. We define the notations

A∗ for the conjugate transpose of a matrix A ∈ Cm×n and A# := AA∗.

We consider the following model: let B be an IM × IK matrix. Form the singular value

decomposition of B

B =
K∑
α=1

√
dαvαw

∗
α. (2.1)

The eigenvalues dα are assumed to satisfy, following [FFH20],

dα � dα′ � |dα − dα′ | �

∣∣∣∣∣dK −
√
M

N

∣∣∣∣∣ � N c (2.2)

for any α 6= α′ and for some fixed c ≥ 0. This is to say that the eigenvalues are comparable

and not too close to each other or to the limiting spectrum, and they may be allowed to
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diverge or remain bounded. The condition (2.2) is technical and mostly for convenience and

should be removed in future works.

Note that we may also define dα = 0 for α ∈ JK + 1,MK and complete {v1, . . . ,vK} to

an orthonormal basis {v1, . . . ,vM} of RIM , and then we can write B# =
∑M

α=1 dαvαv
∗
α.

The matrix B is also assumed to satisfy

max
α∈IM
‖e∗αB‖ ≤ N−εD (2.3)

for some fixed constant εD—in the context of factor analysis, this is means that our model

is a factor model with weak factors.

We also define

SIM×(IM∪IK) =
(
B IIM×IM

)
, S̃ := N(S), (2.4)

where N is the operator which L2 normalizes the rows of a matrix, i.e., for A ∈ Cm×n, we

have

N(A) := DAA, DA := diag
(
‖e∗1A‖

−1, . . . , ‖e∗MA‖
−1) . (2.5)

We then introduce the randomness. We define a random matrix X(IM∪IK)×IN which we

will treat under two different sets of assumptions:

Assumption 1 (High Moment Conditions). The ratio y satisfies y � 1. The elements of X

are real-valued, independent random variables and satisfy for all (i, µ) ∈ (IM ∪ IK)× IN :

1. EXiµ = 0.

2. E|Xiµ|2 = N−1.

3. E|Xiµ|p ≤ CpN
−p/2 for a universal constant Cp whenever p is a fixed positive integer.

4. |Xiµ| ≤ NK for some large fixed K.

It should be clear that for any matrix satisfying conditions 1-3 of Assumption 1, every

quantity at which we will look will change negligibly upon a truncation (and re-standardizing)

of the matrix so that it also satisfies condition 4.
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Assumption 2 (6 Moment Conditions). Let ζatom be a real-valued random variable satisfy-

ing:

1. Eζatom = 0.

2. E|ζatom|2 = 1.

3. E|ζatom|p <∞ for p = 1, . . . , 6.

For a real-valued random variable Y and real number a, define the truncated and re-standardized

random variable

Sa(Y ) :=
(1− E)Y 1|Y |≤a√

E
(
(1− E)Y 1|Y |≤a

)2
.

We assume {Xiµ}i∈IK+M ,µ∈IN is an iid family of random variables distributed as

N−1/2SN−ε
(
N−1/2ζatom

)
for some ε < 1/6, and y satisfies y � 1.

We record also the adjusted assumption, which is more natural.

Assumption 3. X satisfies Assumption 2, except Xiµ is distributed as N−1/2ζatom rather

than N−1/2SN−ε
(
N−1/2ζatom

)
.

We will note in Lemma 4.2.1 that every ensemble satisfying Assumption 3 may without

loss of generality be replaced with one satisfying Assumption 2. We call the property Xiµ ≤

N−ε the bounded support condition.

We will sometimes write

XK = XIK×IN and XM = XIM×IN . (2.6)

Now we introduce the model: we consider the sample covariance matrices

V := SXX∗S∗, Ṽ := S̃XX∗S̃∗ (2.7)
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As described in Chapter 1, V and Ṽ are sample covariance matrices of data arising from a

factor model. We may describe the matrix Ṽ as the sample covariance matrix with normalized

variances, since in the random vector z of which Ṽ is the sample covariance matrix, all entries

have variance 1.

We remark that the asymptotic spiked eigenvalue distribution of Ṽ was recently proven

in [BJ21] (see our Lemma 4.1.1). Then we define the sample correlation matrix, or, the

standardized sample covariance matrix,

R := (N(SX))#. (2.8)

A first observation, small but important, is that

(N(SX))# = (N(S̃X))#

The reason for this is that N is invariant with respect to left-multiplication by diagonal

matrices, which effect only a scaling of rows. I.e.,

N(SX) = N (DSSX) = N(S̃X)

if DS is as in equation (2.5).

2.2 Main results

Let

S̃ = Ṽ

(D̃1 + 1)1/2 0

0 D̃
1/2
2

(0IM×IK 1IM

)
Ũ∗ (2.9)

be a singular value decomposition of S̃, with

D̃1 =: diag(d̃1, . . . , d̃K).

D̃1 is J1, KK× J1, KK and D̃2 is JK + 1,MK× JK + 1,MK, where J1, KK and JK + 1,MK are

interepreted as subsets of IM .
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Let H := HN be the eigenvalue measure of D̃2:

1

M −K

M−K∑
i=1

λi(D̃2) (2.10)

Under our assumption (2.3), HN converges weakly to the measure δ1 as N →∞.

Define

φ(x) := φN(x) = x

(
1 +

∫
t

x− t
dH(t)

)
(2.11)

and, for α ∈ {1, . . . , K},

φα := φ(d̃α + 1), φ′α := φ′(d̃α + 1).

The purpose of φα is that it is the expected location of the αth spiked eigenvalue of Ṽ .

Our main result for the spiked eigenvalues is the following:

Theorem 2.2.1 (Asymptotic Spiked Eigenvalue Distribution of R). Let α ∈ {1, . . . , K}.

Letting

θα =
1

φ′α
, κα =

φα(
d̃α + 1

)
φ′α

σα =
∑

i∈IK×IM

(
〈ũα, ei〉4EX4

11

)
− 3

τα =

(
d̃α + 1

φα(1 + y(d̃α + 1)−1)

)2

we have under Assumption 2 and equations (2.2) and (2.3) that

√
N

(
λα(R)

φα
− 1

)
d→ N

(
0,

√
2θα + σατα

κα

)
, (2.12)

We also have the following corresponding large deviations result, although it does not

use the full strength of our main technical achievement Theorem 4.1.4 and is somewhat easy

to prove.
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Theorem 2.2.2 (Large Deviation Bounds for the Spiked Eigenvalues). Fix α ∈ {1, . . . , K}

and assume equations (2.2) and (2.3). Under Assumption 1, we have

|λα(R)− φα| ≺ d1N
−1/2. (2.13)

As we will discuss in Chapter 4, our main contribution towards the proof of Theorem 2.2.1,

and our main technical achievement for the spiked eigenvalues, is to bound the difference

between the spiked eigenvalues of R and Ṽ , not only to show that the distributions of the

spiked eigenvalues of the two matrices are the same. See Theorem 4.1.4. We may get a

similar result to Theorem 4.1.4 for the eigenvectors:

Theorem 2.2.3. Fix α ∈ {1, . . . , K} and assume equations (2.2) and (2.3). Additionally

assume
∥∥B#

∥∥ = O(1). Under Assumption 1, for any fixed deterministic unit vector w ∈

RIM , we have

|〈w, uα(R)〉|2 −
∣∣∣〈w, uα(Ṽ)

〉∣∣∣2 = O≺
(
|〈w, ṽα〉|N−1/2−ε +N−1

)
for some ε > 0. If additionally ‖w‖∞ ≤ N−ε

′
for some ε′ > 0, then the error bound may be

improved to

O≺
(
|〈w, ṽα〉|N−1/2−ε +N−1−ε)

Under rather Assumption 2, all the above holds with O≺ replaced with OP in the error

bounds.

We discuss the essential idea for the proof of Theorem 2.2.3 in Chapter 6, but the full

proof is omitted. We hope to publish the full proof in a journal soon.

Also let the following be the definition of the IM ×IK matrix B̃ and the IM ×IM matrix

J :

S̃ =
(
B̃ J

)
(2.14)

Recalling the definitions of XM and XK in equation (2.6), our main result for the non-

spiked eigenvalues is the following:
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Theorem 2.2.4 (Asymptotic Non-spiked Eigenvalue Distribution of R). Assume equations

(2.2) and (2.3), and let Assumption 1 hold. Let

ε = min{εD/4, 1/12}.

For any fixed α > K, we have

P
(∣∣λα(R)− λα−K

(
(EMXM)#

)∣∣ > N−2/3−ε) = O(N−φ) (2.15)

for some absolute constant φ > 0, where EM is a random diagonal matrix, independent of

XM , defined by

(EM)ii :=

(
1 +

∥∥∥e∗i B̃XK

∥∥∥2

J −2
ii

)−1/2

(2.16)

for i ∈ IM .

For any fixed realization of the random matrix EM , the eigenvalue λα−K
(
(EMXM)#

)
is

distributed according to the Tracy-Widom law on the scale N−2/3, since [LS16] showed edge

universality of the sample covariance matrix AXX∗A for diagonal A.1 So, Theorem 2.2.4 is

enough to conclude that λα(R) and λα−K
(
(EMXM)#

)
have the same distribution.

Since the matrices EM and XM are independent, the distribution of λα−K
(
(EMXM)#

)
has two distinct contributions: the fluctuation of λα−K

(
(EMXM)#

)
about its mean for a

fixed realization of EM (which is roughly the same as that of λα−K

(
X#
M

)
), and the fluctu-

ation of the conditional expectation E(λα−K(EMX
#
M)|EM). The former has Tracy-Widom

fluctuations on the scale N−2/3. The latter, if for example B = B(εD) := M−ε(1, . . . , 1)∗, has

Gaussian fluctuations on the scale N−1/2−2εD (although this holds for general B satisfying

the assumption (2.3)). Thus Theorem 2.2.4 is sufficient to conclude the distribution of the

extreme non-spiked eigenvalues of R, which are Tracy-Widom if εD > 1/12 and Gaussian if

εD < 1/12.

1The technical Assupmtion 2.2 in [LS16] readily holds for A equal to the identity, and EM almost surely
differs from the identity in operator norm O(N−1/2+ε). Assumption 2.2 is evidently invariant to such small
perturbations. Moreover, the results of [LS16] are stated for X with elements having sub-exponential decay,
but the results of [KY17], for example, are enough to permit our slightly weaker Assumption 1.
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2.3 Comparison with Existing Results

The main competitor to our work on the spiked eigenstructures is the work [MJM21]. We

will discuss some differences between our work and this one, as well as the works [PY12] and

[BJ21].

In [MJM21], correlation matrices arising from the spiked model were studied for the first

time. In that paper, the distribution of the spiked eigenstructures was computed, as we do

in this paper (although our full treatment of the eigenvectors is omitted). The difference

between our settings is that [MJM21] assumes that the population SS∗ is of the form

SS∗ =

Γ

I

 (2.17)

for a K × K matrix Γ and bounded K. This corresponds to the situation in which the

low-dimensional signal in the random vector z which is the hallmark of the spiked model is

concentrated entirely in the first K entries of z, and the rest of the entries of z are random

noise. This is the same assumption that was made in [BY12], which studied the distribution

of the spiked eigenvalues of “generalized” spiked covariance matrices, and stood for nine

years as the most general setting for these results until [BJ21]. In this setting [MJM21]

shows that the spiked eigenvalues of the correlation matrix have a different distribution than

those of the covariance matrix.

We include a brief heuristic note: the behavior of random matrices is oftentimes roughly

isotropic. This is to say that no deterministic basis, not even the standard basis, is distin-

guished from any other. For example, the eigenvectors of XX∗ are Haar-distributed if X is

Gaussian and still completely de-localized if X is non-Gaussian. When studying the spiked

model, the isotropic behavior of XX∗ for Gaussian X is enough to reduce all study to that

of the model (2.17)—that is, the basis of the spiked eigenvectors can simply be assumed

to be the standard basis. Even if X is non-Gaussian, the model (2.17) is only defficient

in the loss of some information about the third and fourth moments of the randomness of
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X. However, the normalization of rows which produces the sample correlation matrix R in

which we are interested does distinguish the standard basis. It is crucial in our work that the

population spiked eigenvectors are roughly delocalized with respect to the standard basis as

a consequence of the assumption (2.3), so that they do not point too strongly in the direction

of any standard basis vector and suffer a great change as a result of the row normalization,

which “happens in the standard basis”.

In our work, we derive the distribution of the spiked eigenvalues of the correlation matrix

under the setting that

S =
(
B I

)
,

so that

SS∗ = BB∗ + I,

under the additional assumption that the norms of the rows of B satisfy ‖e∗iB‖ ≤ N−εD

for some εD > 0. This corresponds to the situation in which the signal z from the remarks

preceeding equation (1.1) is of the form

z = Bx(K) + x(M)

where x(K) and x(M) are independent and are each random vectors with independent, cen-

tered, variance 1 entries—that is to say that z is an additive combination of signal and noise,

and the signal in z is in every entry of z an order of magnitude smaller than the noise. In

the context of factor models, this is to say that our model has “weak factors”. Thus our

setting and the setting of [MJM21] are completely disjoint (ie, any random vector z treated

by their results is not treated by ours and vice versa), but our setting is arguably more

readily applicable to models of real statistical interest.

On the other hand, the moment assumptions of [MJM21] are better than ours—4 + ε as

opposed to our 6. The 6 moment assumption in our work is not absolutely vital, and we

hope to remove it in future work.
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Another interesting aspect of our work in comparison to [MJM21] and [PY12] is that,

whereas those works compute the distributions of extreme eigenvalues of spiked and non-

spiked correlation matrices, respectively, we bound the difference between a spiked eigenvalue

of a spiked sample covariance matrix and its associated correlation matrix; in particular we

show that the difference is smaller than the scale on which the eigenvalue flucuates. So,

whereas the results of [MJM21] offer caution to the practitioner trying to decide between

the correlation matrix and the covariance matrix for PCA because the eigenvalues of the

correlation matrix fluctuate differently than those of the covariance matrix, our results offer

reassurance to the practitioner—given observed data satisfying our structural assumptions

(2.2), (2.3), and 2.4 (which, we stress, is not an uncommon situation), one may generate

both the covariance matrix Ṽ (provided one had access to it) and the correlation matrix R

and not see any difference between the spiked eigenvalues.

We will also make here a comparison between our work and the work [BJ21]. One of

the first things we do in our paper is reduce the study of the correlation matrix associated

to SXX∗S∗ to the correlation matrix R = (N(S̃X))(N(S̃X))∗ associated to Ṽ = S̃XX∗S̃∗,

where S̃ = N(S). Ṽ is what [BJ21] calls a “generalized” spiked model, and they derive

the distribution of the spiked eigenvalues. Thus our result, which is the distribution of the

spiked eigenvalues of R, is as much a novelty compared to [BJ21] as [MJM21] is compared to

[BY12], or as [PY12] is compared to previous results on the edge universality of covariance

matrices, e.g. [PY14] (we remark that though [PY14] was published later, it seems to have

been written before [PY12]).

Thus we situate our work in the context of previous work on correlation matrices and

spiked covariance matrices. Crucial to our work is our assumption (2.3) that ‖e∗iB‖ ≤ N−εD .

The factors N−1/2−ε in our main results, Lemmas 4.1.7 and 4.1.8, which are necessary to

conclude our main result Theorem 4.1.4 that the spiked eigenvalues of the covariance matrix

and correlation matrix are asymptotically indistinguishable, would without assumption (2.3)

only be N−1/2; the results of [MJM21] suggest the assumption (2.3) is actually necessary for
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such a result.

2.4 Outline of theoretical contributions

In this work, we treat sample correlation matrices corresponding to Johnstone’s spiked model

under the simple assumption of “weak factors”, which is probably a necessary condition for

the full strength of our results (given the results of [MJM21]). The setting is very general,

and a very reasonable one for statistical applications in diverse disciplines.

Some of the theoretical novelties of our work include:

• For the proof of Lemma 4.1.7, we employ a novel high moment argument to bound

the eigenvalue correction in the case of Gaussian X. The technique is essentially an

extended investigation of the implications of the orthogonal invariance of real Gaussian

random matrices and other related facts, and we hope that it may be useful for proving

similar bounds for Gaussian random matrices.

• We extend the conclusion of Lemma 4.1.7 to non-Gaussian matrices with the Green

function comparison strategy of [KY17]. The strategy of [KY17] is an flexible alterna-

tive to Lindeberg replacement strategies common in RMT, and to our knowledge this

is one of the first works subsequent to [KY17] to leverage it.

• In Chapter 5, we use the polynomialization method for a new purpose: to treat poly-

nomials in the resolvent G of a random matrix, ie, expressions of the form

M−1 TrGAGA · · ·G

for deterministic, or in our case, suitably chosen random A.
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CHAPTER 3

Main Tools

We will now discuss some of the important results and techniques in random matrix theory

which are important to our analysis. Unless otherwise stated, all notation in this chapter is

specific only to this chapter.

3.1 Local Laws for the Green Function

A fundamental part of our analysis, perhaps even the foundation, is a local law for the Green

function of general sample covariance matrices, discussed very briefly in Chapter 1, in both

isotropic and averaged form.

By a local law we mean a precise estimate of the Green function (H − z)−1 = G(z) =

G(x+ iη) for |η| � N−1, or for |κ|+ |η| ≥ N−2/3, where

κ := κ(z) = dist (x, supp %) (3.1)

and where % is the deterministic limiting spectrum of H.

For a matrix A and conformable vectors x,y, we denote the “generalized entry” Axy :=

x∗Ay. We call this a generalized entry because if x and y are standard basis vectors, this

reduces to the usual definition of a matrix entry.

For this chapter only, define matrices

X, T (3.2)

and a real number τ > 0. The matrix XM0×N0 is a random matrix with independent entries
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satisfying EXiµ = 0, E|Xiµ|2 = N−1
0 and for any fixed p ∈ N, E|Xiµ|p ≤ CpN

−p/2
0 for some

universal constant Cp. Most often in this paper we will assume X satisfies Assumption 1,

which is consistent with this definition for X. We will also sometimes assume X satisfies

Assumption 2, which is consistent with this definition except we assume the existence of

fewer moments of X. After this chapter we will always state which Assumption, 1 or 2, X

satisfies. The matrix TM̂0×M0
is a deterministic matrix with singular values σ1 ≥ · · ·σM0 ≥ 0

satisfying σ1 ≤ τ−1 and 1
M0
|{α : σα < τ}| ≤ 1− τ . Let

Σ = TT ∗ (3.3)

Let m : H → H, where H is the complex upper half-plane, be defined as the unique

solution to
1

m
= −z + y

M0∑
α=1

σα
1 +mσα

,

where y := M0

N0
is the dimensional ratio. We always assume that y � 1. It is well-known

that m is the Stieltjes transform of a compactly supported measure % (see our remarks

surrounding equation (1.2)). Usually, m in our paper will correspond to the case T = 1,

i.e., the null case. In Chapter 4, m̃ will refer to the case Σ = S̃# (or, equivalently for our

purposes, the “unspiked” equivalent of S̃#).

Define also a region

D :=
{
z ∈ H : |z| ≥ τ, |x| ≤ τ−1, N−1+τ ≤ η ≤ τ−1

}
Now we cite the following collection of results from [KY17] which are crucial to our

analysis. Define the control parameter

Ψ(z) := Ψ =

√
=m(z)

Nη
+

1

Nη

Lemma 3.1.1. Assume that the measure M−1
0

∑M0

α=1 δσα satisfies the regularity condition

Definition 2.7 of [KY17]. Recall the matrices X,T from equation (3.2). The following hold

for any τ > 0.
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• (Isotropic local law for the resolvents) For conformable deterministic unit vectors x,y,

we have [
Σ−1/2

(
(TXX∗T ∗ − z)−1 − −1

z (1 +mTT ∗)

)
Σ−1/2

]
xy

≺ Ψ (3.4)

and (
(X∗T ∗TX − z)−1 −m

)
xy
≺ Ψ (3.5)

uniformly for z ∈ D.

• (Isotropic local law for the generalized resolvent) Let

G(z) =

−Σ−1 X

X∗ −zI

−1

, Π =

− Σ
I+mΣ

mI

 , Σ :=

Σ

I


For conformable deterministic unit vectors x,y, we have(

Σ
−1

(G− Π) Σ
−1
)
xy
≺ Ψ (3.6)

uniformly for z ∈ D.

• (Isotropic local law outside the spectrum). Uniformly for z ∈ D satisfying dist(z, supp %) ≥

N
−2/3+τ
0 , we have

(
Σ
−1

(G− Π) Σ
−1
)
xy
≺ N

−1/2
0

(κ+ η)2 + (κ+ η)1/4
(3.7)

The result also holds if the left-hand side of equation (3.7) is replaced with the left-hand

side of either equation (3.4) or (3.5).

• (Averaged local law) We have

(XTT ∗X∗ − z)−1 −m ≺ 1

N0η
(3.8)

uniformly for z ∈ D, where A, the normalized trace of a square matrix A, is defined

in equation (5.14).
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On terminology: The equations (3.6) and (3.4) may be referred to either as isotropic local

laws to denote that there is no preferred basis in which x,y must live and to distinguish

them from entrywise local laws which only allow x,y to be standard basis vectors and which

historically came first, or as anisotropic local laws because the deterministic limit of the

resolvent or generalized resolvent is not a multiple of the identity, distinguishing them from,

for example, a local law for a Wigner ensemble in which the resolvent is close to a multiple

of the identity. The averaged local law is the key ingredient in the proof of local eigenvalue

laws discussed briefly in Chapter 1 or, put another way, eigenvalue rigidity.

Lemma 3.1.1 will be especially useful to us when T = J or T = EM where these

matrices are defined in Chapter 2. Both of the these matrices only have eigenvalues in

[1 − O(N−εD), 1 + O(N−εD)], so the regularity condition Definition 2.7 of [KY17] is easily

verified.

One of the most important uses of Lemma 3.1.1, and a main reason for the importance

of isotropic local laws, is that when studying a finite rank perturbation of a random matrix

H (like in the spiked model, which is the subject of this dissertation), the key quantities to

control are x∗(H − z)−1y, where x and y are eigenvectors of the perturbation.

3.2 Green Function Comparison Arguments

3.2.1 Lindeberg replacement strategies

A common and very general technique in RMT for proving a theorem about a random matrix

H, say, f(H) ≤ a in very general terms, is to prove it first for some “nice” distribution of

the elements of H and then to bound the change in f(H) as one changes the distribution of

H. Two most notable examples of a “nice” distribution for H are

• A Gaussian distribution, which can mean different things in different settings. In the

context of Wigner matrices, the relevant Gaussian distribution is the Gaussian unitary
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ensemble (GUE) in the complex case or the Gaussian orthogonal ensemble (GOE) in

the real case, which have iid Gaussian elements up to the symmetry constraint (the

diagonal elements also have a difference variance than the other elements). In the

context of sample covariance matrices, this could mean TXX∗T ∗ for a deterministic

matrix T and a matrix X of iid Gaussian elements.

• A distribution with uniformly bounded moments.

By way of example, local eigenvalue statistics (that is, the distribution of the point process

of the eigenvalues of a random matrix landing in a small interval with about the same

width as the typical eigenvalue spacing) were first gotten for Gaussian matrices like the

GUE and GOE, and the prevailing storyline of RMT for many years after was the pursuit

of universality, or, the idea that the local eigenvalue statistics are the same for matrices of

any distribution (within reason; there are obvious counter examples if the matrix elements

for example do not have finite L1 or L2 norm).

One of the most widely used strategies for universality is a Lindeberg replacement strat-

egy, in which the elements are swapped out one-by-one. [TV11] applied this replacement

strategy to the individual eigenvalues to obtain 4-moment universality of the local eigenvalue

statistics of Wigner matrices in the bulk spectrum. [KY13a] applied the same strategy to the

Green function (when applied to the Green function, arguments like this are called Green

function comparison arguments) to prove 2-moment universality of the joint eigenvalue and

eigenvector statistics of generalized Wigner matrices at the edge of the spectrum (and their

work actually provides an alternative proof to the result of [TV11]). Both these works re-

quire sub-exponential decay of the atom distributions, or at least the existence of sufficiently

high moments.

Another question related to universality is how singular the atom distribution may be,

or, how many moments it must have, in order for universality to hold. For example, [KY13a]

showed that only 2-moment matching is needed for eigenvalue universality at the edge, but
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this is false if the atom distribution of either ensemble does not have finite absolute third

moment. Using again a Lindeberg strategy applied to the Green functions, [LY12] showed

that a necessary and sufficient condition for edge universality of Wigner matrices with iid

elements distributed as N−1/2ξ is

lim
s→∞

s4P(|ξ| > s) <∞

which is barely weaker than a fourth moment assumption. The difficulty in this proof is

different than the difficulty in, say [KY13a]: for the result [KY13a], one can rely on the nice

behavior of the Green function thanks to the high moment assumptions on the randomness

and then focus on pushing the required number of matching moments as low as possible,

while for the result of [LY12], the difficulty is the bad behavior of the Green function when

the randomness does not have high moments, but one can match as many moments as one

assumes esists.

In Chapter 4 we prove “2 moment universality” of a quantity we construct to represent

the change in the eigenstructures upon passing from the covariance matrix to the correlation

matrix for general X satisfying assumption 1 in Sections 4.5 and 4.6, and then we extend

to distributions satisfying Assumption 2, that is, only having 6 finite moments, by matching

5 moments of the ensembles, which actually makes the argument quite easy. That is, we

answer a question about universality like the one answered in [KY13a] and also a question

like the one answered in [LY12].

3.2.2 Continuous Interpolation Strategy

After the initial introduction of the Lindeberg replacement strategy in [TV11], a different

strategy was introduced in [KY17] which, instead of replacing matrix elements one by one,

deforms every matrix element simultaneously from one law to another. This is the strategy

that we use in this dissertation, but it is more a strategy than an easily citable theorem and

there does not exist to the author’s knowledge a detailed description of it, so let us describe
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it in some detail.

Suppose for instance that one has a collection of probability spaces, each with a choice of

two different probability measures: (Ωi, P
0
i ) and (Ωi, P

1
i ), for i = 1, . . . , n. Form the product

space with the product measure for each choice of Pi to get (Ω, P 0), and (Ω, P 1), where

Ω = Ω1 × · · · × Ωn, and where P 0 is the product measure constructed from the measures

P 0
i , and likewise for P 1. Thus P 0 and P 1 represent the joint probability distribution of n

independent (but not necessarily identically distributed) random variables X1, . . . , Xn, with

Xi having law either P 0
i or P 1

i .

We may smoothly perturb from P 0 to P 1 by taking convex combinations: define

P θ = θP 1 + (1− θ)P 0, (3.9)

and likewise define P θ
i by a convex combination.

A calculus exercise yields that for any sufficiently smooth function F on Ω,

d

dθ

∫
FdP θ =

n∑
i=1

∫
FdP θ

1 · · · (dP 1
i − dP 0

i ) · · · dP θ
n ; (3.10)

that is, the rate of change of the expectation of F as P 0 is deformed to P 1 is described by a

sum over the factors in the product space: using the interpolating measure in every factor

but the ith, one subtracts the expectation with respect to using P 0
i in the ith coordinate from

the expectation with respect to using P 1
i in the ith coordinate, repeating for every value of

i and summing in i.

To each summand of the expression (3.10), Taylor’s Theorem may now be applied. At

this point, we refer to our Lemma 4.5.1, where we get the formula

.
∂

∂θ
EF

(
Xθ
)

=
m∑
m=1

n∑
i=1

(
Km(P 1

i , P
θ
i )−Km(P 0

i , P
θ
i )
) ∫

∂mi FdP θ + E (3.11)

where Km(Q, Q̃) is a function of probability measures Q, Q̃ and which depends only on their

first m moments, and where E is an error term whose computation is context-specific but
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generally easy if the moments of P ι
i decay at all (in our context the mth moment decays as

N
−m/2
0 ).

The beauty of this is that now, if one has two random matrix ensembles which have the

same first m0 moments in all of their entries, and which both have all their entries living on

the scale N−1/2 (so that moments of the entries decay roughly as powers of N−1/2), then one

can get an expression for the difference, in expectation, of any smooth function evaluated

on the different ensembles. If the ensembles agree in 3 moments, then three terms in the

Taylor polynomials vanish, and then the Km expressions that are left are all bounded by

N−2. Notice that this N−2 is already enough, for example, to cancel the factor of N2 that

comes from the sum over every matrix element that arises from our formula (3.10).

This formulation is very useful, because in every term of the sum over i, it involves ex-

pressions which are all computed from the same ensemble Xθ, as opposed to in the Lindeberg

strategy, where a slightly different matrix appears at every step of the interpolation. This

allows for self-consistent comparison arguments, as well as for a finer use of structure in the

sum over i, so that one may obtain more precise bounds than one would if one had to bound

every element of the sum individually.

3.3 The polynomialization method

The polynomialization method was developed in [BEK14] for proving the isotropic local law

for sample covariance matrices (with null covariance) from the entrywise law; we will give

some heuristics for the argument of [BEK14] as a way of introducing the method.

When [BEK14] was written, the isotropic local law for sample covariance matrices equa-

tion (3.4) was not available, but only the entrywise law. A naive attempt to obtain the

isotropic law from the entrywise law would be as follows: let X be a matrix as in equation

(3.2) and define G =

−I X

X∗ −zI

−1

, and let x be a conformable deterministic unit vec-
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tor. By polarization and linearity, it suffices to consider a “diagonal” generalized entry: the

generalized entry x∗Gx may be written

x∗Gx−m =
∑
ij

xi(Gij − δijm)xj, (3.12)

where xi is the ith entry of x. Each term Gij − δijm has the bound O≺(Ψ) by the entrywise

local law. Because x is L2 normalized, not L1 normalized, the obvious bound on (3.12) is

|x∗Gx−m| =
∑
i

x2
i (Gii −m) +

∑
i 6=j

xiGijxj ≺ Ψ +
∑
i 6=j

Ψ|xixj| . ΨM0

√∑
i 6=j

|xi|2|xj|2

. N0Ψ

by Cauchy-Schwarz, which is clearly a much worse bound than Ψ, which is possible if x is

a standard basis vector. The bound Ψ is in fact possible, and the reason the analysis above

was not able to obtain it is that it did not exploit any cancellation, or any independence,

between Gij for different values of i and j. The polynomialization method is a way to extract

this independence. The essential idea, which is reminiscent of the moment method in RMT,

is to look at high moments of the sum and use the expectation to reduce the combinatorics

of the sum.

The machinery that makes this work is the following two-fold application of resolvent

identities. First, let A ⊆ {1, . . . ,M0} and let G(A) be the resolvent
(
X [A](X [A])∗ − z

)−1
,

where X [A] is the matrix X with the rows indexed by T removed. The following identities

show how to remove the dependence of a resolvent entry Gab on the cth row of X:

Gab = G
(c)
ab +

GacGcb

Gcc

,
1

Gaa

=
1

G
(c)
aa

− GacGca

GaaG
(c)
aaGcc

(3.13)

Note that this identity expresses a resolvent entry as a leading term which is independent of

the cth row of X and an error term which is smaller by a factor of Ψ.

Second, we may express a resolvent entry Gab in terms of its dependence on the ath and

bth rows of X:

Gab = GaaG
(a)
bb (XG(ab)X∗)ab,

1

Gaa

= (XG(a)X∗)aa (3.14)
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We can use the identities (3.13) and (3.14) to improve our bound on
∑

i 6=j xiGijxj. Looking

for example at the second moment

E

∣∣∣∣∣∑
i 6=j

xiGijxj

∣∣∣∣∣
2

= E
∑

i1 6=j1,i2 6=j2

Gi1j1Gi2j2xi1xi2xi1xi2

(ignoring the complex conjugates, which are irrelevant to the analysis). We may separate

the sum according to coincidences among entries i1, i2, j1, j2, as in the moment method. For

example, we consider

E
∗∑

i1,j1,j2

Gi1j1Gi1j2x
2
i1
xj1xj2 , (3.15)

where
∑∗

i1,j1,j2
denotes a sum over distinct values of i1, j1, j2. A problem now is that if xj1

and xj2 here, if summed over j1 and j2, each yield a factor of N
1/2
0 . Therefore we must find

two factors of N
−1/2
0 to compensate. Recursively apply the identity (3.13) to all resolvent

entries to make them independent of every row of X which is not one of the indices of the

resolvent entry. If every application of (3.13) yielded only the leading order term, we would

arrive at

E
∗∑

i1,j1,j2

G
(j2)
i1j1
G

(j1)
i1j2
x2
i1
xj1xj2

and then applying equation (3.14) would yield

E
∗∑

i1,j1,j2

M

(∑
µ1ν1

Xi1µ1G
(i1j1j2)
µ1ν1

Xj1ν1

)(∑
µ2ν2

Xi1µ2G
(i1j1j1)
µ2ν2

Xj2ν2

)
x2
i1
xj1xj2

where M is a product of diagonal resolvent entries. If we could ignore the error in ap-

proximating the diagonal entries by their limit −1
1+m

, then the above would yield 0 because

Xj1ν1 and Xj2ν2 are centered and independent of every other factor. If however some of the

applications of the identity (3.13) yielded error terms, we might arrive at an epxression like

E
∗∑

i1,j1,j2

MG
(j2)
i1j1
G

(j1)
i1j2

(
G

(i1)
j1j2

)2

x2
i1
xj1xj2

where againM is a product of diagonal resolvent entries and their inverses. Again ignoring
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the error in replacing each one with its limit −1
1+m

, the identity (3.14) would then yield

E
∗∑

i1,j1,j2

M

(∑
µ1ν1

Xi1µ1G
(i1j1j2)
µ1ν1

Xj1ν1

)(∑
µ2ν2

Xi1µ2G
(i1j1j2)
µ2ν2

Xj2ν2

)

·

(∑
µ3ν3

Xj1µ3G
(i1j1j2)
µ3ν3

Xj2ν3

)(∑
µ4ν4

Xj1µ4G
(i1j1j2)
µ4ν4

Xj2ν4

)
x2
i1
xj1xj2

Now, the eight X entries yield a total of N−4
0 , but we have eight new greek summation

indices µ∗ and ν∗. Because of the independence of the X and G entries, the expectation will

be 0 unless the X entries “pair up”; i.e., if any index µ∗—say, µ1—is distinct from all the

other greek indices, then EXi1µ1 will factor out and yield 0. Thus the greek indices must

at least pairwise identify, so that the new summation indices yield an N4
0 to cancel with

the N−4
0 from the new factors of X, so that we so far see no overall improvement from our

application of these identities.

However, two of the indices, j1 and j2, appear in three X entries. Looking at the greek

indices which appear with j1 and j2 as indices of X entries, we see that actually ν1, µ3 and µ4

must all identify, and also ν2, ν3 and ν4 must all identify lest the expression be 0, so that the

new summation indices actually only contribute a N3
0 rather than N4

0 . This improvement

of N−1
0 is exactly what we claimed we needed, and it came precisely from the fact that

the indices j1 and j2 appear as indices of resolvent entries an odd number of times in the

expression (3.15), which corresponds exactly to the fact that xj1 and xj2 sum in j1 and j2 to

N
1/2
0 .

This is a faithful representation of the heart of the polynomialization method, except

for our approximating all diagonal resolvent entries by their limit. This is not actually

permissible, and the diagonal entries must be carried along in the analysis and undergo

applications of equations (3.13) and (3.14) along with the off-diagonal edges, but it turns

out that this never affects the parity of the number of times j1 and j2 appears as an index

in a resolvent entry, so the argument still holds.

We apply this same basic idea and expand on it in Chapter 5. It is also a significant part
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of the Green function comparison argument in Section 4.6.

3.4 The Helffer-Sjöstrand calculus

We will now state a complex analytic result often used in RMT and whose utility stems

the fact that the central object in our story, the Green function, is intimately related to

the Stieltjes transform, which is inherently a complex-analytic construct. Our statement is

taken from [BK18].

Lemma 3.4.1 (Proposition C.1 of [BK18]). Let n ∈ N and f ∈ Cn+1(R). We define the

almost analytic extension of f of degree n through

f̃n(x+ iy) :=
n∑
k=0

1

k!
(iy)kf (k)(x)

Let χ ∈ C∞c (C; [0, 1]) be a smooth cutoff function. Then for any λ ∈ R satisfying χ(λ) = 1,

we have

f(λ) =
1

π

∫
C

∂
(
f̃n(z)χ(z)

)
λ− z

d2z

where d2z denotes the Lebesgure measure on C and ∂ := 1
2
(∂x + i∂y) is the antiholomorphic

derivative.

This lemma is useful for deriving a local eigenvalue law from an averaged law for the

resolvent. Another utility of the lemma is for proving the right decay in z for local laws. In

other words, we may prove a local law for small z, and then use the fact that the relevant

resolvent quantities may be written as Stieltjes transforms of measures to show that the local

law must necessarily have stronger bounds the further z is from the support of the measure;

we do this in the proof of Lemma 4.2.10.

41



CHAPTER 4

Spiked Eigenvalues

4.1 Proof Elements for Theorem 2.2.1

The proof of Theorem 2.2.1 has two parts. The first is the derivation of the spiked eigenvalue

distribution of Ṽ , which is an instance of the generalized spiked model, recently done in

[BJ21]. First, define the functions m and m̃ through

1

m
= −z + y

1

1 +m
and

1

m̃
= −z + y

∫
x

1 + m̃x
dH(t),

where H is defined in equation (2.10). Both m and m̃ are Stieltjes transforms of probability

measures; see [SB95] and [CS95]. The function m is the Stieltjes transform of the usual

Marčenko-Pastur law with ratio y, while m̃ is the Stieltjes transform of the limiting bulk

spectrum of Ṽ .

Lemma 4.1.1. Using all the same notation and assumptions as in Theorem 2.2.1, we have

√
N

(
λα(Ṽ)

φN,α
− 1

)
d→ N

(
0,

√
2θα + σατα

κα

)
. (4.1)

Proof. Our form for θα, κα, σα and τα differ slightly from that of [BJ21]. Applying their
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Theorem 3.1, Corollary 3.1, and Remark 3.1 directly would yield

θα = (1 + d̃α)2m̃′(φα)

κα = 1 + φα(d̃α + 1)m̃′(φα) + (d̃α + 1)m̃(φα)

σα =
∑

i∈IK×IM

(
〈ũα, ei〉4EX4

11

)
− 3

τα =

(
d̃α + 1

φα(1 + ym(φα))

)2

+O
(
N−εD

)
,

where the expression for τα follows from their Remark 3.1 and that
∥∥∥D̃2 − I

∥∥∥ = O(N−εD).

To derive our expression for τα, again using
∥∥∥D̃2 − I

∥∥∥ = O(N−εD), we write

τα =

(
d̃α + 1

φα(1 + ym̃(φα))

)2

+O
(
N−εD

)
since m(φα) = m̃(φα)+O(N−εD) because φα−max supp % � 1. Now, using the self-consistent

equation

z = − 1

m̃
+ y

∫
t

1 + tm̃
dH(t),

one may verify that

x−1 + 1 =
1

1 + m̃(φ(x+ 1))
, (4.2)

which yields the result.

The second part of the proof of Theorem 2.2.1, and the main technical achievement of

this chapter, is to compare the spiked eigenvalues of R with those of Ṽ . First, we define the

following notion of size for random variables, introduced in [EKY13], which has proven very

helpful for formulating results in RMT.

Definition 4.1.2 (Stochastic Domination). Given two sequences of families of random vari-

ables X := {XN,ω}N∈N,ω∈A and Y := {YN,ω}N∈N,ω∈A for some index set A, we say that Y

stochastically dominates X, or that X ≺ Y , if for any (small) ε > 0, (large) C > 0, and

sufficiently large N , we have

P (|X| > N ε|Y |) < N−C (4.3)
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uniformly in ω. We also say X = O≺(Y ) if X ≺ Y .

We also define the following weaker notion of a probablistic bound:

Definition 4.1.3 (Bound in Probability). Given two sequences of families of random vari-

ables X := {XN,ω}N∈N,ω∈A and Y := {YN,ω}N∈N,ω∈A for some index set A, we say that Y

bounds X in probability, or that X = OP (Y ), if for any ε > 0,

P (|X| > N ε|Y |)→ 0 as N →∞ (4.4)

uniformly in ω.

Theorem 4.1.4. Fix α ∈ {1, . . . , K} and assume equations (2.2) and (2.3). Under As-

sumption 2, we have ∣∣∣λα(R)− λα(Ṽ)
∣∣∣ = OP

(
dαN

−1/2−ε) (4.5)

for some ε > 0. Under Assumption 1, we have∣∣∣λα(R)− λα(Ṽ)
∣∣∣ = O≺

(
dαN

−1/2−ε) . (4.6)

Remark 4.1.5. The bound under Assumption 1 is in fact O≺(N−1/2−εD), at least in the case of

X with third moment 0; but the proof of this requires an additional high-moment calculation

in Section 4.5 which we omit.

This theorem does not apply to the (K+1)th eigenvalue ofR, the reason being that in the

proof of Lemma 4.1.6, we analyze the difference λα(R)−λα(Ṽ) through Hadamard’s variation

formulae, which are hard to control if the eigenvalue λα(Ṽ) is close to other eigenvalues.

Proof of Theorem 2.2.1. By Lemma 4.1.1, the normalized spiked eigenvalue λα(Ṽ)
φα
− 1 has

the asymptotically normal distribution claimed in Theorem 2.2.1; the standard deviation of

λα(Ṽ)
φα
−1 in particular is � N−1/2. Theorem 4.1.4 shows that

∣∣∣λα(Ṽ)
φα
− λα(R)

φα

∣∣∣ = OP (N−1/2−ε),

so that λα(R)
φα
− 1 and λα(Ṽ)

φα
− 1 have the same asymptotic distribution.
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The proof of Theorem 4.1.4 requires three main sublemmas. First, we require more

notation. We define D ∈ RIM×IM through

Dij = δij

∥∥∥e∗i S̃X∥∥∥2

. (4.7)

D should not be confused with the matrices D̃1, D̃2 from the singular value decomposition

of S̃.

Define a IK+M × IK+M orthgonal matrix U through

S = (S#)1/2
(

0 IIM

)
U∗.

Define the generalized resolvent and its deterministic limit

G := G(z) :=

−I X

X∗ −zI

−1

, Π := Π(z) :=

−(I +m(z)I)−1

m(z)I

 .

We will for the remainder of the chapter usually consider α ∈ {1, . . . , K} to be fixed. We

define the low-rank matrix M through M := M1 + M2 + M3 and

M1 :=
d2
α − y

dα(dα + y)
vαv

∗
α

M2 := θ(dα)−12
f(dα)√
1 + dα

U∗(G− Π)Uvαv
∗
α

M3 := θ(dα)−2g(dα)U∗(G− Π)Uvαv
∗
αU
∗(G− Π)U,

(4.8)

where

f(d) :=
1

d
(d+ 1)(d2 − y) = O(d2), g(d) := f(d)(d+ y) = O(d3) (4.9)

and where the argument of each matrix G − Π is φα (defined in equation (2.11)). So, M

implicitly depends on α.

For any index set K and a square (IM ∪ K)× (IM ∪ K) matrix A, we define

Tr(IM ) A :=
∑
i∈IM

〈ei, Aei〉.

Here is the first of our main sublemmas:
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Lemma 4.1.6. Recall α ∈ {1, . . . , K} is implicit in the definition of M and fixed, and

assume equations (2.2) and (2.3). Under Assumption 1, we have

λα(R)− λα(Ṽ) = −λα(Ṽ) Tr(IM ) M(D − I) +O≺
(
dαN

−1
)
. (4.10)

Under Assumption 2, the error term should be replaced with OP (dαN
−1/2−ε).

This lemma is proven in Section 4.3. The first step is to write R and Ṽ as the termi-

nal and inital matrices of a perturbation and use Hadamard’s variation formula λα(R) ≈

λα(Ṽ) + uα(Ṽ)∗
(
R− Ṽ

)
uα(Ṽ) to study the change in the leading eigenvalues. Then us-

ing a formula from [BDW20] for the components of uα(Ṽ), we get a representation of the

eigenvalue correction λα(R) − λα(Ṽ) in terms of the generalized resolvent G. This “Green

function representation” puts all the useful properties of and powerful results (see Section

1.2) for G, most recently from [KY17], at our disposal.

Lemma 4.1.7. Assume equations (2.2) and (2.3). If X satisfies Assumption 1 and is in

addition Gaussian, then for any fixed positive even integer p and large enough N , there is a

constant Cp depending only on p such that

E
∣∣Tr(IM ) M(D − I)

∣∣p ≤ Cp
(
N−1/2−εD

)p
. (4.11)

This is our desired main result, but only for Gaussian X. We prove it in Section 4.4 by

exploiting a degree of independence between the elements of D, which arises from equation

(2.3) and the Gaussianity of X, and also that D − I “cares about” only the lengths of the

rows of S̃X, which are very close to 1, whereas M “cares about” the rows of S̃X more

holistically. This suggests a degree of independence between M and (D − I), which would

in turn yield an improvement in the naive bound Tr(IM ) M(D− I) ≺ ‖D − I‖ ≺ N−1/2, but

care must be taken to exploit this.

Lastly we show that the smallness of Tr(IM ) M(D − I) is universal in the distribution of

X.
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Lemma 4.1.8. Assume equations (2.2) and (2.3). Let X0 satisfy Assumption 1.

1. If X1 satisfies Assumption 1 (so that X0 and X1 agree in their first two moments),

then there exists ε > 0 such that for any fixed even integer p,∣∣∣EX1∣∣Tr(IM ) M(D − I)
∣∣p − EX0∣∣Tr(IM ) M(D − I)

∣∣p∣∣∣ ≤ CpN
−p( 1

2
−ε). (4.12)

Here, EX1
for instance denotes expectation with respect to the law for X1.

2. If X1 satisfies Assumption 2 and in addition, for all i, µ,N, and a ∈ {1, . . . , 5},

E
(
X0
iµ

)a
= E

(
X1
iµ

)a
,

then there exists ε > 0 such that∣∣∣EX1∣∣Tr(IM ) M(D − I)
∣∣2 − EX0∣∣Tr(IM ) M(D − I)

∣∣2∣∣∣ ≤ C2N
−1−ε. (4.13)

We prove Lemma 4.1.8 by following the universality strategy of [KY17].

Proof of Theorem 4.1.4. Let X0 and X1 be a Gaussian law and a general law for the matrix

X satisfying Assumption 1. We have by Lemma 4.1.6 that

λα(R)− λα(Ṽ) =− λα(Ṽ) Tr(IM ) M(D − I) +O≺
(
d1N

−1/2−εD
)
. (4.14)

Thus, for any δ, C > 0, we may choose p ≥ 2C
δ

+ 1, and then by Markov’s inequality, Lemma

4.1.7, and Lemma 4.1.8 we see for large enough N that, using λα(Ṽ) ≺ d1,

PX1
(∣∣∣λα(Ṽ) Tr(IM ) M(D − I)

∣∣∣ > d1N
−1/2−ε+δ

)
≤ PX1 (∣∣Tr(IM ) M(D − I)

∣∣ > N−1/2−ε+δ/2)+
1

2
N−C

≤
(
N1/2+ε−δ/2)p EX1∣∣Tr(IM ) M(D − I)

∣∣p +
1

2
N−C

≤
(
N1/2+ε−δ/2)p EX0∣∣Tr(IM ) M(D − I)

∣∣p
+ Cp

(
N1/2+ε−δ/2)p (N−1/2−ε)p +

1

2
N−C

≤ 2Cp
(
N1/2+ε−δ/2)p (N−1/2−ε)p +

1

2
N−C

≤ N−C ,

(4.15)
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thus verifying the definition of stochastic domination ≺.

At this point, we have in particular proven

EX
∣∣Tr(IM ) M(D − I)

∣∣2 ≤ C2N
−1−ε (4.16)

for general X satisfying Assumption 1.

Now, we let X1 be a general law for X satisfying Assumption 2 and X0 a law satisfying

Assumption 1 which, by Lemma 4.8.2, may be chosen to agree with X1 in 5 moments. Note

that PX1
(λα(Ṽ) > 3d1) = o(1) by Lemma 4.1.1. The proof may now be easily adjusted,

beginning again by Lemma 4.1.6 using equation (4.16) in the last line,

PX1
(∣∣∣λα(Ṽ) Tr(IM ) M(D − I)

∣∣∣ > d1N
−1/2−ε+δ

)
≤ PX1 (∣∣Tr(IM ) M(D − I)

∣∣ > N−1/2−ε+δ/2)+ o(1)

≤
(
N1/2+ε−δ/2)2 EX1∣∣Tr(IM ) M(D − I)

∣∣2 + o(1)

≤
(
N1/2+ε−δ/2)2 EX0∣∣Tr(IM ) M(D − I)

∣∣2
+ C2

(
N1/2+ε−δ/2)2 (

N−1/2−ε)2
+ o(1)

≤ 2C2

(
N1/2+ε−δ/2)2 (

N−1/2−ε)2
+ o(1)

= o(1),

(4.17)

and we conclude the proof of Theorem 4.1.4.

4.1.1 Discussion

The intepretation of V , defined in equation (2.7), is that it is the sample covariance matrix

constructed from N samples of a random vector which itself generated as a random linear

combination of the columns of B, thought of as the “signal”, plus white noise. This is known

in statistics as a factor model (see [FFH20]). Because of the assumption (2.3), the signal

is in every one of the M observed variables an order of magnitude smaller than the noise,
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so that we speak of this model as having weak factors1. Note also that V is an instance of

Johnstone’s spiked model, introduced in [Joh01].

The correlation matrix R, which is similar to the covariance matrix V except in that the

data are L2-normalized before forming the sample covariance matrix, is the main object of

our interest:

R := (N(SX))#. (4.18)

The goal of this chapter is to study the spiked eigenvalues of R, ie, its eigenvalues which

are separated away from its bulk spectrum—this is a well-defined notion: very coarsely, since

the rows of SX have norm 1 + oN(1), we have that
∥∥∥R− Ṽ∥∥∥ = o(1), so we have by Weyl’s

inequality for each α = 1, . . . ,M that λα(R) = λα(Ṽ) + o(1). Thus, pairing our assumption

(2.2) with existing results on the spiked model (see eg [BKY16]), we see that R has “spiked

eigenvalues” as well.

In what follows, we will need to exercise much more delicacy, however, than we did in

the above paragraph, since we will derive in this paper both distributional results and large

deviation bounds on the spiked eigenvalues of R, which will require us to work on and below

the scale N−1/2.

As observed in [El 09], most of the change in the spiked eigenvalues from V to R can be

accounted for by a deterministic modification (by contrast, the application of N to SX is

a random, and moreover nonlinear, modification of V). To explain this, we must introduce

the auxiliary matrix

S̃ := N(S) =
(
B̃ J

)
,

where the above equation also constitutes the definition of the matrices B̃ and J , and the

auxiliary matrix

Ṽ := (S̃X)#

1This is a common assumption in, eg, signal processing applications. We hope that this work will find
some application in the setting of [HRP14]
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Note that while by definition R = (N(SX))#, we also have R = (N(S̃X))#: to see this,

observe that S̃ differs from S, and consequently S̃X from SX, only in a scaling of rows,

which is then washed out by an application of N.

The matrix Ṽ is an example of what has been called a generalized spiked model by [BY12].

It differs from the typical Johnstone spiked model in that its population covariance matrix

S̃# differs not from the identity matrix but from some more general matrix by bounded

rank (albeit in our setting the “more general matrix” J # is a diagonal matrix which is only

O(N−εD) in norm away from identity).

The generalized spiked model is a very natural thing to study, given both the ubiquity

of the spiked model in statistical practice and the somewhat strict assumption that any

data should have a covariance structure which is a finite rank deformation of exactly the

identity matrix. Despite this, until very recently, the most satisfactory treatment of this

new model was in [BY12], which had to assume a strong independence condition between

the spiked eigenvalues and the bulk eigenvalues in the form of a block diagonal structure of

the population covariance matrix. Now however, this has been relaxed in the recent work

[BJ21].

So, the first idea is to see that

N(SX)# = N(S̃X)#,

so that when studying correlation matrices with general populations, it suffices to consider

only populations with unit variances. The second idea and the bulk of this paper is showing

that, since the rows of S̃X are already 1 + OP (N−1/2) by the central limit theorem, the

normalization when we pass from (S̃X)# to N(S̃X)# does not affect the spiked eigenvalues

to leading order for spiked populations S. A key difficulty is that the error OP (N−1/2) by

which the lengths of the rows of SX differ from 1 would appear only to yield a OP (N−1/2)

change in the eigenvalues by Weyl’s inequality, but we must improve this to OP (N−1/2−ε).

Since (S̃X)# is now a “generalized spiked model”, we conclude with the main result of
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[BJ21].

Remark 4.1.9. Lemma 4.1.1 is actually more general than this, and can treat the possibly that

several eigenvalues of S̃# are equal; in that case there arise a number of sample eigenvalues

equal to the multiplicity of the population eigenvalue, and their joint distribution is given.

The moment assumptions on X are also much weaker, to the point of optimality.

Moreover, though Lemma 4.1.1 is only stated in [BJ21] for square US̃, in the course of

the paper it becomes clear that the dimensions of US̃ may differ by a fixed bounded constant

as they do in our setting.

Remark 4.1.10. The condition (2.2) may be too strong for some statistical applications.

Provided one assumes existence of enough high moments of the randomness X, then one

may weaken (2.2) significantly, allowing

|dα − dβ| � (1− δαβ)N−εD , (dK −
√
M/N)−1 = O(1), dα � dβ (4.19)

for all α, β ∈ {1, . . . , K}.

Remark 4.1.11. Variants of Assumption 1 are very common in random matrix theory (see

[BKY16]). Assumption 2 is in the spirit of [LY12]. We will prove stronger results under the

first assumption and correspondingly weaker results under the second.

Moreover, in Assumption 2, we may weaken the requirement that all entries of X have the

same distribution to the requirement that the entries of X have boundedly many different

distributions. One may verify that in Lemmas 4.2.1 and 4.8.2 (the only place where the iid

rquirement is used), the proof can be easily adjusted.
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4.2 Tools

In equation (2.3), D stands for “delocalization” because εD controls how delocalized the

eigenvectors vα are:

N−2εD ≥ ‖e∗αB‖
2 = e∗αBB

∗eα =
K∑
α=1

dα|〈vα, eα〉|2 (4.20)

so that

|〈vα, ei〉| ≤ d−1/2
α N−εD (4.21)

for all i ∈ IM and α ∈ J1, KK.

A second consequence of (2.2) is that d1 ≤ N1−2ε since for any x ∈ RIM ,

‖x∗B‖ ≤
∑
i∈IM

〈x, ei〉‖e∗iB‖ ≤ N1/2N−ε‖x‖, (4.22)

where in the first inequality we used the triangle inequality and in the second we used

Cauchy-Schwarz.

The following lemma shows that for the purposes of this paper, Assumption 2 with

the bounded support condition is no less general than if the bounded support condition is

removed.

Lemma 4.2.1. Let X satisfy assumption 3. Then for some ε ∈ (0, 1/6), there exists another

matrix X̃ satisfying Assumption 2 and∥∥∥(S̃X̃)# − (S̃X)#
∥∥∥ = OP

(
d1N

−1/2−ε′
)

(4.23)

and ∥∥∥N(S̃X̃)# −N(S̃X)#
∥∥∥ = OP

(
d1N

−1/2−ε′
)

(4.24)

for some ε′ > 0.

By Weyl’s inequality, the truncation affects the eigenvalues of Ṽ and R by OP (N−1/2−ε′),

which is an error term according to Theorem 4.1.4.
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Definition 4.2.2 (The spectral region SO). We define the spectral region

SO := {z = E + iη ∈ C :
1

2
(max supp %+ dK) < E < N, |η| < 1}. (4.25)

All resolvent-like matrices, like G1 and G in Definition 4.2.5, in this paper will be evaluated

at spectral parameters z ∈ SO.

We need to define the following high-probability event in order to control our error terms

under Assumption 2.

Definition 4.2.3 (The event ΩL). We define the event

ΩL = {λ1(Ṽ) 6∈ SO}

which holds with high probability (ie, 1ΩL ≺ 0) under either Assumption 1 or Assumption 2

as a consequence of the Furedi-Komlos argument.

Definition 4.2.4 (Matrix Multiplication). We adopt the same matrix multiplication con-

vention as in [KY17], that is, if

J ,K1,K2,L (4.26)

are index sets like IN , etc, then if A is a J ×K1 matrix and B is a K2 ×L matrix, then for

any j ∈ J and l ∈ L, we define

(AB)jl =
∑

k∈K1∩K2

AjkBkl. (4.27)

This is of course the usual matrix multiplication, except that we allow the multiplication of

matrices of seemingly incompatible dimensions; if the index sets of the matrices still intersect

in a meaningful way, we still get a meaningful matrix product.

Define m : C+ → C+ as the unique solution to

1

m
= −z + y

1

1 +m
,

so that m is the Stieltjes transform of a measure %, the Marčenko-Pastur law.
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Definition 4.2.5 (Matrices G1 and G). Recall the defintion of the matrix U . We define

G1 := G1(z) =

(((
0 IM

)
U∗X

)#

− zI
)−1

. (4.28)

We also define

G := G(z) =

−I X

X∗ −z

−1

(4.29)

Also define

Π := Π(z) =

− 1
I+m(z)I

0

0 m(z)I

 . (4.30)

Proposition 4.2.5.1 (Form of U). The matrix U from Definition 4.2.5 has the form

U =

(UK)IK×(IK∪IM )

(UM)IM×(IK∪IM )

∗ (4.31)

where

UM =
(∑K

α=1

√
dα
dα+1

vαw
∗
α

∑M
α=1

√
1

dα+1
vαv

∗
α

)∗
,

K∑
α=1

√
dαvαw

∗
α =: B. (4.32)

The columns of UK all belong to the set

RIK ⊕ span{v1, . . . ,vK}. (4.33)

Proof. That UM is of the claimed form follows from the definitions of U . The columns of UK

then must be orthogonal to the columns of UM . The span of the columns of UM is the same as

the span of the columns of


v∗1
...

v∗M

UM , which contains the vectors
(

0 v∗K+1

)
, . . . ,

(
0 v∗M

)
.

To be orthogonal to these M −K columns is precisely to be in the space (4.33).

The resolvent G is bears less relation to the matrix V than does G1, but it is an easier

object to work with. We may transition between the two resolvents with the following lemma.
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Lemma 4.2.6. For deterministic unit vectors x,y ∈ RIM and z ∈ SO, we have

〈x,G1y〉 =
〈
x, z−1U∗GUy

〉
+ EG, (4.34)

where EG = O≺(N−1|z|−2) under Assumption 1 and 4

√
E1ΩL|EG|

4 = O(N−1|z|−2) as well as

E2 = O≺(|z|−2N−ε) under Assumption 2 with |Xiµ| ≤ N−ε in the bounded support condition.

The multiplication of (IK ∪ IM ∪ IN) × (IK ∪ IM ∪ IN) matrix by a vector x ∈ RIM is

defined through the definition of matrix multiplication above, or equivalently, the cannonical

embedding of RIM ⊆ RIK∪IM∪IN by padding with zeros.

We state the local law for G proven in [KY17]:

Lemma 4.2.7. We have the averaged local law:∣∣∣∣∣N−1
∑
µ∈IN

Gµµ −m

∣∣∣∣∣ ≺ N−1

(κ+ η)2
.

We also have the isotropic local law: for any deterministic x,y ∈ RI and z ∈ SO, we have

〈x, (G− Π)y〉 ≺ N−1/2

(κ+ η)
(4.35)

and the stronger bound

〈x, (G− Π)y〉 ≺ N−1/2

(κ+ η)2
(4.36)

if one of x,y is ∈ RIN ⊆ RI. Lastly, we have ‖G− Π‖ = O(z−1) as well as
∥∥G(IK∪IM )×IN

∥∥+∥∥GIN×(IK∪IM )

∥∥+ ‖GIN×IN‖ = O(z−1).

The parts of Theorem 4.2.7 regarding z ∈ SO are not stated as such in [KY17], but may

routinely verified with the Helffer-Sjöstrand argument; see, eg, the proof of Lemma 4.2.10 in

Section 4.8.

We also recall the following result from [DY18] which extends the local law of Theorem

4.2.7 to matrices with larger fluctuations but bounded supoort.
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Theorem 4.2.8 (Theorem 3.11 of [DY18]). If X is a matrix satisfying Assumption 2 with

|Xiµ| ≤ N−ε in the bounded support condition, then uniformly for z ∈ SO and x,y ∈ RIK∪IM ,

we have

〈x, (G− Π)y〉 ≺ N−ε

(κ+ η)
. (4.37)

Remark 4.2.9. This version of the local law outside the spectrum is not stated as such in

[DY18], but follows from the local law inside the spectrum just as the usual local law for

sample covariance or Wigner matrices does.

We also have the following result complementary result, which also provides some bounds

on low moments of entries of G−Π; it is the main technical ingredient in the proof of Lemma

4.1.8 under the low moment assumption.

Lemma 4.2.10. If X satisfies Assumption 2 with ε = 1/6 − δ for some sufficiently small

δ > 0 in the bounded support condition, and if x,y ∈ RIM are deterministic, then uniformly

in z ∈ SO,

E1ΩL|(G− Π)xy|4 ≤ C

(
N−1/2

(κ+ η)

)4

. (4.38)

One of the most important consequences of the 6-moment condition of assumption 2,

once paired with the bounded support condition, is the following lemma, whose proof we

postpone to Section 4.7.

Lemma 4.2.11. If X satisfies Assumption 2 and the bounded support condition, we have

for any even p ≥ 4 that

E(Dii − 1)p ≤ CpN
−2. (4.39)

We may easily differentiate G in the entries of X: we denote by ∂iµ the derivative with

respect to the i, µ element of X and find that

∂iµGst = −GisGµt −GiµGit. (4.40)

Or more generally, if ∂t (G−1) = ∆ for a more general matrix ∆, then ∂tG = −G∆G.

We have the following rough bound on Mij for i, j ∈ IM .

56



Proposition 4.2.11.1. For i ∈ IM and α ∈ IK, we have

e∗iUvα ≤ CN−εD . (4.41)

Proof. By the definition of matrix multiplication and referring to Proposition 4.2.5.1, this is

e∗iU

 0

vα

 = e∗iUM

 0

vα

 =

√
1

dα + 1
e∗ivα ≤ N−εD (4.42)

by equation (4.21).

4.3 Proof of Lemma 4.1.6

Proof of Lemma 4.1.6. Lemma 4.1.6 is implied by the following two lemmas:

Lemma 4.3.1. Fix α ∈ {1, . . . , K}. Under Assumption 1

λα(R)− λα(Ṽ) = −λα(Ṽ)uα(V)∗(D − I)uα(V) +O≺
(
dαN

−1
)
. (4.43)

Under Assumption 2, the error term should be replaced with OP (dαN
−1/2−ε).

Lemma 4.3.2. Under Assumption 1, we have

uα(V)∗(D − I)uα(V) = Tr(IM ) M(D − I) +O≺(N−1). (4.44)

Under rather Assumption 2, the error term should be replaced with OP (N−1/2−ε).

Note the presence of the matrix V in equation (4.44). This is one of the only places that

we will really use V . The reason is that V is an instance of the Johnstone spiked model rather

than of the generalized spiked model, so that we can carry over the results of [BDW20] more

directly of uα(V) than we can for uα(Ṽ).

For the proof of Lemma 4.3.1, we will require the following additional lemmas:
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Lemma 4.3.3. If w ∈ RIM with ‖w‖ . 1 is either deterministic or satisfies ‖w‖∞ ≤ N−ε1

for some ε1 > 0, and if X satisfies Assumption 2, then∣∣w∗(D − I)2w
∣∣+
∣∣∣√w∗(D − I)4w

∣∣∣ = OP (N−1/2−ε2) (4.45)

for some ε2 > 0.

Lemma 4.3.4. If ∆ is a matrix of conformable dimension with ‖∆‖ = OP (N−εd
1/2
1 ), then

uniformly in ∆, ∣∣∣λα((S̃X + ∆)#)− λα((S̃X)#)
∣∣∣ = OP

(
d

1/2
1 ‖∆‖

)
(4.46)

and ∥∥∥uα((S̃X + ∆)#)− uα((S̃X)#)
∥∥∥ = OP

(
2

d1

‖∆‖
)
. (4.47)

Proof of Lemma 4.3.1. We will prove the conclusion under Assumption 2. The reader may

verify that under Assumption 1, the proof is easier, and only requires the additional input

that ‖D − I‖ ≺ N−1/2.

Define the matrix flows

A(t) =

(
S̃X − t

2
(D − 1)S̃X

)#

(4.48)

so that A(0) = Ṽ , and

B(t) =

(
S̃X − 1− t

2
(D − 1)S̃X + t(D−1/2 − I)S̃X

)#

(4.49)

so that B(1) = R, and moreover, A(1) = B(0). Thus, for α ∈ {1, . . . , K},

λα(R)− λα(Ṽ) = λα(B(1))− λα(A(0))

= (λα(B(1))− λα(B(0))) + (λα(A(1))− λα(A(0)))

=

(
∂tλα(B(0)) +

1

2
∂2
t λα(B(tB))

)
+

(
∂tλα(A(0)) +

1

2
∂2
t λα(A(tA))

) (4.50)

for some tA, tB ∈ [0, 1]. Now by Hadamard’s first variation formula,

∂tλα(A(t))|t=0 = −1

2
u∗α
(
(D − I)A(0) + A(0)(D − I)

)
uα

= −λαu∗α(D − I)uα,

(4.51)
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where the implied argument of every eigenvector and eigenvalue is A(0) = Ṽ , so that this

is almost the right-hand side of equation (4.43), except that we need to replace uα(Ṽ) with

uα(V); we will do this at the end of the proof. We now bound the other terms.

We define the diagonal matrix Ddiff by

(Ddiff)ii := (D
−1/2
ii − 1) +

1

2
(Dii − 1) = O

(
(Dii − 1)2D

−5/2
ii

)
, (4.52)

where the bound holds entry by entry. Thus, we have for some matrix E of norm OP (d1),

∂tλα(B(0)) = u∗α∂tB(0)uα

= u∗α (EDdiff +DdiffE)uα

= O
(
‖E‖ ·

∥∥(D − I)2uα
∥∥)

= OP (d1N
−1/2−ε),

(4.53)

where the implied argument of every eigenvector and eigenvalue is B(0), by Lemma 4.3.3—to

bound ‖uα(B(0))‖∞, we use Lemma 4.3.5 and equation (4.21) to bound ‖uα(A(0))‖∞ and

Lemma 4.3.4 to bound ‖uα(B(0))− uα(A(0))‖ ≥ ‖uα(B(0))− uα(A(0))‖∞, and then the

triangle inequality.

Now we bound the second derivatives, using Hadamard’s second variation formula. It is

a consequence of Lemma 4.3.4, Assumption 2.2 and ‖D − I‖ = OP (N−1/10) that

min
α 6=β∈{1,...,K}

min
t∈[0,1]

|λα(A(t))− λβ(A(t))| ≥ Cd1 (4.54)

for some absolute positive constant C > 0 a.a.s., so that, recalling tA from equation (4.50)
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and using O(L) to denote a conformable matrix with operator norm O(L),

∂2
t λα(A(tA))

= u∗α∂
2
tA(tA)uα + 2

∑
β 6=α

∣∣u∗β∂tA(tA)uα
∣∣2

λβ − λα

= u∗α · (D − I)(S̃X)#(D − I)uα

+ 2
∑
β 6=α

∣∣∣u∗β · ((D − I)A(tA) + A(tA)(D − I) +O(d
1/2
1 ‖D − I‖

2)
)
uα

∣∣∣2
λβ − λα

= OP

(
d1‖(D − I)uα‖2)+OP

(
d2

1‖(D − I)uα‖2 + d1‖(D − I)2‖2

d1

)
= OP

(
d1‖(D − I)uα‖2)+OP

(
‖D − I‖4)

= OP (d1N
−1/2−ε),

(4.55)

where the implied argument of every eigenvector and eigenvalue is A(tA); the last line follows

from Lemma 4.3.3 (using Lemmas 4.3.5 and 4.3.4 to bound ‖uα‖∞)for the first term, and

from ‖D − I‖4 = OP (N−1+ε) for any ε > 0 by a union bound, Markov’s inequality, and

Lemma 4.2.11 for the second term.

Now, we may bound 1
2
∂2
t λα(B(tB)) as we did 1

2
∂2
t λα(A(tA)),

∂2
t λα(B(tB))

= u∗α∂
2
tB(tB)uα + 2

∑
β 6=α

∣∣u∗β∂tB(tB)uα
∣∣2

λβ − λα

= u∗αDdiff · (S̃X −
1

2
(D − I)S̃X)#Ddiffuα

+ 2
∑
β 6=α

∣∣∣u∗β · (DdiffB(tB) +B(tB)Ddiff +O(d
1/2
1 ‖Ddiff‖2)

)
uα

∣∣∣2
λβ − λα

(4.56)
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= O
(
d1‖Ddiffuα‖2)+O

(
d2

1‖Ddiffuα‖2 + d1‖D2
diff‖

2

d1

)
= O

(
d1‖Ddiffuα‖2)+O

(
‖Ddiff‖4)

= OP (d1‖D − I‖4 + d1‖D − I‖8)

= OP (N−1−ε)

as before.

Finally, we show how to bound∣∣∣uα(Ṽ)∗(D − I)uα(Ṽ)− uα(V)∗(D − I)uα(V)
∣∣∣ = OP (N−1/2−ε). (4.57)

We first bound
∣∣∣uα(Ṽ)∗(D − I)(uα(Ṽ)− uα(V))

∣∣∣ ≤ ∥∥∥uα(Ṽ)∗(D − I)
∥∥∥∥∥∥(uα(Ṽ)− uα(V))

∥∥∥; the

other term arising from the triangle inequality is bounded in the same way. The latter factor

is OP (N−εD) by simple pertrubation theory. The former factor is∥∥∥uα(Ṽ)(D − I)
∥∥∥ =

√∑
i∈IM

〈
uα(Ṽ), ei

〉2

(Dii − 1)2

=

√√√√∑
i∈IM

(〈
uα(Ṽ), ei

〉2

− Ci,α
)

(Dii − 1)2 +
∑
i∈IM

Ci,α(Dii − 1)2.

(4.58)

The second term under the radical is, using that a random variable X satisfies X =

OP (E|X|),

OP

(∑
i∈IM

Ci,αE|Dii − 1|2
)

= O(N−1) (4.59)

as desired. The first term under the radical is

OP

(∑
i∈IM

E
∣∣∣∣(〈uα(Ṽ), ei

〉2

− Ci,α
)

(Dii − 1)2

∣∣∣∣
)

= OP

∑
i∈IM

√
E
∣∣∣∣〈uα(Ṽ), ei

〉2

− Ci,α
∣∣∣∣2√E|Dii − 1|4


= OP (N−1)

(4.60)

by Lemma 4.2.11 and equation 4.64. This concludes the proof of Lemma 4.3.1.
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Now we prove Lemma 4.3.2. We will now cite the following theorem from [BDW20],

which makes our analysis possible. Our statement of the theorem is not exactly as it is in

[BDW20], and we will provide an abridged proof in Section 4.8.

Theorem 4.3.5. Fix α ∈ {1, . . . , K}. Let w be a deterministic unit vector in RM . Let

R :=
M∑
β=1

dα
√
dβ + 1

dα − dβ
vβv

∗
β, (4.61)

and Ξ := Ξ(z) = G1(z)− z−1Π(z). We have that under the condition (2.2),

〈w, uα(V)〉2 =
d2
α − y

dα(dα + y)
|v∗αw|

2

− 2dα(dα + 1)w∗vαv
∗
αΞvαv

∗
αw − 2

f(dα)√
1 + dα

w∗R∗Ξvαv
∗
αw

− f(dα)2

1 + dα
w∗vαv

∗
αΞ′vαv

∗
αw + g(dα) (v∗αΞRw)2

− dα(1 + dα)g(dα)
∑

{1,...,K}3β 6=α

dβ
(dα − dβ)2

(
v∗βΞvαv

∗
αw
)2

+ E1(w) + E2(w),

(4.62)

where every instance of Ξ or Ξ′ has argument φN,α (defined in Theorem 2.2.1), and where

f(d) :=
1

d
(d+ 1)(d2 − y) = O(d2), g(d) := f(d)(d+ y) = O(d3). (4.63)

Under Assumption 1 we have E1(w) ≺ N−1
∣∣projv1,...,vK

w
∣∣ and E2(w) ≺ N−3/2. Under As-

sumption 2 we rather have
√

E1ΩL|E1(w)|2 = O
(
N−1

∣∣projv1,...,vK
w
∣∣) and

√
E1ΩL|E2(w)|2 =

O(N−1−ε)

Lastly, we have the following weaker statement for the matrix Ṽ: under Assumption 2,

we have ∑
i∈IM

√
E1ΩL

∣∣∣∣〈uα(Ṽ), ei

〉2

− Ci,α
∣∣∣∣2 = O(1), (4.64)

where Ci,α are deterministic constants such that
∑

i∈IM |Ci,α| = O(1) uniformly in i, α.

Remark 4.3.6. We will only use the equation (4.64) once in the paper; to convert the ex-

pression uα(Ṽ)(D− I)∗uα(Ṽ) in Lemma 4.1.6 to the better expression uα(V)(D− I)∗uα(V).
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The point of equation (4.64) is to ensure that uα(Ṽ) is the sum of a deterministic part and

a very small part (so small that its components are absolutely summable).

Proof of Lemma 4.3.2. In this lemma we merely ensure that all but three of the terms in

(4.62) are errors, drop the matrix R, and transition from the resolvent G1 to the resolvent

G.

We will do the proof under Assumption 2; under Assumption 1 it is much easier and is

omitted. We write

uα(V)∗(D − I)uα(V) =
∑
i∈IM

〈ei, uα(V)〉2(Dii − 1) (4.65)

and then apply lemma Theorem 4.3.5 with w = ei. We temporarily define

M
(1)
2 =

f(dα)√
1 + dα

R∗Ξvαv
∗
α, M

(1)
3 = g(dα)R∗Ξvαv

∗
αΞR. (4.66)

We first establish∣∣∣∣∣uα(V)∗(D − I)uα(V)−
∑
i∈IM

(
(M1 + M

(1)
2 + M

(1)
3 )(D − 1)

)
ii

∣∣∣∣∣ = OP

(
N−1/2−ε) (4.67)

by bounding the expectation on the event 1ΩL of the left-hand side by O(N−1/2−ε), which

has contributions from the second, fourth, sixth, seventh and eighth terms of the right-hand

side of equation (4.62) ((M1 + M
(1)
2 + M

(1)
3 )ii are the first, third and fifth terms). Here we

have used that a positive random variable X satisfies X = OP (EX). We bound the second

term’s contribution ∣∣∣∣∣E1ΩL

∑
i∈IM

2dα(dα + 1)e∗ivαv
∗
αΞvαv

∗
αei(Dii − 1)

∣∣∣∣∣
≤
∑
i∈IM

2dα(dα + 1)|v∗αei|
2E1ΩL|v∗αΞvα(Dii − 1)|.

(4.68)

Cauchy Schwarz on the expectation then yields

≤
∑
i∈IM

2dα(dα + 1)|v∗αei|
2
√
E1ΩL|v∗αΞvα|2

√
E(Dii − 1)2

≤ C
∑
i∈IM

2dα(dα + 1)|v∗αei|
2d−2
α N−1/2N−1/2 = O(N−1)

(4.69)
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where we bounded
√
E1ΩL|v∗αΞvα|2 by Lemmas 4.2.6 and 4.2.10. The contribution of the

fourth term is bounded in the same way, using f(x) = O(x2) and
√

E1ΩL|v∗αΞ′vα|2 ≤

d−3
α N−1/2; to see why the derivative has an extra factor of d−1

α , let γ be a circular contour

centered at φN,α and having radius � dα and use the Cauchy integral formula to write

√
E1ΩL|v∗αΞ′vα|2 =

√
E1ΩL

∣∣∣∣∫
γ

v∗αΞ(z)vα
(z − φN,α)2

dz

∣∣∣∣2 ≤ ∫
γ

√
E|v∗αΞ(z)vα|2

(z − φN,α)2
dz

= O(dαN
−1/2d−4

α )

by Minkowski’s integral inequality and the triangle inequality for integrals. The sixth term’s

contribution is also done in a very similar way, using in addition that
√

E|vβΞvα|4 ≤ d−4
α N−1

by Lemma 4.2.6 and Theorem 4.2.7. The contribution of the seventh term, E1(ei), is

E1ΩL1ΩL

∑
i∈IM

|E1(ei)(Dii − 1)| ≤
∑
i∈IM

√
E1ΩL|E1(ei)|2

√
E|Dii − 1|2

≤
∑
i∈IM

N−1
∣∣projv1,...,vK

ei
∣∣N−1/2 ≤ N1/2N−1N1/2 = N−1

(4.70)

by Cauchy-Schwarz on the sum. Lastly, the contribution of the eighth term E2(ei) is

E1ΩL

∑
i∈IM

|E2(ei)(Dii − 1)| ≤
∑
i∈IM

√
E1ΩL|E2(ei)|2

√
E|Dii − 1|2

≤
∑
i∈IM

N−1−εN−1/2 ≤ N1/2N−1N1/2 = N−1/2−ε
(4.71)

as desired.

Nextly, temporarily setting

M
(2)
2 =

f(dα)√
1 + dα

Ξvαv
∗
α, M

(2)
3 = g(dα)Ξvαv

∗
αΞ,

which only differ from M
(1)
2 and M

(1)
3 in the absence of the matrix R, we establish

∑
i

∣∣∣e∗i (M
(2)
2 −M

(1)
2

)
ei(Dii − 1)

∣∣∣+
∣∣∣e∗i (M

(2)
3 −M

(1)
3

)
ei(Dii − 1)

∣∣∣ = OP (N−1/2−ε).

Since R−I has rank K, this step is done just like the previous step, and we omit the details.
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To conclude the proof, we establish∑
i∈IM

(∣∣∣e∗i (M2 −M
(2)
2 )ei(Dii − 1)

∣∣∣+
∣∣∣e∗i (M3 −M

(2)
3 )ei(Dii − 1)

∣∣∣) = OP (N−1/2−ε). (4.72)

Note that Mι and M
(1)
ι only differ in replacing Ξ with θ(dα)−1U∗(G−Π)U . Again it suffices

to bound the expectation. We use Lemma 4.2.6. First,

E1ΩL

∑
i∈IM

∣∣∣e∗i (M2 −M
(1)
2 )ei(Dii − 1)

∣∣∣
= O

(∑
i∈IM

d2
α|e∗ivα|

√
E1ΩL

∣∣v∗(Ξ− θ(dα)−1U∗(G− Π)U
)
ei
∣∣2√E|Dii − 1|2

)

= O

(∑
i∈IM

d2
α|e∗ivα|d−2

α N−1N−1/2

)

= O(N−1).

(4.73)

Second, noting that, by difference of squares and |(Ξ + z−1U∗(G− Π)U)xy| ≺ z−2N−ε by

Theorem 4.2.8 and Lemma 4.2.6, we have

E1ΩL

∣∣Ξ2
vα,ei
− θ(dα)−2(U∗(G− Π)U)2

vα,ei

∣∣2
= E1ΩL

∣∣Ξvα,ei − θ(dα)−1(U∗(G− Π)U)vα,ei
∣∣2

·
∣∣Ξvα,ei + θ(dα)−1(U∗(G− Π)U)vα,ei

∣∣2
≤ θ(dα)−4N−2εE1ΩL

∣∣Ξvα,ei − θ(dα)−1(U∗(G− Π)U)vα,ei
∣∣2

(4.74)

and then the above is

≤ θ(dα)−8N−2−2ε (4.75)

by Lemma 4.2.6. So, we have

E1ΩL

∑
i∈IM

∣∣∣e∗i (M3 −M
(1)
3 )ei(Dii − 1)

∣∣∣
= O

(∑
i∈IM

d4
α

√
E1ΩL

∣∣Ξ2
vα,ei
− θ(dα)−2(U∗(G− Π)U)2

vα,ei

∣∣2√E|Dii − 1|2
)

= O

(∑
i∈IM

d4
αd
−4
α N−1−εN−1/2

)

= O(N−1/2−ε).

(4.76)
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This concludes the proof of Lemma 4.3.2.

Proof of Lemma 4.3.3. We treat the case that w has ‖w‖∞ ≤ N−ε1 ; the case of deterministic

w is easier. Observe that by Lemma 4.2.11 and Markov’s inequality, we have

P (|Dii − 1| > N−a) = O(N−2+4a). (4.77)

This yields on one hand, by a union bound, the bound

P (‖D − I‖2 > N−1/2+ε) = P (∃i : |Dii − 1|2 > N−1/2+ε)

= O(NN−1−2ε)

= O(N−4ε).

(4.78)

On the other hand, we have for any ε > 0,

E#{i : |Dii − 1|2 > N−1/2−ε} = E
∑
i∈IM

1|Dii−1|2>N−1/2−ε

=
∑
IM

P (|Dii − 1|2 > N−1/2−ε)

≤ N2ε.

(4.79)

Together, equations (4.78) and (4.79) say that for any ε > 0, only a few (about N2ε) entries

of (D − I)2 are expected to exceed N−1/2−ε, and those that do are all a.a.s. bounded by

N−1/2+ε.
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Therefore, we bound

w∗(D − I)2w =
∑
i

〈w, ei〉2(Dii − 1)2

=
∑

i:|Dii−1|2>N−1/2− 1
2 εw

〈w, ei〉2(Dii − 1)2

+
∑

i:|Dii−1|2≤N−1/2− 1
2 εw

〈w, ei〉2(Dii − 1)2

≤
∑

i:|Dii−1|2>N−1/2− 1
2 εw

N−2εw
∥∥(D − I)2

∥∥
+

∑
i:|Dii−1|2≤N−1/2− 1

2 εw

〈w, ei〉2N−1/2− 1
2
εw

≤ #{i : |Dii − 1|2 > N−1/2− 1
2
εw}N−2εw

∥∥(D − I)2
∥∥

+N−1/2− 1
2
εw

= OP

(
(N

1
4
εwN εw)N−2εw

∥∥(D − I)2
∥∥+N−1/2− 1

2
εw
)

= OP

(
N−1/2− 1

2
εw
)
,

(4.80)

where in the second to last line we used that the random variable Y = #{i : |Dii − 1|2 >

N−1/2− 1
2
εw} is bounded by OP (N

1
4
εwEY ) (this is a general fact about positive random

variables that follows from Markov’s inequality), and in the last line that ‖(D − I)2‖ ≤

N−1/2+ 1
4
εw a.a.s.

Lastly, the bound on
√

w∗(D − I)4w ≺ N−1/2−ε follows in amost exactly the same way;

we omit the details.

Proof of Lemma 4.3.4. The first inequality is an immediate consequence of Weyl’s inequality.

The second follows from the formula

∂tuα((S̃X + t∆)#) =
∑
β 6=α

uβu
∗
β

(
(S̃X + t∆)∆∗ + ∆(S̃X + t∆)∗

)
uα

λβ − λα
(4.81)

where the implied argument of every eigenvalue and eigenvector on the right-hand side is
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(S̃X + t∆)#. Thus we have

∥∥∥∂tuα((S̃X + t∆)#)
∥∥∥2

=

∥∥∥∥∥∥
∑
β 6=α

uβu
∗
β

(
(S̃X + t∆)∆∗ + ∆(S̃X + t∆)∗

)
uα

λβ − λα

∥∥∥∥∥∥
2

=
∑
β 6=α

∥∥∥∥∥∥
uβu

∗
β

(
(S̃X + t∆)∆∗ + ∆(S̃X + t∆)∗

)
uα

λβ − λα

∥∥∥∥∥∥
2

= OP

4
∑
β 6=α

∥∥∥∥∥∥
uβu

∗
β

(
(S̃X + t∆)∆∗ + ∆(S̃X + t∆)∗

)
uα

d1

∥∥∥∥∥∥
2


= OP

(
4

d2
1

∥∥∥((S̃X + t∆)∆∗ + ∆(S̃X + t∆)∗
)
uα

∥∥∥2
)

= OP

(
4

d1

‖∆‖2

)

(4.82)

as desired.

4.4 Proof of Lemma 4.1.7

In this section , we will use without proof the following essential and well-known fact regard-

ing Gaussian matrices:

Lemma 4.4.1. For an (IM ∪IK)×IN iid Gaussian matrix X and deterministic orthogonal

vectors x1, . . . ,xn ∈ IM , the 2n quantities

1

‖x∗1X‖
x∗1X, . . . ,

1

‖x∗nX‖
x∗nX, ‖x∗1X‖, . . . , ‖x∗nX‖ (4.83)

are mutually independent.

We recall our formula for the eigenvalue correction from Lemma 4.3.2

u∗(D − I)u =
∑
i∈IM

〈ei,Mei〉(Dii − 1) +O≺(N−1/2−ε). (4.84)

Recall also that M is a rank one matrix defined from G, and Dii =
∥∥∥e∗i S̃X∥∥∥2

.
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We look at high moments of the correction (4.84)

E

∣∣∣∣∣∑
i∈IM

〈ei,Mei〉(Dii − 1)

∣∣∣∣∣
p

=
M∑

i1,...,ip=1

E〈ei1 ,Mei1〉 · · ·
〈
eip ,Meip

〉
(Di1i1 − 1) · · · (Dipip − 1).

(4.85)

Note that M is a real matrix, being defined from Green functions evaluated at real spectral

arguments.

Right away, we will fix a partition

2{1,...,p} ⊇ P = {A1, . . . , Ap′}

of the set {1, . . . , p}. The sets Ar are called blocks of P . We will say that a tuple i :=

(i1, . . . , ip) satisfies P and write i ` P when ir = is if and only if r and s are in the same

block of the partition. We will henceforth only consider∑
i`P

E〈ei1 ,Mei1〉 · · ·
〈
eip ,Meip

〉
(Di1i1 − 1) · · · (Dipip − 1), (4.86)

i.e., the sum over all values of the indices i1, . . . , ip for which i = (i1, . . . , ip) ` P . Because

the number of partitions of a p-element set is a constant Cp (ie, it does not depend on N),

this does not affect our desired O≺ bound. Denote by `i the number of singletons in P—the

indices i1, . . . , i`i are “lone indices”. We will only treat the case that the singletons of P are

{1}, . . . , {`ii} and that the numbers 1, . . . , p′ all belong to different blocks of the partition;

ie, r ∈ Ar for r ≤ p′. Every other partition is isomorphic to one like this via a permutation

of the set {1, . . . , p}, and these may be treated in the same way.

Note that, by equation (2.3), the unit vectors

S̃∗ei1 , . . . , S̃
∗eip′ , (4.87)

are nearly orthogonal, each having dot product N−εD with each other. We apply Gram-

Schmidt to get an orthonormalized set

Si1 , . . . ,Sip′ (4.88)
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satisfying ‖Sir‖ = 1 for each r = 1, . . . , p′ and Sir ⊥ Sis for each ir 6= is and S̃∗eir =∑p′

s=1 ar,sSis . Note that ar,s = δrs +O(N−εD) and that
∑p′

s=1 a
2
rs = 1.

We define now, for each i = 1, . . . , p′ the random vectors

yr := yr(i1, . . . , ip,P) = S∗irX,

so that the vectors y1, . . . ,yp′ are iid N -dimensional Gaussian random vectors with covari-

ance N−1IIN .

The main heuristic of this section is that the centered random variables (Di1i1−1) · · · (Dipip−

1), being functions of the lengths of e∗i1S̃X, . . . , e
∗
ip′
S̃X, are by Lemma 4.4.1 and (2.3) nearly

independent. Since the lengths of the vectors e∗i1S̃X, . . . , e
∗
ip′
S̃X are all 1 + O≺(N−1/2)

while their directions are completely delocalized, we expect M to be largely independent of

(Di1i1−1), · · · , (Dipip−1). This near-independence makes for additional smallness in the ex-

pression (4.85). The main technical difficulties of this section are first to modify the random

variables (Di1i1 − 1), · · · , (Dipip − 1) so as to make them exactly independent of one another

(and quantify the error in doing so), leading to the notion of what we will call lone factors,

and second to perturb the matrix M1 + M2 + M3 so as to make it exactly independent of

(Di1i1 − 1), · · · , (Dipip − 1) (and quantify the error associated to this perturbation).

The first thing we must do is rewrite each Dirir − 1 =
∥∥∥e∗ir S̃X∥∥∥2

− 1 in such a way as

rather to involve the vectors yr. We may write
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Dirir − 1 =

〈
p′∑
s=1

ar,sys,

p′∑
s=1

ar,sys

〉
− 1

=

p′∑
s=1

a2
r,s(‖ys‖

2 − 1) +
∑
s 6=t

ar,s · ar,t〈ys,yt〉

=

p′∑
s=1

a2
r,s(‖ys‖

2 − 1) +
∑
s 6=t

ar,s · ar,t〈N(ys),N(yt)〉

+
∑
s 6=t

2ar,s · ar,t〈(1−N)(ys),N(yt)〉

+
∑
s 6=t

2ar,s · ar,t〈(1−N)(ys), (1−N)(yt)〉.

(4.89)

Here we used that
∑p

s=1 a
2
r,s = 1.

We now have that equation (4.86) can be written as a sum of boundedly many terms of

the form ∑
i1,...,ip`P

E〈ei1 ,Mei1〉 · · ·
〈
eip ,Meip

〉
L(ι1)

1s1t1
· · · L(ιp)

psptp , (4.90)

where the factors L(ιr) := L(ιr)
rst for ι = 1, . . . , 5 are defined as follows

• L(1)
rst = a2

r,r

(∥∥S∗irX∥∥2 − 1
)

. Note that ar,r has size 1 + O(N−ε). Terms of this form

are the leading term from the expansion (4.162) and have the (O≺) bound N−1/2. The

subscripts s, t are superfluous but we include them to keep the notation consistent.

• L(2)
rst =

∑
s 6=r a

2
r,s

(∥∥S∗irX∥∥2 − 1
)

for s 6= r. These have the bound N−2εDN−1/2. The

subscript t is again superfluous.

• L(3)
rst = ar,sar,t

〈
N(S∗isX),N(S∗itX)

〉
for s 6= t. These have the bound N−εDN−1/2.

• L(4)
rst = 2ar,sar,t

〈
N(S∗isX), (1−N)(S∗itX)

〉
for s 6= t. These have the bound N−εDN−1 ≤

N−2εDN−1/2, since we have a dot product of nearly orthogonal vectors, one of whose

lengths is in addition small.
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• L(5)
rst = ar,sar,t

〈
(1−N)(S∗isX), (1−N)(S∗itX)

〉
for s 6= t. These have the boundN−εDN−3/2 ≤

N−3εDN−1/2.

Note that L(1)
rst has the same bound O≺(N−1/2) as Dirir − 1, while L(2)

rst, . . . ,L
(5)
rst also contain

extra factors of N−εD .

Recall that the expression (4.90) is considered as fixed. Now we call a factor L(ιr)
rst lone if

ι = 1 and if in the expression (4.90) none of the following are satisfied:

1. There is another factor L(1)
r′s′t′ for r′ = r.

2. There is a factor L(2)
r′s′t′ for s′ = r.

3. There is a factor L(4)
r′s′t′ for t′ = r.

4. There is a factor L(5)
r′s′t′ for s′ = r or t′ = r.

The rationale behind this definition is that a lone factor L(ιr)
rst is independent of all the

other factors L(ιr′ )
r′s′t′ for r′ 6= r by Lemma 4.4.1, because it is a function of the length of yr,

whereas L(ιr′ )
r′s′t′ is a function of the direction of yr and of the vectors yr′ for r′ 6= r. The

reason there is no reference to a factor of type (3) in the definition of a lone L(ιr)
rst factor is

that a factor of type (3) is independent of the lengths of all vectors y1, . . . ,yp. We will see

very shortly the utility in this definition of lone factors.

Recall our partition P . See that

`i + 2(p− |P|) ≥ p, (4.91)

which follows from the equation

2 ·#(non-lone indices) + #(lone indices) ≤ p.

Let also `f be the number of lone factors in the expression (4.90).
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Lemma 4.4.2. We have ∣∣∣L(ι1)
1s1t1
· · · L(ιp)

1sptp

∣∣∣ ≺ N−(`i−`f)εDN−p/2.

Proof. The way this lemma should be thought about is that the fewer lone factors there

are, the more extra factors of N−εD you get. Say first that in the expression (4.90), ιr = 1

for r = 1, . . . , p. Then `f is equal to `i. r for which ιr = 2, we accumulate a deterministic

factor N−2εD and `f decreases by as much as 2, since the factor L(ιr)
rst is no longer of the

form (1)—therefore L(ιr)
rst cannot be lone—and it has the potential to force some other L(ιr′ )

r′s′t′

to cease to be lone. For example, if i1 and i2 are both lone indices, and if Di1i1 − 1 yields

a2
12(‖y1‖2−1), then L(ι1)

1s1t1
is not lone, and moreover, regardless of what Di2i2−1 yields upon

expansion according to (4.162), L(ι2)
2ssts may not be lone. Similarly, if any r is such that ιr is

3, 4 or 5, then `f is reduced by as much as 1, 2, or 3, respectively, and we simultaneously

accumulate a factor of N−εD , N−2εD , or N−3εD , respectively. This concludes the proof.

See at this point that equation (4.90) has the naive bound (naive in that we do not use

the expectation or exploit any independence)

≺ N−p/2N−(`i−`f)εD

∣∣∣∣∣∣
∑

i1,...,ip`P

E〈ei1 ,Mei1〉 · · ·
〈
eip ,Meip

〉∣∣∣∣∣∣
≺ N−p/2N−(`i−`f)εDN−2(p−|P|)εD

∑
i1,...,ip′
distinct

E
∣∣∣〈ei1 ,Mei1〉 · · ·

〈
eip′ ,Meip′

〉∣∣∣
≺ N−p/2N−(`i−`f)εDN−2(p−|P|)εD · 1

(4.92)

since 〈ei1 ,Mei1〉 ≺ N−2εD by Lemma 4.2.11.1, and Tr|M| ≺ 1. Combining equations (4.91)

and (4.92), we see that we only need to find `f more factors of −εD.

If L(ιr)
rst is lone, then it is centered and independent of all other factors L(ιr′ )

r′s′t′ for r′ 6= r,

so if we can perturb the factors 〈ei1 ,Mei1〉 · · ·
〈
eip ,Meip

〉
to make them also independent of

L(ιr)
rst , then the expression (4.90) will be 0 because of the expecation in it. The error terms
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associated to this perturbation will each have a form similar to (4.90), but with an additional

factor of at least N−εD . To put it symbolically,

(4.90) = 0 +N−εD (something resembling (4.90)) .

If L2 is also lone, one may perturb again to an expression with expectation 0; the error terms

associated to this perturbation will be smaller by an additional factor of N−εD , and so on,

one perturbation for each lone factor. In this way to we hope to add an additional factor of

N−`fεD to the bound (4.92). Constructing pertrubations with these properties is the object

of Lemmas 4.4.3 and 4.4.5.

Now we describe how to use independence to get these `f factors of −εD. Assume without

loss of generality and for notational simplicity that the lone factors are L(ι1)
1s1t1

, . . . ,L(ι`f )

`fs`f t`f
.

For a vector x ∈ RI , we define Px to be the linear operator which projects onto the span

of x.

Lemma 4.4.3. Fix a bounded number n and orthonormal vectors x1, . . . ,xn ∈ RIK∪IM .

Define a matrix flow t := (t1, . . . , t`f ) 7→ Gtx1,...,xn
through

where

Gtx1,...,xn
:=
(
Ht

x1,...,xn

)−1
,

Ht
x1,...,xn

:=

 −1 Xt
x1,...,xn(

Xt
x1,...,xn

)∗ −z


and

Xt
x1,...,xn

:= X +
n∑
r=1

tr

(
1

‖x∗rX‖
− 1

)
PxrX,

so that X1,...,1
x1,...,xn

is X with each of its xr components normalized, and Xt
x1,...,xn

interpolates be-

tween X = X0,...,0
x1,...,xn

and X1,...,1
x1,...,xn

. Then Ht is independent of ‖x∗rX‖ for each r ∈ {1, . . . , n}

for which tr = 1.

We will prove Lemma 4.4.3 at the end of this section. Now we will use it to complete the

proof of Theorem 4.1.7.
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For any choice of indices i := (i1, . . . , ip), we set n = `f and xr = Sir in Lemma 4.4.3 and

define the functions

gir(i, t) =
〈
eir ,M

t
Si1 ,...,Si`f

eir

〉
.

Definition 4.4.4. [Difference Operators] For any disjoint subsets {r1 6= · · · 6= rm} and

{s1 6= · · · 6= sn} of {1, . . . , `f}, we define the difference operators.

∆r1,...,rm : C([0, 1]{s1,...,sn,r1,...,rm})→ C([0, 1]{s1,...,sn})

inductively through

∆r1,...,rm = ∆r1 ◦∆r2,...,rm

and

(∆r1f)(ts1 , . . . , tsn) = f(ts1 , . . . , 0, . . . , tsn)− f(ts1 , . . . , 1, . . . , tsn)

where the 1 and 0 are in the position corresponding to r1. Note the ambiguity in the domain

of ∆r1,...,rm ; it acts on C([0, 1]{s1,...,sn,r1,...,rm}) in a well-defined way for any s1 6= . . . 6= sn ∈

{1, . . . , `f} \ {r1, . . . , rm}.

We may therefore write equation (4.90) as, for instance,

N−(`i−`f)εD
∑
i`P

Egi1(0) · · · gip(0)L̃i1 · · · L̃ip

= N−(`i−`f)εD
∑
i`P

E
(
gi1(1, 0, . . . , 0) + ∆1gi1(0)

)
· · ·
(
gip(1, 0, . . . , 0) + ∆1gip(0)

)
L̃i1 · · · L̃ip .

(4.93)

We can thus split each gi into two pieces according to each r = 1, . . . , `f . We define, for any

subset U ⊆ {1, . . . , `f},

gUi (i) :=

(∏
r∈U

∆r

)
g(i, 1, . . . , 1) = ∆Ug(i, 1, . . . , 1)

(
(∏

r∈{1,2,3}∆r
)

is the composition ∆1 ◦∆2 ◦∆3; one can verify this composition is commu-

tative). Implicitly, the domain of ∆Ug(i, ·) is [0, 1]{1,...,`f}\U . Then, we may write equation
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(4.93) as ∑
i`P

Eg1(i,0) · · · gp(i,0)L̃i1 · · · L̃ip

=
∑

U1,...,Up
⊆{1,...,`f}

∑
i`P

EgU1
1 (i) · · · gUpp (i)L̃i1 · · · L̃ip .

(4.94)

For any choice of U1, . . . , Up for which
∑p

a=1|Ua| < `f , we have necessarily for some r that

r 6∈ Ua for each a ∈ {1, . . . , `f}. Then gUaia (i) is independent of Sir for every a ∈ {1, . . . , `f},

so that ∑
i`P

Egs1i1 · · · g
sp
ip
L̃i1 · · · L̃ip = 0 (4.95)

since L̃ir is lone. Therefore we may restrict our attention to choices of U1, . . . , Up ⊆ {1, . . . , `f}

for which
∑p

a=1|Ua| ≥ `f .

Now, for any choice of U1, . . . , Up for which
∑p

a=1|Ua| ≥ `f , we have

N−(`i−`f)εD
∑
i`P

∣∣∣gU1
1 (i) · · · gUpp (i)L̃i1 · · · L̃ip

∣∣∣
≺ N−(`i−`f)εDN−p/2 ·

∑
i`P

∣∣gU1
1 (i)

∣∣ · · · ∣∣gUpp (i)
∣∣

≺ N−(`i−`f)εDN−
1
2
pN−2(p−p′)εD ·

∑
i1,...,ip′
distinct

∣∣gU1
1 (i)

∣∣ · · · ∣∣∣gUp′p′ (i)
∣∣∣.

(4.96)

We have the following lemma about the functions gU1
1 (i), proven at the end of this section.

Lemma 4.4.5. We have, for r = 1, . . . , p′,∑
ir

max
i1,...,ir−1,ir+1,...,ip′

∣∣gUrr (i)
∣∣ ≺ N−|U |rεD .

Thus, the above may be bounded by

≺ N−(`i−`f)εDN−εD
∑p
a=1‖sa‖N−

1
2
pN−2(p−p′)εD · 1

≤ N−(1/2−εD)p.

Thus we conclude the proof of Lemma 4.1.7.
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Proof of Lemma 4.4.3. For notational simplicity assume that t = (1, . . . , 1, tr0+1, . . . , t`f ),

and we must show that A(t) is independent of
∥∥S∗i1X∥∥, . . . ,∥∥∥S∗ir0X∥∥∥ (here we used that L̃ir

is a function of
∥∥S∗irX∥∥). By Lemma 4.4.1, since the matrix PSirX is a function of S∗irX, it

suffices to show that

X +

r0∑
r=1

(
1

‖SirX‖
− 1

)
PSirX (4.97)

is independent of
∥∥S∗isX∥∥ for any s = 1, . . . , r0. See that equation (4.97) may be written as

X +

r0∑
r=1

(
1

‖SirX‖
− 1

)
PSirX

=

(
I −

r0∑
r=1

PSir

)
X +

r0∑
r=1

1

‖SirX‖
PSirX.

(4.98)

Since 1
‖SirX‖

PSirX = 1
‖SirX‖

SirS∗irX is a deterministic function of 1
‖SirX‖

S∗irX, again by

Lemma 4.4.1 it suffices to show that
(
I −

∑r0
r=1 PSir

)
X is independendent of

∥∥S∗isX∥∥. Be-

cause the rows of

I −
r0∑
r=1

PSir = P(Si1 ,...,Sir0 )⊥

are all orthogonal to each of the vectors Si1 , . . . ,Sir0 , this too follows by Lemma 4.4.1, and

we conclude the proof of Lemma 4.4.3.

Proof of Lemma 4.4.5. Without loss of generality, we show the proof when r = 1. |U1|

applications of the intermediate value theorem show that it suffices to bound, letting U1 =

{r1, . . . , rs} and [`f ] = {1, . . . , `f},∑
i1

max
i2,...,ip′

max
t∈[0,1][`f ]:
ta=1∀a6∈U

|∂r1 · · · ∂rsg1(i, t)| ≺ N−sεD . (4.99)

A problem with the expression (4.99) is that for each i1, the values of t1, . . . , t2 may be

different. To get around this, we use the formula, for f : R[`f ] → R,

f(t) = f(0) + (∇f(0))∗t+ t∗(∇2f(t1))t
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for some t1 between 0 and t. Because of this, the left-hand side of equation (4.99) may be

written ∑
i1

max
i2,...,ip′

|∂r1 · · · ∂rsg1(i,0)|

+
∑
i1

max
i2,...,ip′

`f∑
a=1

O(1)|∂a∂r1 · · · ∂rsg1(i,0)|

+O

(∑
i1

max
i2,...,ip′

max
t∈[0,1][`f ]

`f∑
a=1

`f∑
b=1

O(1)|∂a∂b∂r1 · · · ∂rsg1(i, t)|

)
.

(4.100)

We claim the following lemma:

Lemma 4.4.6. For any fixed number n > 0 and r1, . . . , rn ∈ [`f ], we have, uniformly in i

and t,

∂r1 · · · ∂rng1(i, t) =


O≺(N−

1
2
−εD) (d1|v∗αU∗ (Gt − Π)Uei1|+ |v∗αei1|) n = 1

O≺(N−
n
2
−2εD) n ≥ 2.

With Lemma 4.4.6, the third line of equation (4.100) may be bounded by

NO≺(N−
s
2
−1−2εD) = O≺(N−sεD).

The first line of equation (4.100) may be bounded if s = 0 by∑
i1

max
i2,...,ip′

g1(i,0) =
∑
i1

e∗i1Mei1 = O≺(1)

as desired, if s = 1 by∑
i1

max
i2,...,ip′

∂r1g1(i,0) = O≺(N−1/2−εD)
∑
i1

(
d1

∣∣v∗αU∗ (Gt − Π
)
Uei1

∣∣+ |v∗αei1|
)

= O≺(N−εD)

by Cauchy-Schwarz, since perturbing t shows that ‖G− Π‖ ≺ 1 easily, and if s ≥ 2 by∑
i1

O≺(N−
s
2
−2εD) = O≺(N

s−2
2
−2εD) = O≺(N−sεD)

because εD ≤ 1/2. The second line of equation (4.100) may be bounded in the same way.

Thus we conclude the proof of Lemma 4.4.5.
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Proof of Lemma 4.4.6. We demonstrate for the case d1 � 1 only; it is easy to check that if

d1 � 1, the resolvent entries in the derivatives of M always provide enough factors of d−1
1

to cancel the factors of d1 in the definition of M. The basic ingredient is the derivative of

the resolvent

∂rG
t
Si1 ,...,Si`f

=

(
1∥∥S∗irX∥∥ − 1

)
Gt
(
SirS∗irX +X∗SirS∗ir

)
Gt,

which follows from equation (4.40). Note that

(
1

‖S∗irX‖
− 1

)
= O≺(N−1/2). It is easy to see

then that every term in ∂ir〈eir ,Meir〉 has a factor in{
S∗irG

tUvα,S∗irXG
tUvα

}
and a factor in {

v∗αeir ,v
∗
αU
∗(Gt − Π)Ueir

}
,

whereas every second and higher derivative ∂ir1 · · · ∂irn 〈eir ,Meir〉 has two factors in{
S∗irG

tUvα,S∗irXG
tUvα

}
.

It is easy to see, by perturbing in t, that ‖Gt‖ = ‖Gt(φN,α)‖ ≺ 1. To conclude the proof, it

only remains to demonstrate that∣∣S∗irGtUvα
∣∣+
∣∣S∗irXGtUvα

∣∣ ≺ N−εD .

Now

xGtUvα = x∗G0Uvα +

∫ 1

c=0

x∗
∂

∂c
GctUvα

= x∗G0Uvα +O≺

(
N−1/2 max

c∈[0,1]

∥∥Gct
∥∥2
)

for any (possibly random) x (in particular, we care about x = Sir or X∗Sir) and by Weyl’s

inequality, maxc∈[0,1]‖Gct‖ ≺ 1, so that it only remains to consider t = 0.

It is then a consequence of Lemma 4.4(i) of [KY17] that

S∗irXG
0Uvα = S∗ir

(
G0 + I

)
Uvα.
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Since S∗ir = S̃∗eir + O(N−εD) = eir + O(N−εD) and Uvα =
√

1
dα

vα + x for a deterministic

vector x ∈ RIK . Then result then follows from Lemma 4.2.7 and equation (4.21). S∗irG
0Uvα

is bounded similarly.

4.5 Proof of Lemma 4.1.8 under Assumption 1: vanishing third

moment

In this section we complete part of the proof of Lemma 4.1.8 (1). The work we do in

this section is actually sufficient for Lemma 4.1.8 (1) under the additional assumption that

E
(
X1
iµ

)3
= 0. The additional work which is necessary to remove the third moment condition

is postponed until the next section. The proof relies on the following two lemmas:

Lemma 4.5.1 (Lemma 7.9 of [KY17]). Given two matrix ensembles X0 and X1 with inde-

pendent entries, let ριiµ be the law of X ι
iµ for ι = 0, 1. Then define a law ρθiµ = θρ1

iµ+(1−θ)ρ0
iµ

for θ ∈ [0, 1], and let Xθ be a new ensemble with Xθ
iµ distributed according to ρθiµ. Then for

any smooth function F on RI,

∂

∂θ
EF

(
Xθ
)

=
∑

i∈IM∪IK
µ∈IN

[
EF

(
X
θ,X1

iµ

(iµ)

)
− EF

(
X
θ,X0

iµ

(iµ)

)]
(4.101)

where Xθ,y
(iµ) is an ensemble with independent entries whose law in every entry except the

entry iµ is given by the law of Xθ in that entry, but whose law in the iµ entry is that of a

random variable y.

We now particularly let F : R(IK∪IM )×IN → C be defined by

F (X) =

(∑
i∈IM

〈ei,M(D − I)ei〉

)p

. (4.102)

For a function F̃ : Mat(IK∪IM )×IN → C, we also define the partial derivative ∂iµ to the be

derivative with respect to the (i, µ)th entry of the argument of F̃ .
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Lemma 4.5.2. For any integer m ≥ 4, we have

N−m/2
∑
i∈IM
µ∈IN

∣∣E∂miµF (Xθ
iµ)
∣∣ = O≺

(
N (−1/2−εD)p

)
+ CEF (Xθ), (4.103)

and for any integer m ≥ 3,

N−m/2
∑
i∈IK
µ∈IN

∣∣E∂miµF (Xθ
iµ)
∣∣ = O≺

(
N (−1/2−ε)p)+ CEF (Xθ) (4.104)

for some ε > 0.

Proof of Lemma 4.1.8. For an entry iµ of X, we henceforth fix θ ∈ [0, 1] and let

f(iµ) : R→ R, f(iµ)(y) = F
(
Xθ,y
iµ

)
. (4.105)

We will rewrite the difference in equation (4.101), namely Ef(iµ)(X
1
iµ) − f(iµ)(X

0
iµ), as the

difference

Ef(iµ)(X
1
iµ)− f(iµ)(X

0
iµ) = E[f(iµ)(X

1
iµ)− f(iµ)(0)]− E[f(iµ)(X

0
iµ)− f(iµ)(0)] (4.106)

and then rewrite E[f(iµ)(X
1
iµ)−f(iµ)(0)] (and similarly the other term) using Taylor’s formula.

This looks like

E(f(iµ)(X
1
iµ)− f(iµ)(0)) =

m̄∑
m=1

Km(X1
iµ, X

θ
iµ)Ef (m)

(iµ)(X
θ
iµ) + Eiµ, (4.107)

where

Km(ζ, ξ) :=
∑
q≥0

(−1)q
∑

n,k1,...,kq≥1

1 (n+ k1 + · · ·+ kq = m)
Eζn

n!

q∏
j=1

Eξkj
kj!

(4.108)

and where

|E|iµ ≤ Cm+1 max
|y|≤|Xθ

iµ|+|X1
iµ|
f

(m+1)
(iµ) (y)

∑
c,d∈N:c+d=m+1

E(X1
iµ)cE(Xθ

iµ)d, (4.109)

where Cm is a constant depending only on m. What has happened in equation (4.107) is

two-fold: we have expanded out E(f(X1
iµ)− f(0)) as a Taylor polynomial centered at 0, and
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then we wrote all the derivatives at 0 as themselves Taylor polynomials centered at Xθ
iµ. The

advantage of this double application of Taylor’s formula is that we never, except in the error

term, use any ensemble but Xθ; i.e., except in the error term, we only evaluate the functions

of ensembles whose Green functions we are very confident that we can control, and when we

sum over iµ, we will have many expressions which are all in terms of the same matrix Xθ so

that there will be some simplification that happens in the sum.

Combining equations (4.107) and (4.101) gives us

∂

∂θ
EF

(
Xθ
)

=
m∑
m=1

∑
i∈IM∪IK
µ∈IN

(
Km(X1

iµ, X
θ
iµ)−Km(X0

iµ, X
θ
iµ)
)
Ef (m)

(iµ)(X
θ
iµ) + E

=
m∑
m=4

∑
i∈IM
µ∈IN

(
Km(X1

iµ, X
θ
iµ)−Km(X0

iµ, X
θ
iµ)
)
Ef (m)

(iµ)(X
θ
iµ)

+
m∑
m=3

∑
i∈IK
µ∈IN

(
Km(X1

iµ, X
θ
iµ)−Km(X0

iµ, X
θ
iµ)
)
Ef (m)

(iµ)(X
θ
iµ) + E .

(4.110)

Here we have split the sum in i into according to whether i belongs to IM or IK and then

used that (
Km(X1

iµ, X
θ
iµ)−Km(X0

iµ, X
θ
iµ)
)

= 0

for m = 1, 2, and additionally for m = 3 if i ∈ IM . The first term above is treated by

Proposition 4.6.0.1 in Section 4.6. Setting m = 6p and using the bound Km(X1
iµ, X

0
iµ) ≺

N−m/2 for any fixed positive integer m, the result now follows by Grönwall’s inequality,

Lemma 4.5.2 and Proposition 4.5.2.1, which is below.

Proposition 4.5.2.1. If m = 6p, then E =
∑

iµ Eiµ ≺ N−p.

Proof of propsition 4.5.2.1. Changing an entry of X by O≺(N−1/2) changes the operator
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norm of G by O≺(N−1/2), so that such a perturbed G still has operator norm O≺(1). Thus

max
|y|≤|Xθ

iµ|+|X1
iµ|
f

(m̄+1)
(iµ) (y) ≺ 1

uniformly in i, µ. Then E
∣∣X ι

iµ

∣∣p ≤ CpN
−p/2 allows us to conclude.

Remark 4.5.3. The error can just as easily be bounded under Assumption 2 with bounded

support condition |Xiµ| ≤ N−ε, replacing 6p with, say, 12p/ε.

4.5.1 Proof of Lemma 4.5.2

Write

F := F (X) = h(X)p, h := h(X) =
∑
j∈IM

〈ej, (M1 + M2 + M3)ej〉(Djj − 1).

We state two propositions:

Proposition 4.5.3.1. Under Assumption 1 and for i ∈ IM , the following bounds hold:

1. We have ∂iµh ≺ N−1/2−εD .

2. For m ≥ 2, we have ∂miµh ≺ N−2εD .

3. For m ≥ 2, we have ∂miµh = h
(IM )
m,iµ + h

(IN )
m,iµ, where

∑
i∈IM

∣∣∣h(IM )
m,iµ

∣∣∣2 ≺ N−2εD and∑
µ

∣∣∣h(IN )
m,iµ

∣∣∣2 ≺ N−2εD .

Proposition 4.5.3.2. Under Assumption 1 and for i ∈ IK, we have ∂iµh ≺ N−1/2 and

∂miµh ≺ N−εD for m ≥ 2.

Proof of Lemma 4.5.2. First we demonstrate equation (4.103). Our goal is to show

N−m/2
∑
iµ

∣∣E∂miµ (hp)
∣∣ = O≺(N (−1/2−εD)p). (4.111)
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Since m and p are fixed integers, we see that the left-hand side of equation (4.111) may be

written as a sum of boundedly many terms of the form

N−m/2
∑
iµ

∣∣E (∂m1
iµ h

)
· · ·
(
∂
mq
iµ h

)∣∣∣∣hp−q∣∣, (4.112)

where m1 + · · · + mq = m and m1 ≤ · · · ≤ mq. Now let q′ be the number of m1, . . . ,mq

which are equal to 1. If q − q′ = 0, then we have by Young’s inequality

(4.112) ≤ CN−m/2
∑
iµ

(∣∣E (∂m1
iµ h

)
· · ·
(
∂
mq
iµ h

)∣∣p/q + E|hp|
)
≤ Np(−1/2−εD) + E|hp|

since m ≥ 4. If q − q′ = 1,

(4.112) ≺ N (−1/2−εD)(q−1)N−m/2|h|p−q
∑
iµ

∂
mq
iµ h

≺ N (−1/2−εD)(q−1)N−m/2|h|p−q
(∑

µ

∑
i

h
(IM )
m,iµ +

∑
i

∑
µ

h
(IN )
m,iµ

)

≺ N (−1/2−εD)(q−1)N−1/2−εD |h|p−q,

(4.113)

where the last line follows from Proposition 4.5.3.1 and Cauchy-Schwarz, since m ≥ 4. We

conclude by Young’s inequality again.

We have now reduced to q − q′ ≥ 2. Now we have equation (4.112) may be bounded by

≺ N (−1/2−εD)q′N−m/2|h|p−q
∑
iµ

∂
mq′+1

iµ h · · · ∂mqiµ h

≺ N (−1/2−εD)q′N−m/2|h|p−q(N−2εD)q−q
′−2
∑
iµ

∂
mq−1

iµ h ∂
mq
iµ h

≺ N (−1/2−εD)q′N−m/2(4.112)(N−2εD)q−q
′−2

(∑
iµ

(∂
mq−1

iµ h)2
∑
iµ

(∂
mq
iµ h)2

) 1
2

.

Note that(∑
iµ

(∂
mq
iµ h)2

) 1
2

≺

(∑
iµ

∣∣∣h(IM )
m,iµ

∣∣∣2 +
∑
iµ

∣∣∣h(IN )
m,iµ

∣∣∣2 + 2
∑
iµ

h
(IM )
m,iµh

(IN )
m,iµ

) 1
2

≺ N1/2−εD , (4.114)
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where we applied Proposition 4.5.3.1 and used Cauchy-Schwarz again to bound the cross

term. Thus, we may bound equation (4.112) by

≺ N (−1/2−εD)q′N−m/2|h|p−q(N−2εD)q−q
′−2N1−2εD

≺ N (−1/2−εD)q′N−m/2|h|p−qN−εD(q−q′)N

= N−(1/2)q′N−m/2+1|h|p−qN−εDq

≤ N−(1/2)qN−εDq|h|p−q,

(4.115)

where the second line follows from the fact that q − q′ ≥ 2 and the last line follows m ≥

q − q′ + 2, which is a consequence of q − q′ ≥ 2 (ie, at least 2 of mq′+1, . . . ,mq are at least

2). We conclude again by Young’s inequality.

Now we demonstrate equation (4.104). Just as in the proof of equation (4.103), it suffices

to bound

(4.112) ≺ N (−1/2−ε)p. (4.116)

We will omit all the applications of Young’s inequality, which are done the same here as they

were previously. Let again q′ be the number of m1, . . . ,mq which are equal to 1. Consider

first q ≥ 3. We have then that equation (4.116) may be bounded by, using that |IK | = O(1),

and that m ≥ q′ + 2(q − q′),

N−
1
2
q′N−m/2+1 ≺ N−q+1. (4.117)

Now −q + 1 ≤
(
−1

2
− ε
)
q for ε := min{εD, 1/6} as long as q ≥ 3, so that

(4.112) ≺ N−(− 1
2
−ε)q|h|p−q.

So it only remains to consider the cases q = 1 and q = 2. If q = 1, then by Proposition

4.5.3.2,

(4.112) ≺ N−3/2NN−εD |h|p−q = N−1/2−εD |h|p−q (4.118)

as desired. Finally, if q = 2, then either exactly one of m1,m2 is 1, in which case equation

(4.112) may be bounded by

N−3/2NN−1/2N−εD |h|p−q = N−1−εD |h|p−q = N2(− 1
2
− εD

2 )|h|p−q (4.119)
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as desired, or m1 ≥ 2 and m2 ≥ 2, so that m ≥ 4, and equation (4.112) may be bounded by

N−2NN−2εD = N2(− 1
2
−εD)|h|p−q (4.120)

as desired. This completes the bound of equation (4.104) and Lemma 4.5.2.

It remains to prove Propositions 4.5.3.1 and 4.5.3.2. First, we will find a formula for the

derivatives of Mjj. Suppose m ≥ 1. For convenience, we define

ξ = G− Π. (4.121)

In the following discussion, we fix z = zα = φα + i0+, as before. Iterating the derivative

formula equation (4.40) gives

∂miµG =
∑

(i, j)∈B

cijGei1e
∗
j1
G · · · eime∗jmG, (4.122)

where

B = {((i1, . . . , im), (j1, . . . , jm)) : il, jl ∈ {i, µ}, il 6= jl} (4.123)

and the cij are constants.

Observe first that ∂miµ(M1)jj = 0. For M2, using the above derivative formula directly

yields

∂miµ(M2)jj = O(d
1/2
1 ) e∗j∂

m
iµ(U∗ξU)vαv

∗
αej

= O(d
1/2
1 )(Uej)

∗(∂miµξ)Uvαv
∗
αej

= O(d
1/2
1 ) ·

∑
(s, t)∈B

cst〈Uej, Ges1〉〈et1 , Ges2〉 · · · 〈etm , GUvα〉〈vα, ej〉.

(4.124)
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For M3, we obtain

∂miµ(M3)jj = O(d1)
m∑
k=0

(
m

k

)
e∗j∂

k
iµ(U∗ξ∗U)vαv

∗
α∂

m−k
iµ (U∗ξU)ej

= O(d1)
m∑
k=0

(
m

k

)
(Uej)

∗(∂kiµξ
∗)Uvα(Uvα)∗(∂m−kiµ ξ)Uej

= O(d1) ·
∑

(s, t)∈B

cst

(
〈Uej, ξ

∗Uvα〉〈Uvα, Ges1〉〈et1 , Ges2〉 · · · 〈etm , GUej〉

+
m−1∑
k=1

(
m

k

)
〈Uej, G

∗es1〉〈et1 , G∗es2〉 · · · 〈etk , G∗Uvα〉〈Uvα, Gesk+1
〉 · · · 〈etm , GUej〉

+ 〈Uej, G
∗es1〉〈et1 , G∗es2〉 · · · 〈etm , G∗Uvα〉〈Uvα, ξUej〉

)
.

(4.125)

We now use the fact that G = ξ + Π to rewrite all the terms above that contain G or G∗

in terms of ξ or Π. For instance,

〈es, Gv〉 = 〈es, ξv〉+ 〈es,Πv〉

so we obtain two terms, one in terms of ξ and one in terms of Π. We are now ready to prove

Proposition 4.5.3.1.

Proof of Proposition 4.5.3.1. First let us bound the first derivative. We recall

h =
∑
j∈IM

〈ej, (M1 + M2 + M3)ej〉(Djj − 1). (4.126)

We have then that

∂iµh =
∑
j∈IM

〈ej, (∂iµM1 + ∂iµM2 + ∂iµM3)ej〉(Djj − 1)

+
∑
j∈IM

〈ej, (M1 + M2 + M3)ej〉∂iµ(Djj − 1)

=:T1 + T2.

(4.127)
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Note that T1 and T2 implicitly depend on i, µ. We calculate

∂iµDjj = ∂iµ

∥∥∥e∗j S̃X∥∥∥2

= ∂iµ(S̃XX∗S̃∗)jj = (S̃∂iµ(XX∗)S̃∗)jj

= (S̃(Xeµe
∗
i + eie

∗
µX
∗)S̃∗)jj = 2S̃ji(S̃X)jµ.

(4.128)

For i ∈ IM , we have that S̃ij = (1− o(1))δij. Thus, we see that

T2 = 2〈ei, (M1 + M2 + M3)ei〉S̃ii(S̃X)iµ. (4.129)

Since
∥∥∥e∗αS̃∥∥∥ = 1, we have (S̃X)iµ ≺ N−1/2. By Theorem 4.2.7 and equation (4.21), we see

that

〈ei,Mei〉 = 〈ei,v〉〈v, ei〉+O(d
1/2
1 )〈ei, R∗U∗ξUv〉〈v, ei〉+O(d1)〈ei, R∗U∗ξ∗Uv〉〈v, U∗ξURei〉

≺ N−2εD + d
1/2
1 (d−1

1 N−1/2)d
−1/2
1 N−εD + d1(d−1

1 N−1/2)2

≺ N−εD ,

(4.130)

so that T2 ≺ N−1/2−εD , as desired.

We now bound T1. Since Djj − 1 = O≺(N−1/2), it is sufficient to show that∑
j∈IM

|〈ej, ∂iµMej〉| = O≺(N−εD). (4.131)

First, using equations (4.124) and (4.125), we see that 〈ej, ∂iµMej〉 is a sum of boundedly

many terms, each of which has one of the following three forms:

O(d
1/2
1 )〈Uej,W1es〉〈et,W2Uvα〉〈vα, ej〉 (4.132)

O(d1)〈Uej,W1Uvα〉〈Uvα,W2es〉〈et,W3Uej〉 (4.133)

O(d1)〈Uej,W1es〉〈et,W2Uvα〉〈Uvα,W3Uej〉, (4.134)

where Wk ∈ {ξ, ξ∗,Π,Π∗} and s, t ∈ {i, µ} with s 6= t. The bounds are similar for all three

forms, so we will consider equation (4.133). The idea is to apply Cauchy-Schwarz to the
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outer two factors in order to bound the sum in j, and to obtain a factor of N−εD from the

middle term. We must also find a factor of d−1
1 to offset the O(d1) in front.

Fix two deterministic vectors x,y. Then by the local law (Theorem 4.2.7), we have

〈x, ξ(zα)y〉 ≺ d−1
1 N−1/2‖x‖‖y‖. (4.135)

We also have

〈x,Π(zα)y〉 ≺ ‖x‖‖y‖, (4.136)

using the definition of Π. Moreover, if y ∈ RIN , we have

〈x,Π(zα)y〉 = m(zα)〈x,y〉 ≺ d−1
1 ‖x‖‖y‖ (4.137)

(and similarly for x ∈ RIN , using Π∗).

Suppose first that s = i, t = µ. Then using equations (4.135) and (4.136) and the

delocalization bound equation (4.21), we see that 〈Uvα,W2ei〉 ≺ N−εD , so that by Cauchy-

Schwarz, ∑
j

O(d1) |〈Uej,W1Uvα〉〈Uvα,W2ei〉〈eµ,W3Uej〉|

≺ d1N
−εD‖U∗W1Uvα‖‖(W3U)∗eµ‖.

(4.138)

Now since eµ ∈ RIN , we can use either equation (4.137) or (4.135), depending on whether

W3 is one of Π,Π∗ or ξ, ξ∗, to obtain

‖(W3U)∗eµ‖ = sup
‖x‖≤1

|〈x, (W3U)∗eµ〉| ≤ sup
‖x‖≤1

d−1
1 ‖Ux‖‖eµ‖. (4.139)

It follows that ∑
j

O(d1) |〈Uej,W1Uvα〉〈Uvα,W2ei〉〈eµ,W3Uej〉|

≺ N−εD‖U∗W1Uvα‖‖U‖op ≺ N−εD .

(4.140)

Now suppose that s = µ, t = i. Since eµ ∈ RIN , if W2 ∈ {Π,Π∗} we can use equation

(4.137) along with equation (4.21) to obtain 〈Uvα,W3eµ〉 ≺ d−1
1 N−εD . If W2 ∈ {ξ, ξ∗}

instead, we can use equation (4.135) to obtain 〈Uvα,W3eµ〉 ≺ d−1
1 N−1/2. We thus have
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∑
j

O(d1) |〈U∗ej,W1U
∗vα〉〈Uvα,W2eµ〉〈ei,W3Uej〉|

≺ N−εD‖UW1U
∗vα‖‖(W3U)∗ei‖

≺ N−εD .

(4.141)

Now let us bound the higher derivatives, m ≥ 2. We note that

∂2
iµ(Djj − 1) = 2∂iµS̃ji(S̃X)jµ = 2S̃2

ji (4.142)

and ∂miµ(Djj − 1) = 0 for m ≥ 3. We first show part (2). We have

∂miµh =
∑
j

〈ej, ∂miµMej〉(Djj − 1)

+ 2
∑
j

〈ej, ∂m−1
iµ Mej〉(S̃X)jµS̃ji + 2

∑
j

〈ej, ∂m−2
iµ Mej〉S̃2

ji

=:Tm
1 + Tm

2 + Tm
3

≺
∑
j

|〈ej, ∂miµMej〉|O≺(N−1/2)

+ |〈ei, ∂m−1
iµ Mei〉|O≺(N−1/2) + |〈ei, ∂m−2

iµ Mei〉|.

(4.143)

We can bound Tm
1 in exactly the same way as we did for T1 above, using equations

(4.124) and (4.125). We also see easily, similarly to the computation for m = 1, that

Tm
2 = O≺(N−1/2−εD) and Tm

3 = O≺(N−2εD).

We now show part (3). First note that∑
i

(Tm
1 )2 ≺ N(N−1/2−εD)2 ≺ N−2εD , (4.144)

and similarly for Tm
2 . It thus suffices to consider Tm

3 .

Using equations (4.124) and (4.125) with j = i, we see that Tm
3 consists of boundedly

many terms, each of which is bounded above (in the sense of ≺) by one of the following four

expressions:
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O(d
1/2
1 )|〈et,W1Uvα〉〈vα, ei〉| (4.145)

O(d1)|〈x,W1Uvα〉〈Uvα,W2es〉〈et,W3eu〉〈ev,W4y〉| (4.146)

O(d1)|〈x,W1es〉〈et,W2Uvα〉〈Uvα,W3eu〉〈ev,W4y〉| (4.147)

O(d1)|〈x,W1es〉〈et,W2eu〉〈ev,W3Uvα〉〈Uvα,W4y〉| (4.148)

where Wk ∈ {ξ, ξ∗,Π,Π∗}, s, t, u, v ∈ {i, µ}, s 6= t, u 6= v, and x,y ∈ {ei, eµ, Uei, U
∗ei}.

The desired bound for terms of type (4.145) follows immediately from equation (4.21).

The bounds for the other three types are somewhat similar to one another, so we will show

the bound only for (4.147).

There are two cases: if t = µ, then eµ ∈ RIN so we can use equations (4.135), (4.137),

and (4.21) to bound 〈eµ,W2Uvα〉 ≺ d−1
1 N−εD . We then square sum over the third factor,

either in i or µ, according to whether u is i or µ. We bound the other two factors trivially

by O≺(1). This gives∑
u

O(d2
1)|〈x,W1es〉〈et,W2Uvα〉〈Uvα,W3eu〉〈ev,W4y〉|2 ≺ N−2εD‖(W3)∗Uvα‖2

≺ N−2εD .

(4.149)

If t = i, then we instead obtain O≺(N−εD) from the second factor, obtain O(d−1
1 ) from

either the third or the fourth factor (whichever one contains eµ: here we use equations (4.135)

and (4.137)) and square sum over the first factor in µ. This gives a bound of O≺(N−2εD),

and completes the proof of part (3).

Proof of Proposition 4.5.3.2. We have

∂iµh =
∑
j∈IM

(∂iµMjj) (Djj − 1) +
∑
j∈IM

Mjj (∂iµ(Djj − 1)) . (4.150)
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By our previous manipulations, it is easy to see that
∑

j∈IM |∂iµMjj| and
∑

j∈IM |Mjj| are

O≺(1). Also, Djj − 1 and ∂iµ(Djj − 1) are O≺(N−1/2). This completes what was was to be

proven for ∂iµh.

Similar, we have seen earlier in the section that
∑

j∈IM

∣∣∂miµMjj

∣∣ = O≺(1), and because

i ∈ IK , we also have by equations (4.128) and (4.142) that ∂miµ(Djj − 1) = O≺(N−εD). This

completes the proof of Proposition 4.5.3.2.

4.6 General Third Moment Condition

In order to establish universality for random matrix ensembles with general third moments,

recalling our work in the previous two sections, it only remains to establish:

Proposition 4.6.0.1. Fix a ∈ {1, 2, 3} and let h =
∑

j(Ma)jj(Djj − 1). Then,

E
∑
i∈IN
µ∈IM

Kθ
3,iµ

(
∂s1iµh

)
· · ·
(
∂
sp
iµh
)
≺ N−p(1/2−εD) + E|h|p, (4.151)

where
∑q

a=1 sa = 3, sa ≥ 0, and Kθ
3,iµ := K3(X1

iµ, X
θ
iµ)−K3(X0

iµ, X
θ
iµ).

This is very close to what we already bounded in Section 4.5, except that we must extract

an extra N−1/2. Moreover, we have defined h in terms of a single term Ma rather than in

terms of M; this change is not consequential since we allows a = 1, 2 or 3 in the proof; it is

merely to solve a small notational difficulty.

In this section, the fixed value of α ∈ {1, . . . , K} will not be mentioned at all; we

abbreviate v := vα be the αth eigenvector of B#, which appears in the definition of M. We

will instead use α as an index for general summations.

We will only treat the case of d1 � 1. The only difference between this and the case of

d1 →∞ is that derivatives of h have powers of d−1
1 which cancel out the powers of d1 in the

definition of M, but this is very easy to see and a nuisance to keep track of.
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Proof of Proposition 4.6.0.1. We replace, as in Section 4.5, each derivative ∂s1iµh with a sum

of boundedly many terms of the following form:∑
j∈IM

∂r1iµ〈ej, (M1 + M2 + M3)ej〉∂s1−r1iµ (Djj − 1). (4.152)

According to the equations (4.124) and (4.125), we write, abbreviating K3 := K3(X1
iµ, X

θ
iµ)−

K3(X0
iµ, X

θ
iµ) (suppressing the dependence on iµ, which is not consequential),

E
∑
iµ

K3

∑
j1,...,jq

p∏
α=1

∂rαiµ 〈ejα , (M1 + M2 + M3)ejα〉∂sα−rαiµ (Djαjα − 1)

=
∑

m1,...,mq

E
∑
iµ

K3

∑
j1,...,jq

p∏
α=1

Cmα

rα+2∏
nα=1

pα,mα,nα∂
sα−rα
iµ (Djαjα − 1),

(4.153)

where

pα,mα,nα = 〈xα,mα,2nα−1,Wα,mα,nαxmα,2nα〉, (4.154)

where xα,mα,1 = xα,mα,2rα+4 ∈ {ejα} for each α = 1, . . . , q, and where

Wα,mα,nα ∈ {UΠU∗, G, UG,GU∗, UGU∗, I}.

From this point on, we consider the choice of m = (m1, . . . ,mp) to be fixed, and we denote

Cm :=
∏p

α=1Cmα . We will now drop the bounded constant Cm and the sum over the sum

over the boundedly many values of m and not mention them again, and we will drop all mα

subscipts from our notation.

Let q0, q1, q2 ∈ N≥0 be such that q0 + q1 + q2 = q, and without loss of generality let

α ∈ J1, q0K satisfy sα > 0, sα− rα = 0, let α ∈ Jq0 + 1, q0 + q1K satisfy sα > 0, sα− rα = 1, let

α ∈ Jq0+q1+1, q0+q1+q2K satisfy sα > 0, sα−rα = 2, and let α ∈ Jq0+q1+q2+1, pK = Jq+1, pK

satisfy sα = 0. Recall that sα−rα > 2 for any α makes (4.153) equal 0, so we do not consider

this possibility. Because ∂siµ(Djj − 1) = O(δij + δi∈IK ) for s ≥ 1, and since i in this section

only ranges over IM , we may write the equation (4.153),

E
∑
iµ

K3

∑
j1,...,jq0

p∏
α=1

rα+2∏
nα=1

pα,nα∂
sα−rα
iµ (Djαjα − 1), (4.155)
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where jα := i for α > q0.

The work of proving Proposition 4.6.0.1 is then divided as follows:

Proposition 4.6.0.2. If q1 ≥ 1, equation (4.155) may be bounded by N (−1/2−εD)p +CE|h|p.

Proposition 4.6.0.3. If q1 = 0, equation (4.155) may be bounded by N (−1/2−εD)p +CE|h|p.

Let us conclude this subsection by first treating the case that q1 ≥ 1.

Proof of Proposition 4.6.0.2. The heuristic of this proof is simple: for each α ∈ J1, p − qhK,

we can find a factor with a v in it to contribute a N−εD . For α ∈ J1, q0K, we may also

find two factors with jα to cancel the sum over jα, as well as a factor of N−1/2 from the

∂0
iµ(Djαjα − 1), while for α ∈ Jq0 + q1 + 1, q0 + q1 + q2K, we have no jα over which to sum,

but we have a factor containing ei, which functions as a factor of N−1/2 by reducing the

size of the sum over i. For α ∈ Jq0 + 1, q0 + q1K, however, we have both a factor of N−1/2

from the ∂1
iµ(Djαjα − 1) and a factor containing i (and no jα over which to sum). So every

α ∈ J1, q0 + q1 + q2K contributes a N−1/2−εD , and α ∈ Jq0 + 1, q0 + q1K contribute additional

factors of N−1/2.

The assumption of this proposition is that q1 ≥ 1. It follows from equations (4.124) and

(4.125) that for each α ∈ J1, q0 + q1 + q2K, there is an n
(1)
α such that v ∈ {x

α,2n
(1)
α −1

,x
α,2n

(1)
α
};

and there is moreover, for each α ∈ J1, q0K, values n
(3)
α 6= n

(4)
α , distinct from n

(1)
α , such that

jα ∈ {xα,2n(3)
α −1

,x
α,2n

(3)
α
} ∩ {x

α,2n
(4)
α −1

,x
α,2n

(4)
α
}; and there is again, for each α ∈ Jq0 + 1, pK, a

value n
(2)
α , distinct from n

(1)
α , for which ei ∈ {xα,2n(2)

α −1
,x

α,2n
(2)
α
}.

Since ∑
jα

∣∣∣p
α,n

(3)
α

p
α,n

(4)
α

∣∣∣ ≺ 1,

since
∣∣∣p

α,n
(1)
α

∣∣∣ ≺ N−εD , and since ∂sα−rαiµ (Djαjα−1) = O≺(N−1/2) for each α ∈ J1, . . . , q0 +q1K,
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equation (4.155) may be bounded in absolute value by, using K3 = O≺(N−3/2),

EN−(q0+q1)/2N−qεDN−3/2
∑
iµ

q∏
α=p0+1

∣∣∣p
α,n

(2)
α

∣∣∣|h|p−q. (4.156)

Now we proceed by cases: if q2 = 1, then because q1 ≥ 1 and 3 = m ≥ q0 + q1 + 2q2, we

necessarily have q0 = 0 and q1 = 1, and thus q = 2. Note that√∑
i

∣∣∣p
α,n

(2)
α

∣∣∣2 ≺ 1 (4.157)

for α ≥ q0 + 1 and that the product
∏q

α=q0+1 has 2 factors in it. Thus, equation (4.156) may

be bounded by, using Cauchy-Schwarz,

EN−1/2N−qεDN−3/2N |h|p−q = N−2(1/2+εD)E|h|p−2 (4.158)

and then Young’s inequality produces the desired result. If rather q2 = 0 (since m = 3, it is

impossible for q2 > 1), then equation (4.156) is bounded by

EN−q/2N−qεDN−3/2N3/2|h|p−q = N−q(1/2+εD)E|h|p−q (4.159)

since the product
∏q

α=q0+1 has at least 1 factor in it. The result then follows again by Young’s

inequality. This concludes the proof of Proposition 4.6.0.2.

Now, restricting to q1 = 0, we may write equation (4.155) as

E
∑
iµ

K3

∑
j1,...,jp−q2

p−q2∏
α=1

rα+2∏
nα=1

pα,nα(Djαjα − 1)

rp+2∏
np=1

pp,np

q2

, (4.160)

where we recall that q2 may only by 0 or 1, and we have that if q2 = 1, recalling equation

(4.154),

xp,1 = xp,2rp+4 = ei.

4.6.1 Identities for characterising dependence on Xeµ

In order to prove Proposition 4.6.0.3, which is done in the next subsection, we must find an

extra factor of N−1/2. Consider the following identities, which we have adapted from [KY17]

95



wherein the technique of this section was developed: for any vectors x,y ∈ RIK∪IM , we have

Gxµ = −Gµµ(G(µ)X)wµ

Gxy = G(µ)
xy +Gµµ(G(µ)X)xµ(X∗G(µ))µy

Gµµ =
L∑
`=0

Yµ`(X∗G(µ)X)`µµ +O≺(N−p),

(4.161)

where Yµ` are uniformly O≺ bounded random variables independent of Xeµ and L is a fixed

constant (dependending on p, which in this argument is considered fixed). In what follows,

Y will always denote a random variable which is implicity indexed by all indices present and

which is O≺ bounded and indpenedent of Xeµ; thus we treat Y somewhat like a constant,

and the particular value of Y may change from one line to the next. The first two identities

follow from basic resolvent identities, and the third may be derived as follows: using the

identity
1

Gµµ

= −z − (X∗G(µ)X)µµ

from [KY17], lemma 4.4, we get

Gµµ = (−z − Yµ − Zµ)−1 =
L∑
`=0

(−z − Yµ)−`−1Z`
µ +O≺(N−p),

where

Zµ := (X∗G(µ)X)µµ − Yµ, Yµ := E
[
(X∗G(µ)X)µµ|Xµ

]
=

1

N

∑
j∈IM

G
(µ)
jj

and the truncation is permissible for sufficiently large L by Lemma 4.2.7.

The purpose of the three identities (4.161) is to break up all the resolvent entries which

we will encounter in our proof into a piece independent of Xeµ and a piece formed from

Xeµ. Note that the parity of the number of entries of X in each resolvent identity for Gw1w2

is equal to the parity of the number of {w1,w2} which are µ. This is crucial.

We need a similar, though simpler, identity for the factors Djj − 1: we have

Djj − 1 =
(
D

(µ)
jj − 1

)
+ (S̃X)2

jµ, D
(µ)
jj :=

∑
j′∈IM\{j}

(S̃X)2
j′µ. (4.162)
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With the identities (4.161), we adopt the following notation for pα,nα = Gx,µ, Gx,y, or

Gµµ, where x,y ∈ RIK∪IM and µ ∈ IN . If pα,nα = Gµµ, then we define p
(−1)
α,nα = 0 and

p(`)
α,nα :=

(
p(`)
α,nα

)
k1,...,k2`

:= Y
∏̀
β=1

G
(µ)
k2β−1,k2β

so that, choosing L large enough here and in the following equations,

pα,nα =
L∑

`=−1

∑
k1,...,k2`
∈IK∪IM

p(`)
α,nα

2∏̀
β=1

Xkβµ +O≺(N−p).

If pα,nα = Gxµ we define p
(−1)
α,nα = 0 and

p(`)
α,nα :=

(
p(`)
α,nα

)
k1,...,k2`+1

= YG(µ)
xk1

∏̀
β=1

G
(µ)
k2βk2β+1

for ` ≥ 0, so that

pα,nα =
L∑

`=−1

∑
k1,...,k2`+1
∈IK∪IM

p(`)
α,nα

2`+1∏
β=1

Xkβµ +O≺(N−p).

If pα,nα = Gxy, we define p
(−1)
α,nα = G

(µ)
xy and

p(`)
α,nα := YGxk1Gk2y

∏̀
β=1

G
(µ)
k2`+1k2`+2

for ` ≥ 0, so that

pα,nα =
L∑

`=−1

∑
k1,...,k2`+2
∈IK∪IM

p(`)
α,nα

2`+2∏
β=1

Xkβµ +O≺(N−p).

Lastly, if Wα,nα ∈ {UΠU∗, I}, we define p
(`)
α,nα := pα,nα for ` = 0 and p

(`)
α,nα := 0 otherwise.

In this case we also observe that xα,1, . . . ,xα,2nα+4 6= eµ.
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4.6.2 Proof of Proposition 4.6.0.3

Thus we may write equation (4.160), reordering labels if necessary,

∑
`

E
∑

k1,...,knX

∑
iµ

K3

 ∑
j1,...,jn∆

P1

 ∑
jn∆+1,...,jp−q2

P2

P3 +O≺(N−p)

P1 := (P1)i,µ,k,j :=
∑

j1,...,jn∆

n∆∏
α=1

rα+2∏
nα=1

p(`α,nα )
α,nα

(
E

nX∏
α=1

Xkαµ

n∆∏
α=1

(S̃X)2
jαµ

)

P2 := (P2)i,µ,k,j :=

p−q2∏
α=n∆+1

rα+2∏
nα=1

p(`α,nα )
α,nα (D

(µ)
jαjα
− 1)

P3 := (P3)i,µ,k :=

rp+2∏
np=1

p
(`p,np )
p,np

q2

,

(4.163)

where

` = (`1,1, . . . , `1,r1+2, . . . , `p,1, . . . , `p,rp+2) ∈ J1, LK
∑p
α=1(rα+2).

We now fix a choice of ` and drop the sum over `. We are able to add the expectation into

P1 like we have done because every other factor in P1,P2,P3 is independent of Xeµ.

Note that only P1 depends on j1, . . . , jn∆
while P2,P3 do not. Similarly only P2 depends

on jn∆+1, . . . , jp−q2 .

Now consider a tuple

(k1, . . . , knX , j1, . . . , jn∆
) = (k, j) ∈ (IK ∪ IM)nX × In∆

M .

Just to allow us to make the following necessary definition consicely, define, for α ∈ 1, . . . , n∆,

the alias knX+α = jα. Now we define a very slight generalization of a partition of the indices

{1, . . . , nX+n∆} which we will call a signature. A signature P of the symbols {1, . . . , nX+n∆}

is a pair

P = (A1, {A2, . . . , An})

such that {A1, A2, . . . , An} is a partition of {1, . . . , nX + n∆}—that is, a signature is a

partition with one distinguished block. We call A1, . . . , An blocks of the signature. We say

that a tuple (k, j) satisfies P and write (k, j) ` P if
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1. α ∈ A1 if and only if kα ∈ IK . Note that since jα 6∈ IK , necessarily α ∈ {1, . . . , nX} in

this case.

2. α, α′ are in the same element of {A2, . . . , An} if and only if kα, kα′ 6∈ IK and kα = kα′ .

Let us now fix a signature P for the remainder of the proof. Also define ε = min{εD, 1/4}.

Let P ′ be the partition {A2, . . . , An} of {1, . . . , nX +n∆}\A1. We form a choice set from

P ′, taking one element αa from each block Aa for each a = 2, . . . , n, in such a way that if

Aa contains any index in {nX + 1, . . . , nX + n∆}, then αa ∈ {nX + 1, . . . , nX + n∆}. For

notational simplicity and without loss of generality, we assume that

(α2, . . . , αn) = (1, . . . , n′X , nX + 1, . . . , nX + n′∆)

and that

A1 = {n′X + 1, . . . , n′X + nK}.

This is all to say that we can write∑
k1,...,knX

∑
j1,...,jn∆

1(k,j)`P (· · · )

as ∑
kn′x+1,...,kn′

X
+nK

∈IK

∑
k1,...,kn′

X
∈IM

∑
j1,...,jn′

∆

1(k,j)`P (· · · ) (4.164)

for any expression (· · · ), and in the above sum no index k1, . . . , kn′X is identified with any

index j1, . . . , jn′∆ . Let now ñdiag be the number of pairs

(α, b) ∈ {(1, 1), (1, r1 + 2)), . . . , (n′∆, 1), (n′∆, rn′∆ + 2)}

for which `α,b ≥ 0. Also let ndiag ≤ ñdiag be the number of those pairs among the ñdiag

for which α and β(α, b) are identified by P . The number ndiag is important because the

identification of jα with kβ(α,b) means that
∑

jα
p

(`α,b)

α,b = O(N) rather than O(N1/2), leading

to a potentially worse estimate for the sum (4.164); however, the identification of jα with

kβ(α,b) also reduces the number of indices in the sum, and this will offset the potential loss.
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Define also the number

nK := nK(P ) = |A1|.

For brevity, define

Xk,j := E
nX∏
α=1

Xkαµ

n∆∏
α=1

(S̃X)2
jαµ,

which has the bound N−nX/2−n∆ .

Proof of Proposition 4.6.0.3. We state the following three lemmas, which are proven after

the conclusion of the current proof.

Lemma 4.6.1. We have

∑
j1,...,n∆

1(k,j)`P |P1| ≺

(
N−1/2 + |〈ei, U∗Πv〉|+

nX∑
α=1

|〈ekα , U∗Πv〉|

)1ñdiag
6=0

·Nndiag/2−nX/2−n∆−ε1nK=1

(4.165)

uniformly in all indices i, µ, k1, . . . , knX , jn∆+1, . . . , jp−q2.

Lemma 4.6.2. Let c = p− q2 − n∆. We have that if (k, j) ` P , then P2 satisfies∑
jn∆+1,...,jp−q2

|P2| ≺
(
E|h|c +N−(1/2+ε)c

)
N εnK

uniformly in all indices i, µ, k1, . . . , knX , j1, . . . , jn∆
.

Lemma 4.6.3. We have

N−3/2
∑
iµ

|P3|
(
N−1/2 + |〈ei, U∗Πv〉|

)
=


1 q2 = 0;

O(N−1/2−εD) q2 = 1

uniformly in all indices k1, . . . , knX , j1, . . . , jp−q2.

The way to intepret the complicated exponentiated factor in Lemma 4.6.1 is that in the

case that ñdiag 6= 0, we get an additional factor which sums to N1/2 rather than N over i or

over some kα. We will need this improvement of a factor of N−1/2 in the case that ñdiag 6= 0

since in that case the parity argument which we would hope to help us actually fails.
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By Lemmas 4.6.1 and 4.6.2, we bound∣∣∣∣∣∣
∑
iµ

K3

 ∑
j1,...,jn∆

P1

 ∑
jn∆+1,...,jp−q2

P2

P3

∣∣∣∣∣∣
≺
∑
iµ

K3|P3|

(
N−1/2 + |〈ei, U∗Πv〉|+

nX∑
α=1

|〈ekα , U∗Πv〉|

)ñdiag

·Nndiag/2−nX/2−n∆N−ε1nK=1N εnKE
(
N−(1/2+ε)(p−q2−n∆) + |h|p−q2−n∆

)
,

By Lemma 4.6.3, this is

≤ A(ñdiag)N (−1/2−εD)q2Nndiag/2−nX/2−n∆N−ε1nK=1N εnK

· E
(
|h|p−q2−n∆ +N−(1/2+ε)(p−q2−n∆)

)
,

where

A(n) =


(
1 +N1/2

∑nX
α=1|〈ekα , U∗Πv〉|

)
n 6= 0

N1/2 n = 0.

Using εD < 1/2, we see that this is

≤ A(ñdiag)Nndiag/2−nX/2N−ε1nK=1N εnK

· E
(
N (−1/2−ε)(n∆+q2)|h|p−q2−n∆ +N−(1/2+ε)p

)
.

Now we prepare to sum over k1, . . . , knX . We find that n′X ≤ b
nX−ndiag−nK

2
c lest Xk,j = 0—

indeed, ndiag + nK are already in IK or paired with an index jα which has already been

summed over; the remaining indices must at least pairwise identify, lest there be an index

kα0 which is distinct from all other indices, and then Xk,j would be 0 by the independence

of the entries of X.

Note now that ∑
k1,...,kn′

X

A(ñdiag) ≤ N
nX−ndiag−nK

2
+ 1

2
1nK 6=0 ,

which follows from Cauchy-Schwarz if ñdiag 6= 0, and otherwise is trivial if nK = 0 but follows

from the fact that nX is odd if nK = 0.
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Therefore equation (4.163) may be bounded by

≺ NnX/2−ndiag/2−nK/2+ 1
2
1nK 6=0Nndiag/2−nX/2N−ε1nK=1N εnK

· E
(
N (−1/2−ε)(n∆+q2)|h|p−q2−n∆ +N−(1/2+ε)p

)
≤ 1 · E

(
N (−1/2−ε)(n∆+q2)|h|p−q2−n∆ +N−(1/2+ε)p

)
,

which follows from −nK
2

+ 1
2
1nK 6=0 − ε1nK=1 + εnK ≥ 0. We conclude by Young’s inequality

and by summing over the boundedly many signatures P .

Proof of Lemma 4.6.1. Notice that for each pair (α, b) among the number ñdiag, we have

p
(`α,b)

α,b =
〈
ejα ,Wekβ(α,b)

〉
O≺(1) (4.166)

for an index β(α, b) ∈ {1, . . . , nX} and a matrix W of operator norm O≺(1).

Recalling the number nK , we proceed by cases on nK . First, if nK 6= 1, we may bound

equation (4.165), using the reduction (4.164) and recalling the definition of ndiag, by

≺
n′∆∏
α=1

(∑
jα

∣∣∣p(`α,1)
α,1 p

(`α,rα+2)
α,rα+2

∣∣∣)1(k,j)`PXk,j

≺ Nndiag/2N−nX/2−n∆ ,

(4.167)

which follows by Cauchy-Schwarz.

Next, if nK = 1, we note that we can actually get a stronger bound on Xk,j : by writing

(S̃X)jαµ = S̃jαjαXjαµ +
∑
β∈IK

S̃jαβXβµ = S̃jαjαXjαµ +O(N−εD−1/2),

we see that

Xk,j = E
nX∏
α=1

Xkαµ

n∆∏
α=1

(S̃jαjαXjαµ)2 +O≺
(
N−nX/2−n∆−εD

)
= 0 +O≺

(
N−nX/2−n∆−εD

)
by independence. Then, as before, we can bound equation (4.164) by

≺ Nndiag/2N−nX/2−n∆−εD
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as desired.

Now we must account for the strange exponentiated factor. If ñdiag = 0, we are done.

Otherwise, we merely note that ñdiag 6= 0 implies that, improving on equation (4.166),

p
(`α,b)

α,b =
〈
ejα ,Wekβ(α,b)

〉(
〈eµ, U∗Gv〉+ 〈ei, U∗Gv〉+

nX∑
α=1

〈ekα , U∗Gv〉

)
O≺(1),

at which point Lemma 4.2.7 allows us to conclude.

Proof of Lemma 4.6.2. We can factor

∑
jn∆+1,...,jp−q2

P2 =

p−q2∏
α=n∆+1

∑
jα

rα+2∏
nα=1

p(`α,nα )
α,nα . (4.168)

Now, similarly to in the proof of Proposition 4.6.0.2, if rα ≥ 1, then

∑
jα

∣∣∣p(`α,1)
α,1 p

(`α,rα+2)
α,rα+2

∣∣∣ = O≺(1),

while for some 1 < nα < rα + 2 we have p
(`α,nα )
α,nα = 〈v, UGy〉 for y ∈ {ei, ekβ} for some

β ∈ {1, . . . , nX}; thus
∣∣∣p(`α,nα )

α,nα

∣∣∣ ≺ N−εD if y = ei or if kβ ∈ IK and ≺ 1 otherwise.

Similarly, if rα = 0 and `α,1, `α,2 are not both −1, say `α,2 6= −1, then∣∣∣p(`α,1)
α,1 p

(`α,2)
α,2

∣∣∣ ≺ |〈ejα ,W1y1〉〈v,W2y2〉〈y3,W3ejα〉|,

where W1, . . . ,W3 ∈ {Π, G, UG,GU∗, UGU∗, I} and y1, . . . ,y3 are each either ekβ or v;

thus we may bound ∑
jα

rα+2∏
nα=1

∣∣p(`α,nα )
α,nα

∣∣ ≺ N−εD

if kβ ∈ IM and ≺ 1 otherwise.

Finally, if rather rα = 0 and `α,1 = `α,2 = −1, corresponding to the leading order term

in the application of the identities (4.161) to an undifferentiated term of M, we have

p
(−1)
α,1 p

(−1)
α,2 =

(
M(µ)

a

)
jαjα

,
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where we define M(µ) = M
(µ)
1 + M

(µ)
2 + M

(µ)
3 through the definition of M, replacing the

matrix G with the matrix G(µ).

Assuming now for notational simplicity that α = p′+1, . . . , p−q2 satisfy rα = 0, `α,1 = `α,2

and that α = n∆ + 1, . . . , p′ do not, we may now, defining,

h(µ) =
∑
j

(M(µ)
a )jj(Djj − 1),

write equation (4.168) as

O≺(N εDnK )

p′∏
α=n∆+1

EO≺(N−1/2−εD)

p−q2∏
α=p′

h(µ),

which may then, by Young’s inequality, be bounded by

O≺ (N εDnK )
(
O≺
(
N (−1/2−εD)(p−q2−n∆)

)
+ E

∣∣h(µ)
∣∣p−q2−n∆

)
.

We conclude the proof of Lemma 4.6.2 with the help of the following lemma, proven at the

end of this section.

Lemma 4.6.4. For any fixed number b, we have

E
∣∣h(µ)

∣∣b ≤ CE|h|b +O≺
(
N (−1/2−εD)b

)
.

Proof of Lemma 4.6.3. For ease of illustration, recalling the definition of a in Lemma 4.6.0.1,

we show the proof for a = 2. The proof is easier otherwise. If q2 = 0, the lemma is trivial.

Otherwise, if rp = 0, then

∑
i

∣∣∣∣∣∣
rp+2∏
np=1

pp,np

∣∣∣∣∣∣ =
∑
i

|e∗iU(G− Π)U∗vv∗ei| ≺ 1

because of the presence of two factors 〈ei,Wx〉 for a fixed vector x and a matrix W of

bounded operator norm. It is easy to see that this same reasoning holds for

rp+2∏
np=1

p
(`p,np )
p,np ,
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except that the fixed vector x might be kα. Lemma 4.6.3 then follows since |〈ei, U∗Πei〉| =

O(N−εD) by Proposition 4.2.11.1.

If rather rp = 1 (this is the only other option, since we recall sp− rp = 2 and
∑

α sα = 3),

then

∑
i

∣∣∣∣∣∣
rp+2∏
np=1

pp,np

∣∣∣∣∣∣ ≤
∑
i

(∣∣2e∗iUGeie
∗
µGU

∗vv∗ei
∣∣+ |2e∗iUGeµe

∗
iGU

∗vv∗ei|
)
≺ 1,

since we can bound the second term by the same reasoning as above and the first term by

Cauchy-Schwarz, since we have one factor |〈v,Wx〉| and one factor O≺(N−1/2), by Lemma

4.2.7 since 〈eµ,ΠU∗v〉 = 0.

Proof of Lemma 4.6.4. By Young’s inequality, it suffices to show that |h− hµ| ≺ N−1/2−εD .

Whereas the manipulations in Section 4.6.1 for removing dependence on Xeµ were some-

what lengthy, the identities for adding it back in are short. The following is a well-known

resolvent identity, see eg [KY17] lemma 4.4: for vectors x,y ∈ RIK∪IM ,

G(µ)
xy = Gxy −

GxµGµy

Gµµ

.

For ease of illustration, we show this for the case a = 2, where a was defined in the statement

of Proposition 4.6.0.1. The cases of a = 1 and a = 3 are respectively trivial and similar. See

that, recalling that we are only treating the case d1 � 1,

h− h(µ) = O(1)
∑
j

e∗jUGeµe
∗
µGU

∗vv∗ej(Djj − 1)

+O(1)
∑
j

e∗jU(G− Π)U∗vv∗ej(S̃X)2
jµ,

and by Lemma 4.2.7 this is, since U∗ej and U∗v are orthogonal to eµ and Π is a multiple of

the identity,

≺ N−3/2
∑
j

v∗ej ≤
√
MN−3/2,

and we conclude because M � N .
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4.7 Proof of Lemma 4.1.8 under Assumption 2

In this section we prove:

Lemma 4.7.1. If X0 satisfies assumption 1, X1 sastisfies Assumption 2 and X0 and X1

agree in their first 5 moments, then∣∣∣EX0∣∣Tr(IM )(M(D − I))
∣∣2 − EX1∣∣Tr(IM )(M(D − I))

∣∣2∣∣∣ ≤ CN−1−ε. (4.169)

With this, we may prove Lemma 4.1.8 part (2).

Proof of Lemma 4.1.8 part (2). By Lemma 4.8.2, we may choose a matrix X0 satisfying

assumption 1 and which agrees with X1 in its first 5 moments. Then Lemma 4.169 and

Lemma 4.1.8 part (1) allow us to conclude.

Proof of Lemma 4.7.1. By the same reasoning as in the proof of Lemma 4.1.8 part (1), it

suffices to bound, for any integer m ≥ 6, using the terminology of Section 4.5,

N−3
∑
iµ

∣∣E∂m1
iµ h∂

m2
iµ h

∣∣ ≺ N−1−ε (4.170)

for some ε > 0, where i ranges over IK ∪ IM . Here we used that Assumption 2 ensures that

what was called Km(X0
iµ, X

1
iµ) in Section 4.5 is O(N−3) for m ≥ 6. By Cauchy-Schwarz, it

suffices to consider m1 = m2 (although at that point, it is not necessary that m1 +m2 = 2);

then by the product rule, it suffices to bound, for m3 +m4 = m1,

N−3
∑
iµ

E

∣∣∣∣∣∑
j∈IM

∂m3
iµ Mjj∂

m4
iµ (Djj − 1)

∣∣∣∣∣
2

≺ N−1−ε, (4.171)

and this constitutes the remainder of the proof.

First consider m4 = 0. We show the stronger (in that it is uniform in i, µ) statement

E

∣∣∣∣∣∑
j∈IM

∂m3
iµ Mjj∂

m4
iµ (Djj − 1)

∣∣∣∣∣
2

≺ N−ε.

106



We obtain ∣∣∣∣∣E∑
j

∂m3
iµ Mjj∂

m4
iµ (Djj − 1)

∣∣∣∣∣
2

≤
∑
j1j2

√
E
(
∂m4
iµ Mj1j1

)2 (
∂m4
iµ Mj2j2

)2
√
E(Dj1j1 − 1)2(Dj2j2 − 1)2.

By Lemma 4.2.11, the second factor is O(N−1). Referring to equations (4.124) and (4.124)

and using Young’s inequality, we bound the above by

≤
∑
j1j2

√
|〈v, ej1〉|

4|〈v, ej2〉|
4 + E(G− Π)4

UvUej1
(G− Π)4

UvUej2
N−1

≤2N−1
∑
j1j2

√
E(G− Π)4

UvUej1
(G− Π)4

UvUej2
+ 2N−1

∑
j1j2

|〈v, ej1〉|
2|〈v, ej2〉|

2

=2N−1
∑
j1j2

√
E(G− Π)4

UvUej1
(G− Π)4

UvUej2
+ 2N−1.

(4.172)

Then Lemma 4.2.8 followed by Lemma 4.2.10 gives

≤2N−1−ε
∑
j1j2

√
E(G− Π)4

UvUej1
+ 2N−1

≤2CN−2−ε
∑
j1j2

1 + 2N−1

≤2CN−ε

as desired.

Let us now treat the case m4 ≥ 1. If i ∈ IM , we claim

E

∣∣∣∣∣∑
j

∂m3
iµ Mjj∂

m4
iµ (Djj − 1)

∣∣∣∣∣
2

≺ N−ε. (4.173)

Indeed, using equations (4.128) and (4.142) together with
∣∣∣S̃ij∣∣∣ = O(δij) implies

∑
j ∂

m3
iµ Mjj∂

m4
iµ (Djj−

1) = ∂m3
iµ Mii, and then, referring to equations (4.124) and (4.125),

E
∣∣∂m3
iµ Mii

∣∣2 ≺ E|〈v, UGei〉|2 + E|〈v, UGeµ〉|2

≺ E|〈v, U(G− Π)ei〉|2 + E|〈v, U(G− Π)eµ〉|2 + |〈v, UΠei〉|2

≺ N−1 + |〈v, UΠei〉|2 ≺ N−2εD ,
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where in the last line we used Proposition 4.2.11.1.

If rather m4 ≥ 1 and i ∈ IK , we may repeat the bound in equation (4.172), except that√
E(Dj1j1 − 1)2(Dj2j2 − 1)2 ≺ N−1

is replaced with√
E4S̃2

j1i
S̃2
j2i
≺ N−ε or

√
E4S̃j1i(S̃X)j1µS̃j2i(S̃X)j2µ ≺ N−ε,

which follows by equations (4.124) and (4.125) and S̃ji = O(N−εD). Thus as opposed to the

bound of N−ε in equation (4.172), we now have

E

∣∣∣∣∣∑
j∈IM

∂m3
iµ Mjj∂

m4
iµ (Djj − 1)

∣∣∣∣∣
2

≺ N1−ε (4.174)

for i ∈ IK . Equations (4.173) and (4.174) together imply equation (4.171).

4.8 Proofs of lemmas from Section 4.2

Proof of Lemma 4.2.1. Let X0 := X satisfy assumption 2 and ε ∈ (0, 1/6). Define the

matrix X1 by

X1
iµ = X0

iµ1
(∣∣X0

iµ

∣∣ ≤ N−ε
)

(4.175)

for some yet to be determined ε > 0. See that by Markov’s inequality, which we will use a

few more times,

P
(∣∣X0

iµ

∣∣ > N−ε
)
≤ N6εE

∣∣X0
iµ

∣∣6 ≤ CN6ε−3. (4.176)

We therefore have that, doing a union bound on the O(N2) entries of X0, that

P (X0 6= X1) = O
(
N6ε−1

)
. (4.177)

The exponent is negative, so that X0 and X1 agree asymptotically almost sturely.

X1 now almost satisfies the assumptions Assumption 2, except that its entries are not

quite centered, its variances not quite N−1 and its third moments not quite 0. Therefore
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define µ = EX1
11 and σ =

(
E (X1

11 − µ)
2
)1/2

. Using the centeredness of X0
11 and Markov’s

inequality again,

µ = EX1
11 =

∫ N−ε1

0

(
P (X0

11 > s)− P (X0
11 < −s)

)
ds

=

∫ ∞
N−ε1

(
−P (X0

11 > s) + P (X0
11 < −s)

)
ds

≤
∫ ∞
N−ε1

P (
∣∣X0

11

∣∣ > s)ds

≤
∫ ∞
N−ε1

s−6N−3ds

= O
(
N5ε−3

)
.

(4.178)

Similarly, we may compute an estimate of σ:

σ2 = E(X1
11)2 − µ2

11

=

∫ N−ε1

0

sP (|X11| > s)ds+O(N5ε−3)

= N−1 −
∫ ∞
N−ε1

sP (|X11| > s)ds+O(N5ε−3)

= N−1 +O
(
N4ε−3

)
+O(N5ε−3)

= N−1 +O(N5ε−3).

(4.179)

Therefore,

σ−1N−1/2 =

√
N−1 +O(N5ε−3)

N−1
=
√

1 +O(N5ε−2) = 1 +O(N5ε−2). (4.180)

Now we define X2
iµ := X1

iµ − µ, and X3 := N−1/2

σ
X2. To demonstrate equation (4.23),

we first see that the matrix whose every entry is µ has operator norm O(N−5ε−2), so that

‖X2 −X1‖ = O(N5ε−2), and that ‖X‖ = O(1) (see Definition 4.2.3), so that∥∥X3 −X2
∥∥ =

N−1/2

σ

∥∥X2
∥∥ = O(N5ε−2)

with high probability. That
∥∥∥S̃∥∥∥ = O(d1), that 5ε− 2 < −1

2
− ε, and equation (4.177) allow

us then conclude equation (4.23).
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To demonstrate equation (4.24), we write, using the notation from the definition of N,∥∥∥N(S̃X3)# −N(S̃X1)#
∥∥∥ =

∥∥∥(DS̃X3S̃X
3)# − (DS̃X1S̃X

1)#
∥∥∥

≤
∥∥∥(DS̃X3S̃X

3)# − (DS̃X3S̃X
1)#
∥∥∥+

∥∥∥(DS̃X3S̃X
1)# − (DS̃X1S̃X

1)#
∥∥∥.

The first term’s bound follows from equation (4.23), since
∥∥DS̃X3

∥∥ = maxi

∥∥∥e∗i S̃X3
∥∥∥ ≤

‖X3‖ = O(1) with high probability. The second term’s bound, using that
∥∥DS̃X3

∥∥ +∥∥DS̃X1

∥∥ = O(1) with high probability and skipping some routine steps,

≤ C
∥∥DS̃X3 −DS̃X1

∥∥∥∥∥S̃∥∥∥ ≤ Cd1 max
i

(∥∥∥e∗i S̃X3
∥∥∥−1

−
∥∥∥e∗i S̃X1

∥∥∥−1
)
.

using
∥∥∥e∗i S̃∥∥∥ = 1 in the first and third inequalities allows us to adjust the above to, perhaps

adjusting the constant C,

≤ Cd1 max
i

(∥∥∥e∗i S̃X3
∥∥∥− ∥∥∥e∗i S̃X1

∥∥∥) ≤ Cd1 max
i

∥∥∥e∗i S̃(X3 −X1)
∥∥∥

≤ Cd1 max
i

∥∥X3 −X1
∥∥ = O(d1)N5ε−2,

and we conclude the proof of Lemma 4.2.1.

Let us now prove Lemma 4.2.11 from Section 4.2.

Proof. We let i and even p be considered as fixed. We write

Dii − 1 =
∥∥∥e∗αS̃X∥∥∥2

− 1 =
∑
µ∈IM

 ∑
j∈IK∪{i}

S̃ijXjµ

2

− 1

=
∑
j∈IM

∑
j1,j2∈IK∪{i}

S̃ij1S̃ij2(Xj1µXj2µ − 1j1=j2N
−1)

:=
∑

j1,j2∈IK∪{i}
µ∈IN

wj1,j2,µ,

(4.181)

where we used that
∑

j∈IK∪{i} S̃
2
ij = 1. Now we can bound the pth moment:

E(Dii − 1)p =
∑

j1,...,j2p

∑
µ1,...,µp

Ewj1,j2,µ1 · · ·wj2p−1,j2p,µp , (4.182)
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where j1, . . . j2p each range over IK∪{i} and µ1, . . . , µp range over IN . We fix now a partition

2{1,...,p} 3 P = {A1, . . . , A|P|}

of the set {1, . . . p} and consider the sum only over indices µ1, . . . , µp which satisfy µa = µb

if and only if a and b are identified by P . We say such a partition satisfies P and write

(µ1, . . . , µp) ` P . Since there are only boundedly many such P , this is sufficient. Now if

µ1 6= µ2, then wj1,j2,µ1 and wj3,j4,µ2 are independent (the converse does not hold, so we are

getting a coarser bound than is possible, but only by a bounded factor). Therefore the

expectation is 0 if P contains any singletons. We get

E(Dii − 1)p =
∑

j1,...,j2p

∑
(µ1,...,µp)`P

Ewj1,j2,µ1 · · ·wj2p−1,j2p,µp

≤ C(K + 1)2pN |P|N−min{|A1|,3} · · ·N−min{|AP |,3}

= C(K + 1)2pN
∑|P|
a=1(1−min{|Aa|,3})

= C(K + 1)2pN−|{a:|Aa|=2}|−2|{a:|Aa|≥3}|.

(4.183)

One may observe that since p ≥ 4, the exponent −|{a : |Aa| = 2}| − 2|{a : |Aa| ≥ 3}| must

be less or equal to −2.

Proof of Lemma 4.2.6. Define the auxilliary matrices

GU =

 −I U∗X

X∗U −z

−1

, GUM =

 −I U∗MX

X∗UM −z

−1

, (4.184)

where UM = U
(

0 IIM

)∗
. Note now the identity that for any x,y ∈ RIK∪IM ,

x∗GUy = xU∗GUy

where G is as defined in Definition 4.2.5; this may be established through the Schur comple-

ment formula. By Theorem 4.2.7, this establishes

|x∗GUy − x∗Πy| ≺ |z|−1N−1/2. (4.185)
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Consider the identity (
A(r)

)−1

st
= A−1

st −
A−1
sr A

−1
rt

A−1
rr

(4.186)

for s, t 6= r, for any invertible matrix A and the minor A(r) of A gotten by removing the

rth row and column. Using that GUM is the minor of GU gotten by removing the rows

and columns indexed by IK , we may repeatedly apply the identity (4.186) to get that, for

x,y ∈ RIM ,

x∗GUMy = x∗GUy +O≺

(
maxα∈IK |x∗GUeα|2

minα|e∗αGUeα|

)
, (4.187)

where we may use equation (4.185) to control the size of the denominators in all resulting

fractions. Schur’s complement formula also shows that

x∗G1y = z−1x∗GUMy,

and then result then follows by equations (4.185) and (4.187).

Proof of Lemma 4.2.10. First, we prove that

E|(G− Π)xy|4 ≤ CN−2. (4.188)

We will then we able to exract an additional factor of (κ + η)−1 in the bound with the

Helffer-Sjöstrand argument as follows. Actually we show that

E
∣∣z−1(G− Π)xy

∣∣4 ≤ C

∣∣∣∣N−1/2

z2

∣∣∣∣4. (4.189)

We outline this application of the Helffer-Sjöstrand argument and then return to prove

(4.188).

By polarization and linearity, it suffices to treat the case of x = y. We now require a

lemma.

Lemma 4.8.1. z−1(G− Π)xx := m∆(z) is the Stieltjes transform of a compactly supported

measure ρ∆.
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Proof. Noting the form of Π, and using a spectral decomposition, it suffices to show that

1

−z(1 + λSµ(z))
(4.190)

is the Stieltjes transform of a unit measure for any λ > 0 whenever Sµ is the Stieltjes

transform of a compactly measure µ (we need the result for Sµ = m). We outline the sketch

of this proof only. If µ is a linear combination of Dirac masses, it is easy to see that equation

(4.190) is a rational function, particularly of the form
∑L

a=1
wa
z−xa , and the residue theorem

ensures
∑L

a=1wa = 1, which concludes the result for such µ. This can be staightforwardly

applied to general µ by taking a limit of linear combinations of Dirac masses and applying

the results of [GH03].

From this point we follow section 3.3 of [BKY16]. We choose a C∞ bump function which

is 1 in an ε-neighborhood of the limiting spectrum [(1−
√
M/N)2, (1+

√
M/N)2]×{0} ⊆ C of

XX∗ and 0 outside a 2ε-neighborhood of the limiting spectrum. Letting fz(x) = 1
x−z −

1
x0−z ,

where x0 := (1 +
√
y)2, we may write

m∆(z) =
1

π

∫
C
fz(w)∂w̄χ(w)m∆(w)dw (4.191)

with high probability. Note that |fz(w)| ≤ C|z|−2. We have then by Jensen’s inequality and

Fubini’s theorem

E
∣∣m∆(z)

∣∣4 = E
∣∣∣∣ 1π
∫
C
fz(w)∂w̄χ(w)m∆(w)dw

∣∣∣∣4
≤ CE

1

π

∫
C

∣∣fz(w)∂w̄χ(w)m∆(w)dw
∣∣4

= C
1

π

∫
C
E
∣∣fz(w)∂w̄χ(w)m∆(w)dw

∣∣4
≤ C max|fz(w)∂w̄χ(w)|

∫
C
E
∣∣m∆(w)

∣∣4dw

≤ C|z|−2N−2

(4.192)

as desired.

Now we proceed with the proof. We will require the following lemma:
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Lemma 4.8.2. Let X0 satisfy Assumption 2. There is another matrix X1 which agrees with

X0 in its first five moments and which satisfies
∣∣N1/2X1

iµ

∣∣ ≤ C for a universal constant C.

We use the same interpolation strategy as in the last section. Without repeating ourselves

too much, we may let Xθ interpolate linearly between the laws of X0 satisfying assumption

1 and X1 satisfying assumption 2. By Lemma 4.8.2, we may assume that X0 and X1 agree

in their first 5 moments. As in Section 4.5, it suffices to bound, letting Km abbreviate

Km(X1
iµ, X

θ
iµ)−Km(X0

iµ, X
θ
iµ),

m∑
m=6

∑
i∈IM∪IK
µ∈IN

KmE
(
∂m1
iµ Gxy

)
· · ·
(
∂
mq
iµ Gxy

) (
G4−q

xy

)
≺ N−2,

where q ≤ 4 and m1 ≤ · · · ≤ mq and m1 + · · ·mq = m.

Now see that ∂iµGxy = −GxiGµy − GxµGiy. Since G := G(z) has operator norm ≺ 1,

we see that the vectors (Gzi : i ∈ IM) and (Gzµ : µ ∈ IN) have L2 norm ≺ 1; it follows by

Cauchy Schwarz that
∑

iµ ∂
m1
iµ Gxy ≺ N for m1 ≥ 1, since it is a sum of monomials which

each contain two factors from the set {Gxi, Gxµ, Giy, Gµy}. Thus, using that Km = O(N−3),

we get that ∑
i∈IM∪IK
µ∈IN

Km(X0
iµ, X

1
iµ)E

(
∂m1
iµ Gxy

)
· · ·
(
∂
mq
iµ Gxy

) (
G4−q

xy

)

= E

(
O(N−3)

∑
iµ

(
∂m1
iµ Gxy

)
· · ·
(
∂
mq
iµ Gxy

)) (
G4−q

xy

)
= O(N−2)E

∣∣G4−q
xy

∣∣.
(4.193)

Lemma 4.2.8 yields E|Gxy|p ≺ 1 for any p, and we conclude.

Proof of Lemma 4.8.2. We refer to the results of [CF91]. The idea is that all distributions

may be matched in 5 moments by an at most 3-atomic distribution, and that the support of

this distribution is a continuous function of the first 5 moments.

Let X̃ be the matrix satisfying Assumption 3 from which X0 results after standardization.

If the first 5 moments γ̃1, . . . , γ̃5 of the distribution of N1/2X̃ lead to a singular Hankel matrix,
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then by their Theorem 3.8 the distribution is finitely atomic and in particular bounded, so

that the truncation of Lemma 4.2.1 does not change X̃ for sufficiently large N , ie X̃ = X0,

and we may then also take X1 = X0.

If rather the 5 moments lead to a non-singular Hankel matrix, then by Theorem 3.1, there

exists a 3-atomic distribution P̃∗ whose first 5 moments are γ̃1, . . . , γ̃5 and whose atoms are

the roots of a cubic polynomial p̃ which is a continuous function of γ̃1, . . . , γ̃5. Since the

atom distribution of X0 converges to that of X̃, the Hankel matrix of X0 is also non-singular

for large N , and the polynomial p associated to X0 converges to p̃, and thus the roots of p,

which are the atoms of an atomic distribution matching X0 to 5 moments, converge to the

roots of p̃, which concludes the proof.

Proof of Theorem 4.3.5. We outline only the key steps of how to adapt out version of the

Theorem from the version in [BDW20]. First we prove equation (4.62). Note that because of

our strong assumption (2.2), all the contour integrals in [BDW20] may be easily estimated

by the triangle inequality for contour integrals rather than the residue theorem, since the

contours may be all drawn a distance � 1 from any singularities of the matrix they call L(z).

The proof begins by writing

|〈w, uα(V)〉|2 = S1 + S2 + S3 +R0 (4.194)

(we have called R0 what they have called R to avoid a clash of notation), which is equation

(5.14) of [BDW20]. S1 + S2 is identically equal to the first four terms of equation (4.62).

Equation (5.38) of [BDW20] gives

S3 = S̃3 +O≺(R3), (4.195)

where S̃3 is identically the last two non-error terms of equation (4.62) and where equation

(5.38) of [BDW20] reads that R3 is of the form

R3 = O≺(projv1,...,vK
w)N−1. (4.196)
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It may easily verified that the factor of N−1 comes directly from two factors of Ξxy for

deterministic vectors of bounded length x,y. Thus under either Assumption 1 or 2, using

Lemma 4.2.10, we see that R3 may be absorbed into E1.

Regarding the term R0, equation (5.45) of [BDW20] shows that every term of R0 has

three factors of Ξ. Thus, using Lemma 4.2.10, we may absorb all of R0 into the error term

E2.

For the proof of equation (4.64), we look at equation (5.15) of [BDW20], which is easily

seen to hold for Σ = S̃# with minor necessary modifications, with w̃ := (S̃#)−1/2ei. The

term S1 is deterministic and we may call it Ci,α. The terms S2, S3, and R0 are all easily

seen to be O(Ξxy‖w̃∗V ‖), for some deterministic vectors x,y ∈ RIM and where V is a

deterministic IM × IK matrix; from this it is easy to see, using Lemmas 4.2.10 and 4.2.6,

that
∑

i∈IM

√
E|S2 + S3 +R0|2 = O(1).

The proof of Theorem 4.3.5 is concluded.

4.9 Large Deviation Bounds

So far we have mainly been concerned with the distribution of the spiked eigenvalues of R,

although we have proven that, under assumption 1,∣∣∣λα(R)− λα(Ṽ)
∣∣∣ ≺ d−1

1 N−1/2−ε.

This was enough to establish the distribution of λα(R), which is on the scale N−1/2, and we

also relied crucially on the result of [BJ21], which established the distribution for λα(Ṽ).

We now want a large deviation bound.

Lemma 4.9.1. The matrix R satisfies

|λα(R)− φN,α| ≺ N−1/2

for α = 1, . . . , K.
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Proof. By Theorem 4.1.4, the remaining necessary ingredient is a corresponding result for

Ṽ , ie, ∣∣∣λα(Ṽ)− xα
∣∣∣ ≺ N−1/2

for some deterministic real number xα, which we establish in this section (it will then follow

that xα can be taken as φα by Lemma 4.1.1).

First note that if we let J be a diagonal matrix defined through Jii = ‖e∗iS‖
−1, then

S̃ = J
(
B I

)
=
(
JB J

)
=
(
JB I

)I
J

 .

Define Σ =
(
JB I

)#

. Pick a matrix O with orthonormal rows so that
(
JB I

)
= Σ1/2O.

We have now that Σ = I + (JB)# and

Ṽ = S̃XX∗S̃∗ = Σ1/2

O
I

J

X

#

Σ1/2.

Lemma 3.10 of [BKY16] then shows that we can characterize λ1(Ṽ), . . . , λK(Ṽ) as solu-

tions to

det
(
[d]−1 +W (x)

)
= 0,

where

W (x) :=
√
yV ∗

(
I + zGJ (z)

)
V

GJ (z) :=
(
HJ − zI

)−1
, HJ :=

O
I

J

X

#

[d] :=


λ1

(
(JB)#

)
. . .

λK
(
(JB)#

)


V :=


| |

v1

(
(JB)#

)
· · · vK

(
(JB)#

)
| |

 ,
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where vα
(
(JB)#

)
is the eigenvector of (JB)# corresponding to the αth largest eigenvalue,

provided that the solution x is not also an eigenvalue of HJ .

Now the main results of [KY17] apply to the matrix HJ (with the same extra argument

as in the proof of Lemma 4.2.10 to get the right decay in z), that is, GJ has a deterministic

limit ΠJ and for any determinisitic unit vectors x,y ∈ IM , we have(
GJ − ΠJ

)
xy
≺ |z|−2N−1/2

uniformly for z ≥ supp %J + C for any fixed constant C, where %J is the limiting measure

for the emperical spectral measure of GJ .

Now, because ‖J − I‖ = O(N−εD) and because the nonzero eigenvalues of (JB)# are

well-separated by equation (2.2), it is not hard to see that

det
(
[d]−1 +Wdet(x)

)
,

where Wdet is defined through the definition of W , replacing the matrix GJ with ΠJ , has K

zeroes x1, . . . , xK which are each ≥ supp %J + C.

Fix now α ∈ {1, . . . , K} and ε > 0 and consider the contour

γ = {z : |z − xα| = xαN
−1/2+ε}.

It is also not hard to see that on γ,

Wdet � xαN
−1/2+εW ′

det(xα) � x−1
α N−1/2+ε.

By Lemma 4.2.7, we have that on γ, with high probability,

|W (z)−Wdet(z)| ≤ x−1
α N−1/2+ε/2,

so that by Rouche’s theorem, Wdet has a zero λα in {|z − xα| ≤ N−1/2+ε} with high proba-

bility. Since λα is an eigenvalue of the deterministic matrix S̃XX∗S̃∗, it is real. By Cauchy

interlacing, S̃XX∗S̃ may only have ≤ K eigenvalues greater that supp %J , so that we have

proven that each eigenvalue λ of S̃XX∗S̃∗ is within d1N
−1/2+ε of xα with high probability.

Since ε was arbitrary, we may now conclude.
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CHAPTER 5

Non-Spiked Eigenvalues

5.1 Proof Strategy for Theorem 2.2.4

Definition 5.1.1 (The spectral region Se). Fix ε0 = min{1/6, εD/2}. We let

Se :=
{
z = E + iη0 : κ(z) < N−2/3+ε0

}
, , η0 := N−2/3−ε0 .

We will use, in the course of the proof, three different forms of the Green function of

a matrix, which will each have their different utilities. A matrix GA without a subscript

will represent a resolvent of the form (AXX∗A∗ − z)−1. A matrix GA
1 will represent a

(generalized) resolvent of the form

 −I AX

X∗A∗ −z

−1

. Finally a matrix GA
2 will represent a

resolvent of the form

− (AA∗)−1 X

X∗ −z

−1

. We will write “generalized entries” of general

matrices A as Axy := x∗Ay, and generalized entries of resolvents with subscipts as x∗GA
1 y =:

GA
1,xy =: GA

1,x,y. When appearing as an index of a resolvent entry, indices s ∈ I (whose

definition we recall below) will now represent the standard basis vector es, so that for example

GA
1,sy = GA

1,esy.

Recall the index sets

IK , IM , IK+M := IK ∪ IM , IN := IK+M ∪ IN .

Let us record a quick lemma, which follows from Schur’s complement formula, regarding

how to transition between the different resolvents.

119



Lemma 5.1.2. For any conformable, invertible, positive definite matrix A and i, j ∈ IK+M ,

we have

z−1
(
A−1GA

2 A
−1
)
ij

= z−1
(
GA

1

)
ij

= GA
ij.

Recall the matricesB, S̃, B̃ and J from equations (2.4) and (2.14) and just above equation

(2.1). Begin by noting that

N
(
S̃X
)

=
(
DMB I

)
DX,

where D =

IIK
DM

 is a (IK ∪ IM) × (IK ∪ IM) diagonal matrix, and DM is defined

through

(DM)ii :=
∥∥∥e∗i S̃X∥∥∥−1

Jii for i ∈ IM .

This definition of D is related to but independent of our definition in Chapters 4 and 6. We

also define

E :=

I
EM

 ,

EM :=

(
IM + J −2 diag

(∥∥∥e∗1B̃X∥∥∥2

, · · · ,
∥∥∥e∗M B̃X∥∥∥2

))−1/2

,

and Λ := D−2 − E−2.

E the leading part of D and is a “better” matrix than D because it only depends on the

randomness in the first IK rows of X, so that as opposed to the matrix product DX, the

matrix product EX has much smaller overlap between the source of randomness on which

E depends and the source of randomness on which X depends. Our argument would not

work if E were deterministic; the dependence of E on XK , and hence the dependence of the

leading eigenvalues of R on XK , is a crucial part of this work.

Define the function mE(z) as in [KY17] through the equation

1

mE

= −z + y

∫
x

1 +mEx
π(dx) (5.1)

120



where π is the eigenvalue measure for E, and we recall y is the dimensional ratio M
N

. The

function mE is the Stieltjes transform of a measure %E.

We define Π2 := Π2(z) through

Π2 :=

−E(1 +mEE)−1 0

0 mE


as well as, independently of our previous definition of Π in chapter 4,

Π := −z−1(1 +mEE)−1, Π1 :=

−(I +mEE)−1 0

0 mEI

 .

Π1,Π2, and Π satisfy the same conclusion as G1, G2, and G in Lemma 5.1.2, that is,

z−1
(
E−1Π2E

−1
)
ij

= z−1 (Π1)ij = Πij.

Unusually for RMT literature, the “deterministic limits” mE and Π are actually random,

depending on XK . For much of the reasoning in this paper, however, XK can be thought of

as fixed and deterministic. Moreover, note

Π2 =

−1/(1 +mE)

mE

+O≺(N−1/2),

where the error term is to be taken in an operator norm sense, so that ΠIK+M×IK+M
and

ΠIN×IN are nearly isotopic . Π is close enough to isotropy to avoid most potential difficulties

arising from anisotropy, but far enough away to cause the non-universality phenomenon

described in the remarks following Theorem 2.2.4.

Using notation independent of that of chapters 4, and 6, we also define the left singular

vectors ṽ1, . . . , ṽK ∈ RIM of DMB, which may then be completed to an orthonormal basis

ṽ1, . . . , ṽM of RIM ), the right singular vectors w̃1, . . . , w̃K ∈ RIK , and the squared singular

values d̃a, . . . , d̃K . We define a (IK ∪ IM)× IM matrix with orthonormal columns

UM :=

(∑K
α=1

√
d̃α
d̃α+1

ṽαw̃
∗
α

∑M
α=1

√
1

d̃α+1
ṽαṽ

∗
α

)∗
.
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Also define an IK+M × IK+M orthogonal matrix U so that U∗M =
(

0 IIK+M

)
U∗.

Four main lemmas, which compare the eigenvalues of (EMXM)# to those of (EX)#,

and then to those of (DX)# (which are equal to those of (UDX)#), and then to those of

(UMDX)#, and then finally to those of R, naturally comprise the steps of the proof. We

collect the necessary assumptions as follows:

Assumption 4. B satisfies equations (2.2) and (2.3) and X satisfies Assumption 1.

Lemma 5.1.3. Fix α ≥ 1 and let Assumption 4 hold. We have

∣∣λα ((EMXM)#
)
− λα

(
(EX)#

)∣∣ ≤ N−2/3−ε0/2 (5.2)

with probability 1−O(N−φ) for some φ > 0.

Lemma 5.1.4. Fix α ≥ 1 and let Assumption 4 hold. We have

∣∣λα ((EX)#
)
− λα

(
(DX)#

)∣∣ ≤ N−2/3−ε0/2 (5.3)

with probability 1−O(N−φ) for some φ > 0.

Lemma 5.1.5. Fix α ≥ 1 and let Assumption 4 hold. We have

∣∣λα ((U∗DX)#
)
− λα

(
(U∗MDX)#

)∣∣ ≤ N−2/3−ε0/2 (5.4)

with probability 1−O(N−φ) for some φ > 0.

Lemma 5.1.6. Fix α > K and let Assumption 4 hold. We have

∣∣λα ((U∗MDX)#
)
− λα−K (R)

∣∣ ≤ N−2/3−ε0/2 (5.5)

with probability 1−O(N−φ) for some φ > 0.

Proof of Theorem 2.2.4. Theorem 2.2.4 follows immediately from Lemmas 5.1.3, 5.1.4, 5.1.5,

and 5.1.6.
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5.1.1 Heuristic argument and additional technical results

We will give the heuristic argument in the reverse of the logical order in which the main

result must be proven; ie, we start with the matrix R in which we are interested, and we

reason towards the more understandable matrix (EMXM)#.

The first step in understanding the eigenvalues of R is to view it as a bounded rank

perturbation of a “non-spiked matrix”, leading us to perform an argument very similar to

that of [BKY16]; indeed, we have

R =

(√
1 + (DMB)#U∗MDX

)#

,

which is the reason for the definition of UM . One difficulty here is that because of the

normalization N that we apply in passing to R, the bounded rank perturbation 1+(DMB)#

is random and not independent of the randomness X, and moreover, the non-spiked matrix

(U∗MDX)# does not have trivial covariance structure, but rather the matrix U∗MD is random

and not independent of X. Other than this, the argument is very similar to the one in

[BKY16]—the crucial ingredient there, an isotropic local law for the resolvent of the non-

spiked matrix, is replaced in our setting with a necessarily weaker isotropic local law for

random generalized entries. The main ingredient for this is the isotropic law for (DX)#:

Lemma 5.1.7. Fix deterministic unit vectors x,y ∈ RIK+M . Under Assumption 4 we have,

uniformly for z ∈ Se, ∣∣x∗(GD − Π)y
∣∣ ≺ ψ(xy). (5.6)

The control parameter ψ(xy) is defined in equation (5.13).

Having reduced our study to eigenvalues of the matrix (U∗MDX)#, we wish to further

reduce to the eigenvalues of the matrix (U∗DX)#, because at this point the relevance of U

will disappear—conjugation by an orthgonal matrix does not change a matrix’s eigenvalues,

so we will really at this point have reduced to the eigenvalues of (DX)#. We do this now

by comparing the matrices’ resolvents; we will see in Section 5.3 how closeness of resolvents
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translates to closeness of eigenvalues at the spectral edge. Since U∗MD is just U∗D with a

few rows removed, we may compare the resolvents G
U∗MD
1 and GU∗D

1 with standard resolvent

identities (see Lemma 5.2.4). The main technical ingredient for this is again Lemma 5.1.7.

Now we must bound the difference between the eigenvalues of (DX)# and (EX)#, and

again we do this by comparing the resolvents. A resolvent expansion yields that

GD
2 = GE

2 +GE
2 (D−2 − E−2)GE

2 +GE
2 (D−2 − E−2)GE

2 (D−2 − E−2)GE
2 + · · · .

One of our main contributions (the results described in this paragraph constitute most of the

technical novelty of this chapter) is to show that the polynomialization method of [BEK14]

can treat such polynomials of resolvents quite efficiently; the randomness of the matrix

(D−2−E−2) is an added difficulty (as opposed to if it was deterministic, which would place

us close to the setting of [CES21b]), but we are still able to treat it with suitable adaptations

of the polynomialization method. One technical ingredient to make this work is the following

isotropic local law for (EX)#:

Lemma 5.1.8. Fix deterministic unit vectors in x,y ∈ RIK+M . Under Assumption 4 we

have, uniformly for z ∈ Se,

∣∣GE
2,xy − Π2,xy

∣∣ ≺ ψxy. (5.7)

As we described earlier, (EX)# is a much nicer object to work with than (DX)# since

it is much more decoupled. We can completely decouple the randomness in the population

from the randomness in X by finally comparing the eigenvalues of (EX)# with those of

(EMXM)#, which is done in much the same way as the comparison of GUMD
1 to GUD

1 , using

Lemma 5.1.8 as input. We can describe the extreme eigenvalues of this matrix (EMXM)#

thanks to the results of [LS16].
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5.2 Tools

Eigenvalues of random matrices tend to exhibit a phenomenon called level repulsion, whereby

only with low probability can eigenvalues be much closer than the average spacing between

eigenvalues.

We will require a sort of level repulsion condition as a technical input in order to translate

statements about closeness of resolvents into statements about closeness of eigenvalues. It

also makes the proof of Lemma 5.1.6 easier, although it is not a requirement (see section 6

of [KY13b])

Definition 5.2.1 (Weak level repulsion at the edge). We say that a random matrix ensemble

A satisfies weak level repulsion at the edge if for any fixed integer L > 0, the eigenvalues

λα (A) satisfy

P
(

min
α≤L
|λα (A)− λα+1 (A)| ≤ CN−2/3−ε0/4

)
≤ N−φ (5.8)

for some absolute constant C and φ > 0.

The matrix GEM , since the matrix EM is independent of the randomness XM , is well-

understood. We collect certain facts about it in the following lemma.

Lemma 5.2.2. Define the high probability event Ωreg on which |Eii − 1| ≤ N−1/10. On Ωreg,

the following hold:

1. (Isotropic local law) We have for deterministic unit vectors x,y ∈ RI and z ∈ Se,

∣∣x∗ (GEM − Π
)
y
∣∣ ≺ ψ(z) (5.9)

where

ψ := ψ(z) :=

√
=m(z)

Nη0

+
1

Nη0

. (5.10)

2. (Weak level repulsion) (EMX)# satisfies the weak level repulsion condition 5.2.1.
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3. (Local Eigenvalue Law) For any interval I, we have

1

M
#
{
α : λα

(
(EMXM)#

)
∈ I
}

= %(I) +O≺
(
N−1

)
(5.11)

Recall that the classical location γα of λα is the unique value such that
∫∞
γα

d%E = α
M

.

Proof. Let [a2, a1] be the right-most connected component of %E. It is easy to verify that on

Ωreg, the bulk component [a2, a1] is regular in the sense of [KY17] definition 2.7, as is the

edge a1.

1. This is Theorem 3.14 of [KY17].

2. The result for X# rather than (EMX)# is Proposition 6.3 of [BKY16]. The correspond-

ing result for (EMX)# follows from the result for X# in the same way as Proposition

2.4 of [KY13a]; the key ingredient for the proof of Proposition 2.4 of [KY13a], Lemma

2.6 in [KY13a], is instead given by Proposition 4.1 of [LS16] (whose equation (4.4) is

a clear parallel to equation (2.13) of [KY13a]; the corresponding parallel to equation

2.14 of [KY13a] is proven in the same way as equation (4.4) of [LS16] and is in fact

easier).

3. This follows from equation (3.11) of [KY17] in the same way that local eigenvalue laws

usually follow from averaged local laws for the resolvent; see e.g. [BK18].

Note that for z ∈ Se, we have

ψ .

√√
κ+ η0

Nη0

.

√
N−1/3+ε0

NN−2/3−ε0
= N−1/3+ε0 (5.12)

Let δ := min
{
εD,

1
24

}
. In analogy to the control parameter ψ, which is O≺(N−1/3+ε0) on
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Se, we define a new family of control parameters:

ψ(xy) :=


N−1/3+ε0 x,y ∈ RIM∪IN

N−1/6−δ one of x,y ∈ RIM∪IN

N−3δ x,y 6∈ RIM∪IN .

(5.13)

The role of ψ(xy) is to replace ψ in isotropic local law statements like equation (5.9) for, for

example, GE
2 . For such a resolvent we will have weaker isotropic bounds when x,y have

components in RIK .

Also define ψ(st) = ψ(eset) for s, t ∈ I, and also define ψ(KM) := ψ(st) for s ∈ IK , t ∈ IM ,

and similarly ψ(KK), ψ(sM), ψ(x,M), etc., in the same way.

Fundamental to the analysis of this paper are the following identities for the resolvents

GA
1 and GA

2 .

Definition 5.2.3. If K ⊆ IK+M ∪ IN is an index set, H is a K × K matrix, and if T ⊆ K,

then we define

H(T ) := (Hst)s,t∈K\T

and we define, for ι = 1, 2,

GA(T )

ι =

(((
GA
ι

)−1
)(T )

)−1

.

We use, for T ⊆ K and r1, . . . , rL ∈ K \ T , the shorthand GA({r1,...,rL}) =: GA(r1···rL)
and

GA(T∪{r1}) =: GA(Tr1)
.

Lemma 5.2.4. For ι = 1, 2, and for r, s, t ∈ K, s, t 6= r,

GA(r)

ι,st = GA
ι,st −

GA
ι,srG

A
ι,rt

GA
ι,rr

.

If µ, ν ∈ IN , then

GA
2,µν = GA

2,µµG
A(µ)

2,νν

(
X∗GA(µν)

2 X
)
µν
.

If A is diagonal and i, j ∈ IK+M , then

GA
2,ij = GA

2,iiG
A(i)

2,jj

(
XGA(ij)

2 X∗
)
ij
.
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If A is diagonal and i ∈ IK+M , µ ∈ IN , then

GA
2,iµ = GA

2,iiG
A(i)

2,µµ

(
−Xiµ +

(
XGA(iµ)

2 X
)
iµ

)
.

Proof. This is a consequence of lemma 4.4 of [KY17].

Let σ(H) denote the spectrum of a matrix H. Also let

A := M−1
0 TrA (5.14)

denote the normalized of an M0 ×M0 matrix A.

Recall that for a M0 ×M0 Hermitian matrix H, the function x 7→ =(H − (x+ iη))−1 is

equal to δH ∗ θη, where δH = 1
M0

∑
δλi(H) and θη(x) = η−1

(x/η)2+1
is an approximate δ function

for small η. In order to infer statements about the eigenvalues of H from =(H − (x+ iη))−1,

we would like to have, roughly, that if η is smaller than the typical separation of eigenvalues

around x, then the graph of GH looks essentially flat with sharp, defined peaks at each

eigenvalue. Put another way, δH ∗ θη(x) is always large when x ∈ σ(H), but we want the

converse to hold as well. The following definition and lemma establish the validity of this

heuristic at the edge for (EMX)#. It is, in addition to the weak level repulsion condition, the

second technical ingredient we will need for translating closeness of resolvents to closeness

of eigenvalues.

Definition 5.2.5 (The valley condition). Let ε > 0 and K ⊆ IK+M have |IK+M \ K|

bounded. We say that a K × K matrix H satisfies the ε-valley condition if, for all z =

x+ iη0 ∈ Se, we have that dist(x, σ(H)) > M−2/3−ε implies∣∣∣=(H − z)−1
∣∣∣ ≺ M−ε′

Mη0

and if λ ∈ σ(H), dist(λ, σ(H) \ {λ}) > 2M−2/3−ε and |x− λ| < M−2/3−ε imply∣∣∣∣=(H − z)−1 − 1

Mη0

1

((x− λ)/η0)2 + 1

∣∣∣∣ ≺ M−ε′

Mη0

for some ε′ > 0.
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Lemma 5.2.6. (EMX)# satisfies the ε-valley condition at z for any z ∈ Se and any ε < ε0.

Proof. Let z = x + iη0 ∈ Se be fixed. Denote λα = λα((EMX)#). Define, for a positive

integer n > 0,

Jn =
{
α : |x− λα| ∈ [M−2/3+nε,M−2/3+(n+1)ε)

}
Because λα ≥ 0, we see that Jn = ∅ for n > n := dεe−1. It follows from equation (5.11) that

|Jn| ≤
n∑

n′=1

|Jn′ | ≺M
3
2

(n+1)ε (5.15)

We write

=GEM (z) =
1

M

M∑
α=1

η−1
0

((x− λα)/η0)2 + 1

=
1

M

n∑
n=−1

∑
α∈Jn

η−1
0

((x− λα)/η0)2 + 1
≤ 1

Mη0

n∑
n=−1

|Jn|
1

(M ε0+nε)2

≺ 1

Mη0

n∑
n=−1

M
3
2

(n+1)εM−2ε0−2nε ≤ 1

Mη0

(n+ 1)M−2ε0+2ε

which is as desired, since n is constant. For the second statement, this follows from applying

the same computation as above to

=GEM (z)− 1

Mη0

1

((x− λβ)/η0)2 + 1
=

1

M

∑
α 6=β

η−1
0

((x− λα)/η0)2 + 1

Thus we conclude the proof of Lemma 5.2.6.

Here is the essential linear algebra formula which allows us to study the eigenvalues of a

finite rank deformation of a random matrix.

Lemma 5.2.7 (Lemma 3.10 of [BKY16]). If Σ = I + V CV ∗ is a positive definite matrix

with its eigen-decomposition and H is another matrix of which x ∈ R is not an eigenvalue,

then Σ1/2HΣ1/2 has an eigenvalue at x if and only if

det
(
C−1 + V ∗(1 + xG(x))V

)
= 0 (5.16)

where G(z) = (H−1 − zI)
−1

is the resolvent.
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We will also need to pair the following two facts. The first is a consequence of Theorem

2.2.2 and the second is well-known.

Lemma 5.2.8. With high probability, the spectrum of R has K outlier eigenvalues. That is,

λ1 (R) > · · · > λK (R) > supp %E + C0

for a fixed constant C0.

Lemma 5.2.9 (Cauchy eigenvalue interlacing). For a square matrix H and a finite rank

deformation H̃ = Σ1/2HΣ1/2 with Σ = I + V CV ∗ and Σ > −1, we have

λi(H̃) ∈ [λi+K(H), λi−K(H)]

Let κ := κ(z) for z = x+iη0 be defined as dist(x, {min supp %E,max supp %E}). Regarding

mE we have

Lemma 5.2.10. For z ∈ Se, the function mE satisfies

=mE �


√
κ+ η0 E ∈ supp %E

η0

κ+η0
E 6∈ supp %E

Proof. This is a exactly as lemma A.4 of [KY17], and follows from the regularity condition

2.7 of [KY17].

We also need the following lemma and corollary, which follow from the analogous state-

ments for m, the usual Marčenko-Pastur law, since E = I +O≺(N−1/2.

Lemma 5.2.11. The measure %E is supported on [(1 − √y)2 + O≺(N−1/2), (1 +
√
y)2 +

O≺(N−1/2)]. Moreover,

mE

(
(1 +

√
y)2
)

= − 1

1 +
√
y

+O≺(N−δ)

Corollary 5.2.11.1. When z = (1 +
√
y)2, we have

1 + zΠ = − 1
√
y

+O≺(N−δ)
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5.2.1 Properties of UM

The purpose of UM is that (
DMB 1

)
=
√

(DMB)# + IU∗M

which will be important for the proof of Lemma 5.1.6. Indeed, we know such a UM exists

because of the singular value decomposition, and if existing then it must satisfy

U∗M =
(
(DMB)# + I

)−1/2
(
DMB I

)
=

(
K∑
α=1

(dα + 1)ṽαṽα

)−1/2 (∑K
α=1

√
d̃αṽαw̃

∗
α I

)
at which point we see the desired form for UM . This is sufficient to conclude that the columns

of UM columns are orthonormal, but it is helpful to observe this manually. Consider the

IK × IK orthogonal matrix Ṽ which has ṽα for its columns. Thus UM has orthnormal

columns if and only if U∗MUM = I, which is if and only if (UM Ṽ )∗(UM Ṽ ) = I, which is if and

only if UM Ṽ has orthonormal columns, and indeed,

UMV = UM

M∑
α=1

ṽαe
∗
α =

∑K
α=1

√
d̃α
d̃α+1

w̃αe
∗
α∑M

α=1

√
1

d̃α+1
ṽαe

∗
α


whose columns are

(√
d̃α
d̃α+1

w̃∗α

√
1

d̃α+1
ṽ∗α

)∗
, interpreting w̃α = 0 for α > K, which are

easily seen to be orthogonal and also unit length by the Pythagorean theorem.

UM may be written as U
(

0 IM

)
for an (IK ∪ IM) × (IK ∪ IM) orthogonal matrix U .

We do not need an exact formula for the columns of U which do not also belong to UM , but

it may be verified that

Ueα ∈ RIK ⊕ span{ṽα : α ∈ IK}

for α ∈ IK .

Of course,

UM :=
(

0IM×IK 1IM

)∗
+

(∑K
α=1

√
d̃α
d̃α+1

ṽαw̃
∗
α

∑K
α=1

(√
1

d̃α+1
− 1
)

ṽαṽ
∗
α

)∗
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so that U differs from the identity by bounded rank.

Recall the right singular vectors vα of B and note ‖vα − ṽα‖ ≺ N−1/2 by Hadamard’s

variation formula and Weyl’s inequality. All together, we have the lemma,

Lemma 5.2.12. For deterministic x ∈ RIM , we have

Ux = x +
∑
α∈IK

aαeα +
∑

α∈{1,...,K}

bαvα +O≺(N−1/2)

for some bounded, random numbers {aα}, {bα}.

5.3 The Proof of Lemma 5.1.3

The main technical ingredient for the proof of Lemma 5.1.3 is the following:

Lemma 5.3.1. The resolvents of (EX)# and (EMXM)# = (EMX)# are close at the spectral

edge: for z ∈ Se, we have ∣∣GE −GEM
∣∣ ≺ N−δ

Nη0

(5.17)

Proof of Lemma 5.1.3. Define λi := λi
(
(EMX)#

)
, λ̃i := λi

(
(EX)#

)
. Define also the points

x±i = λi ± N−2/3−ε0/2. We let ε := ε0/2 in the lemma. Since (EMX)# is a contraction of

(EX)#, the standard interlacing inequality yields that

λ̃i ≤ λi (5.18)

First note that because (EMX)# satisfies the ε0/2-valley condition (Lemma 5.2.6) and by

Lemma 5.3.1, we have (also using that EM satisfies the weak level repulsion condition)∣∣∣=GEM (x−1 )
∣∣∣ ≺ M−ε′

Mη0

so that
∣∣∣=GE(x−1 )

∣∣∣ ≺ M−ε′

Mη0

. (5.19)

Similarly, ∣∣∣=GEM (λ1)
∣∣∣ � 1

Mη0

so that
∣∣∣=GE(λ1)

∣∣∣ � 1

Mη0

. (5.20)
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Now see that
∣∣∣{i : λ̃i ∈ [x−i , x

+
i ]
}∣∣∣ ≥ 1. Indeed, if this were not the case, then λ̃1 < x−1 by

equation (5.18), so that for x ≥ x−i , x 7→ =GE(x) is decreasing, which is a contradiction to

equations (5.19) and (5.20).

Now we show that
∣∣∣{i : λ̃i ∈ [x−1 , x

+
1 ]
}∣∣∣ ≤ 1. Otherwise, we see that

∫ x+
i +N−2/3−ε0/2

x−i −N−2/3−ε0/2
=GE(x)dx ≥ (2− ε0)

1

Mη0

so that by Lemma 5.1.3,∫ x+
i +N−2/3−ε0/2

x−i −N−2/3−ε0/2
=GEM (x)dx ≥ (2− 2ε0)

1

Mη0

which is a contradiction to the valley condition and weak level repulsion condition for

(EMX)#.

We conclude that
∣∣∣{i : λ̃i ∈ [x−1 , x

+
1 ]
}∣∣∣ = 1. The valley condition for EM and Lemma

5.1.3 are enough to conclude
∣∣∣{i : λ̃i ∈ [x+

2 , x
−
1 ]
}∣∣∣ = 0, lest =GEM (x) ≥ 1

Mη0
for x ∈ [x+

2 , x
−
1 ].

To establish that
∣∣∣{i : λ̃i ∈ [x−2 , x

+
2 ]
}∣∣∣ = 1, we apply all the same argument to the func-

tions (slightly abusing notation)

GEM − M−1

λ1 − z
= GEM +O≺

(
M−ε

Mη0

+ 1<z>x+
2

)
and GE − M−1

λ̃1 − z
= GE +O≺

(
M−ε

Mη0

+ 1<z>x+
2

)
Repeating L times, we conclude the proof of Lemma 5.1.3.

Observe the following immediate corollary to Lemma 5.1.3 which we will use later: (EX)#

satisfies the ε0/2-valley and weak level repulsion conditions.

Proof of Lemma 5.3.1. The main technical ingredient in the proof of Lemma 5.3.1 is Lemma

5.1.8, whose proof will constitute the majority of this section.
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We write

GE = (M +K)−1
∑

i∈IM∪IK

GE
ii

= M−1
∑
i∈IM

GE
ii + (M +K)−1

∑
i∈IK

GE
ii +

−K
M(M +K)

∑
i∈IM

GE
ii

and

GEM = M−1
∑
i∈IM

GEM
ii .

Since M−1 = O
(
N−δ

Nη0

)
, it suffices to show that

max
i∈IM

∣∣GE
ii −G

EM
ii

∣∣ ≺ N−δ

Nη0

and max
i∈IM∪IK

∣∣GE
ii

∣∣ ≺ 1. (5.21)

We begin by establishing

GEM
1,ii = GE

1,ii +O≺

(
max
α

∣∣GE
1,iα

∣∣2) (5.22)

for i ∈ IM . Note that GEM
1 = GE(IK )

1 . Let IK = {α1, . . . , αK}. We use Lemma 5.2.4 to see

that

GE(α1···αK )

1,ii = GE(α1···αK−1)

1,ii −
GE(α1···αK−1)

1,iαK
GE(α1···αK−1)

1,αK ,i

GE(α1···αK−1)

1,αKαK

.

Inductively we may assume that

GE(α1···αK−1)

1,ejek
= GE

1,ejek
+O≺

(
max

α∈IK\{αK}

∣∣GE
1,j,α

∣∣∣∣GE
1,kα

∣∣)
for j, k ∈ IM ∪ {αK}. Equation (5.22) then follows by∣∣GE

1,iαK

∣∣+
∣∣GE

1,αK i

∣∣+
∣∣GE

1,αKαK

∣∣−1

=
∣∣zGE

iαK

∣∣+
∣∣zGE

αK i

∣∣+
∣∣zGE

αKαK

∣∣−1 ≺ 1

which is a consequence of Lemma 5.1.8.

Now we may write for i ∈ IM ,

GE
ii = z−1e∗iE

−1GE
2 E
−1ei = z−1E−1

ii G
E
2,iiE

−1
ii

= z−1(EM)−1
ii G

EM
2,ii (EM)−1

ii +O≺

(
max
α∈IK

∣∣GE
iα

∣∣2)
= GEM

ii +O≺

(
max
α∈IK

∣∣GE
iα

∣∣2)
(5.23)
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where we used that (EM)ii = Eii for i ∈ IM . For i ∈ IM , Lemma 5.1.8 gives

∣∣GE
iα

∣∣ ≺ N−1/6−δ

Since N−1/3−2δ ≤ N−δ

Nη0
, equation (5.23) and Lemma 5.1.8 establish the first bound of (5.21).

Lemma 5.1.8 also implies the second bound of (5.21). This concludes the proof of Lemma

5.1.3.

Now we may begin the proof of Lemma 5.1.8. The polynomialization method was devel-

oped in [BEK14] to prove the iostropic local law from the entrywise law. In analogy to this,

to prove the isotropic law Lemma 5.1.8, we will need an entrywise law for GE. This and a

closely related fact are collected in the following lemma.

Lemma 5.3.2. Let s, t ∈ IK ∪ IM ∪ IN . Fix a subset T ⊆ IK ∪ IM ∪ IN \ {s, t} with |T |

bounded. We have the following bound:∣∣∣GE(T )

st − Πst

∣∣∣ ≺ ψ(st). (5.24)

Moreover, if s, t ∈ IN , then ∣∣∣∣∣∑
µν

XsµG
E(Tst)

µν Xtν − δstm

∣∣∣∣∣ ≺ ψ(st). (5.25)

The proof of Lemma 5.3.2 is less interesting than that of 5.1.8 and is postponed until

Section 5.3.4. Notice that Lemma 5.3.2 would actually have been sufficient to conclude the

proof of the main Lemma 5.1.3. But, we will require the full strength of Lemma 5.1.8 later

in the paper.

5.3.1 Introduction of Graphs

Now we outline the terminology and techniques from [BEK14] that we will use throughout

the rest of the paper.
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We prove Lemma 5.1.8 in the next section; here we will introduce the structures and

terminologies necessary for its proof. The bulk of the work in proving that proposition is

bounding ∣∣GE
2,αx

∣∣ ≺ N−1/6−δ (5.26)

for α ∈ IK ,x ∈ RIM . Note that of course 〈eα,x〉 = 0. This fact is why we do not have an

analog to section 5.2 “Reduction to off-diagonal entries” in [BEK14]. We seek to establish

the sufficient high moment bound

E
∣∣GE

2,αx

∣∣p ≺ ψpKM (5.27)

We use the polynomialization technique of [BEK14]. Define a (edge-colored, directed, multi-)

graph ∆pre with vertices 0, 1, . . . , p and edges {(0, 1), . . . , (0, p/2)} with color G and {(0, p/2+

1), . . . , (0, p)} with color G. We let P be the set of partitions of V (∆) which contain the

singleton block i0 := {0} and for each P ∈ P let ∆ := ∆(P ) be the quotient graph ∆pre/P .

We enumerate the vertice i0, . . . , i|P |−1 of ∆. We write the set of vertices of ∆ as V (∆) or as

Vb(∆). As we will explain in the next paragraph, every vertex of ∆ will be assigned a value

in IK ∪IM , and be called “black” vertices. Later we will see graphs which also have “white”

vertices which get assigned values in IN , and the white vertices of a graph Γ will be denote

Vw(Γ). So currently we have Vw(∆) = ∅ and Vb(∆) = V (∆). For each edge e ∈ E(∆), we

denote by α(e) and β(e) the initial and terminal vertices of the edge e. It should always

be clear from context whether α refers to the vertex α ∈ IK which is the first index of the

generalized resolvent entry in equation (5.26) or the function e 7→ α(e).

For each of the vertices i1, . . . , i|P | of ∆, we associate a value ai1 , . . . , ai|P | ∈ IM . For i0

we associate the value ai0 = α. We say that the vertices i1, . . . , i|P | “land in” IM , while i0

“lands in” IK . We write the tuple of vertex values ab = (ai0 , ai1 , . . . , ai|P |).

We define the subset V ∗b ⊆ V (∆) as the set of vertices with odd degree. Since p is even

and by our defition of P, i0 6∈ V ∗b .
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We arrive at

E
∣∣GE

2,αx

∣∣p =
∑
P∈Pp

Y (∆(P )),

where

Y (∆) =
∗∑
ab

wab(∆)EAab(∆),

where
∑∗

ab
denotes the sum over all values ab of the vertices of ∆ subject to the constraint

that distinct vertices get distinct values, and

wab(∆) =
∏

e∈E(∆)

(eα)α(e)xaβ(e)
=

∏
e∈E(∆)

xaβ(e)

Aab(∆) =
∏

e:ξ(E)=G

G2,aα(e)aβ(e)

∏
e:ξ(E)=G

G2,aα(e)aβ(e)
,

where z denotes a complex conjugate for z ∈ C, and we have called the colors of edges G

and G rather than G and G∗ as in [BEK14]. In our setting, α(e) = i0 for every e ∈ E(∆),

and we only consider ab with ai0 = α, hence our form for the weight wab(∆). For the rest of

this section we consider the partition P as fixed.

Now let us more fully define the graphs used in [BEK14].

Definition 5.3.3. [Graph] A graph is a finite, directed, edge-colored multigraph

Γ = (V (Γ), E(Γ), ξ(Γ)),

where V is a finite set of vertices, E is a finite set of edges, and ξ is a coloring of the edges.

We also let V (Γ) = Vb(Γ) ∪ Vw(Γ).

Up to now we have only seen graphs with Vw(Γ) = ∅. But for general graphs Γ, we will

associate a tuple aw = (ai)i∈Vw(Γ) of values in IN .

Remark 5.3.4. We only ever consider tuples ab with distinct entries, but until we introduce

a partition on the white vertices, we will allow aw to have non-distinct entries. Once we

introduce a partition we will restrict aw to have distinct entries.
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As a set of colors, we choose

{ξ = (ξ1, ξ2, ξ3) : ξ1 ∈ {G,G,X,X}, ξ2 ∈ {+,−}, ξ3 ∈ Vb(Γ)}.

We will denote EG(Γ) := {e ∈ E(Γ) : ξ1(e) ∈ {G,G}, Eo(Γ) := {e ∈ EG(Γ) : α(e) 6= β(e)}

and EX(Γ) := {e ∈ E(Γ) : ξ1(e) ∈ {X,X}. We call edges in the first set G edges, in the

second set off-diagonal (G) edges, and in the third set X edges. Edges e in a graph Γ with

color ξ1(e) ∈ {X,X} will always have α(e) ∈ Vb(Γ) and β(e) ∈ Vw(Γ).

For tuple ab = (ai)i∈Vb(Γ) of values in IK ∪ IM of the vertices Vb(Γ), we define aξ3 =

{ai}i∈ξ3 .

For a graph Γ and e ∈ E(Γ) with ξ(e) = (ξ1, ξ2, ξ3), we define the evaluation

Aab(e,Γ) =



GE(aξ3 )

2,aα(e)aβ(e)
ξ1 = G and ξ2 = +

1/GE(aξ3 )

2,aα(e)aβ(e)
ξ1 = G and ξ2 = −

GE
(aξ3 )

2,aα(e)aβ(e)
ξ1 = G and ξ2 = +

1/GE
(aξ3 )

2,aα(e)aβ(e)
ξ1 = G and ξ2 = −

Xaα(e)aβ(e)
ξ1(e) = X

Xaα(e)aβ(e)
ξ1(e) = X.

(5.28)

We say that an edge e is maximally expanded if {α(e), β(e)}∪ ξ3(e) = Vb(Γ). We now define

the evaluation of a general graph, subsuming our previous definition for the graph ∆,

Aab(Γ) =
∏

e∈E(Γ)

Aab(e,Γ).

Actually, though, we adjust slightly and define

Aab(Γ) = u(Γ)
∏

e∈E(Γ)

Aab(e,Γ)

where u(Γ) is a bounded deterministic prefactor. Its presence allow us to disregard factors

of −1 or z that arise in later steps by absorbing them into u(Γ).
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Let us now outline the expansion procedure, which relies on the identities, for any a, b, c ∈

Vb(Γ) with c 6∈ {a, b} and T ⊆ Vb(Γ)\{a, b, c}, abbreviating (Tc) for the superscript (T∪{c}),

GE(T )

2,ab = GE(Tc)

2,ab +
GE(T )

2,ac G
E(T )

2,cb

GE(T )

2,cc

,
1

GE(T )

2,aa

=
1

GE(Tc)

2,aa

−
GE(T )

2,ac G
E(T )

2,ca

GE(T )

2,aa G
E(Tc)

2,aa GE(T )

2,cc

. (5.29)

Using this identity and given a graph Γ, we define 2 graphs τ0(Γ) and τ1(Γ) constructed

from Γ as follows. Considering an arbitrary ordering on the set {GE(T )

2,ab : a, b 6∈ T} of all

resolvent entries and the vertex set Vb(Γ), we take the first edge e in Γ which is not maximally

expanded. τ0(Γ) is identical to Γ except that we add the first c ∈ ab\
(
aξ3(e) ∪ {aα(e), aβ(e)}

)
to ξ3(e). τ1(Γ) also differs from Γ only locally; the edge e is replaced with 3 edges if ξ2(e) = +:

(α(e), c), (c, β(e)) with color (ξ1(e),+, ξ3(e)) and an edge (c, c) with color (ξ1(e),−, ξ3(e)).

If rather ξ2(e) = −, a similar definition holds according to the identity (5.29), so that

Aab(Γ) = Aab(τ0Γ) +Aab(τ1Γ).

Within the graph τ1Γ, we say that the vertex c has been “pulled to”, because, besides the

other diagonal edges which are produces, the essential effect in passing from Γ to τ1Γ is that

an edge of Γ not already incident on c is re-routed so as to pass through c on its way from

its initial vertex to its terminal vertex; or, if the vertices are thought of as pins on a board

and the edges as strings from pin to pin, then some string’s midpoint is attached to the pin

at c.

Now, for graphs in which every off-diagonal edge is maximally expanded, we define an-

other operation ρ, which also follows from a resolvent identity:

GE(T )

2,ab = zGE(T )

2,aa G
E(Ta)

2,bb

∑
µ,ν∈IN

XaµG
E(T )

2,ab Xbν . (5.30)

The graph ρ(Γ) is defined as the graph encoding the monomial Aab,aw(Γ) after replacing

every maximally expanded off-diagonal resolvent entry according to the identity (5.30). On

the level of graphs, every off-diagonal edge e in the graph Γ is replaced by a chain of edges:

an X edge from α(e) to j, a G edge from j to j′, and an X edge from β(e) to j′, where j
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and j′ are two new white vertices added to V (Γ); so after the first application of ρ, we now

consider graphs with Vw(Γ) 6= ∅. We call this chain of edges an R-group (this terminology is

an artifact; in [BEK14], there are two matrices: G indexed by (IK ∪ IM) × (IK ∪ IM) and

R indexed by IN × IN , whereas we use one matrix, the “linearizing block matrix” GE
2 ). As

we defined ab, now we define aw = (ai)i∈Vw(Γ) ∈ I |Vw(Γ)|
N . Thus by definition we have∑

aw

Aab,aw(Γ) =
∑
aw

Aab,aw(ρΓ).

As opposed to the sum
∑∗

ab
which was restricted to distinct values for distinct vertices, we

let the sum
∑

aw
be totally unrestricted subject to ai ∈ IN for each i ∈ Vw(Γ).

We now recursively apply the operations τ and ρ to the graph ∆, defining a new family of

graphs Θσ where σ ranges over the vertices of a finite, complete binary tree, or equivalently,

over a set of finite binary strings. We define for a binary string σ

Θ∅ = ∆, Θ0σ = ρ(τ0(Θσ)), Θ1σ = ρ(τ1(Θσ)),

where iσ is the binary string σ with i appended on the left. We define the binary tree T ,

whose vertices are finite binary strings, which will index the expansion as follows: starting

with T = the trivial tree with the single vertex ∅, for every leaf σ of T for which Θσ does

not satisfy the stopping rule below, we add two children 0σ and 1σ to the leaf σ. Notice

that every vertex σ of the tree T satisfies Vb(Θσ) = Vb(∆).

Definition 5.3.5 (Stopping Rule). We say a graph Γ satisfies the stopping rule if either

all off-diagonal edges of Γ are maximally expanded or if Γ has ≥ L := (p + |Vb(∆)|)/δ

off-diagonal G edges.

The stopping rule ensures that for every leaf σ of T , the graph Θσ has only maximally

expanded off-diagonal edges (we call these leaves the non-trivial leaves) or else satisfies, by

Lemma 5.3.2, ∣∣∣∣∣∑
ab,aw

Aab,aw(Θσ)

∣∣∣∣∣ ≺ N−p
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and thus is an error term (we call these leaves the trivial leaves). It is not hard to see and is

explained in [BEK14] why T has bounded depth—every leaf has either one more off-diagonal

edge than its parent or is closer to being maximally expanded than its parent. We arrive at

Aab(∆) =
∑

σ∈L(T )

∑
aw

Aabaw(Θσ)

=
∑

σ∈L1(T )

∑
aw

Aabaw(Θσ) +
∑

σ∈L2(T )

∑
aw

Aabaw(Θσ),
(5.31)

where L1(T ) is the set of non-trivial leaves and L2(T ) is the set of trivial leaves. The trivial

leaves already having the desired bound O≺(N−p), we now move to bound the non-trivial

leaves, that is, the ones in which every off-diagonal G edge has been replaced with an R-

group, and every remaining diagonal edge is maximally expanded. Very similary to the

previous operations τ and ρ and as explained more fully in [BEK14], for every non-trivial

leaf Θσ, we replace each maximally expanded diagonal edge e with ξ2(e) = − according to

the identity

1/GE(T )

2,aa = −z − z
∑
µν

XaµG
E(Ta)

2,µν Xbν , (5.32)

resulting in two new graphs for each such edge, one in which the edge e is removed, and one

in which the edge e is replaced with a diagonal R-group, ie, two X edges having one vertex

at α(e) = β(e) and having their other vertices joined by a G edge (in both new graphs −z

is absorbed into the determistic prefactor u(Γ)). To treat diagonal edges e with ξ2(e) = +,

we do standard manipulations on the identity (5.32): first write the above as

1/GE(T )

2,aa = −z − zm− z

(
−m+

∑
µν

XaµG
E(Ta)

2,µν Xbν

)

= (−z − zm)

(
1− 1

−z − zm

(
−m+

∑
µν

XaµG
E(Ta)

2,µν Xbν

))

and then do a geometric expansion

GE(T )

2,aa = (−z − zm)
L∑
k=0

(
1

−z − zm

(
−m+

∑
µν

XaµG
E(Ta)

2,µν Xbν

))k

+O≺(N−p) (5.33)
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with the same choice of L as in the stopping rule; Lemma 5.3.2 is what allows the truncation.

Applying equation (5.32) or (5.33) to every diagonal edge of Θσ for every non-trivial leaf σ

of T and multiplying everything out, we get∑
aw

Aabaw(Θσ) =
∑
Γ∈G

∑
aw

Aabaw(Γ) +O≺(N−p) (5.34)

for a family G of graphs. Note that for Γ ∈ G, every edge e ∈ EG(Γ) joins two white vertices,

ie, it encodes a resolvent entry GE(ab)

2,µν for µ, ν ∈ IN . The big upshot of this construction is

that every G-edge in one of these graphs Γ is independent of every X edge in Γ, except that

all resolvent entries GE(ab)

2,µν retain some dependence on X edges whose initial vertices land in

IK ; this is because the matrix E is itself dependent on E and represents a main difference

between our setting and [BEK14].

Note that white vertices only appear in the graphs Γ ∈ G as parts of diagonal or off-

diagonal R-groups. As such every j ∈ Vw(Γ) is connected by an X edge to a unique i :=

π(j) ∈ Vb(Γ).

5.3.2 Proof of Lemma 5.1.8

Proof of Lemma 5.1.8. The proof of x,y ∈ RIM is identical to the proof of the main result

of [BEK14], using only the additional input GE(T )

2,µν ≺ δµνψ for T ⊆ IM ∪ IK , which is a

consequence of Lemma 5.3.2.

The case of x,y ∈ RIK is a consequence of Lemma 5.3.2.

It remains to bound ∣∣GE
2,αx

∣∣ ≺ N−1/6−δ.

We consider the high moment E
∣∣GE

2,αx

∣∣p and, expanding it as explained in the previous

section, it suffices to consider

E
∗∑
ab

∑
aw

Aab,aw(Γ) (5.35)

for Γ ∈ G.
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Now we fix a partition ζ of the white vertices of Γ (here, we diverge from [BEK14], where

they fix a partition of the white vertices adjacent to a black vertex i separately for every i).

From E(Γ), choose a collection Ẽo(Γ) ⊂ Eo(Γ) of p edges connecting j ∈ π−1(i0) to

j ∈ π−1(i) for i 6= i0; note that this is always possible: the graph ∆ has p off-diagonal edges

incident on i0, the operations τ0 and τ1 do no decrease the number of such edges, and each

such edge yields after the expansion of section 5.3.1 of [BEK14] one edge for Ẽo(Γ).

Consider now the following lemma, proven later in this section. Define the restriction of

the partition ζ to π−1(i) as ζi.

Lemma 5.3.6. Let i ∈ Vb \ {i0}. Then either

|ζi| ≤


|π−1(i)|−1

2
i ∈ V ∗b

|π−1(i)|
2

i ∈ Vb \ V ∗b
(5.36)

or

E
∏

e∈E(Γζ)

Aab,aw(e,Γζ) = 0. (5.37)

Lemma 5.3.6 says that the set of white vertices adjacent to one black vertex must at

least pairwise identify. One important aspect of this lemma is that it does not treat black

vertices landing in IK . This is because for α ∈ IK , µ ∈ IN , maximally expanded edges are

not actually independent of Xαµ. Again, this is one of the main differences between this

paper and [BEK14].

Now identify all the white vertices according to ζ, and let Γζ be the resulting graph. aw

will now refer to a tuple of values for the vertices of Γζ . With the introduction of a partition,

we will now only consider aw with distinct values. Note that the function π, which maps

a white vertex to its black neighbor, is no longer a function after identifying some white

vertices, but it may still be regarded as a relation or a multi-valued function, so that π−1(i)

is still defined.

Now let ζb be the partition which is maximally unrestricted subject to the constraint
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that if ζ identifies two endpoints of some e ∈ Ẽo(Γ), then so does ζb. So ζb has only blocks

of size 1 or 2, and ζb is a strictly coarser partition that ζ. Let Γζb be the graph which results

after identifying vertices of Γ according to ζb. Using the cannonical mapping of edges from

Γ to Γζb and defining r to be the number of blocks of ζb of size 2, we have that p− r of the

edges e ∈ Ẽo(Γζb) are still off-diagonal. Here b stands for “bad”, because the identications

between vertices induced by ζb cause edges to cease to be off-diagonal, and we need a certain

number of off-diagonal G entries, which satisfy |Gµν | ≺ ψ(NN) = ψ for µ 6= ν ∈ IN in order

to establish (5.27).

Define the subset V ∗w(Γζ) ⊆ Vw(Γζ) of vertices j which are contained in trivial (singleton)

blocks of ζ, and define ` = |Vw(Γζ)|. Define also Ṽ ∗w(Γζ) ⊆ V ∗w(Γζ) as the set of those

vertices j such that j is one end of an edge e ∈ Ẽo(Γ), and let ˜̀=
∣∣∣Ṽ ∗w(Γζ)

∣∣∣, so that ˜̀≤ p.

The purpose of recording the number ˜̀ is that all vertices j ∈ V ∗w(Γζ), by virtue of being

unidentified with any other white vertices, are the endpoint of some off-diagonal G edge;

the off-diagonal edges incident on vertices in Ṽ ∗w(Γζ) are however in Ẽo(Γζ) and thus already

accounted for, so we must be sure not to double count them. We state the following lemma

regarding the number of white vertices in Γζ , which is proven after the conclusion of the

current lemma.

Lemma 5.3.7. For any graph Γ and any partition ζ such that

E
∏

e∈E(Γζ)

Aab,aw(e,Γζ) 6= 0,

we have

|Vw(Γζ)| ≤
|EX(Γ)|

2
− r

2
+
`

2
− |V

∗
b |
2
.

Now we need to find some off-diagonal edges in Γζ which are not present among Ẽo(Γζ).

Note that e with α(e), β(e) ∈ π−1(i0) may be included in Eo(Γζ) if, for instance, each α(e)

or β(e) is ∈ V ∗w(Γζ). In this way, every j ∈ V ∗w(Γζ) \ Ṽ ∗w(Γζ) is one endpoint of some
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e ∈ Eo(Γζ) \ Ẽo(Γζ). This implies that∣∣∣Eo(Γζ) \ Ẽo(Γζ)∣∣∣ ≥ 1

2

(
`− ˜̀) (5.38)

Now, we will need a secondary sort of resolvent expansion to account for the fact that

the population matrix E depends on XK . Analogously to the definitions of τ0 and τ1, we

define operations

ω0, ω1

such that, just as for τ0, τ1,

Aab,aw(Γ′) = Aab,aw(ω0Γ′) + Aab,aw(ω1Γ′)

for any graph Γ′. To maintain the flow of the argument, we will define these operations ω0, ω1

after we conclude the proof of Lemma 5.1.8. The important property of the operations ω0, ω1

is summarized by the following lemma

Lemma 5.3.8. Let Γζ be as defined above. Let nE = |EG(Γζ)|, and let σ ∈ {0, 1}nE be a

binary string. Define the composition

ωσ = ωσ1 · · ·ωσnE .

We have ∣∣∣∣∣∣
∏

e∈EG(Γζ)

Aab,aw(e, ωσΓζ)

∣∣∣∣∣∣ ≺ ψ|Eo(Γζ)|+∑
σN−2εD

∑
σ (5.39)

(where
∑
σ :=

∑nE
r=1 σr is the number of 1s in σ), and moreover, If

∑
σ < `, then

EAab,aw(ωσΓζ) = 0.

This is to say that a sequence of expansions ωσ only produce graphs whose expected

evaluation are 0 or whose evaluations are less by a factor of ψ`N−2εD` than the number of

off-diagonal edges in Γ would suggest.
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Now let σ and ζ be such that the expression (5.41) below is nonzero. Lemma 5.3.8 and

equation (5.38) tell us that∣∣∣∣∣∣
∏

e∈E(Γζ)

Aab,aw(e, ωσΓζ)

∣∣∣∣∣∣ ≺ ψ|Eo(Γζ)|+` ≤ ψp−r+
1
2

(`−˜̀)+`N−εD` (5.40)

where we have used that
∣∣∣GE(T )

2,µν

∣∣∣(1− δµν) ≺ ψ by Lemma 5.3.2. Equation (5.40) then yields,

also using Aab,aw(e, ωσΓζ) ≺ N−1/2 for e ∈ EX(Γ) = EX(ωσΓζ), we get

E
∑
aw

∏
e∈E(ωσΓζ)

Aab,aw(e, ωσΓζ)

= E
∑
aw

∏
e∈EG(ωσΓζ)

Aab,aw(e, ωσΓζ) ·O≺
(
N−

1
2
|EX(Γ)|

)
.

Using Lemma 5.3.7 to estimate |Vw(Γζ)| which is the number of indices in aw, we get

= E

(∑
aw

1

)
·O≺

(
ψp−rψ`+

1
2

(`−˜̀)N−2`εD
)
·O≺

(
N−

1
2
|EX(Γ)|

)
≺ N

1
2
|EX(Γ)|− r

2
+ `

2 ·
(
ψp−rψ`+

1
2

(`−˜̀)N−2`εD
)
·
(
N−

1
2
|EX(Γ)|

)
·N−

1
2 |V ∗b |

=
(
N−

r
2ψ−r

) (
ψ

3
2
`N

`
2N−2`εD

)(
ψp−

1
2
˜̀) ·N− 1

2 |V ∗b |.

(5.41)

Now we use that N−
1
2 . ψ for any η0 ≤ 1, that ψ3N−2εDN ≤ N−8δ, that ˜̀≤ p, and that

ψ ≤ N−8δ to bound the above by

. ψp/2
(
N−4δ

)` (√
ψ
)p−˜̀

·N−
1
2 |V ∗b | ≤ ψp/2

(
N−4δ

)` (
N−4δ

)p−˜̀ ·N− 1
2 |V ∗b |

and then ˜̀≤ ` and
√
ψN−4δ ≤ ψ(KM) to bound the above by

(
√
ψN−4δ)pN−

1
2 |V ∗b | ≤ ψp(KM)N

− 1
2 |V ∗b |.

Now, we may bound equation (5.35), using the definition of wab and that ‖x‖ = 1, by∣∣∣∣∣E
∗∑
ab

∑
aw

Aab,aw(Γ)

∣∣∣∣∣ ≺ ψp(KM)N
− 1

2 |V ∗b |
∗∑
ab

|wab|

≤ ψp(KM)N
− 1

2 |V ∗b |
∑

i1,...,i|Vb\V ∗b |

|Vb\V ∗b |∏
ι=1

|xiι|
2
∑

j1,...,j|V ∗b |

|V ∗b |∏
ι=1

|xjι|

= ψp(KM)N
− 1

2 |V ∗b |O≺(N1/2)|V ∗b |
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by Cauchy-Schwarz, and we conclude the proof of Lemma 5.1.8.

Proof of Lemma 5.3.6. As in [BEK14], this follows from the fact that if equation (5.36) is

not satisfied, then there must be a block of ζ containing only one element j of π−1(i), so

that, letting e0 be the edge connecting i and j, equation (5.37) factors as

E
∏

e∈E(Γζ)

Aab,aw(e,Γζ) = EXaiaj

∏
e∈E(Γζ)\{e0}

Aab,aw(e,Γζ)

= EXaiajE
∏

e∈E(Γζ)\{e0}

Aab,aw(e,Γζ) = 0,

where the second equality follows from the facts that for every edge e ∈ EG(Γζ), we have

Aab,aw(e,Γζ) independent of Xai,aj , and that our assumption in this lemma implies for each

e ∈ EX(Γζ) \ {e0} that Aab,aw(e,Γζ) is independent of Xai,aj .

Proof of Lemma 5.3.7. Because every edge in Ẽo(Γ) joins j ∈ π−1(i0) and j ∈ π−1(i) for

i ∈ Vb \ {i0}, and because the partition ζb only makes identifications between vertices joined

by e ∈ Ẽo(Γ), it follows that the collection of sets {π−1(i) : i ∈ V ∗b } is disjoint—this is

slightly nontrivial, because the preimages of π, though being disjoint before identification of

vertices by ζb, may no longer be disjoint after some vertices are identified; one may simply

regard π−1(i) ⊆ Vw(Γζb) as the set of all neighbors of the vertex i in the graph Γζb , and then

it becomes clear that the sets π−1(i) are disjoint for distinct i ∈ Vb \ {i0}.

Introduce one more partition ζint on Vw(Γζb), which is the least restrictive partition on

Vw(Γζb) \ V ∗w(Γζ) which identifies two vertices j1, j2 whenever ζ identifies j1 and j2 and

j1, j2 ∈ π−1(i) for the same i ∈ Vb. Here “int” stands for internal.

Note that the graph Γζb has |Vw(Γ)− r| vertices. By Lemma 5.3.6, every block ζint has

size at least 2, but for each i ∈ V ∗b , there is a distinct block of ζint with size at least 3.
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Therefore, we see that

|Vw(Γζ)| ≤ `+ |Vw(Γζint
)| ≤ `+

|Vw(Γζb) \ V ∗w(Γζb)| − |V ∗b |
2

≤ `+
|Vw(Γ)| − `− r − |V ∗b |

2

=
|EX(Γ)|

2
− r

2
+
`

2
− |V

∗
b |
2
.

Remark 5.3.9. The fact that the preimages π−1(i) are disjoint for distinct i 6= i0 in the above

proof makes the proof somewhat easy to get the −|V
∗
b |
2

term. In section 5.4, we will encounter

graphs where this is not the case and we will have to work a litle harder.

5.3.3 The operations ω0 and ω1

The definitions of ω0, ω1 and the proof of Lemma 5.3.8. Recall that E is a (IK ∪ IM)×(IK ∪ IM)

matrix, and that for T ⊆ IK , we have defined E(T ) as the minor of E by removing the rows

and columns indexed by T .

Now, for ν ∈ IN , we will define the diagonal matrices E(ν) and Φ(ν) through

E
(ν)
ii :=

1 + J −2
ii

∑
µ∈IN\{ν}

(B̃X)2
iµ

−1/2

, Φ
(ν)
ii := J −2

ii (B̃X)2
iν .

Notice that
∥∥Φ(ν)

∥∥ ≺ N−1−2εD . See that

(E−2)ii = 1 + J −2
ii

∥∥∥e∗i B̃X∥∥∥2

= 1 + J −2
∑
µ∈IN

(B̃X)2
iµ

=
(
E

(ν)
ii

)−2

+ Φ
(ν)
ii .

(5.42)

Therefore we are able by a resolvent expansion, for any index set T ⊆ IK ∪ IM , to write

GE(T )

= GE(Tν)

+GE(Tν)

Φ(ν)GE(T )

. (5.43)

We similarly define E(ν1···νn) for ν1, . . . , νn ∈ IN , and also, for T ⊆ IK , we define E(Tν1···νn)

to be the obvious minor of E(ν1···νn).
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At this point, fix a graph Γζ . We now confront the difference between our context and

that of [BEK14]: the partition ζ may have singletons, and still EWab,aw(Γζ) 6= 0, the reason

being that all the resolvent entries GE(ab)

2,µ0,µ1
appearing in EG(Γζ) are, despite being maximally

expanded, not independent of e∗αX, because the population matrix E(ab) depends on e∗αX.

This leads us to perform this new binary-tree-indexed expansion. Fix an ordering j1, . . . , j`

of V ∗w(Γζ), ` := |V ∗w(Γζ)| (recall V ∗w(Γζ) are the vertices which are singletons of ζ). We

define, analogously to the operations τ0 and τ1, two operations ω0 and ω1. The first |EG(Γζ)|

applications of ω0 and ω1 are as follows: ω0(Γζ) replaces the first edge in EG(Γζ), whose

evaluation is, say, GE(ab)

2,µ0,µ1
, with an edge with evaluation GE

(abaj1
)

2,µ0,µ1
—note that this edge is

now in fact independent of Xα,aj1
—while ω1(Γζ) replaces it with an edge, which we will still

call a G edge, with evaluation

Aab,aw(e, ω1(Γζ)) =
(
GE

(abaj1
)

2 Φ(aj1 )GE(ab)

2

)
µ0,µ1

.

Note that this edge e has Aab,aw(e, ω1(Γζ)) = O≺(ψ2N−2εD), an improvement over O≺(ψ).

Indeed, by Lemma 5.3.2,∣∣∣∣(GE
(abaj1

)

2 Φ(aj1 )GE(ab)

2

)
µ0,µ1

∣∣∣∣ =

∣∣∣∣∣∑
i∈IM

GE
(abaj1

)

2,µ0i
Φ

(aj1 )

ii GE(ab)

2,iµ1

∣∣∣∣∣
≺ mEψN

−1−2εDψ . ψ2N−2εD .

(5.44)

Remark 5.3.10. Here we need a bound on GE
2,iµ, which is the reason for the treatment of such

an off-diagonal entry in Lemma 5.3.2.

The second application of ω1 or ω2 does the same thing for the second edge of EG(Γζ),

and so forth, |EG(Γζ)| times. Note that |EG(Γ′)| = |EG(ωι(Γ
′))| for any graph Γ′. Before

we describe the next applications of ω0 and ω1, note that if the first |EG(Γ)| applications

ωι1 , . . . , ωι|EG(Γ)| of ωι are ω1, then

EAab,aw(ωι1 · · ·ωι|EG(Γζ)|Γζ) = EAab,aw(ω
|EG(Γ)|
1 Γζ) = 0

for the same reason that singletons in ζi led to 0 in Lemma 5.3.6, or in [BEK14]: we now

have Xi0aj1
independent of Aab,aw(e, ω

|EG(Γζ)|
0 Γζ) for all e ∈ EG(ω

|EG(Γζ)|
0 Γζ).
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The rest of the applications ω0 and ω1 are as follows: say c|EG(Γζ)| applications of ω0, ω1

have already been performed, 1 ≤ c ≤ ` − 1, c ∈ N. The next |EG(Γζ)| applications of ω0

replace each of the |EG(Γ)| edges with evaluation(
GE(abT1)

2 Φ(ν1)GE(abT2)

2 Φ(ν2) · · ·Φ(νd−1)GE(abTd)

2

)
µ0µ1

:= A, (5.45)

where T1, . . . , Td ⊆ {aj1 , . . . , ajc} and d ≤ c, with edges with evaluation(
GE

(abT1ajc+1
)

2 Φ(ν1)GE
(abT2ajc+1

)

2 Φ(ν2) · · ·

· · ·Φ(νd−1)GE
(abTdajc+1

)

2

)
µ0µ1

:= A′.

An application of ω1 replaces the edge A with A′ − A, so that by equation 5.43, one sees

that |A| ≺ ψdN−2(d−1)εD and |A − A′| ≺ ψd+1N−2dεD (likewise, an edge with evaluation

A1 + · · · +An, each Aι having the form (5.45) for the same value of d0 of d, is replaced by

ω0 with an edge with evaluation A′1 + · · · + A′n, and by ω1 with an edge with evaluation

(A1 −A′1) + · · · + (A−A′n), which a sum of many terms of the form (5.45), each with the

same value d0 + 1 of d). At this point, it is clear that every application of ω1 improves

the evaluation of some G edge by a factor of ψN−2εD , which allows us to conclude equation

(5.39).

Again, if each of the applications c|EG(Γζ)|+ 1, . . . , (c+ 1)|EG(Γζ)| of ωι are ω0, then

EAab,aw(ωι1 · · ·ωι
(c+1)|EG(Γζ)|Γζ) = 0

since we now have Xi0ajc+1
independent of Aab,aw

(
e, ωι1 · · ·ωι

(c+1)|EG(Γζ)|Γζ
)

for all e ∈

EG

(
ωι1 · · ·ωι

(c+1)|EG(Γζ)|Γζ
)

.

Applying this argument for each c = 0, . . . , `− 1, we see that

EAab,aw(ωσΓζ) = 0

unless σ has ` entries equal to 1; that is, unless ` of the applications of ωι were ω1, which

concludes the definition of ω0, ω1 and the proof of Lemma 5.3.8.

150



5.3.4 Proof of Lemma 5.3.2

Proof of Lemma 5.3.2. We prove by a bootstrapping argument common in RMT; the proof

is easier than many such proofs, though, because we already have a local law for GEM .

Because es and et are standard basis vectors, ie, they have L1 norm 1, we do not have to

find any independence between different resolvent entries, and therefore we do not have to

treat high moments.

Fix z = E + iη0 ∈ Se and a constant C. We define, for L = 1, . . . , N4dδ−1e, zL = z + iηL

and ηL = η0 + LN−4δ−1
and let

AL =

{
max
r1,r2,T

∣∣∣GE(T\{r1r2})

2,r1r2
(zL)− Π2,r1r2(zL)

∣∣∣ ≤ N−δ/10

}
BL =

{
max
r1,r2,T

∣∣∣GE(T\{r1r2})

2,r1r2
(zL)− Π2,r1r2(zL)

∣∣∣ ≤ ψ(r1r2)

}
where the max over T ranges over all subsets T of ab of size |T | ≤ C.

The main technical result needed for the proof of Lemma 5.3.2 is the following:

Lemma 5.3.11 (BL holds with high probability on AL). For any constant D > 0,

P (AL ∩BC
L) ≤ N−D.

We may now prove Lemma 5.3.2. First observe, for a general matrix H of bounded

operator norm, ∥∥(H − zLI)−1 − (H +H∆ − zLI)−1
∥∥ . ‖H∆‖η−2

L (5.46)

To start the bootstrapping, we see that for L = N4dδ−1e, equation (5.46) yields∥∥GE
2 (zL)−GI

2(zL)
∥∥ ≺ N−1/2

(also note
∥∥ΠE

2 − ΠI
2

∥∥ ≺ N−1/2). Since GI
2 − ΠI

2 has the usual local law, we conclude that

BL holds with high probability for L = N4dδ−1e.

For L ≥ 1, equation (5.46) also shows that

P (BL ∩AC
L−1) ≤ N−D. (5.47)
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Lemma (5.3.11) and equation (5.47) yield then

P (BC
1 ) = P (AC1 ∩BC

1 ) + P (A1 ∩BC
1 )

≤ P (AC1 ) +N−D

= P (BC
2 ∩ AC1 ) + P (B2 ∩ AC1 ) +N−D

≤ P (BC
2 ) + 2N−D

...

≤ P (BC
N4) + 2N4N−D

≤ 3N4−D.

Since D is arbitrary, we are done.

Proof of Lemma 5.3.11. We let ∆ be the graph with K+ |{s, t} \ IK | black vertices Vb(∆) =

IK ∪ {s, t}. Even if either of s, t are in IN , we still include them in Vb; this is inconvenient

notation, since we otherwise think of black vertices as taking values in IK+M and white

vertice in IN , but we will not need it for long. K of the vertices are labeled 1, . . . , K, and

for each α = 1, . . . , K, we write aα = α, and the |{s, t} \ IK | other vertices shall be labeled s

and t and shall satisfy as = s, at = t. ∆ has one edge connecting s and t. Here we are trying

to preserve some continuity with 5.3.1, wherein there must be a distinction between the

vertices of the graph i, and the values ai in IK ∪ IM that the vertices take—we are working

with standard basis vectors now, so every vertex takes only one value and this distinction is

not really necessary.

The main difference between this graph and the graph of section 5.3.1 is that it can (if

s or t ∈ IN) contain G edges initiating and/or terminating on vertices landing in IN . This

does not actually affect the construction of section 5.3.1; the identity (5.29) still holds, and

in addition to the identity (5.30) we have

Giµ = GiiG
(i)
µµ

(
−Xiµ +

(
XG(iµ)X

)
iµ

)
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The edges −Xiµ and
(
XG(iµ)X

)
iµ

above will both be refered to as R-groups because of the

role that they play. Now, we construct the tree of operations just like in subsection 5.3.1

and write

Y (∆) = E
∑

σ∈L(T )

∑
aw

Aaw(Θσ),

where we have removed ab from the subscript ofA since ab is now a constant; also, wab(∆) = 1

identically.

Now to estimate the trivial leaves σ ∈ L(T ), we need a bound on off-diagonal edges∣∣∣GE(T )

2,r1r2

∣∣∣ ≺ N−ε0 (5.48)

for some ε0 > 0—which is given by the bootstrapping assumption AL—and a bound on the

R-groups, which we collect in the following lemma:

Lemma 5.3.12. We have the following bounds:

1. For r1, r2 ∈ IK+M , ∣∣∣∣(XGE(ab)

2 X∗
)
r1r2
− δr1r2m

∣∣∣∣ ≺ ψ(r1r2).

2. For r1 ∈ IK+M , r2 ∈ IN , ∣∣∣∣(XGE(ab)

2 X
)
r1r2

∣∣∣∣ ≺ ψ(r1r2).

3. For r1, r2 ∈ IN , ∣∣∣∣∣(X∗GE(ab)

2 X
)
r1r2
− δr1r2N−1

∑
i∈IM

Π2,ii

∣∣∣∣∣ ≺ ψ(r1r2).

Now the bound on the trivial leaves follows just as it did in Section 5.3.1, and we can

now treat the non-trivial leaves, in which all off-diagonal edges are replaced with R-groups

and all diagonal edges are maximally expanded. Because again we are not dealing with the

fully general situation of high moments of generalized resolvent entries, we do not need to

exploit any independence, and we can simply bound the R-groups individually rather than

going through the process of identifying white vertices as in Lemma 5.1.8.
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First note that every self-loop e has

|Aaw(e,Θσ)| ≺ 1

since it may be expanded by operatrion (c) of [BEK14] just as in that paper; the bounds

necessary to perform the truncation in this operation are provided by Lemma 5.3.12.

We proceed by cases on r1, r2. If r1, r2 ∈ IM , then there is one non-trivial leaf σ such

that Θσ has a single R-group

R∗ =
∑
µν

Xr1µG
E(ab)

2,µν Xr2ν

(where for brevity we are conflating an edge with its evaluation) which satisfies |R∗ − δr1r2m| ≺

ψ(r1r2) by Lemma 5.3.12; every other non-trivial leaf has at least two R-groups R1 and R2 of

the form

Rι =

∣∣∣∣∣∑
µν

XrιµG
E(ab)

2,µν Xαιν

∣∣∣∣∣
for some α1, α2 ∈ IK . Every other self-edge and R-group is bounded by O≺(1). Since

R1R2 ≺ ψ2
(MK) ≤ ψ(r1r2), we are done with the case r1, r2 ∈ IM .

The case of r1 ∈ IM , r2 ∈ IN , the symmetric case, and the case of r1, r2 ∈ IN are treated

almost identically, using the identity (5.48) and Lemma 5.3.12, with only the additional

input that Xr1r2 ≺ N−1/2.

If r1 ∈ IK and r2 ∈ IM , then every non-trivial leaf σ has an R-group of the form∣∣∣∣∣∑
µν

Xr2µG
E(ab)

2,µν Xαν

∣∣∣∣∣ ≺ ψ(r1r2)

for some α ∈ IK , so that again we are done.

The case of r1 ∈ IK , r2 ∈ IN is treated similarly, with the same adjustments as for the

case r1 ∈ IM , r2 ∈ IN .

Finally if r1, r2 ∈ IK , exactly one non-trivial leaf has exactly one R-group

R∗ =
∑
µν

Xr1µG
E(ab)

2,µν Xr2ν
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which satisfies
∣∣R∗ − δr1r2m ≺ N−δ

∣∣ ≺ ψ(KK) and every other non-trivial leaf has at least

one off-diagonal R-group

R∗ =

∣∣∣∣∣∑
µν

XαµG
E(ab)

2,µν Xβν

∣∣∣∣∣ ≺ ψ(NN)

for some α 6= β ∈ IK .

Proof of Lemma 5.3.12. We separate into cases:

1. r1, r2 ∈ IM ,

2. r1, r2 ∈ IN ,

3. r1 ∈ IM , r2 ∈ IN ,

4. r1 ∈ IK , r2 ∈ IM ,

5. r1 ∈ IK , r2 ∈ IN ,

6. r1, r2 ∈ IK .

We prove each item separately.

1. Since GE(ab)

2 is a matrix for which the usual local law holds (IK ⊆ ab, so that the

population matrix E(ab) is independent of the randomness), the usual proof holds,

which we outline. Using the large deviation bounds (see lemma 3.6 of [BK18]) for

real-valued, independent, centered, variance 1 random variables (xi)i∈K , (yi)i∈K having

xi ≺ 1 and yi ≺ 1 and deterministic complex constants (bij)i,j∈K for some finite index
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set K,

∑
i

xibii ≺

(∑
i

|bii|2
)1/2

∑
i 6=j

xibijxj ≺

(∑
i 6=j

|bij|2
)1/2

∑
ij

xibijyj ≺

(∑
ij

|bij|2
)1/2

(5.49)

and also using that N1/2Xrιµι′
is centered, variance 1, and O≺(1), we obtain∑

µ1,µ2

Xr1µ1G
E(ab)

2,µ1µ2
Xr2µ2 − δr1r2mE

=
∑
µ1 6=µ2

Xr1µ1G
E(ab)

2,µ1µ2
Xr2µ2 +

(∑
µ1

Xr1µ1

(
GE(ab)

2,µ1µ1
−m

)
Xr2µ1

)

+
∑
µ1

m(Xr1µ1Xr2µ1 − δr1r2N−1)

=N−1O≺

(∑
µ1 6=µ2

∣∣∣GE(ab)

2,µ1µ2

∣∣∣2)1/2
+N−1O≺

(∑
µ1

∣∣∣GE(ab)

2,µ1µ1
−m

∣∣∣2)1/2


+N−1O≺

(∑
µ1

|m|2
)1/2


=O≺(ψ(NN)) +O≺(N−1/2ψ(NN)) +O≺(N−1/2)

=O≺(ψ(NN))

by Lemma 5.2.2.

2. This bound is proven just like item 1, using that
∣∣∣GE(ab)

2,i1i2
− Π2,i1i2

∣∣∣ ≺ ψ(MM) (which is

also a consequence of Lemma 5.2.2) in place of
∣∣∣GE(ab)

2,µ1µ2
− Π2,µ1µ2

∣∣∣ ≺ ψ(NN).

3. This proof is again like items 1 and 2, using
∣∣∣GE(ab)

2,iµ − Π2,iµ

∣∣∣ ≺ ψ(MN).

4. The reason this differs from items 1, 2 and 3 is that G
(ab∪IK)
2 is not idependent of Xαµ
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for α ∈ IK . We write∣∣∣∣(XGE(ab)

2 X∗
)
r1r2

∣∣∣∣ =

∣∣∣∣∣∑
µ1,µ2

Xr1µ1G
E(ab)

2,µ1µ2
Xr2µ2

∣∣∣∣∣
≤

∣∣∣∣∣∑
µ1,µ2

Xr1µ1G
E(abµ2)

2,µ1µ2
Xr2µ2

∣∣∣∣∣
+

∣∣∣∣∣∑
µ1,µ2

Xr1µ1

(
GE(abµ2)

2 Φ(µ2)GE(ab)

2

)
µ1µ2

Xr2µ2

∣∣∣∣∣.
(5.50)

In the first term, the resolvent is independent of both X factors, so we treat it as we did

before, getting the bound ψ(NN) ≤ ψ(KM). In the second, we do not have independence

with respect to Xr2µ2 , so we use a weaker large deviation bound: note that, using

equation (5.44), we may crudely bound

Yµ1 :=
∑
µ2

(
GE(abµ2)

2 Φ(µ2)GE(ab)

2

)
µ1µ2

Xr2µ2 ≺ N1/2ψ2
(NN)N

−2εD ≤ ψ(KM).

Also see that Yµ1 is independent of Xr1µ1 . Thus, we bound the second term of (5.50):∣∣∣∣∣∑
µ1

Xr1µ1Yµ1

∣∣∣∣∣ ≺ N−1/2

(∑
µ1

|Yµ1|
2

)1/2

≺ ψ(KM) (5.51)

as desired.

5. This proof is identical to the proof of item 4, noting that the implicit range of i in the

sum excludes IK so that the factor Xr2i is independent of GE(ab)

2,µi .

6. We may write, using parentheses to demonstrate the provenance of the terms,

GE(ab) =
(
GE(abµ1)

)
+
(
GE(abµ1)

Φ(µ1)GE(ab)
)

=
(
GE(abµ1µ2)

+GE(abµ1µ2)

Φ(µ2)GE(abµ1)
)

+
(
GE(abµ1µ1)

Φ(µ2)GE(abµ2)

+O≺(N−1+3ε0−4εD)
)

: = A1 + A2 + A3 +O≺(N−1+3ε0−4εD)

(5.52)

where in the last line follows from

G(T1)Φ(µ2)G(T2)Φ(µ1)G(T3) = O≺(ψ3N−4εD) = O(N−1+3ε0−4εD)
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which is proven similarly to equation (5.44). Thus, to establish this last item of Lemma

5.3.12, we must establish ∣∣∣∣∣∑
µ1,µ2

Xr1µ1AιXr2µ2

∣∣∣∣∣ ≺ ψ(KK) (5.53)

for ι = 1, 2, 3—each of these bounds is treated just as one of the previous items—and∣∣∣∣∣∑
µ1,µ2

Xr1µ1O≺(N−1+3ε0−4εD)Xr2µ2

∣∣∣∣∣ (5.54)

but the above is O≺(N3ε0−4εD) ≤ ψ(KK) somewhat naively, so that we are done.

5.4 The Proof of Lemma 5.1.4

We have the following lemma:

Lemma 5.4.1. The resolvents of (DX)# and (EX)# are close at the spectral edge: for

z ∈ Se, we have ∣∣GE −GD
∣∣ ≺ N−δ

Nη0

. (5.55)

Proof of Lemma 5.1.4. An immediate corollary of Lemma 5.1.3 is that (EX)# satisfies the

weak level repulsion and ε0/2-valley conditions. The proof is then concluded in exactly the

same way that the proof of Lemma 5.1.3 was.

Proof of Lemma 5.4.1. Use a Taylor expansion to obtain

D = E +
5∑

a=1

ΛaCa +O≺(N−3)

=
5∑

a=0

ΛaCa +O≺(N−3)

(5.56)

where

Ca =
(−1)a

a!

(2a− 1)!!

2a
E2a+1.
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Only note that Ca is power of E (up to bounded deterministic factors). We moreover have

by a resolvent expansion

GD
2 = GE

2 +
k∑
k=1

(GE
2 Λ)kGE

2 + (GE
2 Λ)kGD

2
(5.57)

Consider the following lemma, proven momentarily:

Lemma 5.4.2. We have for any integer k ≥ 1 and any O≺-bounded random variables Ci

which are independent of XM and have Cα = 1 for α ∈ IK,

N−1
∑

i∈IK∪IM

Cie∗iG(ΛG)k−1ei ≺ ψ(k+1)/2.

It is then a consequence of Lemma 5.4.2 that∥∥∥(GE
2 Λ)k−1GE

2

∥∥∥ ≺ N(N−1/3+ε0)k/2

so that if k = 100, we may truncate equation (5.57) as

GD
2 = GE

2 +
k∑
k=1

(GE
2 Λ)kGE

2 +O≺
(
N−3

)
(5.58)

where O≺ (N−3) is a matrix of operator norm O≺ (N−3). Moreover, using Lemma 5.4.2 to

bound the operator norm by the trace, see that∥∥GE
2

∥∥+
k∑
k=1

∥∥(GE
2 Λ)kGE

2

∥∥ ≺ Nψ . η−1
0 .

Consider also the following lemma:

Lemma 5.4.3. For any integers a, b ≥ 0 and k ≥ 1 satisfying a+ b+ k ≥ 2, we have

N−1
∑

i∈IK∪IM

e∗iCaΛ
a(G(ΛG)k−1)ΛbCbei ≺

N−δ

Nη0

.

Thus we may write GE −GD as

(M +K)−1
∑

i∈IK∪IM

(GE −GD)ii = z(M +K)−1
∑

i∈IK∪IM

(
EGE

2 E −DGD
2 D
)
ii

= z(M +K)−1
∑

i∈IK∪IM

5∑
a=0

5∑
b=0

k∑
k=0

1a+b+k≥1

(
CaΛ

a(GE
2 Λ)kGE

2 ΛbCb

)
ii

+O≺
(
N−3η−2

0

)
.
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Since N−3η−2
0 ≺ N−δ

Nη0
, we may conclude.

The rest of this section is devoted to the proofs of Lemmas 5.4.3 and 5.4.2. We break

their proof into four sublemmas:

Lemma 5.4.4. If a, b ≥ 0 and k ≥ 1 are integers with a+ b+ k ≥ 2, then

N−1

∣∣∣∣∣∑
i∈IM

e∗iCaΛ
a(G(ΛG)k−1)ΛbCbei

∣∣∣∣∣ ≺ N−δ

Nη0

. (5.59)

Lemma 5.4.5. We have for any integer k ≥ 3,

N−1

∣∣∣∣∣∑
i∈IM

Cie∗iG(ΛG)k−1ei

∣∣∣∣∣ ≺ ψ
k+1

2 . (5.60)

Lemma 5.4.6. We have for k = 2,

N−1

∣∣∣∣∣∑
i∈IM

Cie∗iG(ΛG)k−1ei

∣∣∣∣∣ ≺ ψ
k+1

2 . (5.61)

Lemma 5.4.7. We have for any integer k ≥ 2 and α ∈ IK,

∣∣e∗αG(ΛG)k−1eα
∣∣ ≺ ψ

k−1
2 (5.62)

In the above Ci is as it was in the statement of Lemma 5.4.2. We only ever actually need

Ci = Eii or Ci = 1. .

Proof of Lemma 5.4.3. Lemma 5.4.3 is a consequence of Lemma 5.4.4 as well as the following

result: if a, b ≥ 0 and k ≥ 1 are integers with a+ b+ k ≥ 2 and α ∈ IK , then

N−1
∣∣e∗αCaΛ

a(G(ΛG)k−1)ΛbCbeα
∣∣ ≺ N−δ

Nη0

(5.63)

which we prove now. The case of a = b = 0 is treated by Lemma 5.4.7. The case of a ≥ 0

or b ≥ 0 is trivial, since Λeα = 0 for α ∈ IK .
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Proof of Lemma 5.4.2. This follows from Lemmas 5.4.5, 5.4.6, and 5.4.7. Indeed,

N−1

∣∣∣∣∣ ∑
i∈IK∪IM

Cie∗iG(ΛG)k−1ei

∣∣∣∣∣
≤ N−1

∣∣∣∣∣∑
i∈IM

Cie∗iG(ΛG)k−1ei

∣∣∣∣∣+N−1

∣∣∣∣∣∑
α∈IK

e∗αG(ΛG)k−1eα

∣∣∣∣∣
≺ ψ

k+1
2 +KN−1ψ

k−1
2 ≺ ψ

k+1
2

since K is bounded and N−1 ≤ ψ2.

In order to prove Lemmas 5.4.4, 5.4.5, 5.4.6, and 5.4.7, we must first introduce some new

graphs, similar to the ones introduced in section 5.3.1.

5.4.1 Graphs with X2 edges, and the proof of Lemma 5.4.3

Throughout this section, we will work with graphs like the ones introduced in section 5.3.1.

The difference now is that the graphs in this section will have a new sort of X edge, and

whereas in section 5.3.1 we start with a graph ∆ of only black vertices and G edges and

then introduce white vertices and X edges through applications of resolvent identities, in

this section the new sorts of X edges will be present in the original graph ∆.

Recalling our definition 5.3.3 of a graph, we now adjust it to allow one more possibility

for the color of an edge: we add the colors

X2, X2

to the range of ξ1. We extend the definition (5.28) of the evaluation of an edge now:

Aab,aw(e,Γ) =


(
X2
iµ −N−1

)
+ 2

(
J −1
ii

∑
α∈IK B̃iαXαµ

)
Xiµ ξ1(e) = X2(

X2
iµ −N−1

)
+ 2

(
J −1
ii

∑
α∈IK B̃iαXαµ

)
Xiµ ξ1(e) = X2
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where i := aα(e), µ := aβ(e). The motivation for this definition is that

Λii =
(
‖e∗iX‖

2 − 1
)

+ 2J −1
ii

〈
e∗i B̃X, e

∗
iX
〉

=
∑
µ∈IN

((
X2
iµ −N−1

)
+ 2

(
J −1
ii

∑
α∈IK

B̃iαXαµ

)
Xiµ

)
.

(5.64)

As with edges with color ξ1(e) ∈ {X,X}, we assume that edges with color ξ1(e) ∈ {X2, X2}

in graph Γ have α(e) ∈ Vb(Γ), β(e) ∈ Vw(Γ).

Crucially, these new X edges (we will now refer to an edge of any color {X,X,X2, X2}

as an X edge) have a very similar independence property to before:

Lemma 5.4.8. Let Γ be a graph and ab and aw indices for its black and white vertices. Let

Γ have X1 edges e1, . . . , enK and f1, . . . , fn1
M

with aα(eι) ∈ IK and aα(fι) ∈ IM , and X2 edges

g1, . . . , gn2
M

having aα(gi) ∈ IM . Then, unless

• every edge e ∈ {fι} ∪ {gι} has aα(e) = aα(e′) and aβ(e) = aβ(e′) for some other e′ 6= e ∈

{fι} ∪ {gι} and

• every e ∈ {eι} has either

– aα(e) = aα(e′) and aβ(e) = aβ(e′) for some e′ 6= e ∈ {eι}, or

– aβ(e) = aβ(e′) for some e′ 6= e ∈ {gι}.

we have

E
nK∏
ι=1

Aab,aw(eι,Γ)

n1
M∏
ι=1

Aab,aw(fι,Γ)

n2
M∏
ι=1

Aab,aw(gι,Γ) = 0.

In other words, in order for a graph’s X-edges to have nonzero evaluation, every edge

must share both endpoints with a different edge just as in section 5.3, with the exception

of X edges whose initial vertex lies in IK—these edges may be allowed to share only their

terminal vertex with another edge (specifically an X2 edge). The purpose of this lemma and

the parallel phenomenon in Section 5.3 is to reduce the number of vertices which may range
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freely over IM or IN . Since IK is of bounded size, the relaxation of the requirement for

edges e with aα(e) ∈ IK does not change the argument.

Proof. The essential reason this lemma holds is that the evaluation of an edge e ∈ {eι}∪{fι}

depends only on Xaα(e),aβ(e)
, while the evaluation of edge gι depends on Xaα(gι),aβ(gι)

as well

as Xα1,aβ(gι)
, . . . , XαK ,aβ(gι)

, where α1, . . . , αK is an enumeration of the elements of IK .

If the first item does not hold, let this be witnessed by an edge fι or gι. If the witnessing

edge is fι (which we assume for brevity to have ξ1(fι) = X), then

Z :=

nK∏
ι=1

Aab,aw(eι,Γ)

n1
M∏
ι=1

Aab,aw(fι,Γ)

n2
M∏
ι=1

Aab,aw(gι,Γ)

factors as

Z = Xaα(fι),aβ(fι)
Z̃,

where Z̃ is independent of Xaα(fι),aβ(fι)
because of the independence of the entries of X. We

conclude by the centeredness of the entries of X. If the witnessing edge is rather gι (which

we assume for brevity to have ξ1(fι) = X2, then Z factors as

Z =

((
X2
iµ −N−1

)
+ 2

(
J −1
ii

∑
α∈IK

B̃iαXαµ

)
Xiµ

)
Z̃

=
(
X2
iµ −N−1

)
Z̃ + 2Xiµ

(
J −1
ii

∑
α∈IK

B̃iαXαµ

)
Z̃

=
(
X2
iµ −N−1

)
Z̃1 + 2XiµZ̃2,

where Z̃1, Z̃2 are again independent of Xaα(fι),aβ(fι)
, and we conclude as before.

If rather the second item does not hold, let this be witnessed by an edge eι (which we

assume for brevity to have ξ1(eι) = X), which therefore does not share its terminal vertex

with any other edge, except perhaps some fι′ , but eι and fι′ may not also share their intial

vertices (one lies in IK and the other in IM). Then Z factors as

Z = Xaα(fι),aβ(fι)
Z̃

where Z̃ is independent of Xaα(fι),aβ(fι)
, and we conclude as before.
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Now, we will construct a graph to model the expressions that we will need to bound for

the proof of Lemma 5.4.2. Fix values a, b ≥ 0, k ≥ 1. Similarly to before and to in [BEK14],

we begin with the following graph ∆pre whose vertices are partitioned into black vertices

Vb(∆
pre) and white vertices Vw(∆pre):

Vb(∆
pre) :{1, . . . , k} × {1, . . . , p}

Vw(∆pre) :{1̄1, . . . , 1̄a+b, 2̄, . . . , k̄} × {1, . . . , p}

E(∆pre) : {((k′, p′), (k′ + 1, p′)) for every (k′, p′) ∈ {1, . . . , k} × {1, . . . , p}}

∪
{

((k′, p′), (k̄′, p′)) for every (k′, p′) ∈ {2, . . . , k} × {1, . . . , p}
}

∪ {((1, p′), (1̄c, p′)) for every p′ ∈ {1, . . . , p}, c ∈ {1, . . . , a+ b}}

(5.65)

where in the above the addition k + 1 is taken modulo k. When a = b = 0, we refer to the

vertices (1, p′) as weightless vertices.

In ∆pre, for p′ ≤ p/2, the color of every edge connecting (k′, p′) to (k′ + 1, p′) is G, and

the color of every edge connecting (1, p′) to (1̄s, p
′) or (k′, p′) to (k̄′, p′) is X2. For p′ > p/2

the colors are G and X2 respectively.

Proof of Lemma 5.4.4. The case of a = b = 0 and k ≥ 2 is treated by Lemma 5.4.2, since

ψ3/2 = (N−1/3+ε0)3/2 = N−1/2+ 3
2
ε0 ≤ N−1/3+ε0−δ = N−δ

Nη0
. Therefore it remains to treat the

case of a+ b ≥ 1.

We show that ∣∣∣∣∣M−1
∑
i∈IM

e∗iCaΛ
a(G(ΛG)k−1)ΛbCbei

∣∣∣∣∣ ≺ N−1. (5.66)

We accomplish this using the technique of Section 5.3.2, except we start with the graph ∆pre

introduced in this section.

Let P be the set of all partitions of Vb(∆
pre), and for P ∈ P let ∆(P ) be the quotient

graph of ∆pre by P . This section contains only the first of several different very closely

related graphs with which we will be working later in the paper, and then we will let P take

slightly different definitions.
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Let p > 0 be even, ab = (ai)i∈Vb(Γ) ∈ I |Vb(Γ)|
M (notice that we do not have black vertices

landing in IK in this proof) and aw = (ai)i∈Vw(Γ) ∈ I |Vb(Γ)|
N . Just as in Section 5.3.1 we get

E

∣∣∣∣∣∑
i∈IM

e∗iCaΛ
a(G(ΛG)k−1)ΛbCbei

∣∣∣∣∣
p

=
∑
P∈P

∗∑
ab

wab(∆(P ))
∑
aw

A(∆(P ))

where wab(∆(P )) =
∏

(CaCb)
deg∆(P )(i)/2
aiai M−p, the product ranging over the weightless ver-

tices, which is justified just as in Section 5.3.1, together with equation (5.64). Now we fix P

and let ∆ := ∆(P ). Throughout the rest of this proof, the black vertices of every graph that

appears are the same as the black vertices of ∆, so that we may write Vb := Vb(∆) for the

set of black vertices of every graph in this proof without ambiguity. Exactly as in Section

5.3.1, ∑
aw

A(∆) =
∑

σ∈L1(T )

∑
aw

A(Θσ) +O≺(N−p)

where we recall L1(T ) is the set of non-trivial leaves of the tree T , and then for each of the

boundedly many σ ∈ L1(T ),

∑
aw

A(Θσ) =
∑
Γ∈G

∑
aw

A(Γ) +O≺(N−p).

We show that
∗∑
ab

wab(∆)
∑
aw

EAab,aw(Γ) ≺ N−p,

which is sufficient because |G| is bounded. We fix a partition ζ, and define for i ∈ Vb the

partitions ζi on π−1(i) as the restriction of ζ to π−1(i), and we define nζ(i) := |ζi|. Define

also

Wab,aw(Γζ) =
∏

e∈EX(Γζ)

Aab,aw(e,Γζ).

We have the estimate

|Wab,aw(Γζ)| ≺

 ∏
e∈EX(Γζ)

N−1/2

N−
1
2

(a+b+k−1)p (5.67)
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since every X-edge e yields a factor of N−1/2, except (a+ b+ k− 1)p of them (the ones with

color ξ1(e) ∈ {X2, X2}), which yield an additional N−1/2. We then note that∏
e∈EX(Γζ)

N−1/2 =
∏
i∈Vb

N
− 1

2
degΓζ

(i)
. (5.68)

By Lemma 5.4.8, since wab(∆) is independent of XM , we may assume that each partition ζi

for i ∈ Vb has no singletons.

We proceed from the simple estimate:

∗∑
ab

wab(∆)
∑
aw

Aab,aw(Γ) ≺

(∏
i∈Vb

Nnζ(i)+1

)
max
ab,aw
|Wab,aw(Γζ)|N−p

so that recalling equations (5.67) and (5.68), it now suffices to show that(∏
i∈Vb

Nnζ(i)+1N
− 1

2
degΓζ

(i)

)
N−

1
2

(a+b+k−1)p ≤ 1. (5.69)

Since ζi has no singletons for any i, we have

nζ(i) ≤


degΓζ

(i)

2
if degΓζ

is even

degΓζ
(i)−1

2
if degΓζ

is odd.

Bounding the left-hand side of equation (5.69), we have(∏
i∈Vb

Nnζ(i)+1N
− 1

2
degΓζ

(i)

)
N−

1
2

(a+b+k−1)p

≤ N |Vb|−
1
2 |V ∗b |N−

1
2

(a+b+k−1)p

(5.70)

where V ∗b is the set all i ∈ Vb for which degΓζ
(i) is odd. Recall the partition P which defined

∆ := ∆(P ).

Now first assume a + b = 1. One may see that if no black vertices are identified by

P , then every black vertex i has degΓζ
(i) odd; in this way, |V ∗b | is at least the number of

black vertices which are in a singleton of P . Letting ` be the number of singletons in P , we

therefore have

|Vb| −
1

2
|V ∗b | ≤ |Vb| −

1

2
` ≤ `+

1

2
(kp− `)− 1

2
` =

1

2
kp. (5.71)
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Referring to equation (5.70) and using that a+ b = 1, we are done with the case a+ b = 1.

For the case a+ b ≥ 2, we have now that whereas previously |V ∗b | ≥ `, now |V ∗b | ≥ `− p,

since p of the vertices i ∈ Vb (the ones with the factor Λa+b), may be unidentified by P and

yet have degΓζ
(i) even (if a+ b is even). Thus, equation (5.71) instead yields

|Vb| −
1

2
|V ∗b | ≤

1

2
kp+

1

2
p (5.72)

but since a+ b ≥ 2, equation (5.70) still yields the result. We conclude the proof of Lemma

5.4.4 by summing over the boundedly many partitions P ∈ P.

5.4.2 The proof of Lemmas 5.4.5, 5.4.6, and 5.4.7

We prove each of the three lemmas whose proof constitutes this section with the use of two

or three sublemmas, prove the sublemmas, and then move on to the next one.

A common theme in each of the three lemmas is the counting of the number of vertices in

the graph, the number of off-diagonal edges in the graph, and the number of special vertices

i, collected in a set designated V ∗b which is chosen differently for the proof of each lemma,

which have degX(i) odd and thus lead to reductions in the combinatorics, thanks to the

independence of the entries of X.

Proof of Lemma 5.4.5. We define P and construct the graph ∆pre as in section 5.4.1 for

a = b = 0 and k ≥ 2, and fix a partition P ∈ P. We let Vb be the set of the resulting black

vertices and V ∗b be the set of non-weightless black vertices which correspond to singletons

in the partition P . The following lemma counts the relationship between Vb, V
∗
b , and the

number of off-diagonal G-edges in ∆.

Lemma 5.4.9. We have (
−(k + 1)p

2
+ |Vb| −

1

2
|V ∗b |

)
≤ 0 (5.73)
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and

−2

(
−(k + 1)p

2
+ |Vb| −

1

2
|V ∗b |

)
+ |Eo(∆)| ≥ (k + 1)p

2
. (5.74)

Equality in equation (5.73) is easily achieved, and holds in the worst case scenario for

equation (5.74) that we describe in the next paragraph.

We may understand equation (5.74) heuristically as follows: off-diagonal edges and V ∗b

black vertices are good, while black vertices generally speaking are bad (“good” means “more

of them leads to a better bound” while “bad” means the opposite). The worst case scenario

for equation (5.74) is if all (k−1)p vertices from V ∗b should pairwise identity. This is the worst

case because each pairwise identification of V ∗b vertices (1) decreases V ∗b by two and Vb by one,

so that the difference |Vb|− 1
2
|V ∗b | is not changed, but also (2) may also cause one off-diagonal

edge to cease to be off-diagonal. Since (k−1)p
2

such identifications are possible, we lose (k−1)p
2

off-diagonal edges in this case and are left with (k+1)p
2

of them. Any additional identifications

of black vertices then strictly decrease the difference |Vb|− 1
2
|V ∗b |, which compensates for any

additional loss of off-diagonal edges.

Lemma 5.4.9 is proven very shortly. Now we construct the tree T from ∆ just as in

section 5.3.1 and we get

EY (∆) = E
∑

σ∈L(T )

∗∑
ab

wab(∆)
∑
aw

Aab,aw(Θσ), (5.75)

where wab(∆) =
∏

(CaCb)
deg∆(P )(i)/2
aiai M−p, the product ranging over the weightless vertices.

We now fix a leaf σ ∈ L(T ). The trivial leaves are treated just as in section 5.3.1, so

we assume σ is a non-trivial leaf. We complete the operations of Section 5.3.1, and fix a

Γ ∈ G(Θσ). We now fix a partition ζ on the white vertices of Γ and let Γζ be the quotient

graph after identifying white vertices in Γ according to ζ.

We must now count |Vw(Γζ)| in relation to the number of off-diagonal G edges Eo(Γζ) in

Γζ :
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Lemma 5.4.10. Consider a fixed graph Γ and partition ζ which is such that

E
∏

e∈E(Γζ)

Aab,aw(e,Γζ) 6= 0 (5.76)

Let the following be the definition of the numbers c1, c2:

|Vw(Γζ)| =
|EX(Γ)|

2
− |V

∗
b |
2
− c1 (5.77)

and

|Eo(Γζ)| = |Eo(∆)| − c2. (5.78)

Then, c1 ≥ 0 and 2c1 ≥ c2.

Lemma 5.4.10 is proven very shortly. We have then, fixing Γ and ζ such that equation

(5.76) holds,∣∣∣∣∣∣E
∗∑
ab

wab(∆)
∑
aw

∏
e∈E(Γζ)

Aab,aw(e,Γζ)

∣∣∣∣∣∣
. N−pEN |Vb|N |Vw(Γζ)|

∣∣∣∣∣∣
∏

e∈EX(Γζ)

Aab,aw(e,Γζ)

∣∣∣∣∣∣
∣∣∣∣∣∣
∏

e∈EG(Γζ)

Aab,aw(e,Γζ)

∣∣∣∣∣∣
≺ N−pN |Vb|N |Vw(Γζ)|N−

|EX (Γ)|
2 N−

(k−1)p
2 ψ|Eo(Γζ)|

and then using Lemma 5.4.10 and that N−1/2 ≤ ψ,

≤ N−pN |Vb|N
|EX (Γ)|

2
−|V

∗
b |
2 N−

|EX (Γ)|
2 N−

(k−1)p
2 ψ|Eo(∆)|

= N−
1
2

(k+1)p+|Vb|− 1
2 |V ∗b |ψ|Eo(∆)|

Then, using Lemma 5.4.9, we get

≤ ψ2(− 1
2

(k+1)p+|Vb|− 1
2 |V ∗b |)ψ|Eo(∆)|

≤ ψ
(k+1)p

2

thus completing the proof of Lemma 5.4.5.

169



Proof of Lemma 5.4.9. We recall the partition P which induces the graph ∆. We may think

of the operation of producing the quotient graph ∆ = ({1, . . . , k} × {1, . . . , p}) /P as a

sequence of identifications of vertices of {1, . . . , k} × {1, . . . , p}. We may perform them in

this order:

1. First perform identifications between two non-weightless vertices. Let P1 be the par-

tition on ∆ vertices described by these identifications; the blocks of the partition are

identified with the vertices of the resulting graph.

2. Then perform all identifications between a weightless vertex and a non-weightless vertex

which is a singleton of P1.

3. Then perform all other identifications between a weightless vertex and a non-weightless

vertex.

4. Finally perform the remaining identifications between two weightless vertices.

Let s1, s2, s3 and s4 respectively be the number of each sort of identification. We may reason

simply by counting how these identifcations affect |Vb|, |V ∗b |, and |Eo(∆)|, collecting our

observations as follows:

1. The number of vertices |Vb(∆)| is precisely

|Vb(∆)| = kp− s1 − s2 − s3 − s4.

2. |V ∗b | is at least

|V ∗b (∆)| ≥ ((k − 1)p− 2s1 − s2)+ .

3. The number of off-diagonal edges is at least

|Eo(∆)| ≥ kp− s1 − s2 − 2s3.

The reason for this is that the subgraph of ∆pre induced by the subset {2, . . . , k} ×

{1, . . . , p} ⊆ Vb(∆
pre) has no cycles, so that each of the s1 identifications between the

170



vertices (k′, p′) ∈ {2, . . . , k} × {1, . . . , p}, which may be assumed to be performed in

order of increasing k′ and then increasing p′, cannot cause more than one edge of to

cease to be off-diagonal. Then, identifications among the s2 can only cause 1 edge to

cease to be off-diagonal—this is because if a weightless vertex has two edges joining it a

non-weightless vertex, then because k ≥ 3, the non-weightless vertex must have already

been identified by one of the first s1 identifications—while identifications among the s3

can cause 2 edges to cease to be off-diagonal—ie, if (2, k′) and (p, k′) have already been

identified, then identifying (1, k′) to (2, k′) causes two edges to cease to be off-diagonal.

Identifications among the s4 do not alter the number of off-diagonal edges.

The proof now easily follows:

− (k + 1)p

2
+ |Vb| −

1

2
|V ∗b |

≤ −(k + 1)p

2
+ kp− s1 − s2 − s3 − s4 −

1

2
((k − 1)p− 2s1 − s2)+

=


− s2

2
− s3 − s4 if 2s1 + s2 ≤ (k − 1)p

(k−1)p
2
− s1 − s2 − s3 − s4 if 2s1 + s2 ≥ (k − 1)p

≤ 0,

i.e., the last inequality holds regardless of the size of s1. And then,

− 2

(
−(k + 1)p

2
+ |Vb| −

1

2
|V ∗b |

)
+ |Eo(∆)|

≥


−2
(
− s2

2
− s3 − s4

)
+ kp− s1 − s2 − 2s3 if 2s1 + s2 ≤ (k − 1)p

−2
(

(k−1)p
2
− s1 − s2 − s3 − s4

)
+ kp− s1 − s2 − 2s3 if 2s1 + s2 ≥ (k − 1)p

=


kp− s1 + 2s4 if 2s1 + s2 ≤ (k − 1)p

p+ s1 + s2 + 2s4 if 2s1 + s2 ≥ (k − 1)p

≥ (k + 1)p

2

as desired; this completes the proof of Lemma 5.4.9.
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Proof of Lemma 5.4.10. Let ζb be defined as the least-restrictive partition of Vw(Γζ) which

identifies two vertices ai 6= aj ∈ Vw(Γζ) if ai and aj are identified by ζ and if {ai, aj} =

{α(e), β(e)} for some e ∈ Eo(Γζ). Let r = |Vw(Γ)| − |Vw(Γζb)|, the number of off-diagonal

edges whose endpoints are identified by ζ. Here, b stands for “bad”, because ζb is the part

of ζ which induces bad identifications between j ∈ Vw(Γ), ie, those which cause off-diagonal

edges to cease to be off-diagonal, and we are trying to preserve off-diagonal edges. The

subscript b for “black” should not be confused with the subscript b. For i1, i2 ∈ Vb, we say

i1 and i2 are “part of a bad identification” if for some j1 ∈ π−1(i1), j2 ∈ π−1(i2), we have

{j1, j2} ∈ ζb.

Let also ζint be least restrictive partition which identifies two vertices j1 6= j2 ∈ Vw(Γ) if

j1 and j2 are identified by ζb, or if j1 and j2 are both in π−1(i) for the same i ∈ Vb(Γ) and j1

and j2 are identified by ζ. Here, “int” is short for “internal”. ζint induces a partition on each

set π−1(i) which we may assume has no singletons, lest by the same reasoning as lemma 5.13

of [BEK14] we get a trivial expression. Note also that |π−1(i)| is odd.

Let Vpb ⊆ V ∗b be the vertices which are pulled to (see the remarks following equation

(5.29)) in the construction of Γ and which are part of a bad identification. Let also Vrest :=

V ∗b \ Vpb.

First perform the identifications entailed by ζb: the number of vertices in Vw(Γζb) is

|Vw(Γ)| − r. Now by construction, for each i ∈ Vrest, one of two cases holds:

1. there are exactly 2 distinct j ∈ π−1(i) which are endpoints of an off-diagonal edge e ∈

Γζb(Γ), and hence only 2 vertices j ∈ π−1(i) which can be part of a bad identification.

2. no vertex j ∈ π−1(i) is part of a bad identification.

Therefore, for each i ∈ Vrest there is one vertex := j(i) ∈ π−1(i) which is part of a block of

ζint of size ≥ 3 and which is not part of a bad identification. Similarly, for each i ∈ Vpb,

there is a vertex j(i) ∈ π−1(i) which is part of a block of ζint of size ≥ 3, but in this case,
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however, because i may be part of a bad identification, j(i) may be equal under ζb to j(i′)

for some i′ 6= i.

We conclude that {j(i) : i ∈ Vrest} and {j(i) : i ∈ Vpb} are disjoint and have sizes |Vrest|,

and ≥ 1
2
|Vpb|, respectively. Since each j(i) for i ∈ Vrest ∪ Vpb = V ∗b is part of a block of ζint

of size ≥ 3, and every block of ζint has size at least 2, we conclude that

|Vw(Γζ)| ≤ |Vw(Γζint
)| ≤

|EX(Γ)| − r − |Vrest| −
|Vpb|

2

2

=
|EX(Γ)|

2
− |V

∗
b (Γ)|
2

− r

2
+
|Vpb|

4
.

Therefore, c1 in Lemma 5.4.10 is at least r
2
− |Vpb|

4
. This is a non-negative number, as desired,

because every one of the r identifications performed by ζb adds at most 2 vertices to Vpb.

The number of off-diagonal edges |Eo(Γζint
)| = |Eo(Γζ)| is at least |Eo(∆)| + |Vpb| − r.

Therefore c2 in Lemma 5.4.10 is at most r − |Vpb|. This concludes the proof of Lemma

5.4.10.

Proof of Lemma 5.4.6. This proof is very similar to the previous proof. We construct the

graph ∆pre for k = 2 and follow the same process as in the last proof to arrive at a graph

Γ. Now that k = 2, every non-weightless vertex in ∆pre has a unique weightless neighbor in

∆pre.

In this proof, let V ∗b ⊆ Vb be those black vertices whose preimage under the quotienting

by P is either a single non-weightless vertex, or a non-weightless vertex together with its

unique weightless neighbor only.

Lemma 5.4.11. With our new definition of V ∗b , the same statement as Lemma 5.4.9 holds.

Lemma 5.4.12. With our new definition of V ∗b , the same statement as Lemma 5.4.10 holds.

Given that, with our new definition of V ∗b , exact analogs of Lemmas 5.4.9 and 5.4.10 hold,

we conclude the proof the proof of Lemma 5.4.6 just as we concluded Lemma 5.4.5.
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Proof of Lemma 5.4.11. This proof is similar to the proof of Lemma 5.4.9, and we give an

abridged version. Recall P from which ∆ = ∆(P ) is formed. We let s1 be the number of

identifications entailed by P which identify a non-weightless vertex with its unique weightless

neighbor, and let s2 be the number of all other identifications. Then we have

|Vb| = kp− s1 − s2

and

|V ∗b | ≥ ((k − 1)p− 2s2)+

and

|Eo(∆)| = kp− 2s1,

so that

− (k + 1)p

2
+ |Vb| −

1

2
|V ∗b |

≤ −(k + 1)p

2
+ kp− s1 − s2 −

1

2
((k − 1)p− 2s2)+

=


−s1 if 2s2 ≤ (k − 1)p

(k−1)p
2
− s1 − s2 if 2s2 ≥ (k − 1)p

≤ 0

and

− 2

(
−(k + 1)p

2
+ |Vb| −

1

2
|V ∗b |

)
+ |Eo(∆)|

≥


−2 (−s1) + kp− 2s1 if 2s2 ≤ (k − 1)p

−2
(

(k−1)p
2
− s1 − s2

)
+ kp− 2s1 if 2s2 ≥ (k − 1)p

=


kp if 2s2 ≤ (k − 1)p

p+ 2s2 if 2s2 ≥ (k − 1)p

≥ kp,

and we conclude.
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Proof of Lemma 5.4.12. This proof is a verbatim repeat of the proof of Lemma 5.4.10, using

only the additional insight that each i ∈ V ∗b has at most 2 off-diagonal edges incident on it

in ∆, unless it is pulled to in the construction of Γ.

Proof of Lemma 5.4.7. We define the graph ∆pre according to section 5.4.1 for a = b = 0.

We fix a partition P of the Vb(∆
pre) which contains the block i0 := {(1, 1), . . . , (1, p)}, and

let ∆ = ∆pre/P . The reason for this insistence on the form of partition is that p different

vertices in the graphs of the previous proofs which previously each could range over IM are

now all constrained to equal α ∈ IK .

We write the expression which we desire to bound as

E
∣∣e∗α(G(ΛG)k−1)eα

∣∣p = E
∑
P

Y (∆(P ))

= E
∑
P

∗∑
ab

∑
aw

Aab,aw(∆(P ))

(5.79)

as before, where ai0 is now only allowed to take the value α ∈ IK .

The proof is now very similar to that of 5.4.5, except that we have fewer black vertices

over which to sum (since ai0 takes a single value rather than ranging over IM). We also must

account for the possibility of un-identified white vertices like in section 5.3.3.

As we have done several times before, follow the procedure of section 5.3.1 and fix one

of the resulting graphs Γ.

We first adjust Lemma 5.4.9 to count only the black vertices which land in IM . Notice

that the conclusion of this lemma is better by −p than Lemma 5.4.9, owing to the fact that

we have p fewer vertices over which to sum.

Lemma 5.4.13. Let V s
b = Vb \ {i0} be the set of vertices i ∈ V (∆) such that ai ∈ IM (“s”

stands for “summing”).

Then, (
−(k − 1)p

2
+ |V s

b | −
1

2
|V ∗b |

)
≤ 0
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and

−2

(
−(k − 1)p

2
+ |V s

b | −
1

2
|V ∗b |

)
+ |Eo(∆)| ≥ (k + 1)p

2
.

Lemma 5.4.13 is proven later in the section. The following lemma is in analogy to Lemma

5.4.10.

Lemma 5.4.14. Fix a partition ζ on Vw(Γ) such that

E
∏

e∈E(Γζ)

Aab,aw(e,Γζ) 6= 0 (5.80)

and let ` be the number of white vertices i ∈ π−1(i0) which are in a block of ζ of size 1. Let

the following be the definitions of the numbers c1, c2:

|Vw(Γζ)| =
|EX(Γ)|

2
− |V

∗
b |
2

+
`

2
− c1 (5.81)

and

|Eo(Γζ)| = |Eo(Γ)| − c2. (5.82)

Then, c1 ≥ 0 and 2c1 ≥ c2.

Lemma 5.4.14 is proven later in the section. We now have a lemma which says that lone

vertices always lead to more factors of ψ.

Lemma 5.4.15. Fix σ ∈ {0, 1}` such that∣∣∣∣∣∣E
∗∑
ab

∑
aw

∏
e∈E(ωσΓζ)

Aab,aw(e, ωσΓζ)

∣∣∣∣∣∣ 6= 0.

Let np0 be the number of times in the construction of Γ that an edge is “pulled” to i0. Then,∣∣∣∣∣∣
∏

e∈EG(ωσΓζ)

Aab,aw(e, ωσΓζ)

∣∣∣∣∣∣ ≺ ψ|Eo(Γζ)|+`+ 1
2

[`−2p−2np0]+N−2`εD .
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Lemma 5.4.15 is proven later in the section. Now we may prove Lemma 5.4.7. We have

by Lemma 5.4.15∣∣∣∣∣∣E
∗∑
ab

∑
aw

∏
e∈E(Γζ)

Aab,aw(e,Γζ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
σ

E
∗∑
ab

∑
aw

∏
e∈E(ωσΓζ)

Aab,aw(e, ωσΓζ)

∣∣∣∣∣∣
≺

(
∗∑
ab

1

)(∑
aw

1

) ∏
e∈EX(ωσΓζ)

Aab,aw(e, ωσΓζ)

 ∏
e∈EG(ωσΓζ)

Aab,aw(e, ωσΓζ)


≺ N |V sb |N |Vw(Γζ)|N−

1
2
|EX(Γ)|N−

(k−1)p
2 ψ|Eo(Γζ)|+`+ 1

2
[`−2p−2np0]+N−2`εD .

Lemma 5.4.14 gives

≤ N |V sb |N
1
2
|EX(Γ)|− 1

2 |V ∗b |+ `
2N−

1
2
|EX(Γ)|N−

(k−1)p
2 ψ|Eo(Γ)|+`+ 1

2
[`−2p−2np0]+N−2`εD

= N−
1
2

(k−1)p+|V sb |− 1
2 |V ∗b |+ `

2ψ|Eo(Γ)|+`+ 1
2

[`−2p−2np0]+N−2`εD .

Using |Eo(Γ)| ≥ |Eo(∆)|+ np0, followed by the fact that ψ3N−4εD ≤ N−1, yields

≤ N−
1
2

(k−1)p+|Vb|− 1
2 |V ∗b |+ `

2ψ|Eo(∆)|+ 3
2
`−pN−2`εD

≤ N−
1
2

(k−1)p+|Vb|− 1
2 |V ∗b |ψ|Eo(∆)|−p.

Lemma 5.4.13 and N−1/2 ≤ ψ then yield

≤ ψ
k+1

2
pψ−p = ψ

k−1
2
p

which concludes the proof of Lemma 5.4.7.

Proof of Lemma 5.4.13. The proof is identical to the proof of Lemma 5.4.9, except that only

the vertices in {2, . . . , p} × {1, . . . , k} need to be summed over, that is, p fewer vertices.

Proof of Lemma 5.4.14. The proof is almost identical to that of Lemma 5.4.10; the only

difference is that ` vertices i ∈ Vw(Γζb) can be blocks of ζint of size 1. Using the notation of
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the proof of Lemma 5.4.10, we have

|Vw(Γζ)| ≤ |Vw(Γζint
)| ≤

|EX(Γ)| − r − |Vrest| −
|Vpb|

2
− `

2
+ `

=
|EX(Γ)|

2
− |V

∗
b (Γ)|
2

+
`

2
− r

2
+
|Vpb|

4

and |Eo(Γζint
)| = |Eo(Γζ)| is at least |Eo(Γ)|+ |Vpb| − r as in the proof of Lemma 5.4.10, and

we conclude as in that lemma.

Proof of Lemma 5.4.15. Just as in section 5.3.3, each lone vertex yields an extra factor of

ψN−2εD , and moreover, each lone vertex, except at most 2p + 2np0 of them (noting that

there are exactly 2p+2np0 off-diagonal edges in ∆ incident on i0), is one endpoint of an edge

e ∈ Eo(Γζ) but not already listed among Ẽo(Γζ), which concludes the proof.

5.4.3 Isotropic local law for GD
2 .

Our goal for this section is the proof of Lemma 5.1.7

Lemma 5.4.16.

Proof of Lemma 5.1.7. Recalling Lemma 5.1.8, it suffices to prove: for x,y ∈ RIK∪IM , we

have ∣∣GD
2,xy −GE

2,xy

∣∣ ≺ ψ(xy). (5.83)

Using the same reasoning as in the proof of Lemma 5.1.4, it suffices to prove that, recalling

G := GE
2 in this section, ∣∣x∗CaΛ

aG(ΛG)k−1ΛbCby
∣∣ ≺ ψ(xy)

for a, b ≥ 0 and k ≥ 1 satisfying a+ b+ k ≥ 2.

A short lemma will save us some work here:

Lemma 5.4.17. If G is a conformable random matrix satisfying

|x∗Gy| ≺ ψ(xy)
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for deterministic x,y ∈ RIK+M , then if xrand,yrand ∈ RIK+M are random vectors with norm

O≺(N−1/2), we have

|x∗Gyrand|+ |x∗randGy|+ |x∗randGyrand| ≺ ψ(xy), (5.84)

where O≺(N−1/2) denotes a random vector in RIK+M of norm O≺(N−1/2).

Proof. Equation (5.84) may be bounded by

O≺(N−1/2)‖x∗G‖RIK+M +O≺(N−1/2)‖Gy‖RIK+M +O≺(N−1)‖G‖RIK+M

where ‖·‖RIK+M denotes the norm of a vector’s projection onto RIK+M or the operator norm

of a matrix restricted to this space. The condition |x∗Gy| ≺ ψ(xy) ensures

‖Gy‖RIK+M =

√ ∑
i∈IK+M

|e∗iGy|2 ≺
√
ψ2

(Ky) +Nψ2
(My) . N1/2ψ(My)

as well as

‖G‖RIK+M ≤
∑

i∈IK+M

e∗iGei ≺ Nψ

so that we may conclude.

The following lemmas, whose proofs constitute most of the rest of this section, treat the

case of a = b = 0, so that we may restrict to k ≥ 2. Note the omission of C0 = E, which is

permissible by Lemma 5.4.17 since ‖E − 1‖ ≺ N−1/2.

Lemma 5.4.18. We have for α, β ∈ IK and k ≥ 2∣∣e∗αG(ΛG)k−1eβ
∣∣ ≺ ψ(KK).

Lemma 5.4.19. We have for α ∈ IK ,x ∈ RIM and k ≥ 2∣∣e∗αG(ΛG)k−1x
∣∣ ≺ ψ(KM).

Lemma 5.4.20. We have for x,y ∈ RIM and k ≥ 2∣∣x∗G(ΛG)k−1y
∣∣ ≺ ψ(MM).
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Now we treat the case of a+ b ≥ 1. If k = 1, we write∣∣x∗CaΛ
aGΛbCby

∣∣ =
∣∣x∗CaΛ

a(G− Π2)ΛbCby
∣∣+
∣∣x∗CaΛ

aΠ2ΛbCby
∣∣.

Using that ΛbCby = 1b=0y +O≺(N−1/2), the first term is bounded by O≺(ψ(xy)) by Lemmas

5.4.17 and 5.1.8. The second is trivially O≺(N−1/2). If rather k ≥ 2, we conclude by Lemmas

5.4.17 and 5.4.18, 5.4.19, and 5.4.20.

Proof of Lemma 5.4.18. For k ≥ 2, this proof is exactly the same as that of Lemma 5.4.7;

the only difference is that since we are working in this lemma with potentially α 6= β, the

single black vertex i0 with ai0 ∈ IK in that proof is replaced with two such vertices, but it

is easy to see that the proof is not affected by this.

Proof of Lemma 5.4.19. By polarization and linearity, it suffices to consider x = y. We make

one more reduction, similar to Section 5.2 “Reduction to off-diagonal entries” in [BEK14].

Writing

x∗GE
2 (ΛGE

2 )k−1x =
∑
i,j∈IM

xi
(
GE

2 (ΛGE
2 )k−1

)
ij

xj,

the case i = j is actually treated by our Lemma 5.4.5. The only difference is that what

in that proof were called “weightless” vertices and had weight identically N−1, in this case

correspond to the vertex i = j has a weight x2
i that only sums to 1. One may observe that

the proof of 5.4.5 is not sensitive to this (a way the proof could conceivably be sensitive to

this difference is if we needed to get an improvement in the order of the sum by identifying

two vertices with weight x2
i , but we never actually utilize such an improvement).

The proof is now very similar to the earlier proofs in this section, and we only outline

the differences. Very similarly to in section 5.4.1, we define a graph ∆pre through

Vb(∆
pre) :{1, . . . , k + 1} × {1, . . . , p}

Vw(∆pre) :{2̄1, . . . , k̄1} × {1, . . . , p}

E(∆pre) : {((k′, p′), (k′ + 1, p′)) : (k′, p′) ∈ {1, . . . , k} × {1, . . . , p}}

∪
{

((k′, p′), (k̄′1, p
′)) : (k′, p′) ∈ {2, . . . , k} × {1, . . . , p}

}
.

(5.85)
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Edges in the first set in the definition of E(∆pre) have color G or G depending on whether

p′ ≤ p/2 or not, and similarly edges in the second set have color X2 or X2. Also let

V end
b (∆pre) := {1, k + 1} × {1, . . . , p}.

We fix a partition P which does not identify (1, p′) and (k + 1, p′) for any p′ = 1, . . . , p

(thanks to our reduction to off-diagonal entries) on Vb(∆
pre) and let us consider graphs of

the form ∆ := ∆(P ) = ∆pre/P . This quotient induces a set V end
b (∆) in the obvious way.

Using all the same notation as before, we get

E

∣∣∣∣∣ ∑
i 6=j∈IM

xi
(
GE

2 (ΛGE
2 )k−1

)
ij

xj

∣∣∣∣∣
p

= E
∑
P

∗∑
ab

∑
aw

Ewab(∆(P ))Aab,aw(∆(P )),

where wab(∆) =
∏

i∈V end
b (∆) ci(xai) and ci(z) is either z or z depending on the value of i;

the complex conjugate is not important and we will not elaborate on how the function ci

depends on i.

The first lemma is analogous to Lemma 5.4.13. Its proof is very close to that of Lemma

5.4.13 and is omitted.

For i ∈ Vb(∆), recalling that i arises as a block of the partition P , let degx(i) =∣∣∣{i ∩⋃p
p′=1 {(1, p′), (k + 1, p′)}

}∣∣∣.
Lemma 5.4.21. Let V 0

b ⊆ Vb be the set of black vertices i in Γ which have degx(i) = 0,

and let V 1
b ⊆ Vb be those with degx(i) = 1. Let V ∗b ⊆ Vb be the vertices which correspond to

singletons of P . Then, ∣∣V 0
b

∣∣+
1

2

∣∣V 1
b

∣∣− 1

2
|V ∗b | ≤

(k − 1)p

2
.

Note that V ∗b is not necessarily disjoint with V 0
b or V 1

b . Also note that this statement

is simpler than the statement of of Lemma 5.4.9; we do not need to count the number of

off-diagonal edges in the graph ∆(P ) since we only consider partitions P in this section such

that ∆(P ) includes at least p off-diagonal edges.

The graph ∆ has p off-diagonal edges incident on vertices i with degx(i) ≥ 1. Indeed,

after performing all pullings, there are at least p such edges (thanks to the defintion of the
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partition P ), and the collection of them induces a collection of edges := Ẽo(Γ) ⊆ Eo(Γ). The

following lemma is proven just like Lemma 5.4.10.

Lemma 5.4.22. Fix a partition ζ on Vw(Γ) such that

E
∏

e∈E(Γζ)

Aab,aw(e,Γζ) 6= 0. (5.86)

Let the following be the definitions of the numbers c1, c2:

|Vw(Γζ)| =
|EX(Γ)|

2
− |V

∗
b |
2

+ c1 (5.87)

and ∣∣ET
o (Γζ)

∣∣ = |Eo(Γ)| − c2. (5.88)

Then, c1 ≥ 0 and 2c1 ≥ c2.

We may conclude the proof now. Just as in earlier sections, the thing we desire to bound

may be written

E
∑
P

∗∑
ab

∑
aw

Aab,aw(∆(P )). (5.89)

Then, ∣∣∣∣∣∣E
∗∑
ab

wab

∑
aw

∏
e∈E(Γζ)

Aab,aw(e,Γζ)

∣∣∣∣∣∣
≤

(
∗∑
ab

wab(∆)

)
N |Vw(Γζ)|

∣∣∣∣∣∣
∏

e∈EX(Γζ)

Aab,aw(e,Γζ)

∣∣∣∣∣∣
∣∣∣∣∣∣
∏

e∈Eo(Γζ)

Aab,aw(e,Γζ)

∣∣∣∣∣∣
≺ N |V 0

b |+ 1
2 |V 1

b | ·N |Vw(Γζ)| ·N−
|EX (Γ)|

2
− (k−1)p

2 · ψ|Eo(Γζ)|

≺ N |V 0
b |+ 1

2 |V 1
b | ·N

|EX (Γ)|
2
−|V

∗
b |
2 ·N−

|EX (Γ)|
2
− (k−1)p

2 · ψ|Eo(Γ)|

≤ ψ|Eo(Γ)| = ψp

as desired.
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Proof of Lemma 5.4.20. This is a strict generalization of what we did in Lemma 5.1.8. It is

very similar to what we did in that proof, together with some adjustments which we have

already used in this section. We define the graph ∆pre through

Vb(∆
pre) :={1} ∪ {2, . . . , k + 1} × {2, . . . , p}

Vw(∆pre) :={2̄1, . . . , k̄1} × {1, . . . , p}

E(∆pre) :={(1, (2, p′)) : p′ ∈ {1, . . . , p}}

∪ {((k′, p′), (k′ + 1, p′)) : (k′, p′) ∈ {2, . . . , k} × {1, . . . , p}}

∪
{

((k′, p′), (k̄′1, p
′)) : (k′, p′) ∈ {2, . . . , k} × {1, . . . , p}

}
(5.90)

and we let now P be the set of partitions of Vb(∆
pre) which include the singleton i0 := {1},

so that we have

E
∣∣∣(GE

2 (ΛGE
2 )k−1

)
2,αx

∣∣∣p =
∑
P∈P

∑
ab

wab(∆(P ))Aab(∆(P )),

where the sum
∑

ab
ranges over ab with ai0 = α. Similarly to the case x,y ∈ RIM , we have

the following lemma.

Lemma 5.4.23. Let V 0
b ⊆ Vb\{i0} be the set of black vertices i in Γ which have degx(i) = 0,

and let V 1
b ⊆ Vb\{i0} be those with degx(i) = 1. Let V ∗b ⊆ Vb be the vertices which correspond

to singletons of P . Then,

∣∣V 0
b

∣∣+
1

2

∣∣V 1
b

∣∣− 1

2
|V ∗b | ≤

(k − 1)p

2
(5.91)

We fix a partition ζ of Vw(Γ) as before and define the quotient graph Γζ whose white

vertices are identified according to ζ. We extract a subset Ẽo(Γζ) of p off-diagonal edges

incident on i0. As in the proof of Lemma 5.1.8, we define the collection V ∗w(Γ) of lone white

vertices of set ` and the number ˜̀of them which are one end-point of an edge in Ẽo(Γ). We

have as in equation (5.38), that∣∣∣Eo(Γζ) \ Ẽo(Γζ)∣∣∣ ≥ 1

2

(
`− ˜̀) . (5.92)
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The following lemma is just like Lemma 5.3.7, letting ζb be the bad identifications and r

be the number of blocks of size 2 in ζb.

Lemma 5.4.24. For any graph Γ and any partition ζ such that

E
∏

e∈E(Γζ)

Aab,aw(e,Γζ) 6= 0,

we have

|Vw(Γζ)| ≤
|EX(Γ)|

2
− r

2
+
`

2
− |V

∗
b |
2
.

Lemma 5.3.8 holds verbatim. We conclude:

E
∑
ab

wab

∑
aw

∏
e∈E(ωσΓζ)

Aab,aw(e, ωσΓζ)

.

(∑
ab

wab

)∑
aw

∏
e∈EG(ωσΓζ)

Aab,aw(e, ωσΓζ) ·O≺
(
N−

1
2
|EX(Γ)|N−(k−1)p/2

)

≺

(∑
ab

wab

)(∑
aw

1

)
·
(
ψp−rψ`+

1
2

(`−˜̀)N−2`εD
)(

N−
1
2
|EX(Γ)|N−(k−1)p/2

)
≺ N |V 0

b |+ 1
2 |V 1

b |N
1
2
|EX(Γ)|− r

2
+ `

2 ·
(
ψp−rψ`+

1
2

(`−˜̀)N−2`εD
)
·
(
N−

1
2
|EX(Γ)|

)
·N−(k−1)p/2N−

1
2 |V ∗b |

=
(
N−

r
2ψ−r

) (
ψ

3
2
`N

`
2N−2`εD

)(
ψp−

1
2
˜̀) ·N |V 0

b |+ 1
2 |V 1

b |− 1
2 |V ∗b |− 1

2
(k−1)p.

Now we use that N−
1
2 . ψ, that ψ3N−2εD ≤ N−1, that ˜̀≤ p, and equation (5.91) to bound

the above by ψp/2, and we conclude.

5.5 The proof of Lemma 5.1.5

Lemma 5.5.1. The resolvents of (U∗MDX)# and (U∗DX)# are close at the spectral edge:

for z ∈ Se, we have ∣∣GU∗D −GU∗MD
∣∣ ≺ N−δ

Nη0

. (5.93)
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Proof of Lemma 5.1.5. An immediate corollary of Lemma 5.1.4 is that (DX)# satisfies the

ε0/2-valley and weak level repulsion conditions, so the result follows from Lemma 5.5.1 in

the same way that Lemma 5.1.3 was proven.

Proof of Lemma 5.5.1. We will need the following consequence of Lemmas 5.1.7, 5.2.12 and

5.4.17.

Lemma 5.5.2. For deterministic unit vectors x,y ∈ RIK+M , we have∣∣∣(GD − Π
)
xy

∣∣∣ ≺ ψ(KK).

We begin by establishing

G
U∗MD
1,ii = GU∗D

1,ii +O≺

(
max
α

∣∣GU∗D
1,iα

∣∣2) (5.94)

for i ∈ IM . Note that G
U∗MD
1 = GUD(IK )

1 . Let IK = {α1, . . . , αK}. We use Lemma 5.2.4 to

see that

GU∗D(α1···αK )

1,ii = GU∗D(α1···αK−1)

1,ii −
GU∗D(α1···αK−1)

1,iαK
GU∗D(α1···αK−1)

1,αK i

GU∗D(α1···αK−1)

1,αKαK

.

Inductively we may assume that

GU∗D(α1···αK−1)

1,jk = GU∗D
1,jk +O≺

(
max

α∈IK\{αK}

∣∣GU∗D
j,α

∣∣∣∣GU∗D
k,α

∣∣) .
For j, k ∈ IM ∪ {αK}. Equation (5.94) then follows by∣∣GU∗D

1,iαK

∣∣+
∣∣GU∗D

1,αK i

∣∣+
∣∣GU∗D

1,αKαK

∣∣−1

=
∣∣zGU∗D

iαK

∣∣+
∣∣zGU∗D

αK i

∣∣+
∣∣zGU∗D

αKαK

∣∣−1 ≺ 1,

which is a consequence of Lemma 5.5.2.

Equation (5.94) then yields

GU∗D −GU∗MD

=
1

M

∑
i∈IM

(
GU∗D
ii −GU∗MD

ii

)
+

1

M +K

∑
i∈IK

GU∗D
ii +

K

M(M +K)

∑
i∈IM

GU∗D
ii

≺ max
α∈IK

1

M

∑
i∈IM

∣∣GU∗D
i,α

∣∣2 +M−1
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by Lemma 5.5.2, the first term of which we may then write as

1

N

∑
i∈IK∪IM

∣∣GU∗D
1,iα

∣∣2 =
1

N

∥∥GD
1 U
∗eα
∥∥2

RIK+M
=

1

N

∑
i∈IK∪IM

∣∣e∗iGD
1 Ueα

∣∣2. (5.95)

Lemma 5.2.12, Lemma 5.1.7, and Lemma 5.4.17 then yield together

≺ 1

N

∑
i∈IK∪IM

∣∣ψ(iK)

∣∣2 . ∣∣ψ(MK)

∣∣2 ≤ N−δ

Nη0

as desired.

5.6 Proofs of Lemma 5.1.6

Recalling the singular values and vectors dα,vα,wα of B, we define the random singular

values and vectors d̃α, ṽα, w̃α of DMB. Since ‖D − I‖ ≺ N−1/2, simple perturbation theory

yields the estimates

max
α

(∣∣∣d̃α − dα∣∣∣+ ‖ṽα − vα‖+ ‖w̃α −wα‖
)
≺ N−1/2 (5.96)

We define the matrices

[d̃] := diag(d̃1, . . . , d̃K), [ṽ] :=


| |

ṽ1 · · · ṽK

| |

 [w̃] :=


| |

w̃1 · · · w̃K

| |

 .

We will need to following, somewhat crude, result for the proof of Lemma 5.1.6.

Lemma 5.6.1. For α, β ∈ {1, . . . , K}, we have∣∣∣(GU∗MD − Π
)
ṽαṽβ

∣∣∣ ≺ N−δ.

A particular consequence of corollary 5.6.1 is that for a fixed integer L > 0, letting

v1, . . . , vN be the eigenvectors of (U∗MDX)#

|ṽ∗αvi| ≺ N−1/3−δ−ε0 (5.97)
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for i = 1, . . . , L and α ∈ IK . Indeed, letting Se 3 z = λi + iη0,

N−δ � =Πṽαṽα(z) +O≺(ψ(KK)) = =GU∗MD

ṽαṽα
(z)

=
∑
j

η0

(λi − λj)2 + η2
0

|ṽ∗αvj|
2 ≥ 1

η0

|ṽ∗αvi|
2.

(5.98)

Proof of Lemma 5.1.6. This proof is similar to the proof of lemma 6.8 in [KY13b]. However,

because in our setting we are able to assume the weak level repulsion condition, the proof is

easier (the authors note in the beginning of the proof that the proof would in fact be easier

under this assumption).

We must add a little independent randomness to take care of a technical detail later.

Rather than considering the eigenvalues of [N(SX)]# =
[(
DMB I

)
DX

]#

, we consider

the eigenvalues of

H̃γ :=
(
DMB I

) (
[DX]# + γX

) (
DMB I

)∗
for some very small γ > 0, where X is an independent conformable Wishart matrix. Sending

γ → 0 and using the Lipschitz continuity of the eigenvalues with respect to γ on the high

probability event
{∥∥N(SX)#

∥∥ ≤ 10
}

, thanks to Weyl’s inequality, we may conclude.

In order to use Lemma 5.2.7 to study the eigenvalues of H̃γ, we write

(
DMB I

)
=

((
DMB I

)#
)1/2

U∗M

which is the reason for the definition of U∗M . Therefore, since(
DMB I

)#

= I + [ṽ]∗[d̃][ṽ],

Lemma 5.2.7 shows us that H̃γ has an eigenvalue at x 6∈ σ (Hγ), whereHγ := U∗M
(
[DX]# + γX

)
UM

if and only if

M(x) := [d̃]−1 + [ṽ]∗(I + x (Hγ − x)−1)[ṽ]

is singular. Fix an integer L > 0. Let Ω
U∗MD
LR be the event that (U∗MDX)# satisfies the weak

level repulsion condition; by choosing γ very small we may assume Hγ does as well. For
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i, j ∈ {1, . . . ,M}, define

λ̃i = λi

(
H̃γ

)
, λi = λi (Hγ)

We first establish the claim that for each i ≤ L, on the event Ω
U∗MD
LR ,

nj :=
∣∣∣{j : λ̃j ∈ [x−i , x

+
i ]
}∣∣∣ ≥ 1 (5.99)

where x±i = λi ± N−2/3−γ/2. Let us demonstrate why the claim (5.99) is sufficient before

proving it. If n1 ≥ 1, then by Lemma 5.2.8 and the weak level repulsion condition, we see

that ∣∣∣{j : λ̃j > x+
2

}∣∣∣ ≥ K + 1

so that by Lemma 5.2.9, ∣∣∣{j : λ̃j > x+
2

}∣∣∣ = K + 1

so that nj = 1 and ∣∣∣{j : λ̃j ∈ [x+
2 , supp %E + C0/2] \ [x−1 , x

+
1 ]
∣∣∣ = 0

We may repeat this argument for n2, . . . , nL, establishing that nα = 1 for α = 1, . . . , L and∣∣∣{j : λ̃j ∈ [x+
L+1, supp %E + C0/2] \ [x−1 , x

+
1 ] \ · · · \ [x−L , x

+
L ]
∣∣∣ = 0

Now let us establish the claim (5.99). It suffices, by Lemma 5.2.7, to establish that

M(x) is singular for at least 1 value x in each of the (centerless) intervals [x−i , x
+
i ] \ {λi} for

i = 1, . . . , L. Fix such an i and let x ∈ [x−i , x
+
i ]. Write

M(x) = [d̃]−1 + [ṽ]∗
(
x
viv
∗
i

λi − x

)
[ṽ] + [ṽ]∗

(
1 + x

∑
j 6=i

vjv
∗
j

λj − x

)
[ṽ] (5.100)

where
∑

j λjvjv
∗
j is an eigendecomposition of Hγ. Since

dist (x, σ (Hγ) \ {λi}) > η0
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because of the weak level repulsion condition, we may write∥∥∥∥∥[ṽ]∗

(
1 + x

∑
j 6=i

vjv
∗
j

λj − x

)
[ṽ]− [ṽ]∗

(
1 + x

∑
j

vjv
∗
j

λj − (x+ iη0)

)
[ṽ]

∥∥∥∥∥
≤ C max

α,β∈IK

(∣∣∣∣∣=ṽ∗α

(
x
∑
j

vjv
∗
j

λβ − (x+ iη0)

)
ṽβ

∣∣∣∣∣+

∣∣∣∣ṽ∗α(x viv
∗
i

λi − (x+ iη0)

)
ṽβ

∣∣∣∣
)

= C max
α,β∈IK

(∣∣∣=([DX]# + γX − (x+ iη0))−1
ṽαṽβ

∣∣∣+O≺(N−1/3−δ−ε0η−1
0 )
)

= O≺(N−δ),

(5.101)

where the second to last equality follows from equation (5.97) and the last from Lemma

5.2.2. Then we may write

M(x) = [d̃]−1 + [ṽ]∗
(
x
viv
∗
i

λi − x

)
[ṽ] + [ṽ]∗

(
1 + xGU∗MD(x+ iη0)

)
[ṽ] +O≺(N−δ).

By Lemma 5.6.1,∥∥[ṽ]∗
(
1 + xGU∗MD(x+ iη0)

)
[ṽ]− [ṽ]∗ (1 + xΠ(x+ iη0)) [ṽ]

∥∥ ≺ N−δ

and, using Lemma 5.2.11, we have

[ṽ]∗ (1 + xΠ(x+ iη0)) [ṽ] = − 1
√
y

+O≺(N−δ).

We therefore get

M(x) =

(
[d̃]−1 − 1

√
y

)
+ [ṽ]∗U∗M

(
x
viv
∗
i

λi − x

)
UM [ṽ] +O≺(N−δ).

By equation (5.97),
∥∥∥[ṽ]∗U∗M

(
x
viv
∗
i

λi−x

)
UM [ṽ]

∥∥∥ ≺ N−δ/2 if x ∈ [x−i , x
+
i ], x < λi − η0N

δ/2.

Because of assumption dα ≥ y + C, the eigenvalues of
(

[d̃]−1 − 1√
y

)
are all < −c1 for

some small positive constant c1. Thus M(x−i ) has only negative eigenvalues. Because X is

independent of X and has absolutely continuous distribution, we see that

P ([v∗iUM ṽ] = 0) = 0.

So we see that as x → λi, M(x) has only positive eigenvalues. It is then easy by the

intermediate value theorem to conclude that M(x) is singular for some x ∈ (x−i , λi), and we

conclude the proof of Lemma 5.1.6.
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Proof of Lemma 5.6.1. Note first that Π = −1
z(1+m(z))

I +O≺(N−1/2), ie, Π is nearly isotropic.

We write, just as in the proof of equation (5.22),

G
U∗MD

ṽα,ṽβ
= z−1G

U∗MD

1,ṽα,ṽβ

= z−1GU∗D
1,ṽα,ṽβ

+O≺

 max
γ∈{1,...,K}
δ∈IK

∣∣∣GU∗D
1,ṽγ ,eδ

∣∣∣2


= GU∗D
ṽα,ṽβ

+O≺

 max
γ∈{1,...,K}
δ∈IK

∣∣∣GU∗D
ṽγ ,eδ

∣∣∣2


= GD
U ṽα,U ṽβ

+O≺

 max
γ∈{1,...,K}
δ∈IK

∣∣∣GD
U ṽγ ,Ueδ

∣∣∣2
 .

(5.102)

Now it follows by the definition of U that U ṽα, Ueβ ∈ RIK ⊕ span {ṽα : α ∈ IK} for α =

1, . . . , K and β ∈ IK . Therefore, for x,y ∈ {U ṽα} ∪ {Ueβ}, we may write

x∗(GD − Π)y

=

 ∑
α∈{1,...,K}

aαeα +
∑
α∈IK

bαṽα

∗ (GD − Π)

 ∑
α∈{1,...,K}

a′αeα +
∑
α∈IK

b′αṽα

∗

for possibly random aα, bα, a
′
α, b
′
α. Expanding this out into (2K)2 terms and applying Lemmas

5.1.7 and 5.4.17 (because ṽα is deterministic +O≺(N−1/2)) to each term bounds the above

by O≺(ψ(KK)). Therefore, using equation (5.102) and also that U∗ΠU = Π +O≺(N−1/2), we

obtain

(
GU∗MD − Π

)
ṽαṽβ

= (GD − Π)U ṽα,U ṽβ +O≺(ψ(KK)) = O≺(ψ(KK)).

To obtain the error term in the first equality above, note that ṽα and eβ are orthogonal.
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CHAPTER 6

Future Work

Using the technique of [BDW20] to represent the eigenvector components as residues of the

Green function, the key ingredient for Theorem 2.2.3 is as follows:

Lemma 6.0.1. Fix α ≤ K and assume d1 = 0(1). For any fixed non-negative integers

n1, n2 and deterministic unit vectors w1,w2 ∈ RIM satisfying ‖wι‖∞ ≤ N−ε
′

for some ε′,

and letting

M(n1,n2) := M
(n1,n2)
1 + M

(n1,n2)
2 + M

(n1,n2)
3

M
(n1,n2)
1 := w1w

∗
2

M
(n1,n2)
2 := w1w

∗
2∂

(n2)
z (G− Π)

M
(n1,n2)
3 := ∂(n1)

z (G− Π)w1w
∗
2∂

(n2)
z (G− Π)

where again the omitted spectral argument of G and Π is φα � d1, we have under Assumptions

1 and equations (2.2) and (2.3) that

Tr(IM ) M(n1,n2)(D − I) = O≺
(
N−1/2−ε)

for some ε > 0. Under Assumption 2 the error term should be replace with OP

(
N−1/2−ε).

Lemma 6.0.1 is proven in exactly the same way as Lemmas 4.1.7 and 4.1.8. It is fairly

routine to verify that ∂
(n1)
z G satisfies the same sort of local laws, Lemmas 4.2.7, 4.2.8 and

4.2.10, as G for z ∈ SO, and also the same derivative rule (4.40). The replacement of vα in

the definition of M with wι now is also inconsequential: the only property of vα that we use

is its delocalization, which we assume now for w.
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We postpone further justification of Lemma 6.0.1 and an explanation of how it implies

Theorem 2.2.3 to future work.
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CHAPTER 7

Summary

In this work we discussed the spiked eigenvalues and eigenvectors of sample covariance

matrices—our work is only the second on the topic, and extends the scope of the exist-

ing work [MJM21] to the statistically relevant setting of spiked matrices with weak factors.

Moreover, ours is the first work to discuss the non-spiked eigenvalues of spiked correlation

matrices.

A defining characteristic of our work has been the treatment of eigenstructures of corre-

lation matrices by a deterministic comparison between the Green function of the correlation

matrix and suitable covariance matrix; that is, we show that for a fixed realization of the

randomness X, the correlation matrix and the covariance matrix have very similar Green

functions, yielding similarity of their eigenstructures. This is as opposed to a distributional

result which would only establish that the eigenstructures of the correlation matrix have the

same distribution as those of the covariance matrix. In this way, we have alleviated some

of the practictioner’s concern surrounding the use of correlation matrices: for spiked matri-

ces with sufficiently weak factors (see the remark following Theorem 2.2.4), the practitioner

may confidently use the sample correlation matrix as a substitute for the sample covariance

matrix with normalized variances. In other words, for factor models with weak factors, our

work has answered in the affirmative the important question of whether normalizing data by

the sample variances, thus forming the sample correlation matrix, is an acceptable substitute

for normalizing by the true variances. This is especially useful in the most common scenario

that the sample covariance matrix with normalized variances is unavailable, i.e., in the case
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of unknown calibrations or different units of the many variables being measured.

However, our work also uncovered a surprising feature of the sample correlation matrix

of a factor model: if the factors are not weak enough (as manifested by eigenvalues of the

model exceeding N5/6, or equivalently, the parameter εD controlling the weakness of the

factors satisfying εD < 1/12), then the fluctuations of the extreme non-spiked eigenvalues

will be driven by the “signal part” of the randomness XK and have Gaussian fluctuations on

the scale N−1/2−2εD rather than the typical “random matrix behavior,” i.e., Tracy-Widom

fluctuations on the scale N−2/3. Thus we have uncovered a phase-transition phenomenon

not entirely unlike the BBP phase transition (although one should be careful not to push

the analogy too far).

Our establishment of deterministic bounds on the difference between the eigenstructures

of sample correlation and sample covariance matrices has obvious statistical implications.

Beyond this, we note that such deterministic comparisons of Green functions, which are a

proxy for the eigenstructures, are somewhat unusual in the random matrix theory literature,

with distributional statements usually being preferred. We hope that the techniques we

developed for such deterministic comparisons, in particular our novel use of the polynomial-

ization method in Chapter 5, may be useful for future work in RMT.
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