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Abstract— Objective: This study’s objective is to develop 

and validate a fast, automated 3D segmentation method for 
cardiac Magnetic Resonance Imaging (MRI). The 
segmentation algorithm automatically reconstructs cardiac 
MRI DICOM data into a 3D model (i.e., direct volumetric 
segmentation), without relying on prior statistical 
knowledge. Methods: A novel 3D active contour method was 
employed to detect the left ventricular cavity in 33 subjects 
with heterogeneous heart diseases from the York University 
database. Papillary muscles were identified and added to 
the chamber using a convex hull of the left ventricle and 
interpolation. The myocardium was then segmented using a 
similar 3D segmentation method according to anatomic 
information. A multi-stage approach was taken to determine 
the method’s efficacy. Results: Our method demonstrated a 
significant improvement in segmentation performance 
when compared to manual segmentation and other 
automated methods. Conclusion and Significance: A true 
3D reconstruction technique without the need for training 
datasets or any user-driven segmentation has been 
developed. In this method, a novel combination of internal 
and external energy terms for active contour was utilized 
that exploits histogram matching for improving the 
segmentation performance. This method takes advantage of 
full volumetric imaging, does not rely on prior statistical 
knowledge and employs a convex hull interpolation to 
include the papillary muscles. 
 

Index Terms— Cardiac MRI, Segmentation, Automated, 
Three dimensional, Volumetric, Active contour method 

I. INTRODUCTION 

ARDIAC Magnetic Resonance (CMR) imaging is a robust 
modality that does not employ ionizing radiation or 

iodinated contrast but delivers images with high spatial 
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resolution. Currently, many of the commercially available 
software platforms for CMR post-processing either provide 
suboptimal automated segmentation or require a substantial 
amount of manual segmentation effort from the operator, 
resulting in significant methodological variability [1-3]. Even 
the most recently released commercial CMR analysis tools only 
report themselves to be semi-automated, which can lead to a 
great deal of inter-observer variability and thus diminish 
CMR’s clinical utility [4]. Moreover, manual segmentation is 
time consuming and requires dedicated operator training that 
makes it inefficient due to the extent of information in CMR 
images [5, 6]. Nevertheless, the current gold standard for 
assessment of ventricular function based on MRI is manual 
segmentation by a trained physician, as automated techniques 
currently lack the necessary accuracy. 

Most cardiac segmentation techniques treat 2D segmentation 
and 3D multiplanar reconstruction as two separate processes [7-
9]. These processes achieve volumetric reconstruction by first 
applying a 2D segmentation approach independently for each 
slice, and then volumizing these 2D segmented image stacks 
into 3D objects. This procedure only considers volumizing a 
particular set of images (e.g., short axis or sagittal stack). 
Therefore, the procedure loses some important details of the 
object, generally resulting in objects with significant 
inaccuracies [10, 11]. Here, volumizing refers to 3D 
reconstruction of the volume of a chamber from segmented 
images.  

In this study, we have developed a true 3D reconstruction 
technique without the need for training datasets or any user-
driven segmentation. This method exploits the benefit of full 
volumetric imaging, and does not rely on prior statistical 
knowledge. 

II. METHODS 

The input to the algorithm is a stack of either short- or long-

Computing, University of California, Irvine, 4213 Engineering Hall, Irvine, CA 
92697-2625. 

E.M. Groves (egroves@uci.edu) and A. Kheradvar (arashkh@uci.edu) are 
with the Edwards Lifesciences Center for Advanced Cardiovascular 
Technology, Department of Biomedical Engineering, University of California, 
Irvine, 2410 Engineering Hall, Irvine, CA 92697-2730. 

A 3D Active Contour Method for Automated 
Segmentation of the Left Ventricle from 

Magnetic Resonance Images 
Mahdi Hajiaghayi, Ph.D., Elliott M. Groves, M.D., M.Eng., Hamid Jafarkhani, Ph.D., Fellow, IEEE and  

Arash Kheradvar, M.D. Ph.D. 

C  



axis CMR images, or any standard sagittal, coronal, and axial 
MR images, and the output is a refined point cloud representing 
the cardiac chamber being segmented.  

A. CMR Data 

Our algorithm can utilize either short or long-axis CMR images or 
images from a standard MRI in any plane (axial, coronal, sagittal) 
as long as they encompass the heart. The initial CMR data to 
develop and test our algorithm was acquired using an axial 
gradient-echo fast low-angle shot sequence with readout of 512 
and a gap of 0.8 mm between slices from normal subjects on a 
Phillips Medical System Achieva 3T scanner. The manual 
segmentation of these CMR images was performed by a board 
certified cardiologist with formal CMR segmentation training. 
The left ventricle (LV) was segmented at both end-diastole and 
end-systole.  

The second set of data used for comparison was a CMR dataset 
from Department of Diagnostic Imaging of the Hospital for 
Sick Children in Toronto, Canada available from the York 
University website* [12]; here referred to as York database. 
This database contains short axis cardiac MR images from 33 
subjects together with their manual segmentations of 
endocardial and epicardial contours performed by an 
experienced cardiologist. The York database consists of a 
heterogeneous group of subjects with normal hearts and 
congenital heart diseases with a mean age of 12.0±4.0 (Table 
1).† 

For quantitative validation of our 3D segmentation method, a 
phantom of a human LV was constructed with a known volume. 
The phantom was imaged on a Phillips Medical System 

 
* http://www.cse.yorku.ca/~mridataset/ 

Achieva 3T scanner with a breast coil. The image dimensions 
were 512 × 512 and 2D images were acquired at slice 
thicknesses and x and y spacing, respectively, of 1 mm, 
0.234mm and 0.235mm. 

B. Reconstruction Methodology 

Our method is carried out over three consecutive steps, as 
summarized in Figure 1: 

The first step is endocardial segmentation where the algorithm 
generates a 3D estimation of a heart chamber (e.g., LV) using 
an adaptation of the active contour method [13, 14]. To start this 
process, an arbitrary point in the chamber on a 2D slice from 
the CMR image stack is randomly selected. Centered at that 
point, a contour ball that grows is initiated until it converges to 
the internal borders of the chamber.  

The second step is intra-chamber inclusion using convex hull 
interpolation where the algorithm modifies the result by adding 
intra-chamber structures (e.g., LV’s papillary muscles) that 
most automated segmentation algorithms exclude from the 
chamber [11, 15-17].  

 
Fig. 1.  Three steps (phases) of the segmentation method: Step 1 segments the 
endocardial layer of a cardiac chamber; Step 2 incorporates intra-chamber 
structures; Step 3 defines the myocardium. 

During the third step, myocardial segmentation is performed 
and the algorithm identifies the enclosing myocardium using 
the 3D segmentation introduced in the first step with some 
modifications to be further discussed. Figure 1 illustrates these 
three steps: 

Step I: Endocardial Segmentation of a Cardiac chamber 
using 3D Active Contour Segmentation 

3D active contours are dynamic surfaces that evolve and move 
toward an object of interest and eventually lie on its edges. To 
mathematically represent such a surface in a 3D domain, we 
employ a signed distance function (SDF)  for all voxels 

, ,  in the image domain Ω [18]. For a closed contour, 
this function returns negative values for the voxels inside the 
contour and positive values for the voxels outside. Evolution of 
the active contour is driven by minimizing an energy function 

 designed to reach its minimum when the contour lies on 
the boundary of the object of interest. The	  generally 
includes two components: 

† http://www.cse.yorku.ca/~mridataset/metadata.txt 



int  , (1) 

where int and  are the internal and external energy 
functions, respectively. int, whose minimization shrinks the 
contour’s surface, plays a regulating role to control the contour’s 
smoothness. The internal energy function for a SDF  is 
described as: 

Φ ∑ |∈ Φ |, (2) 

where  and |.| denote gradient and absolute value operators, 
respectively; : →  is the Heaviside step function with 

1 for 0 and 0 otherwise [17], [19]. 
Accordingly,  is 0 inside and 1 outside of the contour, 

and thus 1 at the border and 0 elsewhere. From 
here on, we drop  from	  for the sake of brevity.  is a 
data-driven term that provides information about the object 
boundaries and plays a driver role. For example, for LV 
segmentation, we use the following external energy function: 

Φ 	, (3) 

which is a combination of the region-based ( ), edge-based 
( ) and geometric terms ( ) to be introduced shortly. 
The weights,  ’s 1, , 4, are carefully chosen for each 
image and should add up to 1. While the effect of weighting 
parameters can be negligible for some object segmentations, 
these parameters are more sensitive in CMR segmentation. No 
quantitative analysis or straightforward strategy currently exists 
to yield the optimal weighting parameters for segmentation. In 
our method, we often pursue a trial and error approach to obtain 
these parameters. However, once the optimal weighting 
parameters are found for one cardiac MR image, they can be 
used for the whole image stack without compromising the 
performance. The region-based term ( ) from Equation (3) 
calculates how likely a voxel  belongs to the foreground 
(myocardium) or background (blood pool) given its signal 
density [17]. This term in a general form is represented by:  

	 	∑ 	log | 	 1∈

log | 										(4) 

where  denotes the signal intensity at voxel .,  . |  
and . |  are myocardium and blood pool probability density 
functions (PDFs), respectively. If they are not known a priori, 
they are replaced by the PDFs of inside and outside of the active 
contour, usually modeled by Gaussian distributions with 
different means and variances. As the contour evolves, the 
means and variances are both updated. In Appendix A,  
along with the Gaussian PDF and the details of the updating 
process are further described.  

The edge-based term ( ) detects the objects’ edges [20]: 

	 ∑ | H Φ |,∈ 									(5) 

where  can be any function whose minimum occurs at the 
edge of the object of interest [18]. Here we consider 	

	 1	 ∗ , where ∗  is the convolution of the 
image  and a 3-D Gaussian kernel with parameter . In this 
case,  has an inverse relationship with , thus reaching a 
much lower value on the edges compared to the homogeneous 
regions. The parameters  and  can be set using trial and error. 
We reached the values , 100,15  and used them 
throughout our numerical experiments. We observed that these 
values work well for all CMR images in our database. 

The geometric term ( ) sets geometrical constraints on the 
active contour. A common problem related to the non-model-
based segmentation approaches is the leakage around the weak 
or missing boundaries. This is particularly observed in CMR 
image segmentation. One way to avoid this leakage is to set a 
geometrical constraint on the active contour. For example, it is 
known that LV is roughly axisymmetric considering the heart’s 
short-axis, and this constrain can be used in segmentation. The 
same argument is used for the whole 3D segmentation. We use 
this through a symmetric constraint on the LV’s short-axis 
defined as: 

∑ ∈

∑ 	 	∈

∑ ∈

∑ 	 	∈
		 (6) 

A similar term has also been introduced by Wang et al. [21]. 
This function calculates the x and y spatial deviation of the 
geometrical center of the active contour  from the centroid 
point’s  and , to be further described. The active contour 
problem seeks a unique contour denoted by ∗, which lies on 
the boundary of the object of interest. This problem translates 
into the underlying minimization problem over : 

∗ argmin  (7) 

for which we employ the gradient descent algorithm to solve. 
The gradient descent first starts with a 3D initialization matrix 
Φ , for ∈ Ω, followed by updating Φ via 

Φ Φ Δ | 	 	| 	 , (8) 

where Δ , the step size, is chosen wisely to ensure convergence 
and stability. Both 	and int are functionals (function of 
functions), and their derivatives, which are required for the 
gradient descent algorithm are calculated using the Euler-
Lagrange equality. This equality states that if Φ
	∑ ,Φ,Φ  for any integer function , the derivative of 

 with respect to Φ is calculated as: 

	 	 	.																	 (9) 

In Appendix B, the derivative of 	and all terms of , 
which include , 	  and  are further described. 



These derivatives are computed for each voxel ∈ Ω, and 
expressed as 3D matrices. To construct the initial distance 
function Φ , a random point inside the LV is selected and a 
contour ball is considered whose respective signed distance 
function forms Φ . The  and  dimensions of this point can 
also be used as , 	for the geometric term.  

Each iteration of the gradient descent algorithm updates the 
function  for each voxel. However, this update may not 
maintain the sign distance property of ; accordingly, we must 
frequently reinitialize [22]. This process is fully automatic and 
no user interaction is required. The final ∗ yields the final 
contour ∗. As it is not mathematically simple to represent a 3D 
contour, we use the SDF function, , which has a one-to-one 
mapping with . This mapping is as follows: Given , all the 
points that have zero value specify the contour. That is,  

∈ , 0 (10) 

Once ∗is known, the mapping is used to obtain ∗. Figure 2 
depicts the evolution of the LV’s 3D contour during the first 
phase of the algorithm.  

 
Fig. 2.  Illustration of the left ventricular contour evolution: (A) in early 
iteration; (B) mid iteration; and (C) final iteration of the gradient descent 
algorithm. 

To ensure the convergence and numerical stability of an upwind 
scheme, Δ  must satisfy the Courant, Friedrichs, Lewy (CFL) 
condition [23]. This condition requires Φ to change no further 
than a pixel space after each time step, thus choosing Δ  as: 

Δ 0.45	 ∈ | 		 (11) 

This would satisfy the CFL condition. The weighting parameters 
, … ,  play a paramount role in achieving a desirable 

segmentation result. For example, a high  favors the internal 
energy term that excessively smoothes the shape that creates 
inherent inaccuracies. The optimal weights for an image are 
conventionally obtained through a trial and error procedure. 
Once the optimal weighting parameters are found for one CMR 
image, they can be used for the whole stack without any 
degradation in quality. The optimal weighting parameters 
obtained for the reference image can be used for a new image 
as long as the two images are normalized. We use histogram 
matching for this purpose [24]. For a new image, first its signal 
intensity histogram is matched to the reference image, and then 
uses the weights of the reference image for the new image. 
Histogram matching with fixed weights significantly improves 
the performance of the segmentation algorithm.  

Step II: Intra-chamber Inclusion using Convex Hull 
Interpolation 

Due to the homogeneous signal intensity of intra-chamber 
structures (e.g., LV’s papillary muscles) and the surrounding 
myocardial structure, many segmentation techniques exclude 
these structures from the chamber [15-17, 25]. Our method 
identifies these structures and adds them back to the reconstructed 
volume.  

For each 2D slice, the algorithm considers the contour obtained 
from the previous phase. Due to the exclusion of the intra-
chamber structures, this contour is non-convex, meaning that 
the line connecting any two points inside the contour is not 
necessarily inside the contour. We argue that the points on the 
convex border can be interpolated to refine the segmentation 
(Figure 3). To do so, the points on the contour’s convex hull 
are first identified [26]. Given  points , , … , , ,  
the centroid is obtained as  

	∑ , 	∑ 	   ( 1 2 )  

This centroid point is used as the center of the cylindrical 
coordinates, and the radius and angle of all points on the convex 
hull are calculated according to the new coordinate system. Let 

, , . . . ,  and , , . . . ,   denote the radii and angles of 
these points, respectively, with  and  representing the 
distance and angle of the th point with regard to the center ( s 
unequally spaced).  

 

Fig. 3.  (A) shows a 2D cross-section of the first phase segmentation while (B) 
shows the convex hull of the segmentation, which includes the papillary 
muscles (red curves). The blue dots on the LV border specify the convex hull. 
The red curve illustrates the output of the linear interpolation of the blue points 
in the cylindrical coordinates. The initial point is chosen at a random MR slice, 
and its location does not affect the final segmentation results. 

Once the cylindrical coordinates of the convex hull points are 
determined, the  versus  scatter plot would be considered, and 
fit to a parabolic curve using piece-wise interpolation such that 
for equally-spaced ′ , ′ , . . . , ′ , their corresponding 
′ , ′ , . . . , ′  is obtained. This new set of points constructs a 

closed convex curve that best approximates the non-convex 
chamber contour and includes the intra-chamber structures 
(Figures 3 and 4). This modification over the LV volume is 
shown in Figure 4B, providing a more accurate representation 
of the LV geometry. 



 
Fig. 4.  (A) The 3D segmentation of the left ventricle prior to Phase 2, vs. (B) 
after Phase 2 (convex hull interpolation). This figure shows how the papillary 
muscles are incorporated using the convex hull interpolation. Two cross-
sections with and without papillary muscles are provided for better clarification. 
The background images on top are long axis view. 

Step III: Myocardial Segmentation 

This step extracts the myocardium as the foreground from the 
rest of the CMR image. We follow the 3D segmentation 
method discussed in Step I with slight changes in the external 
energy function. Once the enclosing chamber is segmented, as 
in Step I, and its boundaries are detected, the algorithm removes 
the endocardium and refills it with the grey-scale intensity of 
the myocardium that surrounds the chamber as shown in Figure 
5. 

 
Fig. 5.  A cross-section of 3D segmentation procedure during Step III: (A) is a 
result of Step II; (B) removing the intra-chamber area; (C) refilling with the 
myocardium; (D) white line shows enclosing left ventricle with all of its 
contents (two-chamber view). 

The hull of Figure 5B shows the area to be refilled with the 
gray-scale intensity. To do so, the algorithm moves a few pixels 
away from the endocardial boundary and then performs the 
refilling procedure. This expansion from the endocardial 
boundary in Figure 5A to 5B ensures that the algorithm does 
not overlook any endocardial pixels. Additionally, it allows the 
segmentation to reach to the region of the myocardium and use 
its grey-scale intensity for refilling. To do so, we interpolate 
inward using the grey-scale intensities densities by solving 
Laplace’s equation. This refilling procedure produces a 
homogeneous region of segmented myocardium that includes 
the endocardium.  

Next, the algorithm applies the 3D segmentation method 
previously discussed in Step I to find the endocardial borders. 

However, unlike Step I, we now have a rough estimate of the 
density histogram distribution of the foreground (myocardium) 
and background (the rest of the chamber). Sample voxels are 
automatically selected from the myocardial area without any 
operator interaction. To find the background sample points, the 
focus would be on the points far from the centroid. The 
algorithm moves along the radial lines of the equally-spaced 
angles to obtain both foreground and background sample 
points. 

 
Fig. 6.  PDF estimation of histogram sample of myocardium and the 
background using the expected maximization (EM) method. 

Once these sample voxels are known, the foreground and 
background PDFs ( . |Ω  and . |Ω ) are found in a region-
based term as shown in Figure 6. We consider a Gaussian 
mixture model with 3 Gaussian components ; ,  
to represent . |Ω  and . |Ω , i.e.,  

|Ω 	∑
√

	 ,							 ∈ ,   (13) 

with parameters , ,  representing the weight, the mean, 
and the variance of the ith component of the foreground ( 	
	 ) and the background ( 	 	 ). These parameters can be 

 

Fig. 7.  Volumetric segmentation of the left ventricle; (a) perspective view; (b) 
top view. 

identified using the expected maximization (EM) method from the 
sample voxels obtained earlier [27]. Note that one may increase the 
number of Gaussian components with the hope of better 
performance; however, this increase may not always lead to a better 
performance. Additionally, the higher the number of components, 
the longer it takes to calculate the distribution parameters. We 



reached to 3 based on the quality of our image database, and 
the time complexity of the outcome. Figure 6 depicts a histogram 
sample of the myocardium and the background. It also shows how 
the estimated Gaussian mixture model with obtained parameters fits 
this histogram. Once the PDF parameters are determined, they 
remain fixed over all iterations and unlike Step I, there is no need to 
update them (Figure 7). 

III. RESULTS 

To validate our algorithm, a multi-stage approach was taken that 
involved a direct comparison to manually segmented images, a 
phantom experiment, and a comparison to two other automated 
techniques. Finally, we tested the effects of contrast to noise ratio 
(CNR) and signal to noise ratio (SNR) on the algorithm. 

A. Validation with Manual Segmentation 

For validation purposes, we compared LV volumes obtained 
from manual segmentation ( ) with the data obtained from 
our automatic technique . The short axis sequences were 
utilized in segmentation of the studied subjects. Simpson’s rule 
was employed to compute the volume. This method needs to 
include the pixel-spacing and slice-spacing of the 3D image 
extracted from the CMR data. We also used the Dice metric 

given by 2
	∩	

. This metric is in fact the F1 metric in 

the context of machine learning.  

B. Validation with York Database 

CMR dataset from Department of Diagnostic Imaging of the 
Hospital for Sick Children in Toronto, Canada was used for 
validation. We achieved between 80% to 90% accuracy in 
estimating LV volumes in 13 out of 33 subjects compared to the 
ground truth. Only in 6 cases, our estimate fell below 70% 
accuracy. 

There was one outlier, and if we excluded that, the mean 
accuracy of the dataset would be 76% ± 8%. Overall, in 27 out 
of 33 subjects, our algorithm provided a segmentation accuracy 

higher than 70% with an average of 80% ± 5%. Figure 8 shows 
the reliability function –i.e., the complementary cumulative 
distribution function (ccdf)– of the obtained F1 accuracy [28]. 
As can be inferred from the figure, the convex hull interpolation 
significantly improves the performance. The convex hull 
interpolation improved the accuracy by almost 10% (i.e., 76% 
± 8% with convex hull vs. 67% ± 13% without). A paired t-test 
showed that this improvement was statistically significant with 
a p-value less than 0.0001.  

C. Comparison to Manual Segmentation and Alternate 
Reconstruction Algorithms 

To further test our algorithm’s functioning objectively, we 
compared its performance with that of two popular automatic 
cardiac segmentation methods using the York database. The 
first method was developed by Grosgeorge et al. [14] and the 
second method was developed by Mille et al. [29] and 
Pluempitiwiriyawej et al. [17]. Both methods were 
implemented by following the algorithms from their published 
work. However, some small discrepancies may still exist due to 
different initialization and other parameters involved.  

Our method provides a 3D active contour model that fits into 
the cardiac MRI context more accurately. Grosgeorge’s method 
neglects both edge and geometric terms. Additionally, the same 
variance was assumed for the foreground (LV) and background 
(rest of the CMR image) probability density functions. Our 
method considers the foreground and background pertaining to 
two different texture regions, thus adopting different variances, 
which is far more accurate. The methods developed by Mille et 
al. and Pluempitiwiriyawej et al. are quite identical as both 
consider an edge-based term and a region-based term but not a 
proper geometric term. In contrast to our method, neither 
method employs histogram matching or convex-hull 
interpolation. Both histogram matching and convex-hull 
contribute significantly to the performance improvement. 

Fig. 8.  A graphical representation of the reliability analysis for our method with and without convex hull interpolation, as well as the methods developed by Mille 
et al. [29] and Pluempitiwiriyawej et al. [17], and Grosgeorge et al. [14]. (A) at end-diastole; (B) at end-systole. 

 



Figure 9 illustrates that a 3D model of the LV obtained from 
our method looks much more like a natural LV cavity than the 
manual segmentation as the manual segmentation is inherently 
inaccurate, and several studies have shown that it can be 
imprecise with a low level of reproducibility [30, 31]. 

 
Fig. 9.  Manual segmentation by a trained operator (A) vs. our method’s output 
(B) for Patient 11 of York dataset. 

Figure 8 provides a reliability analysis of F1 accuracy for all the 
methods including our algorithm using the subjects of the York 
database at end-diastole and end-systole. The method 
developed by Grosgeorge et al. resulted in an accuracy of 55% 
± 23% and the method developed by Mille et al. and 
Pluempitiwirijawej et al. had an accuracy of 63% ± 16%, 
respectively. Our algorithm shows a statistically significant 
improvement in accuracy (both p-values <0.0001) and 
outperforms the other two methods [14, 17, 29].  

D.  Effects of Change in CNR and SNR 

Studying the effects of change in CNR and SNR was 
accomplished by introducing additive noise to a set of MRI 
datasets (in this example, we chose Patients 4, 5, 13, 14, 15, 19, 
29 of the York database). Here, we tested how the algorithm’s 
performance is affected as CNR and SNR decrease. This set of 
patients was chosen due to their higher image quality, which 
allowed considerable noise to be added before the data became 
uninterpretable. For a CMR dataset of poor quality, the initial 
segmentation result is not robust enough to support adding a 
significant level of noise.  

Figure 10 shows the performance of our algorithm as a function 
of additive Gaussian noise. Predictably, performance drops as 

the level of noise increases, or inversely, when the SNR or CNR 
decreases. However, the algorithm continues to perform well 
despite the addition of noise to certain level. It is not generally 
straightforward to report an operating CNR or SNR for these 
types of studies since there are other parameters involved in the 
performance that directly correlate with the CNR (e.g., SNR, 
the weighting parameters, or initialization of the algorithm that 
makes it hard to give a number for operating CNR). Finally, 
introduction of significant noise (i.e., greater than -10 dB) led 
to a considerable decline in the algorithm’s performance; 
however, that level of noise would likely render a study 
uninterpretable regardless of the method of segmentation (i.e., 
manual or automatic). 

 
Fig. 10.  The average performance of our algorithm with and without convex-
hull interpolation vs. various levels of additive noise for 7 Patients (4, 5, 13, 14, 
15, 19, and 29). 

 
Fig. 11.  (A) Top to apical view of select short axis MRI slices of the phantom. 
(B) The silicone model of the left ventricle used as a phantom in this 
experiment. (C) A mid ventricle slice with the components of the phantom 
labeled. 

D.  Phantom Validation and Reproducibility Study 

To estimate the absolute accuracy of our segmentation method, 
a phantom was constructed with a known volume. The phantom 
is a simulation of a human LV including an inlet and an outlet 
(Figure 11). It is composed of transparent silicone rubber and 
shaped according to the shape of a human left ventricle in the 
diastolic state [32]. Our phantom was filled with 330 mL of 

TABLE II 
THE PARAMETERS VALUE FINE-TUNED FOR THE REFERENCE IMAGE. 

Parameter Value a 

 0.0093 

 0.045 

 0.0093 

 0.93 

 100 

 15 

 



water mixed with 2mL of gadolinium, then held in a Styrofoam 
mold to keep it in place inside the MR scanner. Figure 11 is a 
composite image of the phantom and the corresponding MR 
images. Using a phantom provides flexibility with respect to 
validation since the chamber’s volume is known, versus human 
data that needs to be calculated by other methods where each 
has its own inherent limitations. 

After performing the 3D segmentation of the phantom, 
Simpson’s rule was used to obtain the volume. The calculated 
volume was eventually compared to the known phantom 
volume of 332 mL. The algorithm was independently run for 10 
times with different randomly-picked initiation point. The 
termination condition of the algorithm was set to 700 iterations 
or less than 0.0001% volume change in each iteration. Given 
these conditions, the 3D results took roughly two minutes to 
generate, and the algorithm returned values between 325 mL 
and 364 mL with a mean value of 345.2 ± 10.5 mL. These 
values correspond to an average error of 3.97% ± 3.16% with a 
maximum error of 9.63% produced by the value of 364 mL, 
which was to some degree an outlier.  

 
Fig. 12.  Comparison between the algorithm's performance  with and without 
using histogram matching (HM) and with and without fine-tuning. The plot is 
related to the York database that contains short axis cardiac MR images from 
33 subjects together with their manual segmentations. 

A similar performance was observed for the algorithm 
developed by Mille et al. [29] and Pluempitiwiriyawej et al. 
[17] (P>0.05). The reason for this similarity in performance is 
that the effect of the geometric term in our algorithm only 
comes to effect when the image quality is poor (e.g., human MR 
data) and as a result its effect on the performance of the 
phantom study was nil. The method described by Grosgeorge et 
al. [14], resulted in an average error of 10.6% compared to 
3.97% for our algorithm.  

E. Effect of Histogram Matching and Weight Fine-tuning 

This section provides a performance comparison between the 
fine-tuned and fixed weights, as combined with and without 
histogram matching for all patients in the dataset. From Figure 
12, it can be inferred that the histogram matching results 

generally outperform the other results. More importantly, fine-
tuning the weights would not improve the performance 
significantly if a set of fixed yet appropriate weights were used. 
In other words, the performance does not seem to be sensitive 
to the weights. We noticed that the histogram matching without 
fine-tuning occasionally achieves a better performance 
compared to that of the fine-tuned weights without histogram 
matching. Using Patient 13 as our main reference, we achieved 
the parameters mentioned in Table 2 for the best 3D active 
contour. 

IV. DISCUSSION 

The need for an efficient, accurate, and automated segmentation 
method has stimulated a large body of work in automated 3D 
CMR segmentation. Currently no singular approach has 
resulted in an accurate and fast segmentation algorithm that 
requires no prior statistical model or strong prior knowledge of 
the chamber’s shape [2]. The current automated segmentation 
approaches are model-based (e.g. Active appearance model 
[AAM] [33] and active shape model [ASM] [5, 6]) and 
incorporate prior knowledge about the chamber that relies on a 
statistical model created from a large database of manually-
segmented images. 

Overall, the model-based approaches demonstrate adequate 
segmentation performance once the dataset is sufficiently large 
[34, 35]. Small datasets incur a large bias to the segmentation, 
making these methods ineffective when the heart shape is 
outside the learning set [34], which is likely to occur in the case 
of many cardiovascular diseases since the learning sets are 
primarily composed of normal images. Yet another challenge 
is to obtain large segmented datasets, which must be addressed 
using model-based approaches. An additional limitation of 
model-based algorithms is that the training data must be in the 
same format as the testing data; for example, if the training data 
are constructed using short-axis CMR images, they cannot be 
used for long-axis image segmentation [35]. 

There is a paucity of automated segmentation techniques and 
those that do exist have significant limitations, particularly the 
3D reconstruction tools. Among these studies, early attempts at 
thresholding [36] were followed by the popular pixel 
classification [15, 16], active contour approaches [13, 14] and 
region based approaches [14, 29]. However, none of these 
approaches has resulted in an accurate and fast segmentation 
algorithm that requires no prior statistical model or strong prior 
knowledge of the shape of a chamber [2]. Additionally, to 
obtain a 3D segmented image, a common approach is to 
automate consecutive “2D segmentation” followed by “3D 
multiplanar reconstruction” steps. However, this approach fails 
to exploit the benefits of a true, 3D volumizing technique. Most 
segmentation approaches in 2D cannot readily handle cases 
where an object of interest (e.g., papillary muscles) appears to 
be separated into several cross-sections (i.e., non-convex 
object). This separation and discontinuity is commonly seen in 
CMR images, which incurs further challenges in 2D 
segmentation. 



The novel method presented here performs simultaneous 
segmentation and three-dimensional reconstruction in a variety 
of patients as described in Table 1, and can also use any 
standard MR images (axial, coronal, or sagittal), along with 
both short- and long-axis CMR data.  

As with any work, there are limitations to our study. One 
limitation is that our algorithm requires the input MR data to 
have a small slice thickness/interslice gap to generate a highly 
accurate 3D segmentation. There is no absolute number, but 
less than or equal to 8 mm would be ideal. With modern MR 
technology with increased resolution, this should not generally 
be an issue. Increased slice thickness results in an inaccurate 
mathematical derivative in the z-direction. Although not tested, 
the use of convex hull may not capture an LV with irregular 
borders such as the presence of LV aneurysm. Another 
limitation is that we are currently unable to provide a clear 
scheme that specifies exactly what quality level of an image is 
required to produce an ideal segmentation. We can only provide 
statistical results of our algorithm performance as we did in the 
numerical experiment section. 

V. CONCLUSION 

A true 3D reconstruction technique without the need for 
training datasets or any user-driven segmentation has been 
developed and validated. In this method, a novel combination 
of internal and external energy terms for active contour was 
utilized that exploits histogram matching for improving the 
segmentation performance. This method takes advantage of full 
volumetric imaging, does not rely on prior statistical knowledge 
and employs a convex hull interpolation to include the papillary 
muscles.  

VI. APPENDIX 

A.  Region-based Term with Gaussian Distribution  

For LV segmentation in the first step, the PDFs inside and 
outside of an active contour are modeled by Gaussian 
distributions with different means and variances. Applying this 
assumption to (4) results in 

	 ∑
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where , , and  are constant scalars that must be 
determined to minimize the region energy function (A.1). 
Following the argument in [19], one can show that  and  are 
optimized by  

	
∑ ∈

∑ ∈
	 and 	

∑ ∈

∑ ∈
     (A.2),  

and similarly, 
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Therefore, to minimize (A.1), we alternatively minimize over 
Φ assuming fixed , ,  and , and then update the mean 
and variance parameters via (A.2) and (A.3). 

B. Gradient Calculation of Internal and External Energy 
Functionals 

Here, we invoke the Euler-Lagrange equality (9) for computing 
the gradient. In particular, the gradient of internal energy is 
calculated as  
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where  is the contour curvature and  is the delta function. 
To obtain (B.1) from (9) and (2), we further used equality 
| Φ | 	 	 | 	Φ| Φ  with | Φ| 	 	1.		Similarly, the 
gradient of different terms of external energy function with 
respect to Φ are obtained as 
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and 
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in which ̅ and  are the x-axis and y-axis mean of the contour’s 
inside, i.e.,   

		 ̅ 	
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and  and  are the terms specified in (6). To derive 
(B.5), we use the absolute value rule that states 	| |
	  where  is the sign function. Although (B.5) 

seems to be independent of the initial input ,  at the first 

glance, it is not, and the effect of ,  appears in the  

and  terms defined in (6). The 3D partial differential 
equations were discretized using upwind scheme [22] and the 
curvature in (B.1) was computed via difference of normal 
method outlined in [37]. 
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